
INCENTIVE-BASED REPUTATION OF

WEB SERVICES COMMUNITIES

Ahmad Moazin

A THESIS

IN

The Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science

(Information Systems Security) at

Concordia University

Montréal, Québec, Canada

January 2010

© Ahmad Moazin, 2010

?F? Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliothèque et
Archives Canada

Direction du
Patrimoine de l'édition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre référence
ISBN: 978-0-494-67276-1
Our file Notre référence
ISBN: 978-0-494-67276-1

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans le
monde, à des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse. Ni
la thèse ni des extraits substantiels de celle-ci
ne doivent être imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformément à la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thèse.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

Abstract

Incentive-based Reputation of Web Services Communities

Ahmad Moazin

There have been always motivations to introduce clustering of entities with similar functionality

into groups of redundant services or agents. Communities of Web services are composed by

aggregating a number of functionally identical Web services. Many communities with the same

type of service can be formed and all aim to increase their reputation level in order to obtain

more requests. The problem, however, is that there are no incentives for these communities to act

truthfully and not providing fake feedback in support of themselves or against others.

In this thesis we propose an incentive and game-theoretic-based mechanism dealing with

reputation assessment for communities of Web services. The proposed reputation mechanism

is based on after-service feedback provided by the users to a logging system. Given that the

communities are free to decide about their actions, the proposed method defines the evaluation

metrics involved in reputation assessment of the communities and supervises the logging system

by means of controller agent in order to verify the validity and soundness of the feedback. We also

define incentives so that the best game-theoretical strategy for communities is to act truthfully.

Theoretical analysis of the framework along with empirical results are provided.

iii

Acknowledgments

I would like to extend my sincerest thanks to my supervisor, Dr. Jamal Bentahar, for providing me

with this opportunity. I would like to thank him for all his excellent guidance, precious advice and

endless support over the years during my graduate study and research at Concordia University.

I would also like to thank my colleague Babak Khosravifar for the priceless help, discussions,

support, and experience we have shared.

I would like to thank my lab mates, fellow students and friends who have provided endless in-

spiration during my stay at Concordia University. Additionally, I would like to thank my relatives

in Ottawa for their support.

Finally, I would like to express my sincerest appreciation and love to my parents for all their

help and support to fulfill my dreams.

IV

Table of Contents

List of Figures viii

List of Tables ix

1 Introduction 1

1 . 1 Context of Research 1

1.2 Motivations 3

1 .3 Thesis Contributions 4

1 .4 Thesis Overview 6

2 Background and Related Work 7

2.1 Web Services 7

2.1.1 Basic Principals 8

2.1.2 Architecture 8

2.1.3 Operations 9

2.1.4 Standards Stack 10

2.2 Communities of Web Services 11

2.2.1 Definitions and Architecture 12

2.2.2 Community Development and Dismantlement 13

?

2.2.3 Web Services Attraction and Retention 14

2.3 Reputation Systems 16

2.3.1 Reputation of Web Services 16

2.3.2 Reputation of Communities 17

2.4 Conclusion 19

3 Reputation of Web Services Communities with Incentives 20

3.1 Architecture of Reputation-Embedded Web services Communities 21

3.2 Reputation System 23

3.2.1 Reputation Assessment Metrics 23

3.2.2 Metrics Combination 24

3.3 Feedback Logging Mechanism 25

3.3.1 Fake Positive Correction 26

3.4 Theoretical Analysis of the Reputation 29

3.5 Experimental results 32

3.5.1 Simulation Environment 32

3.5.2 Results and Analysis 36

3.6 Summary 39

4 Game-Theoretic Analysis of Communities Reputation 41

4. 1 Game Theory 42

4.1.1 Game Basics 42

4.1.2 Solution Concepts 44

4.2 Game-Oriented Reputation Updates 45

vi

4.3 Game Analysis 46

4.3.1 1 -Shot Game Analysis 48

4.3.2 N-Shots Game Analysis 50

4.4 Experimental results 54

4.4.1 Experiment 55

4.5 Conclusion 58

5 Conclusion and Future Work 60

5.1 Summary of Contributions 61

5.2 Future Work 62

Bibliography 64

Appendices

A Empirical Observations and Analysis of Communities versus Single Web Services 70

VIl

List of Figures

2. 1 Web services architecture 9

2.2 Web services, communities, and argumentative agents 13

3.1 Architecture of reputation-based communities of Web services 21

3.2 Fake positive correction cases 28

3.3 After-RUN summary 34

3.4 Requests and ratings 34

3.5 Ranking list 35

3.6 Reputation 35

3.7 Communities classification 36

3.8 Communities overall quality of service vs. the number of simulation RUNs ... 38

3.9 Communities overall quality of service vs. the number of simulation RUNs ... 39

4. 1 One-shot game tree and table between community C and controller agent Cg. . . 47

4.2 Communities's total reputation adjustment possibilities vs. simulation RUNs. . . 57

4.3 Controller agent's accuracy measurements vs. simulation RUNs 58

A. 1 Characteristics of communities vs. single Web services 72

A.2 Evolution of cooperative parameters for a single Web service over time 73

A.3 Evolution of cooperative parameters for a community of Web services over time. 74

viii

List of Tables

3.1 Simulation summarization over the obtained measurements 36

4.1 Payoff matrix 43

4.2 Two-shots game of community C and controller agent Cg with obtained payoffs. 5 1

4.3 Simulation summarization over the obtained measurements 56

A.l Environment summarization over the obtained measurements 71

IX

Chapter 1

Introduction

This chapter introduces the context of research, which is about reputation of agent-based commu-

nities of Web services. It presents the motivations of this work and describes our contributions.

The last section presents the thesis organization.

1.1 Context of Research

This thesis is about reputation of agent-based communities of Web services. Our main focus

is on the reputation adjustment based on the after-service feedback submitted by the users of

these communities. The reputation adjustment is reflected by a ranking list that classifies the

communities according to the reputation value they hold at each time frame.

Web services are software systems that have recently been deployed to maintain inter-operable

interactions between applications. Abstracting these Web services by software autonomous

1

agents will benefit them from flexible and intelligent interactions that agents are able to man-

age [10, 14, 15], and from the ability of overseeing their performances, commitments, and avail-

ability details. Agents are software systems that have the ability to react with the environment

they reside in and learn from due to their autonomous behavior. Agent-based Web services are

Web services having the capability to interact with their environment thanks to the agents that

are assigned to serve as their representatives. However, because agents are autonomous and thus

selfish f 16], a challenging issue in the resulting environments of agent-based Web services is

reputation, which is an important factor that regulates the process of selecting services. Repu-

tation [37] in this context is a social evaluation of the users towards the communities of Web

services where communities of high quality of service will normally have high reputation and

thus more chance to be selected by prospective users.

On the other hand, overload and hence poor responsiveness are unavoidable issue that single

Web services along with their associated agents should manage. Regarding this regulation, the

concept of communities that gather agent-based Web services having the same functionality has

been emerged, which provides a more reliable service response [5,9]. Each community of Web

services is led by a master Web service, which is responsible for accepting or inviting (hiring) new

Web services to be members of the community and excluding or rejecting (firing) existing Web

services. Deploying such a community is more cost-effective and thus, a proper management

is required to handle community response. But still the issue of communities' reputation is yet

to be addressed as these communities could follow strategies that lead to self support in the

environment.

This thesis presents a reputation mechanism for communities of Web services that focuses

on a feedback logging mechanism. Logging mechanism is a mechanism that supports logging

2

of the feedback from the users to a log file in the form of binary feedback (1 for positive and

0 for negative), where these feedback can then be extracted from the log file in the process of

calculating community's reputation value. For the reputation mechanism, violations are detected

by the means of a specific controller agent. Malicious communities are identified by this agent

and penalties are applied. The controller agent Cg is an agent who is responsible of taking control

over the logging mechanism and keeping the log file accurate.

The main objective of our work is to incentivize the communities of Web services in order to

behave truthfully. This goal is achieved through the design of a suitable reputation mechanism to

monitor and control the different behaviors of communities. The contributions of this thesis are

discussed in more details in Section 1 .3.

1.2 Motivations

In order to facilitate and enhance the selection process of Web services, communities of Web

services are designed to effectively manage the requests from users. In the process of searching

for and selecting a Web service, each user has to look for a community that offers his desired

service where reputation is the main differentiation factor between different communities. The

user can be a person searching for a service such as hotel reservation or software agent working

on behalf of that user.

The reputation of communities of Web services has been studied in some other work [5, 9],

which in turn motivate our research. The motivation is to find a way to keep communities' repu-

tation ranking list an accurate source of information about the communities' quality in which the

user can rely on without being misled by fake reputation values. In order to reach that objective,

3

we participate in proposing a reputation mechanism that helps in selecting a particular community

and in providing after-service feedback regarding the received quality of service. Such mecha-

nism allows the controller agent Cg to stay in track with the reputation level for each community

during the lifetime of that community to make sure that communities are not trying to increase

their reputation level values in a malicious way.

1.3 Thesis Contributions

This thesis is partially based on the work we did in [23] where we extended the work that has

been done in [9] by two contributions. In the first contribution, we discuss an empirical reputa-

tion trust model for the communities of Web services, which is based on three involved metrics

{responsiveness, inDemand and satisfaction). These factors are redefined in a different way by

considering the time factor we call time recency. This model is used by users and providers of

Web services to estimate the reputation of a community under consideration. The second con-

tribution is about the logging mechanism, which is designed to be reliable (capable of managing

malicious acts of communities and thus preserving the integrity of the logging file from unautho-

rized modifications).

In this model, we assume that communities may have strategies to violate the run-time log-

ging mechanism in support of themselves or against other communities. To secure our reputation

system's integrity from such an attack, we try to discover feedback violation using the controller

agent Cg (the agent that is assigned to monitor and audit the logging data) that, to some ex-

tent, makes sure that the violation did happen. Then we propose a method to properly react by

penalizing malicious communities and reward good ones.

4

We provide an analysis of the incentive for communities not to violate the logging system.

The idea is to prove that communities gain more if they do not violate the logging system com-

pared to when they violate it. In this analysis, we define the comparative values of rewards and

penalties for communities in order to obtain such an incentive. The results of the simulations

reveal how, empirically, our reputation model allows us to adjust the level of communities's rep-

utation. What specifically distinguishes our model from other similar work in the literature [5, 9]

is its incentive-based reputation adjustment in the sense that although the communities are ca-

pable of violating the integrity of the logging system in support of themselves (or against their

opponents), they will not take the risk to do that, given the fact that they are aware of the auditing

procedure by the controller agent Cg and the possible penalties, which can decrease their current

reputation level.

