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ABSTRACT

Regulation of Gl phase and differentiation in

Candida albicans by the cyclin Cln3p and MBF transcription factor complex.

Bahira Hussein

The Gl /S transition represents the stage in the cell cycle when cells either commit

to mitosis and continue to proliferate, or embark on developmental pathways in response

to environmental and internal cues. In the model yeast S. cerevisiae, the CDK Cdc28p

and Gl cyclin Cln3p control passage through the Gl /S transition by activating the

transcription factor complex SBF/MBF, which is composed of the regulatory subunit

Swiöp and the DNA-binding elements Swi4p (SBF) or Mbplp (MBF). SBF/MBF in turn

activates transcription of numerous genes to initiate cell proliferation. In the multi-

morphic fungal pathogen C. albicans, the Gl /S regulatory circuit and control of basic cell

proliferation are poorly understood. Previously work demonstrated that the cyclin Cln3p

was essential for growth of yeast cells but also linked to development of hyphae. To

gain more insight on the circuitry governing the Gl /S transition and identify potential

mediators of Cln3p function, we obtained transcription profiles of cells depleted of Cln3p

and characterized orthologues of Swi6p, Swi4p and Mbplp. Our results confirmed that

cells depleted of Cln3p were arrested in Gl phase, and provide the first picture of factors

associated with the Gl /S transition in white phase yeast cells. The data demonstrate that

the emerging Gl /S circuit contains unique features compared to those in other fungi,

including the fact that Cln3p activity is mediated only in part by MBF, that Mbplp does

not play a significant role in regulating yeast cell proliferation, and that novel, fungal-
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specific factors may be associated with growth control. The data also identify potential

factors involved in linking Cln3p and MBF activity with development of hyphae and

possibly the opaque yeast state, through novel means. Overall, our results have laid the

groundwork for constructing a framework of the Gl /S regulatory circuit in C. albicans

yeast cells, which will lead to a more comprehensive understanding of how basic cell

proliferation in the pathogen is regulated and potentially linked with development, an

important virulence-determining trait.
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1. Introduction

Candida albicans is one of the most medically important fungal pathogens, which

lives as a commensal in the gastrointestinal or genitourinary tracts of healthy humans

with no harmful effects. As an opportunistic pathogen it can cause both mucosal and

systemic infections in immune-compromised people (1). Systemic fungal infections have

emerged as an important cause of mortality in immune-compromised patients (2).
Current treatments for C. albicans infection involve azole-based drugs, including

amphotericin B and fluconozole, but these can have harsh side-effects in patients since C.

albicans is also a eukaryote (3, 4). In addition, use of these azole-based drugs results in

increased drug resistance (5). Thus, there is a strong need to find new drug targets. In

order to fully understand the mechanisms involved in fungal infection and the potential

actions of therapeutic drugs, a comprehensive understanding of the biology of the

pathogen is required. However, we presently have very little knowledge of the many

regulatory networks that govern basic growth as well as virulence in the organism.

1.1 Candida albicans morphology

The morphological diversity of C. albicans promotes its survival, growth, and

dissemination in the host, and the ability to switch between yeast, hyphal, and

pseudohyphal growth forms is essential for virulence and pathogenecity. Mutants locked
in one cell form are avirulent (6-9). C. albicans can grow in a variety of forms, including

unicellular white or opaque budding yeast, pseudohyphae, true hyphae, or

chlamydospores. Yeast cells are characterized by growth via polar followed by isometric
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expansion of buds, which then separate from the mother cell. In contrast, pseudohyphal

cells produce buds that remain attached to the parent cell after septum formation,

resulting in filaments with constrictions where the septa are formed (1). True hyphae

form when an unbudded yeast cell extends a germ tube with parallel side-walls under

certain environmental stimuli. The nucleus divides within the elongating germ tube, after

which one migrates back into the mother cell, and the second moves further into the

elongating germ tube. Unlike yeast and pseudohyphal cells, hyphae do not have a

constricted septum at the junction with the mother cell; the first hyphal septum forms

well within the germ tube past the bud neck. Subsequent unconstricted septa

compartmentalize the filament, and enclose a single nucleus per compartment (1,2, 10).

Chlamydospores are less characterized but consist of thick-walled round cells that

occasionally form at the ends of pseudohyphae and hyphae in response to stress (2, 10).

While the previously described yeast cells are considered "white" phase cells, due to their

white colony appearance, another yeast form exists known as "opaque" cells. Opaque

cells are rectangular-shaped, elongated cells with pits in the cell wall, that show a darker

appearance on plates in the colony form, and demonstrate distinct gene expression

patterns (1, 11). Although C. albicans was initially thought to be an asexual diploid, a

mating type-like locus (MTL) was discovered and the opaque cell type was found to be

the mating-competent form of the organism (12). In contrast, Saccharomyces cerevisiae

exists as budding yeast and pseudohyphae under certain conditions, and reproduces

sexually through the standard yeast form.

Differences in shape, surface components, and virulence factors associated with

the various cell types of C. albicans are thought to be beneficial in the diverse host
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environments. For instance, both hyphae and pseudohyphae are invasive, and one

opinion is that this promotes tissue penetration during infection (2). In addition,

filamentous growth is believed to provide increased resistance to phagocytosis, where

phagocytized yeast cells can extend hyphal protrusions that puncture and kill the

offending macrophages (7). In comparison, yeast cells are thought to be more suitable

for dissemination in the circulatory system, although the yeast form is able to pass

through the gastrointestinal wall of mice (13). Yeast cells also promote pathogenesis by

secreting aspartyl proteases that have been associated with virulence (14). Thus, cell

differentiation, or the ability to switch between cell fates, is essential for virulence, but

the regulatory mechanisms are not fully understood.

1.2 Regulation of differentiation:

Environmental conditions and signal transduction pathways

Several environmental factors can induce cell differentiation; this probably

reflects the various host environments in which C. albicans must survive. A lower

temperature of 30°C, a low pH (4.0), and the absence of serum induce yeast growth. On

the other hand, a higher temperature of 37°C, high pH (7.0), and the presence of serum,

for example, induce hyphal growth. A pH of 6.0 and nitrogen-limiting conditions on

solid medium can induce pseudohyphal growth (2).

The environmental cues are mediated by a number of signal transduction

pathways (15) (Fig. 1). For example, the yeast to hyphal switch can be activated by a

conserved Ras-cAMP signaling pathway that responds to nutrient deprivation or serum,
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of which the transcription factor Efglpis an important constituent. Ras Ip mediates the

environmental cues with adenylyl cyclase Cdc35p (2, 16).

Rasi
Map

LHft7
Cek1

CAMP

Cst20 Cyrl, Capi pH

CAMP Rim8. Rim20

Tpk1.Tpk2 Cph2 Rim101 Matrix

YEAST HYPHAE

Figure 1. Signal transduction pathways that regulate hyphal morphogenesis.

A conserved Ras-mitogen-activated protein (MAP) kinase pathway also promotes hyphal

development in response to nutrient deprivation, which involves the Cphlp transcription

factor (2, 10). Environmental pH influences hyphal development through the induction

of Rimi 01 induction, which is activated by alkaline pH. The transcription factor Efglp is

also downstream of this pathway (2). A fourth pathway involves the transcription factor

Czflp, which stimulates hyphal formation in response to growth in solid matrix.
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Repressors of the yeast to hyphal switch include NRGl, TUPl, RPGl, and RBFl (2).

While these pathways control hyphal-specific gene (HSG) expression and hyphal

development, they are not fully characterized. In addition, there are factors and emerging

pathways that affect hyphal differentiation in C. albicans that do not appear to be directly

involved with the aforementioned signaling systems (Fig. 1).

Regulation of opaque cell differentiation is not well understood, but involves

major alterations in chromosome structure to induce homozygousity at the Mating Type-

Like (MTL) locus (12). C. albicans contains a single MTL locus on chromosome 5,

unlike the 3 mating loci on chromosome 3 in S. cerevisiae. Standard white cells are

heterozygous at this locus where one allele encodes Mtlal and Mtla2, and the second

allele encodes Mtlal and Mtla2. al and a2 products form a heterodimer that blocks

mating (17), which explains why heterozygous white cells are unable to mate.

Chromosome changes, such as the loss of either MTLa or MTLa, followed by gene

duplication or mitotic recombination are required to produce a homozygous MTL locus,

which in turn is a prerequisite for white cells to differentiate into opaque cells (18-20).

Homozygosity of MTL results in homozygous white cells which can then switch to the

opaque form through stochastic elevations in expression of WORl, the master regulator

of the opaque state (21, 22). WORl in turn is necessary for opaque-specific gene

expression, including CDR3, OP4, and SAPl (23). The opaque phase cells in turn can

express mating genes in response to ot-pheromone, and undergo another morphological

change where they extend conjugation tubes known as "shmoos". The shmoos of

opposite mating types fuse together to allow karyogamy and the creation of an

intermediate tetraploid state (a/a/a/a), which can be reduced back to diploid progeny.
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Meiosis and sporulation have not been identified in C. albicans (24), but the tetraploids

are believed to undergo mitotic recombination followed by chromosome loss to produce

recombined diploid progeny (11, 24). Environmental signals including anaerobic

conditions and low temperatures can enhance low frequency, spontaneous switching from

white to opaque cells under homozygous MTL conditions (25-27). The detailed

mechanisms underlying opaque cell differentiation are not clear, but a picture is starting

to emerge.

1.3 Regulation of differentiation: Cell cycle control

There is mounting evidence that the cell cycle plays a prominent role in regulating

differentiation in C. albicans, but the mechanisms are not clear. In most organisms, the

Gl /S transition of the cell cycle is a key control point, where cells either commit to

mitosis and proliferate, or arrest and differentiate through different developmental

pathways. In mammals, the Gl /S transition is restrained by the Retinoblastoma protein

(Rb). Rb is negatively regulated by the cyclin-dependent kinase (CDK) Cdc2 (CDK4/6)

associated with a Gl cyclin (Cyclin D). Repression of Rb allows the activation of the

E2F transcription factor, which consequently controls a transcription cascade required for

the Gl/S transition and subsequent cell proliferation (28, 29). In S. cerevisiae, a similar

circuit exists, where the CDK Cdc28p associates with the Gl cyclin Cln3p, which in turn

negatively regulates the functional equivalent of Rb, known as Whi5p. Repression of

Whi5p allows the activation of the transcription factor complexes SBF (Swi4-Swi6 cell

cycle box binding factor) and MBF (MIuI binding factor). Swi6p is the regulatory

subunit for both SBF and MBF, whilst Swi4p and Mbplp are the DNA-binding subunits
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of the SBF and MBF complexes, respectively. Activation of SBF/MBF mediates Cln3p

function in regulating Gl /S by inducing a battery of Gl /S genes, including other Gl

cyclins such as CLNl and CLN2, and several transcription factors such as TOS4, TOS8,

HCMl, YOXl, and PLM2 (Fig. 2). This expression pathway is required for bud

morphogenesis, DNA replication, spindle pole body duplication, and passage through

START (30-32). Bck2p is specific to S. cerevisiae, and functions with Cdc28p/Cln3p to

acivate SBF. SBF/MBF are essential for START in S. cerevisiae, since absence of SWU

and SWI6, or SWU and MBPl is lethal and results in a Gl phase arrest (33). The proteins

comprising SBF/MBF contain ankyrin repeats, which are specific to fungi. A conserved

role in fungal growth control is suggested by the fact that Schizosaccharomyces pombe

contains MBF equivalents and deletion of the regulatory subunit CdclOp results in a Gl

phase block, while deletion of the DNA-binding subunits Res Ip and Res2p is lethal (34,

35). Gl/S regulation has not been investigated in other fungi to date, but SBF/MBF

orthologues are present in most species that have been sequenced.

Under conditions that stimulate development, the Gl/S transition is blocked. For

example, in S. cerevisiae, nutrient limitation and presence of pheromone lead to down-

regulation of CLN3 activity, cell cycle arrest in Gl phase, and activation of development,

resulting in conjugate tube formation and eventual sporulation (36-38). Blocking Gl

phase alone, however, does not induce development in S. cerevisiae. In mammals,

blocking Gl phase can be sufficient for inducing development, in some but not all cases

(39, 40), indicating that development is not a universal default state upon Gl phase arrest.
In C. albicans, a relationship between the cell cycle and differentiation is

emerging, but the mechanisms are not clear, due in part to the fact that the cell cycle is
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relatively unexplored and a comprehensive understanding of the basic Gl /S regulatory

circuit is lacking. However, the current framework for the Gl /S transition possesses

unique features compared to S. cerevisiae, because C. albicans lacks functional

homologues of Whi5p, Bck2p, and some of the downstream transcription factor targets of

SBF/MBF (Fig. 2). In addition, putative Gl cyclin homologues, such as Ccnlp and

Hgc Ip, show different functions than their counterparts in S. cerevisiae. While Ccnlp

may contribute somewhat to Gl progression, as cells lacking the gene grow slightly

slower, Hgc Ip has no known cell cycle role (41, 42).

The molecular link between differentiation and the cell cycle in C. albicans is also

unclear due to controversy over whether a specific cell cycle stage correlates with hyphal

growth. One study suggests that hyphae can be induced at any stage of the yeast cell

cycle (43), while others suggest that hyphal emergence is restricted to Gl phase (44, 45).

In support of the latter, putative Gl phase-associated factors have been shown to

influence hyphal growth. For example, the Gl cyclin homologue Hgc Ip is essential for

hyphal growth, and is only expressed in hyphae (42, 44). Secondly, the Gl cyclin Ccnlp

is required for the maintenance of hyphal growth but not initiation (41, 44). Finally,

Cdc4p, a homologue of the S. cerevisiae F-box protein component of the SCFCDC4
ubiquitin ligase that controls progression through Gl phase, has some role in negatively

regulating hyphal development, as C. albicans cells lacking the gene grew constitutively

as pseudohypahe, that switched into hyphae (46). Although, suggestive of a link between

Gl phase and hyphal development, none of these factors showed a direct influence on Gl

phase itself.
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The strongest evidence for a relationship between Gl phase and hyphal

development in C. albicans was obtained from studies on the homologue of the Gl cyclin

Cln3p. Inactivation of the Cln3p homologue in C. albicans caused an arrest in Gl phase,

followed by a dramatic increase in cell size, and a switch in morphology to hyphal and

pseudohyphal cells in the absence of hyphal-inducing conditions (47). Intriguingly, these

differentiated cells then resumed their cell cycles, despite the absence of Cln3p,

suggesting that Cln3p may differentially regulate the cell cycle and growth in yeast

versus hyphal cells. The effects were Raslp-dependent, as a cln3/rasl double mutant

strain did not filament, and cells died much faster, suggesting synthetic lethal effects (47,

48). This link between the cell cycle and hyphal development was specific to Gl phase,

since blocking cells in S or M phase did not lead to hyphal growth, but other types of

polarized cells (44, 45, 47, 49, 50). In S. cerevisiae, neither arresting in Gl phase, nor the

absence of CLN3, lead to differentiation; depletion resulted in a short Gl phase delay,

slight enlargement of the yeast cells, then resumption of the cell cycle and budding (51-

53).Thus, Gl phase is important for development in C. albicans, but the molecular basis

is not clear, and cannot be extrapolated from related organisms.

1.4 Objectives

Taken together, this work demonstrates two important points. Firstly, the Gl /S

circuit in C. albicans involves novel regulatory features compared to S. cerevisiae and

mammals, which has important implications for control of basic growth. Secondly, Gl

phase is specifically linked to hyphal development, but it is not clear whether Cln3p is a

direct negative regulator of hyphal and pseudohyphal growth, or if development was a
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response to some other aspect of Gl phase arrest. The main objectives of this thesis were

to characterize the Gl/S regulatory circuit in yeast cells of C. albicans and to screen for

effectors of Cln3p that may be important for cell division and possibly differentiation,

through obtaining transcription profiles of cells depleted of Cln3p, and exploring the

function of orthologues of SWI6, SWI4, and MBPl. Our results have shed significant light

on the regulation of cell proliferation and identified new modes of controlling

differentiation; both of which are critical for virulence in this important pathogen.

Cln3p/Cdc28p
-------1

Whi5p/Nrinlp
—?—

SBF/ MBF

Transcription Factors

YOXl PLM2 IHCMl POGl TOS8 TOS4 TYE7 YAPS YHPl CLNl CLN2 PCLl PCLT.

CvcHns

= Genes that have homologs in C. albicans

Figure 2. Network of selected factors activated by the SBF/MBF complexes during
the Gl/S transition in 5. cerevisiae, compared to C. albicans. The downstream
transcription factors that currently have known homologues in C. albicans are highlighted
in red.
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2. Materials and Methods

2.1 Strains, Oligonucleotides, Plasmids, and Media

C. albicans strains used are shown in Table 1. Oligonucleotides are included in

Table 2, and plasmids are listed in Table 3. For analysis of cell phenotype, cells were

cultured at 3O0C in either liquid YPD medium (1% yeast extract, 2% peptone, 2%

dextrose) or minimal synthetic defined medium SD (0.67% yeast nitrogen base without

amino acids, 2% glucose), supplemented with uridine, histidine, or arginine, as required.

