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Abstract

The Regulation of Skeletal Muscle Growth via the Myostatin Signalling Pathway
Mohammad Al Khalaf

Myostatin (Mstn) is a negative regulator of skeletal muscle fibre size and satellite

cell proliferation whose role in mature fibre compensatory growth has not been fully

characterized. Myostatin knockout (Mstn-/-) mice display consistently larger skeletal

muscle masses, as well as an overall increase in size and number of myofibres within the

muscle, compared to the wild-type mice. Previous research has shown that Mstn plays a

major role in the attenuation of both the hypertrophic and hyperplasic pathways of

myofibre growth. Immunohistochemical staining of overloaded plantaris muscles was

performed to analyze phenotypic and morphological changes in wild-type and Mstn-/-

muscles. Preliminary results of these analyses indicated a tendency for muscles from

Mstn-/- mice to express an increased number of myofibres, whereas muscles from

Mstn+/+ mice tended to display hypertrophied pre-existing mature myofibres as a

response to the overload stimulus. Additionally, using semi-quantitative PCR and western

blotting, changes were monitored, in mRNA transcripts and protein expression levels, for

some of the major factors involved in muscle growth signalling. Our preliminary results

also showed altered expression of genes and proteins that ultimately translate to increased

satellite cell proliferation and maturation in Mstn-/- muscles. Taken together, myostatin' s

effect on muscle is most apparent in attenuating the hyperplasic growth response in

stimulated muscle, and not the hypertrophic signalling pathway. This is the first in vivo

study to specifically look at the function of myostatin in muscles that are induced to grow

by means of functional overloading.
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1.1: Muscle Structure

The human body is made up of approximately 40% muscle by weight (Gallagher

et al., 1997). Muscle tissue is grouped into three major categories; cardiac muscle,

smooth muscle and skeletal muscle. Cardiac muscle makes up the walls of the heart and

is involuntarily regulated. Smooth muscle is located in the walls of hollow internal

structures such as blood vessels, the stomach, intestines, and urinary bladder, and again it

is mostly involuntarily regulated in the body. Skeletal muscle is primarily responsible for

generating the voluntary movements the body is capable of performing. It is made up

mostly ofmyofibres, as well as connective tissue that make up the tendons (Kääriäinen et

al., 2000). Myofibres are multinucleated, resulting from multiple myoblasts fusing

together during the maturation process to form the long myofibres that make up muscle

tissue. The basic functional unit of myofibres is called the sarcomere, a short repeating

unit made up primarily of myosin and actin proteins that can fold onto each other to

contract the sarcomere (see Figure 1.1). This allows for overall myofibre shortening in

length, executing the basic function of a muscle that allows for movement.
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Figure 1.1: Skeletal Muscle structure diagram. Modified from: Essentials of Anatomy
and Physiology, Elaine Marieb, 8th Edition

Myofibres are classified by the types of myosin heavy chain isoforms they

express within their sarcomeres. There are different classifications for these proteins. The

simplest form categorizes the myosin heavy chain proteins as slow twitch or fast twitch,

slow twitch being the isoforms that employ an oxidative metabolic pathway for

generating adenosine triphosphate (ATP) for energy, while the fast twitch proteins

employ a glycolytic metabolic pathway for generating ATP for its use (Handschin et al.,

2007). The oxidative pathway is initiated during aerobic respiration, meaning oxygen is

utilized, with glucose, to produce ATP, as well as carbon dioxide and water as by-



products. This pathway is carried out in the mitochondria within cells, and this explains

why slow twitch fibres are rich in mitochondria and are therefore characterized by the

red-colored myoglobin content that is sometimes used to describe the tissue. The

glycolytic pathway is initiated during anaerobic respiration, meaning glucose is

metabolized to pyruvate, and the energy released from that reaction is used to produce

ATP for energy. This reaction could occur without the involvement of oxygen in the

cytoplasm, and under anaerobic conditions will produce lactic acid to replenish depleted

nicotinamide adenine dinucleotide (NAD+). While this form of metabolism is faster in

producing ATP for the myofibre to use, it produces only a fraction of the amount of ATP

that the body produces using aerobic respiration. Therefore, the fast twitch fibres are also

known as fatigue-prone cells, showing great contractile force, but for only short periods

of time (Girgenrath et al, 2005).

Myosin heavy chain (MyHC) proteins, which make up the myosin heads on the

overall myosin protein, have at least four major types of isoforms that are expressed in

the sarcomere mature myofibre. Those isoforms are named: 1 (the slowest type of

MyHC), IIA, HX and IIB, (the fastest type of MyHC), (Dunn et al., 1999). Myofibres that

are characterised as "slow-twitch" express MyHC I isoform, while the fastest "fast-

twitch" fibres express MyHC HB. However it is observed constantly that fibres can co-

express some of the isoforms (Michel et al., 2007), such that a myofibre expressing both

MyHC I and IIA, or MyHC HX and IIB, in an attempt to fine-tune the myofibre, and

ultimately the overall muscle, to be in a position to have optimal energy consumption.

There are various pathways that regulate the expression of the different myosin heavy

chain isoforms as well as overall muscle mature size and growth rate.
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Skeletal muscle applies two different mechanisms for repair or growth, named

hypertrophy and hyperplasia (Joulia-Ekaza et al., 2006). Hypertrophy is the mechanism

in which existing muscle fibres grow bigger in diameter and hence total volume causing

the overall muscle to increase in mass. The increase is measured as cross-sectional area,

where the area of the muscle fibre is increased as a result of higher protein production

leading to larger size and increased number of myofibrillars (see Figure 1.1). Much of the

early research reports that myostatin null animal models display a marked muscle

hypertrophy. Hyperplasia is the mechanism in which new muscle fibres are formed,

increasing the overall size of the muscle tissue by adding newly formed myofibres (Seale

et al., 2000). Hyperplasia occurs by activating muscle progenitor cells known as muscle

satellite cells. These cells are stem-like in nature, they are held in a quiescent form in

adult muscle tissue, and when activated, they proliferate, differentiate and fuse to form

new myofibres (Le Grand et al., 2007). Recently a new protein called myostatin was

discovered to have a key role in how muscles grow. It has been shown to have an

inhibitory effect on muscle hypertrophy and hyperplasia, and thus it has become vital to

furthering our understanding of this protein so that muscle related diseases and

syndromes can be better diagnosed and treated in the future.

1.2: Myostatin Gene and Protein

Growth/Differentiation Factor-8 (GDF-8) is a protein first discovered and

identified in 1997 by the team of Dr. Se-Jin (McPherron et al., 1997). Using degenerate

polymerase chain reaction they identified the sequence of GDF-8 and its similarity to

other members of the Transforming Growth Factor-ß (TGF- ß) superfamily of proteins.

The role of GDF-8 was qualitatively determined by generating mice models with a
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disruption of the gene encoding this protein. The results showed that overall body mass

was increased by 30% and that skeletal muscles were the sole contributor to this increase,

showing an increase in muscle mass of 2-3 fold, irrespective of age or gender (McPherron

et al., 1997). These authors showed GDF-8 to be expressed in early embryogenesis stages

and mostly in adult skeletal muscle, with some detectable amounts in adipose tissue. Dr.

Se-Jin Lee coined this new protein by the name of myostatin since it was clear that its

function seemed to be primarily as a negative regulator of muscle growth (McPherron et

al., 1997).
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Figure 1.2: Myostatin protein processing into its active conformation. Modified from:
Rogers et al., 2008

Myostatin mRNA is translated into a 53 kDa protein containing 376 amino acids

(McPherron et al., 1997; Kocamis et al., 2002). It is secreted from the cell to affect

adjacent cells. Therefore, it is identified as a paracrine hormone (Favier et al., 2008). It is

proteolytically cleaved at a site close to its C-terminus, seen in Figure 1 .2, producing a

short active form of the peptide and a long inhibitory pro- peptide domain, with the

shorter peptide homodimerizing to generate its final active state (McPherron et al., 1997;

Kocamis et al., 2002; Armand et al., 2003). Figure 1.3 illustrates the active homodimer
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and the inhibitory site of the pro-peptide domain of the protein. Myostatin is conserved

across many species, showing high degree of homology between human, murine, rat,

porcine, chicken, and turkey sequences (McPherron et al., 1997, Kocamis et al., 2002).

Myostatin null mice show myofibre cross sectional area (CSA) increases of

approximately 50% for the gastrocnemius muscle of 1 0 week old mice as an example

(Lee, 2007). Total body fat also steadily decreases over time as Mstn ~'~ mice age, even
though metabolic rate is reduced and food intake unchanged (Joulia-Ekaza et al., 2006),

as tested by monitoring blood serum levels of leptin, a biological marker for total body

fat accumulation. This could imply other roles for myostatin in the body, not only in

skeletal muscles. Some of the research in the field that is looking at myostatin's role in

adipose tissue, for example Dr. Mehan's group (Allen et al., 2008), show that there are

several questions pertaining to myostatin-signalling in adipose tissue. Using obese mice

as a model, they looked at levels of myostatin, activin receptor HB and Follistatin-like

gene 3 (FSTL3), three major components of the myostatin pathway, in visceral and

subcutaneous fat tissue. Their results showed that compared to wild-type levels,

myostatin and activin receptor HB levels increase in VSF and SQF while FSTL3 levels

decrease in obese mice, suggesting a role for myostatin in inhibiting the overall basal

metabolic rate of the body, which is a cause of obesity (Allen et al., 2008).
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Figure 1.3: Summary of known signalling pathway initiated by myostatin. Modified
from Joulia-Ekaza et al., 2006

The myostatin homodimer binds to a serine-threonine receptor kinase known as

activin receptor IIB (ActRIIB) that initiates intracellular signalling involving Smad

proteins (Baumann et al, 2003). The name of this class of proteins comes from the fact

that they are homologs of a protein found in C. elegans named SMA and a protein found

in Drosophila named mothers against decapentaplegic protein MAD, therefore the

acronym SMAD was coined. The receptor is found on the cell membrane of myofibres,

and is named after another GDF protein called activin, a protein first discovered to have a

role in the development of the pituitary follicle-stimulating hormone in the reproductive

axis. It has also been shown more recently to be involved in neuron development (review:
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Tsuchida et al., 2008). After that pathway was elucidated, myostatin binding to the

receptor was reported, which explains the non-related name of the receptor to myostatin.

Binding of the myostatin homodimer to ActRIIB causes it to associate with activin

receptor-like kinase 4 (ALK4) receptor, which then gets trans-phosphorylated from

ActRIIB, allowing it to phosphorylate Smad2 and Smad3 (Joulia-Ekaza et al., 2006).

Smad proteins are described as intracellular mediators. They become phosphorylated by

the receptor kinases and start a cascade of secondary and tertiary messages that

activate/deactivate specific nuclear transcription factors that affect gene expression in

muscles (Joulia-Ekaza et al., 2006). Myostatin activates Smad2 and Smad3 which

dimerize and can sometimes interact with co-Smad4 which potentiates the signalling

(down-stream of 2/3). Smad7 and small ubiquitination regulatory factor 1 (Smurfl) are

inhibitory smads to this pathway and myostatin is shown to induce expression of Smad7

causing a self-inhibitory feedback loop to be possible (Joulia-Ekaza et al., 2006).

For myostatin to be in its mature active homodimer, it must be proteolytically

cleaved by furin, seen in Figure 1 .2, a pro-protein convertase (Anderson et al., 2008).

There is not much known about the specifics of this pathway, but Dr. Whitman's group

(Anderson et al., 2008) published research showing some key events that occur in the

pathway leading to myostatin maturation. Using immuno-precipitation techniques, they

showed that when myostatin is first translated into the inactive full-length pro-peptide,

53kDa in size ( which they call pro-myostatin), it would bind to a protein called latent-

transforming growth factor ß binding protein 3 (LTBP3) in the endoplasmic reticulum. It

would shuttle the pro-myostatin to the Golgi and then out into the extracellular matrix.

There, LTBP3 would dissociate from the pro-myostatin peptide, which would then bind

9



to another pro-myostatin peptide forming a homodimer, and furin would cleave the N-

terminal pro-peptides, (4OkDa), from myostatin's C-terminal active site (26kDa) within

the homodimer (Anderson et al., 2008).

Myostatin's role in regulating muscle growth is being deciphered from many

angles, and progress is clear and promising. An important aspect to consider is that

myostatin has been shown to play a role in diseases such as AIDS, cachexia, scleraxis,

and fast-twitch myofibre atrophy disease (Kocamis et al., 2002, Baumann et al., 2003,

Mendias et al., 2008, Wojcik et al., 2008). In all of these diseases myostatin's serum

levels are increased leading to muscle wasting in humans. A study by Dr. Faulkner's

group (Mendias et al., 2008) also showed that myostatin-null mice showed muscles with

weaker, more brittle tendons than wild-types. However, no other group has reported the

same finding. As well, there is compounding evidence that shows knocking out myostatin

in the mouse model for Duchenne Muscular Dystrophy displays a rescuing effect

countering this muscle wasting disease (for review see: Haidet et al., 2008; Bradley et al.,

2008).

1.3: Myostatin Gene Regulators

Studies have been performed to analyze the molecules that regulate myostatin's

expression in muscle cells. It is known that myostatin is a negative regulator of muscle

growth, however what is the purpose of producing a protein with such a role? To

understand its purpose, one must examine the activators of this protein and identify the

origin of their signalling. Dr. Sharma's group studied the promoter region of the

myostatin gene in murine and cattle models. By designing various constructs of the

10



myostatin promoter region and linking them to a reporter (luciferase) and then injecting

these into the quadriceps ofmice, they were able to see how removing part of the

promoter would affect the expression of myostatin protein in vivo (Salerno et al., 2004).

This would help to identify certain regions of the promoter and to characterise the

molecule involved with that specific promoter region. Using this method, these authors

have identified regions for binding myogenic determination factor (MyoD) and Myocyte

Enhancing Factor (MEF2) to the promoter (Salerno et al., 2004). These two transcription

factors are both involved in muscle growth. They are upregulated when muscle fibres are

in the process of developing, therefore it follows that they also signal the upregulators of

myostatin as well since uncontrolled growth is detrimental to the body, wasting energy

and resources to build muscles that are unnecessarily large. Myostatin may have a role as

a molecular braking system to this acceleration of growth.

Other studies have also shown that the myostatin promoter has a binding region

for glucocorticoids, called the glucocorticoid response element region (Joulia-Ekaza et

al., 2006; Gilson et al., 2007). This feature explains the negative effects of injecting

glucocorticoids since glucocorticoids promote proteolytic pathway initiation in muscles.

The aforementioned group investigated whether myostatin gene deletion would lead to

less atrophy caused by glucocorticoid administration. The deletion prevented

dexamethasone-induced atrophy, characterised by measuring both muscle weight and

CSA ofmyofibres of Mstn -/- mice. The loss of functional myostatin also led to the

inhibition of Muscle -specific Ring Finger 1 (MuRFl), Atrogin-1, Forkhead box protein

3a (Foxo3a), and Cathepsin upregulation upon dexamethasone treatment (Joulia-Ekaza et

al., 2007). Cathepsin is a lysosomal enzyme known to be involved in degradative

11



pathways (Joulia-Ekaza et al., 2007). MuRFl and atrogin-1 are ubiquitin ligases that

target proteins for proteolysis (Joulia-Ekaza et al., 2007), while Foxo3a is a transcription

factor that regulates the expression of the genes encoding these two proteins (Joulia-

Ekaza et al., 2007). The conclusion from this paper is that myostatin is needed to induce

catabolic activity/proteolytic pathways in skeletal muscles.

1.4: Myostatin Antagonist: Follistatin

Most, if not all, proteins in vivo have antagonists that counteract or inhibit their

actions. In the myostatin signalling pathway follistatin plays this role, acting directly to

inhibit the myostatin pathway, by binding to myostatin and activin receptor HB (Lee,

2007). Follistatin is a protein, first identified as a secreted hormone from the gonads that

inhibits the actions of follicle stimulating hormone (FSH) during reproduction and

developmental processes in the body (for review see Lin et al., 2003). More recent

research has unrevealed a wider role for follistatin as an inhibitor to the TGF-ß

superfamily ofproteins. Se-Jin Lee reported that in mouse models that have myostatin

knocked out and follistatin over-expressed, the overall mass/size of skeletal muscle is

quadrupled compared to wild-type mice (Lee, 2007). Follistatin null mice show a 2-3

reduction in overall skeletal muscle mass. Dr. Chanoine's group was interested in

showing the reciprocal interactions between follistatin and myostatin (Armand et al.,

2003). In their study, they used denervation and injections of cardiotoxin, (a poisonous

compound found in cobra venom), to the soleus to test the levels of the mRNAs coding

for myostatin and follistatin over a number of days post-intervention. They showed that

while myostatin levels initially decrease presumably since the myofibres are atrophying,

there would not be much need to transcribe more myostatin, follistatin levels increased,

12



presumably to quickly attempt to regenerate and grow new myofibres to counteract the

loss. Other than follistatin, there are a number of peptides that inhibit myostatin in a

similar fashion (see Figure 1 .4). Follistatin-like related gene (FLRG) and the pro-peptide

of myostatin (the large portion that gets cleaved to make the active homodimer) are both

known to interact with the myostatin active homodimer to inhibit its ability to signal

through the activin receptor IIB and Smads (Hill et al., 2002). This was discovered when

Dr. Qiu's group performed mass spectrometric analysis of isolated myostatin protein in

serum by binding it to JA 16 coupled beads, JA 16 being the monoclonal myostatin

antibody, and running the serum containing native myostatin through affinity

chromatography (Hill et al., 2002). They were able to isolate and characterise the

different peptides that were associated with myostatin, and found that most of the serum

myostatin was coupled to either FLRG or the pro-peptide of myostatin (reviewed by:

Bradley et al., 2008).

13
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Figure 1.4: Summary diagram showing the multiple peptides that can bind and
inhibit myostatin from interacting with its receptor. Modified from Bradley et al. ,2008

Krasney's group (Schneyer et al., 2009) investigated the follistatin protein to

further understand how it binds to myostatin and the Activin IIB receptor. The paper

identifies the binding domain of follistatin that is specific for myostatin being different

from the binding domain of follistatin specific to activin receptor. Follistatin and FLRG

bind and neutralize activin irreversibly, and bind and neutralize myostatin with three to

five fold less affinity. Using in vitro cells (26 follistatin mutants), they report that

follistatin domain 1 (FSDl) is the domain necessary for myostatin binding and FSD2 is

necessary for activin receptor IIB binding.
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Thiessen's group has published another study addressing the role of follistatin in

muscle growth. In this study, the group showed that overexpression of follistatin

increases the cross-sectional area (CSA) of muscle fibres, as well as total DNA content

(Gilson et al., 2009) which they use as a measure of satellite cell proliferation, since more

cells would lead to more DNA content as they measured it. The study showed that the

overexpression of follistatin even in myostatin null transgenic mice induced an even

greater increase in muscle mass and CSA of fibres (Gilson et al., 2009). Thus, his study

further characterises follistatin as an antagonist to myostatin's role in muscle growth.

1.5: Hypertrophy: The Akt pathway

The Akt pathway in muscle growth has been extensively researched and is

regarded as the major pathway involved in muscle hypertrophy (Amirouche et al., 2009).

The link between the Akt pathway and the myostatin pathway has been studied by a

number of groups in efforts to discover if there is an inhibitory role by myostatin on this

hypertrophy-inducing pathway. Dr. Rosenzweig' s group has published recently a study

showing Akt levels are higher in myostatin knockout muscles compared to those of wild-

type (Morissette et al., 2009). Additionally, they have shown that phosphorylated Akt

(active) is higher in those knockout muscles as well. These authors conclude that

myostatin does in fact have a role in inhibiting the Akt pathway based on their research

and, therefore, myostatin works to block hypertrophy by acting on its main signalling

protein, Akt.

Another group that has examined the link between myostatin and the Akt pathway

is headed by Damien Freyssent. In their recently published paper, they demonstrate that

15



overexpressing myostatin in tibialis anterior (TA) muscles causes atrophy to occur in

those muscles (Amirouche et al., 2009). Electrotransfering myostatin loaded plasmids

into the TA muscles and then extracting muscles after 7 days allowed them to look into

the effects of overproducing the protein. They found that both Akt and one of its

downstream target S6 protein was both downregulated in the myostatin overexpressing

muscles. That coupled with the overall muscle weight decrease that shows the after

electrotransfering was seen as evidence of the link between myostatin and the Akt

pathway.

The logical question that follows is how does myostatin negatively regulate

muscle fibre growth? It was shown that hypertrophy occurs when myostatin is altered.

The next step was to see whether myostatin controls muscle fibre number, since muscle

can grow in mass by making more fibres, a state known as hyperplasia (McCroskery et

al., 2003). To answer this question, one must consider satellite cells. These are quiescent

stem-like cells found in muscles, which can, when activated, grow and differentiate into

adult myofibres (Seale et al., 2000). These are used by the body to recover from muscle

injury and increase muscle size triggered by exercise (Seale et al., 2000). McCroskery' s

group showed first that myostatin is in fact expressed in satellite cells (Wagner et al.,

2002). They also showed that Mstn-/- cultured cells extracted from the tibialis anterior

muscle had more satellite cells present per 100 myonuclei, and faster myoblast

proliferation than wild-type cells. Finally, the addition of exogenous myostatin inhibited

satellite cell activation and myoblast proliferation in vitro. These data suggest that

myostatin is involved in the hyperplasic response within muscles; when absent, myostatin

causes muscle to increase myofibre number.
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1.6: Hyperplasia: Satellite Cells

satellite cell cycling myocytes myofibers
myoblasts

FusionDifferentiationActivation

a

Figure 1.5: Satellite cells go through a number of phases before reaching mature
myofibre status. Modified from Le Grand et al., 2007.

The transformation of a satellite cell to an adult myofibre, it would have to go

through multiple stages, (Figure 1 .5), controlled by certain proteins that are temporally

expressed to drive this maturation process (Le Grand et al., 2007). Satellite cells exist as

quiescent mono-nucleated small entities found on the periphery of mature myofibres

(Seale et al., 2000). Once activated, satellite cells are committed to proliferate and the

majority of the newly formed satellite cells differentiate into myoblasts and finally fuse to

form myofibres (Kuang et al., 2007). Not all of the proliferating satellite cells mature to

myofibres however, as some are arrested after proliferation and kept dormant in a process

called self-renewal, therefore ensuring that there are enough satellite cells for future

needs (Olguin et al., 2004). Paired-box transcriptional factor 7 (Pax7) is a conserved

marker for quiescent satellite cells studied extensively by Dr. Rudnicki's group using

immunofluorescence microscopy in myofibre cell cultures (Kuang et al., 2007). It plays
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an important role in the development and function of these satellite cells. Pax7 null mice

show premature lethality and a complete lack of satellite cell population (Seale et al.,

2000),as deduced using electron microscopy to visualise cells from wild-type mice and

Pax7-/- mice (Chen et al., 2003). Pax7 expression is seen in satellite cells as they progress

from quiescent to activated and proliferating cells, but once the cells reach the myoblast

maturation stage, the expression of Pax7 is turned off and the cell is considered mature

(for review see Shi et al., 2006). The nature of Pax7 expression makes it an optimal target

marker for satellite cell identification, both at the level of gene expression and final

protein product. Many researchers use Pax7 expression analysis as a basis for assessing

satellite cell activation and maturation (Kuang et al., 2007, Seale et al., 2000, Le Grand et

al., 2007). While Pax7 is expressed early in the life of a satellite cell, once activated, Pax7

is downregulated and myogenin expression is upregulated in those cells, making it a

prime target to test for mature myofibre increase (Day et al., 2009). A study by Olwin and

collegues states that Pax7 acts in a manner that prevents the to maturation of satellite

cells, and it is only after Pax7 expression is turned off, that the process of differentiation

and maturation of satellite cells into myotubes occur (Olguin et al., 2004). This

conclusion was reached after immunofluorescence analysis of proliferating and maturing

myoblasts showed Pax7 is not expressed in the more mature myoblasts as compared to

the proliferating and quiescent satellite cells.

Once activated, satellite cells express other signalling molecules called myogenic

regulatory factors (MRFs), which are transcription factors that regulate myogenesis,

promoting the transition from quiescent to mature myofibre (Yafe et al., 2008). When
activated and committed to differentiate beyond the quiescent phase, satellite cells begin
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to express myogenic factor 5 (Myf5) and myogenic determination factor (MyoD) (for

review see Seale et al., 2000). These factors induce proliferation of satellite cells.

Following this proliferation phase, these cells begin to express myogenin and muscle

regulatory factor 4 (MRF4), which are factors that drive the cell differentiation and

maturation to adult myofibres (for review see Le Grand et al., 2007). All MRFs regulate

gene expression by binding to ?-box motifs, highly conserved stretches of DNA sequence

(CANNTG) found in the promoter region upstream ofmuscle specific genes, and turning

on expression of specific gene targets that are involved in myofibre formation (Yafe et

al., 2008). It is prudent to note that looking at all the research regarding satellite cells put

together, it becomes clear that not all satellite cells are exactly the same. There is

heterogeneity among satellite cell populations, with some being more readily committed

to myogenic proliferation while others are in a noncommitted form. This phenomenon is

discussed in more detail in Rudnicki's review paper (Kuang et al., 2007). Suffice it to say

that it is not surprising then that while the overall pathway for satellite cell activation to

maturation is described rather well by examining the MRFs, there are clearly other

factors that come into play as well, and not much is known about the exact signalling of

these pathways.

The role ofmyostatin in satellite cell-related muscle fibre growth is a

controversial one. Some research indicates that myostatin is responsible for arresting

satellite cells in quiescent stage, therefore preventing them from proliferating and leading

to increased muscle fibre numbers (Amthor et al., 2006), this work was done by Dr.

Patel's group, and it shows that addition of myostatin protein to muscle cell culture

causes a downregulation of MyoD, Myogenin, and Myf5 but not Pax7 (the quiescence
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marker). This supports the notion that myostatin null mice would have greater satellite

cell proliferation and consequently, a greater number of mature fibres, the process of

hyperplasia. The same group, however, published another study stating that myostatin

does not act on satellite cells, and that hypertrophy of existing fibres is the main outcome

of blocking myostatin action (Amthor et al., 2009). They concluded this after counting

the overall number of myofibres in the EDL muscle in wild-type and myostatin null mice

and simultaneously analyzing the CSA ofthose fibres. They found that the CSA in the

myostatin null mice does, in fact, differ while the overall number of fibres is not

significantly different between wild-type or knockout mice. Other research shows that

myostatin up-regulates/activates the cell cycle arrest protein p21, thereby limiting the

proliferation of satellite cells (Manceau et al., 2008). This conclusion was reached when

the group performed myostatin overexpression and myostatin inhibition experiments on

chick and mouse embryos. Using immunofluorescence, the aforementioned author

reported that in the increased myostatin pool of cells, less proliferation of satellite cells

was observed and more p21 was apparent. In the myostatin deficient pool of cells the

opposite was true, more proliferating satellite cells and less p21 expression was observed.

Dr. Kambadur's group published a study focusing on myostatin' s role in inhibiting Pax7,

and found that adding myostatin to cultured developing myoblasts decreased their

expression of Pax7 by 80% (McFarlane et al., 2008). In the same study they show that

myostatin-null cultured cells express more Pax7+ quiescent cells than the wild-type cells

do further showing the early involvement of myostatin in regulating the self-renewal

abilities of satellite cells. While myostatin is definitely characterized as a protein that
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inhibits the overall growth of muscle fibres, the debate continues to be whether it is

primarily through increased hyperplasia or hypertrophy that myostatin null muscles grow.