In this thesis, we show that by using incentives and penalties, the best strategy for communi-

ties is to act truthfully. The advantages of using the incentive-based mechanism are:

• obtaining an accurate information for deriving the involved metrics used for the reputation

of a particular community;

• obtaining an overall higher reliability in the sense that upon violation detection, communi-

ties are strictly encouraged to show an acceptable performance in their further user request

processes.

Moreover, In this thesis, we report on a work in which we participate [23] and which advances

the proposed framework by analyzing the system's involved parameters in a two-player game

theoretic study. We investigate the incentives to cheat that malicious communities aim to take

advantage of, and the incentives to act as normal while being aware of the possible penalties

5

assigned by the controller agent. In fact we empirically analyze the payoffs obtained following

different strategies. In our experimental work we discuss the obtained results that enable us to

elaborate more on the outcome of different strategies that players choose.

1.4 Thesis Overview

This chapter provides the motivating context for this work. The remainder of the thesis is orga-

nized as follows. Chapter 2 gives an overview of the related work in the area of communities of

Web services and reputation. Chapter 3 describes the proposed incentive-based reputation model

for Web services communities. It presents the evaluation of the proposed model. It also describes

the simulation environment and discusses the results of the experiments. Chapter 4 presents the

game-theoretic analysis along with simulation results. Chapter 5 concludes this work and points

to directions for future research opportunities.

6

Chapter 2

Background and Related Work

In this chapter, we review the literature related to Web services, their communities and associated

trust frameworks. In Section 2.1, the area of Web services is presented. The concept of com-

munities of Web services is presented in Section 2.2. In Section 2.3, we focus on the reputation.

Finally, Section 2.4 concludes the chapter.

2.1 Web Services

The term "Web services" has generated a debate over what is actually a Web service and what

is not, and is often used in many different ways. For this thesis, we will use the definition of

Web services used by the World Wide Web Consortium (W3C): "A Web service is a software

system designed to support inter-operable machine-to-machine interaction over a network. It

has an interface described in a machine-processable format specifically Web Service Definition

Language (WSDL). Other systems interact with the Web service in a manner prescribed by its

description using Simple Object Access Protocol (SOAP) messages, typically conveyed using

7

Hypertext Transfer Protocol (HTTP) with an Extensible Markup Language (XML) serialization

in conjunction with other Web-related standards." [13].

The rest of this section will give an overview about what a Web service is, its architecture,

operations and finally the different technologies the Web services need to function.

2.1.1 Basic Principals

A Web service has the following behavioral characteristics [6,33]:

1 . Loose coupling: the interdependency between an application and a Web service should be

as minimum as possible. For instance, if one of them changes that should not disturb the

working of the other.

2. Coarse grained approach: the Web services technology provides an interface at a very

high level of abstraction, allowing the developers to connect their applications to the desired

Web services with minimum interactions.

3. Synchronous and asynchronous mode of communication: Web services support both

synchronous and asynchronous mode of communication. But because Web services inter-

act with so many components at the same time, asynchronous mode of communication is

commonly used.

2.1.2 Architecture

The basic Web Services architecture defines an interaction between software agents as an ex-

change of messages among service requesters and service providers. Requesters are users soft-

ware agents that request the execution of services. Providers are agents that provide services.

8

mimMMmm

Service Provider Bind
t Service Utier

Figure 2. 1 : Web services architecture

Providers are responsible for publishing a description of the service they provide. Requesters

must be able to find the description of the service. The Web Services architecture is based on

the interactions between three roles [13]: service provider, service registry and service requester

(see Figure 2.1).

1 . Service provider: characterized by the platform that hosts access to the service.

2. Service requester: characterized by the application that is looking for and invoking or

initiating an interaction with a service.

3. Service registry: is where service providers publish their service descriptions. Service

requesters find services and obtain binding information.

2.1.3 Operations

For an application to take advantage of Web services, three behaviors must take place: publishing

of service descriptions, finding or lookup of service descriptions, and binding or invoking of

services based on the service description [2]. In detail, these operations are:

1 . Publish: a service description needs to be published so that the service requester can find

it. Where it is published can vary depending upon the requirements of the application.

2. Find: the service requester retrieves a service description directly or queries the service

registry for the type of service required.

3. Bind: a service needs to be invoked. In the bind operation, the service requester invokes or

initiates an interaction with the service at runtime using the binding details in the service

description to locate, contact and invoke the service.

2.1.4 Standards Stack

Standards stack of Web services is composed by:

UDDI: The Universal Description, Discovery, and Integration Protocol

The Universal Description, Discovery, and Integration (UDDI) protocol is one of the Web ser-

vices protocols that constitutes the Web services standards stack. This protocol provides an open

and independent platform that enables users to find and locate service providers by searching

UDDI registry for data and metadata representation about Web services [1 1,29].

XML: The Extensible Markup Language

The basic structure of XML is the document written in a description language, which is accepted

as format to make the exchange of data possible. This terminology, however, might cause one to

think of XML as only a richer, more flexible than HTML. Indeed, it can be so much more as well

by allowing one to represent the data in a standard and structured format [29,42].

10

WSDL: The Web Services Description Language

Web Services Description Language (WSDL) is a format for describing a Web services interface.

It is a way to describe services and how they should be bound to specific network addresses.

This document must be created by the provider, and is exchanged between the provider and user

through the service registry [29,40].

SOAP: The Simple Object Access Protocol

SOAP provides the envelope for sending Web services messages over the Internet given that Web

services run in a heterogenous and distributed environment, which makes it necessary to use a

independent protocol to carry out the data transfer between the different parts. SOAP commonly

uses HTTP, but other protocols such as Simple Mail Transfer Protocol (SMTP) may be used.

SOAP can be used to exchange complete documents or to call a remote procedures [29,41].

2.2 Communities of Web Services

Due to the fact that the number of Web services offering the same functionality continues to

increase, the competition between them to attract new users is increasing as well. This fact of

having a high number of Web services makes it harder for the user to select one service, as

he is faced with many possibilities corresponding to his needs. Aggregating Web services with

similar functionality into groups, or communities, can save the prospective user a lot of time and

effort in the process of service discovery and selection. [4,5,39]. A community is considered

as "a means to provide the description of a desired functionality without explicitly referring to

any concrete Web service that will implement this functionality at run-time" [5]. The use of the

11

communities makes it possible to accelerate the discovery process based on the users' needs and

improve the Web services reliability. This is because if one Web service cannot handle the user's

request, another Web service from the same community can still handle it. But still, service

users and providers must have the incentives to use the communities of Web services. From the

user's perspective, it requires that the quality of service of the community must be greater than

the quality of service (QoS) of the individual Web services. While from the provider's point of

view, joining a community must have more value than being alone. Thus, it is essential that its

participation rate alone is lower than that inside the community.

2.2.1 Definitions and Architecture

The architecture of Web services is shown in figure 2.2 (from [5]). In this figure we can see the

different components that constitute that architecture: communities, providers of Web services,

masters Web services, members Web services and UDDI registries. Each of these components

has a role to play in the architecture as we will explain below.

When a Web services provider develops a new Web service, he advertises his new service

in the UDDI registries by publishing its description such as its functionality, quality of service

(QoS), reliability and so on. The master has a special role with some responsibilities within the

community like the attraction of new Web services or selection of the Web services to meet the

users' requests. The other Web services are considered as members and have in common the

functionality of the community to which they belong. The master consult the UDDI registries for

Web services that has the same functionality as his community. Each community is composed of

a master of Web services and some other members Web services (Figure 2.2). The master has to

12

Universal
description,

discovery, and
integration
registries

Advertisements Advertisements
Providers of Web services Providers of web services

mteracKons m&ttmx*

Master

rTi\

Slave-WS 1

,'(··' '1^ Interactions
G S-ii ? A'S . *> C Slave-WS

»»> Argumentative agent
'-J ' (^fester Web service)

• · A'Qiimentaîive agent
iStie Web service)

Figure 2.2: Web services, communities, and argumentative agents.

lead and manage the community and the members. Although the members within a community

offer the same functionality, they have some different non-functional properties that make it pos-

sible to differentiate them. Nevertheless, there is some competition between them to be selected

to satisfy the users' requests. A community is dynamic, which means some new Web services

can join the community, whereas others leave it, some become unavailable and others are back

after a suspension and so on. The master must be aware of these events in order to avoid some

conflicts and to better monitor its community.

2.2.2 Community Development and Dismantlement

To develop a community of Web services, the designer has to set the the type of the community he

is creating. The type of the community is also called the functionality such as Hotel reservation.

Choosing the functionality of the community is the first step that the designer or the developer

has to do in order to set up a community. The second step is to find a Web service that acts as

13

master of the community. There are two ways to choose a master for the community. In the first

way, the designer designates a dedicated Web service to be the master throughout the life of the

community. This Web service will never satisfies any request of the users. Its role is only to

manage the community. In the second way, one member Web service is to be selected to act as

master of the community. In this case, the master can be designated on a voluntary basis or after

an election between the Web services.

Dismantling a community is also determined by the designer. When he creates it, he sets

up some threshold, that must be respected by the members. However, "If the number of Web

services in the community is less than a threshold and if the number of participation requests in

composite Web services that arrive from users over a certain period of time is less than another

threshold, then the community will be dismantled" [5]. In the case where a community does

not respect the thresholds established by its designer, it is to be deleted and the Web services

populating that community has to either work alone or to find another community that matches

their functionality.

2.2.3 Web Services Attraction and Retention

Web service providers always publish or advertise their newly developed services to the UDDI

registries. The master Web service, who is taking responsibility of managing the community he

belongs to, interacts with the UDDI registries in a regular manner to stay up-to-date with any new

advertisements about Web services that he may asks to be members of his community [4,5].

The master Web service then, has to attract new Web services to be part of his community.

