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Abstract

Localizing Unauthorized Updates in Published Micro-Data Tables through

Secret Order-Based Watermarking

Shuai Liu

The study of micro-data disclosure issue has largely focused on the privacy preservation

aspect, whereas the integrity of a published micro-data table has received limited attention.

Unauthorized updates to such a table may lead users to believe in misleading data. Tra-

ditional cryptographic stamp-based approaches allow users to detect unauthorized updates

using credentials issued by the data owner. However, to localize the exact corrupted tuples

would require a large number of cryptographic stamps to be stored, leading to prohibitive

storage requirements. In this thesis, we explore the fact that tuples in a micro-data table

must be stored in a particular order, which has no inherent meaning under the relational

model. We propose a series of algorithms for embedding watermarks through reordering

the tuples. The embedded watermarks allow users to detect, localize, and restore corrupted

tuples with a single secret key issued by the data owner, and no additional storage is re-

quired. At the same time, our algorithms also allow for efficient updates by the data owner

or legitimate users who know the secret key. The proposed algorithms are implemented

and evaluated through experiments with real data.
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Chapter 1

Introduction

The micro-data disclosure problem has attracted much attention lately. Most studies have
focused on the privacy preservation aspect, whereas the integrity issue has only received
limited attention. When a micro-data table is hosted on distrusted servers, the table may

contain corrupt or falsified data caused by unauthorized updates. Users of such a table may
be deceived into accepting misleading information, which can have serious consequences.

A similar issue has been extensively studied in a different context, that is, outsourced
databases [36, 47, 59, 68, 69]. When querying a database hosted by distrusted service

providers, the integrity of the query's result can be verified using cryptographic stamps
computed over various hash trees built on the underlying relational table. A user can en-
sure that all and only the queried tuples will be included in the query result, in the correct
order, and in their latest version.

In this thesis, we focus on a different aspect of the integrity issue, that is, the localiza-
tion of corrupt data. This aspect is particularly relevant to users of published micro-data
tables. Unlike outsourced databases where a corrupt query result can, and should, simply

be rejected, a micro-data table that fails the integrity check as a whole may still contain a
large portion of useable data. Moreover, users of a published micro-data table usually do
not have the necessary means to immediately contact the original data owner for obtaining
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a correct copy of the micro-data table. Therefore, it is important for such users to utilize as
much as possible the micro-data table, by localizing and disregarding any corrupt data.

The localization of corrupt data with a fine granularity, such as a tuple, inherently re-
quires additional storage. A straightforward solution is to store in a micro-data table the
cryptographic stamp of every tuple such that the integrity of each tuple can be verified inde-
pendently and consequently corrupt tuples can be localized (note that storing a single stamp
computed over the root of a hash tree [44] will not achieve the same purpose). However,
the storage requirement of this solution will be of the same order of magnitude as the size
of the micro-data table.

Instead of demanding additional storage, our solution makes use of the free storage al-
ready available from the unused order of tuples in a published micro-data table. Unlike
tuples in a (outsourced) database, which are not ordered under the relational model, tu-
ples in a published micro-data table must be stored in a particular order even though the
order may be meaningless under the relational model (our solution will not apply if this as-
sumption does not hold). With a reasonably large micro-data table, the amount of storage
provided by the order of tuples is clearly sufficient (n tuples can provide log(n\) bits) for
our purposes.

Our solution can be regarded as afragile watermarking method. Unlike a robust water-
mark (whose design goal is to tolerate modifications such that the digital copyright can still

be protected [4, 60]), a fragile watermark is designed to be easily destroyable such that its
absence will signal unauthorized updates [40]. Closest to our work, a fragile watermarking
scheme is applied to relational tables [38]. The order between each pair of tuples is used to
embed a watermark computed over a group of tuples. The granularity of localization is thus
limited to a group, instead of a tuple. If an unauthorized update corrupts tuples spanning
many groups, then a large number of unmodified tuples may be mistakenly determined as
unusable.
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The main contribution of this thesis is a secret order-based fragile watermarking scheme

for localizing corrupt data at the tuple level. Basically, the scheme sorts all the tuples in
a micro-data table according to a secret order derived from the keyed hash value of those
tuples; an unauthorized update will cause conflicts to the expected secret order and thus be
detected. In contrast to most existing methods, the proposed scheme has the following key
advantages.

1. Tuple level-localization: To our best knowledge, this is the first fragile watermarking
scheme that can localize corrupt data at the tuple level.

2. No additional storage: Unlike most cryptographic techniques, our scheme does not

require any additional storage.

3. Non-Distortion: Unlike traditional watermarking schemes that modify data to embed
watermarks, our scheme does not cause any distortion to data values.

4. Blind verification: A single secret key issued by the data owner is sufficient for

legitimate users to localize all corrupt data.

5. Updatable: Authorized updates made by legitimate users who know the secret key
can be efficiently implemented.

6. Invisible: To an adversary who does not know the secret key, the secret order used to
embed watermarks is indistinguishable from any arbitrary order.

The rest of the thesis is organized as follows. Section 1.1 builds intuitions through a
motivating example. Section 1.2 then states the problem by discussing our assumptions
about the system architecture and adversary model. Chapter 2 reviews the literature. Chap-
ter 3 presents the basic scheme for a special case. Chapter 4 extends the basic scheme
to address the general case. Chapter 5 evaluates the proposed schemes through extensive
experiments. Finally, Section 6 concludes the thesis.
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1.1 Motivating Example

A motivating example is depicted in Figure 1. Suppose a data owner would like to share
a large number of patients' medical records, which are stored in the format of a relational
table shown as the Original Table, with researchers at medical institutions and universities
for research purposes. Clearly, such data are highly sensitive and cannot be published on
the Web. Therefore, the data owner gives each organization a copy of the data, which is to
be stored and managed by the latter.

ID

001

002

003

004

005

006

ID

003

005

006

004

002

Original Table
NAME

ALICE

BOB

CARL

DAVID

ELAINE

GENDER

FEMALE

MALE

MALE

MALE

FEMALE

MALE

DISEASE

COLD

AIDS

CANCER

COLD

FLU

AIDS

Table after Hash

NAME

CARL

ELAINE

llflliSi
FRANK

DAVID

BOB

GENDER

MALE

FEMALE

MALE

MALE

MALE

DISEASE

CANCER

FLU

•iiBSIililiSiill
AIDS

COLD

AIDS

002 : BOB
?..

MALE COLD

Watermark Table
HMACGENDER DISEASENAME

COLDALICE FEMALE

cmúmcms MM&/,
COLDDAVID MALE

MALE

FRANK MALE AIDS

ELAINE FEMALE

HMAC

Modify
3011

Figure 1 : An Example of Watermarking Micro-Data Tables

For users of such data to verify that the copy of data has not been subject to unauthorized
modifications, a typical solution is to compute a cryptographic signature over the collection
of data using the data owner's private key, such that users may verify the integrity of the
data using the data owner's public key. However, if the verification fails, the user will not
be able to tell which part of the data has been modified and which part is still intact. For
the user to notify the organization about such an incident and to further repair the corrupt



data either from backups, or by contacting the data owner will apparently take a long time,
and in some cases may not be feasible at all. On the other hand, it is desirable for the user
to localize any corrupt portion of the data, such that the remaining data can still be used.

Consider a simple approach to address the above issue. That is, we compute the keyed
hash (for example, the keyed-Hash Message Authentication Code (HMAC)) of each tuple,
and re-order these tuples using the hash values as indices. Assume a perfect situation where
all the hash values happen to be distinct and continuous, which is shown as the Table after
Hash in Figure 1. An authorized user who knows the cryptographic key can recompute the
hash value of each tuple, and check whether these tuples are sorted continuously according
to those recomputed hash values. On the other hand, for example, if an intruder or unautho-
rized user may modify Bob's record, then this tuple's hash value may change to, say, 301 1;
if he/she deletes Alice's record, the remaining tuples' hash values will not be continuous.
Therefore, the attacks can be detected and localized in either case.

Unfortunately, the assumption that all hash values will be distinct and continuous is
clearly unrealistic. Indeed, even a perfect hash function will give outputs that are uniformly
distributed, but only statistically. In practice, when the hash values are sorted, we may find
many duplicates or gaps between values that prevent them to be used as indices of tuples.
It is worth noting that although we can still sort tuples based on such hash values in, say,
a non-decreasing order, the capability of localizing modified tuples will be reduced, since
we will not know the exact hash value to be expected for each tuple.

Therefore, instead of directly using each hash value h as the index for the tuple, we
use its modulo h mod n, where ? is a chosen modulus known to the world. Since all the

tuples will now yield a value in [0, ? — 1], we can arrange tuples based on such values in
groups of size n. The result is shown in Figure 1 as the Watermark Table. Although this
modulo operation will not completely eliminate the above issue, it will increase the chance
of success. More precisely, the less ? is, a larger percentage of tuples can produce distinct
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and continuous indices, although for a smaller group (in an extreme case, when ? = 1,

each tuple forms its own group). However, since a modified tuple has 1/n probability to
yield the same result, a smaller ? also means less capability of detecting an unauthorized
modification. In this thesis, we will study how to choose the value of ? and how to deal

with the tuples that cannot be arranged in any complete group.

1.2 Assumptions

We consider the micro-data disclosure application illustrated in Figure 2. There are three

parties involved. A data owner would like to publish micro-data in the form of a relational
table. The table will be duplicated and hosted at a server and accessed by users. In this
architecture, the communications between data owner and server, as well as server and

authorized users are assumed to be reliable. However, the server is semi-trusted in the sense

that it may be accessed by unauthorized users who may alter the micro-data tables stored
on the server (this situation is similar to that of a outsourced database [26]). Therefore,

users should verify the integrity of tables stored on the server.

