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Abstract

We consider a finite-time version of the Gerber-Shiu (G-S) function,

defined over a fixed interval [0, t] as follows:

m
(2)
δ (u; t) = E

[
e−δ(t∧T )w(U(T∧t)−, UT∧t) | U0 = u

]
, u ≥ 0, t > 0 ,

for general bivariate penalty functions w and spectrally negative Lévy sur-
plus processes U .

Our motivation in adapting to a short term the classical G-S function,
which was originally defined on an infinite-time ruin horizon, is to allow its

use as a risk management tool. Risk management problems are most often
set over a short term (a day, a week, a quarter, or a year). Hence the need

to redefine the G-S function and analyze it over a finite time.

We first obtain the Laplace transform in t of m
(2)
δ (u; t), for any penalty

function, in terms of the scale function of the Lévy process. A closed form
inversion of this Laplace transform is given in the case of the classical risk

model (compound Poisson with exponential claims + a drift) perturbed by
Brownian motion.

Then the numerical evaluation of the finite-time Gerber-Shiu function
is illustrated for three special choices of penalty function w, that could

be applied to the finite-time hedging of insurance portfolios. For these
illustrations a compound renewal surplus process is assumed.

∗This research was funded by the Natural Sciences and Engineering Research Council of
Canada (NSERC) Grants 36860-20121 and 249554-20113 the Fonds de recherche du Québec-
Nature et technologies (FRQNT)2.
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1 Introduction

Assume that the insurer’s surplus process {Ut}t≥0 is given by

Ut = u+ ct− St, (1.1)

where u = U0 ≥ 0 is the initial surplus, c is the rate of premium income per unit
time, and St is the aggregate claims amount up to time t with S0 ≡ 0. Let T
denote the time of ruin,

T := inf{t ≥ 0 : Ut < 0 | U0 = u},

with T = ∞ if the process Ut never assumes a negative value (no ruin occurs).
The infinite time ruin probability is defined as

ψ(u) := P(T <∞ | U0 = u).

An additional assumption imposed on the models is that Ut → ∞ almost surely as
t→ ∞, which is equivalent to saying that ruin is not a certain event. A sufficient
condition to guarantee the latter, is the net profit condition limt→∞ E[Ut]/t > 0
[Rolski et al. (1999)].

Similarly, the ruin probability with finite time horizon t is defined as

ψ(u, t) := P(τ ≤ t | U0 = u), t > 0.

Gerber and Shiu (1998) proposed and analyzed the expected discounted penalty
function given by

m
(2)
δ (u) := E

[
e−δTw(UT−, |UT |)I(T <∞) | U0 = u

]
, u ≥ 0, t > 0, (1.2)

where δ is assumed to be nonnegative, UT− is the surplus immediately before
ruin, |UT | is the deficit at ruin, St is a compound Poisson process, w(x, y) is a
known function of x > 0 and y > 0 and I(A) is the indicator function of event
A. The function w is interpreted as a penalty, when ruin occurs, and δ as a force
of interest. In the case when w(x, y) = 1 for all x and y, we denote the classical

Gerber-Shiu (G-S) function in (1.2) by m
(0)
δ (u), and when w(x, y) = w(y) for all

x and y, by m
(1)
δ (u).
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For a given surplus process {Ut}t≥0 and a penalty function w, we define here a
finite-time version of the Gerber-Shiu (G-St) function as follows:

m
(2)
δ (u, t) := E

[
e−δ(T∧t)w(U(T∧t)−, UT∧t) | U0 = u

]
, u ≥ 0, t > 0, (1.3)

with Ut− = Ut a.s., by the quasi-left continuity of {Ut}t≥0.

The renewal techniques commonly used with the classical G-S function do not
work for the analysis ofm

(2)
δ (u, t), due to the stopping of the process U at time T∧t.

Instead, the next section gives an expression for its Laplace transform derived for
spectrally negative Lévy surplus processes U and general penalty functions w, in
terms of the corresponding scale function. The latter is derived in closed form for
some special cases, including a compound Poisson surplus process with exponential
claims perturbed by Brownian motion.

Other authors have, simultaneously and independently, investigated alternative
definitions of a finite-time G-S function. For instance Kuznetsov and Morales
(2014) proposed the following finite-time expected discounted penalty function:

E
[
e−δTw(−UT , UT−, UT−)I(T < t) | U0 = u

]
, (1.4)

where U t = inf0≤s≤t Us. Note that the indicator function yields non-zero values
only when ruin has occurred in the finite time interval [0, t]. Our discounting
at the stopped time T ∧ t in (1.3) allows for a more general formulation, still
reproducing (1.4) as a special case for bivariate penalty functions equal to 0 when
ruin does not occur before time t (that is U(T∧t)− = UT∧t). The definition in
(1.4) generalizes that of Kočetova and Šiaulys (2010), which they studied for the
special case of a constant penalty function w ≡ 1 and compound Poisson St with
exponential claims.

2 The finite-time G-S function for Lévy surplus

processes

In this section we consider the G-St function in (1.3) for a spectrally negative
Lévy surplus process U and general penalty function w.

It is known that the Laplace exponent Ψ(θ) := log E[eθU1], for θ ≥ 0, allows the
Lévy–Khintchine representation

Ψ(θ) = aθ +
1

2
σ2θ2 +

∫

(−∞,0)

(eθx − 1 − xθ1x>−1)Π(dx),
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where Π is a measure on (−∞, 0) satisfying
∫
(−∞,0)

(1 ∧ x2)Π(dx) < ∞. Denote

by Φ : [0,∞) 7→ [0,∞) as the right inverse of a convex function Ψ on (0,∞), i.e.

Φ(q) := sup{θ ≥ 0 : Ψ(θ) = q} , q ≥ 0.

Then consider the scale functions {W (q) : q ≥ 0}, such that W (q)(x) = 0 for
x ∈ (−∞, 0), W (q) is right continuous at 0 and continuous on (0,∞), and

∫ ∞

0

e−θxW (q)(x)dx =
1

Ψ(θ) − q
, for θ > Φ(q) .

We write W for W (0).

For a spectrally negative Lévy risk model, consider the classical G-S function

m
(2)
δ (u) = E

[
e−δTw(UT−, UT ) I(T <∞) | U0 = u

]
.