Dr. McCullough's group investigated the role of myostatin in satellite cell

activation (Dasarathy et al., 2004). They studied myostatin and insulin-like growth factor-

1 (IGF-I) expression (a known player in the muscle growth pathway, stimulating AKT-

PI3K pathway), and how that would affect the expression of cyclin-dependent kinase

inhibitor (CDKI p21), myf5, MyoD, and Myogenin (Dasarathy et al., 2004). These are all

stimulators of satellite cell differentiation; CDKI p21 is controlled in opposite fashions by

myostatin and IGF-I . The results showed that muscle wasting due to induced liver

cirrhosis of rats had myostatin, ActRIIB, and CDKI p21 all increased one to three fold,

while MyoD, myf5, and myogenin all decreased two to three fold, also IGF-I, and IGF-I

receptor decreased (Dasarathy et al., 2004). These data show that myostatin does, in fact,

inhibit satellite cell proliferation and differentiation, thereby retarding the ability to make

new myofibres. This supports the idea that hyperplasia does occur in the myostatin null

model. Other research has shown that myostatin arrests myoblast transition from Gl to S

phase and from G2 to M phase in the cell cycle (for review, see Kocamis et al., 2002).
Some research shows that myostatin inhibits Pax-7. Using in vitro assays on C2C12 cells,

Dr. Kambadur and collegues showed that myostatin null clones showed higher expression

of Pax-7, while increasing myostatin in culture decreased Pax-7 detection using western

blots, as well as immunohistochemical fluorescence detection (McFarlane et al., 2008).

This provides further insight into how myostatin directly affects satellite cells in muscles

by promoting the quiescence of satellite cell activation and proliferation and, therefore,

overall muscle ability to grow or regenerate.
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Another study from Dr. Kambadur's group shows that fast fibre types (Myosin

heavy Chain HX and IIB) express MyoD in much greater amounts than slow fibre type

(MyHC I and IIA). This could explain why Myf5 and MyoD appear to have overlapping

functions in inducing satellite cell proliferation (Hennebry et al., 2009) since MyoD

would act more specifically on the fast fibres only. In this paper, myostatin is reported to

negatively regulate MyoD, showing that its absence allows for higher expression of

MyoD in bicep, as well as tibialis anterior muscles. Their results show that myostatin is a

direct inhibitor of satellite cell proliferation, and in myostatin null mice the ability for

these quiescent cells to proliferate and mature is enhanced through higher expression of

MyoD and its ability to turn on expression of genes related to cell activation and

proliferation. In this same paper, Kambadur's group also shows that in the absence of

myostatin, another transcription factor, myocyte enhancer factor 2 (Mef2) is

downregulated, as is Calcineurin. The latter observation was reported by Dr. Michel and

his collegues earlier (Dunn et al., 1999). Both of these proteins are known to be inducers

of the slow fibre type generation, and their downregulation explains why in myostatin

null mice, there is a decrease in slow fibre numbers. Dr. David Goldhammer's group also

studied satellite cell proliferative action as it relates specifically to MyoD, and their study

shows that MyoD is expressed in committed proliferating satellite cells, and its

expression was maintained through to mature myofibres, reaffirming the fact that MyoD

and Myf5 have an overlapping function that is distinct from Pax7 (Kanisicak et al., 2009).

1.7: Myostatin and Calcineurin

While the IGF-Akt pathway is the most well known signalling pathway leading to

skeletal muscle hypertrophy, there are other pathways that contribute to this physiological
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result. In the last decade several studies have been published linking muscle hypertrophy

to calcium ion fluctuations and more specifically the actions of calcium on the calcineurin

(Cn) pathway (Dunn et al., 1999). In their study, using inhibitors of calcineurin, Dr.

Michel's group showed a link between calcineurin and the expected fibre-type switching

to slow fibres associated with plantaris overload. They also show that when treating the

muscle with the calcineurin inhibitor cyclosporine A (CsA), there was a marked

inhibition of myofibre hypertrophy, which further links Cn to muscle growth pathways.

Dr. Engvall's group treated C2C12 cells with metalloprotease inhibitors, known as

HIMPs, and examined the effect on muscle cell growth and maturation (Heut et al.,

2001). Using TAPI and BB-3103, two known HIMPs, they showed maturation from

myoblasts to multi-nucleated myotubes and hypertrophy measured as cell diameter

increases (Heut et al., 2001). They introduced proteins known to be involved in the

calcineurin pathway for muscle cell growth, specifically IGF-I, cyclosporine A, and

calcineurin. While there was no change to cell culture sizes with the addition of HIMPs,

introduction of these metalloprotease inhibitors did cause an increase in the full-length

myostatin (the pro-peptide) and, therefore, an attenuation of the proteolytically cleaved

active homo-dimer ofmyostatin. Taken together their data suggests that HIMPs act on

myostatin and not the calcineurin pathway to allow for cell hypertrophy.

Dr. Wackerhage's group isolated whole cell proteins from extensor digitorum

longus and soleus muscles from rats. Using antibodies specific to signalling pathways

known to be involved in muscle cell growth, they compared the concentrations of these

proteins to show the difference between fast and slow muscle fibre signalling pathways

(Atherton et al., 2004). Their results showed that EDL has 1 .43 times the amount of
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calcineurin, 1 .95 times more myostatin, 1 .44 times more Akt and 6.86 times more

p70S6K compared to soleus. The EDL showed lower amount of extracellular signal

regulated kinase (ERK) compared to soleus muscle (ERKl 0.38, ERK2 0.61, ERK6 0.15)

as well as lower amounts of NF-kB (0.32) and GSK3ß (0.69). Overall this paper showed

that fast (glycolytic) muscle fibres have different concentrations of important signalling

proteins as compared to slow (oxidative) muscle fibres.

Dr. Yasuhara's group treated mice with cyclosporine A (CsA) injections into the

TA, over a progressive time-course of 1, 2, 4, 6, 9 and 14 days. Using RT-PCR, western

blots and immunohistochemistry, they monitored the changes in several proteins involved

in the growth and atrophy pathways in muscle cells (Sakuma et al., 2005). Their data

showed that CsA injections showed a significant upregulation ofmyostatin, as well as

Smad3 and TGF-ß2. This is of great interest to us since it suggests that there might be in

vivo proteins that can have a role similar to CsA, inhibition of the hypertrophy inducing

calcineurin pathway and upregulation to the negative regulation/atrophy inducing

myostatin pathway.

Several of the studies done on myostatin were performed by James Reecy's

group. Using microarray assays and proteomic profiling, they identified hundreds of

genes and dozens of proteins that express differently in myostatin null muscles as

compared to wild-type muscles (Steelman et al., 2006, Ilham et al., 2009). In these

studies they show that generally there is a definite switch in myostatin null muscle away

from oxidative pathways (employed by slow fibre types) to the glycolytic pathways

(employed by fast fibre types). This is further illustrated by Dr. B Spiegelman's group,

where they show using fluorescence microscopy a 30% increase in myosin heavy chain
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IIB fibres (fast fibres) and in HX in myostatin knockout mice as compared to wild-type

mice (Handschin et al., 2007).

Another study from Yasuhara's group showed that CsA injection blocked

mechanical overload of the soleus muscle, achieved by surgical ablation of the ipsilateral

gastrocnemius muscle (Sakuma et al., 2008). In this paper they show Mef2c and

myogenin are down-regulated both at the mRNA and protein levels following 4 and 1 0

days of mechanical overloading performed on CsA injected muscle. This result is

noteworthy because McCullough's group (Dasarthy et al., 2004) had shown that the

myostatin gene has binding sites for myogenin as well as MyoD, Myf5. This is a further

indirect link between the calcineurin and myostatin pathways, raising questions

concerning whether there are any in vivo molecular signals that can have the same dual

role that CsA appears to have on these pathways.

1.8: Myostatin and Muscle Atrophy

With compounding evidence showing the effects of myostatin on muscle growth,

researchers set out to understand the role of myostatin in muscle atrophy. What might be

the role of myostatin in muscle wasting? Is it directly linked to upregulation of

proteolytic pathways in muscle, or not. If muscles are growing, would myostatin be

downregulated because of its link to proteolysis within muscles? These questions led

have researchers to investigate if there was a link between myostatin and muscle atrophy.

Atrophy is described as a decrease in muscle mass due to protein degradation

(proteolysis) is stemming from the disuse of muscle or from a diseased state. Muscle

fibres being excitable cells would not be able to survive if not stimulated. Therefore,
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using models that inhibit or hinder muscle stimulation, such as sciatic nerve denervation,

or hind-limb suspension, as well as drug administration (glucocorticoids and neurotoxins)

can be helpful models to test atrophying muscle in in vivo and in vitro experiments.

The molecular signalling pathway that is most relevant to muscle atrophy is

known to go through the Forkhead family of transcription factors, also known as

Forkhead boxes, or Foxo's. These are transcription factors that bind to and arrest the

transcription of genes involved in the proteolytic catabolism ofmuscle cells (for review

see: Zhang et al., 2007). Specifically, Foxola and FoxoSa are shown to be involved in

muscle fibre atrophy by arresting the transcription of ubiquitin ligase genes MuRF and

MAFbx (also known as atrogin-1). When phosphorylated, FoXo is translocated out of the

nucleus promoting the transcription of these ubiquitin ligases is allowed to occur. The

ubiquitin ligases can then begin ear-marking muscle fibre proteins with multiple

ubiquitins which then signal and direct proteins to be degraded by the massive

proteosome complexes that breakdown proteins into amino acids that can be recycled for

other uses (for review see Nader et al., 2005).

To link myostatin to atrophy, Dr. Fei Ding's lab examined a time-course

expression profiles of myostatin after denervation, a model known to cause muscle

atrophy due to disuse of the excitable muscle fibres (Shao et al., 2007). As deduced from

RT-PCR and protein expression experiments, a marked increase for mRNA and

myostatin protein was observed, peaking between days 3 and 7 (for mRNA) and days 7

and 14 (for protein), suggesting the strong correlation between myostatin presence and

muscle atrophy due to denervation.
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Dr. Thissen's group tested the effect of injecting the glucocorticoid drug

dexamethasone into the tibialis anterior, gastrocnemius, and soleus muscles of myostatin

knockout mice versus wild-type mice, and their results showed that dexamethasone did

not cause atrophy in muscles where myostatin is not present, further suggesting that

myostatin is involved in the atrophy pathway (Gilson et al., 2007). They also showed

that there was a greater increase of FoXo3a, MuRFl, atrogin-1, and Cathepsin L in wild-

type mice versus myostatin knockout mice. This suggests that myostatin does have a role

in the FoXo signalling pathway for protein degradation. Dr. Freyssenet has reviewed the

potential link between myostatin and the Foxo pathway (Favier et al., 2008). The

following figure summarizes the proposed pathway of control from myostatin to FoXo.
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Figure 1.6: Hypothesized interaction between myostatin and Foxo leading to
protein degradation. Modified from Favier et al., 2008
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Dr. Unterman's group tested the relation between FoXo and myostatin in vitro by

mutating the myostatin promoter region in C2C12 cells, which is hypothesized to be the

binding site of FoXo, and noticed a significant decrease in myostatin promoter activity

using luciferase and GFP as assay markers for protein activation (Allen et al., 2007). This

suggests that myostatin is a downstream effector protein of the Foxo signalling pathway

for muscle atrophy, as shown in Figure 1 .6. The study also examined the protein levels of

myostatin, Foxol, and activin receptor IIB in fast versus slow muscles. Consistent with

previous findings, all these proteins were found elevated in fast muscles as compared to

slow muscles, suggesting different pathways for atrophy between the different types of

muscle fibres.



2: Introduction
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2.1 : Overview

Studies mentioned earlier (Amthor et al., 2009, Gilson et al., 2009) lend their

support to the idea that myostatin controls muscle growth by inhibiting or attenuating the

hypertrophy pathways in muscles. Other groups, such as the Kambadur and Sharma

(McCroskery 2003 & 2005, Salerno 2004, McFarlane 2005 & 2008, Hennebrt 2009) and

Cabello groups (Joulia-Ekaza 2006 & 2007) published studies that support the idea that

myostatin is involved in inhibiting hyperplasia by attenuating the proliferative capacity of

muscle satellite cells. There are also studies that propose a dual role for myostatin in

regulating both hypertrophy and hyperplasia. Dr. Se-Jin Lee, the first to characterize

myostatin as a protein involved in muscle signalling, and the designer of the myostatin

knockout mouse model, states that both hypertrophy and hyperplasia are inhibited by the

actions of myostatin (Lee 2001 & 2007).

Evidence from all of the research mentioned above can be summarized to suggest

that under normal maturation conditions, alterations to myostatin levels in vivo as well as

in vitro cause an increase in myofibres size and number. However little is known when

the growth rates are altered to test how myostatin' s inhibition is affecting the pathways

involved. Specifically, it is not understood whether inhibiting myostatin and inducing

growth stimuli will lead myofibres in vivo to react by up-regulating pathways involved in

hypertrophy or hyperplasia, and how different are these pathways from wild-type

myofibres with their myostatin levels un-interfered with prior to the growth stimulus

induction. To state more clearly: Does genetic manipulation resulting in the genesis of

myofibres lacking myostatin cause a significantly altered method of reacting to growth

stimuli as compared to wild-type myofibres, or do myostatin null fibres react in the same
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manner as wild-type fibres when facing a similar growth stimulus. Our research group set

out to elucidate the true effect of myostatin in vivo and the subsequent reaction of these

myofibres to a substantial growth stimulus in the form of functional plantaris

overloading.

2.2: Objective and Hypothesis

To further understand the role of myostatin in regulating muscle growth, a study

was initiated in our research lab that concentrated on comparing myostatin null mice to

wild-type mice and how the plantaris muscle is affected by the lack of myostatin or in its

presence. Using the same knockout mouse model that was generated by Dr. Se-Jin Lee,

we set out to study muscle growth over short, intermediate, and long periods of time,

concentrating on deciphering the pathway of growth that muscle cells would take in the

presences or absence of myostatin. The objective was to try to better characterize the

method of growth that myostatin null muscle cells undertake to achieve their enhanced

phenotype of larger sized muscles as compared to wild-type muscle cells. Specifically,

we wanted to observe whether the preferred path of muscle growth was hypertrophic in

nature, meaning increased size of pre-existing cells, or hyperplasic in nature, meaning

increased proliferation of cells adding new fibres to the muscle. We hypothesized that the

hypertrophic and hyperplasic growth pathways will be more potentiated in myostatin null

mice as compared to their wild-type counterparts. Meaning, we proposed that myostatin

was a type of "molecular braking system" that would slow down both types ofmuscle

growth, and removing this protein will result in the ability to use both types of growth

pathways more often. As it was said earlier in the introduction, there seems to be some

controversy regarding what pathway myostatin is involved in downregulating in wild-



type muscle, and we attempted to produce a set of experiments that would lead to

deciphering this question.

2.3: Experimental Design

In order to study muscle growth in mice, there can be several experimental

designs that have been utilized previously. Some include voluntary or involuntary

exercising, like rolling exercise balls or cage wheels, also shallow pool swimming is

utilized by some groups. However, while these designs do show measurable results, in

our group we sought an experimental method that would cause maximal effect on the

muscle studied, in this case the plantaris muscle. Therefore, we employed the surgical

operation known as plantaris functional overloading (Dunn et al., 1999). Used for

decades, the compensatory overloading of the plantaris muscle is achieved through the

surgical removal of the synergistic muscles, the soleus and gastrocnemius that are found

surrounding the plantaris muscle in the calf of the hind limbs. By removing these two

muscles, and then carefully suturing the limb and allowing the mouse to regain

consciousness, the whole weight of the mouse then falls on this one muscle whenever the

mouse utilizes its hind limb to move or stand (Dunn et al., 1999). This permanent added

weight on the plantaris acts as a permanent method of increasing the workload on the

muscle, allowing for rapid growth until the muscle plateaus (usually reaching double the

original size) at a point when it reaches the proper size to compensate for the lack of

soleus and gastrocnemius (Dunn et al., 1999).

Overloading was allowed for certain predetermined periods of time, a short

overload period of three days, an intermediate overload period of two weeks and a long
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overload period of six weeks. These time points would serve to help us understand the

changes that occur from a relative beginning of the overload period, to a relative ending

of the overload period, when the plantaris has presumable reached its full compensatory

ability for the lacking gastrocnemius and soleus. When the period of overload is reached,

the plantaris is extracted from the anesthetised mouse and weighted, then it is stored in -

86°C freezers either in Eppendorf vials or with cutting compound (O.CT) surrounding it

to preserve it for histological cryosectioning at a later point. Histological and biochemical

experiments are then performed using these stored tissues so that we can more

specifically analyze the differences in muscle growth patterns between the myostatin null

mice to the wild-type mice. Details of the experiments performed are found in the

Materials and Methods section.
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3: Materials and Methods
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3.1 : Transgenic Mice Models and Breeding

The main strain of wild-type mouse used for this study was C57/BL6 purchased

from Charles-River laboratories, and the myostatin null (Mstn_/") mice from C57/BL6
background strain with a disruptive neomycin insert in their myostatin gene (McPherron

et al, 1997). Heterozygotes (Mstn+/~) were donated by Dr. Se-Jin Lee (Johns Hopkins,
MD). Breeding of male and female heterozygotes resulted in 25% progeny that lacked

functional myostatin and subsequent Mstn-/- mice were generated from mating those

homozygote offspring. Other transgenic animals used in this project were: CnA* mice

generated from C57/BL6 background strain over-expressing a constitutively active form

of the Calcineurin A subunit due to absence of an auto inhibitory domain (Dunn et al,

2000); CaMBP mice from CDl (white) wild-type mouse background strain over-

expressing a calmodulin binding protein (Dunn et al, 2000); PV-HA mice on from CDl

background strain over-expressing parvalbumin, a calcium buffering protein that

sequesters internal calcium (Corin et al, 1 994); NFATc2-/- mice from Balb/c (white)

wild-type mouse background strain null for the Nuclear Factor of Activated T cells c2

isoform donated by Dr. Grace Pavlath (Hodge et al, 1996).

Whenever a strain was to be studied, the sex and age were matched up with a

wild-type strain of the same background as the generated transgenic strain. This was done

to minimize the number of variables that differ from mouse to mouse.

3.2: Plantaris Functional Overloading Procedure

All mice studied in this project were around the age of 9 weeks, considered full

grown adult at that time period. The overload surgery was performed on pairs of wild-
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type and myostatin knockout mice in the same manner as previous published work (Dunn

et al., 1997, 1999). Briefly, the mice were anaesthetized with a cocktail of 1.6:1

Ketamine: Rompun the amount being ?µ?/lOOmg of body weight and allowed to resume

living for the duration of the overload period previously agreed upon. Muscles were

extracted on the day the overload period was complete, with the mice similarly

anaesthetized with the same dose of Ketamine: Rompun. After the plantaris was

extracted, the mice were euthanized using rapid cervical dislocation and the muscles were

weighed and stored in OCT compound frozen in chilled isopentene followed by rapid

submersion in liquid nitrogen. All muscles were stored at -86°C until experimental testing

was done on those muscles.

3.3: Semi Quantitative RT-PCR

RNA ^g) was reverse transcribed to produce cDNA of each sample to test gene

expression (Dunn et al., 1997). Negative RT tubes were prepared for each sample and

consisted of the same components of the positive RT reaction tubes with ultra-pure water

substituting for the addition of reverse transcriptase; this was used as an internal control

for the RT-PCR process. Briefly, each reaction tube consisted of 2µg of RNA, 2.5µ1 of

1 Opmol/µ? random primers (GE healthcare) working solution and ultra-pure water to

make equal volumes for each sample. The samples were heated for 10 minutes at 700C

and cooled on ice for 1 5 minutes to optimize primer binding. Reaction components

consisting of 4µ1 of 10X reaction buffer, 2µ1 of 1OmM dNTP mix (Invitrogen, CA), ?µ?

of RNAse inhibitor (Ambion, CA) and ?µ? of MMLV-RT (Ambion, CA) were added to

each reaction tube. Reaction tubes were incubated at 2O0C for 1 5 minutes, 37°C for 60

minutes and finally 65°C for 10 minutes to obtain cDNA. The cDNA obtained after RT



was used for semi quantitative PCR analysis for the various targets via use of specific

primer sets. Cycling conditions consisting of an initial denaruration step at 94°C and

depending on the target, between 30 to 40 cycles of 1 minute at 94°C, 1 minute at the

TAnneaiing, 1 minute at 72°C followed by a termination step at 72°C for 10 minutes. Each
PCR reaction tube contained 5µ1 of KCl PCR buffer (Fermantas), 2.5µ1 of

MgCl2(Fermantas) , 2µ1 of 2.5mM dNTPs, 5µ1 of each ?µ? forward and reverse primer,

0.5µ1 of Taq polymerase (Fermantas) and 2.5µ1 of cDNA made up to a total volume of

50ul with ultra-pure water.

Primer
1 anneal
("C)

Product

size (bp) Sequence

28S 55°C 142 F5'-TTGTTGCCATGGTAATCCTGCTCAGTACG-'3

R5'-TCTGACTTAGAGGCGTTCAGTCATAATCCC-'3

Atrogin-1 600C 138 F 5' -GCTTGTGCGATGTTACCCAAGAA-' 3

R 5'-GAAAGTGAGACGGAGCAGCTCT-'3

CnA 53°C 215 F 5'-CGATTCTCCGACAGGAAAAA-'3

R 5'-AAGGCCCACAAATACAGCAC-'3

BDNF 600C 486 F 5'-CTGGCTGACACTTTT-'3

R5*-AGTAAGGGCCCGAACATACGATTGG-'3

Follistatin 53°C 420 F 5'-CCTACTGTGTGACCTGTAATC-'3

R 5'-CTCCTCTTCCTCCGTTTCTTC-'3

Myostatin 600C 495 F5'-GACGATTATCACGCTACCACGGAAAC-'3

R5'-CATCGCAGTCAAGCCCAAAGTCTCTC-'3

Pax- 7 58°C 223 F 5'-GTAAGCAGGCAGGAGCTAAC-'3

R 5'-GGTTCATGAAGCTGTCAGAG-'3

Myogenin 58°C 392 F 5'-AGTGAATGCAACTCCCACAGC-'3
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R 5'- TCAGAAGAGGATGCTCTCTGC-' 3

3.4: Ribonucleic Acid (RNA) Extraction

Total RNA was extracted from plantaris muscle using a phenol-chloroform

extraction whereby two phases were formed, organic and aqueous layers, with RNA

remaining in the aqueous layer, and after centrifugation, the resulting pellet is

resuspended in ultra-pure water. Briefly, tissue samples were weighed and homogenized

with a hand-held Tissue Tearor (Biospec Products Ine, OK) for 30 seconds in lml/100mg

of tissue of a solution comprising 4M Guanidium thiocyanate (Sigma-Aldrich, MO),

25mM Sodium Citrate (Sigma-Aldrich, MO), 0.5% w/v N-laurylsarcosine (Sigma-

Aldrich, MO) and 0.1 M ß-Mercaptoethanol (Sigma-Aldrich, MO).Then 1:10 v/v of 2M

Sodium Acetate (Sigma-Aldrich, MO) was added after homogenization to neutralize the

negative charge of the RNA. This is followed by the addition of 1 : 1 v/v of phenol and

1 :5 v/v of chloroform, followed by vortexing and incubation on ice for 15 minutes.

Centrifugation of homogenates resulted in phase separation; the aqueous upper phase was

transferred to a fresh microfuge tube and 2:1 v/v of 99% v/v ethanol added. The contents

were vortexed, centrifuged and then the resulting pellet was re-suspended in 70% v/v

ethanol to remove excess salt. A final centrifugation was done to pellet the RNA. Lastly,

the pellet was air-dried for approximately and hour and then re-suspended in ultra-pure
water. RNA/DNA ratio and RNA concentration is determined using a spectrophotometer

(Eppendorff Biophotometer, Gernamy).

3.5: Cryosectioning and Immunohistological Experiments

38



For all immunostaining procedures, the whole muscle was placed on cardboard

and the distal, mid-belly and proximal ends marked on the cardboard after extraction

from mice. The muscle was then evenly coated with Optimal Cooling Temperature

(OCT) mounting medium (Sakura Finetek USA Ine, CA) and placed in a pool of

isopentane pre-cooled in liquid nitrogen. The cardboard with mounted frozen muscle was

than stored in the larger liquid nitrogen dewer awaiting transfer to a -860C ultra-freezer

for long term storage. All cyrosectioning was done using a Leica cryostat (CM 3050 S

model, Leica Microsystems, Heidelberger, Germany) cooled to -23°C and set to a

thickness of 1 ?µ??. Serial sections were mounted on all slides, and control muscles as

well as treated muscle tissue sections were always mounted on the same slide to

accurately compare different conditions and eliminate any irregularities between slide

treatments. The method was adapted from previous Michel procedures (Dunn et al.,

1997).

Briefly, midbelly cryosections of plantaris hind-limb muscles were circled with a

hydrophobic PAP pen and blocked in 200µ1 ofblocking solution consisting of 5% w/v

Goat Serum (Sigma-Aldrich, MO) in 0.5% w/v Bovine Serum Albumin (BSA) (Sigma-

Aldrich, MO) for 30 minutes. They were then stained for the various MyHC isoforms

using 250µ1 of primary antibody developed against MyHC types I (A4.840), IIa (SC-71),

Hx (6Hl), IIb (BF-F3), Embryonic I (F 1.652), Embryonic II (47A) and Neonatal

isoforms (N2.261) (Developmental Studies Hybridoma Bank, University of Iowa, Iowa)

in 0.5% w/v BSA overnight at 4°C. Three washes in 250µ1 of IX Phosphate Buffered

Saline (PBS) were done for 10 minutes each before addition of the 250µ1 of secondary

antibody prepared in 0.5% BSA, consisting of either IgG-Horse Radish Peroxidase
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(HRP) or IgM-HRP (Sigma-Aldrich, MO) as required by the primary antibody make-up.

After incubation in secondary antibody for 2 hours, three washes were done using 250µ1

of IX PBS for 10 minutes each. Detection was accomplished using a horse-radish

peroxidase substrate, 3-3'-Diaminutesobenzidine [DAB] (Pierce Biotechnology Ine, IL)

in hydrogen peroxide (H2O2) (ACP, QC) in a coplin jar; air-drying of the slides, and

mounting in glycerin jelly was done as a final step.

3.6: Protein Extraction and Western Blotting

Plantaris muscle samples were homogenized on ice using a hand-held Tissue

Tearor (Biospec Products Ine, OK) in ?µ?/mg of IX RIPA buffer consisting of ???µ? of

each of 1OX PBS and 5% w/v Sodium Deoxycholate, 1OuI of each of Igepal (Sigma-

Aldrich, MO), 10% w/v SDS, IM Sodium Fluoride (Sigma-Aldrich, MO), lmg/ml

Aprotinin (Sigma-Aldrich, MO), lmg/ml Leupeptin (Sigma-Aldrich, MO), 10OmM

Phenylmethanesulphonylfluoride (PMSF) (Sigma-Aldrich, MO), and 5µ1 of 0.2M

Sodium Orthovanadate (Sigma-Aldrich, MO) filled to 1ml using autoclaved water.

Homogenates were left to incubate on ice for 45 minutes in the RIPA buffer.

Centrifugation at 1 5000 ? g for 20 minutes followed in a centrifuge pre-cooled to 4°C.

The supernatant was then transferred to a clean 1 .6ml closed cap vial, and a second round

of centrifugation was performed. The final supernatant is transferred to a clean 1.6ml vial

for storage at -86°C ultra-freezer.

Proteins in the amount of 50µg were loaded in 8 - 12% w/v SDS acrylamide gels

prepared as per the SDS-PAGE Bio-RAD Protocol (Bio-Rad Laboratories Ine, CA) and

electrophoresed at 120V through the stacking gel and 120V through the separating gel.
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The separating gel consisted of 2.5ml of Tris buffer at pH 8.8, ???µ? of 10% w/v SDS,

30% acrylamide solution and autoclaved water amounts that depended on the percentage

of gels. The stacking gel consisted of 1.25ml of Tris buffer at pH 6.8, 50µ1 of 10% w/v

SDS, 3.0 ml of autoclaved water and 0.65ml of 30% acrylamide solution. Blotting of the

proteins onto a PVDF membrane (Amersham Biosciences, UK) was done by initially

soaking the membrane in 100% methanol for 10 seconds, followed by a wash in distilled

water for three minutes and incubation in transfer buffer. The filter paper and sponges

were also incubated in transfer buffer. Transfers were done for 1 hour at 100V.