/MJntruder

Unauthorized update
Owner

ö"verification

Disclose table

ute information
Un-trusted

Server

Figure 2: The Architecture

We assume the data owner shares a secret key with each legitimate user of the micro-

data. This secret key will enable such those users to verify the integrity of the published



table and localize corrupt data, if any. In addition, a user knowing the secret key can
also make a legitimate update to the published table (for example, an administrator of the
server may need to restore some corrupt data from time to time). However, except the
shared secret key, we assume there is no interaction between the data owner and the users.
Therefore, when a user detects the published table to be corrupt, he/she cannot easily obtain

a valid copy of the table. Instead, he/she must try to utilize as much as possible the table
by localizing and disregarding the corrupt tuples.

We assume that the watermark embedding and verification methods and parameters

such as the modulo value are all known to the world. Besides, as the server is semi-trusted,

an intruder can do any kinds of attack on the data, such as insertion, deletion or modification
of any tuple. We shall study the case where authorized users may know each attack's type
through, for example, system log. We shall also consider cases where the type of each
attack is unknown. For different cases, the verification of watermarking will be different,

as we shall discuss later.

We assume the adversary model that an intruder's goal is to deceive users into accepting
modified micro-data. Naturally, the intruder will attempt to repeat an attack many times so
even one of them is not detected, the attack is still a success. Therefore, in our model, we

assume a policy that if the number of modified tuples localized by a user exceed a threshold
only known to the user, the user will simply stop using the whole table. Such a policy will
discourage an intruder from repeating his attacks for many times, since too many repeated
attacks will more likely cause the user to discard the whole table, which does not help the
attacker in achieving his/her goal. As our scheme is only an integrity mechanism, it cannot
prevent a denial of service attack with the goal of simply destroying all the data.

The main challenges of this work are as follows.

Providing fine-grained localization capability without additional storage requirements
Unlike traditional cryptographic methods or fragile watermarking schemes whose
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goal is usually to detect, instead of localizing modifications, our scheme aims at fine-
grained, tuple-level in particular, localization of modifications. Although this can be
achieved by, say, creating a cryptographic stamp for each tuple separately, the stor-
age requirements would be prohibitive. Ideally, the amount for storage required by
integrity mechanisms should be kept as low as a constant compared to the size of
database. It is a challenging problem to meet these seemingly conflicting goals. The
way we tackle this issue is to embed watermarks in the unused order of tuples.

Ensuring the accuracy of localization with unreliable storage The accuracy of localiza-
tion, more precisely the rate of false positives and false negatives, will critically de-
pend on the watermarks that have been embedded. However, since such watermarks
are part of the micro-data (that is, the order of tuples), any attack may destroy the wa-
termarks. How to ensure reasonably low false positives and negatives with destroy-
able watermarks is a challenging problem. We tackle this issue through a majority

voting scheme in recovering embedded cryptographic information.

Localizing unauthorized modification while allowing legitimate updates Unlike tradi-
tional fragile watermarking schemes which must be applied again to the entire database
in order to re-build any corrupted watermarks, our goal is to allow legitimate updates
to be carried out efficiently, without having to rebuild all the watermarks. This is
challenging since the two goals are seemingly conflicting. We devise efficient updat-
ing schemes for this purpose.
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Chapter 2

Review of Literature

We review the state of the art in outsourced databases, micro-data disclosure, and water-

marking in databases, and so on.

2.1 Outsourced Databases

The rapid growth of digital data and storage management costs requires finding new ef-
fective methods to manage data. One of such new paradigm is database outsourcing,
which employs a remote server that serves as storage for data owner to distribute their
data. In [26], Hacigumus et al build a data management model, which includes three parts:
the data owner, the database service provider (server) and the user. Users can access and

query data from server instead of data owner. This model satisfies the needs of effective
data processing while the traditional database is of higher cost in hardware and manage-
ment. However, as the servers may be untrusted or compromised, the security concerns are
taken into consideration, such as the data privacy and query integrity [54].

Many of those work concentrate on data privacy [26] [5] [25]. The basic idea for
protecting privacy is to store encrypted data in server's side instead of storing the original
data. There are many methods for users to decrypt data [22] [10]. Chor [10] et al work
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on how users can retrieve data from outsourced server. Besides, Song et al [61] bring in a

searching algorithm for encrypted data to satisfy the requirement of hidden queries.
On the other hand, the integrity in outsourced database just attracts limited attentions

in recent years. In query integrity, the returned query results from server must be correct,
complete and fresh [36]. The integrity verification methods are usually based on the sig-
nature and Merkel Hash Tree [44] [46]. In the signature based techniques, the data owner

signs each record in database [48] [50].
Xie et al [68] propose an approach for protecting integrity based on probabilistic meth-

ods [68]. In this method, the data owner inserts a small amount of records into outsourced
databases which can be tracked by client in query results to make sure the integrity is intact.
However, this signature-based methods result in additional storage overhead in server's
side. Besides, the signatures' computation time also mean a high cost for data owners.

The techniques of using Merkel Hash Tree to verify integrity, with less storage and
computation cost, are popular for integrity protection [16] [51] [9] [47]. The Merkel Hash
Tree is a binary tree that hierarchically organizes tuples' digests. Each leaf node contains
the digest òf a record while each internal node contains the concatenation of the children
digests. The root is signed by data owner using the public key system. Given a range query,
the server determines boundary records, and returns the verification object (VO) together
with the root's signature to user. Then user can use data owner's public key and returned
information to verify query results' integrity.

Devanbu et al [16] first using Merkel Hash Tree to authenticate the returned query

result's integrity. This method signs each record by RSA [43] scheme and stores them
using Merkel Hash Trees. There are others works that study how to verify the completeness
of query results [36] [59] [50]. Pang et al [50] use signature aggregation to combine each
record's information with other two neighbor records. Therefore, the continuity of query
results can be verified using the signature to prove completeness.
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Yang et al [71] use authenticated data structures to audit soundness and completeness.
Xie et al [69] use an improved authenticated data structure-based approach to guarantee
freshness. Mykletun et al [47] compare several schemes based on the minimal computa-
tional and bandwidth overhead. However, hash tree structures cannot localize modifications

at a fine-grained level but can only detect them. Mouratidis et al [46]introduce a Partially
Materialized Digest scheme, which uses separate index for data and verification informa-
tion with the purpose of reducing the overhead. Besides, there are still some other issues
discussed in outsourced database, such as the mechanism [59] and inference issues [12].

2.2 Micro-Data Disclosure

The micro-data disclosure problem has received significant attention lately [1 ,6,27,33,34].

In particular, data swapping [24,52,62] and cell suppression [35] both aim to protect micro-
data released in census tables, but those earlier approaches cannot effectively quantify the
degree of privacy. A measurement of information disclosed through tables based on the
perfect secrecy notion by Shannon is given in [23]. The authors in [15] address the prob-
lem ascribed to the independence assumption made in [23]. The important notion of k-
anonymity has been proposed as a model of privacy requirement [56]. It has received
tremendous interest in recent years. To achieve optimal fc-anonymity with the most data

utility is proved to be computationally infeasible [45].
A model based on the intuition of blending individuals in a crowd is proposed in [57].

A personalized requirement for anonymity is studied in [70]. In [28], the authors approach
the issue from a different perspective, that is, the privacy property is based on general-
ization of the protected data and could be customized by users. Much efforts have been
made around developing efficient fc-anonymity algorithms [2,3, 18,21,32,55,56], whereas
the safety of the algorithms is generally assumed. Many more advanced models are pro-
posed to address limitations of /c-anonymity. Many of these focus on the deficiency of
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allowing insecure groups with a small number of sensitive values, such as /-diversity [42],
i-closeness [37], alpha-k-anonymity [67], and so on. In addition, a generic model called
GBP was proposed to unify the perspective of privacy guarantees in both generalization-
based publishing and view-based publishing [14].

While most existing work assume the disclosed generalization to be the only source
of information available to an adversary, recent work [73] [66] shows the limitation of
such an assumption. In addition to such information, the adversary may also know about
the disclosure algorithm. With such extra knowledge, the adversary may deduce more
information and finally compromise the privacy property. In the work of [73] [66], the
authors discover the above problem and correspondingly introduce models and algorithms
to address the issue. However, the method in [66] depends on a specific privacy property,

whereas the one in [73] is more general, but it also incurs a high complexity. A special case
of the A:-jump strategy is discussed in [74] where all jumps end at disclosing nothing.

In contrast to micro-data disclosure, aggregation queries are addressed in statistical
databases [27, 30,49]. The main challenge is to answer aggregation queries without al-

lowing inferences of secret individual values. The auditing methods in [17, 19] solve this
problem by checking whether each new query can be safely answered based on a history
of previously answered queries. The authors of [19, 29, 31] considered the same problem
in more specific settings of offline auditing and online auditing, respectively. The authors
of [31] considered knowledge about the decision algorithm itself. However, the solution
in [31] only applies to a limited case of aggregation queries and it ignores the current state
of the database in determining the safety of a query.