It is the limit m2
δ(u) = limt→∞m2

δ(u; t) of the finite–time Gerber-Shiu G-St func-
tion in (1.3). Now let us analyze the latter.

The Laplace transform of m
(2)
δ (u; t) in t is given by

m̂
(2)
δ (u, β) :=

∫ ∞

0

e−βtm
(2)
δ (u; t) dt , u ≥ 0 ,

=
1

β
E
[
m

(2)
δ (u;Tβ)

]

=
1

β
E
[
e−δ(Tβ∧T )w(U(Tβ∧T )−, UTβ∧T ) | U0 = u

]
,

where Tβ is an exponential variate with mean 1/β, independent from U .

Equivalently,

β m̂
(2)
δ (u, β) = E

[
e−δTβw(UTβ−, UTβ

) I(Tβ ≤ T ) | U0 = u
]

+E
[
e−δTw(UT−, UT ) I(Tβ > T ) | U0 = u

]
(2.1)

= E

[ ∫ T

0

e−δtw(Ut−, Ut)βe
−βt dt | U0 = u

]
+ E

[
e−(δ+β)Tw(UT−, UT ) | U0 = u

]

= β E

[ ∫ T

0

e−(δ+β)tw(Ut, Ut) dt | U0 = u
]

+m
(2)
δ+β(u)

= β

∫ ∞

0

w(x, x)
[
e−Φ(δ+β)xW (δ+β)(u) −W (δ+β)(u− x)

]
dx

+

∫ 0−

−∞

∫ ∞

0

w(x, y)
[
e−Φ(δ+β)xW (δ+β)(u) −W (δ+β)(u− x)

]
dxΠ(dy − x)

+
σ2

2

[
W (δ+β)′(u) − Φ(δ + β)W (δ+β)(u)

]
ω(0, 0) , u ≥ 0 , (2.2)
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where, for the first term in the third equality, we need the quasi–left continuity
and for the first term in the fourth equality, we need Corollary 8.8 of Kyprianou
(2006) on the potential measure. The second term in the last equality of (2.2)
is essentially due to Bertoin (1997); also see Zhou (2005). Finally, the last term
in the last equality concerns the Laplace transform of the time of ruin caused by
Brownian motion. By Corollary 2 of Pistorius (2004) or Kyprianou (2006, p.235),

P{UT = 0|U0 = u} =
σ2

2

[
W ′(u)− Φ(0)W (u)

]
.

If we kill the process U at an independent exponential time τ with rate δ + β,
then applying the previous result to the killed process UK we get

E
[
e−(δ+β)T ;UT = 0

]
= P{UK

T = 0}

=
σ2

2

[
W ′

K(u)− ΦK(0)WK(u)
]

=
σ2

2

[
W (δ+β)′(u) −Φ(δ + β)W (δ+β)(u)

]
,

where ΦK and WK are the root and scale function for UK , respectively.

The evaluation of the Laplace transform in (2.2) requires the numerical integration
of the scale function. This is simpler when the latter is known explicitly, as in the
following examples.

Example 2.1 For Brownian motion with drift the associated Laplace exponent is
Ψ(θ) = µθ + σ2θ2/2 and the scale function (defined below at (2.10))

W (q)(x) =
2√

2qσ2 + µ
e−

µx

σ2 sinh
( x
σ2

√
2qσ2 + µ

)
, x > 0, W (q)(0) = 0.

Example 2.2 For a compound Poisson(λ) process with exponential jumps (of
mean µ) and drift, the associated Laplace exponent is

Ψ(θ) = cθ +
λ/µ

θ + 1/µ
− λ, θ ≥ 0,

and scale function

W (q)(x) =

[
1/µ + ρ(q)

]
eρ(q)x −

[
1/µ + ρ̄(q)

]
eρ̄(q)x

√
(c/µ− λ− q)2 + 4cq/µ

, x > 0, W (q)(0) = 0,

where

ρ(q) :=
1

2c

[
λ + q − c/µ +

√
(c/µ − λ− q)2 + 4cq/µ

]
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and

ρ̄(q) :=
1

2c

[
λ+ q − c/µ−

√
(c/µ − λ− q)2 + 4cq/µ

]
.

See Hubalek and Kyprianou (2011) and Zhou (2005).

Example 2.3 The corresponding perturbed compound Poisson surplus process
with exponential jumps is then defined as

Ut = u+ ct−
Nt∑

i=1

Xi + σBt,

where Nt is a Poisson process with rate λ, the (Xi)i≥1 are iid exponential random
variables with mean µ, Bt is a standard Brownian motion and σ 6= 0, c > λµ.
The moment generating function of Ut − u is given by

E
[
eθ(Ut−u)

]
= etΨ(θ),

where

Ψ(θ) = cθ +
1

2
σ2θ2 − θλ

1/µ + θ
, θ ≥ 0. (2.3)

It follows that here

1

Ψ(θ) − q
=

2(θ + 1/µ)

σ2θ3 + (2c + σ2β)θ2 + 2(c/µ − q − λ)θ − 2q/µ
.

Under our assumptions, the denominator in the previous equation

f(θ) = σ2θ3 + (2c+ σ2/µ)θ2 + 2(c/µ − q − λ)θ − 2q/µ, θ ∈ R,

has three distinct real roots, one positive and two negative, since f is a continuous
function with

lim
θ→∞

f(θ) = ∞, f(0) < 0, f(−1/µ) > 0 and lim
θ→−∞

f(θ) = −∞.

Hence f(θ) can be rewritten as

f(θ) = σ2
[
θ3 +

(2c
σ2

+
1

µ

)
θ2 +

2(c/µ − q − λ)

σ2
θ − 2q/µ

σ2

]

= σ2(θ − θ1)(θ − θ2)(θ − θ3).