The attraction process can be done in two common ways. The first way is by checking the

14

UDDI registries as mentioned above, by doing that the master will be searching for Web services

that matches his communities' functional requirement or properties. When trying to attract a

potential Web service, the master uses some arguments that help him to convince the potential

Web service about the joining benefits. Some of the arguments that the master can use are: the

high participation of its members in serving users, the security within the community, and the

good reputation of the community that in turn bring more users. The second way to attract new

Web service occurs when that potential Web service approaches the master and showing interest

in being a member of his community. In this second way, the Web service has to use some

arguments to convince the about the benefits that it will bring to his community. The master Web

service has then to check its QoS, its reliability and capacity among many other properties. In

case that a Web service matches the master's expectation, it will be registered in his community

and become a member that can handle requests redirected to it by the master [4, 5].

A community with too few members will be deleted. So, it is important to keep as many

existing members as possible. The fact that Web services stay in the same community for a long

period means that the Web services are somehow satisfied with the participation rate about the

users' requests. The master may also decide to fire a Web service if the Web service may have a

new functionality that does not correspond to that of the community. In this case, the Web service

is invited to join another community whose functionality is better suited. Another possibility is

that the Web service becomes unreliable and cause troubles. For instance the master realizes

that the Web service has cheated about its credentials in order to be accepted or to be selected in

more composition scenarios and now it decreases the level of the community. It is also possible

that a member decides to leave the community because of the low requests to that community in

general [4,5].

15

2.3 Reputation Systems

Reputation mechanism is a way to foster trust in online interactions by allowing members of a

community to submit their opinions regarding other members ofthat community [37]. Submitted

feedback are analyzed, aggregated with feedback posted by other members and made publicly

available to the community in the form of member feedback profiles. Reputation is a variable,

which depends on feedback about an interacting party's past behavior given by others and it

affects the interacting party's future payoffs [8].

2.3.1 Reputation of Web Services

In the literature, the reputation of Web services has been intensively stressed [17,18,20,26,30,31,

38,45] aiming to facilitate and automate the good service selection. In [1], the authors introduce

a framework aiming to select Web services based on the trust policies expressed by the users.

The framework allows the users to select a Web service matching their needs and expectations.

In [44], the authors propose an indirect trust mechanism aiming at establishing trust relationships

from extant trust relationships with privacy protection. In [27], the authors propose to compute

the reputation of a Web service according to the personal evaluation of the previous users. In

the aforementioned models, the reputation of the Web service is measured by a combination of

data collected from users. To this end, the credibility of the user that provides this data should

be taken into account. There should be a mechanism that recognizes the biased rates provided

from the users and accordingly updates their credibility. If the user tries to provide a fake rating,

then its credibility will be decreased and the rating of this user will have less importance in the

reputation of the Web service. In [32], the authors design a multi-agent framework based on an

16

ontology for QoS. The users' ratings according to the different qualities are used to compute the

reputation of the Web service.

In general, in all the mentioned models, Web services are considered to act individually and

not in collaboration with other services. In such systems, the service selection process is very

complicated due to their relatively high number in the network. In addition, Web services can

easily rig the system by leaving and joining the network when they benefit more from doing this.

This is a rational incentive for such Web services that manage to start as new once they have

shown a low efficiency.

2.3.2 Reputation of Communities

Regarding the aforementioned issue, there have been some proposals that try to gather Web ser-

vices and propose the concept of community-based multi-agent systems [9, 12,21]. In [9], the

authors propose a reputation-based architecture for communities and classify the involved met-

rics that affect the reputation of a community. They define some metrics by processing some

historical performance data recorded in a run-time logging system. The purpose is to be able

to analyze the reputation in different points of view, such as users to communities, communities

to Web services, and Web services to communities. The authors discuss the effect of different

factors while diverse reputation directions are analyzed. However, they do not define the overall

reputation of a community from the proposed metrics. Failing to assess the general reputation for

the community leads to failure in efficient service selection. Moreover, authors assume that the

run-time logging mechanism is an accurate source of information, which is not the case in real

applications.

17

In general, in open reputation feedback mechanisms, always the feedback file is subject to

be the target by malicious agents. The feedback mechanism should be supervised and its precise

assessment should be guaranteed. In [21], the authors develop a framework that explores the

possibilities that the active communities act truthfully and provide their actual information upon

request. This method is related to the ideas that will be discussed in this thesis in the sense that

the communities have incentives promoting them to act truthfully. The key idea behind their work

is to promote truthfulness among agents and communities with the ultimate goal of increasing

the social welfare of each community participating in the reputation mechanism. The assumption

made in this work is that communities are self-interested and have the incentives to misreport

the evaluation of their agents, and to address this problem of selfishness and fake reporting, they

introduce a graph-based heuristic which gives the communities the incentive to provide truthful

reports. The incentive they propose is a reward based on a payment mechanism [22], which pays

honest communities for truthful reporting. In [12], a layered reputation assessment system is

proposed mainly addressing the issue of anonymity. The focus is on the layered policies that are

applied to measure the reputation of different types of agents, specially the new comers. The

layered reputation mechanism classifies participants of peer-to-peer environments into layers or

communities according to their reputation values. Participants in higher communities are those

with high reputation while participants in the bottom layer or community have a low reputation.

They key idea is the reputation adjustment, where bad behavior of participants from high commu-

nities will be punished and cause a severe drop in their reputation values. Although, the proposed

work is interesting in terms of anonymous reputation assessment, the layered structure does not

optimally organize a community-based environment that gathers equal Web services and also the

computational expenses seems to be relatively high.

18

2.4 Conclusion

To address the aforementioned problems, we elaborate in this thesis on the reputation mechanism

that is supervised by the controller agent Cg (an agent who is responsible of taking control over

the logging mechanism and keeping the log files accurate) and based on the incentives provided to

encourage more truthful actions. What mainly distinguishes our proposed model from the related

work in the literature is its detailed focus on the logging mechanism accuracy and reputation

assessment. The reputation system is observed by the controller agent but still communities

are free in choosing their strategies. The incentive-based system provides a mechanism that

guarantees the least fake actions since communities that gain benefit from malicious acts are

eventually penalized so that their further decisions are altered.

19

Chapter 3

Reputation of Web Services Communities

with Incentives

In this chapter, we define the architecture of reputation-embedded communities of Web services

in Section 3.1. In Section 3.2, we discuss the reputation model by its involved metrics and

a methodology to combine them. In Section 3.3, we extend the discussion about maintaining

a feedback logging mechanism and we discuss the fake positive and negative corrections. In

Section 3.4, we discuss the theoretical analysis for reputation level updates. In Section 3.5, we

discuss the simulation. Finally, Section 3.6 concludes the chapter.

20

Community of Web services

ANeb services /Web services /Web services
V 1 A 2 A ? J

C Master Web
service

3D)

L

Advertisements

Communitie
Lookup Extended

Interaction
(Web services invocation)

Provider of j Interact withWeb [^communities
services v'a /\·*

Communities
lookup

Available communities
(unranked)

BusinessEntity

(ModeBusiñessServic
e

mdingïemplat

Communities

Subscriptions logsn
Best communities^

(ranked)
Provider-agent

Reputation
system (metrics

repository & [«-Communities— -
ranking algorithm)

Interaction
logs
Best

(ranked) User.agent

Interacts with_
Communities

via

User of
Web

services

Figure 3.1: Architecture of reputation-based communities of Web services

3.1 Architecture of Reputation-Embedded Web services Com-

munities

In this section, we present the communities of Web services architecture [9], which is designed

to maintain the reputation of the communities of Web services. Figure 3.1 illustrates different

components of the architecture and are as follows:

Extended UDDI: the traditional UDDI [36] is a registry that keeps the information about how

to invoke all the registered Web services. While in the extended UDDI registry, the agents have a

restricted access in the sense that user agents only consult the list of masters, whereas the masters

have access to the list of the Web services in the UDDI registry. By adding this new information

concerning the communities, we would identify which community a Web service belongs to.

User agent: is the client application program that is used as a representative of the user. This

agent interacts with other parties such as the extended UDDI, communities of Web services and

the reputation system.

21

Master Web service: is the agent that is representing and managing the community. This

agent interacts with the users agents and handles their requests. It is also responsible for selecting

a Web services from its community to serve the users. The master agent hires (or fires) some Web

services to join (or leave) the community. In general, the master of the community always tends

to increase the community's performance and its reputation level.

Provider agent: is the provider application program that is used as a representative of the

provider. It interacts with other parties such as the extended UDDI, communities of Web services

and the reputation system.

Reputation system: communities are always competing in order to obtain more requests.

Their evaluations are then quite useful for users and providers. In order to assess the reputa-

tion of these communities, the user and provider agents must gather operational data about the

communities performance. The reputation system is the core component in this architecture. Its

main functionality is to rank the communities based on their reputation by using a ranking algo-

rithm that makes use of run-time logs. The ranking algorithm would maintain a restrictive policy,

avoiding the ranking violation, which could be done by some malicious communities. The vio-

lation could be done by providing some fake logging data (by some colluding users) that reflect

positive feedback in support of the community, or by fake negative data that is registered against

a particular community. To deal with this violation, we propose to assign a controller agent Cg.

Controller agent: Cg is the assigned agent that takes the logging file under surveillance and

updates the assigned reputations to the communities. Cg is mainly responsible of removing the

cheated feedback that support particular communities. By investigating the recent feedback, Cg

recognizes the fake feedback and accordingly analyzes the further actions of the community. In

general, Cg may fail to accurately detect the fake feedback or similarly may recognize normal

22

feedback as fake. In their strategies, malicious communities always consider this fake detection

and analyze their chance of successful cheating.

3.2 Reputation System

The main issue of the reputation system is to use the collected reputation metrics to assess the total

reputation of communities. In order to assess this reputation, the user needs to take some factors

into account. In Subsection 3.2. 1 , we present the involved metrics that a user may consider in this

assessment. Consequently, in Subection 3.2.2, we explain the methodology we use to combine

these metrics in order to assess the reputation of a community.

3.2.1 Reputation Assessment Metrics

The reputation of a community is assessed according to the following metrics:

Responsiveness Metric: Let C be the community that is under consideration by user U.
TJ Dt

Responsiveness metric depicts the time to be served by a community. Let Resç be the time

taken by the master of the community C to answer the request received at time R1 by the user U.

This time includes the time for selecting a Web service from the community and the time taken by

that Web service to provide the service for the user U. For simplicity reason, we will not use the

community C in the notation when it is clear from the context, for example the responsiveness

metric will be denoted Resu'Rt. Equation 1 [23] computes the response time of the community

C, computed with U during the period of time [ti,t2] (Res11^1'^), where ? is the number of

23

requests received by this community from U during this period of time.