2.3 Watermarking in Databases

Digital watermark is a cryptographic technique to embed information, which can be cat-
egorized as fragile watermarks and robust watermarks. For different purposes, we need
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to design different watermark schemes [H]. Such application as broadcast monitoring,
identification, authentication, prove copyright, fingerprint, copy control, and convert com-
munication require the robustness, tamper resistance, fidelity, low cost, and high detection
rate. These kinds of watermarks are embedded in image, video and audio [13]. Nowadays

the watermarking techniques are being applied to databases. Two kinds of watermarks are
adopted in databases, the robust watermarks and the fragile watermarks [40]. Robust wa-
termark is used to protect copyright and owner's identification [60] [39] [4] [72] [63] [53].
Agrawal and Kiernan [4] present a watermarking algorithm for databases to detect piracy.
They embed watermarks in relational data and prove the robustness on a wide range of
attacks. Later, a zero-knowledge based watermarking scheme [72] [63] [53] was proposed

as an asymmetric key method to verify the watermark without disclosing any information.
Li et al [39] insert fingerprints in non-primary key attributes to protect copyright. These
work have an emphasis on preventing piracy but cannot protect the data integrity. In the last
few years, the research on fragile watermarks in multimedia have been conducted for the
integrity of images, audio, and video [8] [41] [20]. But the fragile watermarks in databases
still have not been adequately addressed. Li et al [38] propose a new technology to insert
invisible signals to localize modifications without distortions, using fragile watermarks. In
that paper, the watermark cannot provide a small detection and localization granularity.
Therefore, we propose new methods to embed fragile watermarks. Unlike other steganog-

raphy algorithms, our method does not insert any information to databases, but using tuples'
order to localize modifications.
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Chapter 3

A Special Case

In this chapter, we study a special case where all the keyed hash values modulo ? can be
divided into sequences with those within each sequence being distinct and continuous. Al-
though this case is unrealistic in practice, it facilitates the introduction of our basic scheme.
We will study the general case in next chapter. We present the scheme for the special case
in two steps, namely, the embedding and verification of watermarks, respectively.

3.1 Watermark Embedding

Our basic scheme for watermark embedding is a symmetric key system that works on all
tuples in a micro-data table. Given a micro-data table T, which is denoted in this thesis as
a sequence of m tuples T = (t0, h, . . . , im_i). Denote by h(kh,t) a keyed hash function
that takes the inputs of a tuple t a secret key kh which is shared between the data owner and
user. Table 1 summarizes the notations that will be used in this thesis.

Definition 1 Given a micro-data table T with \T\ = m and a chosen modulus ? < m,
define a function sid(.) : T -> [0,n-l]as sid(t) = (h(kh,t)) mod n. We say sid(t) is
the sequence index of tuple t.

14



m

?,??
h

W
M

sid(.)
gid(.)
seq(.)
grp(.)

number of tuples in original table T
module value, module value in i^level

the key for key-hash function
the permutation key

the original table
owner's watermark table
two dimensional array

sequence index (function)
group index (function)

watermark sequence (function)
group (function)

Table 1: Notations

We use this function sid(.) to compute each tuple's sequence index, which is essentially
the tuple's relative position inside a sequence of ? tuples sorted based on their sequence
indices. We will show how to decide which sequence each tuple should be placed in shortly.

Definition 2 Define a function grp(.) : [0, ? - 1] —> 2T as grp(x) = {t : t E T, sid(t) =
x}, where ? is the sequence index.

We need the function grp(x) to obtain the set of tuples all with the same sequence index
x. We shall also abuse the notation grp(.) for the sequence obtained by sorting its tuples
based on the order of their appearances in T, namely, a group.

Definition3 Define afunction gid{.) : T-* [0,n-l]as gidfa) =| {tj : tj 6 grp(h(kh,ti))A
j < i} \. We say gid(ti) is the group index of tuple í¿.

We use the function gid(.) to obtain each tuple's group index, which means the tuple's
relative position inside its group. Notice the difference between a tuples' s position inside a
sequence and that inside a group. The former is decided by the keyed hash function while
the latter by how it is ordered with other tuples with the same key hash value.

Definition 4 Define a function seq{.) : [0,n - 1] —> 2T as seq(y) = {t : t G T,gid(t) =
y}, where y is the group index.
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We use this function seq(y) to get the set of tuples with the same group index y, we
shall also abuse seq(.) for the sequence obtained by sorting its tuples in the ascendingly
order of their sequence indices, namely, a watermark sequence. If | seq(y) |= n, we say
seq(y) is a complete watermark sequence.

Definitions Define a function mas(.) : [0,n - 1] —> [0,n - 1] as mas(x) =| {x' : (|
¦grp(x') \>\ grp(x) |) V (| grp(x') |=| grp(x) \ Ax < x')} |. W? call the sequence
raas(O), mas(l), . . . , mas(n - 1) i/ie master order.

We use this function mas(.) to permute each sequence index ? to a new value y in
[0, n— 1] based on the size of grp(x), in order to make all the group's size in the ascendingly
order. That is: | grp{mas~l\<d)) \>\ grp(mas~l (I)) . . . >| grp(mas~l(n - I)) |. Such
a property will be useful when we deal with incomplete watermark sequences later in this
thesis. Also, from now on, when we mention sequence index, we refer to the sequence

index after the permutation based on mas(.).

Definition 6 Denote by M a two dimensional array that stores all the tuples in T according
to their sequence indices and group indices. Specifically, tuple t will become the array

element M[gid(t)][mas(sid(t))].

For the time being, we shall only consider a special case where the m given tuples'
sequence indices and group indices will yield only complete sequences of ? tuples. In
another word, we have ? groups with exactly the same size m/n. Therefore, we can place
each element of array M, which is a tuple, into the watermark table W first by each row,
then by each column.

However, as the algorithm and the modulus ? are both public, unauthorized users can
also calculate all tuples' sequence indices and group indices in W. This knowledge may
lead to targeted attacks that may go undetectable, such as deleting a complete sequence, or
swap tuples with the same sequence index, and so on. We thus introduce another pass of
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permutation of tuples on the watermarked table W to randomize the watermarks, that is,
the order of tuples.

Definition 7 Define a permutation function per (W, kp) that randomly disturbs all tuples'
order in the watermark table W such that the watermark cannot be easily identified from

the final disclosed table without knowing the secret key.

We use function per(.) to re-order the tuples in table W into a new order that is gener-
ated based on the secret key kp, which can be derived from kh using a one-way function, so
only authorized users can recover the watermark table W from the disclosed table. In this
thesis, we will use the Lexicographical Order Generation scheme [58] as the permutation
function.

grp(mas"1(0)) grp(mas"1(1)) grp(mas"1(n-1))

M[O][O]

M[I][O]

M[2][0]

M[O][I]

M[1][1]

M[2][1]

M[OP]

M[1][2]

M[2][2]

M[0][n-1]

M[1][n-1]

M[2][n-1]

seq(0)

seq(1)

seq(2)

seq(|grp(mas"1(n-1))|-1)

Figure 3: Watermark Embedding in the Special Case

Figure 3 illustrates an example of the two dimensional array M. Each row in M is a
watermark sequence; each column is a group; each element is a tuple. By definition, we
have the following property:

I grp(mas~l (O)) >| grpfaas'1 (I)) |> . . . >| grpfaas'1^ - I)) |

The size of M is thus:

grp((mas ?(0))) | *n
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The number of complete watermark sequences is

I grpfaas-1 (n — I))

In this special case, we have that

J grpfaas"1 (O)) | = | grp(mas~l(n — I)) |= m/n

Algorithm 1 Algorithm EmdjOomplete

Input: Original table T, module n, key kh and kp
Output: Table to be disclosed
Method:
1 . For i = 0 to m — 1

2. Let M[gid{T[i))} [mas(sid{T\i]))] = T[i]
3. For i = 0 to I grpimas'1^ — I)) | *n — 1
4. Let W[i] = M[[i/n\][i mod n]
5 . Return per ( W, kp )

Algorithm 1 describes the watermark embedding algorithm in the special case. In this
case,| grp{mas~l{Ç))) —\ grpimas'1 (I)) |= . . . =| grp(mas~l(n — I)) |, so all the tuples
are in complete sequences. Line 1 and 2 compute tuples' sequence indices and group
indices, and place the tuples into a two dimensional array M. Line 3 and 4 picks tuples
from M and put them into watermark table W. Line 5 permutes table M by key kp, and
publish the table. The time complexity for embedding algorithm is 0(m), depending on
the micro-data table's size m.
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3.2 Watermark Verification

The verification of data integrity usually has two aspects: detection and localization. The

objective of detection is to decide whether the table is tampered as a whole, whereas the
objective of localization is to locate the attacked tuples' positions and types. Notice that
although these are for different practical purposes, the former is essentially the coarsest-
grained case of the latter. Due to this fact, in our watermark verification method, we com-
bine the detection and localization as two steps of a single process.

Definition 8 The expected sequence index of a tuple t is the one calculated based on the
relative position that t appears in the disclosed table by assuming there is no unauthorized
modifications.

In the special case, as users know the modulus ? and the embedding algorithm, they can
calculate the expected sequence indices as / = (0, 1, . . . , ? — 1, 0, 1, . . . , ? — 1, . . .). The
expected sequence indices are then compared with the actual sequence indices computed
from the actual tuples in the disclosed table, to check whether the two match. If the two
sequence index mismatches for a tuple, then we mark this tuple as suspicious. If all tuples
in the received micro-data table have their sequence indices match, we consider this table
intact. Otherwise, the table is considered tampered (detection) and we need to localize the
attacks.