For strains carrying genes under control of the Candida MET3 promoter, cells were

grown in SD inducing (-MC) or repressing (+MC) medium with or without methionine

(2.5 mM) and cysteine (0.5 mM), respectively (54). In addition, plasmid-bearing strains

of Escherichia coli (DH5a) were grown on 2YT (1% yeast extract, 1.6% tryptone, 0.5%

NaCl) supplemented with 100 µ§/?? Ampicillin (Fisher) for selection.
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Table 1: Candida albicans strains used in this study
Strain Genotype Parent/Source

BWP 1 7 ura3A::imM434/urci3A::imm434

hislA::hisG/hislA::hisG

arg4A::hisG/arg4A::hisG
CAI4 ura3A::imm434/ura3A::imm434

BH420 BWP17(pRM100,pBS-CaAKG4)
BH440 BWP17 (pBS-CafflS7, pBS-CaURA3)
BWPUH BWP 1 7 (pRM 1 00)
CB488 cln3A::hisG/MET3::CLN3-URA3

CB498 cln3A::hisG/MET3::CLN3-URA3

raslA::hisG/rasAl::hisG

CB504 CAM(pCaDIS)
CB547 SWÌ4A:: URA3/MET3::SWI4-ARG4

CB548 SWÌ4A:: URA3/MET3::SWI4-ARG4

CB552 SWÌ6A:: URA3/MET3::SWI6-HIS1

CB557 swi6A::URA3/MET3::SWI6-HISl

CB600 SWI6/MET3 ::SWI6-HIS1

KMCa4a mbplA:: URA3/MET3::MBP1-ARG4
BHlOl swi6A::HISl/SWI6

BH 1 04 swi4A::hisG- URA3-hisG/SWI4

BH 1 1 3 swi4A::hisG/SWI4

BH 1 1 5 swi4A::hisG/SWI4

BH 1 20 swi6A::HISl/swi6A:: URA3

BH 137 mbplA::HISl/MBPl
BH140 swi4A::hisG/SWI4

swi6A::HISl/SWI6

BH 1 50 swi4A::hisG/MET3::SWI4-ARG4

BH 1 60 swi4A::hisG/MET3::SWI4-ARG4

s\vi6A::HISl/SWI6

BH 180 swi4A::HISl/SWI4

BHl 85 swi4::URA3/swi4::HISl

BH 1 90 swi4A::hisG/MET3::SWI4-ARG4,
swi6::HISl/swi6:: URA3

CAI4

Fonzie/ a/. 1993

Fonzie/ a/. 1993

BWP 17

BWP 17

BWP 17

CAI4

Bachewich e/ a/. 2005

Bachewich eí a/. 2005

Bachewich eí al. 2005

BWP 17

BWP 17

BWP 17

BWP 17

BWP 17

BWP 17 (K. Mogilevsky)
BWP 17

BWP17

BWP 17

BWP 17

BWP 17

BWP 17

BWP 17

BWP 17

BWP17

BWP 17

BWP 17

BWP 17
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BH261 mbplA::HISl/mbplA::URA3 BWP17
BH270 swi4A::hisG/MET3::SWI4-ARG4, BWP17

mbplA::HISl/MBPl
BH276 swi4A::hisG/MET3::SWI4-ARG4, BWP17

mbplA::HISl/ mbplA:: URA3
BH339 swi4A::hisG/swi4A::URA3 BWP 17

BH341 swi4A::hisG/sm4A::URA3mbplA::HISl/MBPl BWP17
BH348 swi4A::hisG/swi4A::URA3, BWP17

mbplA::HISl/mbplA::ARG4
BH352 swi4A::hisG/swi4A::URA3, BWP17

mbplA::HISl/mbplA::ARG4

Table 2: Oligonucleotides used in this study
Oligo Sequence 5'-3'
BH2F GAAGATTCATTGATATGTGTGGTAAGGCAC

BH2R CCAGCGTTTATAATGATAACGTTCAGCTTC

BH3F GAAGCTGAACGTTATCATTATAAACGCTGGTATAGGGCGAATTGGAGCTC

BH3R CACGGGGAATTAGAAGTATACATGTGTTCGGACGGTATCGATAAGCTTGA

BH4F CGAACACATGTATACTTCTAATTCCCCGTG

BH4R TTCCACATCCATACTAAATCTTACTACAGC

BH6F CATGGACTTGGTTGTCTTGA

BH6R ACGCTTACTTCTATGGAGCT

BH7F GTAACAATACCTTTATCAGAGGATTCACCC

BH7R GATGTGATGGGTTGATAAATGAAATGAGCG

BH8F CGCTCATTTCATTTATCAACCCATCACATCTATAGGGCGAATTGGAGCTC

BH8R GGATGCTGGTAAAGTAGTAGAGTATGATAAGACGGTATCGATAAGCTTGA

BH9F TTATCATACTCTACTACTTTACCAGCATCC

BH9R GTTCCTATTATCTGTTGCTTGTGTTGCCCA

BHlOF AGCAGTATCTACATGAGAATTAATCAGATG

BH 1 OR TTGGTATAACATACATTTGAGTAGGTAGCT

BH 1 1 F AGCTACCTACTCAAATGTATGTTATACCAAGGATCCCCCCTTTAGTAAGA

BH 1 1 R ACACCTTCTCATAATTGAGGACTCGTTCATCATGTTTTCTGGGGAGGGTA

BH12F ATGAACGAGTCCTCAATTATGAGAAGGTGT

BH 1 2R CGATCAATGTATTTCCATTGTCAATCGGTT

BH 1 3F AGCTACCTACTCAAATGTATGTTATACCAATATAGGGCGAATTGGAGCTC

BH13R TTGTTCCGATTTAATTTCCCCCATCTATCGGACGGTATCGATAAGCTTGA
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BH 14F CGATAGATGGGGGAAATTAAATCGGAACAA

BH14R AATATTTGTGTTGGCCACATTTGAGTCTGA

BH32F ATGTACCACCAAGAGATTGT

BH32R ACTAATATGGTACAGACTCA

SWI6F GGACACGACACTTACACTTC

SWI6R GGTGGATATTTGATACGAGT

SWI4F TCAGACCGATACCTACCTGT

SWI4F TTACGCCGCCGCAGATTGCA

MBPlF CACATCACTGGTAGCATATA

MBPlR TCGTTTGACAAACCCAGATT

CB 1 1 5F CCAAATGGGATATATATGAAGATTCATTGATATGTGTGGTAAGGCACAACTT
ACACTCTAGCATACCCAAATGGTTTCGGTATAGGGCGAATTGGAGCTC

CB 1 1 5R CAAACTCCTGAAGCTAGAGTAGATAGATATTTCCAGTTGTTGGGCAAAGACA
AGAATACCGACAAATTAGATTTGAATGAGACGGTATCGATAAGCTTGA

CB 11 7F GAGAACTCAACTGATGCTCT

CB 1 1 7R CCATTGTGAGGGCTACTTAT

CB 1 1 9F ACGCGTCGACTCTAATTGACATGGATACGA

CB119R ACGCTAGAGCTCTCTGGATTAGTCACATCTTC

CB 1 20F ACGCTAGGATCCTCGTACTGGCAATGTATAACT

CB 1 2OR ACGCTATAGATCTCATCGGTCTAGATTGTAATAT

CB 1 23F CTACTACATAATGTCTGAACCTCCCCAAGTATTTCGAGCTACCTACTCAAATG
TATGTTATACCAATGTTTCTTAACTTCGGATCCCCCCTTTAGTAAGA

CB 1 23R GGAAAATTACAACATTTCAAAATCTGTGTAGCATTGACCCAGTCATCTTTACA
CCTTCTCATAATTGAGGACTCGTTCATCATGTTTTCTGGGGAGGGTA

CB 126F ACAGAGAGACAGATAGAGCG

CB126R CACAGTTATTACTGAAGGCG

CB 1 27F CCAAATGGGATATATATGAAGATTCATTGATATGTGTGGTAAGGCACAACTA
CACTCTAGCATACCCAAATGGTTTCGGGGATCCTGGAGGATGAGGAG

CB 1 27R ATTGTTGTTATTTATATGGGTCTCGAATAATTTTTGTTGAATTGACTGTGTTGT
CAAGTCACCAATGTGTATAGGAGAATCCATGTTTTCTGGGGAGGGT

CB 129F CGTTCAGCTTCCTTTCAATGAAATAAGTAT

CB 1 29R TCAGCAGACACAACAAGATACTGATACTTG

CB 1 30F GAACACATGTATACTTCTAATTCCCCGTGT

CB 1 30R ATTTGAGGCAGCTTCGACAGGCCACGTATT

CB 13 IF ATACTTATTTCATTGAAAGGAAGCTGAACGTATAGGGCGAATTGGAGCTC
CB 1 3 1 R ACACGGGGAATTAGAAGTATACATGTGTTCGACGGTATCGATAAGCTTGA
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CaURA3F GGTAATACCGTGAAGAAACA

CaURA3R TTCAAATAAGCATTCCAACC

CaHISlF CCTGCAGCTGATATCCCAGT

CaHISlR ACTGGGATATCAGCTGCAGG

Table 3: Plasmids used in this study
Plasmid Description Parent/Source

pBS-CaURA3

pBS-CaHISl
pBS-CaARG4

p¥A-MET3-CaURA3

p¥A-MET3-CaHISl

p¥A-MET3-CaARG4
p5921

pRMlOO

pCB180
pCB181

pBluescript CaURA3
pBluescript CaHISl

pBluescript CaARG4
MET3 promoter - CaURA3

MET3 promoter - CaHISl

MET3 promoter - CaARG4

pUC 1 8-AwG- URA3-hisG
pUC19 URA3.HIS1

pVC\%-SWI4

p\JC\%-hisG-URA3-hisG
with SWI4 flanks

A.J.P. Brown

C. Bachewich

H. Huang
Gola et al. 2003

Gola et al. 2003

Gola et al. 2003

W.A. Fonzi

J. Pia

This study

This study



2.2 Growth conditions

For analysis of cell phenotypes, cells were grown overnight in SD medium to

stationary phase, diluted the following day to an O.D.6oonm of 0.1 - 0.2 in fresh medium,

incubated at 300C for a defined time period, and subsequently collected for observation.

Cells carrying a gene under control of the METS promoter, were diluted into SD inducing

(-MC) or repressing (+MC) medium. Strains with gene deletions were also incubated in

SD repressing (+MC) medium in order to make quantitative comparisons of phenotypes

with the METS conditional strains. Deletion strains produced a similar range in

phenotypes despite growth in inducing, repressing, or YPD medium. For microarray

analysis, cells were incubated overnight at 300C in 2 ml of SD inducing medium (-MC),

then diluted to an O.D.6oonm of 0.1 in SD repressing medium (+MC) for 1, 3, 6, or 7 hr,

depending on the experiment. Cell pellets were then quickly collected by centrifugation,
and stored at -800C until use.

For transcription profiling of cells lacking CLNS and RASI, strains CB488,

CB498 and the prototrophic control strain CB504, strains were inoculated in 2 ml of SD

inducing medium lacking uridine, and grown overnight at 300C. Cells were then diluted

to an O.D.6oonm of 0.2 in SD repressing medium (+MC), incubated at 300C for 1 , 3 or 6

hr, and centrifuged for 10 min at 2095 rcf (Beckman-Coulter Allegra X-12R Centrifuge

with a SX4750 rotor). The medium was removed and the cell pellets were transferred to

Eppendorf tubes, which were further centrifuged at 16 rcf (Eppendorf 5415D) to remove

traces of medium. The pellets were stored immediately at -8O0C. 25 ml was collected at

1 hr, while 12 ml and 10 ml were collected for the 3 and 6 hr time points, respectively.
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For transcription profiling of strains lacking SWI4 and SWI6, strains BH 190 and

the prototrophic control strain BH420 were inoculated in 2 ml of SD inducing medium

lacking uridine, histidine, and arginine, and grown overnight at 300C. Cells were diluted

to an O.D.6oonm of 0.2 in 10 ml of SD repressing medium. After 7 hr at 3O0C, the cells

were centrifuged for 10 min at 2095 rcf. The medium was removed and the cell pellets

were transferred to Eppendorf tubes, which were further centrifuged at 16 rcf to remove

traces of medium. The pellets were stored immediately at -800C, until RNA extraction.

2.3 Escherichia coli transformation

Subcloning Efficiency DH5a Chemically Competent cells (F- (p80/acZÄM15

Ä(/öcZYA-argF)U169 rechi endAl hsdRn(rk-, mk+)phoA supE44 thi-l gyrA96 reiAX

?-; Invitrogen) were stored at -800C. 50 µ? were mixed gently with 1 to 5 µ? (1 - 10 ng)

of DNA in an Eppendorf tube. The cells were incubated for 30 min on ice, heat shocked

for 30 sec in a 37°C water bath, then placed on ice for an additional 2 min. 950 µ? of

prewarmed 2YT medium was immediately added, and the cells were incubated at 37°C

for 1 hr with shaking at 225 rpm. The transformed cells were then spun down, 900 µ? of

the media was removed, and the remaining 100 µ? was plated on 2YT agar plates

containing 100 µg/ml of Ampicillin.

2.4 Candida albicans transformation

Cells were transformed using a lithium acetate method (adapted from (55-58)).

Cells were inoculated into 2 ml of YPD and incubated for 18 to 24 hr at 300C with

shaking (250 rpm), allowing the yeast cells to reach stationary phase of growth. 300 µ?
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of the stationary culture was transferred to an Eppendorf rube, and centrifuged for 2 min

at 16 rcf. The medium was removed, and 100 - 200 µ? of ONE-STEP buffer [0.2M

Lithium acetate; 40% Polyethylene glycol (PEG) 3350, pH 5.0; 100 mM Dithiothreitol

(DTT); 0.25 mg/ml of single-stranded carrier DNA (Salmon sperm DNA; Invitrogen)]

was combined with the cell pellet. The contents were vortexed for 1 min, after which 5

to 10 µg of DNA was added. The mixture was vortexed for 1 min and incubated

overnight at 300C. The cells were then heat shocked at 43 0C for 15 - 60 min, plated

directly onto selective medium, and incubated at 3O0C for 2 - 4 days.

2.5 Genomic DNA extraction

Genomic DNA (gDNA) was extracted according to Rose et al, (1990) (59).

Strains were inoculated into 5 - 10 ml of YPD or SD medium, grown overnight at 300C,

and subsequently centrifuged in an Eppendorf tube, to which 0.3g of acid-washed glass

beads (Sigma), 200 µ? lysis buffer (10 mM TRIS pH8.0, 1 mM EDTA, 100 mM NaCl,

1% SDS, 2% Triton-X), and 200 µ? of a 1:1 mixture of phenol and chloroform was

added. The mixture was vortexed for 5 min, and then 200 µ? of TE buffer (1 mM EDTA,

10 mM TRIS pH8.0) was added. After vortexing, the suspension was spun down at 16

rcf for 10 min. The upper phase was transferred to a new Eppendorf tube, 500 µ? of 1:1

phenolxhloroform was added, the solution was vortexed for 5 min, and then spun down
at 16 rcf for 10 min. The resulting upper phase was transferred to a new Eppendorf tube,

and 1 ml of ice-cold 95% ethanol was added and mixed gently to precipitate the DNA.

The pellet was collected by centrifuging at 4°C, 16 rcf for 10 min. The resulting pellet
was washed with cold 70% ethanol and allowed to air-dry for 1 5 min. The gDNA was
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resuspended in 50 µ? of TE buffer containing 50 µg/ml RNaseA (Fermentas), and

incubated at 370C for 30 min. The gDNA was stored at 4°C.

An alternative approach (60-62) for extracting gDNA was used, which resulted in

higher quality and quantity of gDNA. Strains were inoculated into 10 - 25 ml of YPD or

SD medium, and grown overnight at 300C, with shaking at 250 rpm. The overnight

culture was centrifuged at 2095 rcf for 5 min, supernatant was discarded, and the cell

pellet was resuspended and transferred to a microcentrifuge tube. The suspension was

centrifuged at 16 rcf for 2 min, the media was removed, and the pellet was washed once

with 500 µ? of sterile water. The pellet was then completely resuspended by vortexing in

1 ml of sorbitol buffer [IM Sorbitol, 0.1 M EDTA], 100U of Lyticase (Sigma), and 8 mM

of Dithiothreitol (DTT)], and incubated at 37°C for 1 - 2 hr. The mixture was the spun

down for 1 min at 1 6 rcf, and the pellet was resuspended completely with 200 µ? of Tris-

EDTA solution [50 mM Tris pH8.0, 20 mM EDTA]. 40 µ? of 10% SDS was added and

the suspension was incubated at 65°C for 30 min. Subsequently, 100 µ? of 5M Potassium

acetate (KAc) was added and mixed gently so as not to shear the DNA, and incubated on

ice for 30 - 60 min. The mixture was then centrifuged for 10 min at 16 rcf at 4°C, and

the supernatant was transferred to a new microcentrifuge tube. After adding an equal

volume of ice cold isopropanol, the tube was mixed by inversion for 1 min, and

centrifuged for 10 min at 16 rcf, 4°C. The resulting DNA pellet was washed once with

70% ethanol, and then incubated at 370C for 30 min in 150 µ? of TE buffer (10 mM Tris,

1 mM EDTA) and 2 µ? of RNaseA (10 mg/ml). The gDNA was stored at 4°C. gDNA

was quantified with a fluorometer (Hoefer DQ300) using Hoechst Dye (Invitrogen).
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2.6 RNA extraction and quantification

Cell pellets were collected as described above, and total RNA was extracted from

cells using the MasterPure™ Yeast RNA Purification Kit purchased from Epicentre

Biotechnologies (InterScience, ON). RNA quantification was carried out by measuring

absorbance at 260nm (Ultraspec 2100 pro). The quality of select RNA samples was

assessed using the Agilent 2 1 00 Bioanalyzer.