Membranes are first stained with Ponceau S solution to verify the transfer was successful.

The Ponceau S (Sigma-Aldrich, MO) is then washed off using 0.1% Tween-Tris Buffered

Saline buffer (T-TBS), and the membrane is then ready for specific protein probing.

Membranes were initially blocked for one hour in the proper blocking solution, and then

membranes were incubated with primary antibody overnight on a shaker at 4"C.

Membranes were then washed 3x 10 minutes with T-TBS, before incubation with a

secondary antibody. Membranes were again washed 3x 10 minutes with T-TBS prior to

incubation with developing solution. Protein blots were quantified using alpha-Innotech

imaging software and analyzed as the integral of band width and intensity

3.7: Statistics

Statistical analysis of data comprised of 1 -way ANOVAs were performed for the

PCR experiments for the overload time course samples. Student T-tests were performed

for all other experiments involving overload and calcineurin pathway PCR analysis.

Confidence level of 95% was used to indicate significance for all statistical analyses.
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4: Results
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4.1: Identification and Characterization of the Myostatin Knockout Model

Myostatin knockout mice have distinct genotypic and phenotypic differences from

the wild-type mice used in the study. To verify that the mice used were in fact null for

myostatin, several tests were used. Figure 4.1 illustrates some of the characteristics

utilized to verify whether the generated mice were in fact null for myostatin. Figure 4.1 .A

depicts the map of where the neomycin cassette, the homologous construct introduced, is

placed within the myostatin gene thus disrupting the nucleotide sequence causing

myostatin to be either untranslated to its polypeptide sequence or for myostatin protein to

be degraded at once after translation because of the improper folding caused by the

introduction of the cassette. To verify that the mice that we generated did have the

inserted neomycin cassette, genotyping primers designed to span the sequence

encompassing the cassette were used to perform PCR to analyze whether the mouse had

the cassette or not, with the bands showing only the larger size PCR product indicating

that the mouse had the inserted cassette disrupting myostatin, as seen in Figure 4. 1 .B. The

second step in the verification process was testing for the presence of myostatin mRNA

transcripts. Semi-quantitative PCR using primers designed to amplify a section of the C-

terminal end of the myostatin sequence produced either a band of 495 base pairs in the

wild-type mouse, or an absence of this band in myostatin knockout mice, seen in Figure

4. 1 .C. This was used to confirm that the myostatin knockout mice were in fact missing

the mRNA for the active protein. To further support the absence of mRNA from the

Mstn-/- samples, an additional PCR experiment was performed, with increasing number

of cycles for the Mstn-/- samples. As seen in Figure 4.1.D, there were never any observed

bands in the knockout samples.
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Figure 4.1 : Identification of Myostatin Knockout Model A) The myostatin knockout
gene has a neomycin cassette inserted to disrupt its transcription (McPherron et al, 1997);
B) Representative image for genotyping from mouse tail clippings using primers that
recognize DNA portions specific for the Mstn+/+ and Mstn-/- homozygotes or both
portions representing heterozygote mice; C) Representative image of PCR product from
Mstn mRNA on EtBr stained agarose gel, 28S used as a loading control; D) Mstn PCR
product on EtBr stained agarose gels with increased cycle number for the Mstn-/- samples
to verify lack of PCR product

Figure 4.2 displays phenotypic changes observed in Mstn-/- mice to validate the

effectiveness of the knockout condition. One of the phenotypic data sets is absolute wet

weight of the muscles extracted, shown in Figure 4.2.A, which is a primary

characterization technique since myostatin knockout mice have muscles that are on

average larger than wild-type mice. To illustrate that more clearly, as in Figure 4.2.B, we
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used a measurement called relative muscle mass, which includes a correction for the body

weight of the mouse, as it relates to muscle weights. By doing so, we could see more

clearly that myostatin knockout tissues were larger, with ranges from 20% increases for

the soleus muscles, up to 60% increases for muscles like the gastrocnemius and tibialis

anterior. In Figure 4.2.C we see an H&E tissue stain for the plantaris muscles from

Mstn+/+ and Mstn-/- mice. It illustrates that myostatin knockout mice had muscles that

are larger in diameter than the wild-type counterparts. Considering that our functional

overload technique is used on plantaris muscles, further analysis for characterization was

performed on that specific tissue. Figure 4.2.D-F shows our quantified data for some of

the categories that were studied more closely in our overload experimental samples sets.

We measured the overall midbelly area from both wild-type and knockout mice, and the

results showed that the knockout midbelly is approximately double the size of the wild-

type (Fig 4.2.D). This doubling effect was attributed to two separate factors, namely the

mean myofibre cross sectional area, seen in Figure 4.2.E, and mean number of myofibres,

seen in Figure 4.2.F. Both overall size of the myofibres and their numbers were

approximately 50% greater in Mstn-/- plantaris as compared to Mstn +/+ tissue. In Figure

4.2.G we used a different way of analyzing myofibre size to illustrate how the Mstn-/-

muscle did exhibit larger fibres than wild-type. All these techniques were used in the

study to verify and correctly characterize that the mice used for the study were in fact

wild-types or myostatin knockouts.
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Figure 4.2: Phenotype Characterization of Muscles from Mstn-/- Mice A) Absolute
mass of muscle extracted from mouse calf; B) Relative Muscle mass to Body weight
graph; C) Haematoxylin and Eosin stain for Plantaris midbelly cross-sections from
Mstn+/+ or Mstn-/- mice, Bar scale= ???µ?t?; D) Mean Plantaris Midbelly cross-sectional
area; E) Mean Myofibre cross-sectional area; F) Mean myofibre number comparing
Mstn+/+ to Mstn-/- plantarii. G) Myofibre Size distribution comparing Mstn+/+ to Mstn-
/- plantaris muscle; * indicates p<0.05 relative to wild-type group
4.2: Plantaris Muscle Response to Functional Overload

One of the preliminary tests performed after harvesting all of the overloaded

plantaris muscles from the various time course points used for the study was testing the

mRNA expression of myostatin in the wild-type tissues only (since the knockouts do not

express the mRNA, as seen in Figure 4. 1 .C), to verify that our overload procedure did in

fact properly work. In Figure 4.3 we show that myostatin is significantly reduced to

approximately one fifth of the original quantity in all overload time course periods, which

was consistent with what was previously published regarding the overload protocol

(Dunn et al., 1999). This allowed us to continue our experimental analysis of all muscles

with the knowledge that the overload procedure was successful from the onset.



Figure 4 is a summary of the overall quantitative measurements analyzed from the

overloaded piantarli used in the study. Figure 4.4.A shows the relative weight of

overloaded piantarli harvested for the study. The graph shows that while the non-

overloaded sample was noted to be significantly different comparing wild-type to

knockout muscle, the significance was lost within all the other overload time points,

which hinted towards having differential muscle growth paces between wild-type and

knockout tissue. Figure 4.4.B represents images taken for some of the muscles extracted

for the study, the purpose being to have an estimate of the overall midbelly area of these

muscles from wild-type and myostatin knockout mice over the time course of the study.

Figure 4.4.C shows the mean cross sectional area from all myofibres analyzed in the

study, with the standard error bars indicated. This was a method used to quantify

hypertrophy due to the overloading. The hypothesis was with overloading, the average

cross sectional area of myofibres would increase in both wild-type and knockout, with the

knockout maybe showing greater hypertrophic potential than the wild-type. This was not

reflected in the results, which showed a tendency in the overall wild-type fibres to

undergo hypertrophy more than the knockout counterparts. This is interesting because it

suggests an underlying difference in response between wild-type and myostatin knockout

muscle, which was further investigated further. In figure 4.4.D we showed the overall

midbelly area from all the muscles for the study. This measurement was expected to be

similar in trend (upregulation) in both the wild-type and myostatin knockout mice.

Interestingly, after six weeks of overload, our piantarli from wild-type mice showed an

overall midbelly area very close in average to the myostatin knockout tissue. The last

graph, Figure 4.4.E, shows the mean fibre number in midbelly, calculated by dividing the
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overall average midbelly area by the average size of the myofibres. The goal was to try to

verify if the knockout muscle had more myofibres on average as compared to the wild-

type counterparts, a tendency that was confirmed in the non-overload muscle, but in the

overloaded muscle samples we had analyzed this trend was not fully apparent. However

it is not hard to predict that if more sampling is done that the trend showing more fibres

in the myostatin knockout muscle is indeed true, since it would account for the overall

increase in midbelly area and lack of compensatory hypertrophy matching that of the

wild-type tissue.
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Figure 4.3: Myostatin mRNA Expression in Mstn+/+ plantaris of mice exposed to
Functional Overload. A) Representative image of Mstn mRNA on an EtBr stained
agarose gel across the various overload periods, 28S used as a loading control; B) Bar
graph quantification ofmRNA expression relative to 28S. * indicates significance within
p<0.05 from the non-OV level; ntc= control sample with no cDNA loaded; N=2 per
group, preliminary data (experimentally conducted in duplicate).
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Figure 4.4: Quantitative measurements for Plantaris in Response to Functional
Overload. A) Plantaris to Body weight ratio comparing Mstn+/+ Mstn-/- across different
overload periods; B) Representative images from sections of plantaris midbellies
analyzed, Bar scale= 1 ??µ??; C) Mean myofibre cross sectional area comparing Mstn+/+
Mstn-/- across different overload periods; D) Mean Midbelly Area comparing Mstn+/+
Mstn-/- across different overload periods; E) Mean myofibre number in midbellies
comparing Mstn+/+ Mstn-/- across different overload periods. * indicates p<0.05 relating
to the wild-type measurements; N=3 for the Non-OV samples, N=2 for OV time course
samples
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4.3: Myofibre Size and Fibre-Type Proportions Response to Functional Overload

Figure 4.5 lends more evidence to what was previously seen as a difference in

hypertrophy response between the wild-type and myostatin knockout piantarli tested. We

measured the increase of myofibre cross sectional area of the different MyHC isoform

expressing fibres. In the non-overloaded tissue, seen in Figure 4.5.A, all myofibre types

showed a tendency to be smaller than the knockout myofibres, by an average measure of

approximately 5-10%, not enough to be significant with our limited number of samples

tested, but enough to register a tendency that could be significant if more samples are

tested. After only three days of overload, a marginal change was registered in terms of

overall myofibre size, (Figure 4.5.B), which is understandable given the knowledge that it

takes weeks for muscle proteins to be synthesized. The results showed that over longer

periods of overload, the hypertrophy of all myofibre types was more evident in wild-type

piantarli tested as opposed to the knockout muscles, as seen in Figures 4.5.C and 4.5.D.

After 6 weeks of overload, the tendency was shifted towards showing bigger CSA

averages for the wild-type muscles as compared to the knockout counterparts.
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Figure 4.5: Muscle Fibre Size Response to Functional Overload. Myofibre Cross
sectional area sizing according to Myosin Heavy Chain Isoform type expressed, A) Non-
OV CSA; B) 3day-0V CSA; C) 2wk-OV CSA; D) 6wk-OV CS; N=3 for the Non-OV
samples, N=2 for the OV time course samples

Figure 4.6.A through 6.D illustrate that MyHC isoform specific myofibre

composition within the muscle changes upon overloading, and the differences were more

evident in the wild-type than the knockout muscle. Again due to the small sample size

analyzed, the tendencies did not reach statistical significance, but showed a trend that is

interesting. The trend was that the wild-type muscle seems to be more capable of fibre-

type switching towards the more energy-efficient, oxidative myosin isoforms, than the

myostatin knockout fibres. The most evident difference was seen in the complete lack of

53



the slowest fibre-types (MyHC I, and MyHC I/IIA) in the knockouts, while in the wild-

types these fibres steadily increased in proportion as the overload period was extended.
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Figure 4.6: MyHC Fibre-Type Proportions Response to Functional Overload.
Myofibre Expression Proportions according to Myosin Heavy Chain Isoform type
expressed, A) Non-OV CSA; B) 3day-OV CSA; C) 2wk-OV CSA; D) 6wk-OV CS; N=3
for the Non-OV samples, N=2 for the OV time course samples

4.4: mRNA Transcript Expression of Target Genes in Response to Overload

In an effort to explain the observed differences in response between wild-type

muscle and myostatin knockout muscle, we tested overloaded tissue for some well known

factors induced in muscle growth. Using the RT-PCR technique, (Figure 4.7.A), we

measured the mRNA transcript levels of these different targets to try to pinpoint what are
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the targets that respond differently in wild-type muscle as compared to knockout muscle.

Figures 4.7.B-E represents histograms showing the relative expression levels of the

different targets tested in this project. Atrogin-1 did not show any difference between

Mstn+/+ and Mstn-/- animals in reacting to overloading stimulus, with both sample

groups showing a similar decrease as overloading is extended. The same response was

seen with the expression Calcineurin A i.e., no difference between Mstn+/+ and Mstn-/-

mice, but a similar decrease in both over extended overloading periods. Brain-derived

neurotrophic factor (BDNF) expression initially was measured to be different between

Mstn+/+ and Mstn-/-, with an increase of BDNF showing in the knockout muscle relative

to its wild-type counterpart. However, with overloading, both Mstn+/+ and Mstn-/- mice

showed similar decreases in expression, negating the original discrepancy seen in the

non-overloaded samples. Myogenin and Follistatin were the only targets tested that

showed differential expression patterns in wild-type and knockout muscle. Myogenin

mRNA levels gradually increased during overload, with a tendency for the increase to be

more prominent in the knockout muscle as opposed to the wild-type muscle. Follistatin

expression dramatically increased in the wild-type group after 3 days of overload and

stayed higher than the control group throughout the other overload time points, while the

knockout registered only a slight increase that was similar across all time points, much

unlike the follistatin expression profile. These findings lent evidence to the assumption

that wild-type muscle employs a different signalling pathway for growth than the

myostatin knockout muscle.
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Figure 4.7: mRNA Expression of Target Genes in Response to Functional Overload.
A) Representative images of mRNA on EtBr stained agarose gels across the various
overload periods for: Follistatin (Fstn), Calcineurin A (CnA), Atrogin-1 (Atgn),
Myogenin (Mgn), Brain-derived neurotrophic Factor (BDNF), 28S used as a loading
control; B-F) B) Bar graph quantification of mRNA expression. * p<0.05 from the Non-
OV Mstn+/+ expression levels, ** p<0.05 from the 3day-OV Mstn+/+ expression levels,
# p<0.05 from the Non-OV Mstn-/- expression levels; ## p<0.05 from the 3day-OV
Mstn-/- expression levels; T p<0.05 between the paired bars. N=2 per group, preliminary
data run once in duplicate
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4.5: Protein Expression Response to Functional Overloading

The western blot in Figure 4.8, for protein extracted from the same piantarli that

were originally cut and stained for MyHC isoform IHC (n=2 for each time point), and

probed for Pax7 protein. The resulting histogram indicated a similar pattern to what
follistatin exhibited in mRNA transcript analysis; that being a marked increase in wild-

type three day overloaded muscle, then a gradual reduction over the following two time

points. The only difference between Mstn+/+ and Mstn-/-, muscle was seen in the three

day overloaded muscle, which indicated a fast response to functional overloading early in

the process, a response that is evidently different in knockout from wild-type muscle.

Early testing with anti-myogenin antibody on wild-type and myostatin knockout

muscle showed, a significant difference in expression of myogenin between the two

groups (n=2), namely a three-fold increase in myogenin protein expression in the

myostatin knockout plantaris as compared to the wild-type counterparts (in Figure 4.9).

The difference was more pronounced at the protein level than the observed expression at

the mRNA level that was measured earlier (Figure 7.E).
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Figure 4.8: Plantaris Pax7 Protein Expression in response to Functional Overload.
A) Representative protein western blot representing Pax7 expression across the various
overload periods, Ponceu S staining was used as a loading control; B) Bar graph
quantification of protein expression; N=2 per group, preliminary data run once per
sample

58



A) Mstn+/+ Mstn-/-

Myogenin

^t- " m mm* ? \r~' a-tubulin

B) 3.5

i. 2 '

2

15

1

05

Myogenin Expression in non-OV Plantaris

Mstn-/r Mstn-/*

Figure 4.9: Myogenin is differentially expressed in Non-Ov Mstn+/+ or Mstn-/-
Plantaris. A) Western blot membrane representing Mstn+/+ or Mstn-/- samples probed
with anti-myogenin antibody, a-tubulin was used as loading control; B) Bar graph
quantification of protein expression, indicates significance within p<0.05 from the
Mstn+/+ expression levels. N=2 per group, preliminary data performed once

4.6: Myostatin Levels in Transgenic Mice variants of Calcineurin Expression

By testing the mRNA transcript levels ofmyostatin in different transgenic mice

models that were engineered to overexpress or lack proteins known to be players in the

calcineurin pathway, we tried to shed light on any possible link between the hypertrophy

linked calcineurin pathway and the regulatory role of muscle growth dictated by
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myostatin. Results in Figure 4.10 showed that mice overexpressing CamBP (n=3) showed

a decrease in the myostatin mRNA transcript, while no significant change was observed

for the PV-HA transgenic mice (n=3), both compared to CD-I wild-type mice (n=3), the

mouse strain used for generating these transgenic lines. Also tested were the NFATc2

knockout mice (n=3), NFAT being a downstream signalling propagator of calcineurin,

and the results showed a marked increase in the myostatin mRNA transcript as compared

to the wild-type Balb/c wild-type strain (n=3) that was used to generate this NAFTc2-/-

mouse strain. This is interesting because it gives us evidence that inhibiting a direct signal

propagator of the calcineurin protein does show a strong upregulatory response in

myostatin levels.
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Figure 4.10: Myostatin mRNA expression in muscles of TG mouse variants of
Calcineurin Expression. A) Representative image of Mstn mRNA run on EtBr stained
agarose gel across the various Transgenic mice models, 28S was used as a loading
control; B) Bar graph quantification of mRNA expression, indicates significance within
p<0.05 from the wild-type expression levels; N=3 per group, preliminary data run once in
duplicate
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5: Discussion

61



We set out to study the effects of myostatin in muscles that are, due to increased

load and neural activation, in the process of growing using a process known as plantaris

functional overloading. It is achieved by the surgical ablation of the synergist muscles of

the plantaris, namely the gastrocnemius and soleus leaving the plantaris with the sole task

of performing ankle plantar flexion. By analyzing wild-type and myostatin null

genetically engineered mice, we set out to understand the role that myostatin plays in

overload-induced muscle growth, specifically how myostatin affects the hypertrophic and

hyperplasic signalling pathways implemented by muscles during the growth process. We

hypothesized that the hypertrophic and hyperplasic growth pathways will be more

potentiated in myostatin null mice as compared to their wild-type counterparts. Our

results suggest that myostatin is involved in inhibiting the hyperplasic growth signalling

pathway in a higher capacity than the hypertrophic pathway leading to a differential

response to functional overload between myostatin null mice and wild-type mice.

We performed several initial identification and characterization experiments to

assess the knockout mouse model that was generously provided to us by Dr. Se-Jin Lee's

John Hopkins' lab. As shown in Figures 1 and 2, our resulting data analysis was similar

to what other groups have shown when using the same myostatin knockout model and the

original wild-type strain C57BL. Our data were consistent with what Dr. Se-Jin Lee (Lee,

2007) and Dr. Patel (Matsakas et al., 2009) have published earlier, with Dr. Lee reporting

approximately 50% increase in absolute muscle mass of the gastrocnemius muscle for the

myostatin knockout mice. As well, in that study, Dr. Lee reports that Mstn-/-

plantaris/gastrocnemius muscles show a relative increase in fibre number of approx 50%

and an increase of approx 40% in the cross-sectional area of fibres in these muscles.
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These data sets were collected from mice aged 10 weeks which is younger than our

testing age, which could explain why our results are slightly different than their reported

data. Dr. Patel reports an increase in muscle weight in the EDL and gastrocnemius

muscles after injecting wild-type mice with the inhibitory propeptide of myostatin loaded

vectors to overexpress that protein to counter the effects of myostatin in these muscles.

This method, however, only produced a 20% increase in overall muscle weight, with its

inherent inability to completely neutralize myostatin' s presence in muscles. These studies

allow us to compare our results regarding muscle overload to that of what others have

studied even when their methods for experimentally altering the muscles are different

from our technique.

Our results showed that myostatin does play an inhibiting a role in regulating

muscle growth, and more specifically it seems to be controlling the satellite cell

participation in muscle growth as opposed to regulating the existing mature myofibres

present prior to the induction of exercise stimulus by means of functional overload. What

this means is that wild-type muscles, with their native expression of myostatin, respond

to functional overload by activating hypertrophy-related pathways, while myostatin null

muscles respond by activating less the hypertrophy and more the hyperplasia related

pathways for muscle growth. As seen in Figure 4, both wild-type and myostatin knockout

muscle midbellies appeared to grow to the same extent. However the overall composition

of the muscles differed, with a tendency for wild-type muscle to show bigger mature

myofibres, while the knockout model showed a tendency for increased number of

myofibres in the midbelly.
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By analyzing the mean cross sectional area of the different myofibre types, as

seen in Figure 5, the results showed a tendency for wild-type myofibres to respond by

increasing their CSA to a greater extent than what Mstn-/- myofibres were able to

accomplish. The results from this study show that the overall increase for the wild-type

myofibre CSA is approximately 65% while previous results from Dr. Michel's (Dunn et

al., 1999) group report a doubling effect from functional overloading of plantaris muscle.

Considering that our study was performed on a limited number óf mice, the results might

be underestimating the gap from hypertrophy in the wild-type muscle compared to the

knockout muscle. It is prudent to note that Mstn-/- myofibres at rest are known to be

overall larger than Mstn+/+ myofibres (Lee, 2007), as seen in Figure 2.D, but over the

time course studied, their size is eclipsed by the wild-type myofibres. This increase alone

would suggest that wild-type muscles would grow to be larger than myostatin knockout

tissue over the course of the overload period. However this was not observed, and is

explained by the greater hyperplasic response seen in knockout tissue as compared to

wild-type tissue. This increase is seen in Figure 4.E, where the mean number of

myofibres in the midbelly of plantaris muscle was calculated based on dividing the

midbelly overall area by the mean cross sectional are of the myofibres present in the

midbelly. While the tendency shows a slightly greater number of myofibres in the

midbelly ofknockouts, it did not reach statistical significance with the limited number of

samples. However, it is conceivable that with a larger pool of samples, the numbers

would reach significance, being larger in the knockout muscle compared to the wild-type

counterparts. As reported earlier, myostatin knockout mice have a greater number of

myofibres, approximately 50% more relative to wild-type muscle (Lee, 2007) before any
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experimental procedures are performed. Also it has been shown earlier by Dr.

Kambadur's group, by performing IF analysis on myoblasts and colocalizing myostatin to

the nuclei of these developing cells, that myostatin does inhibit satellite cell activation

(McCroskery et al., 2003) and comparing these to Mstn-/- samples that show a lack of

myostatin presence in these cells and an overall increase number of these myoblasts.

Taken together, published research establishes that in the absence of a myostatin

inhibitory role in muscles, satellite cell rate of proliferation is increased. Here we showed

that when Mstn-/- plantaris muscles are stimulated to grow, they had a tendency to up-

regulate the rate of satellite cell proliferation, inducing a hyperplasic growth response,

that is unmatched by the wild-type muscle stimulated in a similar fashion.

Another important parameter that we analyzed is the fibre-type proportion

changes that would occur over a prolonged overload period. Previous work done with

similar techniques reported that with overload, there would be a significant amount of

fibre-type remodelling that change towards expression of more oxidative (slow) MyHC

isoforms (Dunn et al., 1997, Dunn et al., 2001, Olsen et al., 2000, Pehme et al., 2004). In

Figure 6, the graphs show that the Mstn+/+ tissue did exhibit the normal shift of fibre-

type proportions towards the slow phenotype, while the Mstn-/- proportions did not show

the tendency to shift their fibre-type composition to any significant extent. This fact,

coupled with the knowledge that Mstn-/- muscles have a higher activation state for

glycolytic pathways (Steelman et al., 2006, Ilham et al., 2009), lends to the idea that

myostatin may control the expression of oxidative MyHC isoforms. In cases where it is

not present, the muscle tends to express only the energy inefficient, glycolytic fibre-types

(Handschin et al., 2007).
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This is one of the significant findings of this project, namely the inability of Mstn-

/- muscle to express or remodel existing myofibres to more energy efficient MyHC

isoforms. This allowed us to explore in more detail what the function ofmyostatin is,

beyond the already understood role of regulating the size of muscles. Here we showed
that without myostatin's expression, muscle is at risk ofbecoming more energetically

inefficient by producing myofibres that are biochemically more taxing on the energy

expenditure of the body with their increased need for ATP when induced to grow. Also
knowing that MyHC isoforms that utilize glycolytic pathways for producing their energy

are also easily fatigued, and unable to perform their forceful contraction for a prolonged

period of time, this leads to muscles that lack great physical endurance.

In order to understand the signalling pathways that are altered differently in the

Mstn-/- model compared to the wild-type controls, we pursued looking at the expression

of mRNA from target genes that are known to be associated with muscle growth, and in

one case muscle atrophy. Specifically, we looked at follistatin (Lee, 2007), calcineurin A

(Dunn et al., 1999, 2001), atrogin-1 (Zhang et al., 2007), myogenin (Yafe et al., 2008),
and brain-derived neurotrophic factor (Mousavi et al., 2006). These preliminary sets of

experiments were done using polymerase chain reaction techniques to assess the levels in
which certain genes were transcribed. Comparing Mstn+/+ and Mstn-/- plantaris mRNA

across all of the time points analyzed provided an understanding of the expression

profiles of these chosen targets. Figure 7.A represents the images acquired after
performing polymerase chain reaction experiments, with all graphs representing the level
of PCR product relative to the expression of controls.
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Our preliminary results showed that out of the five tested gene targets, both

calcineurin and atrogin-1 reacted in similar fashion in both Mstn+/+ and Mstn-/- across

all the overload time points, as seen in Figures 7. C-D. In both instances the mRNA

transcript levels decreased after 2 weeks, and maintained that lowered expression level up

to the 6 week overload period. Atrogin-1 is an agent of protein degradation, an ubiquitin

ligase that marks proteins for proteolysis (Zhang et al., 2007) making it a prime target for

downregulation during muscle growth phase. Its expression was decreased after

prolonged overload which can easily be explained by the fact that the overload process

increases anabolic processes and decreases catabolic/proteolytic pathways. The graph

indicates that the decrease of calcineurin and atrogin-1 is similar in both wild-type and

myostatin knockout muscle which indicates that myostatin is not acting on these two

proteins directly in our growth stimulus procedure. The fact that atrogin-1 mRNA acted

similarly between wild-type and myostatin knockout tissue has been reported before, at

least for control groups, by Dr. Thissen's group (Gilson et al., 2007), specifically, they

reported no significant difference in mRNA levels between the two groups. Calcineurin

expression mirrored the trend seen with atrogin-1, namely the expression is decreased

significantly after 2 weeks and maintained at the same decreased level up to the 6 week

overload period.

With the knowledge that calcineurin is part of the signalling pathway that

increases the expression of slow MyHC isoform fibre-types, with published results

showing a 2-fold increase in MyHC I in the plantaris after 4 weeks of overload (Olsen et

al, 2000, Dunn et al., 2001), it is difficult to explain why the mRNA transcript of this

gene has decreased over the prolonged overload period. One explanation might be that
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the protein expression levels might not mirror the mRNA transcript levels, which is not
uncommon in these kinds of studies. Another explanation might be that other signalling

pathways that induce myofibre remodelling are more affected by the overload procedure

than the calcineurin pathway, studies by Dr. Glass's group (Bodine et al., 2001) and Dr.