In the situation that only one known type of attack occurs in the watermark table (for

example, the types can be extracted from log files), suppose an intruder modifies some tu-
ples in the table. We can simply localize all mismatched tuples as being attacked. However,
if an intruder inserts or deletes some tuples, then the remaining tuples' expected sequence
indices will all be affected. So the mismatched tuples are not necessarily attached. More-

over, in the case that attacks' types are unknown or mixed in an unknown manner (which
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we call combination attack), then we cannot simply regard the mismatched tuples as at-
tacked ones, either. Based on the assumption that attackers' objective is stealthy attacks
(instead of denial of services), the least number of attacks that lead to all the mismatches
in the disclosed table will be the most plausible case. Therefore, we shall apply the edit
distance concept to localize attacks. In general, the edit distance between two strings refers
to the operations that one string needs to be transformed into another string [64].

Definition 9 In the verification ofwatermarks, by regarding the expected tuples' sequence
indices and actual tuples ' sequence indices as two character strings, a minimal set of at-
tacks that can transform the former into the latter is referred to as the edit distance.

There exist different notions for edit distance. In this thesis, we shall use the Leven-

shtein distance [64]. Levenshtein distance comes with a method for finding the minimal set

of operations transforming between two strings. In our scheme, as we mentioned the previ-
ous sections, users will adopt a policy that lead them to disregard the whole table when the
number of localized attacks exceeds a threshold. Therefore, the intruder's strategy would

be to minimize the amount of attacks and the edit distance method thus is suitable for our

scheme. By calculating the minimal edit distance, we can obtain the set of attacked tuples.
Such a method is suitable for both known types of attacks and combination attack.

Algorithm 2 describes the watermark verification algorithm in the special case. A user
receives a disclosed table U and needs to verify its integrity and localize attacks, if any.

Line 1 inverts the permutation per(.) to obtain the watermark table V from W with the key

kp (derived from kh). After the user obtains V, he/she can calculate the number of complete
sequences q in V simply by diving the total cardinality by n. Line 2 and 3 compute the
actual sequence indices in table V and place them in sequence L. Line 4 and 5 compute
the expected sequence indices for table V, and place the results in sequence /.
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Algorithm 2 Algorithm VerjOomplete

Input: Disclosed table U, module n, key kh and kv
Output: Attacked tuples in U
Method:

1 . V= per'1 (U, kp) Il V is the watermark table
2. For i = 0 to q * ? — 1 // q is the number of complete sequences in V
3. Let L[i] = mas(sid(V[{\))
4. For i = 0 to q*n — 1
5. Let I[i] = i mod ?
6. Return LevenshteinDistance(I , L)

In the special case, each tuple's position is decided by its sequence index and group
index, so in table V each tuple V[i] has the expected sequence index i mod n. Line 6 then
applies the standard edit distance algorithm to the actual sequence indices L and expected
sequence indices / to obtain the set of attacked tuples, and the result also contains attacks'
types. If the table t/'s integrity is intact, the algorithm will return an empty set. When we
use Levenshtein distance to locates attacks' set, the worst-case complexity is 0(m2), so the
verification algorithm's time complexity is 0(m2).

3.3 Detection Probability

Now we estimate the probability of successfully detecting an altered table. We shall study
only the case of known types of attacks, the case of combination attack and the accuracy of
localizing attached tuples will be studied later through experiments. Suppose the intruder
has attached I tuples. Due to the users' threshold-based policy, I can be assumed as a small
number compared to the total number of tuples.

Due to the extra pass of permutation on watermarked table before the result is disclosed,
it would be computationally infeasible for any intruder to know where adjacent tuples in
the watermarked table will be placed in the disclosed table. Therefore, it is reasonable to
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assume that intruders cannot pick which tuples to attack based on the watermarked table. In
another word, the attacked tuples will be almost uniformly distributed in the watermarked
table, no matter how intruders choose tuples to attack.

A modification attack will alter a tuple's hash value, and consequently sequence index

and its position in the watermarked table. An insertion or deletion attack will change many
tuples' sequence indices and their positions in the watermarked table. Therefore, these
attacks should normally be easily detected. However, there do exist special cases where the
attacks cannot be detected, as we shall discuss in the following.

Modification: If a tuple is modified but the new tampered tuple yields the same sequence
index as the original one does, then this attack cannot be detected. In our scheme,

each tuple's sequence index is in the domain [0, . . . , ? - 1] so the tampered tuple has
1/n probability of not being detected. Since the detection fails if all / modified tuples
have their sequence indices unchanged, the detection probability is

Pdec = 1 - (1/n)'

. Notice that since the intruder does not know the secret key, he/she has no means

to know what is the expected hash value of each tuple so this detection probability
cannot be reduced through brute force attacks.

Deletion: When intruder deletes one tuple, the remaining tuples' expected sequence in-
dices will all be changed. So the user can easily detect the attack. However, if the
intruder deletes complete sequences, then the deletion cannot be detected. As the
modulus ? is public, the intruder can choose I as a multiple of n. Now we compute
the detection probability. The deleted attacks are randomly distributed in watermark
table due to the extra pass of permutation of tuples in the watermarked table. Since
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the intruder would like to delete l/n complete sequences while there are |~m/n] se-
quences in the table, the detection probability is

Pdec = 1 - (C|-m/„] * Cn) /Cm

Insertion: When the intruder inserts one tuple, the remaining tuples' expected sequence
indices will also be changed. Similarly, if the intruder inserts complete sequences,
then the insertion cannot be detected. Suppose the intruder chooses / as a multiple of
n, and inserts tuples randomly. Suppose after insertion, there are (m+l)\/m\ possible
results for the tampered table, and only inserting at \m/n\ + 1 positions can lead to
undetected complete sequences. Besides, the probability that the ? tuples randomly
inserted can form a complete watermarked sequence is (l/n)n. So the probability
for detecting insertion attacks is

Pdec = 1 - (l/n)" * (C^+1/«m + ll/mi))

For combination attacks or unknown types of attacks, the detection probability will

depend on each type of attacks but also on their interaction since different attacks may
cancel each other's effect on sequence indices. Also, the localization of attached tuples will
depend on specific cases of attacked tuples' position and types of attacks. Therefore, we
shall rely on experiments to measure the rate of false positives and false negatives in those
cases. Specifically, false positive indicates the case of intact tuples which are mistakenly
localized by our verification algorithm as attached tuples, whereas false negative indicates
the case of altered tuples which are not localized. The result will be discussed in Chapter 5.
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The accuracy of detection depends on the modulus n. A larger ? can reduce the number
of tuples that yield the same modulo result and leads to a more precise detection result.
However, when ? is larger, it is usually harder to obtain complete sequences from keyed
hash values. Therefore, we should consider the tradeoff between these two aspects, that

is, the upper bound of detection probability 1/n and the number of incomplete watermark
sequences (which will also reduce the actual detection probability). This will be studied
through experiments later.
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Chapter 4

The General Case

In this section, we discuss the general case where not all the tuples in a given micro-
data table can form complete watermark sequences. That is, besides complete sequences,
there are still some tuples left whose sequence indices will not allow complete sequences
to be formed, namely, ,the incomplete part of the watermarked table. In order to protect

those tuples' integrity, we still need to embed watermarks for such an incomplete part of
the table. However, we will need different methods, and the capability of detecting and

localizing attacked tuples will likely be lower. We study three different algorithms for
embedding and verifying watermarks in the incomplete sequences.

4.1 Establishing Master Order

Figure 4 illustrates the two dimensional array M in the general case. In this | grp(mas~l (O))
*n array, there are | grpfaas^in — I)) | complete watermark sequences. From the
seq(\ öfrp(mas_1(0)) \)th sequence, the last portion of sequence indices will not corre-
spond to any tuples. That is, we start to have incomplete watermark sequences of size less
than n. Now we study how to embed watermarks for those incomplete sequences.

First, we need to discuss the master order function mas(.) for computing the watermark
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M[2][2]

M[0][n-1]

M[1][n-1]

M[2][n-1]

seq(0)

seq(1)

seq(2)

seq(|grp(mas" (n-1))|)

seq(|grp(mas-1 (0))|-1)

Figure 4: An General Case

table W. The master order function can simply be the identity function (that is, no re-

ordering) for the special case. However, in the general case, when all groups have different
size, we need mas(.) to keep all the groups' size in descending order. That is, we would
like each incomplete sequence to be no shorter than those that appear later.

As we do not require extra storage, and users will hold nothing but a single secret
key, the master order function itself must be embedded in the watermarked table using the
order of tuples. A straightforward approach is for users to always assume the order of the
first complete watermark sequence to be the master order. Compare the order of this first
sequence to the indices (0, 1, ... ,n - 1), users can establish the master order function.
Due to the extra pass of permutation on the watermarked table, intruders will not be able
to know where to locate the tuples of this first watermark sequence, and they thus cannot

purposely attack such tuples.

Since the master order is critical to the verification of all tuples, we need its embedding

to be more robust against attacks. A simple way to decrease the chance of having the master

order destroyed by attacks is to repetitively embed it. More specifically, users may choose
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the first r complete watermark sequences and taking a majority vote approach to get the
most plausible master order. This will increase the chance of having an intact master order,
since the intruder must happened to have destroyed a majority of these r sequences before
the master order becomes impossible to recover. However, this approach will not work

since if one or more tuples are deleted or inserted, then users will not be able to locate the
right starting and ending tuples for each of the first r complete watermark sequences. A
majority vote will yield wrong result.

Therefore, we adopt a slightly different approach, that is, we reorder the first r com-
plete sequences such that all tuples with the same sequence index will be adjacent to each
other, and different sequence indices will still follow the master order. When users extract
these sequence indices (may have been modified/deleted/inserted), they will apply major-
ity voting to each r adjacent tuples (which are expected to yield exactly the same sequence
index). If any attack is detected in each r adjacent tuples, users will use the information
about such attacks (for example, deletion or insertion) to adjust the beginning and ending
tuples of the next r adjacent tuples.