2.7 Construction of Strains

2.7.1 SWU

A deletion mutant was created by replacing both alleles of SWI4 in strain BWP 17

with the URA3 and HISl markers, using 2-step PCR fusion constructs. To start, a 759 bp

fragment corresponding to the 5' flank of SWI4, located 684 bp upstream of the Start

codon, was Polymerase Chain Reaction (PCR) amplified from gDNA with

oligonucleotides BHlOF and BH10R, using the following thermocycling conditions:

94°C for 3 min, followed by 25 cycles of 94°C for 30 sec, 46°C for 30 sec, 68°C for 45

sec, and a final elongation at 68°C for 7 min. The reaction mix was composed of a final

concentration of 0.6 µ? of oligonucleotides, 0.4 mM dNTPs, 100 ng of gDNA as

template, 3.75U of Expand Long Template Polymerase (Roche), and IX Buffer 3. A 762

bp fragment corresponding to the 3' flank of SWI4, located 4 bp after the stop codon, was

similarily amplified using oligonucleotides BH14F and BH14R and the following

thermocycling conditions: 94°C for 3 min, followed by 25 cycles of 94°C for 30 sec,

480C for 30 sec, 680C for 46 sec, and a final elongation at 68°C for 7 min. The reaction

mix composition was similar to that used for the 5' flank. To amplify the 1755 bp HISl
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cassette fragment from plasmid pBS-CafflS7, oligonucleotides BH13F and BH13R were

used, which contain homology to the plasmid plus an additional 30 bp sequence that is

the reverse complement of oligonucleotides BHlOR and BH14F, respectively. The

following thermocycling conditions were used: 94°C for 3 min, followed by 25 cycles of

94°C for 30 sec, 420C for 30 sec, 68°C for 1 min 45 sec, and a final elongation at 68°C

for 7 min. The reaction mix was composed of a final concentration of 0.6 µ? of

oligonucleotides, 0.4 mM dNTPs, 100 ng of pBS-CaHISl as template, 3.75U of Expand

Long Template Polymerase, and IX Buffer 3. In order to create the final construct for

transformation, oligonucleotides BH10F and BH14R were used at a concentration of 0.45

µ? with a 1:3:1 (50ng:150ng:50ng) amount of the three PCR fragments, in a reaction

including 0.5 mM of dNTPs, 3.75U of Expand Long Template Polymerase, and IX

Buffer 3. The following thermocycling conditions were used: 95°C for 2 min, followed

by 10 cycles of 95°C for 10 sec, 47°C for 30 sec, and 68°C for 2 min 55 sec, followed by

15 cycles of 95°C for 10 sec, 47°C for 30 sec, 69°C for 2 min 55 sec with a 20 sec auto-

segment extension, and a final elongation at 690C for 7 min. The final 2916 bp PCR

product was cleaned using a PCR purification kit (QIAGEN), and 10 µg was used to

transform strain BWP 17, resulting in strain BH 180 (swi4A::HISl/SM4).

Colonies of transformants were screened directly using PCR with 2 µ? of

spheroplasted yeast cells, 0.9 µ? oligonucleotides BH6F and BH6R, 0.2 mM dNTPs,

3.75U Expand Long Template DNA, and IX Buffer 1. Thermocycling conditions

included an initial denaturation at 94°C for 3 min, followed by 25-30 cycles of 94°C for 1

min, 400C for 1 min, 68°C for 5 min, and a final elongation at 68°C for 7 min. The SWI4

wildtype band was 5357 bp, while the swi4A::HISl deletion produced a 3552 bp band.
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To delete the second copy of SWI4, a PCR fusion contruct containing the same

759 bp 5' flank and 762 bp 3' flanks were used as described above. A 1765 bp URA3

cassette fragment was amplified from plasmid pBS-CaURA3, with oligonucleotides

BHl 3F and BH13R. The following thermocycling conditions were used: 94°C for 3 min,

followed by 25 cycles of 94°C for 30 sec, 420C for 30 sec, 68°C for 1 min 45 sec, and a

final elongation at 68°C for 7 min. The reaction mix was composed of a final

concentration of 0.6 µ? of oligonucleotides, 0.4 mM dNTPs, 100 ng of pBS>-Cal/RA3 as

template, 3.75U of Expand Long Template Polymerase, and IX Buffer 3. In order to

create the final construct to be used for transformation, oligonucleotides BH10F and

BH14R were used at a concentration of 0.45 µ? with a 1:3:1 (50ng:150ng:50ng) ratio of

the three fragments, in a reaction including 0.5 mM of dNTPs, 3.75U of Expand Long

Template Polymerase, and IX Buffer 3. The following thermocycling conditions were

used: 95°C for 2 min, followed by 10 cycles of 95°C for 10 sec, 47°C for 30 sec, and

68°C for 2 min 55 sec, followed by 15 cycles of 95°C for 10 sec, 47°C for 30 sec, 690C

for 2 min 55 sec with a 20 sec auto-segment extension, and a final elongation at 69°C for

7 min. The final 2926 bp PCR product was cleaned using QIAGEN spin columns, and 10

µg was transformed into strain BH 180, resulting in strain BHl 85

(swi4A::HISl/swi4A::URA3). Transformants were screened by PCR, using

oligonucleotides BH6F and BH6R, as described before. A 3562 bp band represented
swi4A::URA3.

To create a prototrophic control strain, strain BWP 17 was transformed

sequentially with 5 µg of plasmid pBS-Ca///5i, then pBS-CaURA3, producing strain
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BH440. An alternative control strain BWPUH was created by transforming strain

BWP17 with the plasmid pRMlOO, which contained both the URA3 and HISl markers.

In order to confirm that the phenotype of BH185 was due to the deletion of SWI4,

a conditional strain carrying a single copy of SWU under the control of the MET3

promoter was created (63). To first delete a single copy of SWU from strain BWP 17, a 3

kb fragment containing the SWU open reading frame and approximately 1 kb of 3' and 5'

flanking sequence was amplified with oligonucleotides CBl 19F and CBl 19R, and cloned

into Sall/SacI sites of pUC18 creating plasmid pCB180. Primers CB 120F and CB 120R

were then used to amplify the flanking and vector sequences from pCB180, into which

the BamHI/Bglll hisG-URA3-hisG cassette (p5921; (64)) was cloned, replacing the SWU

open reading frame and resulting in plasmid pCB181. The SWU deletion construct was

liberated using Sail and Sad restriction enzymes and transformed into strain BWP 17.

Transformants were screened by PCR, as previously described, to confirm the deletion of

one copy of SWU. The resulting strain BH 104 was grown overnight in YPD medium,

then plated onto 5-Fluoroorotic acid (5-FOA) to select for strains that looped out URA3.

The URA3- strains were screened by PCR, and strain BHl 15 (swi4A::hisG /SWU) was

isolated. The second copy of SWU was placed under the control of the MET3 promoter

using a promoter replacement construct made through fusion PCR. A 759 bp fragment

corresponding to the 5' flank of SWU was amplified from strain BWP 17 gDNA using

oligonucleotides BHlOF and BHlOR, using the following thermocycling conditions:

94°C for 3 min, followed by 25 cycles of 94°C for 30 sec, 46°C for 30 sec, 68°C for 45

sec, and a final elongation at 68°C for 7 min. The reaction mix was composed of a final

concentration of 0.6 µ? of oligonucleotides, 0.4 mM dNTPs, 100 ng of BWP 17 gDNA
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as template, 3.75U of Expand Long Template Polymerase, and IX Buffer 3. A 732 bp

fragment corresponding to the region immediately downstream of the SWU start codon

was amplified from BWP 17 gDNA using oligonucleotides BH12F and BH12R and the

following thermocycling conditions: 94°C for 3 min, followed by 25 cycles of 94°C for

30 sec, 48°C for 30 sec, 680C for 44 sec, and a final elongation at 68°C for 7 min. The

reaction mix was composed of a final concentration of 0.6 µ? of oligonucleotides, 0.4

rnM dNTPs, 100 ng of BWP17 gDNA as template, 3.75U of Expand Long Template

Polymerase, and IX Buffer 3. To amplify the METi promoter cassette from plasmid

p¥A-MET3-CaARG4, oligonucleotides BHIlF and BHIlR were used, which contain 20

bp homology to the plasmid plus an additional 30 bp reverse complement sequence of

oligonucleotides BH10R and BH12F, respectively. The following thermocycling

conditions were used: 94°C for 3 min, followed by 25 cycles of 940C for 30 sec, 42°C for

30 sec, 68°C for 3 min 27 sec, and a final elongation at 680C for 7 min. The reaction mix

was composed of a final concentration of 0.6 µ? of oligonucleotides, 0.4 mM dNTPs,

100 ng of p¥A-MET3-CaARG4 as template, 3.75U of Expand Long Template

Polymerase, and IX Buffer 3. In order to create the final construct for transformation,

oligonucleotides BH10F and BH12R were used at a concentration of 0.45 µ? with a

1:3:1 (50ng:150ng:50ng) ratio amount of the three fragments, in a reaction including 0.5

mM of dNTPs, 3.75U of Expand Long Template Polymerase, and IX Buffer 3. The

following thermocycling conditions were used: 95°C for 2 min, followed by 10 cycles of

950C for 10 sec, 46°C for 30 sec, and 68°C for 4 min 30 sec, followed by 15 cycles of

95°C for 10 sec, 46°C for 30 sec, 69°C for 4 min 30 sec with a 20 sec auto-segment

extension, and a final elongation at 690C for 7 min. The final product was cleaned, and
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5.4 µg of the 4895 bp product was used to transform strain BHl 15, resulting in strain

BH 1 50 (swi4A::hisG/MET3::SWI4-ARG4).

BH 150 was initially screened by PCR, as described, using oligonucleotides BH6F

and BH6R. A 3.4 kb band represented swi4A::hisG, and a 8.6 kb band represented

MET3::SWI4. Strains BH150, BH185, BHl 13, BHl 15, BH180, and BWP17 were also

screened by Southern Blot Analysis. 60 units of the restriction enzyme Ndel (NEB) was

used to digest 4 µg of gDNA, in a 100 µ? reaction mix containing IX Buffer 4 (NEB),

and incubated at 37°C overnight. The 1 kb probe was made using the oligonucleotides

SWI4F and SWI4R, with the following PCR conditions: 0.2 mM dNTPs, 0.3 µ?

oligonucleotides, IX PCR Buffer, 100 ng of BWP 17 gDNA, and 3.75U of Short

EXPAND DNA Polymerase (Roche), in a total volume of 50 µ?. Thermocycling

conditions involved 94°C for 2 min, 10 cycles at 94°C for 10 sec, 44°C for 30 sec, and

720C for 50 sec, followed by another 15 cycles at 94°C for 10 sec, 44°C for 30 sec, and

720C for 50 sec, with a 5 sec auto-segment extension, and a final 7 min extension at

72°C. The probe was then cleaned using a PCR column, and quantified. The DIG-

labeled DNA probe was made from the PCR product using random primed labeling, as

described later.

2.7.2 MBPl

In order to delete one copy oí MBPl, a 790 bp fragment corresponding to the 5'

flank of MBPl, starting 812 bp upsteam of the Start site, was amplified from gDNA as

described with SWI4, but using oligonucleotides BH7F and BH7R, and the following

thermocycling conditions: 94°C for 3 min, followed by 25 cycles of 94°C for 30 sec,
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49°C for 30 sec, 680C for 47 sec, and a final elongation at 680C for 7 min. A 799 bp

fragment corresponding to the 3' flank of MBPl, starting 161 bp downstream of the stop

site, was then amplified using oligonucleotides BH9F and BH9R and the following

thermocycling conditions: 94°C for 3 min, followed by 25 cycles of 94°C for 30 sec,

49°C for 30 sec, 680C for 47 sec, and a final elongation at 680C for 7 min. A 1441 bp

HISl cassette fragment was then amplified from plasmid pBS-Ca///5i using

oligonucleotides BH8F and BH8R, which contained homology to the plasmid plus 30 bp

reverse complement sequence of oligonucleotides BH7R and BH9F, respectively, to

allow for PCR fusion. The following thermocycling conditions were used: 94°C for 3

min, followed by 25 cycles of 94°C for 30 sec, 41 0C for 30 sec, 680C for 1 min 26 sec,

and a final elongation at 680C for 7 min. The reaction mix was composed of a final

concentration of 0.6 µ? of oligonucleotides, 0.4 mM dNTPs, 100 ng of pBS-Ca//ZS7 as

template, 3.75U of Expand Long Template Polymerase, and IX Buffer 3. In order to

create the final construct for transformation, oligonucleotides BH7F and BH9R were used

at a concentration of 0.45 µ? with a 1:3:1 (50ng:150ng:50ng) ratio of the three

fragments, in a reaction including 0.5 mM of dNTPs, 3.75U of Expand Long Template

Polymerase, and IX Buffer 3. The following thermocycling conditions were used: 95°C

for 2 min, followed by 10 cycles of 95°C for 10 sec, 49°C for 30 sec, and 680C for 3 min,

followed by 15 cycles of 95°C for 10 sec, 49°C for 30 sec, 69°C for 3 min with a 20 sec

auto-segment extension, and a final elongation at 69°C for 7 min. 10 µg of the final 3006

bp fusion PCR product was used to transform strain BWP 17, resulting in strain BH 137

(mbplA::HISl/MBPl).
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Strain BH 137 was screened by PCR from whole yeast cells, as previously

described, using oligonucleotides CB126F and CB126R, and thermocycling conditions

including an initial denaturation at 94°C for 3 min, followed by 25-30 cycles of 94°C for

1 min, 42°C for 1 min, 68°C for 3 min, and a final elongation at 68°C for 7 min.

The second copy of MBPl was deleted by a similar strategy, using the same 790

bp 5' flank and 799 bp 3' flanks as above. A 1765 bp URA3 cassette fragment was

amplified from plasmid pBS-CaURA3 with oligonucleotides BH8F and BH8R, using the

following thermocycling conditions: 94°C for 3 min, followed by 25 cycles of 94°C for

30 sec, 420C for 30 sec, 68°C for 1 min 45 sec, and a final elongation at 68°C for 7 min.

The reaction mix was composed of a final concentration of 0.6 µ? of oligonucleotides,

0.4 mM dNTPs, 100 ng of pBS-CaURA3 as template, 3.75U of Expand Long Template

Polymerase, and IX Buffer 3. In order to create the final fusion construct for

transformation, oligonucleotides BH7F and BH9R were used at a concentration of 0.45

µ? with a 1:3:1 (50ng: 1 50ng:50ng) ratio amount of the three fragments, in a reaction

including 0.5 mM of dNTPs, 3.75U of Expand Long Template Polymerase, and IX of

Buffer 3. The following thermocycling conditions were used: 95°C for 2 min, followed

by 10 cycles of 95°C for 10 sec, 49°C for 30 sec, and 68°C for 3 min, followed by 15

cycles of 95°C for 10 sec, 49°C for 30 sec, 69°C for 3 min with a 20 sec auto-segment

extension, and a final elongation at 69°C for 7 min. 10 µg of the final 3016 bp PCR

product was used to transform strain BH137, resulting in strain BH261

(mbplA::HISl/mbplA:: URA3).

Strain BH261 was screened by PCR, as described above, using oligonucleotides

BH32F and BH32R. Thermocycling conditions included an initial denaturation at 940C
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for 3 min, followed by 25-30 cycles of 94°C for 1 min, 37°C for 1 min, 68°C for 3 min 6

sec, and a final elongation at 68°C for 7 min. The mbplA::HISl and mbplA::URA3

products produced a band at 3.2 kb. Alternatively, some strains were screened using

nested oligos. Thermocycling conditions to screen for mbplA::HISl, with CaHISlF and

BH32R, included an initial denaturation at 94°C for 3 min, followed by 25-30 cycles of

94°C for 30 sec, 37°C for 30 sec, 68°C for 1 min 32 sec, and a final elongation at 68°C

for 7 min. Conditions for mbplA::URA3, with CaURA3F and BH32R, included an initial

denaturation at 940C for 3 min, followed by 25-30 cycles of 94°C for 30 sec, 400C for 30

sec, 68°C for 1 min 40 sec, and a final elongation at 68°C for 7 min. mbplA::HISl

produced a band at 1 669 bp, and the mbplA: : URA3 product produced a band at 1 526 bp.
Strains BH 137, BH261, and BWP 17 were also screened by Southern Blot

Analysis. 40 units of the restriction enzyme Spel (NEB) were used to cut 4 µg of gDNA

in a 100 µ? reaction mix containing IX Buffer 4 (NEB), IX Bovine Serum Albumin

(BSA) (NEB), and incubated at 37°C overnight. The 1 kb probe was made using the

oligonucleotides MBPlF and MBPlR, with the following PCR conditions: 0.2 mM

dNTPs, 0.3 µ? oligonucleotides, IX PCR Buffer, 100 ng of BWP17 gDNA, and 3.75U

of Short EXPAND DNA Polymerase, in a total volume of 50 µ?. Thermocycling

conditions involved 94°C for 2 min, 10 cycles at 94°C for 10 sec, 380C for 30 sec, 72°C

for 50 sec, followed by another 15 cycles at 940C for 10 sec, 38°C for 30 sec, 72°C for 50

sec with a 5 sec auto-segment extension, and a final 7 min extension at 72°C. The probe

was then cleaned using a PCR column, and quantified.
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2.7.3 SWU

In order to create a SWI6 deletion strain, one copy was replaced with the HISl

marker using a construct created with oligonucleotides CB115F and CBl 15R, which

contained 80 bp complementary to the 5' and 3' flanks of SWI6, respectively, and 20 bp

homology to pBS-CaHISl. CBl 15F was located 680 bp upstream of the SWI6 Start site,

and CB115R was located 226 bp downstream of the stop codon. The following

thermocycling conditions were used: 94°C for 4 min, followed by 25 cycles of 940C for 1

min, 41 0C for 1 min, and 68°C for 1 min 34 sec, with a final elongation at 68°C for 7

min. The reaction mix was composed of a final concentration of 0.6 µ? of

oligonucleotides, 0.4 mM dNTPs, 100 ng of pBS-CaHISl as template, 3.75U of Expand

Long Template Polymerase, and IX of Buffer. 10 µg of the final 1508 bp PCR product

was used to transform strain BWP17, resulting in strain BHlOl {swi6A::HISl/ SWI6).

BHlOl was initially screened by PCR, as described for other genes, using

oligonucleotides CBl 17F and CB117R. Thermocycling conditions included an initial

denaturation at 94°C for 3 min, followed by 25-30 cycles of 940C for 1 min, 400C for 1

min, 68°C for 1 min 42 sec, and a final elongation at 68°C for 7 min. SWI6 produced a

wildtype band at 3320 bp, and the swi6A::HISl product produced a band at 1702 bp.