Powers' s group (Sugiura et al., 2005), point to the Akt pathway as a major role player in

remodelling within muscle in response to functional overload stimuli. We did show that

slower MyHC-expressing myofibres are produced with prolonged overload, as in Figure

6.C-D where the proportion of MyHC I and I/IIA are seen in greater frequency after 2-6

weeks as compared to the control tissue. It is worthwhile to note that since Mstn-/-

muscle is shifted towards expressing more glycolytic myosin heavy chain isoforms, it is

then understandable that the calcineurin expression is decreased in those muscles, since it

does not seem that these knockout muscles are capable of producing many oxidative

(slow) myofibres from the initial stages, a finding supported by Dr. Cessar-Malek's group

(Ilham et al., 2009). This group use microarray bioinformatic analysis of samples taken

from Mstn-/- and wild-type counterparts, and concluded that the myostatin knockout

mouse model shows a significant downregulation of gene expression related to oxidative

myofibres and an upregulation for the glycolytic pathways in those samples. In our study

we analyzed the expression of MyHC isoforms by immunohistochemical staining and our

results showed a lack of fast-to-slow fibre-type switching in the Mstn-/- piantarli tested

which is in line with what is expected of the knockout model.

Since both atrogin-1 and calcineurin have responded in a similar fashion when

comparing Mstn+/+ and Mstn-/- overloaded muscles, we decided to probe for more

targets that would show a difference in expression profiles. This would shed light on the
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apparent variation in reacting to functional overload that led the wild-type tissue to

express more of a hypertrophic growth response while the myostatin null tissue expresses

more of a hyperplasic response. Figure 7.B shows the graph resulting from preliminary

measurements of follistatin mRNA transcript levels across the various overload periods

tested. In this graph the results showed a marked difference between wild-type and

myostatin knockout tissue. After only three days of overload, the follistatin expression in

the wild-type has increased by approximately 4-fold as compared to the non-overloaded

controls, while the Mstn-/- levels do not change. This difference is however temporary,

since at all subsequent time points, the levels returned to approximately non-OV

expression patterns in both types of tissue. The difference seen after three days of

overload in the wild-type tissue allowed us to speculate that follistatin, the competitive

inhibitor of myostatin, was preferentially upregulated in wild-type tissue to accomplish

multiple roles. One role being to neutralize the myostatin present in the muscles of wild-

type tissue (allowing the wild-type tissue to grow). Another role suggests that follistatin

is involved in activating hypertrophy-promoting signalling pathways, as reported by Dr.

Kaspar in his study of follistatin injection into wild-type mice (Haidet et al., 2008). In this

study, they use a method of injecting the follistatin gene in mice and analyzing muscle

weight as well as myofibre number. Their result indicate that increased follistatin within

muscles leads to increased weight of those muscles accompanied by decreased myofibre

number, a clear indicator for hypertrophy over hyperplasia. In our case, the lack of

upregulation of follistatin in Mstn-/- tissue does explain the inability for the myofibres of

myostatin null mice to match the hypertrophic increase seen in the wild-type tissue.



Follistatin is an agent of hypertrophic growth response of muscle (Haidet et al.,

2008), and knowing that it is, in fact, differentially regulated between wild-type and

myostatin knockout tissue, we proceeded to test for a gene implicated in hyperplasic

growth response in skeletal muscle in order to verify that the myostatin knockout tissue

does employ this pathway more heavily than in the wild-type tissue. One of the genes

involved in the hyperplasia pathway is myogenin, a muscle regulatory factor that is

known to be involved with satellite cell activity, specifically its increased expression

during the proliferation stage of satellite cells and locking the myoblasts into path of

maturation (Kuang et al„ 2007, Le Grand et al., 2007). Figure 7.E presents the graph of

the preliminary expression profile of myogenin protein, and in this graph we did in fact

register a statistically significant difference between wild-type and myostatin knockout

tissue. Myogenin seems to be preferentially upregulated in the Mstn-/- tissue more so

than the wild-type, with the peak of its expression coming around the 2 week mark in our

study. This allowed us to conclude that satellite cell proliferation and maturation is more

evident in myostatin null tissue as compared to wild-type tissue, allowing us to verify that

myostatin is in fact an inhibitor to satellite cell activation and proliferation. Myostatin' s
involvement in satellite cell inhibition was mentioned earlier in and is supported by the

work of Dr. Kambadur (McCroskery et al., 2003). As further illustration that myogenin is

a key regulator in the hyperplasic growth response in muscle, Dr. Bodine's (Cohen et al.,

2007), and Dr. Goldman's (Macpherson et al., 2006) groups have shown that myogenin

has a role in stabilizing neuromuscular junction formation. They have identified that

myogenin promotes the clustering of acetylcholine receptors where the neuron forms a

synapse with the myofibre. This is linked to hyperplasia in the sense that newly formed
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myofíbres would require formation of neuromuscular junctions and, therefore, it would

be logical that myogenin can serve the dual role of signalling as a maturation agent for

satellite cells to form new myofíbres and as a neuromuscular junction formation agent.

One final gene target that was of interest to us is brain-derived neurotrophic factor

(BDNF). It is a stabilizer of synaptic connections between myofíbres and their motor

neurons (Mousavi et al., 2007). It is also expressed within satellite cells in the same

manner as Pax7 (Mousavi et al., 2007). This means it is implicated in maintaining the

present state of communication between motor neurons and the mature myofibre state

(Mousavi et al., 2007). With functional overload, the pre-existing state of motor neuron

connections and myofíbres would not be sufficient to the muscle because of the extensive

remodelling due to hypertrophy and hyperplasia. Therefore it is logical for BDNF

expression to be reduced, allowing a new state of neural branching and remodelling of

neuromuscular junctions to occur within the growing muscle. We tested the mRNA

transcript levels of BDNF, Figure 7.F, and our results showed that BDNF was

upregulated in the knockout muscle in a statistically significant manner. However after

overload, the levels in both wild-type and knockout mice are reduced significantly across

all overload time points. Put together, the mRNA transcript analysis lends support to the

hypothesis that myostatin is responsible for regulating pathways involved in activation of

satellite cells, and thus Mstn-/- tissue employs the hyperplasic growth pathway, rather

than the hypertrophy pathway, as a response to functional overload more readily than

wild-type tissue that has native myostatin levels inhibiting the activation of these

pathways.
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We pursued the analysis of Pax7 at the protein level in order to investigate

whether it is differentially regulated between wild-type and myostatin knockout tissue.

The reasoning behind this is that Pax7 is a well known quiescence marker of satellite

cells (Kuang et al., 2007, Seale et al., 2000, Le Grand et al., 2007), and its expression

level is used as a measuring parameter on whether satellite cells are being activated or

maintained quiescent. Our resulting preliminary western blot analysis, as seen in Figure

8, did not achieve statistical significance in any of the groups tested. However, a tendency

for Pax7 protein to be upregulated in the wild-type group after only 3 days of functional

overload was noted. This tendency might become significant if more samples are tested.

We thus speculate that Pax7 plays a role in inhibiting wild-type muscles from activating

the quiescent satellite cells, as would be supported by the findings of Dr. Olwin's group

(Olguin et al, 2004) as well as Dr. Kambadur's group (McFarlane et al., 2008). Both

studies performed immunofluorescence staining of satellite cells, specifically Pax7

protein, and concluded that when satellite cells are activated, Pax7 protein ceases to be

expressed in these cells. Taken together, the research states Pax7 is an inhibitor to

satellite cell activation and proliferation. Therefore, an initial increase in its protein level

would suggest the wild-type tissue is attempting to prevent the signalling propagation that

would lead to increased myofibre formation, and hence direct muscle growth towards

increasing the size of already available mature myofibres, causing myofibre hypertrophy.

Preliminary analysis was also performed on myogenin at the protein level, as it

was determined to be a key determinant showing the differential signalling pathways that

are employed by the muscle in response to overload when comparing Mstn+/+ and Mstn-

/- tissues. Figure 9 illustrates how in non-overload state, the myostatin knockout
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expressed myogenin at a 3-fold greater level than in wild-type plantaris muscle. This

replicated the trend seen at the mRNA transcript level seen in Figure 7.E, and therefore,

provides further evidence that myogenin is, in fact, differentially regulated between

Mstn+/+ and Mstn-/- tissue. Future experiments would have to analyze the myogenin

expression profile of both types of tissue across all the time points used in the overload

study, similar in fashion to what was done for Pax7 in Figure 8, in order to fully support

the findings at the mRNA transcript levels that indicated an increased upregulation of

myogenin in all overload time points as compared to their wild-type paired groups. This

will solidify the findings of the earlier results and it would implicate myogenin as a key

regulator of myofibre hyperplasia due to increased satellite cell proliferation and

maturation, leading to the observed increase in myofibre number noted.

Our analysis of all the results leads us to suggest that myostatin has an inhibitory

effect on the hyperplasic muscle growth response more profound than its effect on the

hypertrophic growth response. As mentioned earlier, the calcineurin pathway is an

established map for muscle hypertrophy response to functional overload (Dunn et al.,

1999, 2001), we set out to analyze the mRNA transcript levels ofmyostatin in several

transgenic mice models engineered to affect the calcineurin signalling pathway. It was

interesting to try to investigate whether transgenic mouse models engineered to have an

effect on the signal propagation involved in the calcineurin pathway would result in an

effect on the expression of myostatin, at least in the mRNA transcript level. One of the

threads of interest was based on previous research done by Dr. Pavlath's group, where

they show that the calcineurin-NFAT pathway was implicated in satellite cell activation

(Friday et al., 2001). In their published study, they use myotubes cultured cells and
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precursor cells (used as models for satellite cells in vivo) as samples that they treat with

activation or inhibitory agents on calcineurin, and they analyzed the mRNA levels of

Myf5, one of the myogenic regulator factors involved in satellite cell maturation and

differentiation (Friday et al., 2001). Their work indicates that inhibiting calcineurin

effectively inhibits the expression of Myf5 and thus they conclude that there is a link

between the calcineurin-NFAT pathway and satellite cell activation (Friday et al., 2001).

Therefore, we saw it as prudent to assess the levels of myostatin mRNA expressed in

some of the transgenic models available to us, namely the TnIs-PVHA mouse model, the

Tnls-CamBP mouse model and the NFATc2-/- mouse model, as well as the proper wild-

type mouse backgrounds to each model. The TnIs-PVHA model was designed previously

(Chin et al., 2003) to allow for slow myofibres to implement calcium oscillatory patterns

that mimic fast fibre states without leading to complete myofibre remodelling from slow

to fast. The Tnls-CamBP model was previously designed (Wang et al., 1995) to

overexpress the calmodulin binding protein (CamBP) protein, essentially lowering the

availability of Ca-Cam complex concentrations and hence the activation of calcineurin.

The CamBP gene was coupled to the TnIs promoter region allowing for increased

expression of CamBP within slow myofibres. The NFATc2-/- model was designed by

knocking out the functional NFATc2 protein by the introduction of a neomycin cassette

within the gene to cause the generation of a non-functioning transcript (Hodge et al.,

1 996). This is similar to the myostatin knockout model generation process done by Se-Jin

Lee (McPherron et al., 1997). Figure 10.A shows the resulting agarose gels of the PCR

performed on the various muscles to properly test myostatin mRNA expression. For
TnIs-PVHA and Tnls-CamBP mice, the soleus muscle was selected for testing because
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the designed transgenic model allows for overexpression of CamBP and PVHA in slow

fibres and not fast fibres, and soleus is composed of mostly slow, oxidative myofibres at

about 58% in proportion (Girgenrath et al., 2004). The PVHA genetic model is designed

to have an irregular calcium oscillatory rhythm within the myofibre, affecting the calcium

concentrations found in the cytoplasm of these fibres. This in effect lowers the

availability of calcium ions that would normally be able to bind to calmodulin forming

the Ca-Cam complex.

Decreasing the Ca-Cam concentration effectively lowers the activation of

calcineurin since the Ca-Cam complex is found upstream of calcium (Olsen et al., 2000).

Our results did not show a significant alteration of myostatin mRNA in this specific

model. This might indicate that the decrease of activated levels of calcineurin do not

necessarily have a direct effect on myostatin transcription levels. As for the Tnls-CamBP

model, which over expresses calmodulin-binding protein, our results show a decrease in

the myostatin mRNA transcript level that is approximately one half of the wild-type

levels. However, since CamBP, in effect, is expressed in the body to decrease the activity

of Ca-Cam complex, one would have assumed that it would ultimately have the same

effect on myostatin as in the TnIs-PVHA model, which is not the case. This could be

explained by noting that the TnIs-PVHA mice, which were studied by Dr. Michel's group

(Chin et al., 2003) did not show a tendency to remodel their soleus myofibres from slow

to fast, and therefore maintaining the same myofibre expression profile similar to CDl

wild-type mice can account for the non-significant change of myostatin mRNA

expression. Finally we tested NFATc2-/- tissue for the expression of myostatin. NFAT

isoforms are known to be downstream effectors of calcineurin, and their role in gene
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activation is extensively researched. Dr. Michel's group is actively studying the exact

role that knocking out NFAT isoforms plays in skeletal and cardiomyocyte hypertrophy.

Dr. De Windt's group's published a study showing in NFATc2-/- mice, cardiac

hypertrophy was fully attenuated (Bourajjaj et al., 2008). In our study, we analyzed the

expression of myostatin as a result of knocking out the c2 isoform ofNFAT. Our results

show that by removing the final link between the calcineurin pathway and its target

genes, the levels of myostatin mRNA transcripts are increased to 3-fold. This is a

significant alteration that lends support to the idea that calcineurin and myostatin

pathways are cross-linked and work in opposite fashions, therefore lending control

mechanisms that would keep both hypertrophic and anti -hypertrophic pathways in check.

In conclusion, our study showed that myostatin' s effect on growing muscle is

most apparent in attenuating the hyperplasic growth response in stimulated muscle, and

not the hypertrophic signalling pathway. By analyzing both physiological and molecular

parameters in functionally overloading plantaris muscles from wild -type and myostatin

knockout mice, we determined that the knockout muscles showed a tendency to increase

myofibre number as a response to growth stimuli, while wild-type muscle showed a

tendency to enlarge the pre-existing mature myofibres. This is the first in vivo study to

specifically look at the effect of myostatin in muscles that are induced to grow by means

of functional overloading.
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6: Future Work

77



In order to verify the tendencies seen in this project, we have to increase the

number ofmice tested for each treatment group so that the measurements can be

statistically shown to be significant. Also, it is of importance to analyze the mRNA

expression levels using a technique that is more accurate than semi-quantitative PCR.

Therefore, it is planned to use real time PCR experiments to acquire a more accurate

assessment of the expression levels of our target genes of interest, as well as other targets

that also participate in hypertrophy and hyperplasia pathways. Hence targets such as

activin, activin IIB receptor, and smad2/smad3 are seen as future targets to assess in

relation to the hypertrophy pathway. As for the hyperplasia-related pathway, targets such

as MyoD, MRF4 and Myf5 are all interesting to analyze so that we can track the different

phases of satellite cell activation, to maturation.

Further experiments such as immuno-fluorescence detection of satellite cells in

the functionally overloaded plantaris tissues are also important to visually verify the

activation of satellite cells. Therefore, simultaneous staining of Mstn+/+ and Mstn-/-

tissue for satellite cell markers such as BrdU or m-cadherin are important, coupled with

staining for myogenin to assess the number of activated satellite cells.

Finally, in an attempt to investigate in more detail the association between

myostatin and the calcineurin pathway, it would be prudent to generate cross breeds of

myostatin knockout mice with transgentically modified mice overexpressing calcineurin,

as well as other cross breeds between myostatin knockouts and targets involved in the

calcineurin pathway.
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APPENDIX I

Non-Overloaded Control Mice Muscle Weights

Soleus

L (mg) R (mg) Avg
Avg
REL BW STD SE

F67-5 11.0 10.8 10.9 0.333333 32.7

G54-5 10.0 10.4 10.2 0.280992 36.3

C57 11.3 10.9 11.1 0.431907 25.7

AVG 10.7 0.348744 0.472582 0.272853
0.076629 0.044243

J91-4 16.5 17.5 17.0 0.420792 40.4

J92-1 17 16.8 16.9 0.478754 35.3

J90-2 13.3 13.5 13.4 0.470175 28.5

AVG 15.8 0.456574 2.050203 1.18372

Mstn+/+
SE

ABS

10.7

0.044243

REL

0.348744

0.044243

0.031283 0.018062

Mstn-/- 15.8 0.456574
SE 0.018062 0.018062

Plantaris

L (mg) R (mg)
Avg
ABS avg REL BW STD SE

F67-5 21.5 22.5 21.5 0.672783 32.7
G54-5 20.1 21.8 20.1 0.577135 36.3

C57 18.3 18.1 18.3 0.708171 25.7

AVG 20.0 0.652696 1.604161 0.92619
0.067788 0.039139

J91-4 43.2 41.9 43.2 1.053218 40.4
J92-1 38.5 34.7 38.5 1.036827 35.3

J90-2 30.1 31.2 30.1 1.075439 28.5

AVG 37.3 1.055161 6.636515 3.831706
0.019379 0.011189

REL
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Mstn+/+ 20.0 0.652696
SE 0.039139 0.039139

Mstn-/- 37.3 1.055161
SE 0.011189 0.011189

Gastrocnemius

L (mg) R (mg) Avg
Avg
REL BW STD SE

F67-5 153 152 152.5 4.663609 32.7
G54-5 138.8 132.2 135.5 3.732782 36.3

C57 142.5 134.5 138.5 5.389105 25.7

AVG 142.2 4.595165 9.073772 5.238898
0.83028 0.479376

J91-4 320 314.7 317.4 7.855198 40.4
J92-1 269.6 275.2 272.4 7.716714 35.3

J90-2 221.1 216.4 218.8 7.675439 28.5

AVG 269.5 7.749117 49.36393 28.50111

Mstn+/+
SE

142.2
0.479376

REL

4.595165
0.479376

0.094159 0.054364

Mstn-/- 269.5 7.749117
SE 0.054364 0.054364

Tibialis Anterior

L (mg) R (mg)
avg
ABS

Avg
REL BW STD SE

F67-5 54.4 55 54.7 1.672783 32.7

G54-5 49.7 45.3 47.5 1.30854 36.3

C57 60.1 55.2 57.7 2.243191 25.7

AVG 53.3 1.741504 5.221191 3.014544
0.4711 0.271998

J91-4 118 110.6 114.3 2.829208 40.4

J92-1 95.4 93.1 94.3 2.669972 35.3

J90-2 75.8 79.4 77.6 2.722807 28.5
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AVG 95.4 2.740662 18.37623 10.60983

0.081106 0.046828

Mstn+/+
SE

53.3
0.271998

REL

1.741504
0.271998

Mstn-/- 95.4 2.740662
SE 0.046828 0.046828

Extensor Digitorum Longus

L (mg) R (mg) Avg
Avg
REL BW STD SE

F67-5 13.6 13.4 13.5 0.412844 32.7

G54-5 11.3 10.4 10.9 0.298898 36.3

C57 11.3 10.6 11.0 0.42607 25.7

AVG 11.8 0.379271 1.501943 0.867173
0.069918 0.040368

J91-4 22.8 23.5 23.2 0.57302 40.4

J92-1 19.5 20.7 20.1 0.569405 35.3

J90-2 14.9 16 15.5 0.542105 28.5

AVG 19.6 0.56151 3.877607 2.238803
0.016902 0.009759

Mstn+/+
SE

11.8
0.040368

REL
0.379271
0.040368

Mstn-/- 19.6 0.56151
SE 0.009759 0.009759
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APPENDIX II

Extracted Mice for Overload Project

A) Muscle Weight Data

Mouse
PIa Left
(mg)

Pia

Right
(mg) BW (g)

Pia L/R
Avg Rei Pia

F67-5wt non-OV 21.5 22.5 32.7 22.0 0.67278287

G54-5wt non-OV 20.1 21.8 36.3 21.0 0.57713499
c57wt non-OV 18.3 18.1 25.7 18.2 0.70817121

J91-4ko non-OV 43.2 41.9 40.4 42.6 1.05321782

J92-lko non-OV 38.5 34.7 35.3 36.6 1.0368272

J90-2ko non-OV 30.1 31.2 28.5 30.7 1.0754386

F74-lwt 3day-OV 29.0 32.1 33.5 30.6 0.9119403

E65-lwt 3day-OV 19.4 21.9 23.1 20.7 0.89393939

Jacklwt 3day-OV 30.5 28.8 29.9 29.7 0.9916388

J104-lko 3day-OV 46.4 20.1 35.3 33.3 0.94192635

J107-lko 3day-OV 27.2 34.1 26.8 30.7 1.14365672

J110-2ko 3day-OV 39.9 39.3 36.8 39.6 1.07608696

c57stk 2wk-OV 53.5 58.0 32.0 55.8 1.7421875

F70-2wt 2wk-OV 26.0 27.1 24.3 26.6 1.09259259

J95-lko 2wk-OV 60.3 38.8 29.2 49.6 1.69691781

J95-2ko 2wk-OV 48.0 55.8 37.0 51.9 1.4027027

E55-lwt 6wk-OV 49.4 49.7 29.6 49.6 1.67398649

B122-lwt 6wk-OV 32.2 42.2 33.5 37.2 1.11044776

J85-lko 6wk-OV 38.0 53.0 32.5 45.5 1.4

J85-3ko 6wk-OV 64.7 63.8 33.2 64.3 1.93524096

Absolute Mass Table
non-OV 3day-OV 2wk-OV 6wk-OV

Mstn+/+ 20.38333 25.60000 41.15000 43.37500

STD 1.96235 7.00036 20.64752 8.73277

SE 1.13300 4.95075 14.60221 6.17593

Mstn-/- 36.60000 31.95000 50.72500 54.87500
STD 5.95000 1.83848 1.66170 13.25825

SE 3.43533 1.30020 1.17518 9.37642

92



Relative Mass Table
non-OV 3day-OV 2wk-OV 6wk-OV

Mstn+/+ 0.65270 0.90294 1.41739 1.39222

STD 0.06779 0.01273 0.45933 0.39848

SE 0.03914 0.00735 0.26520 0.23007

Mstn-/- 1.05516 0.90294 1.54981 1.66762

STD 0.01938 0.14264 0.20804 0.37847

SE 0.01119 0.08236 0.12012 0.21852

B) Physiological Measurement Summaries

ctl Pia
Whole
Midbelly Avg cell size (µ??2 # (midbelly/cell avg)

C57stk 1649659 1743 946

F67-5 1700053 1586.12266 1072

G54-5 1448761 1558.450339 930

AVG 1599491 1629 983

STD 132945 100 78

J90-2 2545629 2203.630481 1155

J91-4 2932506 2061.665061 1422

J92-1 2667716 1984.718709 1344

AVG 2715284 2083 1307

STD 197776 111 137

3day-
OV

Whole
Midbelly Avg cell size (µ??2 # (midbelly/cell avg)

F74-1 2553059 1755 1455

E65-1 (F) 1822437 1580 1153

AVG 2187748 1668 1304

STD 516628 124 213

J 104-1 4779264 1915 2356

J107-1 (F) 3877736 2028 2025

AVG

STD

4328500

637477

2028
80

2190

234
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2wk-
OV Whole Midbelly Avg cell size (µ??2) # (midbelly/cell avg)
C57stk 2580354 2330 1108

F70-2 1977533 1654 1196

AVG 2278943.5 1992 1152

STD 426259 478 62

J95-1 3211185 2372 1354

J95-2 3161743 1855 1705

AVG 3186464 2113 1529

STD 34961 366 248

6wk-
OV Whole Midbelly (µ??2) Avg cell size (µ?t?2 # (midbelly/cell avg)
E55-1 3750789 2504 1498

B122-1 2591831 2548 1017

AVG 3171310 2526 1258

STD 819507 32 340

J85-1 3019782 2499 1208

J85-3 3632605 2460 1476

AVG 3326193.5 2480 1342

STD 433331 28 190

C) Cross-sectional Area Tables

I l/IIA HA IIA/IIX HX IIX/IIB MB

C57stk avg
STD

tot count

Proportion

F67-5 avg
STD

tot count

1032.658

0.277778

I

705.6319
62.33077

12

1013.991 1089.932 1653.362 2461.128 2472.82

262.1776 287.3973 352.1136 173.2435 417.0976

85 54 58 137

25.38463 15.30909 16.97673 2.035522 40.01625

l/IIA
984.6865

256.1688

HA

908.4262

204.6837

75

IIA/IIX
1118.913

313.8714

83

MX

1864.694

440.6998

90

IIX/IIB HB

2477.065 2387.985

424.4641 505.1186

21 72
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Proportion 2.729277 | 2.651515 | 20.67918 | 23.72571 | 24.9303 | 6.163934 | 19.12009

l/IIA IIA IIA/1 IX MX IIX/IIB IIB

G54-5 avg 650.6865 841.0505 1188.497 1549.289 2120.062

STD 126.9817 155.2522 257.9973 228.2416 434.1008

tot count 28 15 38 18 98

Proportion 13.87429 8.06982 19.52496 9.124347 49.40658

I l/IIA IIA IIA/1 IX MX IIX/IIB IIB

Mstn+/+ 869.145 984.6865 857.7012 1016.632 1568.851 2162.494 2326.956

STD 62.33077 256.1688 197.9476 252.1736 350.2702 275.3164 452.1057

SE 35.98774 147.9035 114.2885 145.5968 202.2346 158.9587 261.031

tot count 13 188 152 186 46 307

proportions 1.002352 0.883838 19.97936 15.70154 20.47733 5.774601 36.18097

prop STD 1.501996 1.530853 5.78699 7.835319 4.061412 3.560414 15.50322

prop SE 0.867204 0.883864 3.341218 4.523856 2.344926 2.055666 8.951054

l/IIA IIA IIA/1 IX IIX IIX/IIB IIB

J91-4 avg 857.8112 756.4217 1531.941 2804.212 2680.399

STD 56.12335 206.3799 459.1561 571.788 544.3885

tot count 76 70 10 170

Proportion 0.564972 21.85293 21.21517 2.830763 53.53617

l/IIA IIA IIA/1 IX IIX IIX/IIB IIB

J92-1 avg 941.0764 1054.084 1573.833 2252.221 2678.834

STD 173.4316 228.0514 494.1454 276.1031 535.0594

tot count 60 53 10 166

Proportion 0.950617 20.3565 18.65127 3.352814 56.68879

l/IIA IIA IIA/1 IX MX IIX/IIB IIB

J90-2 avg 1170.375 1328.396 2103.974 2903.344 2588.63

STD 279.4339 374.9638 510.8226 984.2706 492.1801

tot count 0 46 21 62 138

Proportion 0 17.09714 8.196313 21.90038 3.138355 49.66781

Mstn-/- N/A
l/IIA

N/A
IIA

989.7542
IIA/1 IX
1046.301

MX

1736.583
IIX/IIB
2653.259

IIB

2649.288

STD N/A N/A 169.6629 269.7983 488.0414 610.7206 523.876

SE N/A N/A 97.95781 155.7727 281.7791 352.61 302.4688
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tot count 51 157 185 29 474

proportions 6.204243 16.80191 20.58894 3.107311 53.29759

prop STD 9.435496 7.490134 1.712686 0.262407 3.516567

prop SE 5.447746 4.324558 0.988849 0.151505 2.03035

I l/l IA MA IIA/IIX MX IIX/IIB IB

E65-1 AVG 860.2907 1010.039 1247.419 1650.833 1896.019 2058.606

avg STD 422.701 355.7286 464.8197 485.994 692.2469 711.3196

tot Count 13 50 29 42 86

Proportions 5.608411 21.96415 12.69898 18.29543 4.049068 37.38396

l/IIA HA IIA/IIX HX IIX/IIB HB

F74-1 AVG 972.1299 811.4489 1003.5 1596.135 2359.61 2647.27

avg STD 312.8189 439.9762 586.8981 1072.345 925.6269

tot Count 66 21 46 10 69

Proportions 0.510204 31.13844 9.418717 21.7272 4.908322 32.29712

I l/IIA HA IIA/IIX HX IIX/IIB HB

Mstn+/+ 860.2907 972.1299 910.7441 1125.459 1623.484 2127.814 2352.938

avg STD 422.701 #DIV/0! 334.2737 452.3979 536.4461 882.2961 818.4733

tot Count 13 116 50 88 19 155

Proportions 2.804205 0.255102 26.55129 11.05885 20.01131 4.478695 34.84054

Prop STD 3.965745 0.360769 6.487203 2.319499 2.426629 0.607584 3.59694

Prop SE 2.804629 0.255141 4.587838 1.640381 1.716145 0.429692 2.543805

l/IIA HA IIA/IIX HX IIX/IIB HB

J104-1 AVG 1056.845 1289.447 1621.419 2378.848 2575.143

avg STD 453.5549 483.976 645.5184 837.8236 876.4732

tot Count 12 27 50 19 108

Proportions 5.789955 13.17287 23.70575 8.766632 48.56479

l/IIA HA IIA/IIX HX IIX/IIB HB

J 107-1 AVG 1076.792 1346.13 2053.751 2415.956 2387.552

avg STD 359.6519 477.6955 764.5228 1248.897 807.3472

tot Count 33 43 31 108

Proportions 15.16171 19.80786 14.00208 2.409836 48.61851
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I ?/??? IIA IIA/IIX MX IIX/IIB IIB