For example, suppose the master order is: (4, 0, 1, 2, 3) and r = 4. In table W, the first
r * ? = 20 tuples' sequence indices should be: (4, 4, 4, 4, 0, 0, 0, 0, ... , 3). In the received
watermark table, suppose one tuple in the first 4 tuples is deleted and the result is now:
(4, 4, 4, 0, 0, 0, 0, 1, ... , 3). User computes first four tuples' sequence indices (4, 4, 4, 0),
and get the result 4 by majority voting. As the next tuple's sequence index is still 0, so
users can deduce there may be a deletion attack in the first 4 tuples. Users can then attempt
to locate the next 4 tuples from the 4th tuple instead of the 5th tuple. Although there are
still cases that this method leads to a wrong result, the false positive and negative rate will
be reduced significantly, as will be partially reflected in our experiments.
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4.2 Algorithm 1

4.2.1 Watermark Embedding

When we place all tuples in T into the two dimensional array M, we would have | gramas'1 (n-
I)) I complete watermark sequences, which can be directly put into the watermark table
W. However, unless in the aforementioned special case, there would be some incomplete

watermark sequences remaining in M that also need to be put into W in some way. If
we directly put those sequences into W, users would not be able to identify the beginning
and ending of each incomplete watermark sequence, since such incomplete watermark se-
quences will have varying (more precisely, smaller and smaller) sizes. Therefore, we need
different watermark embedding algorithms for these incomplete watermark sequences.

The basic idea of algorithm 1 is borrowed from the Lempel-Ziv-Welch lossless data
compression algorithm [65]. For each incomplete watermark sequence, we need to indicate
the length of the sequence. Due to the master order function, we know that each incomplete
watermark sequence will include continuous sequence indices starting from 0. Therefore,
for each incomplete watermark sequence, we can simply use the last tuple t as an indicator
of the length of this sequence, and place it in front of the sequence, so users would know
that the current sequence's indices will start from Ö and end at mas(sid(t)).

Algorithm 3 describes the watermark embedding algorithm for this method. Line 1
calls the Emd_complete function and get | grplmas'1^ — I)) | complete sequences.
For each incomplete watermark sequence in M, Line 3 and 4 add length indicator to it
by moving the last tuple to the beginning of the sequence. Line 6 and 7 simply place the
remaining tuples in the incomplete watermark sequence into table W. Line 9 permutes the
table M using the key kp, and the result is ready to be disclosed. The time complexity for
this algorithm is also 0(m), depending on the micro-data table's size m.

For example, suppose ? = 10, for the incomplete sequences, suppose | grp(0) \ = 10,
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Algorithm 3 Algorithm Emd_Algl

Input: Original table T, module n, key kh and kp
Output: Table to be disclosed
Method:

1. Emd_Complete(T,n,kh,kp)
2· J = I grp(mas"1 (n — I)) | *n
3. For i = I grp(mas~l(n — I)) | to | grp(mas~l (Q))
4. LetW[j} = M[i}[\seq(i)\-l}
5. j = j + 1
6. For k = 0 to | seq(i) | -2
7. LetW[j]=M\i][k}
8. j = i + 1
9 . Return per(W,kp)

\ grp(l) I = 9, I #rp(2) | = 8, | grp(3) \=6,\ grp{4) | = 3, | prp(5) | = | 5rp(6) | = 2, and
the remaining groups are all empty. The incomplete watermark sequences with reference
should be:(6, 0, 1, 2, 3, 4, 5), . . . , (3, 0, 2), . . . , (1, 0) , (0)

4.2.2 Verification

For verification, users will derive from kh the key kp. Firstly, users will use the key kp to
invert the permutation of tuples and obtain the watermarked table. Then from this water-
marked table, user first attempt to obtain the master order function as previously mentioned.
Then, users map each sequence index to a new value according to the master order function,
and obtain the actual sequence indices. Users then construct expected sequence indices and
compare them to the actual sequence indices in order to detect and localize attacked tuples.

Algorithm 4 describes the watermark verification algorithm for this first method. For
complete sequences, the construction of expected sequence indices is the same as in the
special case. However, for incomplete sequences, we must use the current table's infor-
mation and the watermark embedding method to construct expected sequence indices. In
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Line 3 and 5, users compute all tuples' sequence indices and group these indices, which
are placed into M. For each group grp(mas~l {%)) starting from grp(mas"1 (n - I)), if the
group is not empty, users take i as the reference tuple's sequence index so the remaining
tuples' indices in this sequence would be: (0, 1, . . . , i — 1).

If we choose a sequence index j from group grp(mas~l{j)), grp(mas~1(j)),s size will
be reduced. This construction method is thus similar to the embedding method. We first

assume the incomplete sequences in V to be identical to those in the original tuples, and try
to construct the incomplete watermark sequences. If table V is tampered, then the expected
sequence indices we have constructed would be different from the values in the original
watermarked table. By regarding the tuples' sequence indices in the current table L and
the expected sequence indices / as two strings, we can apply the LevenshteinDistance
procedure to localize attacked tuples. In this algorithm, when we use Levenshtein distance
to locates attacks' set, the worst-case complexity is 0(m2), so the verification algorithm's
time complexity is 0(m2).

4.3 Algorithm 2

A key limitation of the first method lies in the fact that the construction of expected se-
quence indices critically depends on the length indicator of each incomplete sequence.
Therefore, an attached length indicator may lead to a significant increase in the rate of false
positives and negatives. This limitation is largely due to the varying sizes of incomplete
sequences. Therefore, the key idea of our second method is to keep a fixed size ? for ev-
ery sequence in the watermarked table, except the last one (which may include less than ?
tuples).

In a complete watermark sequence seq(i), each position k G [0,n — 1] is filled by a
tuple with corresponding sequence index k. In an incomplete watermark sequence, some
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Algorithm 4 Algorithm Ver_Algl

Input: Disclosed table U, module n, key kh and kp
Output: Attached tuples
Method:

1. Ver_Complete(U,n,kh,kp)
2. j = q *n Il q is the complete sequence number
3. For i = j to I V I // V is the watermark table
4. Let L[i] = mas(sid(V[i]))
5. Let M[gid(V[i\)][mas{sid{V\i}))} = V[i]
6. For i = ? — 1 to 0
7. While I grp(mas~l{i)) |^ 0
8. Let I[j] = i
9. I grp(mas~l (?)) \ = | grp{mas~l (i)) | —1
10. j = j + 1
11. For /c = Oto i
12. Let I[j] = A;
13. I grpijnas^1 (k)) | = | grp(mas~l\k)) \ — 1
14. j = j + 1
15. Return LevenshteinDistance(I , L)
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positions are empty, as we cannot find the tuples with corresponding sequence index and
group index. Therefore, to rearrange tuples in incomplete sequences into sequences of size
n, we have to replace a missing tuple with an existing tuple according to some publicly
known rules, namely, replacement rules.

Definition 10 A pseudo-complete sequence is a watermark sequence of size ? that yield
the same continuous sequences indices as complete sequences, by applying pre-defined

replacement rules.

4.3.1 Watermark Embedding

Definition 11 Complementary positions: In a watermark sequence seq(i) ofsize n, M[i] [a]
and M[i] [b] are called complementary positions when (a + b) mod (n — 1) = 0.

We divide one complete watermark sequence into two parts. Let mid = \(n - l)/2] .
The sequence indices from 0 to mid are said to be in the left part, whereas the right part
refers to mid + 1 to ? - 1. Two complementary positions are thus always in different

parts. Due to the master order function, in incomplete sequences, we have the property
I grp{mas'l{Q)) \>\ grp^as'1 (I)) |> ... >| grp{mas"l{n - I)) |. Therefore, the
number of tuples in the left part is always no less than that in the right part.

The basic idea of our replacement rules is as follows. First, we use tuples in the left
part to fill corresponding empty positions in the right part at the complementary position.
Second, we use a pair of tuples to replace another pair, if the former is the next available
pair of tuples. This second replacement rule is circular. For example, if the complementary
position-based replacement finds the tuple from grp^as"1 (a)) to replace position b, but
grp{mas~1{a)) is now empty, then we handle this situation in two steps. We first find a
tuple from grp(mas~l (c)) with the second method for replacement for position a, then we
use a tuple from grp(mas~l (d)) to replace position b (c and d are complementary positions
where c < d).
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Definition 12 Define a replacementfunction rep(.) : M —> M such that rep(M[i][j]) = t
if either M[i][j] is empty or mas(sid(t)) f j and t is a tuple decided by the following
replacement rules.

1. Complementary replacement: If M[i][a],M[i][ò] G seq(i), M[i][b] is empty or
I grpfaas"1 (a)) \f 0 (a and b are complementary positions where a < b), then t is
the next available tuple from grp{mas~1{a)).

2. Shifting replacement: //M[î][o],M[î][c] e seq(i), M[i][a] is empty (a < mid),
then t is the next available tuple from the group grpimas'1 (c)) where c is either
from (a, mid] or, if this is not possible, from [0, a).

Algorithm 5 describes the watermark embedding algorithm for this method. Line 1
calls the Emd_complete function and obtains | grp(mas~l(n - I)) | complete sequences.
Line 2 to 6 construct pseudo-complete sequences. For each position i in an incomplete
watermark sequence in M, if this position has a tuple, we place the tuple into W; otherwise,
we use the function per(.) to find another tuple to be placed into this position, and then
place the tuple into W. Line 8 does the extra pass of permutation. The time complexity for
this algorithm is also 0(m), depending on the micro-data table's size m.