Then
1

Ψ(θ) − q
=

2(θ + 1/µ)

σ2(θ − θ1)(θ − θ2)(θ − θ3)
, θ ≥ 0, (2.4)
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Using MATHEMATICA we see that one solution to f(θ) = 0 is

θ1 =
ξ

1

3

3σ2
+

6σ2q + 6σ2λ+ 4c2 + σ4/µ2 − 2σ2c/µ

3σ2ξ
1

3

− 2c+ σ2/µ

3σ2
,

where

ξ = 6
σ2c2

µ
+ 3

σ4c

µ2
− 18σ2qc+ 18

qσ4

µ
− 18σ2λc− 9

σ4λ

µ
− 8c3 − σ6

µ3
+ 3σ2

√
ω,

and

ω = −24qc2λ+ 6
σ4cλ

µ3
+ 24

σ4cq

µ3
+ 24

c3λ

µ
− 12

σ2c2q

µ2
− 48

σ2c2λ

µ2
− 48

σ2cq2

µ

+60
σ2cλ2

µ
− 24

c3q

µ
+ 12

σ2cqλ

µ
− 24σ2q3 − 24σ2λ3 + 12

σ2c3

µ3
− 12

c4

µ2

−3
σ4c2

µ4
− 72σ2qλ2 − 6

σ6q

µ4
− 72σ2q2λ− 12q2c2 + 24

σ4q2

µ2

−12λ2c2 − 3
σ4λ2

µ2
− 60

σ4qλ

µ2
.

Since θ1, θ2 and θ3 are roots of f(θ) = 0, they must satisfy the following relations

θ1θ2θ3 =
2q/µ

σ2
,

θ1 + θ2 + θ3 = −
(2c
σ2

+
1

µ

)
.

Solving the previous system of equations leads to the other two real roots:

θ2 = −1

2

(
2c

σ2
+

1

µ
+ θ1 +

√
(2c

σ2
+

1

µ
+ θ1

)2

− 8q/µ

σ2θ1

)
,

θ3 = −1

2

(
2c

σ2
+

1

µ
+ θ1 −

√
(2c

σ2
+

1

µ
+ θ1

)2

− 8q/µ

σ2θ1

)
.

We can now look for the inverse Laplace transform of 1
Ψ(θ)−q

.

The right hand side of (2.4) can be written as a summation of rational fractions.
Assume that there exist three unknown A, B and C such that

f1(θ) =
2
σ2θ + 2/µ

σ2

(θ − θ1)(θ − θ2)(θ − θ3)
=

A

θ − θ1
+

B

θ − θ2
+

C

θ − θ3
. (2.5)

7



Multiplying (2.5) by (θ − θ1) and letting θ = θ1 gives

A =
2(θ1 + 1/µ)

σ2(θ1 − θ2)(θ1 − θ3)
. (2.6)

Similarly for B and C we get:

B =
2(θ2 + 1/µ)

σ2(θ2 − θ1)(θ2 − θ3)
, (2.7)

C =
2(θ3 + 1/µ)

σ2(θ3 − θ1)(θ3 − θ2)
. (2.8)

Hence, by (2.4) and (2.5) we have that

1

Ψ(θ) − q
=

A

θ − θ1

+
B

θ − θ2

+
C

θ − θ3

, θ ≥ 0, (2.9)

where A, B and C are given above.

Since the Laplace transform of an exponential function is given by

L
{
eat
}

=

∫ ∞

0

e−steatdt =
1

s− a
, s > a,

where a is a constant, then the inverse Laplace transform of 1
Ψ(θ)−q

is given by

L−1
{ 1

Ψ (θ) − q

}
= L−1

{ A

θ − θ1
+

B

θ − θ2
+

C

θ − θ3

}
, θ > max(θ1, θ2, θ3),

= L−1
{ A

θ − θ1

}
+ L−1

{ B

θ − θ2

}
+ L−1

{ C

θ − θ3

}

= Aeθ1x +Beθ2x + Ceθ3x.

Since the scale function W (q)(x) is defined as
∫ ∞

0

e−θxW (q)(x)dx =
1

Ψ(θ) − q
, θ ≥ 0, (2.10)

from (2.6)-(2.9) we have

W (q)(x) =
2(θ1 + 1/µ)

σ2(θ1 − θ2)(θ1 − θ3)
eθ1x +

2(θ2 + 1/µ)

σ2(θ2 − θ1)(θ2 − θ3)
eθ2x

+
2(θ3 + 1/µ)

σ2(θ3 − θ1)(θ3 − θ2)
eθ3x.

Note that the above expression is derived in Example 1.1 of Loeffen et al. (2014)
for more general Lévy processes.

Inserting this closed form expression for W (q) back into (2.2) allows for the in-

version of the Laplace transform m̂
(2)
δ (u, β) to obtain numerical values of the G-St

function m
(2)
δ (u, t).
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The above example opens the door to the possible use of the G-St function as a
measure for risk management on the surplus process U . The next section considers
particular choices of the penalty function w, and a compound renewal surplus
process, that could be useful in a risk management setting.

3 Special penalty functions for risk management

This section investigates further the finite-time Gerber-Shiu (G-St) function in
(1.3), this time for three special cases of penalty function w and for a surplus
process Ut = u + ct − St, where the aggregate claims process is assumed of the
form St =

∑Nt

k=1 Xk. Here the counting process {Nt}t≥0 is an ordinary renewal
process with claim arrival times denoted by {Tk}k≥1 and iid claim inter-arrival
times {τk = Tk − Tk−1}k≥1, with common probability density function (pdf) fτ

and cumulative distribution function (cdf) Fτ (x) = 1−F τ (x), where T0 = 0. (By
convention, St = 0 if Nt = 0.)

Case 1: Consider first the simple case of a constant penalty function w(x, y) = 1

for all x, y > 0. In this case, the finite-time G-St function is denoted by m
(0)
δ (u, t)

and defined for δ ≥ 0 as

m
(0)
δ (u, t) = E

[
e−δ(t∧T ) | U0 = u

]
, u ≥ 0, t > 0.