Mstn-/- #DIV/0! #DIV/0! 1066.818 1317.788 1837.585 2397.402 2481.347

avg STD #DIV/0! #DIV/0! 406.6034 480.8357 705.0206 1043.36 841.9102

tot Count 0 0 45 70 81 24 216

Proportions 10.47583 16.49037 18.85392 5.588234 48.59165

Prop STD 6.626833 4.691649 6.861528 4.494934 0.03798

Prop SE 4.686586 3.317998 4.852566 3.178878 0.02686

l/IIA MA IIA/IIX MX IIX/IIB HB

c57 2wk
AVG 1858.311 1951.112 2210.293 2800.153 3076.823

avg STD 697.2627 678.6943 932.2079 998.1036 1027.682

tot Count 34 13 31 16 23

Proportions 27.88595 11.3286 25.92403 14.06367 20.79775

I l/IIA MA IIA/IIX MX IIX/IIB MB

F70-2 AVG 1347.904 1076.178 1291.664 1656.298 2154.118 2181.174 2091.549

avg STD 605.0757 531.2672 554.1779 656.2436 730.644 707.9747 1005.613

tot Count 8 15 66 20 43 11 27

Proportions 4.007243 7.430032 33.82825 10.38272 23.22856 5.91886 15.20433

I l/IIA ha IIA/IIX MX IIX/IIB MB

Mstn+/+ 1347.904 1076.178 1574.987 1803.705 2182.205 2490.663 2584.186

avg STD 605.0757 531.2672 625.7203 667.4689 831.4259 853.0392 1016.648

tot Count 8 15 100 33 74 27 50

Proportions 2.003621 3.715016 30.8571 10.85566 24.57629 9.991267 18.00104

Prop STD 2.833549 5.253826 4.20184 0.668833 1.905985 5.759254 3.955144

Prop SE 2.003924 3.715577 2.971599 0.473008 1.347938 4.073022 2.797131

l/IIA IIA IIA/IIX nx IIX/IIB MB

J95-1 AVG 1113.263 1600.061 1910.088 2730.934 2838.135

avg STD 443.0009 556.656 730.5794 901.2256 968.1791

tot Count 13 25 34 24 81

Proportions 7.301742 13.80076 19.69544 13.52825 45.67381

l/IIA HA IIA/IIX MX IIX/IIB IB

J95-2 AVG 973.2195 1366.342 1487.327 2223.759 2311.542

avg STD
tot Count

551.792

21

617.7496
18

553.767

19

964.1823

23

830.4141

76
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Proportions 13.335 11.09574 12.20367 14.3996 48.33706

?/??? HA IIA/IIX NX IIX/IIB HB

Mstn-/- #DIV/0! #DIV/0! 1043.241 1483.201 1698.708 2477.347 2574.838

avg STD #DIV/0! #DIV/0! 497.3965 587.2028 642.1732 932.704 899.2966

tot Count 0 0 34 43 53 47 157

Proportions 0 0 10.31837 12.44825 15.94955 13.96392 47.00544

Prop STD #DIV/0! #DIV/0! 4.266159 1.912735 5.297484 0.616135 1.883204

Prop SE 0 0 3.017085 1.352713 3.746452 0.435739 1.331828

I l/l IA IIA IIA/IIX MX IIX/IIB HB

B122-1 AVG 1471.781 1656.937 1770.921 2328.831 2920.012 3551.029 4010.377

avg STD 694.8431 977.4109 725.7374 912.6857 1056.674 2091.4 1546.105

tot Count 16 25 12 37 16

Proportions 12.94347 2.358674 21.19518 10.6384 33.20541 5.291179 14.36769

I ?/?? IIA IIA/IIX HX IIX/IIB IB

E55-1 AVG 1706.104 1851.792 1987.267 2394.988 2905.957 2838.368 3368.681

avg STD 627.4839 767.85 880.0732 944.8316 990.0099 1398.745 984.6017

tot Count 16 10 49 10 26 12 36

Proportions 10.19843 5.643879 31.83454 6.319321 18.02672 6.194296 21.78281

I l/l IA IIA IIA/IIX HX IIX/IIB IIB

Mstn+/+ 1588.943 1754.365 1879.094 2361.909 2912.985 3194.698 3689.529

avg STD 661.1635 872.6304 802.9053 928.7587 1023.342 1745.072 1265.353

tot Count 32 13 74 22 63 18 52

Proportions 11.57095 4.001277 26.51486 8.478861 25.61606 5.742738 18.07525

Prop STD 1.941034 2.322991 7.523168 3.054051 10.73296 0.6386 5.243283

Prop SE 1.372725 1.64285 5.320487 2.159867 7.590493 0.451626 3.708121

I l/IIA IIA IIA/IIX HX IIX/IIB IIB

J85-1 AVG

avg STD
#DIV/0! #DIV/0! 1319.167 1552.109 2086.074 2664.036 2950.479

#DIV/0! #DIV/0! 358.5177 343.3715 598.8195 463.7639 433.8026

tot Count

Proportions
0 0 23 34 46 32 89

12.12759 15.65579 20.42107 14.74144 37.05411
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J85-3 AVG
J
#DIV/0!

?/???
#DIV/0!

JIA
1360.233

IIA/IIX
1568.985

JIX
2278.279

IIX/IIB
2879.827

avg STD #DIV/0! #DIV/0! 348.8753 325.111 527.7478 746.7788

tot Count 0 0 25 20 34 25

Proportions 14.44134 12.04268 20.5176 15.49085

I l/IIA MA IIA/IIX UX IIX/IIB

Mstn-/- #DIV/0! #DIV/0! 1339.7 1560.547 2182.176 2771.932

avg STD #DIV/0! #DIV/0! 353.6965 334.2412 563.2836 605.2713

tot Count 0 0 48 54 80 57

Proportions 13.28447 13.84924 20.46933 15.11614

Prop STD 1.636071 2.554856 0.068255 0.529912

Prop SE 1.157052 1.806829 0.048271 0.374761
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PCR Intensity Quantification

APPENDIX III

Samples 28S Atrogin-1 Atrgn:28S
C57STK 238 120 50.42017
E62-2 229 115 50.21834
J92-1 264 132 50
J97-1 253 147 58.10277
F74-1 292 110 37.67123
E65-1 248 108 43.54839
J 104-1 292 79 27.05479
J 107-1 248 125 50.40323
C57STK 254 60 23.62205
F70-2 285 79 27.7193
J95-1 257 48 18.67704
J95-2 260 64 24.61538
E55-1 257 72 28.01556
B122-1 268 82 30.59701
J85-1 260 76 29.23077
J85-3 257 106 41.24514

Samples non-OV 3d-OV 2wk-OV 6wk-OV
Mstn+/+ 50.31925 40.60981 25.67067 29.30629
STD 0.142714 4.155776 2.897194 1.825361
SE 0.100929 2.939021 2.048935 1.29092
Mstn-/- 54.05138 38.72901 21.64621 35.23795
STD 5.729521 16.50983 4.199042 8.49544
SE 4.051995 11.67598 2.969619 6.008091

Samples 28S Calcineurin A Cn A:28S
C57STK 238 235 98.7395
E62-2 229 248 108.2969
J92-1 264 289 109.4697
J97-1 253 271 107.1146
F74-1 292 364 124.6575
E65-1 248 333 134.2742
J 104-1 292 294 100.6849
J 107-1 248 267 107.6613
C57STK 254 206 81.10236
F70-2 285 187 65.61404
J95-1 257 183 71.20623
J95-2 260 171 65.76923
E55-1 257 156 60.70039
B122-1 268 161 60.07463
J85-1 260 196 75.38462
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J85-3 257 214 83.26848

Samples non-OV 3d-OV 2wk-OV 6wk-OV
Mstn+/+ 103.5182 129.4659 73.3582 60.38751
STD 6.758136 6.800005 10.9519 0.442481
SE 4.779445 4.809056 7.745333 0.312928
Mstn-/- 108.2922 104.1731 68.48773 79.32655
STD 1.665288 4.933031 3.844536 5.574736
SE 1.177714 3.488706 2.718908 3.942529

Samples 28S Foil ¡statin Foll:28S
C57STK 238 27 11.34454
E62-2 229 46 20.08734
J92-1 264 32 12.12121
J97-1 253 45 17.78656
F74-1 292 240 82.19178
E65-1 248 243 97.98387
J 104-1 292 62 21 .23288
J 107-1 248 74 29.83871
C57STK 254 121 47.6378
F70-2 285 106 37.19298
J95-1 257 50 19.45525
J95-2 260 35 13.46154
E55-1 257 125 48.63813
B 122-1 268 78 29.10448
J85-1 260 96 36.92308
J85-3 257 0

Samples non-OV 3d-OV 2wk-OV 6wk-OV
Mstn+/+ 15.71594 90.08783 42.41539 38.8713
STD 6.182092 11.16669 7.385598 13.81238
SE 4.372059 7.897238 5.223195 9.768302
Mstn-/- 14.95389 25.53579 16.4584 18.46154
STD 4.006007 6.085243 4.238196 26.10856

SE 2.833102 4.303566 2.99731 18.46433

Samples 28S Myogenin Mgn:28S
C57STK 238 28 11.76471
E62-2 229 32 13.9738
J92-1 264 47 17.80303
J97-1 253 38 15.01976
F74-1 292 84 28.76712
E65-1 248 76 30.64516
J 104-1 292 132 45.20548



J 107-1 248 141 56.85484
C57STK 254 163 64.17323
F70-2 285 164 57.54386
J95-1 257 248 96.49805
J95-2 260 258 99.23077
E55-1 257 69 26.84825
B122-1 268 69 25.74627
J85-1 260 94 36.15385
J85-3 257 101 39.29961

Samples non-OV 3d-OV 2wk-OV 6wk-OV
Mstn+/+ 12.86925 29.70614 60.85854 26.29726
STD 1.562065 1.327973 4.687672 0.779218
SE 1.104713 0.939161 3.315185 0.551073
Mstn-/- 16.4114 51.03016 97.86441 37.72673
STD 1.968067 8.237341 1.932321 2.224392
SE 1.391844 5.825559 1.366564 1.57312

Samples 28S BDNF BDNF:28S
C57STK 238 245 102.9411765
E62-2 229 265 115.720524
J92-1 264 558 211.3636364
J97-1 253 531 209.8814229
F74-1 292 111 38.01369863
E65-1 248 115 46.37096774
J 104-1 292 55 18.83561644
J107-1 248 72 29.03225806
C57STK 254 91 35.82677165
F70-2 285 88 30.87719298
J95-1 257 87 33.85214008
J95-2 260 71 27.30769231
E55-1 257 176 68.48249027
B122-1 268 156 58.20895522
J85-1 260 106 40.76923077
J85-3 257 94 36.57587549

Samples non-OV 3d-OV 2wk-OV 6wk-OV
Mstn+/+ 109.3309 42.19233 33.35198 63.34572
STD 9.036363 5.909482 3.499881 7.264486
SE 6.390639 4.179266 2.475163 5.137543
Mstn-/- 210.6225 23.93394 30.57992 38.67255
STD 1.048083 7.210114 4.627623 2.96515
SE 0.741219 5.099091 3.272718 2.096994
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Samples Myostatin: 28S
C57STK 741
E62-2 786
J92-1
J97-1
F74-1 41
E65-1 39
J 104-1
J107-1
C57STK 67
F70-2 58
J95-1
J95-2
E55-1 74
B122-1 71
J85-1
J85-3

non-OV 3d-OV 2wk-OV 6wk-OV
Mstn+/+ 764 40 63 73
SEWT 23 1
Mstn+/+ 1 0.05239 0.08186 0.094957
SEWT 0.029474 0.00131 0.005895 0.001965

Samples 28S MSTN Ratio (x1 00) Ratio
C69-1 177 216 122.0338983 1.220339

C70-2 217 189 87.09677419 0.870968
D84-1 218 300 137.6146789 1.376147

C68-1 221 237 107.239819 1 .072398

C69-3 244 232 95.08196721 0.95082
C71-2 265 252 95.09433962 0.950943

D101-2 245 163 66.53061224 0.665306
D101-5 271 126 46.49446494 0.464945
D101-6 236 108 45.76271186 0.457627

Strain CD1 wt TnIs-PVHA Tnls-CamBP
AVG 115.5817838 99.13870861 52.92926302
STD 25.86961558 7.015770125 11.78479492
SE 14.93626765 4.050675592 6.804154109



Strain CD1 TnIs-PVHA Tnls-CamBP
AVG 1.155817838 0.991387086 0.52929263
STD 0.258696156 0.070157701 0.117847949
SE 0.149362677 0.040506756 0.068041541

Adjusted CD1 wt TnIs-PVHA Tnls-CamBP
0.857736447 0.457937759

MSTN 28S
Ratio
(mstn/28S)

Blab/c 2 N95-2 Balb/c 2 N95-2 Balb/c 2 N95-2

535 1785 475 500 1.15 3.44
1614 454 488

AVG 535 1700 465 494 Adjusted 2.991304

MSTN 28S
Ratio
(mstn/28S)

Balb/c 1 N95-3 Balb/c 1 N95-3 Balb/c 1 N95-3

73793 250078 46574 56985 1.42 3.96

61514 205797 48466 58041
AVG 67653.5 227937.5 47520 57513 Adjusted 2.788732

MSTN 28S
Ratio
(mstn/28S)

Balb/c 3 NN20-1 Balb/c 3 NN20-1 Balb/c 3 NN20-1
146343 620050 20135 53118 3.59 11.11

612472 21738 57802
AVG 146343 616261 20936.5 55460 Adjusted 3.094708

WT
NFATc2
-/-

avg 1.19 2.958248
STD 0.212838 0.155643
SE 0.122886 0.089863



Western Blots Quantification

APPENDIX IV

a-tubulin myogen ? ? MgniTubulin
?60-2 wt 3587 79040 22.0351268
c57 wt 3475 84053 24.1879137
J97-2 ko 3233 230919 71.4256109
J97-3 ko 3226 209396 64.9088655

Mstn+/+ 23.11152
STD 1 .52225
SE 1 .076556

MstrW- 68.16724
STD 4.608035
SE 3.258865

Relative Expression

Mstn+/+ 1
STD 0.065865
SE 0.046581

Mstn-/- 2.949492
STD 0.199383
SE 0.141006

Pax7G Pax7R Pax7 avg STD SE

wt non-Ov 526 356 441 120.2082 85.01284

ko non-Ov 426 443 434.5 12.02082 8.501284
wt 3d-Ov 1105 1067 1086 26.87006 19.00287
ko 3d-Ov 758 467 612.5 205.7681 145.522

wt 2wk-Ov 708 737 722.5 20.5061 14.50219

ko 2wk-Ov 505 995 750 346.4823 245.037
wt 6wk-Ov 367 912 639.5 385.3732 272.5412
ko 6wk-Ov 326 738 532 291.328 206.0311

Absoulte Calculations
non-OV 3day-OV 2wk-OV 6wk-OV

Mstn+/+ 441 1086 722.5 639.5
SE 85.01284 19.00287 14.50219 272.5412
Mstn-/- 434.5 612.5 750 532

SE 8.501284 145.522 245.037 206.031 1
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Relative
Calculations

non-OV 3day-OV 2wk-OV
Mstn+/+ 0.600916 1.690981 1.180335
SE 0.01934 0.039252 0.106907
Mstn-/- 0.681884 1 .098022 1.192264
SE 0.012001 0.101537 0.234829
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Statistical Outputs
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Midbelly Mean Area

non-OV 3d OV 2wkOV 6wkOV

wt averages 1599491 2187748 2278944 3171310

STD 132945 516628 426259 819507

SE 76758 365366 301456 579567

KO averages 2715284 4328500 3186464 3326194

STD 197776 637477 34961 433331

SE 114190 450832 24725 306458

non-OV 3d OV 2wkOV 6wkOV

Mstn+/+ 1.60 2.19 2.28 3.17

STD 0.13 0.52 0.43 0.82

SE 0.08 0.37 0.30 0.58

Mstn-/- 2.72 4.33 3.19 3.33

STD 0.20 0.64 0.03 0.43

SE 0.11 0.45 0.02 0.31

t-Test: Two-Sample Assuming Unequal Variances

WT Non-OV KO Non-OV
Mean

Variance

Observations

Hypothesized Mean Difference
df
tStat

P(T<=t) one-tail
t Critical one-tail

P(T<=t) two-tail
t Critical two-tail

1599490.833

17674488203
3

0

4

-8.10976523

0.000628492

2.131846782

0.001256983
2.776445105

2715283.5

39115489250
3

t-Test: Two-Sample Assuming Unequal Variances

WT Non-OV WT3Ö-OV

Mean

Variance

Observations

Hypothesized Mean Difference
df
tStat

1599490.833
17674488203

3

0

1

-1.57588194

2187748

2.66904E+11

2



P(T<=t) one-tail
t Critical one-tail
P(T<=t) two-tail
t Critical two-tail

0.179987747

6.313751514

0.359975494

12.70620473

t-Test: Two-Sample Assuming Unequal Variances

WTNon-OV WT2wk-OV
Mean

Variance

Observations

Hypothesized Mean Difference
df
tStat

P(T<=t) one-tail
t Critical one-tail

P(T<=t) two-tail
t Critical two-tail

1599490.833

17674488203
3

0
1

-2.18452313

0.136648263

6.313751514

0.273296525

12.70620473

2278943.5

1.81697E+11

2

t-Test: Two-Sample Assuming Unequal Variances

WTNon-OV WT6wk-OV

Mean

Variance

Observations

Hypothesized Mean Difference
df
tStat

P(T<=t) one-tail
t Critical one-tail
P(T<=t) two-tail
t Critical two-tail

1599490.833

17674488203

3

0

1

-2.68898323

0.113330848

6.313751514

0.226661696

12.70620473

3171310

6.71592E+11
2

t-Test: Two-Sample Assuming Unequal Variances

WTNon-OV K0 3d-OV
Mean

Variance

Observations

Hypothesized Mean Difference
df

1599490.833 4328500
17674488203 4.06376E+11

3 2

0

1
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tStat

P(T<=t) one-tail
t Critical one-tail
P(T<=t) two-tail
t Critical two-tail

-5.96827851

^Ô,05?842767;;
6.313751514

0.105685533

12.70620473

t-Test: Two-Sample Assuming Unequal Variances

WT3d-OV KO 3d-OV
Mean

Variance

Observations

Hypothesized Mean Difference
df
tStat

P(T<=t) one-tail
t Critical one-tail

P(T<=t) two-tail
t Critical two-tail

2187748

2.66904E+11

2

0

2

-3.6896341

0.03312076
2.91998558

0.066241519

4.30265273

4328500

4.06376E+11

2

Overall Myofibre Mean CSA

Mstn+/+
STD

j>E
Mstn-/-
STD

SE

non-OV

1629

100

_____58_
2083

111

64

3d OV
1668

124

_____87_
1972

_____80^
57

2wkOV
1992

478

338

2113

366

259

6wkOV
2526

______32^
______22^

2480

______28^
19

Mstn+/+
STD

SE
Mstn-/-
STD

SE

non-OV

1.63

0.10

0.06

2.08

0.11

0.06

3d OV
1.67

0.12

0.09

1.97

0.08

0.06

2wkOV
1.99

0.48

0.34

2.11

0.37

0.26

6wkOV
2.53

0.03

0.02

2.48

0.03

0.02

t-Test: Two-Sample Assuming Unequal Variances



WTNon-OV KONon-OV

Mean

Variance

Observations

Hypothesized Mean Difference
df

1629.333023 2083.338084

9954.356829 12332.8809
3 3

0

4

tStat

P(T<=t) one-tail
t Critical one-tail

P(T<=t) two-tail
t Critical two-tail

5.267362396

0.00311164

2.131846782
0.00622328

2.776445105

t-Test: Two-Sample Assuming Unequal Variances

WT3d-OV KO 3d-OV

Mean
Variance

Observations
Hypothesized Mean Difference
df

1667.641938 1971.78383
15278.70997 6414.370962

2 2

0
2

tStat

P(T<=t) one-tail
t Critical one-tail

P(T<=t) two-tail
t Critical two-tail

2.920321209

0.049990174
2.91998558

0.099980348

4.30265273

Mean Myofibre Number

non-OV 3d OV 2wkOV 6wkOV

Mstn+/+ 983 1304 1143 1258

STD 77.75871 213.1431 270.5704 340.1817

SE 44.89533 150.7377 191.3511 240.5811

Mstn-/- 1307 2190 1529 1342

STD 137.3657 234.3274 248.085 189.6311

SE 79.31044 165.7195 175.4491 134.1097

Mstn+/+
STD

SE

non-OV

0.98

0.08

0.04

3d OV
1.30

0.21

0.15

2wkOV
1.14

0.27

0.19

6wkOV
1.26

0.34

0.24



Mstn-/-
STD

SE

1.31

0.14

0.08

2.19

0.23

0.17

1.53

0.25

0.18

1.34

0.19

0.13

t-Test: Two-Sample Assuming Unequal Variances

WTNon-OV KONon-OV
Mean

Variance

Observations

Hypothesized Mean Difference
df

982.5541107 1307.240807

6046.417411 18869.33056
3 3

0

3

tStat

P(T<=t) one-tail
t Critical one-tail

P(T<=t) two-tail
t Critical two-tail

3.562773033

0.018872785

2.353363435

0.03774557
3.182446305

t-Test: Two-Sample Assuming Unequal Variances

WT3d-OV KO 3d-OV
Mean

Variance

Observations

Hypothesized Mean Difference
df

1303.98196 2190.461409

45429.9804 54909.33935

2 2

0

2

tStat

P(T<=t) one-tail
t Critical one-tail
P(T<=t) two-tail
t Critical two-tail

3.957747596

0.029156644
2.91998558

0.058313289
4.30265273

MyHC I Expressing Myofibres
control
avg std SE

Mstn+/+
Mstn-/-

869.145

#DIV/0!
231.2423729

#DIV/0!
133.51176

#DIV/0!



Mstn+/+
3day avg
860.2907

std

#DIV/0!
SE

#DIV/0!
Mstn-/- #DIV/0! #DIV/0! #DIV/0!

2wk avg std SE

Mstn+/+ 1347.904 #DIV/0! #DIV/0!
Mstn-/- #DIV/0! #DIV/0! #DIV/0!

2wk avg std SE

Mstn+/+ 1588.943 165.6919681 117.17961

Mstn-/- #DIV/0! #DIV/0! #DIV/0!

Non-OV

3day-
OV

2wk-0V

6wk-0V

Mstn+/+
869.145

860.2907

1347.904

1588.943

Mstn-/-
#DIV/0!

#DIV/0!
#DIV/0!
#DIV/0!

WTSE

133.51176

KOSE

#DIV/0!

#DIV/0!
#DIV/0!

117.17961 #DIV/0!

MyHC I-IIA Expressing Myofíbres
control
avg std SE

Mstn+/+ 984.6865 #DIV/0! #DIV/0!
Mstn-/- #DIV/0! #DIV/0! #DIV/0!

3day avg std SE

Mstn+/+ 972.1299 #DIV/0! #DIV/0!
Mstn-/- #DIV/0! #DIV/0! #DIV/0!

2wk avg std SE

Mstn+/+ 1076.178 #DIV/0! #DIV/0!
Mstn-/- #DIV/0! #DIV/0! #DIV/0!

2wk avg std SE

Mstn+/+ 1754.365 137.7837927 97.4426

Mstn-/- #DIV/0! #DIV/0! #DIV/0!

Mstn+/+
Non-OV 984.6865

3day-
OV 972.1299

Mstn-/-
#DIV/0!

#DIV/0!

WTSE KOSE

#DIV/0!

#DIV/0!



2wk-0V 1076.178 #DIV/0! #DIV/0!
6wk-OV 1754.365 #DIV/0! 97.4426 #DIV/0!