For example, suppose ? = 10, and in the incomplete sequence part, | grp(0) \ = 10,
I grp(l) I = 9, I grp{2) | = 8, | grp{3) | = 6, | grp(A) | = 3, | grp(5) \ = \ grp(6) | = 2.
Figure 5 shows the result of pseudo-complete sequences.

Proposition 1 Algorithm 5 can always terminate, with the result containing either com-
plete or pseudo-complete sequences except the last sequence.

Proof: In the algorithm, if a position in the right half is empty, we will use tuples from the
left half to fill this position. Therefore, the algorithm can continue as long as a tuple can
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Algorithm 5 Algorithm Emd_Alg2

Input: Original table T, module n, key kh and kp
Output: Table to be disclosed
Method:

1 . Emd_Complete(T, n, kh, kp)
2. For i = I grp(n — 1) | *n to m
3. If M[[i/n\][i modn] ¿ NULL
4. Let W[i] = M[[i/n\][i mod n]
5. Else
6. Let W[i] = rep(M[[i/n\}[i mod n})
7 . Return per ( W, kp )

grp(mas"1(0)) grp(mas" (9))

seq(O)

seq(|grp(mas"1(9))|)

Figure 5: An example of embedding watermarks with Algorithm 5

34



be found in the left part. As to the left part, since the shifting replacement rule is circular,
the algorithm can continue until all tuples in the left part are exhausted. However, if the
left half runs out of tuples before the algorithm processes all the tuples except those in
the last sequence, then the algorithm will terminate without producing the desired result.
Therefore, we need to prove that the left part will never run out of tuples before the right
part does. We use mathematical induction on the index of incomplete sequences.

1. Base case: Unless the first incomplete sequence coincides with the last, by the defi-
nition of the master order function, we have that for any complementary positions a

and b (a < 6), | grp(mas~1(a)) \>\ grptmas'1 (b)) | must hold, so the result holds
for the base case.

2. Inductive case: The inductive hypothesis is that after constructing ? pseudo-complete .

sequences, if we can still have | grp{vaas~x (a)) |>| grp{mas~l{b)) |, then it will
remain true after constructing ? + 1 pseudo-complete sequence.

Consider the following cases.

(a) If in the current sequence, no tuple in grp(mas~1 (a)) and grplmas'1^))
will be chosen to replace others, then each group will just need one tuple, so
I grp(mas~1 (a)) |>| grp{mas~^ (6)) | is true.

(b) If there is an complementary replacement in the two groups, then | grp(mas~l (O))
0 must be true; therefore, | grpímas'1 (a)) |>| grpfaas"1 (b)) | holds.

(c) If there is an shift replacement, and if we use a tuple in grp{mas~x (a)) to
replace some other position, then we should also use tuple in grp(mas~l (b))
to replace the complementary position, unless grpfaas'1 (6)) is empty. There-
fore, group grp(mas'1 (O)) will never need less tuples than group grplmas'1 (a)),
and I grp{mas~l{a)) |>| grp(mas~l\b)) \ is thus true.
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(d) Since adding both sides of the inequations in above cases 2 and 3 will not
change the direction of the inequality, any combination of shift replacements
and complementary replacements will satisfy I grp(mas~l (a)) |>| grp(mas~l [b))

Therefore, after constructing n+1 pseudo-complete sequences, the left part will have
more tuples than the right part.

This concludes the proof. ?

4.3.2 Verification

The first step of verification procedure is the same as it in algorithm 1. The user keeps two

keys kh and kp. Firstly, user uses the key kp to recover tuples' order in watermarked table.
From this received watermarked table, user can get the master order function. Then user

maps each sequence index to a new value according to the master order function, and get
the current table's sequence indices. Then user construct the expected sequence indices and
compare them to detect and locate attacks. The difference between these two algorithms is
the construction method for expected sequence indices.

Algorithm 6 describes the verification algorithm for this method. For complete se-
quences, the construction of expected sequence indices is the same as in the special case.
Line 1 calls the VerjComplete function to compute expected sequence indices and current

sequence indices for complete watermark sequences. Line 3 and 5 compute all the tuples'
sequence indices and group indices in the incomplete part, and place these tuples into M.
Line 6 to Line 10 use the current table's information and watermark embedding method to

construct expected sequence indices. For each position i in complete watermark sequence
in M, if current position has a tuple, we compute this tuple's sequence index and place it
into I. Otherwise, we will find another sequence index that satisfy the replacement rule and

put it in /. After the construction, we regard the tuples' sequence indices in current table
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L and the expected sequence indices / as two strings, and use the LevenshteinDistance
function to localize attacked tuples. In this algorithm, when we use Levenshtein distance
to locates attacks' set, the worst-case complexity is 0(m2), so the verification algorithm's
time complexity is 0(m2).

Algorithm 6 Algorithm Ver_Alg2

Input: The disclosed table U, module n, key kh and kp
Output: Attached tuples
Method:
1. Ver_Complete(U,n,kh,kp)
2. j = q * ? Il q is the complete sequence number
3. For i = j to I V I // V is the watermark table
4. Let L[i] = mas(sid(V[i]))
5. Let M[gid(V[{\)}[mas(sid(V\i}))} = V[i]
6. For i = j to I V I
7. lïM[\i/n\][i mod ?] f NULL
8. Let I[i] = mas{sid{M[\i/n\}[i mod n}))
9. Else
10. Let I[i] = mas(sid(rep(M[[i/n\][i mod n])))
11. Return LevenshteinDistance(I , L)

4.4 Algorithm 3

For complete watermark sequences, we can construct expected sequence indices without
current table's information. However, with algorithms 1 and 2, the expected sequence

indices are deduced based on actual tuples. Therefore, the resulted expected sequence
indices may be different from the actual ones, and the verification result will be negatively
impacted. Therefore, for the next algorithm, we extract information, such as the length and
number of sequences with the same length, about the incomplete watermark sequences and
then embed such information separately into the table in a way similar to that of embedding
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the master order.

4.4.1 Embedding Auxiliary Information

We first discuss the method for embedding auxiliary information, such as the length of an

incomplete sequences. The embedding method is similar to that of embedding the master
order. Specifically, we can imagine a large array of sequences E each of which is a permu-

tation over o integers {0,l,...,o-l}. We can then embed an integer j (j G [0, o!) ) by
re-arranging the first o tuples in table W such that their sequence indices form the sequence
E[J]-

Definition 13 Denote by y, o, and r three integers. Define a function emd(.) that embeds
y into a table ? of o * r tuples. Each of the o tuples in ? are arranged with the sequence
indices ordered as E[y], where E is a publicly known array, and repeatedfor r times.

For example, suppose E = (t0,ti, . . . ,in) where o = 3, r = 4, E[y] = (0,2, 1). We
have that E(x, y, r) = {to,t3,t6,t9,t2,t5,t8,tn,t1,t4,t7,tw).

We shall denote the auxiliary information to be embedded, which is a set of integers,

by kr; for each integer i E kr, we map it to the order E[i], and we then use the function
E(x,j, r) to reorder tuples in W based on E[i\.

4.4.2 Watermark Embedding

When we convert all tuples from G to the two dimensional array M, we can obtain |
grp{mas~l{n — I)) | complete watermark sequences and place them directly into the wa-
termark table W. For each of the remaining incomplete watermark sequence in M, the
sequence indices are continuous and start from 0, so we only need to keep the size of each
incomplete watermark sequence. Users can deduce each sequence's expected sequence in-
dices. We define the auxiliary information kr as two arrays, len storing the different sizes
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of incomplete watermark sequences and num storing the number of sequence with this
size. We need to embed kr by the method we discussed above.

Algorithm 7 describes the watermark embedding for kr in table W. We choose each o*r
tuples as the table x. Line 1 embeds the length of | kr | by the function emd(W [0, ... ,o*
r - 1], I kr I, r). Line 3 to 6 embed each value in array len and num. In this function,
E, o and r are public information. The time complexity for this algorithm is also O (to),
depending on the micro-data table's size to.

Algorithm 7 Algorithm Emd_Ref

Input: Watermark table W, kr
Output: Watermark table W with kr embedded
Method:

1. Let W[O, . . . ,o *r - 1} = emd{W[0, . . . ,o * r - l},\ kr \,r)
2. j = o * r
3. For i = 0 to I kr \
4. Let W[j, ...,j + o*r-l] = emd(W[j, . . . , j + o * r - 1], len[i],r)
5. Let W{j + o * r, . . . , j + 2o * r - 1] = emd(W[j + o * r, . . . , j + 2o * r - l],num[i\,r)
6. j = j + 2o * r

Algorithm 8 describes the watermark embedding algorithm for this method. Line 1
calls the Emd_complete function and gets | grpfaas'1^ — 1) | complete sequences.
Then for the incomplete part, Line 3 to 6 place them into W row by row, and collect the
auxiliary information kr. Then we call the Emd_Ref function to embed kr into W. Line

8 permutes table M by key kp, which can be disclosed.

4.4.3 Watermark Verification

The first step of verification procedure is the same as in the first method. The user derives

the key kp from kh. Firstly, users use the key kp to recover tuples' order in watermarked
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Algorithm 8 Emd_Alg3

Input: Original table T, module n, key kh and kt
Output: Table to be disclosed
Method:

1. Emd_Complete(T, n, kh, kp)
2· i — \ 9rP(n — 1) I *n
3. For i = I grp(n — 1) | to | grp(0) \
4. For k = 0 to | seq(i) \ -1
5. Let W[j] = M[i][k]
6. j=j + l-
7. Emd_Ref(W)
8 . Return per(W,kp)

table. Then from the received watermarked table, users can get the master order function

and kr. Then users map each sequence index to a new value according to the master order
function, and get the current table's sequence indices. From kr, users can construct the
expected sequence indices, then users compare them to detect and localize attacks.