Clearly, the classical G-S function m
(0)
δ (u) = limt→∞m

(0)
δ (u, t). The following is

an equivalent expression for the G-St function m
(0)
δ (u, t), for δ ≥ 0, in terms of

finite-time ruin probabilities

m
(0)
δ (u, t) = E

[
e−δT I(T ≤ t) | U0 = u

]
+ e−δt[1−ψ(u, t)], u ≥ 0, t > 0. (3.1)

Using the (defective) density v(u, t) = ∂
∂t
ψ(u, t) of the random variable T , relation

(3.1) for δ ≥ 0 becomes

m
(0)
δ (u, t) =

∫ t

0

e−δs ∂

∂s
ψ(u, s)ds+ e−δt

[
1 − ψ(u, t)

]

= e−δsψ(u, s)
∣∣t
0
+ δ

∫ t

0

e−δsψ(u, s)ds+ e−δt
[
1 − ψ(u, t)

]

= e−δt + δ

∫ t

0

e−δsψ(u, s)ds, u ≥ 0, t > 0, (3.2)

after integration by parts.
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Note that letting t → ∞ in relation (3.2) gives the result of Gerber and Shiu
(1998) for the G-S function, namely for δ > 0

m
(0)
δ (u) = δ

∫ ∞

0

e−δsψ(u, s)ds, u ≥ 0. (3.3)

Using (3.2) we examine the impact of u, t and δ on the finite-time G-St function

m
(0)
δ (u, t).

The larger the initial surplus, the less likely it is that ruin will occur in a finite-
time period. Hence, by (3.2) it is obvious that the G-St function m

(0)
δ (u, t) is

decreasing with respect to u. So, like finite-time ruin probabilities, it can be used
as a solvency measure, with the added advantage that m

(0)
δ (u) is a discounted

value of a monetary unit (a sort of numéraire).

For given u and δ > 0, the function m
(0)
δ (u, t) is decreasing in t ∈ (0,∞) as shown

by its partial derivative with respect to t:

∂

∂t
m

(0)
δ (u, t) = −δe−δt

[
1 − ψ(u, t)

]
≤ 0.

Finally, to study the impact of δ on the G-St function in (3.2) consider

∂

∂δ
m

(0)
δ (u, t) = −te−δt +

∫ t

0

e−δsψ(u, s)ds− δ

∫ t

0

se−δsψ(u, s)ds

= −te−δt +

∫ t

0

e−δsψ(u, s)ds+ se−δsψ(u, s)
∣∣t
0

−
∫ t

0

e−δs
[
ψ(u, s) + s

∂

∂s
ψ(u, s)

]
ds

= −te−δt
[
1 − ψ(u, t)

]
−
∫ t

0

e−δss
∂

∂s
ψ(u, s)ds ≤ 0,

where the last inequality follows from the fact that the finite-time ruin probability
ψ(u, t) is increasing in t ∈ (0,∞). Therefore, for given u and t, the G-St function

m
(0)
δ (u, t) is also decreasing in δ ∈ (0,∞), a natural behaviour for a discounted

value.

Remark 3.1 In the classical risk model the aggregate claims St form a com-
pound Poisson process with exponential claim sizes, and an explicit expression for
m

(0)
δ (u, t), in (3.1), can easily be derived using both the expression of the finite-

time ruin probability [see Seal (1978)] and that of the expectation E
[
e−δTI(T ≤

t) | U0 = u
]

established by Kočetova and Šiaulys (2010). Even in this special case
numerical integration and numerical summation are still needed to compute these
two quantities.
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By finding the Laplace transform of the G-St function m
(0)
δ (u, t) and inverting it,

values of m
(0)
δ (u, t) can be computed not only for the classical risk model, but also

for some compound renewal processes St. Taking the Laplace transform of both
sides of (3.2) in t, we obtain for δ ≥ 0

m̂0
δ(u, β) =

∫ ∞

0

e−βtm
(0)
δ (u, t)dt =

1

β + δ
+ δ

∫ ∞

0

e−βt

∫ t

0

e−δsψ(u, s)dsdt

=
1

β + δ
+
δ

β

∫ ∞

0

e−(β+δ)tψ(u, t)dt, u ≥ 0. (3.4)

By relation (3.3), the Laplace transform given by (3.4) is equivalent for δ ≥ 0 to

m̂
(0)
δ (u, β) =

1

β + δ
+

δ

β(β + δ)
m

(0)
δ+β(u), u ≥ 0, (3.5)

in terms of the G-S function m
(0)
δ+β(u). The latter is known for some models.

In recent years, the classical Gerber-Shiu function m
(2)
δ (u) has been extensively

studied for various risk models: for the compound Poisson process (e.g. Gerber and
Shiu (1998), Lin and Willmot (2000)), the renewal Erlang(2) process (e.g. Dickson
and Hipp (2000, 2001), Cheng and Tang (2003)), the Erlang(n) renewal risk model
considered by Li and Garrido (2004), the generalized Erlang renewal risk model
investigated by Gerber and Shiu (2005), the Kn family distribution for the claim
inter-arrival times discussed by Li and Garrido (2005).

Case 2: Consider the case now where a negative surplus UT < 0 generates a
“penalty” of one monetary unit (a loss requiring an injection of capital, so an
added surplus), while a positive surplus would trigger a payoff of one unit (a
credit or withdrawal from the surplus, a negative penalty). That means a penalty
function in relation (1.3) of:

w(x, y) =

{
1 for (x, y) ∈ R × (−∞, 0)
−1 for (x, y) ∈ R × [0,∞)

.

Therefore, the finite-time Gerber-Shiu function for the univariate penalty above,
denoted here by m

(1)
δ (u, t), is for δ ≥ 0

m
(1)
δ (u, t) = E

[
e−δT I(T ≤ t) | U0 = u

]
− e−δt

[
1 − ψ(u, t)

]
.

Note that for δ > 0, limt→∞m
(1)
δ (u, t) = m

(0)
δ (u), so as in Case 1, the G-St function

converges to the usual infinite time G-S function.

Arguments similar to those used in Case 1 show that for δ ≥ 0, m
(1)
δ (u, t) can be

written as:

m
(1)
δ (u, t) = −e−δt + 2e−δtψ(u, t) + δ

∫ t

0

e−δsψ(u, s)ds, u ≥ 0, t > 0. (3.6)
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Since the finite-time ruin probability ψ(u, t) is decreasing in u ∈ [0,∞), by (3.6)

we have that the G-St function m
(1)
δ (u, t) is also a decreasing function of u. A

desirable property for its use as a solvency measure.