MyHC HA Expressing Myofibres

control avg std SE

Mstn+/+ 857.701224 186.8884636 107.9032699

Mstn-/- 989.754232 161.8678158 93.4571685

3day avg std SE

Mstn+/+ 910.744148 140.4246873 99.45091168

Mstn-/- 1066.81848 14.10400384 9.974543026

2wk avg std SE

Mstn+/+ 1574.9872 400.6797524 283.3661616

Mstn-/- 1043.24144 99.02594585 70.03249353

2wk avg std SE

Mstn+/+ 1879.09393 152.9801176 108.1896164

Mstn-/- 1339.69981 29.03790984 20.53600413

Non-OV

3day-
OV

2wk-OV

6wk-OV

Mstn+/+
857.701224

910.744148

1574.9872

1879.09393

Mstn-/-
989.7542316

1066.818478

1043.241436

1339.699809

WTSE

107.9032699

99.45091168
283.3661616

108.1896164

KOSE
93.45717

9.974543

70.03249

20.536

t-Test: Two-Sample Assuming Unequal Variances

WT HA Non-OV KO HA Non-OV

Mean

Variance

Observations

Hypothesized Mean Difference
df
tStat

P(T<=t) one-tail
t Critical one-tail

P(T<=t) two-tail
t Critical two-tail

857.7012239

34927.29781
3

0

4

-0.925096631

0.203637131

2.131846782

0.407274263
2.776445105

989.7542316
26201.18981

3



t-Test: Two-Sample Assuming Unequal Variances

WT IIA 3day-OV KO IIA 3day-OV
Mean

Variance

Observations

Hypothesized Mean Difference
df
tStat

P(T<=t) one-tail
t Critical one-tail

P(T<=t) two-tail
t Critical two-tail

910.7441484

19719.0928

2

0

1

-1.563952078

0.181083797

6.313751514

0.362167594

12.70620473

1066.818478

198.9229243
2

t-Test: Two-Sample Assuming Unequal Variances

WT IIA 2wk-OV KO IIA 2wk-OV
Mean

Variance

Observations

Hypothesized Mean Difference
df
tStat

P(T<=t) one-tail
t Critical one-tail

P(T<=t) two-tail
t Critical two-tail

1574.987202

160544.264

2

0

1

1.821996157

0.159778439

6.313751514

0.319556879

12.70620473

1043.241436

9806.137952
2

t-Test: Two-Sample Assuming Unequal Variances
WT IIA 6wk-OV KO IIA 6wk-OV

Mean

Variance

Observations

Hypothesized Mean Difference
df
tStat

P(T<=t) one-tail
t Critical one-tail

P(T<=t) two-tail
t Critical two-tail

1879.093926

23402.91639
2

0
1

4.898917305

0.064095009

6.313751514

0.128190017

12.70620473

1339.699809

843.2002076
2



MyHC IIA-IIX Expressing Myofibres

control
avg std SE

Mstn+/+ 1016.632 152.746937 88.19107216

Mstn-/- 1046.301 286.0665858 165.1654652

3day avg std SE

Mstn+/+ 1125.459 172.4762868 122.1503448

Mstn-/- 1317.788 40.08101587 28.34583866

2wk avg std SE

Mstn+/+ 1803.705 208.4649972 147.4292766

Mstn-/- 1483.201 165.2644518 116.8772643

2wk avg std SE

Mstn+/+ 2361.909 46.77992022 33.08339478

Mstn-/- 1560.547 11.93281632 8.439049728

Non-OV

3day-
OV

2wk-OV

6wk-OV

Mstn+/+
1016.632

1125.459

1803.705
2361.909

Mstn-/-
1046.300753

1317.788449

1483.201376

1560.547191

WTSE

88.19107216

122.1503448

147.4292766

33.08339478

KOSE

165.1655

28.34584

116.8773
8.43905

t-Test: Two-Sample Assuming Unequal Variances

WT IIA/X Non-OV KO IIA/X Non-OV
Mean

Variance

Observations

Hypothesized Mean Difference
df
tStat

P(T<=t) one-tail
t Critical one-tail

P(T<=t) two-tail
t Critical two-tail

1016.631965

23331.62676

3
0

3

-0.158461345

0.442079688
2.353363435

0.884159375
3.182446305

1046.300753

81834.0915

3

t-Test: Two-Sample Assuming Unequal Variances
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WT I??/? 3day-0V KO ???/? 3day-0V
Mean
Variance

Observations
Hypothesized Mean Difference
df
tStat

P(T<=t) one-tail
t Critical one-tail

P(T<=t) two-tail
t Critical two-tail

1125.459353

29748.06952
2

0

1

-1.536065202

0.183692733
6.313751514

0.367385467
12.70620473

1317.788449

1606.487833
2

t-Test: Two-Sample Assuming Unequal Variances

WT 1 1 A/X 2wk-0V KO IIA/X 2wk-OV
Mean 1803.70547 1483.201376

Variance 43457.65505 27312.33902

Observations 2 2

Hypothesized Mean Difference
df
tStat 1.703821131

P(T<=t) one-tail 0.115264047

t Critical one-tail 2.91998558

P(T<=t) two-tail 0.230528094

t Critical two-tail 4.30265273

t-Test: Two-Sample Assuming Unequal Variances

WT IIA/X 6wk-OV KO IIA/X 6wk-OV
Mean 2361.909315 1560.547191

Variance 2188.360936 142.3921052

Observations 2 2

Hypothesized Mean Difference
df
tStat 23.47446376

P(T<=t) one-tail 0.013551643

t Critical one-tail 6.313751514

P(T<=t) two-tail 0.027103286

t Critical two-tail 12.70620473



MyHC HX Expressing Myofìbres

control

avg Std SE

Mstn+/+ 1568.851 345.9296734 199.7284488

Mstn-/- 1736.583 318.8588204 184.0986261

3day avg Std SE

Mstn+/+ 1623.484 38.6768235 27.39151806

Mstn-/- 1837.585 305.7046471 216.1984774

2wk avg Std SE

Mstn+/+ 2182.205 39.72142014 28.09152768

Mstn-/- 1698.708 298.9371099 211.4123833

2wk avg Std SE

Mstn+/+ 2912.985 9.938127952 7.028379033

Mstn-/- 2182.176 135.9098665 96.11730305

Non-OV

3day-
OV

2wk-OV
6wk-OV

Mstn+/+
1568.851

1623.484

2182.205

2912.985

Mstn-/-
1736.582511

1837.585101

1698.707558

2182.176429

WTSE

199.7284488

27.39151806

28.09152768
7.028379033

KOSE

184.0986

216.1985

211.4124

96.1173

t-Test: Two-Sample Assuming Unequal Variances

WT HX Non-OV KO IIX Non-OV
Mean

Variance

Observations

Hypothesized Mean Difference
df
tStat

P(T<=t) one-tail
t Critical one-tail

P(T<=t) two-tail
t Critical two-tail

1568.851117
119667.3389

3

0

4

-0.617513865

0.285157841
2.131846782

0.570315682
2.776445105

1736.582511

101670.9474

3

t-Test: Two-Sample Assuming Unequal Variances



WT IIX 3day-0V KO IIX 3day-0V
Mean

Variance

Observations

Hypothesized Mean Difference
df
tStat

P(T<=t) one-tail
t Critical one-tail

P(T<=t) two-tail
t Critical two-tail

1623.483913

1495.896676

2

0

1

-0.982615886

0.252790956

6.313751514

0.505581912

12.70620473

1837.585101
93455.33123

2

t-Test: Two-Sample Assuming Unequal Variances

WTIIX2wk-OV KOIIX2wk-OV

Mean 2182.205457 1698.707558

Variance 1577.791218 89363.39569

Observations 2 2

Hypothesized Mean Difference
df
tStat 2.267405941

P(T<=t) one-tail 0.132216913

t Critical one-tail 6.313751514

P(T<=t) two-tail 0.264433826

t Critical two-tail 12.70620473

t-Test: Two-Sample Assuming Unequal Variances

WT MX 6wk-OV KO MX 6wk-OV

Mean 2912.984661 2182.176429

Variance 98.7663872 18471.49181

Observations 2 2

Hypothesized Mean Difference
df

tStat 7.584194424

P(T<=t) one-tail 0.04172945

t Critical one-tail 6.313751514

P(T<=t) two-tail 0.083458899

t Critical two-tail 12.70620473



MyHC IIX-lIB Expressing Myofibres
control
avg std SE

Mstn+/+ 2162.494 531.1107786 306.6459461

Mstn-/- 2653.259 350.8280756 202.5566256

3day avg std SE

Mstn+/+ 2127.814 327.8081041 232.1587139

Mstn-/- 2397.402 26.23911556 18.55665881

2wk avg std SE

Mstn+/+ 2490.663 437.684337 309.5363062

Mstn-/- 2477.347 358.6270818 253.6259418

2wk avg std SE

Mstn+/+ 3194.698 503.9273521 356.384266

Mstn-/- 2771.932 152.5870688 107.911647

Non-OV

3day-
OV
2wk-OV
6wk-OV

Mstn+/+
2162.494

2127.814

2490.663

3194.698

Mstn-/-
2653.258621

2397.402143

2477.346702

2771.931518

WTSE

306.6459461

232.1587139

309.5363062

356.384266

KOSE

202.5566

18.55666

253.6259
107.9116

WT IIX/B Non-
OV KO IIX/B Non-OV

Mean

Variance

Observations

Hypothesized Mean Difference
df
tStat

P(T<=t) one-tail
t Critical one-tail
P(T<=t) two-tail
t Critical two-tail

2162.494073

282078.6592
3

0

3

-1.335429808
0.137009045

2.353363435

0.274018091
3.182446305

2653.258621

123080.3386

3

t-Test: Two-Sample Assuming Unequal Variances

WT IIX/B 3day- KO IIX/B 3day-



OV OV

Mean

Variance

Observations

Hypothesized Mean Difference
df
tStat

P(T<=t) one-tail
t Critical one-tail

P(T<=t) two-tail
t Critical two-tail

2127.814222

107458.1531

2

0

1

-1.159334884

0.226554762

6.313751514

0.453109524

12.70620473

2397.402143

688.4911856

2

t-Test: Two-Sample Assuming Unequal Variances

WT IIX/B 2wk-
OV KO IIX/B 2wk-OV

Mean 2490.663096 2477.346702

Variance 191567.5788 128613.3838

Observations 2 2

Hypothesized Mean Difference
df
tStat 0.033281575

P(T<=t) one-tail 0.488236443

t Critical one-tail 2.91998558

P(T<=t) two-tail 0.976472887

t Critical two-tail 4.30265273

t-Test: Two-Sample Assuming Unequal Variances

WT IIX/B 6wk-
OV KO IIX/B 6wk-OV

Mean 3194.698135 2771.931518

Variance 253942.7762 23282.81357

Observations 2 2

Hypothesized Mean Difference
df

tStat 1.135531083

P(T<=t) one-tail 0.229825578

t Critical one-tail 6.313751514

P(T<=t) two-tail 0.459651156

t Critical two-tail 12.70620473



MyHC IIB Expressing Myofibres
control
avg std SE

Mstn+/+ 2326.956 184.1277506 106.3093248

Mstn-/- 2649.288 52.53707233 30.33318264

3day avg std SE

Mstn+/+ 2352.938 416.2489113 294.7938465

Mstn-/- 2481.347 132.6465391 93.8094336

2wk avg std SE

Mstn+/+ 2584.186 696.693323 492.7109781

Mstn-/- 2574.838 372.3573566 263.3361786

2wk avg std SE

Mstn+/+ 3689.529 453.7480049 320.8967502

Mstn-/- 3034.427 118.7209002 83.96103268

Non-OV

3day-
OV

2wk-OV
6wk-OV

Mstn+/+
2326.956

2352.938

2584.186

3689.529

Mstn-/-
2649.287692

2481.347422

2574.838267
3034.427274

WTSE

106.3093248

294.7938465

492.7109781

320.8967502

KOSE

30.33318

93.80943

263.3362

83.96103

t-Test: Two-Sample Assuming Unequal Variances

WT IIB Non-OV KO IIB Non-OV

Mean

Variance

Observations

Hypothesized Mean Difference
df
tStat

P(T<=t) one-tail
t Critical one-tail

P(T<=t) two-tail
t Critical two-tail

2326.95577

33903.02855

3

0

2

-2.915740864

0.050124509
2.91998558

0.100249018

4.30265273

2649.287692
2760.143969

3

t-Test: Two-Sample Assuming Unequal Variances



WT IIB 3day-0V KO IIB 3day-OV
Mean
Variance

Observations
Hypothesized Mean Difference
df
tStat

P(T<=t) one-tail
t Critical one-tail

P(T<=t) two-tail
t Critical two-tail

2352.938057
173263.1561

2

0

1

-0.41567721

0.374602541

6.313751514

0.749205082

12.70620473

2481.347422

17595.10434

2

t-Test: Two-Sample Assuming Unequal Variances

WT HB 2wk-OV KO HB 2wk-OV

Mean 2584.18594 2574.838267

Variance 485381.5863 138650.001

Observations 2 2

Hypothesized Mean Difference
df
tStat 0.016734595

P(T<=t) one-tail 0.494083842

t Critical one-tail 2.91998558

P(T<=t) two-tail 0.988167683

t Critical two-tail 4.30265273

t-Test: Two-Sample Assuming Unequal Variances

WT 1 1 B 6wk-OV KO 1 1 B 6wk-0V

Mean 3689.528971 3034.427274

Variance 205887.2519 14094.65214

Observations 2 2

Hypothesized Mean Difference
df

tStat 1.975287172

P(T<=t) one-tail 0.149172579

t Critical one-tail 6.313751514

P(T<=t) two-tail 0.298345158

t Critical two-tail 12.70620473



ANOVA: Calcineurin A Expression Response to Overloading Mstn+/+
and Mstn-/-

Notes

Input

Output Created

Comments

Data

Active Dataset

Filter

Weight

Split File

N of Rows in Working Data
File

Missing Value Handling Definition of Missing

Cases Used

25-NOV-2009 11:24:23

C:\Users\Moe AK\Documents\Stats for

thesis\MOD Midbelly Area Fibre CSA
and Fibre Number Raw data.sav

DataSetl

<none>

<none>

<none>
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User-defined missing values are treated
as missing.

Statistics are based on all cases with

valid data for all variables in the model.



Syntax

Resources Processor Time

Elapsed Time

UNIANOVA CnA BY Group

/METH0D=SSTYPE(3)

/INTERCEPT=INCLUDE

/POSTHOC=Group(TUKEY SCHEFFE
LSD)

/EMMEANS=TABLES(Group)

/PRINT=ETASQ HOMOGENEITY

DESCRIPTIVE

/CRITERIA=ALPHA(.05)

/DESIGN=Group.

0:00:00.125

0:00:00.186

Between-Subjects Factors

Value Label

Group 1 .00

2.00

3.00

4.00

5.00

6.00

mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov



7.00

8.00

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

Descriptive Statistics

Dependent Variable:Relative CnA Expression

Group Mean Std. Deviation

mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

Total

241.50

280.00

348.50

280.50

196.50

177.00

158.50

205.00

235.94

9.192

12.728

21.920

19.092

13.435

8.485

3.536

12.728

62.578 16

Tests of Between-Subjects Effects

Dependent Variable:Relative CnA Expression

Source

Type III Sum of
Squares df Mean Square Sig.

Partial Eta

Squared

126



Corrected Model

Intercept

Group

Error

Total

Corrected Total

57222.437a

890664.063

57222.437

1518.500

949405.000

58740.937

16

15

8174.634

890664.063

8174.634

189.813

43.067

4692.336

43.067

.000

.000

.000

.974

.998

.974

a. R Squared = .974 (Adjusted R Squared = .952)

Estimated Marginal Means

Group

Dependent Variable:Relative CnA Expression

Group Mean Std. Error

95% Confidence Interval

Lower Bound Upper Bound

mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

241.500

280.000

348.500

280.500

196.500

177.000

9.742

9.742

9.742

9.742

9.742

9.742

219.035

257.535

326.035

258.035

174.035

154.535

263.965

302.465

370.965

302.965

218.965

199.465



mstn+/+ 6wk-ov

mstn-/- 6wk-ov

158.500

205.000

9.742

9.742

136.035

182.535

180.965

227.465

Post Hoc Tests

Group

Multiple Comparisons

Dependent Variable:Relative CnA Expression

(I) Group (J) Group

Mean

Difference (l-J) Std. Error Sig.

95% Confidence Interval

Lower Bound Upper Bound

Tukey HSD mstn+/+ non-ov mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-38.50

-107.00

-39.00

45.00

64.50

83.00

36.50

13.777

13.777

13.777

13.777

13.777

13.777

13.777

.219

.001

.209

.121

.020

.004

.261

-93.02

-161.52

-93.52

-9.52

9.98

28.48

-18.02

16.02

-52.48

15.52

99.52

119.02

137.52

91.02
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mstrW- non-ov mstn+/+ non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

38.50

-68.50

-.50

83.50

103.00

121.50

75.00

13.777

13.777

13.777

13.777

13.777

13.777

13.777

.219

.014

1.000

.004

.001

.000

.008

-16.02

-123.02

-55.02

28.98

48.48

66.98

20.48

93.02

-13.98

54.021

138.021

157.521

176.02

129.52

mstn+/+ 3d-ov mstn+/+ non-ov

mstn-/- non-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

107.00

68.50

68.00

152.00

171.50

190.00

143.50

13.777

13.777

13.777

13.777

13.777

13.777

13.777

.001

.014

.015

.000

.000

.000

.000

52.48

13.98

13.48

97.48

116.98

135.48

88.98

161.52

123.02

122.52

206.52

226.02

244.52

198.02

mstn-/- 3d-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

39.00

.50

-68.00

84.00

103.50

122.00

13.777

13.777

13.777

13.777

13.777

13.777

.209

1.000

.015

.004

.001

.000

-15.52

-54.02

-122.52

29.48

48.98

67.48

93.52

55.02

-13.481

138.52

158.02

176.521
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mstn-/- 6wk-ov 75.50 13.777 .008 20.98 130.02

mstn+/+ 2wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-45.00

-83.50

-152.00

-84.00

19.50

38.00

-8.50

13.777

13.777

13.777

13.777

13.777

13.777

13.777

.121

.004

.000

.004

.829

.229

.997

-99.52

-138.02

-206.52

-138.52

-35.02

-16.52

-63.02

9.52

-28.98

-97.48

-29.48

74.02

92.52

46.02

mstn-/- 2wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-64.50

-103.00

-171.50

-103.50

-19.50

18.50

-28.00

13.777

13.777

13.777

13.777

13.777

13.777

13.777

.020

.001

.000

.001

.829

.860

.516

-119.02

-157.52

-226.02

-158.02

-74.02

-36.02

-82.52

-9.98

-48.481

-116.981

-48.98

35.02

73.02

26.521

mstn+/+ 6wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

-83.00

-121.50

-190.00

-122.00

-38.00

13.777

13.777

13.777

13.777

13.777

.004

.000

.000

.000

.229

-137.52

-176.02

-244.52

-176.52

-92.52

-28.481

-66.981

-135.48

-67.48

16.52
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mstn-/- 2wk-ov

mstri-/- 6wk-ov

mstn-/- 6wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

-18.50

-46.50

-36.50

-75.00

-143.50

-75.50

8.50

28.00

46.50

13.777

13.777

13.777

13.777

13.777

13.777

13.777

13.777

13.777

.860

.105

.261

.008

.000

.008

.997

.516

.105

-73.02

-101.02

-91.02

-129.52

-198.02

-130.02

-46.02

-26.52

-8.02

36.02

8.02

18.02

-20.481

-88.98

-20.98

63.02

82.52

101.02

Scheffe mstn+/+ non-ov mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-38.50

-107.00

-39.00

45.00

64.50

83.00

36.50

13.777

13.777

13.777

13.777

13.777

13.777

13.777

.436

.003

.423

.283

.066

.017

.492

mstn-/- non-ov mstn+/+ non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

38.50

-68.50

-.50

83.50

103.00

13.777

13.777

13.777

13.777

13.777

.436

.049

1.000

.016

.004

-106.70

-175.20

-107.20

-23.20

-3.70

14.80

-31.70

-29.70

-136.70

-68.70

15.30

34.80

29.70

-38.80

29.20

113.20

132.70

151.20

104.70

106.70

-.30

67.70

151.70

171.20
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mstn+/+ 6wk-ov

mstn-/- 6wk-ov

121.50

75.00

13.777

13.777

.001

.030

53.30

6.80

mstn+/+ 3d-ov mstn+/+ non-ov

mstn-/- non-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

107.00

68.50

68.00

152.00

171.50

190.00

143.50

13.777

13.777

13.777

13.777

13.777

13.777

13.777

.003

.049

.051

.000

.000

.000

.000

38.80

.30

-.20

83.80

103.30

121.80

75.30

mstn-/- 3d-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

39.00

.50

-68.00

84.00

103.50

122.00

75.50

13.777

13.777

13.777

13.777

13.777

13.777

13.777

.423

1.000

.051

.016

.004

.001

.029

-29.20

-67.70

-136.20

15.80

35.30

53.80

7.30

mstn+/+ 2wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn-/- 2wk-ov

-45.00

-83.50

-152.00

-84.00

19.50

13.777

13.777

13.777

13.777

13.777

.283

.016

.000

.016

.942

-113.20

-151.70

-220.20

-152.20

-48.70
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mstn+/+ 6wk-ov

mstn-/- 6wk-ov

38.00

-8.50

13.777

13.777

.450

1.000

-30.20

-76.70

106.20

59.70

mstn-/- 2wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-64.50

-103.00

-171.50

-103.50

-19.50

18.50

-28.00

13.777

13.777

13.777

13.777

13.777

13.777

13.777

.066

.004

.000

.004

.942

.955

.749

-132.70

-171.20

-239.70

-171.70

-87.70

-49.70

-96.20

3.70

-34.80

-103.30

-35.30

48.70

86.70

40.20

mstn+/+ 6wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn-/- 6wk-ov

-83.00

-121.50

-190.00

-122.00

-38.00

-18.50

-46.50

13.777

13.777

13.777

13.777

13.777

13.777

13.777

.017

.001

.000

.001

.450

.955

.254

-151.20

-189.70

-258.20

-190.20

-106.20

-86.70

-114.70

-14.80

-53.30

-121.80

-53.80

30.20

49.70

21.70

mstn-/- 6wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

-36.50

-75.00

-143.50

-75.50

8.50

13.777

13.777

13.777

13.777

13.777

.492

.030

.000

.029

1.000

-104.70

-143.20

-211.70

-143.70

-59.70

31.70

-6.80

-75.30

-7.30

76.70
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LSD

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn+/+ non-ov mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

mstn-/- non-ov mstn+/+ non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

mstn+/+ 3d-ov mstn+/+ non-ov

mstn-/- non-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

28.00

46.50

-38.50

-107.00

-39.00

45.00

64.50

83.00

36.50

38.50

-68.50

-.50

83.50

103.00

121.50

75.00

107.00

68.50

68.00

152.00

171.50

13.777

13.777

13.777

13.777

13.777

13.777

13.777

13.777

13.777

13.777

13.777

13.777

13.777

13.777

13.777

13.777

13.777

13.777

13.777

13.777

13.777

.749

.254

.023

.000

.022

.011

.002

.000

.029

.023

.001

.972

.000

.000

.000

.001

.000

.001

.001

.000

.000

-40.20

-21.70

-70.27

-138.77

-70.77

13.23

32.73

51.23

4.73

6.73

-100.27

-32.27

51.73

71.23

89.73

43.23

75.23

36.73

36.23

120.23

139.73

96.20

114.70

-6.73

-75.23

-7.23

76.77

96.27

114.77

68.27

70.27

-36.73

31.27

115.27

134.77

153.27

106.77

138.77

100.27

99.77

183.77

203.27
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mstn+/+ 6wk-ov

mstn-/- 6wk-ov

190.00

143.50

13.777

13.777

.000

.000

158.23

111.73

221.77

175.27

mstn-/- 3d-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

39.00

.50

-68.00

84.00

103.50

122.00

75.50

13.777

13.777

13.777

13.777

13.777

13.777

13.777

.022

.972

.001

.000

.000

.000

.001

7.23

-31.27

-99.77

52.23

71.73

90.23

43.73

70.77

32.27

-36.23

115.77

135.27

153.77

107.27

mstn+/+ 2wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-45.00

-83.50

-152.00

-84.00

19.50

38.00

-8.50

13.777

13.777

13.777

13.777

13.777

13.777

13.777

.011

.000

.000

.000

.195

.025

.554

-76.77

-115.27

-183.77

-115.77

-12.27

6.23

-40.27

-13.23

-51.73

-120.23

-52.23

51.27

69.77

23.27

mstn-/- 2wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

-64.50

-103.00

-171.50

-103.50

-19.50

13.777

13.777

13.777

13.777

13.777

.002

.000

.000

.000

.195

-96.27

-134.77

-203.27

-135.27

-51.27

-32.73

-71.23

-139.73

-71.73

12.27
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mstn+/+ 6wk-ov

mstn-/- 6wk-ov

mstn+/+ 6wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn-/- 6wk-ov

mstn-/- 6wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

18.50

-28.00

-83.00

-121.50

-190.00

-122.00

-38.00

-18.50

-46.50

-36.50

-75.00

-143.50

-75.50

8.50

28.00

46.50

13.777

13.777

.216

.077

13.777

13.777

13.777

13.777

13.777

13.777

13.777

.000

.000

.000

.000

.025

.216

.010

13.777

13.777

13.777

13.777

13.777

13.777

13.777

.029

.001

.000

.001

.554

.077

.010

Based on observed means.

The error term is Mean Square(Error) = 189.813.

-13.27

-59.77

-114.77

-153.27

-221 .77

-153.77

-69.77

-50.27

-78.27

-68.27

-106.77

-175.27

-107.27

-23.27

-3.77

14.73

. The mean difference is significant at the .05 level.

Homogeneous Subsets



Relative CnA Expression

Group

Subset

Tukey HSDa"b mstn+/+ 6wk-ov

mstn-/- 2wk-ov

mstn+/+ 2wk-ov

mstn-/- 6wk-ov

mstn+/+ non-ov

mstn-/- non-ov

mstn-/- 3d-ov

mstn+/+ 3d-ov

Sig.

158.50

177.00

196.50

205.00

196.50

205.00

241.50

.105 .121

241.50

280.00

280.50

.209

Scheffe3 mstn+/+ 6wk-ov

mstn-/- 2wk-ov

mstn+/+ 2wk-ov

mstn-/- 6wk-ov

mstn+/+ non-ov

mstn-/- non-ov

mstn-/- 3d-ov

158.50

177.00

196.50

205.00

177.00

196.50

205.00

241.50 241.50

280.00

280.50



mstn+/+ 3d-ov

Sig. .254 .066 .423

348.50

.051

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = 189.813.

a. Uses Harmonic Mean Sample Size = 2.000.

b. Alpha = .05.

ANOVA: Atrogin-1 Expression Response to Overloading Mstn+/+ and
Mstn-/-

Notes

Input

Output Created

Comments

Data

Active Dataset

Filter

Weight

Split File

N of Rows in Working Data
File

25-NOV-2009 11:27:30

C:\Users\Moe AK\Documents\Stats for

thesis\MOD Midbelly Area Fibre CSA
and Fibre Number Raw data.sav

DataSetl

<none>

<none>

<none>
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Missing Value Handling Definition of Missing

Cases Used

Syntax

Resources Processor Time

Elapsed Time

User-defined missing values are treated
as missing.

Statistics are based on all cases with

valid data for all variables in the model.

UNIANOVA Atrogin BY Group

/METHOD=SSTYPE(3)

/INTERCEPT=INCLUDE

/POSTHOC=Group(TUKEY SCHEFFE
LSD)

/EMMEANS=TABLES(Group)

/PRINT=ETASQ HOMOGENEITY

DESCRIPTIVE

/CRITERIA=ALPHA(.05)

/DESIGN=Group.

0:00:00.125

0:00:00.135

Between-Subjects Factors

Value Label N

Group 1 .00

2.00

3.00

mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov



4.00

5.00

6.00

7.00

8.00

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

Descriptive Statistics

Dependent Variable:Relative Atrogin Expression

Group Mean Std. Deviation

mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

Total

117.50

139.50

109.00

102.00

69.50

56.00

77.00

91.00

95.19

3.536

10.607

1.414

32.527

13.435

11.314

7.071

21.213

28.843

2

2

2

16



Tests of Between-Subjects Effects

Dependent Variable:Relative Atrogin Expression

Source
Type III Sum of

Squares df Mean Square Sig.
Partial Eta

Squared

Corrected Model

Intercept

Group

Error

Total

Corrected Total

10484.938a

144970.563

10484.938

1993.500

157449.000

12478.438

1497.848

144970.563

1497.848

249.188

6.011

581.773

6.011

16

15

.011

.000

.011

.840

.986

.840

a. R Squared = .840 (Adjusted R Squared = .700)

Estimated Marginal Means

Group

Dependent Variable:Relative Atrogin Expression

Group Mean Std. Error

95% Confidence Interval

Lower Bound Upper Bound

mstn+/+ non-ov

mstn-/- non-ov

117.500

139.500

11.162

11.162

91.760

113.760

143.240

165.240

141



mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

109.000

102.000

69.500

56.000

77.000

91.000

1.162

1.162

1.162

1.162

1.162

1.162

83.260

76.260

43.760

30.260

51.260

65.260

134.740

127.740

95.240

81.740

102.740

116.740

Post Hoc Tests

Group

Multiple Comparisons

Dependent Variable:Relative Atrogin Expression

(I) Group (J) Group

Mean

Difference (l-J) Std. Error Sig.