The second copy of SWI6 was deleted using a PCR-fusion construct. A 5', 642

bp sequence located 663 bp upstream of the Start site, was amplified from gDNA with

BH2F and BH2R oligonucleotides, using the following thermocycling conditions: 94°C

for 3 min, followed by 25 cycles of 940C for 30 sec, 49°C for 30 sec, and 68°C for 39

sec, with a final elongation at 68°C for 7 min. The reaction mix was composed of a final

concentration of 0.6 µ? of oligonucleotides, 0.4 mM dNTPs, 100 ng of BWP 17 gDNA
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as template, 3.75U of Expand Long Template Polymerase, and IX of Buffer 3. A 3', 658

bp flanking sequence of SWI6, located 107 bp downstream of the stop codon, was

similarly amplified with BH4F and BH4R oligonucleotides using the following

thermocycling conditions: 94°C for 3 min, followed by 25 cycles of 94°C for 30 sec,

49°C for 30 sec, and 68°C for 40 sec, with a final elongation at 68°C for 7 min. The

URA3 cassette from the pBS-Ca£/fc45 plasmid was then amplified with BH3F and BH3R

oligonucleotides, containing homology to the plasmid and an additional 30 bp reverse

complement sequence of BH2R and BH4F oligonucleotides, respectively. The following

thermocycling conditions were used: 94°C for 3 min, followed by 25 cycles of 94°C for

30 sec, 41 0C for 30 sec, and 68°C for 1 min 30 sec, with a final elongation at 680C for 7

min. The reaction mix was composed of a final concentration of 0.6 µ? of

oligonucleotides, 0.4 mM dNTPs, 100 ng of pBS-Ca£/&4J as template, 3.75U of Expand

Long Template Polymerase, and IX of Buffer 3. In order to create the final construct, the
reaction mix included 0.45 mM BH2F and BH4R, a 1:3:1 (50ng:150ng:50ng) ratio

amount of the three fragments, 0.5 mM of dNTPs, 3.75U of Expand Long Template

Polymerase, and IX Buffer 3. The following thermocycling conditions were used: 95°C

for 2 min, followed by 10 cycles of 950C for 10 sec, 48°C for 30 sec, and 680C for 2 min

39 sec, followed by 15 cycles of 95°C for 10 sec, 48°C for 30 sec, and 69°C for 2 min 39

sec with auto-extend by an additional 20 sec each cycle, and a final elongation at 69°C

for 7 min. Approximately 4 \ig of the final 2721 bp PCR fusion product was transformed

into strain BHlOl, resulting in strain BH120 (swi6A::HJSJ/swi6A::URA3).

BHl 20 was initially screened by PCR, as described, using oligonucleotides

CBl 17F and CB117R. swi6A::HISl produced a band at 1.7 kb, and the swi6A::URÂ3
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product produced a band at 2.5 kb. Strains BHlOl, BH120, and BWP17 were also

screened by Southern Blot Analysis. 40 units of the restriction enzyme Pvul (NEB) was

used to cut 4 µg °f gDNA, in a 70 µ? reaction mix containing IX Buffer 3 (NEB), IX

BSA, and incubated at 37°C overnight. The 1031 bp probe was made using the

oligonucleotides SWI6F and SWI6R, with the following PCR conditions: 0.2 mM

dNTPs, 0.3 µ? oligonucleotides, IX PCR Buffer, 100 ng of BWP17 gDNA, 3.75U of

Short EXPAND DNA Polymerase, in a total volume of 50 µ?. Thermocycling conditions

involved 94°C for 2 min, 10 cycles at 940C for 10 sec, 400C for 30 sec, 72°C for 50 sec,

followed by another 15 cycles at 94°C for 10 sec, 400C for 30 sec, 72°C for 50 sec with a

5 sec auto-segment extension, and a final 7 min extension at 72°C. The probe was then

cleaned using a PCR column, and quantified.

To create a strain containing a conditional copy of SWI6, one allele of SWI6 was

placed under control of the MET3 promoter. The construct was PCR amplified using

oligonucleotides CB127F and CB127R, which contained 80 bp complementary to the 5'

region immediately up and downstream of the Start codon, respectively, and 20 nt

homologous to plasmid pFA-MET3-CaHISl (63). The following thermocycling

conditions were used: 94°C for 4 min, followed by 25 cycles of 94°C for 1 min, 41 0C for

1 min, and 68°C for 3 min, with a final elongation at 68°C for 7 min. The reaction mix

was composed of a final concentration of 0.6 µ? of oligonucleotides, 0.4 mM dNTPs,

100 ng of p¥A-MET3-CaHISl as template, 3.75U of Expand Long Template Polymerase,

and IX Buffer 3. 10 µg of the final product was cleaned and transformed into strain

BWPl 7, resulting in strain CB600. To delete the second allele of SWI6, a 2-step PCR

fusion construct was created. A 5' 1043bp flanking region of SWI6, located 40 bp
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upstream of the Start site, was amplified from strain BWP 17 gDNA with CB129F and

CB129R oligonucleotides, using the following thermocycling conditions: 94°C for 2 min,

followed by 25 cycles of 94°C for 10 sec, 46°C for 30 sec, and 680C for 55 sec, with a

final elongation at 68°C for 7 min. The reaction mix was composed of a final

concentration of 0.6 µ? of oligonucleotides, 0.4 mM dNTPs, 100 ng of BWP 17 gDNA

as template, 3.75U of Expand Long Template Polymerase, and IX of Buffer 3. A 3' 590

bp flank of SWI6, starting 107 nt downstream of the stop codon, was then similarly

amplified from strain BWP 17 gDNA with CB 130F and CB 130R oligonucleotides, using

the following thermocycling conditions: 94°C for 3 min, followed by 25 cycles of 94°C

for 30 sec, 49°C for 30 sec, and 680C for 45 sec, with a final elongation at 680C for 7

min. The URA3 cassette from the pBS-CaURA3 plasmid was then amplified with

CB 13 IF and CB 13 IR oligonucleotides, which additionally contain 30 bp reverse

complement of CB129R and CB 130F oligonucleotides, respectively. The following

thermocycling conditions were used: 94°C for 3 min, followed by 25 cycles of 94°C for

30 sec, 400C for 30 sec, and 68°C for 1 min 30 sec, with a final elongation at 68°C for 7

min. The reaction mix was composed of a final concentration of 0.6 µ? of

oligonucleotides, 0.4 mM dNTPs, 100 ng of pBS-CaURA3 as template, 3.75U of Expand

Long Template Polymerase, and IX of Buffer 3. In order to create the final construct, the
reaction mix included 0.45 mM CB129F and CB130R, a 1:3:1 (50ng:150ng:50ng) ratio

amount of the three fragments, 0.5 mM of dNTPs, 3.75U of Expand Long Template

Polymerase, and IX Buffer 3. The following thermocycling conditions were used: 95°C

for 2 min, followed by 10 cycles of 950C for 10 sec, 49°C for 30 sec, and 68°C for 3 min

followed by 15 cycles of 95°C for 10 sec, 49°C for 30 sec, and 68°C for 3 min with auto-
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extend by an additional 20 sec each cycle, and a final elongation at 690C for 7 min.

Approximately 4 µg of the final 3.0 kb PCR fusion product was transformed into strain

CB600, resulting in strain CB552 (swi6A::URA3/MET3::SWI6-HISl).

CB552 was initially screened by PCR, using CBl 17F and a nested

oligonucleotide. Thermocycling conditions to screen for swi6A::URA3, with CBl 17F and

CaURA3R, included an initial denaturation at 94°C for 3 min, followed by 25-30 cycles

of 94°C for 30 sec, 4O0C for 30 sec, 68°C for 1 min 50 sec, and a final elongation at 680C

for 7 min. Conditions for MET3::SWI6-HIS1, with CBl 17F and CaHISlR, included an

initial denaturation at 94°C for 3 min, followed by 25-30 cycles of 94°C for 30 sec, 42°C

for 30 sec, 68°C for 50 sec, and a final elongation at 68°C for 7 min. MET3::SWI6

produced a band at 0.7 kb, and the swi6A::URA3 product produced a band at 2.0 kb.

Strain CB552 was also screened by Southern Blot Analysis, using 40 units of the

restriction enzyme Pvul (NEB) and the 1031 bp probe was made using the

oligonucleotides SWI6F and SWI6R, as described above.

2.7.4 SWI4/SWI6 strains

In order to create a strain lacking both SWI4 and SWI6, the first copy of SWI6 was

deleted from strain BHl 15 (swi4A::hisG/SWI4) using a PCR construct created with

oligonucleotides CB115F and CBl 15R, as described above. The final 1508 bp PCR

product was transformed into strain BHl 15, resulting in strain BH 140 (swi4A::hisG

/SWI4 swi6A::HISl/ SWI6). The second copy of SWI4 was then placed under control of

the MET3 promoter using oligonucleotides BH10F,R BHIlF5R and BH12F,R as

described previously to create a PCR fusion construct. The final 4895 bp product was
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transformed into strain BH140 resulting in strain BH160 {swi4A::hisG/MET3::SWI4-

ARG4, swi6A::HISl/SWI6). The second copy of SWI6 was subsequently deleted using a

PCR-fusion construct created from oligonucleotides BH2F,R BH3F,R and BH4F,R as

described. 10 µg of the final 2721 bp PCR product was transformed into strain BH 160

resulting in strain BH190 (swi4A::hisG/MET3::SWI4-ARG4,

swi6A: :HIS1Vswi6A: :URA3). All strains were screened by PCR, and by Southern Blot

Analysis, as described previously for the single SWI4 or SWI6 manipulations.

In order to create a prototrophic control strain, strain BWP 17 was transformed

sequentially with 5 µg of plasmid pRMlOO, which contains both the URA3 and HISl

markers, then pBS-CaARG4, resulting in strain BH420.

2.7.5 SWI4/MBP1 strains

In order to create a strain that lacked SWI4 and MBPl, the first copy of MBPl

was deleted from strain BH 150 (swi4A::hisG/MET3::SWI4-ARG4) using a PCR-fusion

mediated construct with oligonucleotides BH7F,R BH8F,R and BH9F,R, gDNA and

pBS-CaHISl as templates, as previously described. The final 3006 bp product was

transformed into strain BH 150, resulting in strain BH270 (swi4A::hisG/MET3::SWI4-

ARG4, mbplA::HISl/MBPl). Finally, the second copy of MBPl was deleted as

previously described, utilizing a fusion PCR construct obtained with oligonucleotides

BH7F,R BH8F,R and BH9F,R, and BWP 17 gDNA and pBS-CaURA3 as templates. The

final 3016 bp construct was transformed into strain BH270 to create strain BH276

(swi4A::hisG/MET3::SWI4-ARG4, mbplA::URA3/' mbpIA::HISl).
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To confirm the phenotype of strain BH276 under repressing conditions, a strain

deleted for both SWI4 and MBPl alleles was created. Strain BHl 13 (swi4A::hisG /SWI4)

was transformed with a fusion PCR construct to replace the second copy of SWI4 with a

URA3 marker. Briefly, a 5' 759 bp flanking sequence of SWI4 was amplified from

gDNA using oligonucleotides BHlOF and BHlOR with the following thermocycling

conditions: 94°C for 3 min, followed by 25 cycles of 94°C for 30 sec, 46°C for 30 sec,

and 68°C for 45 sec, with a final elongation at 68°C for 7 min. The reaction mix was

composed of a final concentration of 0.6 µ? of oligonucleotides, 0.4 mM dNTPs, 100 ng

of BWP 17 gDNA as template, 3.75U of Expand Long Template Polymerase, and IX

Buffer 3. The 3' 762 bp flanking sequence of SWI4 was amplified using oligonucleotides

BH14F and BH14R with the following thermocycling conditions: 94°C for 3 min,

followed by 25 cycles of 94°C for 30 sec, 480C for 30 sec, and 68°C for 46 sec, with a

final elongation at 68°C for 7 min. The URA3 cassette was amplified from the pBS-

CaURA3 plasmid using oligonucleotides BH13F and BH13R, and the following

thermocycling conditions: 94°C for 3 min, followed by 25 cycles of 94°C for 30 sec,

42°C for 30 sec, and 68°C for 1 min 45 sec, with a final elongation at 680C for 7 min.

The reaction mix was composed of a final concentration of 0.6 µ? of oligonucleotides,

0.4 mM dNTPs, 100 ng of pBS-CaURA3 as template, 3.75U of Expand Long Template

Polymerase, and IX Buffer 3. The final fusion PCR reaction mix included 0.5 mM of

dNTPs, 0.45 µ? of oligonucleotides BH10F and BH14R, 3.75U of Expand Long

Template Polymerase, IX Buffer 3, and a 1:3:1 (50ng:150ng:50ng) ratio amount of the

three fragments. The following thermocycling conditions were used: 95°C for 2 min, 10

cycles of 95°C for 10 sec, 47°C for 30 sec, and 68°C for 2 min 55 sec, then 15 cycles of
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95°C for 10 sec, 47°C for 30 sec, and 69°C for 2 min 55 sec with a 20 sec auto-extension

each cycle, and a final elongation at 69°C for 7 min. The final 2937 bp PCR product was

transformed into strain BHl 13 resulting in strain BH339 (swi4A::hisG/swi4A: :URA3). A

copy of MBPl was then deleted from strain BH339, using a HISl replacement construct

as described previously, resulting in strain BH341 (swi4A::hisG/swi4A::URA3

mbplA::HISl/MBPl). To replace the second copy of MBPl with CaARG4, the 5' 790

bp and 3' 799 bp flanks of MBPl were amplified from BWP 17 gDNA using

oligonucleotides BH7F and BH7R, and BH9F and BH9R, respectively, as described

above. Oligonucleotides BH8F and BH8R were used with pBS-CaARG4 to amplify the

ARG4 cassette. The following thermocycling conditions were used: 940C for 3min,

followed by 25 cycles of 94°C for 30 sec, 42°C for 30 sec, and 68°C for 2 min 15 sec,

with a final elongation at 680C for 7 min. The reaction mix was composed of 0.6 µ? of

oligonucleotides, 0.4 mM dNTPs, 100 ng of pBS-CaARG4 as template, 3.75U of Expand

Long Template Polymerase, and IX Buffer 3. The final fusion PCR reaction mix

included 0.5 mM of dNTPs, 0.45 µ? of oligonucleotides BH7F and BH9R, 3.75U of

Expand Long Template Polymerase, IX Buffer 3, and a 1 :3:1 (50:150:50ng) ratio amount

of the three fragments. The following thermocycling conditions were used: 95°C for 2

min, 10 cycles of 95°C for 10 sec, 49°C for 30 sec, and 68°C for 3 min 30 sec, then 15

cycles of 95°C for 10 sec, 49°C for 30 sec, and 69°C for 3 min 30 sec with a 20 sec

autoextension, and a final elongation at 69°C for 7 min. 5 µg of the final 3785 bp PCR

product was transformed into strain BH341 resulting in the strains BH348 and BH352

{swi4A::hisG/swi4A::URA3, mbplA::HlSl/mbplA::ARG4). All strains were screened by
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PCR and by Southern Blot Analysis, as described previously for the single SWU or

MBPl manipulations.

2.8 Colony Screening

Strains were initially screened by Direct PCR screening of whole yeast cells (65,

66). Briefly, an average-sized yeast colony (0.5-2 mm) was incubated in 10 µ?

Zymolyase Solution (2.5mg/ml Zymolyase (Fisher), 1.2M Sorbitol, 0.1 M Sodium

Phosphate pH7.4) for 1 hr at 37°C. 2 µ? of spheroplasted yeast cells were used in the 50

µ? PCR reactions as described previously for each gene.

2.9 Southern Blot Analysis

Southern Blot Analysis on Candida albicans was carried out using the DIG

Hybridization System Kit (Roche).

2.9.1 Probe Construction

A probe of approximately 1 kb was made by PCR, using the conditions described

previously for each gene. The product was cleaned using a PCR column, quantified, and

500 ng was boiled for 10 min, followed by a snap-cool on ice for 5 min. The DNA was

added to a 100 µ? mixture containing IX hexanucelotide mix, IX dNTP labeling reaction

mix, and 25U Klenow (DIG Hybridization System; Roche). The solution was mixed

gently and incubated overnight at 37°C. To stop the reaction, 4 µ? of 0.5M EDTA was

added. To precipitate the DNA, 1 µ? of 20 mg/ml glycogen, 0.1 X volume of 5M LiCl,

and 3 volumes of cold 95% ethanol were added. After mixing gently, the reaction was

left at -200C overnight. The following day the tube was centrifuged at 4°C for 10 min at
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16 rcf. The pellet was washed with 70% ethanol, and resuspended in 50 µ? TE Buffer (1

mM EDTA, 10 mM TRIS pH8.0). The probe was stored at -200C.

2.9.2 Probe Quantification

Serial dilutions of DIG labeled control DNA (5 ng/µ?) and DIG-labeled DNA

probe were made in Solution 1 (0.1 M Maleic Acid, 0.1 5M NaCl, NaOH, pH7.5). The
dilutions were spotted on a positively-charged Nylon membrane (Roche). The DNA was

UV-crosslinked to the membrane using a Stratagene UV Linker, set at 1200 Joules (J).

The membrane was incubated with IX Blocking Solution in Solution 1 for 30 min,

washed, then incubated in 1:5000 anti-DIG antibody coupled to alkaline phosphatase in

Solution 1 for 30 min. After washing, the membrane was incubated in a 1:50 dilution of

NBT/BCIP (Roche) in Solution 3 (0.1 M NaCl and 0.1 M Tris-HCl pH 9.5) in the dark for

30 min. The reaction was stopped by incubating in Solution 4 (0.01M TRIS pH 9.5, 5M

NaCl).

2.9.3 Preparation of gDNA

4 µg of gDNA was cut with the restriction enzyme determined to suit each gene's
cutting scheme, as described previously. Digested gDNA was precipitated by added 4 µ?
of 5M NaCl and 400 µ? 95% ethanol, mixed gently and left at -200C for 6 hr to overnight.

The following day the precipitated gDNA was centrifuged at 4°C, for 10 min at 16 rcf,
then washed once with 70% ethanol. The gDNA pellet was air-dried for 20 min, then

resuspended in 20 µ? of TE Buffer, loaded on a 0.7-1% agarose gel, containing 40 µg/ ml
Ethidium Bromide, and run overnight at 30-40V. The gel was then washed twice for 15
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min in Denaturizing solution (1.5M NaCl, 0.5M NaOH), rinsed in water, then washed

twice for 15 min in Neutralizing Solution (3M NaCl, 0.5M TRIS pH 8.0). A positively

charged Nylon membrane (Roche) was positioned on top of the gel and the apparatus was

set up for capillary action to transfer the DNA to the membrane, for 5 - 6 hr. The DNA

was UV-crosslinked to the membrane using the Stratagene UV Linker set at 1200 J.