For given u and δ ≥ 0, we have that

∂

∂t
m

(1)
δ (u, t) = δe−δt

[
1 − ψ(u, t)

]
+ 2e−δt ∂

∂t
ψ(u, t) ≥ 0,

as ψ(u, t) is increasing in t ∈ (0,∞). Thus, m
(1)
δ (u, t) is also an increasing function

of t.

Assume now that, for given u ≥ 0 and t > 0, the function m
(1)
δ (u, t) is non-positive

on some interval (δ1, δ2), with 0 < δ1 ≤ δ ≤ δ2 <∞. Thus

e−δt ≥ 2e−δtψ(u, t) + δ

∫ t

0

e−δsψ(u, s) ds.

Using this inequality, we further obtain

∂

∂δ
m

(1)
δ (u, t) = te−δt − 2te−δtψ(u, t) +

∫ t

0

e−δsψ(u, s) ds− δ

∫ t

0

se−δsψ(u, s) ds

≥ 2te−δtψ(u, t) + δt

∫ t

0

e−δsψ(u, s) ds− 2te−δtψ(u, t)

+

∫ t

0

e−δsψ(u, s) ds− δ

∫ t

0

se−δsψ(u, s) ds

=

∫ t

0

e−δsψ(u, s) ds+ δ
[
t

∫ t

0

e−δsψ(u, s) ds−
∫ t

0

se−δsψ(u, s) ds
]

≥ 0.

We conclude that m
(1)
δ (u, t) is an increasing function of δ, under the above assump-

tions. Again, a natural behaviour for a negative discounted value (when ruin does
not occur). Note that the finite-time ruin probabilities in (3.6) are bounded by
ψ(u), the ultimate ruin probability. Hence we get that ψ(u) ≤

[
1 − ψ(u)

]
e−δt,

or equivalently, ψ(u) ≤ (1 + eδt)−1 is a sufficient condition for (3.6) to be non-
positive. This is not a restrictive condition for small δ, which is the usual case for
a force of interest.

Taking a Laplace transform of the G-St function in (3.6) with respect to t, we
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obtain for δ ≥ 0

m̂
(1)
δ (u, β) = −

∫ ∞

0

e−(β+δ)tdt+ 2

∫ ∞

0

e−(β+δ)tψ(u, t)dt

+δ

∫ ∞

0

e−βt

∫ t

0

e−δsψ(u, s)dsdt

= − 1

β + δ
+ 2

∫ ∞

0

e−(β+δ)tψ(u, t)dt+
δ

β

∫ ∞

0

e−(β+δ)tψ(u, t)dt

= − 1

β + δ
+

2β + δ

β(β + δ)
m

(0)
β+δ(u), u ≥ 0, (3.7)

by (3.3). Therefore, inverting numerically the Laplace transform in (3.7), gives

values of the G-St function m
(1)
δ (u, t).

Case 3: Finally, consider the more volatile case where a negative surplus UT < 0
triggers a penalty equal to the deficit amount (a ruin requiring an injection of
capital to get back to positive assets), while a positive surplus triggers a payoff
equal to the full surplus (a credit or withdrawal from the surplus, a negative
penalty). That means a penalty function in (1.3) given by:

w(x, y) =

{
|y| for (x, y) ∈ R × (−∞, 0)
−y for (x, y) ∈ R × [0,∞).

}
= −y.

Then, the finite-time G-St function for this univariate penalty function, also de-
noted by m

(1)
δ (u, t), becomes

m
(1)
δ (u, t) = E

[
e−δT |UT |I(T ≤ t) | U0 = u

]
− e−δt

E
[
UtI(T > t) | U0 = u

]
. (3.8)

In view of the fact that
∣∣∣e−δt

E
[
UtI(T > t) | U0 = u

]∣∣∣ ≤ te−δt
E
[
|Ut|/t | U0 = u

]

for δ > 0 and of the net profit condition, letting t → ∞ in (3.8) yields

lim
t→∞

m
(1)
δ (u, t) = E

[
e−δT |UT |I(T <∞) | U0 = u

]
= m

(1)
δ (u), u ≥ 0,

which is the classical Gerber-Shiu function in (1.2).

Let us denote by g1
δ (u, t) := E

[
e−δT |UT |I(T ≤ t) | U0 = u

]
and g2

δ (u, t) :=
e−δt

E
[
UtI(T > t) | U0 = u

]
. Therefore, relation (3.8) is equivalent to

m
(1)
δ (u, t) = g1

δ(u, t) − g2
δ (u, t).

Now, consider the problem of computing both g1
δ (u, t) and g2

δ (u, t) numerically.

For the first term g1
δ (u, t) we can derive an expression of its Laplace transform

with respect to t. If, for given U0 = u, the joint probability density function
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of |UT | and T exists and is denoted by h(x, s | u), then for δ ≥ 0 this Laplace
transform is given by

ĝ1
δ (u, β) =

∫ ∞

0

e−βt
[ ∫ t

0

∫ ∞

0

e−δsxh(x, s | u)dxds
]
dt

=
−e−βt

β

∫ t

0

∫ ∞

0

e−δsxh(x, s | u)dxds
∣∣∣
t=∞

t=0

+
1

β

∫ ∞

0

∫ ∞

0

e−(β+δ)txh(x, t | u)dxdt

=
1

β
E
[
e−(β+δ)T |UT |I(T <∞) | U0 = u

]
=

1

β
m

(1)
β+δ(u),

which is the classical G-S function in (1.2).

For the second term g2
δ (u, t) we derive an explicit formula. The claim sizes {Xk}k≥1

are assumed iid, positive, with common cdf FX and finite mean µ. Define the
partial sums Yn = X1 + . . .+Xn, for n ≥ 1, and assume that h(y1, . . . , yn) is the
joint density of (Y1, ..., Yn) such that h(y1, . . . , yn) ≥ 0, when 0 ≤ y1 ≤ . . . ≤ yn,
and ∫

. . .

∫

0≤y1≤...≤yn

h(y1, . . . , yn)dy1 . . . dyn = 1.

It is further assumed that {Xk}k≥1 and {Nt}t≥0 are mutually independent.

The following proposition gives an explicit expression for g2
δ (u, t).