95% Confidence Interval

Lower Bound Upper Bound

Tukey HSD mstn+/+ non-ov mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

-22.00

8.50

15.50

15.786

15.786

15.786

.838

.999

.965

-84.47

-53.97

-46.97

40.47

70.97

77.97
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mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

48.00

61.50

40.50

26.50

15.786

15.786

15.786

15.786

.161

.054

.289

.700

-14.47

-.97

-21.97

-35.97

mstn-/- non-ov mstn+/+ non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

22.00

30.50

37.50

70.00

83.50

62.50

48.50

15.786

15.786

15.786

15.786

15.786

15.786

15.786

.838

.567

.359

.028

.010

.050

.155

-40.47

-31.97

-24.97

7.53

21.03

.03

-13.97

mstn+/+ 3d-ov mstn+/+ non-ov

mstn-/- non-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-8.50

-30.50

7.00

39.50

53.00

32.00

18.00

15.786

15.786

15.786

15.786

15.786

15.786

15.786

.999

.567

1.000

.311

.108

.519

.929

-70.97

-92.97

-55.47

-22.97

-9.47

-30.47

-44.47

mstn-/- 3d-ov mstn+/+ non-ov

mstn-/- non-ov

-15.50

-37.50

15.786

15.786

.965

.359

-77.97

-99.97
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mstn+/+ 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-7.00

32.50

46.00

25.00

11.00

15.786

15.786

15.786

15.786

15.786

1.000

.503

.189

.749

.995

-69.47

-29.97

-16.47

-37.47

-51.47

mstn+/+ 2wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-48.00

-70.00

-39.50

-32.50

13.50

-7.50

-21.50

15.786

15.786

15.786

15.786

15.786

15.786

15.786

.161

.028

.311

.503

.983

.999

.852

-110.47

-132.47

-101.97

-94.97

-48.97

-69.97

-83.97

mstn-/- 2wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-61.50

-83.50

-53.00

-46.00

-13.50

-21.00

-35.00

15.786

15.786

15.786

15.786

15.786

15.786

15.786

.054

.010

.108

.189

.983

.865

.427

-123.97

-145.97

-115.47

-108.47

-75.97

-83.47

-97.47

mstn+/+ 6wk-ov mstn+/+ non-ov -40.50 15.786 .289 -102.97
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mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn-/- 6wk-ov

mstn-/- 6wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

Scheffe mstn+/+ non-ov mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

mstn-/- non-ov mstn+/+ non-ov

-62.50

-32.00

-25.00

7.50

21.00

-14.00

15.786

15.786

15.786

15.786

15.786

15.786

.050

.519

.749

.999

.865

.979

-26.50

-48.50

-18.00

-11.00

21.50

35.00

14.00

15.786

15.786

15.786

15.786

15.786

15.786

15.786

.700

.155

.929

.995

.852

.427

.979

-22.00

8.50

15.50

48.00

61.50

40.50

26.50

22.00

15.786

15.786

15.786

15.786

15.786

15.786

15.786

15.786

.946

1.000

.992

.350

.150

.526

.876

.946

-124.97

-94.47

-87.47

-54.97

-41.47

-76.47

-88.97

-110.97

-80.47

-73.47

-40.97

-27.47

-48.47

-100.14

-69.64

-62.64

-30.14

-16.64

-37.64

-51.64

-56.14
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mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

30.50

37.50

70.00

83.50

62.50

48.50

15.786

15.786

15.786

15.786

15.786

15.786

.789

.605

.086

.035

.141

.340

-47.64

-40.64

-8.14

5.36

-15.64

-29.64

mstn+/+ 3d-ov mstn+/+ non-ov

mstn-/- non-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-8.50

-30.50

7.00

39.50

53.00

32.00

18.00

15.786

15.786

15.786

15.786

15.786

15.786

15.786

1.000

.789

1.000

.552

.259

.752

.981

-86.64

-108.64

-71.14

-38.64

-25.14

-46.14

-60.14

mstn-/- 3d-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-15.50

-37.50

-7.00

32.50

46.00

25.00

11.00

15.786

15.786

15.786

15.786

15.786

15.786

15.786

.992

.605

1.000

.739

.393

.903

.999

-93.64

-115.64

-85.14

-45.64

-32.14

-53.14

-67.14

mstn+/+ 2wk-ov mstn+/+ non-ov -48.00 15.786 .350 -126.14
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mstrW- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

mstn-/- 2wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-70.00

-39.50

-32.50

13.50

-7.50

-21.50

15.786

15.786

15.786

15.786

15.786

15.786

.086

.552

.739

.996

1.000

.952

-61.50

-83.50

-53.00

-46.00

-13.50

-21.00

-35.00

15.786

15.786

15.786

15.786

15.786

15.786

15.786

.150

.035

.259

.393

.996

.957

.673

-148.14

-117.64

-110.64

-64.64

-85.64

-99.64

-139.64

-161.64

-131.14

-124.14

-91 .64

-99.14

-113.14

mstn+/+ 6wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn-/- 6wk-ov

mstn-/- 6wk-ov mstn+/+ non-ov

-40.50

-62.50

-32.00

-25.00

7.50

21.00

-14.00

-26.50

15.786

15.786

15.786

15.786

15.786

15.786

15.786

15.786

.526

.141

.752

.903

1.000

.957

.995

.876

-118.64

-140.64

-110.14

-103.14

-70.64

-57.14

-92.14

-104.64
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mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

-48.50

-18.00

-11.00

21.50

35.00

14.00

15.786

15.786

15.786

15.786

15.786

15.786

.340

.981

.999

.952

.673

.995

-126.64

-96.14

-89.14

-56.64

-43.14

-64.14

LSD mstn+/+ non-ov mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

mstn-/- non-ov mstn+/+ non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-22.00

8.50

15.50

48.00

61.50

40.50

26.50

15.786

15.786

15.786

15.786

15.786

15.786

15.786

.201

.605

.355

.016

.005

.033

.132

22.00

30.50

37.50

70.00

83.50

62.50

48.50

15.786

15.786

15.786

15.786

15.786

15.786

15.786

.201

.089

.045

.002

.001

.004

.015

-58.40

-27.90

-20.90

11.60

25.10

4.10

-9.90

-14.40

-5.90

1.10

33.60

47.10

26.10

12.10

mstn+/+ 3d-ov mstn+/+ non-ov -8.50 15.786 .605 -44.90
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mstn-/- non-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-30.50

7.00

39.50

53.00

32.00

18.00

15.786

15.786

15.786

15.786

15.786

15.786

.089

.669

.037

.010

.077

.287

-66.90

-29.40

3.10

16.60

-4.40

-18.40

5.90

43.40

75.90

89.40

68.40

54.40

mstn-/- 3d-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-15.50

-37.50

-7.00

32.50

46.00

25.00

11.00

15.786

15.786

15.786

15.786

15.786

15.786

15.786

.355

.045

.669

.073

.019

.152

.506

-51.90

-73.90

-43.40

-3.90

9.60

-11.40

-25.40

20.90

-1.10

29.40

68.90

82.40

61.40

47.40

mstn+/+ 2wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-48.00

-70.00

-39.50

-32.50

13.50

-7.50

-21.50

15.786

15.786

15.786

15.786

15.786

15.786

15.786

.016

.002

.037

.073

.417

.647

.210

-84.40

-106.40

-75.90

-68.90

-22.90

-43.90

-57.90

-11.60

-33.60

-3.10

3.90

49.90

28.90

14.90

-25.10mstn-/- 2wk-ov mstn+/+ non-ov -61.50 15.786 .005 -97.90
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mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-83.50

-53.00

-46.00

-13.50

-21.00

-35.00

15.786

15.786

15.786

15.786

15.786

15.786

.001

.010

.019

.417

.220

.057

-119.90

-89.40

-82.40

-49.90

-57.40

-71.40

mstn+/+ 6wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn-/- 6wk-ov

-40.50

-62.50

-32.00

-25.00

7.50

21.00

-14.00

15.786

15.786

15.786

15.786

15.786

15.786

15.786

.033

.004

.077

.152

.647

.220

.401

-76.90

-98.90

-68.40

-61.40

-28.90

-15.40

-50.40

mstn-/- 6wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

-26.50

-48.50

-18.00

-11.00

21.50

35.00

14.00

15.786

15.786

15.786

15.786

15.786

15.786

15.786

.132

.015

.287

.506

.210

.057

.401

-62.90

-84.90

-54.40

-47.40

-14.90

-1.40

-22.40
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Based on observed means.

The error term is Mean Square( Error) = 249.188.

*. The mean difference is significant at the .05 level.

Homogeneous Subsets

Relative Atrogin Expression

Group

Subset

Tukey HSDa'b mstn-/- 2wk-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

mstn-/- 3d-ov

mstn+/+ 3d-ov

mstn+/+ non-ov

mstn-/- non-ov

Sig.

56.00

69.50

77.00

91.00

102.00

109.00

117.50

.054

91.00

102.00

109.00

117.50

139.50

.155

Scheffe3 mstn-/- 2wk-ov 56.00



mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

mstn-/- 3d-ov

mstn+/+ 3d-ov

mstn+/+ non-ov

mstn-/- non-ov

Sig.

69.50

77.00

91.00

102.00

109.00

117.50

.150

69.50

77.00

91.00

102.00

109.00

117.50

139.50

.086

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = 249.188.

a. Uses Harmonic Mean Sample Size = 2.000.

b. Alpha = .05.

ANOVA: Follistatin Expression Response to Overloading Mstn+/+ and
Mstn-/-

Notes

Output Created

Comments

25-NOV-2009 11:29:24



Input Data

Active Dataset

Filter

Weight

Split File

N of Rows in Working Data
File

Missing Value Handling Definition of Missing

Cases Used

Syntax

Resources Processor Time

Elapsed Time

C:\Users\Moe AK\Documents\Stats for

thesis\MOD Midbelly Area Fibre CSA
and Fibre Number Raw data.sav

DataSetl

<none>

<none>

<none>

24

User-defined missing values are treated
as missing.

Statistics are based on all cases with

valid data for all variables in the model.

UNIANOVA Follistatin BY Group

/METH0D=SSTYPE(3)

/INTERCEPT=INCLUDE

/POSTHOC=Group(TUKEY SCHEFFE
LSD)

/EMMEANS=TABLES(Group)

/PRINT=ETASQ HOMOGENEITY

DESCRIPTIVE

/CRITERIA=ALPHA(.05)

/DESIGN=Group.

0:00:00.062

0:00:00.166



Between-Subjects Factors

Value Label

Group 1 .00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

Descriptive Statistics

Dependent Variable:Relative Follistatin Expression

Group Mean Std. Deviation

mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

36.50

38.50

241.50

68.00

13.435

9.192

2.121

8.485

2

2

2

2
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mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

Total

113.50

42.50

101.50

48.00

86.25

10.607

10.607

33.234

67.882

69.936

2

16

Tests of Between-Subjects Effects

Dependent Variable:Relative Follistatin Expression

Source
Type III Sum of

Squares df Mean Square Sig.
Partial Eta

Squared

Corrected Model

Intercept

Group

Error

Total

Corrected Total

67086.000a

119025.000

67086.000

6279.000

192390.000

73365.000

9583.714

119025.000

9583.714

784.875

12.210

151.648

12.210

16

15

.001

.000

.001

.914

.950

.914

a. R Squared = .914 (Adjusted R Squared = .840)

Estimated Marginal Means



Group

Dependent Variable:Relative Follistatin Expression

Group Mean Std. Errar

95% Confidence Interval

Lower Bound Upper Bound

mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

36.500

38.500

241.500

68.000

113.500

42.500

101.500

48.000

19.810

19.810

19.810

19.810

19.810

19.810

19.810

19.810

-9.182

-7.182

195.818

22.318

67.818

-3.182

55.818

2.318

82.182

84.182

287.182

113.682

159.182

88.182

147.182

93.682

Post Hoc Tests

Group

Multiple Comparisons



Dependent Variable:Relative Follistatin Expression

(I) Group (J) Group

Mean

Difference (l-J) Std. Error Sig.

95% Confidence Interval

Lower Bound Upper Bound

Tukey HSD mstn+/+ non-ov mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-2.00

-205.00

-31 .50

-77.00

-6.00

-65.00

-11.50

28.016

28.016

28.016

28.016

28.016

28.016

28.016

1.000

.001

.933

.232

1.000

.382

1.000

mstn-/- non-ov mstn+/+ non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

2.00

-203.00

-29.50

-75.00

-4.00

-63.00

-9.50

28.016

28.016

28.016

28.016

28.016

28.016

28.016

1.000

.001

.951

.253

1.000

.413

1.000

mstn+/+ 3d-ov mstn+/+ non-ov

mstn-/- non-ov

mstn-/- 3d-ov

205.00

203.00

173.50

28.016

28.016

28.016

.001

.001

.004

-112.86

-315.86

-142.36

-187.86

-116.86

-175.86

-122.36

-108.86

-313.86

-140.36

-185.86

-114.86

-173.86

-120.36

94.14

92.14

62.64

108.86

-94.14

79.36

33.86

104.86

45.86

99.36

112.86

-92.14

81.36

35.86

106.86

47.86

101.36

315.86

313.86

284.36
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mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

128.00

199.00

140.00

193.50

28.016

28.016

28.016

28.016

.023

.001

.014

.002

17.14!

88.14

29.14

82.64

mstn-/- 3d-ov mstn+/+ non-ov

mstn-/- non-ov

31.50

29.50

mstn+/+ 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-173.50

-45.50

25.50

-33.50

20.00

28.016

28.016

28.016

28.016

28.016

28.016

28.016

.933

.951

.004

.729

.976

.913

.994

-79.36

-81 .36

-284.36

-156.36

-85.36

-144.36

-90.86

mstn+/+ 2wk-ov mstn+/+ non-ov

mstn-/- non-ov

77.00

75.00

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-128.00

45.50

71.00

12.00

65.50

28.016

28.016

28.016

28.016

28.016

28.016

28.016

.232

.253

.023

.729

.299

1.000

.375

-33.86

-35.86

-238.86

-65.36

-39.86

-98.86

-45.36

mstn-/- 2wk-ov mstn+/+ non-ov

mstn-/- non-ov

6.00

4.00

28.016

28.016

1.000

1.000

-104.86

-106.86
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mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

mstn+/+ 6wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn-/- 6wk-ov

mstn-/- 6wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

-199.00

-25.50

-71.00

-59.00

-5.50

28.016

28.016

28.016

28.016

28.016

.001

.976

.299

.480

1.000

65.00

63.00

-140.00

33.50

-12.00

59.00

53.50

28.016

28.016

28.016

28.016

28.016

28.016

28.016

.382

.413

.014

.913

1 .000

.480

.579

11.50

9.50

-193.50

-20.00

-65.50

5.50

-53.50

28.016

28.016

28.016

28.016

28.016

28.016

28.016

1.000

1.000

.002

.994

.375

1.000

.579

-309.86

-136.36

-181.86

-169.86

-116.36

-45.86

-47.86

-250.86

-77.36

-122.86

-51.86

-57.36

-99.36

-101.36

-304.36

-130.86

-176.36

-105.36

-164.36

Scheffe mstn+/+ non-ov mstn-/- non-ov -2.00 28.016 1.000 -140.68

159



mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-205.00

-31.50

-77.00

-6.00

-65.00

-11.50

28.016

28.016

28.016

28.016

28.016

28.016

.005

.982

.453

1.000

.629

1 .000

-343.68

-170.18

-215.68

-144.68

-203.68

-150.18

mstn-/- non-ov mstn+/+ non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

2.00

-203.00

-29.50

-75.00

-4.00

-63.00

-9.50

28.016

28.016

28.016

28.016

28.016

28.016

28.016

1.000

.005

.987

.481

1.000

.659

1.000

-136.68

-341.68

-168.18

-213.68

-142.68

-201.68

-148.18

mstn+/+ 3d-ov mstn+/+ non-ov

mstn-/- non-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

205.00

203.00

173.50

128.00

199.00

140.00

193.50

28.016

28.016

28.016

28.016

28.016

28.016

28.016

.005

.005

.014

.074

.006

.048

.007

66.32

64.32

34.82

-10.68

60.32

1.32

54.82

mstn-/- 3d-ov mstn+/+ non-ov 31.50 28.016 .982 -107.18
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mstrW- non-ov

mstn+/+ 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

29.50

-173.50

-45.50

25.50

-33.50

20.00

28.016

28.016

28.016

28.016

28.016

28.016

.987

.014

.892

.995

.975

.999

-109.18

-312.18

-184.18

-113.18

-172.18

-118.68

mstn+/+ 2wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

77.00

75.00

-128.00

45.50

71.00

12.00

65.50

28.016

28.016

28.016

28.016

28.016

28.016

28.016

.453

.481

.074

.892

.539

1.000

.621

-61.68

-63.68

-266.68

-93.18

-67.68

-126.68

-73.18

mstn-/- 2wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

6.00

4.00

-199.00

-25.50

-71.00

-59.00

-5.50

28.016

28.016

28.016

28.016

28.016

28.016

28.016

1.000

1.000

.006

.995

.539

.719

1.000

-132.68

-134.68

-337.68

-164.18

-209.68

-197.68

-144.18

mstn+/+ 6wk-ov mstn+/+ non-ov 65.00 28.016 .629 -73.68
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mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn-/- 6wk-ov

mstn-/- 6wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

63.00

-140.00

33.50

-12.00

59.00

53.50

11.50

9.50

-193.50

-20.00

-65.50

5.50

-53.50

28.016

28.016

28.016

28.016

28.016

28.016

.659

.048

.975

1.000

.719

.797

28.016

28.016

28.016

28.016

28.016

28.016

28.016

1.000

1.000

.007

.999

.621

1.000

.797

-75.68

-278.68

-105.18

-150.68

-79.68

-85.18

-127.18

-129.18

-332.18

-158.68

-204.18

-133.18

-192.18

LSD mstn+/+ non-ov mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-2.00

-205.00

-31.50

-77.00

-6.00

-65.00

-11.50

28.016

28.016

28.016

28.016

28.016

28.016

28.016

.945

.000

.293

.025

.836

.049

.692

-66.60

-269.60

-96.10

-141.60

-70.60

-129.60

-76.10

mstn-/- non-ov mstn+/+ non-ov 2.00 28.016 .945 -62.60
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mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-203.00

-29.50

-75.00

-4.00

-63.00

-9.50

28.016

28.016

28.016

28.016

28.016

28.016

.000

.323

.028

.890

.055

.743

-267.60

-94.10

-139.60

-68.60

-127.60

-74.10

mstn+/+ 3d-ov mstn+/+ non-ov

mstn-/- non-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

205.00

203.00

173.50

128.00

199.00

140.00

193.50

28.016

28.016

28.016

28.016

28.016

28.016

28.016

.000

.000

.000

.002

.000

.001

.000

140.40

138.40

108.90

63.40

134.40

75.40

128.90

mstn-/- 3d-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

31.50

29.50

-173.50

-45.50

25.50

-33.50

20.00

28.016

28.016

28.016

28.016

28.016

28.016

28.016

.293

.323

.000

.143

.389

.266

.496

-33.10

-35.10

-238.10

-110.10

-39.10

-98.10

-44.60

mstn+/+ 2wk-ov mstn+/+ non-ov 77.00 28.016 .025 12.40
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mstrW- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

75.00

-128.00

45.50

71.00

12.00

65.50

28.016

28.016

28.016

28.016

28.016

28.016

.028

.002

.143

.035

.680

.048

10.40

-192.60

-19.10

6.40

-52.60

.90

mstn-/- 2wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

6.00

4.00

-199.00

-25.50

-71.00

-59.00

-5.50

28.016

28.016

28.016

28.016

28.016

28.016

28.016

.836

.890

.000

.389

.035

.068

.849

-58.60

-60.60

-263.60

-90.10

-135.60

-123.60

-70.10

mstn+/+ 6wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn-/- 6wk-ov

65.00

63.00

-140.00

33.50

-12.00

59.00

53.50

28.016

28.016

28.016

28.016

28.016

28.016

28.016

.049

.055

.001

.266

.680

.068

.093

.40

-1.60

-204.60

-31.10

-76.60

-5.60

-11.10

mstn-/- 6wk-ov mstn+/+ non-ov 11.50 28.016 .692 -53.10
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mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

9.50

-193.50

-20.00

-65.50

5.50

-53.50

28.016

28.016

28.016

28.016

28.016

28.016

.743

.000

.496

.048

.849

.093

-55.10

-258.10

-84.60

-130.10

-59.10

-118.10

74.10

-128.90

44.60

-.90

70.10

11.10

Based on observed means.

The error term is Mean Square(Error) = 784.875.

*. The mean difference is significant at the .05 level.

Homogeneous Subsets

Relative Fol I ¡stati ? Expression

Group

Subset

Tukey HSDa" mstn+/+ non-ov

mstn-/- non-ov

mstn-/- 2wk-ov

mstn-/- 6wk-ov

36.50

38.50

42.50

48.00
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mstn-/- 3d-ov

mstn+/+ 6wk-ov

mstn+/+ 2wk-ov

mstn+/+ 3d-ov

Sig.

68.00

101.50

113.50

.232

Scheffea"b mstn+/+ non-ov

mstn-/- non-ov

mstn-/- 2wk-ov

mstn-/- 6wk-ov

mstn-/- 3d-ov

mstn+/+ 6wk-ov

mstn+/+ 2wk-ov

mstn+/+ 3d-ov

Sig.

36.50

38.50

42.50

48.00

68.00

101.50

113.50

.453

Means for groups ¡? homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = 784.875.

a. Uses Harmonic Mean Sample Size = 2.000.

b. Alpha = .05.

ANOVA: Myogenin Expression Response to Overloading Mstn+/+ and
Mstn-/-



Notes

Input

Output Createci

Comments

Data

Active Dataset

Filter

Weight

Split File

N of Rows in Working Data
File

Missing Value Handling Definition of Missing

Cases Used

25-NOV-2009 11:31:14

C:\Users\Moe AK\Documents\Stats for

thesis\MOD Midbelly Area Fibre CSA
and Fibre Number Raw data.sav

DataSetl

<none>

<none>

<none>

24

User-defined missing values are treated
as missing.

Statistics are based on all cases with

valid data for all variables in the model.



Syntax

Resources Processor Time

Elapsed Time

UNIANOVA Myogenin BY Group

/METH0D=SSTYPE(3)

/INTERCEPT=INCLUDE

/POSTHOC=Group(TUKEY SCHEFFE
LSD)

/EMMEANS=TABLES(Group)

/PRINT=ETASQ HOMOGENEITY

DESCRIPTIVE

/CRITERIA=ALPHA(.05)

/DESIGN=Group.

0:00:00.125

0:00:00.149

Between-Subjects Factors

Value Label

Group 1 .00

2.00

3.00

4.00

5.00

6.00

mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov



7.00

8.00

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

Descriptive Statistics

Dependent Variable:Relative Myogenin Expression

Group Mean Std. Deviation

mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

Total

30.00

42.50

80.00

136.50

163.50

253.00

69.00

97.50

109.00

2.828

6.364

5.657

6.364

.707

7.071

.000

4.950

70.990 16

Tests of Between-Subjects Effects

Dependent VariableiRelative Myogenin Expression

Source
Type III Sum of

Squares df Mean Square Sig.

Partial Eta

Squared
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Corrected Model

Intercept

Group

Error

Total

Corrected Total

75398.000a

190096.000

75398.000

196.000

265690.000

75594.000

16

15

10771.143

190096.000

10771.143

24.500

439.638

7759.020

439.638

.000

.000

.000

.997

.999

.997

a. R Squared = .997 (Adjusted R Squared = .995)

Estimated Marginal Means

Group

Dependent Variable: Relative Myogenin Expression

Group Mean Std. Error

95% Confidence Interval

Lower Bound Upper Bound

mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

30.000

42.500

80.000

136.500

163.500

253.000

3.500

3.500

3.500

3.500

3.500

3.500

21.929

34.429

71.929

128.429

155.429

244.929

38.071

50.571

88.071

144.571

171.571

261.071
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mstri+/+ 6wk-ov

mstn-/- 6wk-ov

69.000

97.500

3.500

3.500

60.929

89.429

77.071

105.571

Post Hoc Tests

Group

Multiple Comparisons

Dependent Variable:Relative Myogenin Expression

(I) Group (J) Group
Mean

Difference (l-J) Std. Error Sig.

95% Confidence Interval

Lower Bound Upper Bound

Tukey HSD mstn+/+ non-ov mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-12.50

-50.00

-106.50

-133.50

-223.00

-39.00

-67.50

4.950

4.950

4.950

4.950

4.950

4.950

4.950

.303

.000

.000

.000

.000

.001

.000

-32.09

-69.59

-126.09

-153.09

-242.59

-58.59

-87.09

7.09

-30.41

-86.91

-113.91

-203.41

-19.41

-47.91
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mstn-/- non-ov mstn+/+ non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

12.50

-37.50

-94.00

-121.00

-210.50

-26.50

-55.00

4.950

4.950

4.950

4.950

4.950

4.950

4.950

.303

.001

.000

.000

.000

.009

.000

-7.09

-57.09

-113.59

-140.59

-230.09

-46.09

-74.59

32.09

-17.91

-74.41.