Algorithm 7 describes the method for user to obtain Jt7.. Line 1 gets the length of kr.
Then for each o * r tuples, users use the emd~l function to get len and num. As some
tuples in this part may be attacked, users use the majority voting scheme to decide the most
plausible result. Then users compute this part's expected sequence indices from kr place
them in /.

Algorithm 10 describes the watermark verification algorithm for this method. In com-
plete sequences, the construction method for expected sequence indices is the same as in
the special case. Line 1 calls the VerjComplete function and gets expected sequence in-
dices and current sequence indices for complete watermark sequences. Line 2 calls the
Ver_Ref function and gets kr from table V. Then users can compute expected sequence
indices from kr.

For the incomplete part, we do not use the current table's information to construct
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Algorithm 9 Algorithm Ver_Ref

Input: Watermarked table V
Output: Auxiliary information kr
Method:

1. \kr\=emd-1(W[0,...,o*r-l])
2. j — o * r
3. For i = 0 to I kr \
4. Let len[i] = emdr1{W[ji . . . , j + o * r - I])
5. Let num[i] = emd~1(W\j + q*r,...,j + 2o* r - I])
6. j = j + 2o * r
7. Let /[0, . . . , o * r - 1] = sid(emd(W[0, . . . , o * r - 1], | kr |, r))
8. k = o * r
9. For ? = 0 to I ¿v I
10. Let I[k, ...,k + o*r-l] = sid(emd(W[k, . . . , k + o * r - 1], Zen[¿], r))
11. Let I [h + o * r, . . . , k + 2? * r - 1] = szcZ(emd(iy[fc + o * r, . . . , k + 2o * r - 1]

, ratra[¿],r))
12. k = k + 2o*r

expected sequence indices, but use kr instead. Each value len[i] indicates the sequence size
to be len[i], and there are num[i] such sequences. The sequence indices for a sequence with
size len[i] are: (0, . . . , len[i] - 1). so we can compute all the expected sequence indices.
After construction, we consider the tuples' sequence indices in the current table and the
expected sequence indices / as two strings, and use LevenshteinDistance function to
localize attacks. In this algorithm, when we use Levenshtein distance to locates attacks'
set, the worst-case complexity is 0(m2), so the verification algorithm's time complexity is
0{m2).
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Algorithm 10 Ver_Alg3

Input: Disclosed table U, module n, key kh and kp
Output: Attached tuples
Method:
1. Ver_Complete(U, n, kh, kp)
2. Ver_Ref(V) // V is the watermark table
3. j = ? * ? // ? is the complete sequence number
4. For i = j to I V I
5. Let L[i] = mas(sid(V[i}))
6. For i = 0 to I kr \
7. For k = 0 to num[i]
8. For/ = Oto len [i]
9. Let I[j] = I
10. j = j + 1
11. Return LevenshteinDistance(I , L)

4.5 Handling Updates

In this section, we explain how to insert, delete or modify a tuple by the owner or authorized
user. When a fragile watermark already exists in the table, it may need to be changed
when the current table is updated. If we simply rebuild all watermarks, then if the owner
or authorized user need to frequently update the table, then the cost will be prohibitive.
Therefore, we propose algorithms to address this issue. As modifications can be considered
as pairs of insertions and deletions, we only discuss insertion and deletion.

4.5.1 Insertion

In the special case, which means all the tuples are in complete sequences, users only need to
be add new tuples to the end of the table. For the general case, consider the three different
algorithms presented above.

1 . For the first method, suppose a tuple t is inserted. We firstly compute mas(sid(t)) =
? and then search from the beginning of incomplete sequences to find the position
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where the length indicator tuple's sequence index is equal to ? — 1. Then we insert t
into this sequence as the new length indicator and re-arrange the remaining tuples in
this sequence.

For example, suppose the current incomplete watermark sequences' sequence in-
dices are: (5, 0, 1, 2, 3, 4), (4, 0, 1, 2, 3), (3, 0, 1, 2), (2, 0, 1). Suppose a user wants
to insert t (mas(sid(t)) = 4). So we search and find a length indicator tuple with
sequence index 3. Then we insert t into this sequence and re-arrange the tuples as:
(5, 0, 1, 2, 3, 4), (4, 0, 1, 2, 3), (4, 0, 1, 2, 3), (2, 0, 1).

2. For the second method, suppose a tuple ta (mas(sid(ta)) = x) is inserted. If we put
ta at the end of the table, it may cause a conflict with the current replacement rules
since the rules may assume this sequence index will not appear at this position. We
should put the tuple into the first sequence where grp^as"1 (x)) is empty. Suppose
in this sequence, we put tb at position x. Then we put ta at this position, and tb should
then be put into the first position where grp(sid(tb)) runs out of tuples.

For example, suppose the current incomplete watermark sequence indices are: (0, 1, 2, 3, 4, 5),
(0,1,2,3,4,0), (0,1,2,3,1,2). A user wants to insert ta (mas(sid(ta)) = 5). So
we search the sequences and find the first position where grp(mas~1(5)) is empty,
and put ta there. For the tuple with sequence index 0, which is put into position
5, we place it at the position where grpijnas^1 [U)) is empty. So the result will be
(0, 1, 2, 3, 4, 5), (0, 1, 2, 3, 4, 5), (0, 1,2,3,1, 0), (2).

In some special cases, the insertion will destroy the current master order. That is, for
two groups, I grpfaas'1 (x)) \>\ grpimas'1 (y)) \ is true and the insertion changes
this inequation. In this case, we will have to change the master order function and
re-arrange all the tuples in the table.

3. For the third method, the insertion method is same as with algorithm 1, suppose
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a tuple t (mas(sid(t)) = x) is inserted. We search from the beginning of in-
complete watermark sequences and find the position where we run out of tuples in
grp(mas~1(x)). Then we insert t into this sequence and modify the kr.

For example, the current incomplete part's sequence indices are (0, 1,2,3, 4, 5), (0, 1,2,3,4),
(0,1,2,3), (0,1,2), Av = (6,1), (5,1), (4,1), (3,1). A user wants to insert t (mas(sid(t)) =
4), so we search and find the first position where grpfaas'1 (4)) runs out of tuples.
Then we insert t into this sequence and change kr. So the result is (0, 1, 2, 3, 4, 5),
(0, 1, 2, 3, 4), (0, 1, 2, 3, 4), (0, 1, 2), and kr = (6, 1) (5, 2) (3, 1).

4.5.2 Deletion

In the special case, if a user wants to delete a tuple from a complete watermark sequence,
this sequence will be destroyed. Therefore, the user must find a tuple with the same se-
quence index from the last sequence, and insert it into the position where the tuple is
deleted. In the general case, we use the following methods to delete a tuple by consid-
ering the three different algorithms separately.

1. For method 1, if a tuple ta (mas(sid(ta)) = x) is deleted, we can find the last tuple
tb in group grp(mas~l (x)) and put it into the deleted position, and then re-arrange
the sequence in which tb is included.

For example, the current incomplete watermark sequences' sequence indices are:
(5, 0, 1, 2, 3, 4), (4, 0, 1, 2, 3), (3, 0, 1, 2), (2, 0, 1). Suppose a user wants to delete ta
(mas(sid(ta)) = 4) and ta is in the first sequence. So we choose the last tuple tb with
sequence index 4 and put it into the first sequence, and then re-arrange the sequence
where i6 is located. So the result is (5, 0, 1, 2, 3, 4), (3, 0, 1, 2), (3, 0, 1, 2), (2, 0, 1).

2. For method 2, if a tuple ta (mas(sid(ta)) = x) is deleted, we can find the last tuple
tb with sequence index ? and put it in ia's position. We then find another tuple tc

44



(mas(sid(tc)) = y) to replace tb.

For example, the current incomplete watermark sequences' indices are (0, 1,2,3, 4, 0),
(0, 1, 2, 3, 4, 0),(0, 1,2,3, 1,0), (0). Assume a user wants to delete ta (mas(sid(ta)) =
4) and ta is located in the first sequence. So we find another tuple with sequence in-
dex 4 from second sequence to replace it. Then in the second sequence, we run out of
4, so we have to use a tuple with sequence index 1 from the third sequence to replace
it; we then run out of 1 , so we need to use a tuple with sequence index 0 to replace

it. Eventually, the result is (0, 1, 2, 3, 4, 0), (0, 1, 2, 3, 1, 0), (0, 1, 2, 3, 0, 0).

3. For method 3, the deletion method is also the same as that for method 1. Suppose a

tuple ta (mas(sid(ta)) = x) is deleted. We find the last tuple with sequence index ?
and put it into the deleted tuples' position, and then we modify kr and re-embed it.

4.6 Multi-Level Watermarking

In this section, we introduce a multi-level extension to increase the detecting probability.
The first level of watermark embedding is already introduced above. For the second level,

we use the following interleaved method.

In the basic scheme, we use the HMAC function with a key kh to compute the keyed

hash value for each tuple, which is then modulo with an integer n. After the re-ordering
at first level, all tuples are divided into groups with the same sequence indices. However,
among tuples inside each group (not sequence), there is essentially no order. Therefore, the
second level of watermarking works inside these groups. Specifically, for all tuples inside
each group, we use a new sequence position function sid(t, khi) to re-hash them by kh> and
modulo the result with an integer n'. Then we reorder within each group according to the
results. For the incomplete watermark sequence, the embedding method will be the same
as for the first level.
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Figure 6 shows an example for the interleaved algorithm, ??, t2, t3, . . . , i24 denote tuples
in a micro-data table. We use n=4 for the first level and n'=3 for the second level. t¿ (X1 , X2)

means a tuple U with an index X1 for the first level and x2 for the second level.