The membrane was then incubated with preheated prehybridization solution (5X

SSC, 1% blocking agent, 0.1% Sodium Lauryl Sarcosinate, 0.02% SDS) for 1 hr, in a

hybridization oven at 65°C. To prepare the hybridization solution, 50 ng of DIG-labeled

DNA probe was brought to a volume of 10 µ? in TE buffer, boiled for 10 min, then snap-

cooled on ice for 5 min. The probe was then added to the same preheated DIG

Hybridization solution and incubated in a 65°C water bath until ready to add to the

membrane. After prehybridization, the membrane was then incubated overnight with the

Hybridization solution at 65°C. The following day the membrane was washed twice for

5 min at room temperature in 2X SSC, 0.1% SDS, then washed twice for 15 min at 65°C

in 0.1 X SSC, 0.1% SDS.

For chemiluminescence detection, the membrane was equilibriated for 3 min in

Solution 1, and then incubated in IX Blocking Solution, for 60 min with agitation. The

membrane was then transferred to Blocking Solution containing 1 : 10000 dilution of Anti-

DIG-Alkaline Phosphatase coupled antibody for 30 min. After washing twice for 1 5 min

with 1:33 Tween-20 in Solution 1 with agitation, the membrane was equilibrated for 5

min in Solution 3. The membrane was then placed in a hybridization bag and incubated

in 1:100 dilution of CSPD (Disodium 3-(4-methoxyspiro {l,2-dioxetane-3,2'-(5'-

chloro)tricycle[3.3.1.13'7]decan} phenyl phosphate; Roche) in Solution 3, for 5 min at
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room temperature. The bag was then sealed and incubated for 15 min at 37°C to activate

the chemiluminescence reaction. The film was placed into a cassette with development

film, and exposed for 1 5 min - 1 hr.

2.10 Transcription Profiling

2.10.1 mRNA Labeling

Target sample preparation and hybridization were performed according to Nantel

et al, (2002) (67). Briefly, to label mRNA with dCTP linked to either Cy3 or Cy5, 30 µg

of mRNA, 1.5 µ? oligo(dT)2i (100 pmol/µ?), and water were combined in a total volume

of either 18.5 (Cy3) or 19.5 µ? (Cy5), incubated at 700C for 10 min, and cooled to room

temperature for 10 min. 3 µ? dNTPs (excluding dCTP) (6.67 mM each), 1 µ? dCTP (2

mM), 4 µ? DTT (100 mM), and 8 µ? 5X First Strand Buffer (Invitrogen) were then added

on ice. 2 µ? of cyanine 3-dCTP (1 mM) or 1 µ? of cyanine 5-dCTP (1 mM) and 2 µ? of

SuperScript II Reverse Transcriptase (Invitrogen) were added and the reaction proceeded

at 42°C. After 2 hr, an additional 1 µ? of Superscript II was added, and incubation

continued at 42°C for 1 hr. The reaction was stopped and RNA degraded by addition of

1 µ? each of RNase A (10 mg/ml) and RNaseH (0.05 U/µ?). The reaction took place at

37°C for 20 min, then was neutralized with 2.7 µ? of NaOAc (3M, pH5.2). Purification

was performed with Qiagen PCR cleaning columns.

2.10.2 Hybridization

Prehybridization solution consisted of DIG EASY HYB Buffer (Roche), with

0.45 mg/ml yeast tRNA and 0.45 mg/ml ssDNA. The solution was filter sterilized with a
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0.22 µ?? syringe filter. Half of this solution was kept at 4°C until hybridization, and the

remaining half was heat-denatured at 95°C for 3 min, then placed in a 42°C water bath.

50µ1 was applied to the DNA microarray slide for prehybridization, which occurred for at

least 1 hr at 42°C. After prehybridization, the DNA microarray slide was washed 10

times in 3 separate dishes containing filtered, double-distilled water at room temperature.

The slides were centrifuged at 93 1 rcf for 2 min in 50 ml conical tubes containing tissue

paper (Kimwipes) in order to dry. The target sample was made by concentrating the Cy3

and Cy5 labeled cDNA to a final volume of 3 - 4 µ?. The cDNA targets were combined

together, and mixed with the remaining hybridization buffer, to a volume of 30 µ?. This

hybridization solution was heat denatured at 950C for 3 min, placed in a 42°C water bath,

and then applied to the DNA microarray slide for overnight incubation at 42°C. The next

day, slides were immersed in 250 ml of preheated IX SSC (0.15 M Sodium chloride,

0.015 M Sodium citrate), and 0.2% Sodium Dodecyl Sulfate (SDS) in a slide dish to

remove the 24x60 mM glass coverslip (Fisher Scientific). The microarray slide was then

washed in IX SSC, 0.2% SDS for 10 min at 42°C, twice at 370C in 0.1X SSC, 0.2%

SDS, and once in room temperature 0.1X SSC for 5 min. The slides were subsequently

washed 5 times at room temperature in 0.1 X SSC. Slides were dried as described and

stored in the dark until scanning.

2.10.3 Data Analysis

The DNA microarray slides were scanned with an Axon GenePix Pro 4.0 scanner

at a 10 µ? resolution, using 532nm and 635nm. The resulting files were quantified with

GenePix software. The data was represented as an expression ratio (experiment/control).
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The values were transformed by taking the log2 ratio, and normalized with Lowess.

Statistical analysis and visualization were performed with GeneSpring software (Silicon

Genetics, Redwood City, CA). Significant genes were selected based on a 1 .5-fold up or

down regulation, with a Mest function using p<0.05 confidence.

2.11 Microscopy

Nuclei and septa were visualized by fixing cells in 70% ethanol for at least 1 hr,

followed by incubation in 1 µg/ml 4',6'diamidino-2-phenylindole dihydrochloride

(DAPI, Sigma) for 20 min. After rinsing with ddH20, cells were incubated in 1 µg/ml

Calcofluor white (Sigma) for 10 min. After a final spin and rinse with ddH20, cells were

placed on a microscope slide, covered with a coverslip and sealed with nail polish. Cells

were examined on a Leica microscope (DM6000B) using 63X, or 100X objectives with

Nomarski differential interference contrast (DIC) or fluorescence optics, using the

appropriate filter sets (DAPI 460 nm).
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3. RESULTS

3.1 Transcription profiling of Cln3p-depleted cells supports a Gl phase arrest and

uncovers novel aspects of the Gl/S circuitry in C. albicans.

We previously demonstrated that depletion of the cyclin Cln3p in yeast cells of C.

albicans resulted in an apparent Gl phase arrest, followed by production of hyphae and

pseudohyphae with active cell cycles (Fig. 3A). In order to characterize the Gl/S

regulatory circuit in yeast cells and screen for potential Cln3p effectors, we obtained time

course transcription profiles of cells depleted of Cln3p. Cells of strain CB488

(cln3/MET3::CLN3) were incubated in repressing medium for 1, 3 or 6 h to identify the

expression patterns associated with an early Gl phase arrest (1 h), an intermediate stage

preceding initiation of hyphal development (3 h), and a later stage associated with hyphal

growth (6 h), respectively. The prototrophic control strain CB504 (CLN3/CLN3) was

incubated in repressing medium for the same time periods. The data were analyzed with

Genespring software, and significantly modulated genes were identified based on a 1.5

fold cut-off and t-test (p<0.05) function.

Hierarchical cluster analysis (Fig. 3B) of significantly modulated genes

demonstrated several similar expression patterns over the time course, many of which

were consistent with a Gl phase arrest as seen in S. cerevisiae (Tables 4, 5, Appendix

Tables S1-S6; Fig. 4) (68, 69). For example, the large subunit of ribonucleotide

reductase, RNRl, was repressed, as well as the putative Gl phase cyclin PCL2, the S

phase and mitotic cyclins CLB4 and CLB2, respectively, and putative targets of the
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Figure 3. Depletion of CIn3p in yeast cells results in a Gl phase cell cycle arrest and
cell enlargement, followed by the development of hyphae and pseudohyphae.
(A) Strains CB488 (cln3/MET3::CLN3) and isogenic control strain CB504 (CLN3/CLN3)
were grown in inducing liquid medium (-MC) overnight, then diluted into repressing
medium (2.5 mM Methionine, 0.5 mM Cysteine, +MC) at 300C for the indicated times.
Bar: 10 µp?. (B) Hierarchical cluster analysis of significantly modulated genes, from cells
depleted of Cln3p for 1, 3, or 6h. Strains CB488 and CB504, were grown in inducing
liquid medium overnight, then diluted into repressing medium (+MC) at 3O0C for the
different time points. RNA was extracted, and samples were labeled for DNA Microarray
analysis. Results are based on 5-6 chips for each time point, from independent samples.
Significant genes were selected based upon a 1.5 fold cut-off, and t-test function with
p<0.05. Colour change indicates fold variation, where down-regulation is green and up-
regulation is red.
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SBF/MBF transcription factor complex, including HCMl, TOS4 and TOSI (Tables 4, Sl,

S3, S 5). Surprisingly, SBF/MBF components, including SWI6 and MBPl, were also

repressed. In contrast, orthologues in S. cerevisiae were not repressed during a Gl phase

arrest as they were not transcriptionally regulated in a cell cycle-dependent manner (70,

71). A Gl phase arrest was also supported by repression of genes associated with

histones, DNA replication and chromatin remodeling (Tables 4, Sl, S3, S5; Fig. 4).

While some genes within the categories showed variability in expression across the time

course, an overall trend in repression was observed for most genes within the groups,

supporting the notion that a Gl phase arrest was taking place. In the absence of genome-

wide expression data of white phase cells passing through the cell cycle in C. albicans,

due to issues with cell synchronization (44), our results provide the first picture of factors

potentially associated with the Gl /S circuit in white phase cells of C. albicans.

The profiling data also demonstrated modulation of few genes associated with

hyphal growth, albeit in a time-point specific manner. For example, NGTl, a GIcNAc

transporter with a role in GlcNAc-induced hyphal growth (72), SSA2, a HSP70 chaperone

present only on the surface of hyphal cells (73), and HSP90, which plays a critical role in

mediating the temperature requirement for hyphal growth (74), were up-regulated at Ih

of Cln3p depletion (Tables 5, S2). However, none of these factors were regulated at

other time points, suggesting that these expression patterns could be related to other

functions. At 3 h, when many Gl phase-arrested cells were just initiating polarized

growth (Fig. 3A),
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Table 4: Select genes down-regulated during CLN3 repression.1
Functional Category Common Gene Name Time Point (h)

Cyclins
SBF/MBF-Associated

Cell Cycle (Other)

CDKs

Histones

DNA Repair/ Replication

Chromatin Remodeling

Ribosome Biogenesis/
Translation
Hyphal-associated

Opaque-associated

CCNl, CLN3, PCL2, CLB2, CLB4 1, 3, 6
SWI6, MBPl, SWI4, HCMl, TOS4, 1,3,6
TOSI
HSLl, FKH2, SWEl, CDC6, CDC5, 1, 3, 6
MCMl, CDC14, GIN4, ACE2
CDC28,CRK1 1,6
HHTl, HHOl, HTA3, HTA2, HTAl, 1,3,6
HTBl
RNRl, RAD51, RAD2, RAD3, MSH6, 1,3,6
MCM2, MCMl 6, SMCl, SMC2,
SMC5, RFAl, RFA2, DUNl, POLI,
POL2, POL30
HDAl, SNF2, TAF14, TAF60, YAF9, 1, 3, 6
ASH2
RPL29,RPL38,RPL39,RSP17, 6
RSP19A, RSP22A, RPPlB, RPPlA
EFGl, CPHl, CST20, FL08, YAKl, 3, 6
RBT4
NDT80, ADAEC 3,6
WOR2, CZFl 6

'Experimental (cln3/MET3::CLN3) and prototrophic control cells (CLN3/CLN3) were incubated in
repressing medium (+MC) for 1, 3, or 6 h. Fold change is based on 5-6 microarray chips for each time point
representing independent samples. Significant genes were selected based upon a 1.5 fold cut-off, and t-test
function with p<0.05. For full gene list with fold changes, see Appendix Tables Sl, S3, and S5

Table 5: Select genes up-regulated during CLN3 repression.1
Functional Category Common Gene Name Time Point (h)

Hyphal -associated

DNA Repair/ Replication
Oxidative Stress response,
biofilm
Opaque-associated

HSP90, NGTl, NOPl5
RBRl, MKCl
HWPl, RBTl, UME6, CEKl, ECEl,
HYRl, IHDl, IHD2, ALSl
RNR3

CATl, TSAlB, TSAl

MSCl, IFAl2, orfl 9.5876
MPT5, WHIl, ALD6, OBPA

1

3,6
6

1

3,6

3,6
6

'Experimental (cln3/MET3::CLN3) and prototrophic control cells (CLN3/CLN3) were incubated in
repressing medium (+MC) for 1, 3, or 6 h. Fold change is based on 5-6 microarray chips for each time
point representing independent samples. Significant genes were selected based upon a 1.5 fold cut-off, and
t-test function with p<0.05. For full gene list with fold changes, see Appendix Tables S2, S4, and S6.
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Figure 4. Pie charts of the functional categories of the significantly modulated genes,
comprising major cellular processes, during different time points of CLN3 repression.
Gene names and function were identified through Genespring analysis, and manually
verified with the Candida Genome Database (CGD) at http://candidagenome.org/.
Different colours represent different categories, as indicated. Genes were categorized
according to a single function, although some genes may have several functions.
Significantly modulated genes were based on a 1.5 fold cut-off (t-test, p<0.05).
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additional genes associated with hyphal development were up-regulated, including the

hyphal-specific cell wall protein RBRl (75), while others, including RBT4 (76), were

surprisingly down-regulated (Tables 4, S4). At 6 h, when hyphae were actively growing,

many classic hyphal-associated virulence genes were strongly induced, including HWPl,

ECEl, RBTl, and HYRl (Tables 5, S6) (2, 76). Of the major regulators of the hyphal

state, UME6 (77) was induced, while others, including FL08, CPHl, CST20, YAKl and

EFGl (2) were repressed (Tables 4, S3, S5). Thus, the transcription profiles support the

concept that true hyphae can form upon repression of CLN3, and also uncover potential

signaling factors that may provide a link between Cln3p activity and hyphal

development, albeit in a complex manner. With respect to hyphal development, the

profiles also show that cell cycle-associated genes including CDC5, FKH2, HSLl, and

GIN4 were repressed during Cln3p depletion (Tables 4, Sl, S3, S5). Since deletion of

these individual factors leads to filamentous growth (44) , it is possible that these

expression patterns also contribute to the hyphal growth response upon repression of

CLN3.

Intriguingly, several genes associated with the opaque cell fate (23, 78) were

modulated at 3 and 6 h, including ALD6, MPT5, and OBPA, for example (Tables 5, S6).

In addition, the white phase cell-specific gene WHIl was highly up-regulated, a behavior

that may occur when opaque cells switch back to the white phase (79). This expression

pattern suggests that Cln3p and Gl phase may be linked to additional developmental

states in C. albicans, specifically opaque cell formation.

The hierarchical cluster analysis highlighted several time point-specific gene

expression patterns, many of which validated the data, while others were unexpected.
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For example, genes that were down-regulated at 1 h but subsequently up-regulated at

later time points (Fig. 3B) included those associated with the cytoskeleton, cell wall,

polarized growth, and secretion, which are consistent with the fact that cells were

undergoing an initial Gl phase arrest, followed by initiation and maintenance of hyphal

growth (Tables 4, 5). Glucose transporters, such as HGT6, followed a similar expression

pattern. While some genes associated with RNA processing were repressed at 1 h, as

expected with a Gl phase arrest, many more associated with translation and ribosome

biogenesis were repressed at 6 h, despite the fact that hyphae were growing at this stage

(Tables 4, S 1-3, S5).

A large group of genes modulated at specific time points or throughout the time

course were those of unknown function (Fig. 4). Genes in this category have important

implications for future drug target discovery, if they are found to be required for the Gl /S

transition and control of cell proliferation.

In an attempt to help distinguish which of the expression patterns during Cln3p

depletion were functionally important for the Gl /S transition vs. hyphal development,
and were not an indirect consequence of either state, we exploited the fact that cells

depleted of Cln3p formed hyphae in a Raslp-dependent manner (47). Transcription

profiles of cells depleted of Cln3p for 3 or 6 h in the absence of RAS were obtained and

compared that of Cln3p-depleted cells containing RAS. Hierarchical cluster analysis

demonstrated some similar patterns of gene expression (Fig. 5A). Such genes were

modulated regardless of Raslp, and thus represent Cln3p- dependent, Raslp-independent

factors. These genes are not likely to be modulated as a consequence of filamentous

growth, for example, since Cln3p-depleted cells did not form hyphae without Raslp.
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Figure 5. Analyses of significantly modulated genes, from cells depleted of Cln3p
and Raslp or Cln3p alone, at 3h and 6h.
(A) Hierarchical cluster analysis of the significantly modulated genes. Strains CB498
{rasl/rasl; cln3/MET3::CLN3) and the control CB504 (CLN3/CLN3), were grown in
inducing liquid medium overnight, then diluted into repressing medium (+MC) at 300C
for the different time points. Samples were processed for DNA Microarray analysis.
Results for the rasl/cln3 strain are based on 4 chips for each time point, from
independent samples, compared to those described previously for Cln3p-deleted cells.
Significant genes were based on a 1.5 fold cut-off, and t-test function with p<0.05.
Colour variation indicates fold changes: green represents down-regulation and red
represents up-regulation. (B) VENN diagrams comparing significantly modulated genes
after 3 or 6 h of CLN3 repression. Genelists were compared using Genespring. Genes
modulated under both conditions were considered to be independent of Raslp, whilst
those modulated only during CZJV3-repression were considered Raslp-dependent.
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Venn diagrams (Fig. 5B) demonstrated that this group was relatively small, and included

some hyphal regulatory factors such as CST20, CPHl, FL08, YAKl, and EFGl (2, 80,

81). Significant modulation of these genes in the absence of RAS could thus potentially

reflect a role in mediating Cln3p function in differentiation. Efglp acts either as a

positive or negative regulator of hyphal growth, depending on the environmental

condition (82, 83), while the remaining factors are inducers of hyphae (2, 80, 81). That

the latter genes were repressed during Cln3p depletion suggests a more complex role in

regulating Cln3p-dependent hyphal growth, if in fact they participate in the process.