Re3UAt1M = I y- Resu,R> ? e-A(t2-t) (1)
t=ti

Here the factor ß~?^2~?\ where ? G [0, 1], reflects the time recency of the received requests so

that we can give more emphasize to the recent requests. If no request is received at a given time

t, we suppose Resu,R — 0.

InDemand Metric: It depicts the users' interest for a community C in comparison to the

other communities. This factor is computed in equation 2 [23].

In this equation, .Re^*1 ''2I is defined as the number of requests that C has received during [ti, t2],

and M represents the number of communities under consideration.

Satisfaction Metric: Let Satu>Rt be a feedback rating value representing the satisfaction of

user U with the service regarding his request R1 sent at time t to C. Equation 3 [23] shows the

overall satisfaction during the time interval [ii, ¿2]·

Satu>^ = -Y Satu>Rt ? e-x^-» (3)
í=tl

3.2.2 Metrics Combination

In order to compute the reputation value of a community (which is between 0 and 1), it is needed

to combine these metrics in a particular way. Actually, the Responsiveness and Satisfaction

24

metrics are the direct evaluations of the interactions between a user and a community whereas

the inDemand metric is an assessment of a community in relation to other communities. In

the first part, each user adds up his ratings of the Responsiveness and Satisfaction metrics for

each interaction he has had with the community. Equation 4 [23] computes the reputation of

the community C during the interval [ii, t2] from the user U's point of view. In this equation,

? represents the maximum possible response time, so that if a community does not respond, we

would have Res11'^1'^ — v. In the second part, the inDemand metric is added. Therefore, the

reputation of C from the users' point of view is obtained in equation 5 [23].

RepUAKM = (1 _ ^f) + KSatufoM (4)
V

1 m

Rep[tiM = _ y* (itepM'!.'*]) + f InD^'t2] (5)
J = I

Where ? + ? = I and ? + f = 1 .

The coefficients ?, ?, ?, f are generic values and all are related to Cg's control over the envi-

ronment.

3.3 Feedback Logging Mechanism

In an environment composed of communities of Web services, master agents are selfish and may

alter their intentions in order to obtain more popularity among users. This could happen by

maliciously improving one's reputation level or by degrading other's reputation level or both. We

respectively refer to these cases as fake positive/negative alteration. Therefore, it is important

to avoid such attacks and keep the logging mechanism accurate [19]. In the rest of this section,

25

we focus on how to perform fake positive corrections and thus effectively maintain a reputation

adjustment.

In the proposed architecture for the communities of Web services (Section 3.1), the reputation

is computed based on the information obtained from the logging system used by the users during

the elapsing time to leave their feedback (Section 3.2). It is the responsibility of the controller

agent Cg to maintain an accurate attack-resilient logging file. In the proposed reputation system,

Cg updates the total reputation of communities based on its surveillance over the provided feed-

back. Cg basically penalizes malicious communities for the faked feedback that they managed

to provide via collusion with some users. Hereby, Cg also provides incentives to discourage

malicious acts. We assume that this agent is highly secured in order to avoid being compromised.

Two cases of fake positives and fake negatives can be identified, but in this thesis we only

focus on the fake positive case in the next subsection. In the surveillance system, there are three

time spots t0, ^1, and t2 at which the reputation is measured and updated according to Cg's

decisions over incidents.

3.3.1 Fake Positive Correction

In this subsection we will discuss the fake positive correction case.

Fake positive recognition. One of the main responsibilities of the controller agent Cg is to

perform fake positive correction. Initially, Cg should recognize a malicious behavior from one or

a set of user agents (that could possibly collude with a particular community). This recognition

is done based on the recent observable change in the reputation of a community. To perform the

recognition efficiently, Cg would always check the feedback of the communities.

26

So, Cg would consider the reputation that is computed for a specific period of time \t\ — e, t\],

where ?? is the current time. The value e measures the width of the time window the controller

agent considers to check the recent feedback (e as relatively small). Otherwise, Cg would take

even older feedback into account (e as relatively large). Thus, itep'*1-6''1' is the reputation of the

community C obtained from data measured from t\ — e to t\.

Let f/'*1^''1! be the set of users that during this time interval provided a feedback for the com-

munity C, and í¡, (tb < t\ — e:) be the beginning time of collecting feedback. Cg would consider

the positive feedback to be suspicious if the reputation improvement (i?epttl-<Mli - Rep^^) di-

vided by the number of users that caused such improvement is greater than a predefined threshold

?, i.e:

^ejD[íi -e.íi] _ Reputi]— > ?
|t/[íi-e.ti]|

¦â is set in the simulations taking into consideration that communities cannot manage more than a

maximum number of users by time unit considering their sizes (i.e. the number of Web services

populating the communities).

Fake positive Adjustment. Exceeding the threshold ? means that a particular community is

probably receiving consequent positives. Then Cg would freeze the recent positive logs and no-

tifies the corresponding community of this action. The idea is to observe the upcoming behavior

(in terms of satisfaction and responsiveness) of the community in order to compare the actual

efficiency with the suspended enhanced reputation level. During this period, the community has

incentive to behave in such a way that reflects the suspended enhanced reputation level. As it is

shown in Figure 3.2, the community's feedback is recognized as suspicious at time t1. feedback

27

Repi'*,',]

Rep1,['»,<„]

Penalized Redeemed

/l R \

+

t*3

55

CD

+

<

Figure 3.2: Fake positive correction cases

from time ?? (?? — h — e) are frozen to investigate the further behavior of the suspicious com-

munity C. At time i2, controller agent Cg would decide whether to penalize community C or

to redeem the frozen feedback. If the community has exhibited the real improved performance,

the suspended reputation trust level would be considered for his reputation. However if the com-

munity has failed to do so, it will be penalized by decreasing its reputation. In this case, the

community would be in such a situation that either has to outperform its past in order to improve

the enhanced reputation level, or would loose its current reputation, which is not wanted.

This is then an incentive for communities to not jeopardize their current reputation level and

thus not collude with users or providers by providing fake positives in support of themselves.

Let Evoft1 ''2I be the evolutionary reputation value for the community C that is measured by

the controller agent Cg during specified time interval [tl5 i2] (investigation period). This value is

computed in equation 6, where d is a small value that the reputation is measurable within [t — d, t}.

Evol[tlM] IZt1+S **?-d?
Í2-Í1

(6)

28

Also, let P1 be the general penalty value that is assigned by Cg at a specific time t. Equation
------- [*b.*2]

7 computes the adjusted reputation level of C (Rep). This equation reflects the incentive

that we propose, so that communities in general would be able to analyze their further reputation

adjustments upon fake action.

S— IhMRep
aRep[tb'tl] + ßEvoß1^ , if redeemed;

(7)
aRepitb'toi + ßEvofi1'*2! - Ph if penalyzed.

where a + ß — 1 .

As discussed before, Cg will decide to redeem the community C if the evolutionary value

for the reputation is more than Cs previous reputation value, i.e.: Evofi1'^ > i?ep'Í6'íol. If Cg

decides to redeem the community C, then the previous reputation value (from time % to investi-

gation time at t\) is added to the evolutionary reputation value as a result of investigation during

[ii, ¿2]· If Cg decides to penalize the community C, then the previous reputation is considered

regardless of the improved reputation obtained in the period of [to,*i]> and in addition to the

evolutionary reputation, a penalty F*2 is applied at time t2.

3.4 Theoretical Analysis of the Reputation

In this section, we would like to discuss in details the updates of reputation level when a particular

community C causes fake feedback that is eventually beneficiary for itself. To this end, we follow

the steps over this reputation updates and elaborate Cg's actions on them.

To better analyze the decisions the communities could make, we calculate the expected rep-

utation value of a particular community C in the case that the community acts maliciously to

29

provide fake positive feedback for itself and the case that the community acts as normal and per-

forms its actual capabilities. By comparing the two expected values, the typical community C

will decide either to act maliciously or as normal.

As discussed earlier, the decision to act maliciously or normal is made based on the probabil-

ity to have a successful act, which is estimated by the community C. Being malicious, C always

looks for cheating opportunities to increase its current reputation.

Let g* be the probability that the controller agent Cg notices the real intention of the com-

munity C and take actions with penalizing C at time t. We compute the expected reputation of

C as a result of a malicious action in equation 8 and as a result of normal action in equation 9.

In these equations, the expected value of the reputation for community C is measured under two
------ \tbte]

assumptions. In the case that C has faked the feedback (E(Rep \C faked)), the community

decides to fake at time i0 (therefore, the reputation till i0 is considered as normal), the biased

feedback are recognized by Cg at time ^1, and the investigation is finalized at time t2. To this

end, by penalizing C, its previous reputation till t0 is considered together with the investigation

period [tx , t2] with its penalty. If the controller agent Cg does not recognize Cs malicious act, all

the feedback are taken into account. In this analysis, we consider a very low possibility that Cg

warns false negatives, which is the case that Cg falsely recognizes a malicious act. To this end,

we assume that if the community C acts as normal, the reputation value would be measured as

normal.

E(Re~ptb't2]\C faked) =
qt2 {aRev[tiM + ß????^'^ - Pt2) (8>

+ (1 - qt2)(aRep^tb^ + ßEvoft1'^)

30

E{RepthM\C notfaked) = Rep^ (9)

As it is illustrated, the community that provides fake positives, obtains an improvement,

which could be followed by a penalty. An important issue is that the probability of Cg's de-

tection given the fact that the community C has faked before is high. Therefore, if C has been

already penalized, it is so hard to retaliate and improve again. There is a slight chance that C

fakes again and Cg ignores, which comes with a very small probability. Thus, we compute the

expected reputation level of both cases and compare them.

Definition 3.1. Let Imp^t'"t^ be the difference between the adjusted reputation (in the case where

the community is under investigation) and normal reputation (in the opposite case) within [if,, t2],

Le:

Imp^tb ¦ti]
Rep ' — Rep^'1^ , investigated by Cg;

ReplhM _ RepfoM^ otherwise.

The following proposition gives the condition for the penalty to be used, so that the commu-

nities will not act maliciously.

Proposition 3.1. If Pt2 > -^Irnp^1"^ - aRep^0'^, then communities obtain less reputation

value if they act maliciously and providefake positivefeedbackfor themselves.