Proposition 3.1 Assume that the surplus process Ut is defined by an ordinary
renewal claim arrival process. Then, for δ ≥ 0

g2
δ (u, t) = e−δt

E
[
UtI(T > t) | U0 = u

]

= e−δt(u+ ct)F τ (t) + e−δt

∞∑

n=1

∫ u+ct

0

∫ u+ct

y1

. . .

∫ u+ct

yn−1

(u+ ct− yn)

h(y1, . . . , yn)

∫ t

y1 − u

c

∫ t

max{
y2−u

c
,t1}

. . .

∫ t

max{ yn−u

c
,tn−1}

F τ (t− tn)

n∏

k=1

fτ (tk − tk−1)dtn . . . dt2dt1dyn . . . dy2dy1,

where y0 = 0 and t0 = 0.
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Proof: We have that

g2
δ (u, t) = e−δt

E
[
UtI(T > t) | U0 = u

]

= e−δt
∞∑

n=0

P{N(t) = n}E
[
(u+ ct−

n∑

k=1

Xk)I(T > t) | N(t) = n
]

= e−δt(u+ ct)P{N(t) = 0} + e−δt
∞∑

n=1

P{N(t) = n}E

[
(u+ ct−

n∑

k=1

Xk)

I
{
(T > t) ∩ (Tn ≤ t < Tn+1)

}
| N(t) = n

]
, (3.9)

as {N(t) = n} = {Tn ≤ t < Tn+1} and E
[
XI(A) | B

]
= E

[
XI(A)I(B) | B

]
, for

any events A, B and random variable X. Using the following identity established
by Ignatov and Kaishev (2004)

(T > t) ∩ (Tn ≤ t < Tn+1) =

n⋂

j=1

((X1 + . . .+Xj − u

c
< Tj

)
∩ (Tn ≤ t < Tn+1)

)
,

we get that the conditional expectation from (3.9) is then

E

[
(u+ ct−

n∑

k=1

Xk)I
(
(T > t) ∩ (Tn ≤ t < Tn+1)

)
| N(t) = n

]

= E

[
(u+ ct−

n∑

k=1

Xk)I
( n⋂

j=1

(X1 + . . . +Xj − u

c
< Tj

))
| N(t) = n

]

=

∫ u+ct

0

∫ u+ct

y1

. . .

∫ u+ct

yn−1

(u+ ct− yn)h(y1, . . . , yn)

∫ t

y1−u

c

∫ t

max{
y2−u

c
,t1}

. . .

∫ t

max{ yn−u
c

,tn−1}

F τ (t− tn)fτ(t1)fτ (t2 − t1) . . . fτ (tn − tn−1)

P{N(t) = n}
dtn . . . dt2dt1dyn . . . dy2dy1. (3.10)

The last step of (3.10) uses the fact that, given N(t) = n, the conditional joint
pdf of 0 ≤ T1 ≤ . . . ≤ Tn ≤ t can be expressed as

fT1,T2,...,Tn|N(t)(t1, t2, . . . , tn | n) =
P{N(t − tn) = 0} ∏n

k=1 fτ(tk − tk−1)

P{N(t) = n} ,

with t0 = 0 (see Léveillé and Adékambi, 2011). Then (3.9) and (3.10) complete
the proof.

Remark 3.2 In the special case when the claims arrive as a Poisson process
with rate λ, it is well-known that, conditionally on the event {N(t) = n}, the
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joint distribution of the n arrival times T1, . . . , Tn is the same as that of the order
statistics of n iid uniformly distributed random variables U1, . . . , Un in the interval
(0, t) (see Karlin and Taylor, 1981). More specifically, the conditional joint pdf is
given by

fT1,T2,...,Tn|N(t)(t1, t2, . . . , tn | n) =

{
n!
tn

if 0 ≤ t1 ≤ . . . ≤ tn ≤ t
0 otherwise.

Therefore, the result in the proposition above reduces to

g2
δ (u, t) = e−(λ+δ)t

[
u+ ct+

∞∑

n=1

λn

∫ u+ct

0

∫ u+ct

y1

. . .

∫ u+ct

yn−1

(u+ ct− yn)

h(y1, . . . , yn)

∫ t

y1−u

c

∫ t

max{
y2−u

c
,t1}

. . .

∫ t

max{ yn−u

c
,tn−1}

dtn . . . dt2dt1dyn . . . dy2dy1

]
.

Moreover, Ignatov and Kaishev (2004) showed that

∫ t

y1−u

c

∫ t

max{
y2−u

c
,t1}

. . .

∫ t

max{ yn−u

c
,tn−1}

dtn . . . dt2dt1 = An(t,
y1 − u

c
, . . . ,

yn − u

c
),

where An(t;w1, . . . , wn) are, for n ≥ 1, the classical Appell polynomials

An(t;w1, . . . , wn) =
1

n!
tn + a1t

n−1 + . . .+ an−1t+ an,

and defined by the following system of n equations containing the first (n − 1)
derivatives of An(t):

An(wn) = 0, A′
n(wn−1) = 0, . . . , A(n−1)

n (w1) = 0.

4 Numerical examples and applications

In this section, we provide some numerical values of the finite-time Gerber-Shiu
function for each of the first two special cases discussed in Section 3. For this,
we adopt Gaver-Stehfest algorithm in order to invert numerically the Laplace
transforms. The Gaver-Stehfest algorithm (see Gaver (1966), Stehfest (1970)) is
a popular numerical inversion technique for inverting Laplace transforms. More
specifically, if f̂ (β) =

∫∞

0
f(t)e−βtdt is the Laplace transform of f , then by the

inversion formula we can compute a series approximation of f of the following
form:

f(t) ≈ ln 2

t

2M∑

n=1

cn f̂(
n ln 2

t
), (4.1)
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where the coefficient cn is given by

cn = (−1)n+M

min(n,M )∑

k=[(n+1)/2]

kM(2k)!

(M − k)! k! (k − 1)! (n− k)! (2k − n)!
,

with [x] being the greatest integer less than or equal to x.