-101.41

-190.91

-6.91

-35.41

mstn+/+ 3d-ov mstn+/+ non-ov

mstn-/- non-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

50.00

37.50

-56.50

-83.50

-173.00

11.00

-17.50

4.950

4.950

4.950

4.950

4.950

4.950

4.950

.000

.001

.000

.000

.000

.425

.086

30.41

17.91

-76.09

-103.09

-192.59

-8.59

-37.09

69.59

57.091

-36.91

-63.91

-153.41

30.59

2.09

mstn-/- 3d-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

106.50

94.00

56.50

-27.00

-116.50

67.50

4.950

4.950

4.950

4.950

4.950

4.950

.000

.000

.000

.008

.000

.000

86.91

74.41

36.91

-46.59

-136.09

47.91

126.09

113.59

76.09

-7.41

-96.91

87.09
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mstrW- 6wk-ov 39.00 4.950 .001 19.41

mstn+/+ 2wk-ov mstn+/+ non-ov

mstrW- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

133.50

121.00

83.50

27.00

-89.50

94.50

66.00

4.950

4.950

4.950

4.950

4.950

4.950

4.950

.000

.000

.000

.008

.000

.000

.000

113.91

101.41

63.91

7.41

-109.09

74.91

46.41

mstn-/- 2wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

223.00

210.50

173.00

116.50

89.50

184.00

155.50

4.950

4.950

4.950

4.950

4.950

4.950

4.950

.000

.000

.000

.000

.000

.000

.000

203.41

190.91

153.41

96.91

69.91

164.41

135.91

mstn+/+ 6wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

39.00

26.50

-11.00

-67.50

-94.50

4.950

4.950

4.950

4.950

4.950

.001

.009

.425

.000

.000

19.41

6.91

-30.59

-87.09

-114.09
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mstrW- 2wk-ov

mstn-/- 6wk-ov

mstn-/- 6wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

-184.00

-28.50

4.950

4.950

.000

.006

67.50

55.00

17.50

-39.00

-66.00

-155.50

28.50

4.950

4.950

4.950

4.950

4.950

4.950

4.950

.000

.000

.086

.001

.000

.000

.006

-203.59

-48.09

47.91

35.41

-2.09

-58.59

-85.59

-175.09

8.91

-164.41

-8.91

87.091

74.59

37.09

-19.41

-46.41

-135.91

48.09

Scheffe mstn+/+ non-ov mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-12.50

-50.00

-106.50

-133.50

-223.00

-39.00

-67.50

4.950

4.950

4.950

4.950

4.950

4.950

4.950

.542

.001

.000

.000

.000

.003

.000

mstn-/- non-ov mstn+/+ non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

12.50

-37.50

-94.00

-121.00

-210.50

4.950

4.950

4.950

4.950

4.950

.542

.004

.000

.000

.000

-37.00

-74.50

-131.00

-158.00

-247.50

-63.50

-92.00

-12.00

-62.00

-118.50

-145.50

-235.00

12.00

-25.50

-82.00

-109.00

-198.50

-14.50

-43.00

37.00

-13.00

-69.50

-96.50

-186.00
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mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-26.50

-55.00

4.950

4.950

.033

.000

-51.00

-79.50

-2.001

-30.501

mstn+/+ 3d-ov mstn+/+ non-ov

mstn-/- non-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

50.00

37.50

-56.50

-83.50

-173.00

11.00

-17.50

4.950

4.950

4.950

4.950

4.950

4.950

4.950

.001

.004

.000

.000

.000

.671

.217

25.50

13.00

-81.00

-108.00

-197.50

-13.50

-42.00

74.50

62.00

-32.00

-59.00

-148.50

35.50

7.00

mstn-/- 3d-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

106.50

94.00

56.50

-27.00

-116.50

67.50

39.00

4.950

4.950

4.950

4.950

4.950

4.950

4.950

.000

.000

.000

.030

.000

.000

.003

82.00

69.50

32.00

-51.50

-141.00

43.00

14.50

131.00

118.50

81.00

-2.50

-92.00

92.00

63.50

mstn+/+ 2wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn-/- 2wk-ov

133.50

121.00

83.50

27.00

-89.50

4.950

4.950

4.950

4.950

4.950

.000

.000

.000

.030

.000

109.00

96.50

59.00

2.50

-114.00

158.00

145.50

108.00

51.50

-65.00
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mstn+/+ 6wk-ov

mstn-/- 6wk-ov

94.50

66.00

4.950

4.950

.000

.000

70.00

41.50

mstn-/- 2wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

223.00

210.50

173.00

116.50

89.50

184.00

155.50

4.950

4.950

4.950

4.950

4.950

4.950

4.950

.000

.000

.000

.000

.000

.000

.000

198.50

186.00

148.50

92.00

65.00

159.50

131.00

mstn+/+ 6wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn-/- 6wk-ov

39.00

26.50

-11.00

-67.50

-94.50

-184.00

-28.50

4.950

4.950

4.950

4.950

4.950

4.950

4.950

.003

.033

.671

.000

.000

.000

.022

14.50

2.00

-35.50

-92.00

-119.00

-208.50

-53.00

mstn-/- 6wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

67.50

55.00

17.50

-39.00

-66.00

4.950

4.950

4.950

4.950

4.950

.000

.000

.217

.003

.000

43.00

30.50

-7.00

-63.50

-90.50
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mstrW- 2wk-ov

mstn+/+ 6wk-ov

-155.50

28.50

4.950

4.950

.000

.022

-180.00

4.00

-131.00

53.001

LSD mstn+/+ non-ov mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-12.50

-50.00

-106.50

-133.50

-223.00

-39.00

-67.50

4.950

4.950

4.950

4.950

4.950

4.950

4.950

.036

.000

.000

.000

.000

.000

.000

mstn-/- non-ov mstn+/+ non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

12.50

-37.50

-94.00

-121.00

-210.50

-26.50

-55.00

4.950

4.950

4.950

4.950

4.950

4.950

4.950

.036

.000

.000

.000

.000

.001

.000

mstn+/+ 3d-ov mstn+/+ non-ov

mstn-/- non-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

50.00

37.50

-56.50

-83.50

-173.00

4.950

4.950

4.950

4.950

4.950

.000

.000

.000

.000

.000

-23.91

-61.41

-117.91

-144.91

-234.41

-50.41

-78.91

1.09

-48.91

-105.41

-132.41

-221.91

-37.91

-66.41

38.59

26.09

-67.91

-94.91

-184.41

-1.09

-38.59

-95.09

-122.09

-211.59

-27.59

-56.09

23.91

-26.09

-82.59

-109.59

-199.09

-15.09

-43.59

61.41

48.91

-45.09

-72.09

-161.59
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mstn+/+ 6wk-ov

mstn-/- 6wk-ov

11.00

-17.50

4.950

4.950

.057

.008

-.41

-28.91

22.41

-6.09

mstn-/- 3d-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

106.50

94.00

56.50

-27.00

-116.50

67.50

39.00

4.950

4.950

4.950

4.950

4.950

4.950

4.950

.000

.000

.000

.001

.000

.000

.000

95.09

82.59

45.09

-38.41

-127.91

56.09

27.59

117.91

105.41

67.91

-15.59

-105.09

78.91

50.41

mstn+/+ 2wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

133.50

121.00

83.50

27.00

-89.50

94.50

66.00

4.950

4.950

4.950

4.950

4.950

4.950

4.950

.000

.000

.000

.001

.000

.000

.000

122.09

109.59

72.09

15.59

-100.91

83.09

54.59

144.91

132.41

94.91

38.41

-78.09

105.91

77.41

mstn-/- 2wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

223.00

210.50

173.00

116.50

89.50

4.950

4.950

4.950

4.950

4.950

.000

.000

.000

.000

.000

211.59

199.09

161.59

105.09

78.09

234.41

221.91

184.41

127.91

100.911
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mstn+/+ 6wk-ov

mstn-/- 6wk-ov

mstn+/+ 6wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn-/- 6wk-ov

mstn-/- 6wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

184.00

155.50

4.950

4.950

.000

.000

39.00

26.50

-11.00

-67.50

-94.50

-184.00

-28.50

4.950

4.950

4.950

4.950

4.950

4.950

4.950

.000

.001

.057

.000

.000

.000

.000

67.50

55.00

17.50

-39.00

-66.00

-155.50

28.50

4.950

4.950

4.950

4.950

4.950

4.950

4.950

.000

.000

.008

.000

.000

.000

.000

172.59

144.09

27.59

15.09

-22.41

-78.91

-105.91

-195.41

-39.91

56.09

43.59

6.09

-50.41

-77.41

-166.91

17.09

Based on observed means.

The error term is Mean Square(Error) = 24.500.

*. The mean difference is significant at the .05 level.

Homogeneous Subsets



Relative Myogen i ? Expression

Group N

Subset

Tukey HSDa" mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 6wk-ov

mstn+/+ 3d-ov

mstn-/- 6wk-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

Sig.

30.00

42.50

69.00

80.00

.303 .425

80.00

97.50

.086

Scheffe3 mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 6wk-ov

mstn+/+ 3d-ov

mstn-/- 6wk-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

30.00

42.50

69.00

80.00 80.00

97.50



mstn-/- 2wk-ov

Sig. .542 .671 .217 1 .000

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = 24.500.

a. Uses Harmonic Mean Sample Size = 2.000.

b. Alpha = .05.

Relative Myogenin Expression

Group

Tukey HSDa"b mstn+/+ 2wk-ov

mstn-/- 2wk-ov

Sig.

Scheffe3 mstn+/+ 2wk-ov

mstn-/- 2wk-ov

Sig.

Subset

163.50

1.000

163.50

1.000

253.00

1.000

253.00

1.000

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = 24.500.

a. Uses Harmonic Mean Sample Size = 2.000.

b. Alpha = .05.



ANOVA: BDNF Expression Response to Overloading Mstn+/+ and
Mstn-/-

Notes

Input

Output Created

Comments

Data

Active Dataset

Filter

Weight

Split File

N of Rows in Working Data
File

Missing Value Handling Definition of Missing

Cases Used

25-NOV-2009 11:32:46

C:\Users\Moe AK\Documents\Stats for

thesis\MOD Midbelly Area Fibre CSA
and Fibre Number Raw data.sav

DataSetl

<none>

<none>

<none>

24

User-defined missing values are treated
as missing.

Statistics are based on all cases with

valid data for all variables in the model.



Syntax

Resources Processor Time

Elapsed Time

UNIANOVA BDNF BY Group

/METH0D=SSTYPE(3)

/INTERCEPT=INCLUDE

/POSTHOC=Group(TUKEY SCHEFFE
LSD)

/EMMEANS=TABLES(Group)

/PRINT=ETASQ HOMOGENEITY

DESCRIPTIVE

/CRITERIA=ALPHA(.05)

/DESIGN=Group.

0:00:00.078

0:00:00.110

Between-Subjects Factors

Value Label N

Group 1.00

2.00

3.00

4.00

5.00

6.00

mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov



7.00

8.00

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

Descriptive Statistics

Dependent Variable:Relative BDNF Expression

Group Mean Std. Deviation

mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

Total

255.00

544.50

113.00

63.50

89.50

79.00

166.00

100.00

176.31

14.142

19.092

2.828

12.021

2.121

11.314

14.142

8.485

155.772 16

Tests of Between-Subjects Effects

Dependent Variable:Relative BDNF Expression

Source

Type III Sum of
Squares df Mean Square Sig.

Partial Eta

Squared

184



Corrected Model

Intercept

Group

Error

Total

Corrected Total

362849.938a

497377.563

362849.938

1121.500

861349.000

363971.438

16

15

51835.705

497377.563

51835.705

140.188

369.760

3547.945

369.760

.000

.000

.000

.997

.998

.997

a. R Squared = .997 (Adjusted R Squared = .994)

Estimated Marginal Means

Group

Dependent Variable:Relative BDNF Expression

Group Mean Std. Error

95% Confidence Interval

Lower Bound Upper Bound

mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

255.000

544.500

113.000

63.500

89.500

79.000

8.372

8.372

8.372

8.372

8.372

8.372

235.694

525.194

93.694

44.194

70.194

59.694

274.306

563.806

132.306

82.806

108.806

98.306
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mstn+/+ 6wk-ov

mstn-/- 6wk-ov

166.000

100.000

8.372

8.372

146.694

80.694

185.306

119.306

Post Hoc Tests

Group

Multiple Comparisons

Dependent Variable:Relative BDNF Expression

(I) Group (J) Group
Mean

Difference (l-J) Std. Error Sig.

95% Confidence Interval

Lower Bound Upper Bound

Tukey HSD mstn+/+ non-ov mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-289.50

142.00

191.50

165.50

176.00

89.00

155.00

11.840

11.840

11.840

11.840

11.840

11.840

11.840

.000

.000

.000

.000

.000

.001

.000

-336.35

95.15

144.65

118.65

129.15

42.15

108.15

-242.65

188.85

238.35

212.35

222.85

135.85

201.85
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mstrW- non-ov mstn+/+ non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

289.50

431 .50

481.00

455.00

465.50

378.50

444.50

11.840

11.840

11.840

11.840

11.840

11.840

11.840

.000

.000

.000

.000

.000

.000

.000

242.65

384.65

434.15

408.15

418.65

331.65

397.65

336.35

478.35

527.85

501.85

512.35

425.35

491 .351

mstn+/+ 3d-ov mstn+/+ non-ov

mstn-/- non-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-142.00

-431.50

49.50

23.50

34.00

-53.00

13.00

11.840

11.840

11.840

11.840

11.840

11.840

11.840

.000

.000

.038

.540

.199

.026

.940

-188.85

-478.35

2.65

-23.35

-12.85

-99.85

-33.85

-95.15

-384.65

96.351

70.35

80.85

-6.15

59.85

mstn-/- 3d-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

-191.50

-481.00

-49.50

-26.00

-15.50

-102.50

11.840

11.840

11.840

11.840

11.840

11.840

.000

.000

.038

.437

.873

.000

-238.35

-527.85

-96.35

-72.85

-62.35

-149.35

-144.65

-434.15

-2.65

20.85

31.35

-55.65
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mstrW- 6wk-ov -36.50 1 1 .840 .153 -83.35 10.35

mstn+/+ 2wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-165.50

-455.00

-23.50

26.00

10.50

-76.50

-10.50

11.840

1 1 .840 .

1 1 .840

11.840

11.840

11.840

11.840

.000

.000

.540

.437

.979

.003

.979

-212.35

-501.85

-70.35

-20.85

-36.35

-123.35

-57.35

-118.65

-408.15

23.35

72.85

57.351

-29.65

36.35

mstn-/- 2wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

mstn+/+ 6wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

-176.00

-465.50

-34.00

15.50

-10.50

-87.00

-21.00

11.840

11.840

11.840

11.840

11.840

11.840

11.840

.000

.000

.199

.873

.979

.001

.651

-89.00

-378.50

53.00

102.50

76.50

11.840

11.840

11.840

11.840

11.840

.001

.000

.026

.000

.003

-222.85

-512.35

-80.85

-31.35

-57.35

-133.85

-67.85

-135.85

-425.35

6.15

55.65

29.65

-129.15

-418.65

12.85

62.35

36.351

-40.15

25.85

-42.15

-331.651

99.851

149.35

123.35
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mstrW- 2wk-ov

mstn-/- 6wk-ov

mstn-/- 6wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

Scheffe mstn+/+ non-ov mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

mstn-/- non-ov mstn+/+ non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

87.00

66.00

-155.00

-444.50

-13.00

36.50

10.50

21.00

-66.00

-289.50

142.00

191.50

165.50

176.00

89.00

155.00

289.50

431.50

481.00

455.00

465.50

11.840

11.840

11.840

11.840

11.840

11.840

11.840

11.840

11.840

11.840

11.840

11.840

11.840

11.840

11.840

11.840

11.840

11.840

11.840

11.840

11.840

.001

.007

.000

.000

.940

.153

.979

.651

.007

.000

.000

.000

.000

.000

.004

.000

.000

.000

.000

.000

.000

40.15

19.15

-201.85

-491.35

-59.85

-10.35

-36.35

-25.85

-112.85

-348.11

83.39

132.89

106.89

117.39

30.39

96.39

230.89

372.89

422.39

396.39

406.89

133.85

112.85

-108.15

-397.65

33.851

83.351

57.351

67.85

-19.15

-230.891

200.61

250.11

224.11

234.61

147.61

213.611

348.11

490.111

539.611

513.61

524.11
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mstn+/+ 6wk-ov

mstn-/- 6wk-ov

378.50

444.50

11.840

11.840

.000

.000

319.89

385.89

437.11

503.11

mstn+/+ 3d-ov mstn+/+ non-ov

mstn-/- non-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-142.00

-431.50

49.50

23.50

34.00

-53.00

13.00

11.840

11.840

11.840

11.840

1 1 .840

11.840

11.840

.000

.000

.112

.768

.408

.082

.984

-200.61

-490.11

-9.11

-35.11

-24.61

-111.61

-45.61

-83.39

-372.89

108.11

82.11

92.61

5.61

71.61

mstn-/- 3d-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-191.50

-481.00

-49.50

-26.00

-15.50

-102.50

-36.50

11.840

11.840

1 1 .840

1 1 .840

11.840

11.840

11.840

.000

.000

.112

.682

.960

.002

.337

-250.11

-539.61

-108.11

-84.61

-74.11

-161.11

-95.11

-132.89

-422.39

9.11

32.61

43.11

-43.89

22.11

mstn+/+ 2wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn-/- 2wk-ov

-165.50

-455.00

-23.50

26.00

10.50

11.840

11.840

11.840

11.840

11.840

.000

.000

.768

.682

.995

-224.11

-513.61

-82.11

-32.61

-48.11

-106.89

-396.39

35.11

84.61

69.11
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mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-76.50

-10.50

11.840

11.840

.011

.995

-135.11

-69.11

-17.89

48.11

mstn-/- 2wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-óv

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-176.00

-465.50

-34.00

15.50

-10.50

-87.00

-21.00

11.840

11.840

11.840

11.840

11.840

11.840

11.840

.000

.000

.408

.960

.995

.005

.846

-234.61

-524.11

-92.61

-43.11

-69.11

-145.61

-79.61

-117.39

-406.89

24.61

74.11

48.11

-28.39

37.61

mstn+/+ 6wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn-/- 6wk-ov

-89.00

-378.50

53.00

102.50

76.50

87.00

66.00

11.840

11.840

11.840

11.840

11.840

11.840

11.840

.004

.000

.082

.002

.011

.005

.026

-147.61

-437.11

-5.61

43.89

17.89

28.39

7.39

-30.39

-319.89

111.61

161.11

135.11

145.61

124.61

mstn-/- 6wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

-155.00

-444.50

-13.00

36.50

10.50

11.840

11.840

11.840

11.840

11.840

.000

.000

.984

.337

.995

-213.61

-503.11

-71.61

-22.11

-48.11

-96.39

-385.89

45.61

95.11

69.11
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mstrW- 2wk-ov

mstn+/+ 6wk-ov

21.00

-66.00

1 1 .840

11.840

.846

.026

-37.61

-124.61

79.61

-7.39

LSD mstn+/+ non-ov mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-289.50

142.00

191.50

165.50

176.00

89.00

155.00

11.840

11.840

1 1 .840

11.840

11.840

11.840

11.840

.000

.000

.000

.000

.000

.000

.000

mstn-/- non-ov mstn+/+ non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

289.50

431.50

481.00

455.00

465.50

378.50

444.50

1 1 .840

1 1 .840

11.840

11.840

11.840

11.840

11.840

.000

.000

.000

.000

.000

.000

.000

mstn+/+ 3d-ov mstn+/+ non-ov

mstn-/- non-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

-142.00

-431 .50

49.50

23.50

34.00

11.840

11.840

1 1 .840

11.840

11.840

.000

.000

.003

.082

.021

-316.80

114.70

164.20

138.20

148.70

61.70

127.70

262.20

404.20

453.70

427.70

438.20

351.20

417.20

-169.30

-458.80

22.20

-3.80

6.70

-262.20

169.30

218.80

192.80

203.30

116.30

182.301

316.80

458.80

508.30

482.30

492.80

405.80

471.801

-114.70

-404.20

76.80

50.80

61.30
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mstn+/+ 6wk-ov

mstn-/- 6wk-ov

mstn-/- 3d-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-53.00

13.00

11.840

11.840

.002

.304

-191.50

-481.00

-49.50

-26.00

-15.50

-102.50

-36.50

11.840

11.840

11.840

11.840

11.840

11.840

11.840

.000

.000

.003

.059

.227

.000

.015

-80.30

-14.30

-218.80

-508.30

-76.80

-53.30

-42.80

-129.80

-63.80

mstn+/+ 2wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

mstn-/- 6wk-ov

-165.50

-455.00

-23.50

26.00

10.50

-76.50

-10.50

11.840

11.840

11.840

11.840

11.840

11.840

11.840

.000

.000

.082

.059

.401

.000

.401

-192.80

-482.30

-50.80

-1.30

-16.80

-103.80

-37.80

mstn-/- 2wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

-176.00

-465.50

-34.00

15.50

-10.50

11.840

11.840

11.840

11.840

11.840

.000

.000

.021

.227

.401

-203.30

-492.80

-61.30

-11.80

-37.80
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mstn+/+ 6wk-ov

mstn-/- 6wk-ov

mstn+/+ 6wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn-/- 6wk-ov

mstn-/- 6wk-ov mstn+/+ non-ov

mstn-/- non-ov

mstn+/+ 3d-ov

mstn-/- 3d-ov

mstn+/+ 2wk-ov

mstn-/- 2wk-ov

mstn+/+ 6wk-ov

-87.00

-21.00

11.840

11.840

.000

.114

-89.00

-378.50

53.00

102.50

76.50

87.00

66.00

11.840

11.840

11.840

11.840

11.840

11.840

11.840

.000

.000

.002

.000

.000

.000

.001

-155.00

-444.50

-13.00

36.50

10.50

21.00

-66.00

11.840

11.840

11.840

11.840

11.840

11.840

11.840

.000

.000

.304

.015

.401

.114

.001

-114.30

-48.30

-116.30

-405.80

25.70

75.20

49.20

59.70

38.70

-182.30

-471.80

-40.30

9.20

-16.80

-6.30

-93.30

Based on observed means.

The error term is Mean Square(Error) = 140.188.

. The mean difference is significant at the .05 level.

Homogeneous Subsets



Relative BDNF Expression

Group

Subset

Tukey HSD ¦ mstn-/- 3d-ov

mstn-/- 2wk-ov

mstn+/+ 2wk-ov

mstn-/- 6wk-ov

mstn+/+ 3d-ov

mstn+/+ 6wk-ov

mstn+/+ non-ov

mstn-/- non-ov

Sig.

63.50

79.00

89.50

100.00

79.00

89.50

100.00

113.00

166.00

.153 .199 1.000

255.00

1.000

544.5Ol

1.0001

Scheffe3 mstn-/- 3d-ov

mstn-/- 2wk-ov

mstn+/+ 2wk-ov

mstn-/- 6wk-ov

mstn+/+ 3d-ov

mstn+/+ 6wk-ov

mstn+/+ non-ov

63.50

79.00

89.50

100.00

113.00 113.00

166.00

255.00

195



mstrW- non-ov

Sig. .112 .082 1.000

544.50

1.000

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = 140.188.

a. Uses Harmonic Mean Sample Size = 2.000.

b. Alpha = .05.

ANOVA: Myostatin Expression Response to Overloading Mstn+/+

Notes

Input

Output Created

Comments

Data

Active Dataset

Filter

Weight

Split File

N of Rows in Working Data
File

25-NOV-2009 11:34:40

C:\Users\Moe AK\Documents\Stats for

thesis\MOD Midbelly Area Fibre CSA
and Fibre Number Raw data.sav

DataSetl

<none>

<none>

<none>

24
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Missing Value Handling Definition of Missing

Cases Used

Syntax

Resources Processor Time

Elapsed Time

User-defined missing values are treated
as missing.

Statistics are based on all cases with

valid data for all variables in the model.

UNIANOVA Myostatin BY Group

/METHOD=SSTYPE(3)

/INTERCEPT=INCLUDE

/POSTHOC=Group(TUKEY SCHEFFE
LSD)

/EMMEANS=TABLES(Group)

/PRINT=ETASQ HOMOGENEITY

DESCRIPTIVE

/CRITERIA=ALPHA(.05)

/DESIGN=Group.

0:00:00.031

0:00:00.104

Between-Subjects Factors

Value Label N

Group 1.00

3.00

5.00

mstn+/+ non-ov

mstn+/+ 3d-ov

mstn+/+ 2wk-ov



Between-Subjects Factors

Value Label N

Group 1 .00

3.00

5.00

7.00

mstn+/+ non-ov

mstn+/+ 3d-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

Descriptive Statistics

Dependent Variable:Relative Mstn Expression

Group Mean Std. Deviation

mstn+/+ non-ov

mstn+/+ 3d-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

Total

763.50

40.00

62.50

72.50

234.63

31.820

1.414

6.364

2.121

326.903

Tests of Between-Subjects Effects

Dependent Variable:Relative Mstn Expression
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Source

Type III Sum of
Squares df Mean Square Sig.

Partial Eta

Squared

Corrected Model

Intercept

Group

Error

Total

Corrected Total

746998.375'

440391.125

746998.375

1059.500

1188449.000

748057.875

248999.458

440391.125

248999.458

264.875

940.064

1662.638

940.064

.000

.000

.000

.999

.998

.999

a. R Squared = .999 (Adjusted R Squared = .998)

Estimated Marginal Means

Group

Dependent Variable:Relative Mstn Expression

Group Mean Std. Error

95% Confidence Interval

Lower Bound Upper Bound

mstn+/+ non-ov

mstn+/+ 3d-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

763.500

40.000

62.500

72.500

11.508

11.508

11.508

11.508

731.548

8.048

30.548

40.548

795.452

71.952

94.452

104.452
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Post Hoc Tests

Group

Multiple Comparisons

Dependent Variable:Relative Mstn Expression

(I) Group (J) Group
Mean Difference

(l-J) Std. Error

Tukey HSD mstn+/+ non-ov mstn+/+ 3d-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

mstn+/+ 3d-ov mstn+/+ non-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

mstn+/+ 2wk-ov mstn+/+ non-ov

mstn+/+ 3d-ov

mstn+/+ 6wk-ov

723.50

701.00

691.00

-723.50

-22.50

-32.50

-701.00

22.50

-10.00

16.275

16.275

16.275

16.275

16.275

16.275

16.275

16.275

16.275



mstn+/+ 6wk-ov mstn+/+ non-ov

mstn+/+ 3d-ov

mstn+/+ 2wk-ov

-691.00

32.50

10.00

16.275

16.275

16.275

Scheffe mstn+/+ non-ov mstn+/+ 3d-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

mstn+/+ 3d-ov mstn+/+ non-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

mstn+/+ 2wk-ov mstn+/+ non-ov

mstn+/+ 3d-ov

mstn+/+ 6wk-ov

mstn+/+ 6wk-ov mstn+/+ non-ov

mstn+/+ 3d-ov

mstn+/+ 2wk-ov

723.50

701.00'

691.00'

-723.50

-22.50

-32.50

-701.00

22.50

-10.00

-691.00

32.50

10.00

16.275

16.275

16.275

16.275

16.275

16.275

16.275

16.275

16.275

16.275

16.275

16.275

LSD mstn+/+ non-ov mstn+/+ 3d-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

mstn+/+ 3d-ov mstn+/+ non-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

723.50

701 .00

691.00

-723.50

-22.50

-32.50

16.275

16.275

16.275

16.275

16.275

16.275



mstn+/+ 2wk-ov mstn+/+ non-ov

mstn+/+ 3d-ov

mstn+/+ 6wk-ov

mstn+/+ 6wk-ov mstn+/+ non-ov

mstn+/+ 3d-ov

mstn+/+ 2wk-ov

-701.00

22.50

-10.00

-691.00

32.50

10.00

16.275

16.275

16.275

16.275

16.275

16.275

.000

.239

.572

.000

.117

.5721

Based on observed means.

The error term is Mean Square(Error) = 264.875.

*. The mean difference is significant at the .05 level.

Multiple Comparisons

Dependent Variable.Relative Mstn Expression

(I) Group (J) Group

95% Confidence Interval

Lower Bound Upper Bound

Tukey HSD mstn+/+ non-ov mstn+/+ 3d-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

mstn+/+ 3d-ov mstn+/+ non-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

mstn+/+ 2wk-ov mstn+/+ non-ov

657.25

634.75

624.75

-789.75

-88.75

-98.75

-767.25

789.75

767.25

757.25

-657.25

43.75

33.75

-634.75

202



mstn+/+ 3d-ov

mstn+/+ 6wk-ov

mstn+/+ 6wk-ov mstn+/+ non-ov

mstn+/+ 3d-ov

mstn+/+ 2wk-ov

-43.75

-76.25

-757.25

-33.75

-56.25

88.751

56.251

-624.751

98.75

76.25

Scheffe mstn+/+ non-ov mstn+/+ 3d-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

mstn+/+ 3d-ov mstn+/+ non-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

mstn+/+ 2wk-ov mstn+/+ non-ov

mstn+/+ 3d-ov

mstn+/+ 6wk-ov

mstn+/+ 6wk-ov mstn+/+ non-ov

mstn+/+ 3d-ov

mstn+/+ 2wk-ov

651.13

628.63

618.63

-795.87

-94.87

-104.87

-773.37

-49.87

-82.37

-763.37

-39.87

-62.37

795.87

773.37

763.37

-651.13

49.87

39.87

-628.63

94.87

62.37

-618.63

104.87

82.37

LSD mstn+/+ non-ov mstn+/+ 3d-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

mstn+/+ 3d-ov mstn+/+ non-ov

678.31

655.81

645.81

-768.69

768.69

746.19

736.19

-678.31



mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

mstn+/+ 2wk-ov mstn+/+ non-ov

mstn+/+ 3d-ov

mstn+/+ 6wk-ov

mstn+/+ 6wk-ov mstn+/+ non-ov

mstn+/+ 3d-ov

mstn+/+ 2wk-ov

-67.69

-77.69

-746.19

-22.69

-55.19

-736.19

-12.69

-35.19

22.69

12.69

-655.81

67.69

35.19

-645.81

77.69

55.19

Based on observed means.

The error term ¡s Mean Square(Error) = 264.875.

Homogeneous Subsets

Relative Mstn Expression

Group N

Subset

Tukey HSDa,b mstn+/+ 3d-ov

mstn+/+ 2wk-ov

40.00

62.50



mstn+/+ 6wk-ov

mstn+/+ non-ov

Sig.

72.50

.323

763.50

1.000

Scheffe3 mstn+/+ 3d-ov

mstn+/+ 2wk-ov

mstn+/+ 6wk-ov

mstn+/+ non-ov

Sig.

40.00

62.50

72.50

.382

763.50

1.000

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = 264.875.

a. Uses Harmonic Mean Sample Size = 2.000.

b. Alpha = .05.