Proof. To prove the proposition, we should consider the condition true and prove that

E(Rep ' \C faked) < E(Rep ' \C Not faked). By simple calculation we get:

E{Rep{tbM\C Not faked) - E(Rep{tbM\C faked)
Pt2 - \lmp\th^ + aRep[t°'tl]

The obtained value is positive, so it is done. D

31

3.5 Experimental results

In this section we describe the simulation experiments to illustrate the effectiveness of the repu-

tation model. We first discuss the simulation environment we use to carry our experiments, and

then we analyze the efficiency of the sound logging mechanism.

3.5.1 Simulation Environment

In our simulated system, communities host different agent-based Web services that are imple-

mented as Java©™ agents. Agents deploy reasoning modules used to make decisions and

select strategies. Indeed, time and environment features have impact on different agents' reason-

ing processes. The simulated system also hosts a number of users simulated by Java®™ agents

responsible to search for services. Users initiate interactions with communities and provide after-

interaction feedback reflecting quality of the received services. These users could collude with

some communities if being encouraged to.

In order to implement the simulation environment, we have used NetBeans IDE 6.5 [7] as our

Integrated Development Environment. It is an open-source Integrated Development Environment

(IDE) for Java programming language.

Simulation Basics

In our implemented system, communities, their masters and Web services members are simulated.

Communities: the system starts by the simulation and creation of the communities. Each

community has a unique ID, and will gather Web services that offers similar functionality, for

example "Airline reservation service" in our case. The community quality of service (QoS) is the

32

average of the Web services' QoS.

Masters: the second step is the creation of master Web services. Each master has a unique ID

and is associated with the ID of the community that this master is responsible for. The master

type should be the same as his community.

Web services: the Web services populating the communities are created in the third step. Each

Web service has a unique ID and is associated with only one community. Each Web service has

its own QoS that is assigned at the beginning of the simulation.

After-RUN summary: Figure 3.3 shows the Screenshot of the after-RUN summary. As each

simulation consists of many runs, each run is concluded by a summary. In this figure, the number

of feedback along with the new reputation value is shown (the reputation value is calculated for

each community according to the equation 5, Subsection 3.2.2). The total positive refers to the

positive feedback during the most recent run, and the total negative refers to the negative feedback

during the most recent run.

Requests and ratings: Figure 3.4 illustrates the Screenshot of service request and feedback

rating. Here we can see the users while requesting for services from the communities with the

feedback each user is giving to the community based on the service quality.

Ranking list: Figure 3.5 illustrates the Screenshot of the ranking list. This figure shows the

ranking of communities for each run. The ranking lists the communities with high reputation

first and the list is updated after each run during the simulation.

This list is based on the reputation of each community since the starting of the simulation.

Reputation: Figure 3.6 depicts the Screenshot of the most recent communities reputation. We

can see in this figure the average of QoS each community provided in the run before.

33

m

, ; Ouípat - ÖebServicesPfoject {run}
'UT--
^; Total Positive for coianiunity i =143.0

¦ Total Negative for community I =107.0
: new QoS for corammity 1 =0.5737052

: Total Positive for community 2 =185. D
: Total Negative for community 2 =65.0
! new QoS for community 2 =0.7410358

Î Total Positive for corammity 3 =237.0
i Total Negative for coiamunity 3 =13.0
! new QoS for community 3 =0.9482072

; Total Positive for community 4 =163.0
: Total Negative for community 4 =87.0
¦ new QoS for coß&iünity 4 =G; 6533865

; Total Positive for community 5 =86.0
: Total Negative for community 5 =164.0
:; new QoS for community 5 =0.34661356

Figure 3.3: After-RUN summary

Output ìffcìjServieesPKpct (run]
Jn Lser: 150 with ID: 185, Community: 6, available web services: 1, request" accepted, now availab
', Ie. 0, ¥eb service ID: 400, web service QoS: 0.79 > community QoS: 0.72050816 —> POSITIVE *
*» no snore web services available in this community

Lser: ISl Kith ID: 845, Community: 4, available web services: 50, request accepted, now avalla
b-ê: 49, web service ID: 201, web service QoS: 0.5 < community QoS: 0.5154265 —> NEGATIVE *
User: 152 with ID: 2572, Community: 4, available web services: 49, request accepted, now avail 1
aole: 4S, web service IB: 202, web service QoS: 0.5S > community QoS: Q. 5154265 —> POSITIVE f
User: 153 with ID: 951, Community: 4, available web services: 48, request accepted, now availa]
ble: 47, web service ID: 203, web service QoS: 0.48 < community QoS: 0.5154265 —> NEGAHVE *
Oser: 154 with ID: 2019, Community: 4, available web services: 47, request accepted, now avail
aoie: 46, web service IB: 204, web service QoS: 0.51 < community QoS: 0.5154265 —> NEGATIVE +
User: 155 with ID: 403, Community: 4, available web services: 46, request accepted, now availa 1
c-e: 45, web service ID: 205, web service QoS: 0.62 > community QqS: 0.5154265 --> POSITIVE *
User: 156 with ID: 246, Community: 4, available web services: 45, request accepted, now avalla
ole: 44, web service ID: 206, web service QoS: 0.59 > carasunity QoS: 0.5154265 —> POSITIVE
User: 157 with ID: 2378, Community: 4, available web services: 44, request accepted, now avail
aoie: 43, web service ID: 207, web service QpS: 0.26 < community QoS: 0.5154265 —> NEGMIVE

Figure 3.4: Requests and ratings

34

• Oiitpirt- WA&rwesPrqect ¡nm(

»! 1, S, 9..
Ô i, 5, 9
S I, S, 9

Ì, S, S
1, 5, S1
i, 5, 9
1, 5, 9
1, 5, 9
1, 5, 9
1, S, 9
1, 5, 9
5, 1, S1
5, 1, S
5, 7, S,
5, 9, 1,

O Q

7, 2, 4,
7, 2, 4,
2, 7, 4,
7, 2, 4,
7, 2, 4,
7, 2, 4,
7, 2, 4,
7, 2, 4,
7, 2, 4,
7, 2, 4,
7, 2, 4,
7, 2, 4,
7, 2, 4,
1, 2, 4,
? 4 3¿I ïj J1

e, 3/ ^t

3, 6,
3, 6.
3, 6
3, 6
3, 6
3, 6
3, 6
3, 6
3, 6
3, 6
3, 6
3, 6
3, 6
3, 6,
6, 7
4, 7

S ror

8 for

8 for

8 for

S for

8 for

8 for

S for

8 for

8 for

8 for

8 for

8 for

3 for

8 for

2 for

run 16

run 15

run 14

run 13

run 12

run 11

run 10

run 9

run 8

run 7

run 6

run S

run 4

run 3

run 2

run 1

Figure 3.5: Ranking list

OBpBt-SVeMervsesPrcjeciiraai «

If Communities QoS:
.Î Community 1 > 0.3690773
U Community 2 > 0.59351623

Community 3 > 0.7905237
Community 4 > 0.6583541
Community 5 > 0.21945137
Community 6 > 0.8476803
Community 7 > 0.31
Community 8 > 0.85446984
Community 9 > 0.33915213
Sorted QoS: 0.21945137, 0.31, 0.33S1S213, 0.3690773, 0.59351623, 0.6583541, 0.7905237, 0.84788

-03, 0.85446984 '
Community ranking for the current run (lowest to highest QqS) : 5, 7, 9, 1, 2, 4, 3, 6, B
Total ranking:
5, 7, 9, 1, 2, 4, 3, 6, ? for ran 3
5, 9, 1, 2, 4, 3, 6, 7, 8 for run 2

Figure 3.6: Reputation

35

3.5.2 Results and Analysis

This simulation consists of a series of empirical experiments tailored to show the adjustment of

the communities reputation level. Table 3.1 represents three types of communities we consider

in this simulation: ordinary, faker and intermittent. The classification is done according to the

normal distribution function. Ordinary community (Figure 3.7-Plot(a)) acts normal and reveals

what it has, the intermittent community (Figure 3.7-Plot(b)) is the one that alternatively changes

its strategies over the time, and the faker community (Figure 3J-Plot(c)) is the one that provides

fake feedback in support of itself. As it is shown in table 3.1, the QoS value is divided into three

ranges.

Table 3.1: Simulation summarization over the obtained measurements.
Community Type Web service Type Web service QoS

Ordinary Good I [0.5, 1.0]
Faker Bad [0.0, 0.5]

Intermittent Fickle [0.2, 0.8]

\/
/

/
\/ \

\2
\

\ /
\I

y \y s \
0.1 OJ 0.8 ft.9 1.0 0.8 0.9 IM0.1 0? OJ ai 0.2

QoS QoS QoS
Plot (a) Plot (b) Plot (c)

Figure 3.7: Communities classification

Over-RUN Reputation Level Analysis

In each RUN, a number of users are selected to search for the best service. Users are only directed

to ask communities for a service and thus user would not find out about the Web service that is

36

assigned by the master of the community. In order to find the best community, the requesting

user would evaluate the communities regarding to their reputation level.The selected community

might be overloaded and consequently rejects the user requests. If the user is rejected from

the best selected community, he would ask the second best community in terms of reputation

level (and so on). After getting a response from a community, the user agent would provide a

feedback relative to the quality of the obtained service and the community responsiveness. The

feedback are logged in the logging mechanism that is supervised by the controller agent (Cg).

The accumulated feedback would affect the reputation level of communities. In other words, the

communities would loose their users if they receive negative feedback, by which their reputation

level is dropped.

Considering the general incentive of communities to attract most possible users, communities

in general, compete to increase their reputation level. Cheating on reputation level is done by

colluding with some users to provide consecutive positive feedback in support of the malicious

(faker) community.

In the empirical experiment, we are interested to observe the over-RUN reputation level of

different types of communities and how efficient the adjustment is performed by the Cg. In

the rest of this section, we will consider 2 communities: Community 6, which is an ordinary

community; and Community 8, which is a faker community.