As pointed out by Stehfest (1970), theoretically the accuracy of formula (4.1)
increases with the value of M . However, practically cn takes ever greater absolute
values when M becomes too large, and then rounding errors worsen the results.
Therefore, the Gaver-Stehfest algorithm requires high system precision for a good
accuracy in the computations. In this sense, Abate and Valko (2004), Abate
and Whitt (2006) suggested that for j desired significant digits, M should be
the positive integer [1.1j], and for given M , the system precision should be set
at [2.2M ]. Also, from Abate and Whitt (2006), the weights in (4.1) satisfy the
constraint

∑2M
n=1 cn = 0. For more details on this algorithm, we refer the reader

to Abate and Whitt (2006).

In our illustrations, we use M values ranging from 5 to 12, the choice represent-
ing the optimum M for all numerical results of the tables given below. All the
calculations were carried out with the software MATHEMATICA.

As illustrative examples of the aggregate claim process St, we consider the com-
pound Poisson process and the compound renewal Erlang(2) process. The claim
amounts are assumed to be exponentially distributed with probability density
function (pdf) given by f(x) = µe−µx, for x, µ > 0.

Following Gerber and Shiu (1998), in the case of a compound Poisson process

with rate λ, the expected discounted penalty function m
(0)
δ (u) has the following

form

m
(0)
δ (u) = E

[
e−δT I(T <∞) | U0 = u

]

=
λ + δ + µc −

√
(λ+ δ + µc)2 − 4λµc

2cµ

× exp
{
u
[λ+ δ − µc −

√
(λ + δ + µc)2 − 4λµc

2c

]}
. (4.2)

For a renewal Erlang(2) process, the claim inter-arrival times, {τi}i≥1, follow an
Erlang (2, γ) distribution with pdf given by k(x) = γ2xe−γx, for x, γ > 0. Note
that, for each i, E(τi) = 2/γ and V(τi) = 2/γ2. From Dickson and Hipp (2001),

the expected discounted penalty function m
(0)
δ (u) is expressed as

m
(0)
δ (u) =

(
1 − R

µ

)
e−Ru, (4.3)
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where −R is the unique negative root of Lundberg’s fundamental equation:
( γ

γ + δ − cs

)2 µ

µ + s
= 1.

By substituting formulas (4.2) and (4.3) into both (3.5) and (3.7), we proceed to
invert numerically the Laplace transforms of the finite-time Gerber-Shiu functions,
in both Cases 1 and 2. To this purpose, assume a mean claim size of E(X) =
1/µ = 1, an arrival rate λ = 100, and a scale parameter γ = 200, so that the
mean inter-arrival time is 0.01 in all cases.

For a wide range of different t values, Table 1 reports m
(0)
δ (u, t) values (Case 1)

when the force of interest δ = 0.01, 0.1 and 0.3, and the premium loading factor
θ = 0 and 0.5. The initial surplus is assumed to be u = 100. For these same
choices of parameters, Table 2 then reports values of m

(1)
δ (u, t) (Case 2).

The results in Table 1 confirm that increasing either t or δ leads to decreasing
finite-time Gerber-Shiu function values m

(0)
δ (u, t), which is consistent with the re-

sults illustrated by Kočetova and Šiaulys (2010) or Kuznetsov and Morales (2014)
in this special case of a constant penalty function. Similarly for Table 2, where
increasing t yields decreasing m

(1)
δ (u, t) values.

We observe that m
(0)
δ (u, t), for given u, t, c, and δ takes smaller values for the

Erlang(2) process than for the compound Poisson process (Case 1), while the op-

posite is true for m
(1)
δ (u, t) (Case 2). This is due to (3.2) and (3.6), respectively,

and the fact that as we move from a Poisson to an Erlang(2) process, keeping
the mean inter-arrival constant, the variance of the claim inter-arrival times de-
creases, and therefore, ψ(u, t) decreases. Additionally, we note that in each table,
convergence to the ultimate ruin probability is faster as δ increases.

Tables 3 and 4 report values of m
(0)
δ (u, t) and m

(1)
δ (u, t), respectively, when u =

25, 100 and 200. Both properties, m
(0)
δ (u, t) being a decreasing function of u and

m
(1)
δ (u, t) an increasing function of u, are clearly illustrated by the results in these

tables.

Conclusion

Adapting the definition of the Gerber-Shiu function to a finite time horizon opens
the door to its possible use as a risk measure on the losses associated with a
surplus process U .

In Section 2 we derive an expression for the Laplace transform of the finite-time
Gerber-Shiu function (G-St) for spectrally negative Lévy surplus processes U and
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general penalty functions w, in terms of the corresponding scale function. The
latter is derived in closed form for some special cases, including a compound
Poisson surplus process with exponential claims perturbed by Brownian motion.

Then Section 3 investigates further the G-St function for three special cases of
penalty function w and compound renewal surplus processes.

Illustrative examples in Section 4 give values of the G-St function for two of
the three special cases of penalty function w in Section 3, and surplus processes
based on compound Poisson and compound renewal Erlang(2) aggregate claims
with exponential severities. These show that the G-St function can be computed
numerically for different surplus models, and that it produces values in accordance
with what is expected of a useful solvency index.

Future research will have to extend the set of surplus processes for which the G-St

function can be easily computed numerically. More importantly, to use of the
G-St function as a risk measure for purposes such as establishing capital (surplus)
requirements, will necessitate the study of its properties, like homogeneity and
sub-additivity, as a function of the penalty w.

References

[1] Abate, J., Valko, P.P., 2004. Multi-precision Laplace inversion. International
Journal for Numerical Methods in Engineering 60, 979-993.

[2] Abate, J., Whitt, W., 2006. A unified framework for numerically inverting
Laplace transforms. INFORMS Journal on Computing 18 (4), 408-421.