Other /^^-independent expression patterns included genes involved in different

aspects of the cell cycle, including DNA repair and replication, for example. However,

no single functional category was completely Raslp-independent, as seen with the

histones, for example. Since cells were blocked in Gl phase, regardless of Ras Ip, all

histones were expected to be repressed and thus Raslp-independent. The inconsistency

could be due to technical issues associated with sensitivity and variability in data points

on all chips meeting the requirements for significance. Thus, caution must be used in

designating genes as being Raslp-dependent, since their lack of modulation in Cln3p-

depleted, rasi/rasi cells could be due to technical issues. The expression pattern of any

single gene in the Raslp-dependent category would have to be validated further to gain

any insight on potential functional significance.

Overall, the transcription profiles support the notion that depletion of Cln3p

results in a Gl phase arrest in yeast cells, provide the first picture of factors associated

with the Gl /S transition in white phase cells of C. albicans, and contribute to the

construction of a putative framework for the Gl /S circuit. While the basic outline shares
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similarities with other fungi, including S. cerevisiae, the results uncover several key

differences. The data also identified hyphal signaling factors that are potential candidates

for linking Gl phase with hyphal development, and suggest that the Gl /S circuit may be

coordinated with other another developmental programs, including the opaque cell

formation.

3.2 Functional analyses of Swi6p, Swi4p and Mbplp

In order to further define the Gl /S regulatory circuit and identify potential

mediators of Cln3p function in C. albicans, we next utilized a directed, genetic approach

that involved characterization of SWI6 (ORF 19.4725), SWU (ORF 19.4545) and MBPl

(ORF 19.5855). Orthologues in S. cerevisiae are components of the SBF/MBF

transcription factor complex, which is crucial for mediating CDK/cyclin activity to

initiate Start (71). Swi6p is the regulatory subunit for both SBF and MBF, while Swi4p

and Mbplp are the DNA-binding subunits of SBF and MBF, respectively (84).

3.2.1 Cells lacking MBPl do not show any significant change in growth or

phenotype.

C. albicans ORF 19.5855 is annotated as MBPl {Candida Genome Data Base,

http://candidagenomedatabase.org), and shares 29% identity at the protein level with

Mbplp from S. cerevisiae. In order to determine the function of C. albicans MBPl, the

two alleles were replaced with URA3 and HISl markers in strain BWP 17 (Fig. 6).

Transformants were screened by PCR and Southern (Fig. 7), and strain BH261 was used

for further analysis. An isogenic control strain was created by transforming strain BWP 17
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with plasmids pBS-CaURA3 and pBS-CaHISl, resulting in strain BH440. To confirm the

deletion strain results, a conditional strain was created by replacing one copy of MBPl

with HISl, and placing the second copy under control of the MET3 promoter, resulting in

strain KmCa4a.

When strains BH261 and BH440 were incubated on solid (SD) minimal medium

for 48 hr at 300C, the colonies of strain BH261 were round and smooth, similar to control

strain BH440 (data not shown). To determine if there was any change in individual cell

phenotype, overnight cultures of the strains were diluted and incubated in fresh liquid

medium at 300C for 7 h. The majority of cells of strain BH261 were of normal size and

morphology, comparable to those in strain BH420 (Fig. 8, Table 6). However, 6.9%

(n=144) of cells lacking MBPl were slightly elongated in shape, compared to 1.2%

(n=243) in strain BH420. In comparison, absence oíMBPl in S. cerevisiae did not result

in any dramatic change in cell shape but produced a 20% increase in cell volume and 5%

increase in the proportion of budded cells (84). To confirm that absence oíMBPl did not

dramatically influence growth, cells of strain KmCa4a were grown overnight in inducing

medium (-MC), then diluted into fresh inducing or repressing (+MC) medium for 7 h at

300C. Under repressing conditions, most cells were in a normal morphology, with 7.6%

(n=315) showing minor elongation, compared to 5.5% (n=362) under inducing

conditions. Thus, Mbplp is not essential for normal cell growth but has a mild influence

on morphology in C. albicans.
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Figure 6. Strategies for gene deletion and promoter replacement. (A) One-step
strategy for producing a deletion construct by PCR amplifying a marker using
oligonucleotides with 80nt homology to the flanking regions of the gene of interest. (B)
2-step PCR fusion protocol to produce a construct for gene deletion. PCR was used to
amplify 0.5-1 Kb fragments flanking the gene of interest, using primers IF5R and 3F,R,
as well as a marker using oligos 2F,R. The latter contained the reverse complement
sequence to primers IR and 3F, respectively. The final fusion product was created using
all 3 PCR products as templates in a reaction using oligos IF and 3R. (C) Promoter
replacement strategy to replace a promoter using a similar 2-step PCR fusion protocol.
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Figure 7. PCR and Southern screens confirming MBPl deletion strains. (A) Map and
gel of PCR screen, showing a 3.2 kb band for mbplA::URA3 or mbplA::HISl, and a 4.5
kb band for MBPl. (B) Map for Southern analysis indicating position of probe, and blot
confirming construction of strains. Digestion of gDNA with Spel produced a wildtype
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3.2.2 Absence of SWI4 or SWI6 results in cell enlargement and a pleiotropic

phenotype, including development of hyphae, under yeast growth conditions.

Orthologues of SWI4 (ORF19.4545) and SWI6 (ORF19.4725) were identified in

CGD. Swi4p and Swi6p are 23% and 26% identical to their counterparts in S. cerevisiae,

respectively. To investigate the function of these factors, deletion strains were created by

replacing alleles with URA3 and HISl markers. Transformants were screened by PCR

and Southern Blot analysis (Fig. 9A, B and Fig. 1OA, C, D). Strains BH 185

(swi4A::HISl/swi4A::URA3) and BH120 (swi6A::HISl/swi6A::URA3) were used for

further investigations. In order to confirm the deletion phenotypes, conditional strains

carrying a single copy of SWI4 or SWI6 under control of the MET3 promoter were also

constructed. Strains BH150 (swi4A::hisG/MET3::SWI4) and CB552

{swi6A::URA3/MET3::SWI6) were confirmed by PCR and Southern Blot analysis (Fig.

9C, D and Fig. 10B, C, D)

When strains BHl 85, BH 120, and control strain BH440 were incubated on solid

medium for 48 h at 300C, colonies of strains BH185 and BH120 showed some

filamentation at the periphery compared to the round and smooth colonies of strain

BH440 (data not shown), To explore the phenotype further, the strains were grown

overnight in liquid medium at 300C, diluted into fresh medium and incubated for 7 h.

Cells lacking SWU (BHl 85) or SWI6 (BH120) demonstrated a general increase in cell

size but also a pleiotropic phenotype, consisting of small budding yeast, pseudohyphae

and some true hyphal cells (Fig. 8, Table 6).
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Figure 9. PCR and Southern screens confirming creation of SWI6 deletion and
conditional strains. (A) Map and gel of PCR screen, showing a 2.5kb band for
swi6A::URA3, a 1.7 kb band for swi6A::HISl, and a 3.3 kb band for SWI6. BHl 19 was
negative, while BH 120 and BH121 were positives deletion strains. (B) Map for Southern
analysis indicating position of probe, and blot confirming construction of strains.
Digestion of gDNA with Pvul produced a wildtype band at 5.6 kb, a swi6A::HISl band at
4.0 kb , and a swi6A::URA3 band at 4.6 kb. (C) Map and gel of PCR screen using nested
oligos, showing a 2.0 Kb band for swi6A::URA3, and a 0.7 Kb band for MET3::SWI6.
BH552, 557, and 558 are positive conditional strains. (D) Map for Southern analysis
indicating position of probe, and blot confirming construction of strains. Digestion of
gDNA with Pvul produced a wildtype band at 5.6 Kb. A swi6A::URA3 band at 4.7 Kb,
and a MET3::SWI6 band at 7.8 Kb confirming strains CB552 and CB557.
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Figure 10. PCR and Southern screens confirming deletion and conditional SWI4
strains. (A) Map and gel of PCR screen, (i) Gel 1 demonstrates a 5.4kb band for
wildtype, and a 3.6kb band for swi4A::URA3 or swi4A::HISl. Gels 2 (ii) and 3 (iii) show
a 2.0 kb or a 1.8kb bands for swi4A::HISJ or swi4A::URA3, respectively, using nesting
oligos. (B) Map and gel of PCR screen for conditional strains, showing a 3.4kb band for
swi4A::hisG, and a 8.6kb band for MET3::SWI4. (C) Map for Southern analysis
indicating position of probe, and blot confirming construction of strains. (D) Digestion of
gDNA with Ndel produced a wildtype band at 10.9 kb, a swi4A::HISl band at 8.7 kb ,
and a swi4A::URA3 band at 4.2 kb. Strain BH185 was positive. . A swi4A::hisG band at
8.9 kb, and a 9.1 kb band for MET3::SWI4 were shown in strain BH 150. CB547, a
separate conditional strain, demonstrated a 3.7 kb band for swi4A::URA3 and a 9.1 kb
band for MET3::SWI4. CB548 was negative. The difference between strains BH 150 and
CB547 is due to the fact that the swi4A::URA3 deletion construct was produced with
different oligos, CB122F,R resulting in a swi4A::URA3 band at 3.7 kb. In addition, oligos
CB123F,R were used to produce the MET3::SWI4 replacement construct, resulting in a
slightly larger band size at 9072 bp as opposed to the 9059 bp band representing
MET3::SWI4 produced using BH10F,R, BHl 1F,R, and BH12F,R.
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Intriguingly, there were also a significant proportion of enlarged oval or rod-shaped cells

that resembled opaque cells (Fig. 8, Table 6). In contrast, cells of control strain BH440

were in a normal yeast morphology (Fig. 8, Table 6). To confirm that the phenotypes

were due to absence of SWI4 or SWI6, the conditional strains BH 150

(swi4A::hisG/MET3::SWI4) and CB552 (swi6k::HISl/MET3::SWI6) were incubated in

inducing medium overnight, diluted into fresh inducing or repressing medium, and

incubated for 7 h. Under inducing conditions, strain BH 150 produced normal yeast cells,

while in repressing medium, the same range of phenotypes as observed in deletion strain

BH 185 were present (Fig. 11). Thus, absence of Swi4p has a dramatic effect on cell

morphology and influences cell size. Strain CB552 grew as normal yeast cells under

inducing conditions, but in repressing medium, only minor morphological defects were

observed compared to the deletion strain, including wide or enlarged bud necks and an

increase in cell size (Fig. 11). The disagreement between the deletion and conditional

strain under repressing conditions is not due to transformant-specific behavior, since

several transformants of each strain were examined and produced consistent phenotypes.

Alternatively, the difference could reflect some leakiness of the MET3 promoter at the

SWI6 locus.

Overall, these results suggest that Swi4p and Swi6p are important for proper yeast

growth and morphogenesis, and may influence these processes in a similar manner. The

increase in cell size in a proportion of cells suggests a delay in Gl phase and thus

possible role for these factors in Gl/S regulation. In comparison, SWI4 null mutants in S.

cerevisiae show cell enlargement, defects in bud emergence and slow growth, but do not
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Figure 11. Repression of MBPl or SW/4 produced phenotypes similar to deletion of
the genes, in contrast to repression of SWI6.
Strains KmCa4 (mbplA::URA3/MET3::MBPl), CB557 (swi6A::URA3/MET3::SWI6),
and CB547 (5w/4A:.t//?A5/M£T3.:5W/4) were incubated in inducing medium overnight,
then diluted into fresh inducing (-MC) or repressing medium (+MC) and incubated for 5-
7h at 300C. Bar: 10 µp?.
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produce filaments (85, 86), while SWI6 null mutants were enlarged and elongated, but did
not form filaments or switch cell fate, as seen in C. albicans cells lacking SWI6 (33, 87,

88). Since cells can divide without Swi6p in C. albicans, comparable to those lacking

Swi6p in S. cerevisiae (87, 89) but in contrast to absence of CdclOp in S. pombe (34, 90),

other factors must be capable of activating Swi4p and possibly Mbplp.

3.2.3 Cells lacking both SWI6 and SWI4 are viable and show enhanced filamentous

growth but do not resemble cells depleted of Cln3p

In order to further explore the potential role of SBF/MBF factors in Gl /S

regulation in C. albicans, strains lacking both SWI6 and SWU were constructed. In S.

cerevisiae, a swi4/swi6 double mutant is lethal, inferring that SBF is crucial for cell cycle

entry (33, 84). To create a strain lacking Swi6p and Swi4p, one allele of SWU was

substituted with the hisG-URA3-hisG cassette. Following loop out of URA3, alleles of

SWI6 were replaced with URA3 and HISl markers, while the remaining copy of SWU

was placed under control the MET3 promoter containing an ARG marker (Fig. 6),

creating strain BH 190. An isogenic control strain, BH420, was created by transforming

strain BWP 17 with pRMlOO and pBS-Ca/lftG4 plasmids. Strains were confirmed with

PCR and by Southern Blot analysis (Fig. 12).
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Figure 12. PCR and Southern screens confirming swi4/swi6 double mutant strains.
(A) Map and gel of PCR screen of strains deleted for SWI6 showing a 2.5 kb band for
swi6A::URA3, a 1.7 kb band for swi6à::HISl, and a 3.3 kb band for SWI6. (B) Map for
Southern analysis indicating position of probe, and blot confirming construction of
strains. Digestion of gDNA with Pvul produced a wildtype band at 5.6 Kb, a
swi6A::HISl band at 4.0 Kb , and a swi6A::URA3 band at 4.7 kb. BH 190- 193 are
positive, and BH120 (swi6: :HISl/swi6: :URA3) is included for comparison (C) Map for
Southern analysis indicating position of probe, and blot confirming deletion of one SWU
allele, and replacement of the other with the MET3 promoter. Digestion of gDNA with
Ndel produced a wildtype band at 10.9 kb, a swi4A::hisG band at 8.9 kb , and a
MET3::SWI4 band at 9.1 kb. Strains BH150 (swi4A::hisG/MET3::SWI4) and BH185
(swi4A::HISl/swi4A::URA3) were included for comparison.
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In order to determine the phenotype of cells lacking SWU and SWI6, strains

BH 190 and BH420 were incubated on solid inducing (-MC) or repressing (+MC)

medium at 3O0C for 72 h. Both strains formed colonies on inducing and repressing

medium (data not shown), suggesting that cells from strain BH 190 were viable. To

explore the phenotype further, strains were grown overnight in inducing medium at 300C,

then diluted into fresh inducing or repressing medium for 7 h at 300C. The overnight

culture of strain BH 190 in inducing medium consisted of the same range of phenötypes

described for the SWI4 or SWI6 deletion strains, but with a higher proportion of enlarged

and elongated yeast cells (Table 6, Fig. 13). After 7 h in repressing medium, the

proportion of enlarged cells decreased while there was an increase in the number of rod-

shaped and rectangular cells. In addition, an almost ten-fold increase in the number of

filamentous cells, including pseudohyphae, chains of elongated cells, and hyphae, was

observed (Table 6, Fig. 13). Furthermore, a significant number of rod or oval-shaped

cells showed a multi-budding phenotype, suggesting defects in cell separation, with the

buds maintaining polarized growth. Finally, many chained cells were composed of a

variety of cell types (Fig. 13). DAPI staining demonstrated that most cells contained a

normal number of nuclei, supporting the notion that cells were not blocked in G 1 phase,

(Fig. 14), although some examples of multinucleation were observed. The enlarged size,

however, suggests a delay in Gl phase. In comparison, cells of control strain BH420

were in a normal yeast form. Thus, Swi4p and Swi6p are important, but not essential, for

Gl /S progression and in mediating a portion of Cln3p activity. That they have a

synergistic effect on morphogenesis suggests that these factors may act in additional,

separate pathways.
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Figure 13. Cells lacking both SWI4 and SWI6 under yeast growth conditions do not
arrest in Gl phase and show enhanced fílamentation and rod/oval-shaped cells
compared to the single mutants. Cells from strain BH190 (swi6A::URA3/swi6A::HISl,
swi4A::hisG/MET3::SWI4) and wild type strain BH420 (SWI6/SWI6, SWI4/SWI4) were
incubated in inducing medium overnight, diluted into SD inducing (-MC) or repressing
medium (+MC) and incubated for 7 h at 300C.
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Figure 14. Cells lacking SWI4 and SWI6 or SWI4 and MBPl under yeast growth
conditions undergo nuclear division. Cells from strains BH 190
(swi6::URA3/swi6::HISl, swi4::hisG/MET3::SWI4) and BH276
(mbpl::URA3/mbpl::HISl, swi4::hisG/MET3::SWI4) were incubated in SD repressing
medium (+MC) for 7 h, then fixed and stained with DAPI and Calcofluor. Bar: 10 µ??.
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3.2.4 Cells lacking MBPl and SWI4 resemble the swi4 deletion strain and do not

arrest in Gl phase.

We next wanted to determine whether both DNA-binding components, Swi4p and

Mbplp, were essential for the Gl /S transition, as seen in S. cerevisiae. To investigate

this possibility, alleles of MBPl were replaced with URAS and HISl markers in a

swi4A::hisG/SWI4, MBP1/MBP1 strain, while the remaining allele of SWI4 was placed

under control of the MET3 promoter (Fig. 6). The resulting strain BH277 was confirmed

by PCR and Southern Blot analyses (Fig. 15D, E).