Figure 3.8 illustrates the plots of reputation level for a faker community C8. The upper

plot represents the individual QoS for the community's assigned Web services. In this plot, the

gray line defines the average QoS for the 50 Web services we have here. The most prominent

feature of the plot is the comparison of the reputation level with the average of the community

Web services QoS. The average value is assumed to be the actual QoS for the community and

37

¦ C8 web services QoS

OJ
o
s

«

WS individual QoS average QoS

? Ii I I ¡II,,lillJiil l I IV .1
. 1 1 . 1 1 1 1 1 1 ¦ 1 1 1 . 1 1 1 ¦ . 1 1 Ii . 1 1 1 1 . 1 1 . 1 . 1 1 ¦ 1 . 1 1 1 1 1 1 1

17 1') 2Í ai 25 7.7 2') M H W 17 ?7 41 4Í -IS 47 40

- Average web services QoS
C8 web services QoS

C8.Rep

WS individual QoS
average QoS

I 31 6 i 5 i 121 151 ISI

Number of Runs
i 24· 271

Figure 3.8: Communities overall quality of service vs. the number of simulation RUNs

thus, community's reputation level. In general, there would be convergence to such value if the

community is acting in an ordinary manner (for C8 is 0.173). The lower plot illustrates the

reputation level of this community over the 300 elapsing RUNs. Here we notify that the master

of a community is responsible to assign the Web services to the user requests.

To this end, normally the high quality Web services are assigned first until they become

unavailable, which forces the master agent to assign other lower quality Web services. Thus

starting the RUNs, C8 gains reputation value (up to 0.3 1 3), which is better than its individual

average quality of service. In figure 3.8 lower plot, the peek Pl defines the RUN in which the

community C8 is out of high quality Web services. After passing this point, the reputation level

of this community is decreased.

Figure 3.9 illustrates community C8 reputation level in comparison with an ordinary com-

munity CQ. C8 at point P2> decides to provide fake positive feedback for himself to increase self

reputation level. For the interval of 30 RUNs, this community gains higher reputation level up

38

¦ C6 average web services QoS
. C8 average web services QoS

-C6.Rep
-C8.Rep

C6 social reputation level J
over time

C8 social reputation level
overtime

PJ M M

Number of Runs

Figure 3.9: Communities overall quality of service vs. the number of simulation RUNs

to the point PA. The controller agent Cg, periodically verifies the feedback logs, in order to rec-

ognize the malicious actions. At PA the controller agent Cg notices the malicious act of CS and

freezes the obtained feedback for investigation. Peek Pl is the point in which the community C8

is penalized in his reputation level. After P2, a drastic decrease in reputation value is seen which

goes underneath C8's average quality of service (up to 0.1 12). There is also a continuing but

slower increase for the reputation of the faker community C8 that persists long after the first fake

action recognition. Thus, there appear to be strong restriction effects, in which eventually the

faker communities loose their users. However, there is also an ongoing effect of social influence,

in which users doubt in communities that have drastic decrease in their reputation level.

Other simulation results on the reputation of communities of Web services versus single Web

services are reported in Appendix A.

3.6 Summary

In this chapter, we proposed a new incentive-based reputation trust model for communities of

Web services gathered to facilitate dynamic users requests. The reputation of the communities

39

are independently accumulated in binary feedback and stored in a log files reflecting the satis-

faction of the users being serviced by the communities. The model represents a sound logging

mechanism in order to maintain effective reputation assessment for the communities. The con-

troller agent audits (investigates) the logging feedback files released by the users to preserve its

integrity and to detect the fake feedback as a result of collusion between a community and a

user (or a group of users), which are provided in support of the community. Upon detection,

the controller agent maintains an adjustment in the logging system, so that the malicious com-

munity would be penalized in its reputation level. Our model has the advantage of providing a

suitable metrics used to assess the reputation of a community. Moreover, having a sound logging

mechanism, the communities would obtain the incentive not to act maliciously.

In this chapter also, and based on the observations on the experimental result of the simula-

tions, we can conclude that the controller agent investigates the logging feedback released by the

users to detect the fake feedback as a result of collusion between a community and a user (or a

group of users), which are provided in support of the community. Upon detection, the controller

agent maintains an adjustment in the logging system, so that the malicious community would be

penalized in its reputation level.

40

Chapter 4

Game-Theoretic Analysis of Communities

Reputation

Maintaining a sound reputation mechanism substantially requires a solid control and investiga-

tion. In this chapter, we propose a game-theoretic analysis of the reputation mechanism that we

discussed in Chapter 3 to establish trust between users and services that are gathered into com-

munities of Web services. In the architecture we proposed in Chapter 3, communities are ranked

using their reputations as a result of provided feedback reflecting users satisfaction about the of-

fered services. However, communities may alter their public reputation level by colluding with

some users to provide fake feedback. In this chapter, game-theoretic analysis investigates the

payoffs of different situations and elaborates on the facts that discourage malicious communities

to fake feedback.

41

4.1 Game Theory

Game theory can be defined as the study of mathematical models of conflict and cooperation

between intelligent rational agents. It gives the techniques for analyzing situations in which two

or more agents make decisions that will influence one another's welfare [34]. To understand this

definition we discuss what is meant by rational and intelligent agents.

Rational agent: is an agent that has clear preferences, models uncertainty via expected values,

and always chooses to perform the action that results in the optimal outcome for itself from all

feasible actions [43].

Intelligent agent: is an agent who knows everything about the game and can make any inferences

about the situation [34].

4.1.1 Game Basics

A game in game theory consists of a set of agents (or players), a set of moves (or strategies)

available to those players, and a specification of payoffs for each combination of strategies. It

studies the interaction between agents whether it is cooperative or noncooperative. This concept

can be formally defined as follows.

Definition 4.1. A game in the normalform consists of the following basic elements:

• set ofplayers P — {1, 2, ..., n},

• set ofstrategy 5¿ for each player i,

42

• set of outcomes O which is also known as strategy profile and can be defined as:

O = S1 x S2 x ...Sn

• each player Pi has a utility function uit which is the preference over outcome and can be

defined as:

Ui : O -> K

Below we give an example of game and explain the aforementioned elements of the definition.

Example 4.1. Consider a game with two players Pi and P2. Each player has the same set of

strategies, thus S1 = 52 = {A, B, C}. In this case, each strategy is a single action. The utility

functions are U1 : Si ? S2 —y !R and U2 : Si ? S2 —> 5ft. For example, for any X > 0, these

relations correspond to the following utilities: U1(A, C) = X and U2(A1 C) = —X as shown to

table 4.1

Table 4.1: Payoffmatrix.

Player 2

0,0
X1-X
-X1X

-X1X
0,0
X,-X

X1-X
-X1X
0,0

43

4.1.2 Solution Concepts

Dominant Strategy

For player i, the strategy s¡ is the dominant strategy if it gives a greater payoff for any strategy

profile of the remaining players in the game. Formally, dominant strategy is defined as:

Ui(s*,s_i) > íí¿(sÍ,s_¿),Vs_¿,Vs/ f s*

where s_¿ is the strategy profile of all the players (agents) except player i.

Definition 4.2. A strategy is strictly dominant for an agent if it strictly dominates any other

strategyfor that agent [25]

Definition 4.3. A strategy s¿ is strictly dominatedfor an agent i ifsome other strategy s¿ strictly

dominates s¿ [25]

Nash Equilibrium

A Nash equilibrium is an action profile s* with the property that no player i can do better by

choosing an action different from s*, given that every other player adheres to sl¿. Formally,

Nash equilibrium is defined as:

Ui(SU1SULi) > Uiis'i, s*_i)

Theorem 4.1. Every game with a finite number ofplayers and action profiles has at least one

Nash equilibrium [35]

44

4.2 Game-Oriented Reputation Updates

The concept of reputation update is the fact of changing ones reputation level by which social

opinions could be influenced. This concept simply forms a repeated game over time and consists

of actions (made by communities) and reactions (made by Cg which is the agent that is assigned

to monitor and audit the logging data) taking into consideration the architecture and the model

we proposed in Chapter 3. For simplicity, we generalize acts of two parties in a period of [i0, t2]

where time ?? is considered as the start time that community decides to whether fake and act ma-

liciously (so-called F) or act as normal (so-called N). We suppose that [i0, t2] — [??, *i] U \t\,h]

where tx is the time that Cg recognizes suspicious feedback provided for the community. In

this case, if the community has really acted maliciously, there would be an improvement in its

reputation, which we compute here and refer to it henceforth as Imp^ut^:

ImpltiM = RepfoM _ Rep{tb'tl]

Where Rep+' r' is the overall reputation (can be computed as the average reputation) of the

considered community during the period [if,, ij] (if, is the beginning time at which the community

has been created). Time i2 is the end of the typical period since Cg decides about the update in the

reputation (denoted by Rep+2'). At this time, Cg may decide to penalize (P*2) the community

so that the adjusted reputation would be as follows:

Rep+bM = Rep[th't2i - Imp^1^ - P'2

45

If Cg ignores community's act, the adjusted reputation would be as follows:

Rep[lb't2] = Rep[tb't2]

During the update process, Cg may make a mistake mentioned as false alarm that could be

positive or negative. In the first case (false positive), the actual reputation (denoted by Rep++)

is more than the assigned reputation (Rep+2') and here the community looses as a result of Cg's

mistake. In the second case (false negative), the actual reputation is less than the assigned value

and here the community wins as a result of Cg's mistake. For both cases the difference (actual

and assigned reputation level) is the same:

\Rep[l+t2] - Rep%bM\ = Imp[H^ + Pt2

We refer to the aforementioned difference by ? (? — /mp''1'2' + Pt2) and consider it as the

payoff of the game that could be either positive or negative. In the first case (false positive),

considered community looses ?, which means its correct reputation level is dropped by this

amount. In the second case (false negative), the considered community wins ?, which means its

correct reputation level is increased by this amount.

4.3 Game Analysis

This section is dedicated to analyze the incentives and equilibria of reputation mechanism using

the feedback logging system. Since the challenge is on the reputation (from community's point

of view) and accuracy of the logging file (from Cg's point of view), we model the problem as a

46

F

N

I

-?,p

• ?,-p

• -?,-p

- ?,p

P

I

-?,p

?,-p

N

-?,-p

?,p
Table (b)

Part (a): Payoff tree

Figure 4. 1 : One-shot game tree and table between community C and controller agent Cg.

two-player game between a typical community (C) and the controller agent (Cg).On one hand

the strategy of faking (F) refers to the whole process of collusion and positive feedback that are

submitted for self-support. The strategy of acting normal (N) introduces the state of no collusion

and malicious act. On the other hand, Cg chooses between two strategies: penalizing (P) and

ignoring (I) the event whether it is fake action or normal and not investigating the case. Here we

define two utilities that are given to players C and Cg (respectively ? as computed in Section 4.2

and p). Obviously community C wins (+?) once Cg ignores the fake action, otherwise it looses

(—?). Acting JV causes no utility for C but impacts utility assigned for the controller agent. For

Cg, positive utility is assigned once the recognition is right (+it), otherwise negative utility is

assigned (—p), +p (—p) represents then the increase (decrease) of the degree of Cg's accuracy

in detecting malicious acts. The degree of accuracy (Dac) is computed as follows:

Dac — Go/Td

where Gd is the number of good detections and TD is the total number of detections.