Sequence in first level

t9 1,0 tl2(3.0)

t8 1,l ri tl3 2,1t7 0,l t3(3.1)

tl9 1,2 t22,2tl7 0,2 t43,2

t23 1,0 tl02,0t6(0,0) tl8 3,0)

tl61,ltil O1I t21 3,1t20(2,l)

t241,2) tl5 2,2t22(0,2) tl4(3,2

Sequence in second level

Figure 6: example-Interleaved

The two-level watermarking scheme will increase the detection probability since an
attacked tuple must happen to have the same sequence index for both levels at the same
time, which has the probability 1 - 1/?? ¦ n2. The detection probability for modifying I
tuples is thus 1 — (1/ni · ?2)1.

In theory, we can certainly repeat the same methodology to have the three and more
levels of watermark embedding. For example, the third level will be to reorder those tuples
with the same sequence indices for both the first and second level. However, since the em-
bedding will be over a smaller and smaller number of tuples, it would become increasingly
difficult to have complete sequences, and therefore the effectiveness will also decrease. In
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practice, the optimal number of levels will depend on the size of micro-data tables. We
shall investigate the effectiveness of two-level watermark embedding in the next section
through experiments.
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Chapter 5

Experiments

We have implemented and tested the performance of our proposed techniques on machines
equipped with Intel Pentium M 1.80GHz processor, 1024MB RAM, and Windows XP
operating system. The main objective of the experiments is to compare the performance of
different embedding schemes, to find the optimal parameters such as the modulus, and to
evaluate the false positives and false negatives. We use the popular Adult Data Set taken
from the UCI data repository [7].

5.1 How to Choose Modulus ?

When we choose the modulus n, there are several aspects that need to be considered: The

detection probability, the number of complete sequences, and the tuples that are used for
storing the master order and auxiliary information. A big ? leads to better detection prob-
ability but reduces the complete watermark sequences's number and also requires more
tuples to keep the master order.

Figure 7 shows the percentage of tuples of complete watermark sequences in different
module n. Here we obtain our data from the Adult dataset of UCI with 15,000 tuples,

and we vary ? from 10 to 1, 000. For each n, we try different value of key kh to get the
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Figure 7: Percentage of Complete Sequences

maximum number of complete watermark sequences. From this graph, we can see when
? = 1000, there are only 30% of tuples in complete watermark sequences, which is about
5 sequences.

In our algorithm, we need complete watermark sequences to embed master order and
auxiliary information for method 3. Suppose we repeat each embedded integer 5 times, then
at least we need more than 5 complete watermark sequences to embed all the information.
Therefore, we should have ? no more than 700. Besides, when ? is small, the detection

probability is negatively impacted. Therefore, in the following experiments, we choose ?
in the range [50,700].
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5.2 Attacks in Complete Sequences

In this section, we study the localization capability in complete watermark sequences. We
consider two aspects: The false positives in the number of tuples and the false negatives.
We still use the same micro-data table with 15, 000 tuples, with varying n. For each n, we

only choose the complete watermark sequences. Suppose the number of attacked tuples
is I = 50. We consider the following attacks: Modification, deletion, insertion, and the
combination of these.

Figure 8, 9 depict the false positive and false negative results for complete watermark
sequences. The x-axis is the modulus n, and the y-axis the false positive and false negative
results.
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Figure 8: False Positives for Complete Sequences

From the results, we can see the false positives and false negatives for modification
and insertion are not significant. For combination attacks and deletion, the false positive
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and false negative results are not as good (especially for deletion). From the algorithms,
we can see that the localization for combination attacks will be less effective than that for

known-type attacks since less information is available. So it is not surprising to see that
combination attack's results are indeed worse than that of single known-type attack.

In our experiment, we repeat the master order for 5 times. So in the first 5 complete
watermark sequences, each 5 tuples will have the same sequence index. This master order
embedding method will weaken the localization capability, especially for deletion attack.
The reason is the following. In the first 5 complete watermark sequences, when a tuple is
deleted, we can detect and localize the deletion to be inside the five tuples, but we cannot

exactly pinpoint which one is really deleted.
Moreover, in this experiment, we only choose complete watermark sequences from

the micro-data table, so the first 5 complete watermark sequences may comprise a high
percentage among all sequences. Therefore, the deletion attack's localization results are
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worse than others. However, since our purpose for localization is to eventually obtain the
intact tuples from an attacked micro-data table so the tuples can still be useful, we consider
the localization of deleted tuples to be of less importance.

5.3 Attacks on Different Algorithms

In this part, we compare the localization capability for different algorithms. We still use the
micro-data table with 15, 000 tuples, and we choose the number of attacked tuples I = 50
and the modulus ? in range [50, 700].

Figure 10, 11, 12, 13, 14, 15, 16, 17 show false positive and false negative results for
modification, deletion, insertion, and the combination of these attacks. In each chart, we

compare the results between the three different methods.
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Figure 10: False Positive for Modification

From these results, we can conclude that, method l's localization capability is much
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Figure 14: False Positive for Insertion
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Figure 17: False Negative for Combination

worse than that of other methods. Method 3 overall yields the best results. The results for

method 3 are close to the results in complete watermark sequences. In method 3, the main
factor that affects the localization capability is still the tuples that are used to embed the
master order.

Comparing the results in method 3 and those of complete watermark sequences, when
we both attack 50 tuples, in complete watermark sequences, we can see that there are more
attacks located in the first 5 sequences. Therefore, for deletion attack, method 3's false
negative result is even better than that in complete watermark sequences.

Also, for method 1 and method 2, a big modulus ? will affect the expected sequence
indices, and the localization results will also be affected. Therefore, when using these two

algorithms, we should not choose a large n.
Now we compare different attacks on algorithm 3. For modification attack and insertion

attack, when ? increases, the detection probability increases as well, so the false negative
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result will be better. However, when ? increase, more tuples are needed to embed master

order, so the false negative results for deletion attack and combination attack will get worse.
Therefore, ? cannot be either too small or too big. Through these experiments results, we

choose ? = 400 for method 3.

5.4 Localization Capability

From previous experiments, we find that method 3 has the best localization capability. So
we test the boundary of this method's localization capability as the maximum number of
attacks that this method can handle. We choose the modulus ? = 400, and try different

number of attacks L We only test combination attack.
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Figure 18: Attacks for Method 3

Figure 18 shows the localization results for different / in combination attack with
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method 3. The x-axis is the number of attacked tuples. The two y-axis are false posi-
tives and false negatives. We choose I from 50 to 180. When I > 180, we cannot get right
master order and auxiliary information so we cannot carry out localization at all. When
Z < 180, method 3 can get good localization results.

5.5 Multi Level

Figure 19 describes the percentage of complete sequences with the two-level embedding
scheme. The x-axis is the first level's modulus Ti1. When we have two levels, in order to

get more complete watermark sequences, the two levels' modulus cannot be too big. So in
the first level, we choose n\ in range [0, 500]. Besides, the second level's modulus n2 must
be less than p? so we choose n2 = 10. From this figure we can see that when U1 > 300,

we essentially cannot get any complete sequence at the second level.
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Figure 19: Complete Percentage for Second Level
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The previous experiment with complete watermark sequences shows that the false pos-
itive results are good. Besides, our localization objective means the false negative results
are relatively more important. So for the two level scheme, we shall only compare the false
negative results between different methods.

Figure 20, 21, 22, 23 compare the false negative results for single level and two-level
scheme. We still use the micro-data table with 15, 000 tuples, and choose the second level's
modulus n2 = 10, and the number of attacks I = 50. The x-axis is the first level's modulus

U1, chosen from [0, 250]. The y-axis is the false negative results.
We compare the three single known-type attacks and the combination of these attacks.

We only consider the special case that, in both levels, all tuples are in complete watermark
sequences so we do not embed the master order. The figures show, for all types of attacks,
the two level's model can get less false negative tuples than single level scheme does.
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Chapter 6

Conclusion

In this thesis, we have discussed the issue of tamper detection and localization in disclosed
micro-data tables. We introduced a series of methods to ensure the integrity of micro-data

tables. In addition to the basic scheme for complete sequences, we designed three different

algorithms to embed watermarks for incomplete sequences, based on the order of tuples.
For each of these algorithms, we give verification algorithms to detect and localize attacked

tuples. In this thesis, we have considered different types of attacks and combinations of
attacks, all of which can be addressed by our proposed watermarking algorithms.

Compared to other signature and Merkel Hash Tree-based methods, our methods will
not require the sever to keep any additional information, such as signatures, so the storage
requirement is significantly reduced. Besides, our watermarking methods are based on
hash functions, which is more efficient than public-key cryptographic methods. Compared
to other existing watermarking-based integrity methods, our proposed scheme hashes each
tuple independently, so attacked tuples can potentially be localized to the granularity of a
single tuple.

Our experiments compared the proposed algorithms. The results show that our method
can provide an acceptable rate of false positives and false negatives. Our future work
include the study of other applications of the order-based watermarking techniques. Also,
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we would like to study more efficient methods for handling updates when the multi-level
watermarking scheme is in place. Finally, we plan to investigate the performance of the
proposed methods on different sizes of databases to find an optimal way to choose the
modulus parameter.
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