Cells of strain BH277 and control strain BH420 were plated on solid repressing or

inducing medium for 72 h at 300C. Surprisingly, strain BH277 grew under repressing

conditions, much like that seen under inducing conditions and in comparison to control

strain BH420, although some of the colonies were wrinkled in appearance (data not

shown). To investigate the cell phenotype, the strains were subsequently grown

overnight in inducing medium, then diluted into inducing or repressing medium and

incubated for 7 h at 300C (Fig. 16A). Prior to shutting off SWI4, strain BH277 was

predominantly composed of normal yeast cells, with only 8.5% showing an extended or

enlarged phenotype, in agreement with the MBPl deletion strain (Table 6). After

shutting off SWI4, however, cells were viable and did not arrest in Gl phase, in contrast

to that seen in S. cerevisiae (87). Alternatively, a pleiotropic phenotype as seen with the

SWI4 deletion strain BH 185 was observed, including enlarged, and rod-shaped yeast, as

well as some pseudohyphae (Table 6, Fig. 16A). However, the proportions of different

cell phenotypes were not as high as that seen in strain BH 185 (Table 6), which could be

due to some leakiness of the MET3 promoter. DAPI staining showed that most cells
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contained a normal number of nuclei, indicating successful progression through the cell

cycle (Fig. 14). However, the increase in cell size suggests a delay in Gl phase (Fig.

16A). Thus, Swi4p and Mbplp are not essential for the Gl/S progression, in contrast to

that seen in S. cerevisiae. Since absence of both factors did not result in a major

synergistic effect on morphogenesis or growth, the data further support the notion that

Mbplp' s contribution to growth control at the Gl/S transition is minor, at best.

In order to confirm the shut-off phenotype, a strain was constructed where both

copies of SWU and MBPl were deleted. MBPl alleles were replaced with the HISl and

ARG4 markers. One allele of SWI4 was replaced with a hisG-URA3-hisG cassette, and

after looping out of the URA3 marker, the remaining copy was replaced with the URA3

marker. The resulting strains were confirmed by PCR and Southern analysis (Fig. 1 5A,

B, C) and strain BH348 was used for subsequent analysis. When incubated on solid

medium for 72 h at 300C, strain BH348 was viable, and formed some wrinkled, puckered

colonies compared to the smooth and round colonies of control strain BH420 (data not

shown). After growing in liquid medium for 7 h, strain BH348 exhibited the same variety

of cell morphologies as noted in strain BH277 under repressing conditions, though there

was a marked increase in the proportion of enlarged yeast, suggesting a slower rate of

proliferation (Fig. 16B). The surprising lack of a Gl phase arrest and generation of only

a small proportion of hyphal cells compared to Cln3p-depleted cells further suggest that

Swi4p and Mbplp are not essential for cell proliferation, and highlight that Swi4p and

Swi6p mediate only a portion of the essential Cln3p activity at the Gl/S transition, unlike

that seen in S. cerevisiae and in S. pombe (91, 92).
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Figure 15. PCR and Southern screens confirming swi4/mbpl double mutant strains
(A) Map and gel of PCR screen of deletion of MBPl, showing a 3.1 kb band for
mbplA::HISl, a 4.0 Kb band for mbplA::ARG4, and a 4.5 kb band for MBPl. (B) Map
for Southern analysis indicating position of probe, and blot confirming construction of
strains. Digestion of gDNA with Spel produced a wildtype band at 6.0 kb, an
mbplAr.HlSl band at 10.4 kb , and an mbplA::ARG4 band at 11.1 kb. BH348 and
BH352 were positive, while BH349 was negative. Strains BH341 and BH342 were
confirmed as positive MBPl heterozygotes {swi4A::hisG/swi4A::URA3
mbplA::HISl/MBPl). (C) Map for Southern analysis of SWU and blot confirming
strains, indicating position of probe used. gDNA digested with Spel, produced a wildtype
band at 10.9 kb, a swi4A::hisG band at 8.9 kb and a swi4A::URA3 band at 4.2 kb band,
confirming strains BH348 and BH352. For comparison strains BHl 13
(swi4A::hisG/SWU) and BH336-339 (swi4A::hisG/swi4A::URA3) were included. (D)
Map and gel of PCR screens of MBPl. For mbplA::HISl/mbplA::URA3,
SWÌ4A: :hisG/MET3': :SWI4 strains, CaURA3F or CaHISlF nested oligonucleotides were
used with BH32R. A 1.5 kb band represents mbplA::URA3, while a 1.7 kb band
represents mbplA::HISl. (E) Map for Southern analysis of MBPl indicating position of
probe, and blot confirming construction of strains. Digestion of gDNA with Spel
produced a wildtype band at 6.0 kb, an mbplAr.HlSl band at 10.4 kb, and an
mbplA::URA3 band at 7.0 kb, confirming the mbpl deletion in strains BH276-279.
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Figure 16. Cells lacking SWW and MßP/ do not arrest in Gl phase, and resemble
the swi4 deletion strain. (A) Cells from conditional strain BH276
(mbplA::URA3/mbplA::HlSl, swi4A::hisG/MET3::SWI4) and wild type strain BH420
(MBPlMBPl, SW14/SW14) were incubated in inducing medium overnight, then diluted
into fresh inducing (-MC) or repressing medium (+MC) for 7h at 300C. (B) The double
deletion strain BH348 (mbplA::HISl/mbplA::ARG4, swi4::hisG/swi4A::URA3), was
incubated in minimal medium for 7h at 300C. Bar: 10 µ??.
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3.2.5 Transcription profiles of cells lacking SWI6 and SWU support a role for these

factors in regulating Gl/S progression and in mediating a part of Cln3p activity

In order to identify potential targets of Swi6p/Swi4p and further characterize cells

lacking these factors, transcription profiles of cells depleted of Swi6p and Swi4p were

obtained. Strains BH 190 and BH420 were incubated in inducing medium overnight,

diluted into repressing medium, incubated for 7 h at 300C, and processed for microarray

analysis. From 4 independent samples, 1108 significantly modulated genes were

obtained, based on a 1.5 fold cut-off and p-value <0.05 (Fig. 17A, B).

Expression patterns were enriched for repression of genes involved in cell cycle

functions, DNA replication/repair, chromatin remodeling, ribosome biosynthesis and

translation. For example, genes constituting putative SBF/MBF targets, such as CUP9

and HCMl (71), other cell cycle-associated factors with putative roles in Gl and S phase

including WHB, PESI, CDC6, FKH2, CTR9, and numerous RSC complex genes, TAF's,

and RNA helicases, were repressed (Tables 7, S7). The Gl cyclin orthologues PCL2 and

CCNl (44) were not modulated, but Northern analysis confirmed their repression in

strains BH 190 (C. Bachewich, unpublished data). Some genes associated with DNA

synthesis and repair were mildly induced, including RNRl, DUNl, RAD16, 53 and 57,

(Tables 8, S8) but this could be due to the fact that cells were pleiotropic in nature. The

overall expression patterns were consistent with a delay in Gl phase taking place, and

provide additional evidence that Swi6p and Swi4p contribute to the Gl/S regulatory

circuit in C. albicans. TOR-dependent nutrient response regulators of cell size and

proliferation, including SFPl and SCH9, were also repressed (Tables 7, S7). Additional

expression patterns related to Gl/S regulation included the unexpected induction of the

78



putative SBF target YOXl, and the cyclin CLN3 (Tables 8, S8). YOXl is activated by SBF

in S. cerevisiae, and contributes to the negative regulation of CLN3 expression (7 1 , 93).

Comparing the significantly modulated genes with those depleted of Cln3p for 6 h (Fig.

17D) demonstrated a similar number of up-regulated genes, but 2.5 times more down-

regulated genes under either condition than repressed genes in common. This suggests

that Swi4p and Swi6p may have regulatory inputs other than Cln3p, and additional

functions which may not be restricted to Gl /S, as seen from the pleiotropic mutant

phenotypes. Thus, the data further suggest re-wiring in the Gl /S circuit of C. albicans

compared to S. cerevisiae (Fig. 18). A large group of modulated genes included the

unknowns, which has important implications for future drug target discovery if any are

found to be required for controlling growth.
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Figure 17. Distribution of significantly modulated genes in Swi4p and Swi6p-
depleted cells. (A) Strain BH 190 (swi4A::hisG/MET3::SWI4,
swi6A::HISl/swi6A::URA3, experimental), and strain BH420 (SWI4/SWI4, SWI6/SWI6,
control), were incubated in repressing medium (+MC) for 7 h, and processed for
microarray analysis. Scatterplot shows total data collected from 4 microarray chips
representing 4 separate samples. (B) Normalized intensities (Lowess) of significantly
modulated genes (1.5 fold cut-off, t-test, p<0.05; Genespring software), across the 4
chips showing consistency in the data obtained. (C) Pie charts showing distribution of
significantly modulated genes grouped into functional categories. Gene names and
function were identified through Genespring analysis, and manually verified using the
Candida Genome Database (CGD) at http://candidagenome.org/. Different colours
represent different categories, as indicated. Genes were categorized according to a single
function, although some genes may have several functions. Full categorized gene list in
Appendix Tables S7, S8. (D) VENN diagrams showing the proportion of genes
significantly modulated in cells depleted of Cln3p for 6 h, versus those lacking Swi4p
and Swi6p at 7 h.
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Table 7: Select genes down-regulated in cells lacking Swi4p and Swióp.1
Functional Category Common Gene Name

SBF/MBF-associated

Cyclins
Cell Cycle (Other)

Histones

DNA Repair/Replication
Chromatin Remodeling

Ribosome Biogenesis/Translation

Opaque-associated
Hyphal: Filamentation-associated
Hyphal: Regulatory

TOR pathway-associated
Drug sensitivity, transporters
Iron-regulated, uptake

SWU,. SWI6, CUP9, HCMl
BUR2

PESI, WHI3, FKH2, CTR9, CDC6, MCMl,
SAP190, GIN4, CDC14, TUB4
HHOl, HTB2, HTA3
POL5, TOPI, HMIl, SIMl, PAN3
RSC4, RSC58, RSC9, RSC2, RSC8, SDCl,
SWDl, ISW2, ITCl, ASH2, NPL6, TAF60,
TAF5, TAF12
NOC2, NOC3, NOC4, NOGl, NOG2,
NOP2, NOP4, NOP5, NOP8. NOP13, NOP14,
NOP15, UTP15, UTP4, UTP5,
RRSl, RPFl, RPF2, RPL39, RRP6, RRP7,
RRP8, RRPl2, CFTl, ERFl, SUB, CDC33,
TIF3, NIPl, SUB
CTA9, MDNl, HBRl, ARGII, NCEl 03
GIS2.ENP1, EAPl, RBEl
CZFl, SWII, , PDE2, GCN4, TPKl, MNLl,
HAP5, FGR39, FGR50
SFPl, SCH9, TBFl
PDR16, FLUÌ, TP04,5, ALPI, GAPl,OPT9
YAHl, PGA6, HEM3, HBRl, HBR3

'Experimental (swi4/MET3::SWI4; swi6/swi6) and prototrophic control cells (SWI4/SWI4 SWI6/SWI6)
were incubated in repressing medium (2.5mM Methionine, 0.5mM Cysteine) for 7 h. results are based on 4
microarray chips representing 4 separate samples. Significant genes were selected based upon a 1.5 fold
cut-off, and t-test function with p<0.05. For full gene list with fold changes, see Appendix Table S7
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Table 8: Select genes up-regulated in cells lacking Swi4p and Swióp.1
Functional Category Common Gene Name

SBF/MBF-associated

Cyclins
Cell Cycle (Other)
DNA Repair/Replication

Opaque, Mating-associated

Hyphal: Filamentation-associated

Hyphal: Regulatory

Drug sensitivity, transporters
Iron-regulated, uptake

YOXl, STBl
CLN3

SOLI, SLK19, BUB3
RNRl, DUNl, PMSl, RAD16, RAD57, RAD51,
RAD53, MPHl, MGTl, CDC8, SMC6, MLHl,
HSM3
ORF19.2202, CMKl, FAVI, IFF6, ALD6, IDP2,
ORF19.2506, SOD4,MDHl, SAP8, ORF19.3461
RBTl, RBRl, RBR2, HWPl, IHDl, IHD2,
PCKl, PHRl, CHKl, ERV25, PBI2, ALS2,
ALS4, ORF19.4749, ORF19.2903
TFSl, RFX2, ASRl, RDIl, KICl, CHKl,
FGR51, STEl 3, ORF19.4459
CDRl, TACI, OPT4, OPT6
CFL5, SAP99, SAPlO, HSP12, ALS2, FET31,
SIT4, SMF3, HOL4

'Experimental (swi4/MET3::SWI4; swi6/swi6) and prototrophic control cells (SWI4/SWI4 SWI6/SW16)
were incubated in repressing medium (2.5mM Methionine, 0.5mM Cysteine) for 7 h. Data is based on 4
microarray chips representing 4 separate samples. Significant genes were selected based upon a 1.5 fold
cut-off, and t-test function withp<0.05. For full gene list with fold changes, see Appendix Table S 8

83



3.3 Cells lacking Swi4p and Swióp show opaque cell features

Intriguingly, the transcription profiles demonstrated that a large number of

opaque-associated genes were also modulated (Tables 7, 8, S7, S8; Fig. 17C), albeit both

up and down. Although classic opaque phase cell markers were not induced, such as

CDR3, HBRl, which negatively regulates the opaque state through unknown means, was

mildly repressed. In addition, the white-specific gene WHIl was paradoxically highly

induced relative to the control yeast cells, as in Cln3p-depleted cells, but this expression

pattern could reflect opaque cells switching back to the white phase (79). Since many of

the swi6/swi4 cells resembled oblong, opaque cells, the data suggests that Swi4p/Swi6p

function may contribute to the regulation of the opaque state, or at least a subset of its

features, implying that the Gl /S transition is linked to more than one developmental

pathway in a manner that can be uncoupled from the normal environmental controls (Fig.

18).
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Figure 18. Potential model for the role of Cln3p in the regulation of the Gl/S circuit
and differentiation in Candida albicans.
Since the swi4/swi6 double mutants were viable, and the phenotype did not closely
resemble that of Cln3p-depleted cells, SBF/MBF may not be the only major targets of
Cln3p function. In addition, transcription profiles of cells lacking Cln3p demonstrated
only partial overlap with those of Swi4p and Swi6p-depleted cells. The phenotypes of
cells lacking Swi4p and Swi6p suggest that these factors may be important for regulating
development of different cell types, possibly including opaque cells, further demonstrated
by the modulation of opaque or mating-associated genes. Thus, regulation of Gl phase in
C. albicans involves some unique features, and may be linked to different differentiation
pathways through Swi6p, Swi4p and Cln3p function.
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3.4 Cells lacking SWI4, SWI6 or MBPl can form hyphae in response to serum

Since Swi6p and Swi4p significantly influence morphology and growth of yeast

cells, we next asked if they played similar roles in environmentally-induced hyphae. Cells

from strains BH120 (swi6A::HISl/swi6A::URA3), BH185 (swi4A::HISl/swi4A::URA3),

BH261 {mbplA::HISl/mbplA::URA3), BH190 (swi6A::URA3/swi6A::HISl,

swi4A::hisG/MET3::SWI4), BH276 (mbplA::URA3/mbplA::HISl,

swi4A::hisG/MET3::SWI4), and the prototrophic control strain BH420 were incubated in

SD inducing medium (-MC) overnight, diluted into repressing medium supplemented

with 10% serum, incubated for 3.5 h at 37°C, fixed and then stained with DAPI (Fig. 19).

Cells lacking SWI4, SWI6, or MBPl formed normal hyphae (Fig. 19) with divided nuclei

(data not shown) in the presence of serum, although the actual dynamics of nuclear

division and septation were not quantified. Strains lacking SWI4 and SWI6 or SWI4 and

MBPl also formed hyphae, but many cells appeared to be slightly enlarged, particularly

when originating from misshapen parent yeast cells (Fig. 19). Thus, Swi6p and Swi4p

are not essential for the cell cycle in hyphal cells, but appear to influence Gl /S

progression, as seen with an increase in cell size, and morphogenesis.
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Figure 19. Cells lacking SWI4, SWI6 or MBPl can form hyphae in the presence of
serum. Cells from strains BH120 (swi6A::HISl/swi6A::URA3), BH185
(swi4A::HISl/swi4A::URA3), BH261 (mbplA::HISl/mbplA::URA3), BH190
(swi6::URA3/swi6::HISl, swi4::hisG/MET3::SWI4) and BH276
(mbpl::URA3/mbpl::HISl, swi4::hisG/MET3::SWI4) were incubated in SD inducing
medium (-MC) overnight, then diluted into repressing medium supplement with 10%
serum, and incubated for 3.5 h at 37°C. Bar: 10 µp?.
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4. Discussion

4.1 Transcription profiles of Cln3p-depleted cells support the occurrence of a Gl

phase arrest and provide a framework for the Gl/S circuit and associated factors.

Little is known about the Gl/S regulatory circuit in C. albicans due to the poor

characterization of the cell cycle in this organism. Transcription plays a critical

regulatory role at the transition in most organisms, cell-cycle dependent transcription

profiles of C. albicans white phase have not been obtained due to problems with

synchronization (44, 94). Transcription profiles of synchronized opaque phase yeast cells

of C. albicans were recently reported (94), and when compared with the model yeast S.

cerevisiae ((71), a basic outline of the Gl/S circuit could be inferred. However,

functional studies on individual components and their interactions with other players are

lacking. In addition, it is not clear that the regulatory circuit would be identical to that in

white phase yeast cells, since aspects of cell cycle regulation can differ between cell

types of C. albicans, including yeast and hyphae, for example ((47, 95). To address these

issues, and screen for potential Gl/S-associated genes and putative targets of Cln3p

activity in white phase yeast, we obtained transcription profiles of cells lacking Cln3p.

Although a large number of genes were modulated, and not all were expected to be

functionally important due to secondary responses to Cln3p depletion, the data uncovered

several significant expression patterns that highlighted important features of the cells and

the putative Gl/S circuit.

First, the expression profiles supported the notion that cells lacking Cln3p were

arrested in Gl phase, based on repression of cyclins, histones, SBF/MBF putative targets,
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and DNA replication factors. Although this was previously inferred from the cell

phenotype, the precise arrest stage had not been validated by other methods. Thus, the

data confirms that Cln3p is essential for the Gl /S transition in C. albicans yeast cells. In

contrast, Cln3p is not essential in S. cerevisiae, due to the additional function of Bck2p,

which C. albicans lacks, in activating Start (96-98).