47

4.3.1 1-Shot Game Analysis

Figure 4.1 -Part (a) illustrates the tree of actions made by the two players. The leaves represent

the outcome utility for the community and controller agent. Figure 4.1-TaOZe(O) gives the out-

come table for this one-shot game. In pairs, the first value is assigned to C as player 1 and the

second value is assigned to Cg as player 2. For example, if C plays F (fake) and Cg plays P

(penalize), so the payoff of C is —? and the payoff of Cg is +p. In general, C obtains ? once it

fakes and being ignored. It gets —? once being penalized (either by mistake or otherwise), and

gets 0 once its normal act is not penalized.

Proposition 4.1. In one-shot game, acting fake is the dominant strategy for the community.

Proof. As shown by table (b) in Figure 4.1, by acting fake a better payoff is received by C

whatever Cg' s strategy is (I or P). D

Proposition 4.2. In one-shot game, penalizing afake action is the unique Nash equilibrium.

Proof. Clearly acting fake by community C, controller agent Cg would have a best utility if

penalizing strategy is chosen rather than ignoring. On the other hand, if Cg chooses to penalize,

C would not change its chosen strategy since in both cases C will loose —?. Adversely, the

normal act by C would let Cg to ignore. However, if the strategy is to ignore (by Cg), the best

strategy for C is to act fake. Therefore, there is no Nash in ignoring the normal act. D

The unique Nash discussed in the previous proposition is a good situation for the controller

agent, but this does not hold for community C. In this game, Cg gains payoff with respect to

its accuracy in fake detection. However, C looses in any sort of penalizing. In fact, in one-shot

game, strategies are adopted with respect to the available information that only reflect the current

48

state of both players. To this end, the best chosen strategies might end up with a dissatisfactory

social situation. Let us now discuss what would be a socially better situation for the players in

this game.

Definition 4.4. Pareto-Optimality. A situation in a game is said to be Pareto-Optimal once there

is no other situation, in which one player gains better payoffand other players do not loose their

current payoff.

Proposition 4.3. In one-shot game, ignoring actions (F or N) by Cg are Pareto-Optimal.

Proof. As it is clear from Figure 4.2-Table(b), by ignoring fake action, Cg receives — p and this

payoff could be increased only if C receives less than ?. Similar case is ignoring the normal act

as there is no possible Pareto-improvements for both agents. D

The second Pareto-Optimal in this game (ignoring normal action) is a safer case in the sense

that both players are at least non-negative. This is the best social welfare if being reached and is

referred to as Pareto-Optimal Socially Superior.

From Proposition 4.1, we can conclude that faking would be the chosen strategy by C. In

this case, C does not take into account the previous stages of the game and thus, does not learn

to adopt the best strategy that maximizes its payoff. If C can estimate the expected payoff with

respect to Cg's response, it might prefer acting normal. In fact, this issue is how to make agents

(C and Cg) converge to the Pareto-Optimal Socially Superior as a rational choice [3]. In the

following, we extend the one-shot game to the repeated game over periods that we typically refer

to as [i0, t2}. We analyze the same game with respect to strategies and corresponding payoffs

that are assigned such that the two players have more various range of payoffs. At time ¿i, Cg

will decide whether to continue or stop investigating. To this end, eo is referred to as the case of

49

no effort is made in doing investigation and basically ignoring all actions. Otherwise, the best

effort is made by Cg doing investigation. Therefore at time t2, Cg decides about its strategy.

Obviously, if Cg chooses e0 and C plays fake, controller agent will loose right away. We split the

game time to two time intervals of [t0, ^1] and [?? , i2] and strategy of acting in each interval needs

to be decided. We apply a weight to each time interval regarding its importance (also the payoff

portion). Consider µ as the payoff coefficient for the acts done in [t0, ^] and 1 — µ as the payoff

coefficient for the acts done in [?? , t2\-

4.3.2 N-Shots Game Analysis

For simplicity and illustration purposes but without losing generality, we consider the repeated

game with two-shots. The general case with ro-shots (n > 2) will follow. In such a game,

community C as player 1 has two information sets. The first set contains decisions over fake

F and act normal N given that community is in the first decision time spot (//). The second

set contains decisions over fake and act given that community is in the second decision time spot

(1 — µ). Since community C is the game starter, and controller agent Cg initially decides whether

to stop or continue the game, we consider two continuous actions that reflect our game the best.

Therefore, community's set of strategies is as follows:

Sc = {Gµ?1-µ,Gµ?1-µ,?µ?1-µ,?µ?1-µ}

In the general case with ?-shots, we will have:

Sc = [F"1 . . . F"", F"1 . . . ?µ?, . . . , ?µ? . . . ?µ?}

50

Table 4.2: Two-shots game of community C and controller agent Cg with obtained payoffs.
Community C

F1F1'11 F1N1'11 Wf'-p ?*"??'µ
Où
?

e0

pi'pi-µ

S />"/-"
h fpl-µ
O

-?,p ;

(1-2µ)?,(2µ-1)p

(2µ-1)?,(1-2µ)p

?,-p

µ?,-µp

-?,(2µ-1)p

-µ?,p

(2µ-1)a>,-p

µ?,(1-2µ)p

(1-µ)?,-(1-µ)p

-?,(1-2µ)p

(1-2µ)?,-p

-(?-µ)?,p

(1-µ)?,(2µ-1)p

0,0

-?,-p

-µ?,(1-2µ)p

-(1-µ)?,(2µ-1)p

?,p

where S"=1 µ? — 1. Considering the choice of efforts, Cg's set of pure strategies (penalizing P
or ignoring I) is as follows:

Sc3 = {e0, F^F1-", P"/1-", F1P1-", ?/1-/'}

Table 4.2 represents the payoff table of the two players over their chosen strategies. We
continue our discussions in the rest of this section on this table.

Proposition 4.4. In repeated game, faking all the time and penalizing all fake actions is the

unique Nash equilibrium.

Proof (We illustrate the proof for two-shots game from which the general case follows.) 1)

Nash: It is clear from Table 4.2 that in both faking intervals, Cg receives the maximum payoff

by penalizing both cases. In this case, C will not increase its payoff (-?) and thus, will not

prefer any other strategy. In any other case, by choosing the maximum received payoff for any

player, the other player has a better strategy to increase its payoff. 2) Uniqueness: We prove

that the Nash equilibrium is the only Nash with respect to the following discussions. In the first

row of Table 4.2, there is no Nash because Cg makes no effort, so maximum received payoff is

51

zero and thus, any time the preference is to change to a state that effort is made to penalize fake

actions. In third and forth rows, still there is no Nash since in these rows there are choices of P

and / in the sense that for any of these choices, C will gain more by selecting a that maximizes

its assigned payoff. In the last row, the payoff assignment is similar to the first one, so that Cg

prefers to change its chosen strategy to apply penalty to fake actions. D

We also have the following propositions generalized from the two-shots game:

Proposition 4.5. In repeated game, faking all the time is dominant strategyfor C.

Proposition 4.6. In repeated game, acting normal by C and ignoring by Cg all the time is

Pareto-Optimal Socially Superior.

The analysis of the obtained Nash equilibrium is important in the sense that the stable point

is not a socially preferred situation for both players. Indeed, Cg has a challenge of not doing

wrong. To this end, any time a fake action is recognized, best payoff is received once Cg applies

penalties. On the other hand, for rational community C, the best strategy is to fake given that

ignore by Cg is ensured. Similar to one-shot game, choosing fake is dominant strategy for C.

This fact holds only if C considers Cg's strategies with equal probabilities. However, these

probabilities are different and if C is aware of them, the strategy chosen by C would be different.

In general, the probability of correct recognition by Cg totally impacts the strategy that C adopts

in the repeated game. Thus, we need to consider the recognition probabilities of Cg (qto, . . . , qtn)

that simply reflect its accuracy evolving over time. The increasing of Cg's accuracy is reflected

by the fact that qto < ¦ ¦ ¦ < qtn. Indeed, Cg's accuracy has impact on expected reputation that

community C estimates given the penalty and improvement it makes. Therefore, Cg applies such

penalty that discourages C to act fake.

52

Proposition 4.7. IfPtn > ^-^-Imp^tn-l'tn\ then community C receives less reputation value if
it acts fake '.

Proof. To prove the proposition, we consider the condition true and prove that E(Rep^b^\
(N/F)"1 . . . (NfF)I*) < E(Rep[lb]fn]\N^ . . . N^). By simple calculation we expand the ex-
pected value to its possible cases together with their probabilities, so we get:

E(Rep[lb*n] I (NfF)^ . . . (NfF)^) =
(qt^)(Repitt"t^ - Jm/"-1'*"! - P'") + (1 - qt")(Rep^t'"t^)

this is the expected reputation level given that a fake action is made in any of the intervals.

E(ReP1I^ ¡N"1 . . . N^) = Repfo'1"} - /mpl*»-1·*"'

and this is the expected reputation level given that no fake action is made during any of the

interval.

Eñep[lb^]\(N/Fy\ . (NfFY*) - ERep[lb+n]\NK\ . N^ > 0

Considering Ptn > ^^-Imp^'l~1'tn^, the difference of the obtained values is positive, so we are
done. ?

In proposition 4.7, the required penalty is measured that accomplish reputation decremented

manner. We rewrite this inequality in terms of Cg accuracy (qtn > [t _\tn]—— — -). The ob-

tained relation highlights the dependency of the received payoff (?) to the recognition probability

of Cg. Therefore, in repeated game, if q increases (as a result of more experience and learning

over time), ? would decrease, which reflects two facts: 1) Cs less tendency to fake, which in
1 This proof is inspired by the proofdone in [23]

53

general applies to all active communities; and 2) Cg gets higher probability of penalizing since

faking history is taken into account. Therefore, over time C tends to act normal.

Theorem 4.2. In the repeated game with ?-shots, if Ptn > ^ßP-Imp^"-utn\ acting normal and
being ignored is both Nash and Pareto-Optimal.