[3] Bertoin, J., 1997. Exponential decay and ergodicity of completely asym-
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Table 1: Values of m
(0)
δ (u, t) when u = 100 (Case 1)

δ = 0.01 δ = 0.1 δ = 0.3 δ = 0.01 δ = 0.1 δ = 0.3
(θ = 0) (θ = 0) (θ = 0) (θ = 0.5) (θ = 0.5) (θ = 0.5)

τi ∼ Exp(100)
t = 1 0.9900498337 0.9048374180 0.7408182257 0.9900498337 0.9048374180 0.7408182206
t = 2 0.9801986841 0.8187308438 0.5488118246 0.9801986733 0.8187307531 0.5488116361
t = 5 0.9512472071 0.6066510755 0.2354885791 0.9512294250 0.6065306597 0.2231301601
t = 10 0.9054378703 0.3707724932 0.0516174708 0.9048374180 0.3678794411 0.0497870683
t = 20 0.8253015571 0.1528414483 0.0067138541 0.8187307531 0.1353352832 0.0024787521
t = 100 0.5165855596 0.0431489596 0.0046118278 0.3678794411 0.0000453999 9.5072 · 10−14

t = ∞ 0.36604007 0.04309732 0.00458922 2.1955 · 10−15 1.9453 · 10−15 1.4934 · 10−15

τi ∼ Erlang(2, 200)
t = 1 0.9900498334 0.9048374178 0.7408182238 0.9900498336 0.9048374108 0.7408182206
t = 2 0.9801986799 0.8187308156 0.5488117056 0.9801986730 0.8187307530 0.5488116360
t = 5 0.9512351849 0.6065698712 0.2234449933 0.9512294245 0.6065306597 0.2231234898
t = 10 0.9050449704 0.3687721188 0.0509775111 0.9048374180 0.3678794410 0.0497870683
t = 20 0.8214209852 0.1389334699 0.0045473923 0.8187307530 0.1353352832 0.0024787520
t = 100 0.4885104473 0.0357933422 0.0028710093 0.3678794401 0.0000453997 9.3422 · 10−14

t = ∞ 0.31326114 0.02643952 0.00198283 1.9852 · 10−19 1.7698 · 10−19 1.3759 · 10−19
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Table 2: Values of m
(1)
δ (u, t) when u = 100 (Case 2)

δ = 0.01 δ = 0.1 δ = 0.3 δ = 0.01 δ = 0.1 δ = 0.3
(θ = 0) (θ = 0) (θ = 0) (θ = 0.5) (θ = 0.5) (θ = 0.5)

τi ∼ Exp(100)
t = 1 -0.9900498209 -0.9048374101 -0.7408182148 -0.9900498337 -0.9048374180 -0.7408182206
t = 2 -0.9801875632 -0.8187213804 -0.5488052092 -0.9801986733 -0.8187307530 -0.5488116360
t = 5 -0.9468304904 -0.6036165854 -0.1341539861 -0.9512294245 -0.6065306597 -0.2231301601
t = 10 -0.8544889022 -0.3447597680 -0.0452193208 -0.9048374180 -0.3678794411 -0.0497870683
t = 20 -0.6243959931 -0.0868010945 0.0023213987 -0.8187307530 -0.1353352810 -0.0024787521
t = 100 0.1329156173 0.0402147621 0.0044293042 -0.3678794411 -0.0000453999 −9.2078 · 10−14

t = ∞ 0.36604007 0.04309732 0.00458922 2.1955 · 10−15 1.9453 · 10−15 1.4934 · 10−15

τi ∼ Erlang(2, 200)
t = 1 -0.9900498214 -0.9048374145 -0.7408182162 -0.9900498337 -0.9048374180 -0.7408182207
t = 2 -0.9801940453 -0.8187279852 -0.5488106631 -0.9801986755 -0.8187307531 -0.5488116361
t = 5 -0.9507429669 -0.6054339774 -0.2206685368 -0.9512294245 -0.60653065971 -0.2231308296
t = 10 -0.8841592379 -0.3592655502 -0.0497870683 -0.9048374180 -0.3678794412 -0.0497870684
t = 20 -0.7059748656 -0.1004232935 -0.00136864908 -0.8187307530 -0.1353352832 -0.0024787522
t = 100 0.1049499200 0.0134729233 0.0003302024 -0.3678794425 -0.0000454181 −9.3564 · 10−14

t = ∞ 0.31326114 0.02643952 0.00198283 1.9852 · 10−19 1.7698 · 10−19 1.3759 · 10−19
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Table 3: Values of m
(0)
δ (u, t) when δ = 0.1 and θ = 0 (Case 1)

u = 25 u = 100 u = 200
τi ∼ Exp(100)

t = 1 0.9073683225 0.904837418044 0.904837418035
t = 2 0.8338861128 0.8187308438 0.8187307530
t = 5 0.6899626771 0.6066510755 0.6065306603
t = 10 0.5693628256 0.3707724932 0.3678801314
t = 20 0.4813910664 0.1528414483 0.1354375161
t = 100 0.4453045653 0.0431489596 0.0019542421
t = ∞ 0.4449516345 0.0430973236 0.0019170508

τi ∼ Erlang(2, 200)
t = 1 0.9060685584 0.9048374178 0.9048374175
t = 2 0.8268284042 0.8187308156 0.8187307530
t = 5 0.6499402720 0.6065698712 0.6065306598
t = 10 0.5211814554 0.3687721188 0.3678798939
t = 20 0.4615819687 0.1389334699 0.1353243393
t = 100 0.4236418922 0.0357933422 0.0009388751
t = ∞ 0.3923139793 0.02643952 0.0007251258
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Table 4: Values of m
(1)
δ (u, t) when δ = 0.1 and θ = 0 (Case 2)

u = 25 u = 100 u = 200
τi ∼ Exp(100)

t = 1 -0.7526272826 -0.9048374101 -0.9048374180
t = 2 -0.4643389212 -0.8187213804 -0.8187307530
t = 5 -0.0176502453 -0.6036165854 -0.6065306579
t = 10 0.2487608556 -0.3447597680 -0.3678655765
t = 20 0.3941865744 -0.0868010945 -0.1347129484
t = 100 0.4432926501 0.0402147621 0.0018791663
t = ∞ 0.44495163 0.04309732 0.00191705

τi ∼ Erlang(2, 200)
t = 1 -0.8759979634 -0.9048374145 -0.9048374180
t = 2 -0.6663273556 -0.8187279852 -0.8187307532
t = 5 -0.3966999231 -0.6054339774 -0.6065308021
t = 10 -0.0305926838 -0.359265502 -0.3679384749
t = 20 0.2369040685 -0.1004232935 -0.1353956006
t = 100 0.3525148814 0.0134729233 -0.0048754247
t = ∞ 0.39231397 0.02643952 0.00072512
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