Second, although not inclusive, the data provide the first comprehensive picture

of factors associated with Gl /S phase in white yeast cells of C. albicans. For example, in

S. cerevisiae and higher organisms, SBF/MBF or E2F, respectively, control the initial

burst in transcription at Gl /S through regulating numerous downstream transcription

factors (29, 71). In C. albicans cells depleted of Cln3p, homologues of SBF/MBF

targets, including TOS4, HCMl, TOS8, and YOXl, were repressed, consistent with a role

in the Gl /S transition. Targets of SBF/MBF in S. cerevisiae regulate additional

transcription factors (71), homologues of which were also repressed in Cln3p-depleted

cells, including GCN4, FKH2, STBl and RMEl, which function in a diversity of

processes, including DNA replication/repair and chromatin remodeling (99, 100).

Another essential function of SBF/MBF and E2F is to activate Gl cyclins, including

CLNl and CLN2 or Cyclin E, respectively (29, 31, 87, 101). The importance of this step

is underscored by the fact that overexpression of CLN2 can rescue a Gl phase arrest (102,

103). In C albicans, equivalent Gl cyclins have not been confirmed, but our expression

data supports the suggestion that the CLNl homologue CCNl and the cyclin PCL2 are

candidates, since both were repressed during Cln3p depletion (47). On the other hand,

the CLN2 homologue HGCl, which is required for hyphal growth and does not have any

known cell cycle function in yeast (42), was not repressed. Additional evidence
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supporting a role for Ceni ? and Pcl2p in the Gl /S circuit could be obtained by

determining whether overexpression of either partially suppresses the Gl phase arrest

upon Cln3p depletion, allowing re-entry into the yeast cell cycle. Ultimately, chlP-chip or

chlP-seq coupled with additional functional studies on individual players will determine

the relationships between the various factors and levels of regulation within the Gl /S

circuit.

The transcription profiling data suggests that the basic structure of the Gl /S

circuit shares a high degree of similarity with that of S. cerevisiae, but also contains

several unique features. For example, many genes of unknown function, often C.

albicans-speciftc, constituted one of the largest group of modulated factors during Cln3p

depletion. Since several of these were repressed or induced as early as 1 h Cln3p

depletion, they could potentially play a role in Gl/S control. In agreement with this,

many of these genes were transcriptionally regulated in a Gl /S-dependent manner in

opaque phase cells (94). It will thus be informative to explore these genes further, since

the identification of novel factors required for controlling growth of the pathogen has

important implications for new drug target discovery. A second unique feature of the

Gl/S circuit highlighted by the transcription profiling data was the observation that the

CDK CDC28 and the SBF/MBF components SWI6 and MBPl were repressed in Cln3p-

depleted cells, suggesting that these factors may be transcriptionally regulated at Gl/S, in

contrast to that seen with orthologues in S. cerevisiae. In agreement with this suggestion,

Côte et al, (2009) found that CDC28, SWI6 and SWI4, but not MBPl, were cell cycle-

regulated at the transcriptional level, albeit in opaque phase cells. Thus, these results
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suggest further re-wiring of the Gl /S network in the pathogen, compared to a related, but

non-pathogenic, model fungus.

In comparison, the Gl /S circuit in hyphal cells is less understood, but is known to

have some critical differences from yeast. For example, Cln3p and the pescadillo

homologue Peslp are essential for yeast but not hyphal growth (47, 48, 95). It would thus

be informative to elucidate and compare Gl /S circuitry in the different cell types to gain

more insight on how cell-type specific proliferation is controlled.

4.2 Linking Cln3p to hyphal development

The mechanisms linking Cln3p depletion to hyphal and pseudohyphal growth,

independent of normal environmental cues, remain unclear. Hyphae are normally

induced by a variety of environmental cues, such as higher temperature and serum, for

example, which are mediated in a complex manner by a number of different signaling

pathways (2, 10). The transcription profiling data revealed modulation of several hyphal

regulatory factors, suggesting that Cln3p activity may impinge on the hyphal regulatory

networks. For example, the transcription factor UME6 is sufficient for stimulating

hyphal growth (77) and was up-regulated in Cln3p-depleted cells, while NRGl, a

negative regulator of hyphal development (104, 105), was repressed. To date, neither of

these factors have been previously linked to cell cycle regulation. EFGl, which can

induce or repress hyphal development depending on the environmental conditions (82,

83), was also repressed. Repression of other inducers of hyphal growth, including YAKl

and FL08, was unexpected, but the complexity of the hyphal signaling pathways

precludes a comprehensive understanding of the functions of known players and the
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extent of cross-talk (10, 67). It is possible, for example, that signaling factors could be

modulated in response to others or as a consequence of hyphal growth itself. That EFGl,

YAKl and FL08 were modulated regardless of the presence of Ras Ip, however, suggests

that their expression pattern is not a response to hyphal growth, and thus may be

functionally significant. Further investigations of any of these genes would first require

validation of expression levels using qPCR or Northern analysis at early vs. late stages of

Cln3p-depletion, followed by screening for suppression of Cln3p-dependent hyphal

development by overexpression or deletion.

Less clear is the nature of the initial signal stemming from depletion of Cln3p,

leading to the generation of hyphae. One possibility is that Cln3p activity, mediated in

part through MBF, negatively regulates hyphal development. This model is consistent

with the conserved relationship between Gl phase and development in other organisms,

and supported by the fact that cell cycle regulators, such pRB and E2F, have additional

roles in regulating developmental genes in higher organisms (29). However, a link

between Gl phase and hyphal development is currently controversial, where one study

showed that hyphae can be induced at any cell cycle stage in C. albicans, at least in the

presence of serum (43), while another showed that hyphae could only initiate during Gl

phase (45). However, blocking C. albicans yeast cells at other cell cycle stages does not

induce true hyphal growth (44, 45, 47, 50), and intriguingly, blocking Gl phase in S.

cerevisiae and many other organisms is not sufficient to trigger development (39, 40, 51-

53) in contrast to C. albicans. It is thus possible that a bias for hyphal formation exists

during Gl phase as a vestige of evolution, but the pathogen evolved additional

mechanisms to form hyphae, an important virulence trait, at any cell cycle stage while in
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the presence of strong environmental inducers. Alternatively, hyphal development could

be an indirect response to Gl phase arrest or delay due to reaching a threshold

concentration of some regulatory factor, or achieving a certain cell size (44).To

distinguish between models, future investigations could include testing the effects of

elevated or stabilized Cln3p on serum-induced hyphal growth, determining whether

Cln3p/Cdc28p kinase activity is modulated during environmental-induced hyphal growth,

and exploring whether a Gl phase arrest created through other means while maintaining

Cln3p activity results in hyphal formation. To date, however, the only known method to

create a clear Gl phase arrest without withholding nutrients in C. albicans involves

depletion of Cln3p (47, 48).

4.3 Swi6p and Swi4p are important, but not essential, for mediating Cln3p activity,

highlighting significant re-wiring in the Gl/S network

In testing a model of the Gl/S circuit, we provided direct evidence that

orthologues of SBF/MBF mediate a portion Cln3p activity during the Gl/S transition.

The SBF/MBF transcription factor complex is composed of ankyrin domain-containing

proteins specific to fungi, which serve as the gateway to commitment to mitosis. In S.

cerevisiae, SBF (Swi6p/Swi4p) mediates Gl/S early events such as cyclin expression,

budding, and cell wall deposition, whereas MBF (Swi6p/Mbplp) mediates DNA

replication (71, 106, 107). In S. pombe, MBF mediates most Gl/S events, and is

composed of CdclOp, the functional equivalent of Swi6p, and at least two DNA binding

elements Res Ip and Res2p (89, 92, 108, 109). We provide functional evidence that

Swi4p and Swi6p mediate a portion Cln3p activity during the Gl/S transition. First, cells
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lacking these factors were significantly enlarged in size, suggesting a delay in Gl phase.

Second, transcription profiles of cells lacking both factors showed repression of genes

associated with the Gl /S transition, including putative SBF targets, DNA

replication/chromatin remodeling factors, and translation/ribosome biogenesis genes, for

example. Gl cyclins were also repressed, as shown by Northern analysis (C. Bachewich,

unpublished data). Third, some of the modulated genes corresponded to factors that

cycle at the transcriptional level during the Gl /S and S/G2 transitions in synchronized

opaque phase cells of C. albicans (94). Not all of the relevant cycling genes identified by

Côte et al, (2009) were modulated in Swi6p/Swi4p-depleted cells, which is likely due to

variability in the mutant phenotype and issues with microarray sensitivity, but

collectively our data support the notion that a Gl phase delay was taking place and that

Swi4p and Swi6p participate in the Gl /S circuit.

Our results highlight several key differences with respect to the proposed function

and potential regulation of ankyrin-repeat proteins in Gl /S control compared to other

fungi. For example, Mbplp appears to play a minor role, since deletion resulted in minor

effects on growth and phenotype compared to deletion of SWU, and the SWU, MBPl

double deletion strain showed a mild synergistic effect. More importantly, however, was

the fact that deletion oí MBPl was not synthetically lethal in combination with deletion

OÏSWI4. In contrast, S. cerevisiae cells lacking both SWI4 and MBPl are not viable (33).

Our genetic data thus suggests that Swi6p and Swi4p are the dominant ankyrin-repeat

proteins participating in Gl /S control, and that Swi4p and Mbplp do not significantly

overlap in function. Côte et al, (2009) demonstrated that C. albicans Gl /S cycling genes

contain MCB, not SCB, binding sites, suggesting that MBF should be the regulatory
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complex in C. albicans, as seen in S. pombe. Our genetic data suggests that MBF would

thus be composed of Swi6p in combination with Swi4p, not Mbplp (94). In the absence

of direct binding studies, we cannot rule out the possibility that other noncanonical

regulatory elements mediate putative Swi6p/Swi4p binding and activity. Additional

common regulatory elements were not identified in Gl /S cycling genes (94), but Bean et

al, (2005) demonstrated that Swi4p and Mbplp could regulate many of the same genes,

and this functional overlap did not correlate well with presence or absence of clear MCB

or SCB binding sequences.

Another critical difference in C. albicans is that ankyrin-repeat proteins are not

essential for the Gl /S transition. While lack of Swi4p and Swi6p, or Swi4p and Mbplp in

S. cerevisiae, results in non-viable cells (33, 1 10) and absence of CdclOp or both Res Ip

and Res2p while in S. pombe blocks cell division (34, 35), C. albicans yeast cells lacking

Swi6p and Swi4p or Swi4p and Mbplp were viable and continued to grow, albeit more

slowly. Thus, ankyrin-domain containing proteins do not mediate all of the essential

activity of Cln3p at the Gl /S transition, suggesting that additional modes of regulation

exist. In comparison, some residual Gl /S transcription was reported in a normally lethal

swi4/mbpl double mutant in S. cerevisiae that was alternatively held viable through

overexpression of Cln2p (84), but the fact that C. albicans cells are viable without Swi4p

and Mbplp suggests that a more prominent mechanism is involved in mediating the

remainder of Cln3p activity. If at the transcriptional level, one possibility is the

involvement of Efglp or Efhlp (111), which belong to the APSES domain-containing

family of proteins involved in regulating developmental events in fungi (112).

Intriguingly, Efglp and to a lesser extent Efhlp, can bind Mlul sites via the APSES
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domain (113), but there is no evidence supporting a role for either factor in regulating cell

proliferation (16). Alternatively, residual Cln3p activity may be mediated at a post-

translational level. The identification of Cln3p/Cdc28p targets will shed light on this

important question.

The expression patterns of the putative MBF target YOXl and the cyclin CLN3

highlight another difference in potential MBF function in C. albicans. In S. cerevisiae,

YOXl expression is activated by SBF, and in turn represses the Mcmlp-dependent

activation of CLN3 expression (71). Consistent with this, YOXl was repressed upon

Cln3p-depletion in C. albicans (C. Bachewich, unpublished observations), peaked at

Gl /S in opaque phase cells, and has an MCB binding element. (94). That YOXl and

CLN3 were induced in C. albicans cells lacking Swi6p and Swi4p suggests that YOXl

expression may be regulated by Cln3p activity, but not solely through MBF, if at all, and

that Yoxlp may alternatively have a positive influence on CLN3 expression. Thus, the

data provide functional evidence for the involvement of MBF in Gl /S control, but further

demonstrate that significant re-wiring has taken place in the Gl /S circuit (94),

particularly with respect to putative MBF function and regulation.

4.4 Swi4p and Swi6p influence cell morphogenesis and development

Absence of Swi4p and Swi6p had a significant effect on morphology. The

pleiotropic effects indicate that the deletions were not 100% penetrant, in line with

several other deletions in C. albicans and in other organisms (33, 87, 114, 115). It is

possible that varying levels of Gl cyclins or other regulatory factors resulted in

differences in the timing of transition through Gl /S phase, and perhaps generation of
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different cell shapes and types. Swi6p/Swi4p-depleted cells appeared strikingly similar

to mutants of GRRl, an F-box protein that directs SCF ubiquitin ligase activity (116,

1 1 7), except the latter did not form true hyphae. Since absence of GRRl in C. albicans

lead to stabilization of Ccnlp and Cln3p (116), and cells lacking Swi6p and Swi4p

showed induction of CLN3, it is possible that increased levels of Cln3p underlie the

common phenotype. However, overexpression of a semi-stabilized form of CLN3

lacking the PEST domains did not result in a similar phenotype (C. Bachewich,

unpublished results), suggesting the involvement of other mechanisms. The budding

defects in cells lacking Swi4p and/or Swi6p could generate many of the abnormal cell

shapes seen within the pleiotropic population, but the presence of distinct cell types,

including true hyphae, indicates that the factors may also be linked to developmental

pathways. Strong expression of hyphal-associated markers and virulence genes, despite

the pleiotropic cell population, coupled with the presence of unconstricted septa in

filamentous cells, support the notion that true hyphae were generated. Although

swi4/swi4, swi6/swi6 cells did not completely phenocopy Cln3p-depleted cells, these

factors could mediate in part the influence of Cln3p on hyphal development. It is not yet

clear whether expression patterns of hyphal regulatory factors, including CZFl, are

functionally significant, but they provide potential leads in determining how hyphal

development may be linked to Swi6p and Swi4p, if this occurs at a direct transcriptional

level. Thus, the molecular basis of the interplay between Cln3p, MBF, and hyphal

development remains to be determined, but the identification of Cln3p/Cdc28p and MBF

targets will help clarify this important question.
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The data suggest that Swi4p and Swi6p may also be linked to regulation of the

opaque cell fate. First, many cells lacking these factors were elongate and bean-shaped,

similar to opaque cells. Second, transcription profiles demonstrated modulation of

several genes associated with or regulated during the opaque state, albeit both up and

down and excluding classic opaque markers such as CDR3 and OP4. Further, the white

phase-specific gene WHIl was highly up-regulated in swi4/swi4, swi6/swi6 cells relative

to the control. Such a pattern was predicted for opaque cells switching back to the white

phase, although it was not observed (79). Additional opaque-like features have since been

identified in these strains (C. Bachewich, unpublished results), lending support to our

hypothesis. This data raises the possibility that MBF may influence the opaque cell

regulatory program, or at least aspects of it. The pleiotropy in cell phenotype of the

mutant strains and instability of the opaque state, particularly at 300C (17, 25) could

explain the variability in opaque-like characteristics in the cell population. Attempts to

grow cells at 24°C for several days did not enhance the opaque-like phenotype (data not

shown), but given the complex regulation of opaque differentiation, additional variables

could be influencing the response.

For example, white to opaque switching requires changes at the mating type-

like locus (MTL) of white phase cells from a heterozygous to a homozygous or

hemizygous state, which involves either chromosome loss or dramatic rearrangements in

chromosome structure, including gene conversion or mitotic recombination (18-20). Cells

heterozygous at MTL express the al/a2 heterodimer, which acts as a general repressor of

the opaque state. The infrequent occurrence of generating homozygosity at the MTL leads

to stochastic increases of Worlp, a master opaque regulator, above a threshold, allowing
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white cells to switch to the opaque state (21, 22). Thus, it is possible that Swi6p and

Swi4p play a role in negatively regulating at least a subset of opaque features, in addition

to functioning in Gl /S regulation. In support of this, a target of SBF activity in S.

cerevisiae, TOS4, regulates developmental genes (71, 84). However, absence of SBF

alone does not activate development, as seen in C. albicans.

Thus, our results significantly advance our understanding of the composition of

the Gl /S regulatory circuit in C. albicans, which includes unique features, and provide

evidence for the existence of a regulatory link between Gl phase and development that

can bypass the normal environmental inputs. Specifically, we show that Swi4p and

Swi6p may mediate only a part of the essential activity of Cln3p activity, and may play a

dual role in controlling the Gl /S transition and repressing development. Since a

relationship between Gl phase and hyphal development is controversial (44), and current

models of white/opaque switching do not include the involvement of cell cycle factors

(119), the data introduce potential new modes of regulation for the differentiation of these

cells. Our results also highlight the concept that C. albicans has seemingly acquired the

ability to influence developmental pathways through cell cycle-related cues that can

bypass the normal environmental signals, unlike that seen in many other organisms,

including S. cerevisiae. Additional routes leading to differentiation may reflect an

adaptation to enhance developmental plasticity within the host, directly contributing to

virulence potential. Future work addressing the direct functions and regulation of Swi6p

and Swi4p, and elucidating the Cln3p-dependent, MBF-independent pathway in Gl /S

control will significantly advance our understanding of how basic cell proliferation is
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regulated and linked with developmental events, which are critical for virulence in an

important human pathogen.
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Appendix I

Supplementary Appendix tables S1-S8.
Full lists of significantly modulated genes (1.5 fold cut-off, t-test p<0.05) in (a)
Cln3p-depleted cells after 1, 3, or 6h (b) Cells lacking Swi4p and Swi6p

Please see attached CD.
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