Proof. Considering the proposition 4.6, ignoring normal intervals (or zero effort in normal inter-

vals) are Pareto-Optimal. On the other hand, deduced from proposition 4.7, C would have less

reputation if it fakes given that it is aware of the assigned penalty and C<?'s accuracy. Therefore,

the dominant strategy for C would be acting N. If C plays N as its dominant strategy, the best

response from Cg would be / in all intervals. This state is a healthy state that both players would

be stable. This state would be Nash once the condition expressed in Proposition 4.7 holds. In this

case, ./V''1 . . . Nlln and Pn . , . Pln are dominant strategies for C and Cg. D

Considering the high accuracy of Cg that is maintained over time, C has a very low chance

to fake and receive a positive payoff. Therefore, a safer strategy is to act normal by which a

non-negative payoff is guaranteed. No payoff reflects no change in reputation level, which makes

communities acting normal and receiving positive feedback that are provided for them by the

users.

4.4 Experimental results

In this section we describe the simulations we perform on the game-theoretic analysis of the

reputation mechanism. Here we adapt the same simulation environment we have introduced in

Chapter 3.

54

4.4.1 Experiment

In this chapter, we have proved that fake action will eventually end up with a penalty that is totally

not preferable by any community and acting normal is Pareto-Optimal in repeated game. In this

section, we demonstrate the aforementioned facts using simulation of the environment populated

with different types of agent-based communities and users.

In the simulation, a sequence of RUNs have been examined to highligh the aforementioned

system parameters in more details. In Table 4.3, we provide three types of communities we de-

ploy in simulation: ordinary, faker and intermittent. Ordinary community acts as normal and

offers its truth quality of service (QoS) that could be in any range. In maximum overloaded time,

this type of community responses (Rs) 20% on top of its capacity and manages to provide the

service with 80% accuracy (Ac). Faker community populates 40% of communities and normally

have a relatively lower QoS. This type of community takes 50% over its capacity and offers ser-

vice with 40% of accuracy. Intermittent communities might change their strategies with respect

to the environment and their accuracy is 60%. In Table 4.3, we also represent different Web ser-

vice types that are active once they belong to a community. A good Web service offers more than

average QoS and handles 10 requests at a time. However, bad and fickle web services handle

more requests with a relatively lower QoS.

In each RUN, a number of users are selected to search for the best service. Strictly speaking,

users are only directed to ask community for a service and thus, user would not find out about the

Web service that is assigned by the master of the community. In order to find the best community,

the requesting user would evaluate the communities regarding their reputation level. Some times,

55

Table 4.3: Simulation summarization over the obtained measurements.
Community Type Density QoS Rs Ac

Ordinary 30.0% [0.0%, 100.0%] 20.0% 80.0%
Faker 40.0% [0.0%, 60.0%] 50.0% 40.0%

Intermittent 30.0% [20.0%, 70.0%] 30.0% 60.0%

Web service Type Density QoS Capacity
Good 300% [50.0%, 100.0%] ÏÔ
Bad 30.0% [0.0%, 50.0%] 20

Fickle 40.0%o [20.0%, 80.0%] 20

users are in contact with some communities that used to offer acceptable QoS, so the users re-

select them. The selected community might be highly overloaded and consequently rejects the

user requests. If the user is rejected from the best selected community, he would ask the second

best community in terms of reputation level (and so on). The feedback are logged in the logging

mechanism that is supervised by controller agent Cg. The accumulated feedback would affect

the reputation level of communities. In other words, the communities would loose their users if

they receive negative feedback, by which their reputation level is dropped.

One of the main issues discussed in this game-theoretic study is the total reputation of com-

munities that are rated through provided feedback and adjusted via Cgr's inspections over time. In

general, a reputation of a typical ordinary community (C0) tends to approach its actual QoS. This

simply means that its truth service offering (with 80% accuracy) would cause C0 to receive feed-

back that bring its total reputation as high as its actual QoS. Figure 4.2 illustrates such approach

in the left plot. The bold curve represents C0's reputation that approaches its QoS over time.

The dotted curve reflects a similar community C0 that has been penalized by Cg (obviously by

mistake). In this plot, different reputation levels have been shown, which reflects possibilities of

obtained reputation for an ordinary community over time. The right plot is similar and illustrates

reputation adjustment of a faker community (Cf) that has been penalized and thus, decreased

56

100% 100%

a 40% a 40%

Figure 4.2: Communities's total reputation adjustment possibilities vs. simulation RUNs.

reputation level is set. Likewise, the dotted curve reflects the case that Cj is not recognized and

thus, a high faked reputation is obtained. In the left plot, Cg's mistake causes 50% of reputation

adjustment, whereas in the right plot that is 80%. This highlights the fact that ignoring a faker

community (Cj) would distract the system more than penalizing an ordinary community (C0).
Nevertheless, for any type of false detection, the accuracy of Cg decreases and therefore, Cg

aims to maintain the highest possible accuracy level.

Controller agent Cg's accuracy is also a challenging issue in our discussions. The importance

inspired from the fact that once Cg puts the minimum effort in inspection, the best strategy

maximizing community's payoff is to totally fake. Even if the effort is made by Cg, the lower

accuracy would cause ignoring malicious acts and thus, a potential payoff is generated for a

faker community. To this end, Cg's accuracy level and its effort on inspecting feedback affects

communities' tendencies to fake. Figure 4.3 in the left illustrates Cg's overall accuracy over time

together with percentage of communities (faker and intermittent) that tend to take advantage of

Cg's inconsistency. As it is obvious from the plot, the percentage of communities that consider

faking feedback is dramatically decreasing once the accuracy is getting higher. In general, Cg

aims to increase the accuracy and that is manageable once a certain number of RUNs is passed and

Cg gets to know the environment. In addition, recognizing a faker community at any time would

57

100%100%

? 80%« 80%
?a 38,40.0%P 60% 60%

?ßas S 40%3) 40%
O«

tendency to fake Z 20%20%

0%0%
O 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

Time Time

Figure 4.3: Controller agent's accuracy measurements vs. simulation RUNs.

cause a higher caution in future. Therefore, inspections are more detailed that cause a higher

accuracy. The tendency is dramatically decreasing because penalties are getting higher for the

second fake recognition (and so on). To this end, the percentage of communities that tend to fake

is decreasing but Cg is still subject to falsely penalize (not malicious acts) and that prevents 100%

accuracy in any time. In general, Cg's accuracy in detection is partially related to strategies that

faker or intermittent communities take. For instance, Cg does not expect an immediate second

fake from a penalized community because they are assumed to act rationally. But if communities

act maliciously by random and do not care about the penalty they may obtain, Cg's accuracy

would get lower. This is shown in Figure 4.3 in the right plot. In this plot, the random faking

strategies would cause the percentage of fake actions to oscillate with nonpredictable manner.

4.5 Conclusion

In this chapter, we discussed the two-players game analysis over the reputation-based architecture

that hosts communities of Web services. In the deployed architecture, communities can collude

with users to increase self reputation. Meanwhile, controller agent investigates user feedback

and penalizes malicious communities. Controller agent may fail to accurately function, which is

58

known as incentive for some communities to act maliciously. The discussion is formed in terms

of a game that is analyzed in one-shot and repeated cases. This analysis is concluded by denoting

the best social state in which communities are discouraged to act maliciously and increase self

reputation.

In this chapter also, and based on the observations of the experimental results of the simu-

lations, we can conclude that the controller agent may fail to accurately function. This could

encourage some communities to act maliciously. In the conducted experiments, malicious com-

munities are observed and their characteristics are measured over time. In general, best Pareto-

Optimal is observed to be a stable state for communities and controller agent.

59

Chapter 5

Conclusion and Future Work

The primary goal of the thesis was to develop a framework to solve the problem of reputation

of Web services communities as outlined in Chapter 1 . That goal has been achieved with a new

reputation model based on the logging mechanism we introduced in Chapter 3. The method has

been implemented and evaluated using a variety of experiments. Another goal was to maintain

the reputation mechanism from malicious behavior. This is accomplished by the use of game-

theoretic analysis as detailed in Chapter 4 to establish trust between the communities of Web

services and the users. The game-theoretic analysis allows the controller agent Cg to follow

strategies that help in controlling and investigating the logging mechanism, which in turn help in

maintaining a sound reputation mechanism.

60

5.1 Summary of Contributions

In this thesis, we presented two main contributions to the reputation of communities of Web

services. The first contribution of this thesis is the proposition of a new incentive-based reputa-

tion model for communities of Web services gathered to facilitate dynamic users requests. The

reputation of the communities are independently accumulated in binary feedback reflecting the

satisfaction of the users being served by the communities. A model representing a sound logging

mechanism in order to maintain effective reputation assessment for the communities has been

discussed. The controller agent Cg investigates the logging feedback released by the users to

detect the fake feedback as a result of collusion between a community and a user (or a group of

users), which are provided in support of that community. Upon detection, the controller agent

maintains an adjustment in the logging system, so that the malicious community would be penal-

ized by reducing its reputation level. Our model has the advantage of providing suitable metrics

used to assess the reputation of a community. Moreover, having a sound logging mechanism,

the communities would obtain the incentive not to act maliciously. The proposed mechanism

efficiency is analyzed through a defined testbed.

The second contribution of this thesis is the analysis over the reputation-based infrastructure

that hosts communities of Web services as providers of services, users as consumers of services,

and controller agent Cg as reputation manager in the system. In the deployed infrastructure,

communities can collude with users to increase self reputation. Meanwhile, controller agent

investigates user feedback and penalizes malicious communities. Controller agent may fail to

accurately function, which is known as incentive for some communities to act maliciously. The

discussion is formed in terms of a game that is analyzed in one-shot and repeated cases. This

61

analysis is concluded by finding the best social state in which communities are discouraged to act

maliciously and increase self reputation. The analysis is accompanied by empirical results that

highlight reputation system's parameters. In experimental results, malicious communities are

observed and their characteristics are measured over time. In general, the best Pareto-Optimal is

observed to be a stable state for communities and the controller agent.

5.2 Future Work

Although this thesis has answered how reputation is relevant to build trust in online environment

of communities of Web services, it opens up more research opportunities and questions that are

unanswered. This section describes a few of these important issues:

• Advance the assessment model to enhance the model efficiency using the comprehensive

approach that was developed in [24], which considers the trust issue as an optimization

problem. In the logging system, we need to optimize detection process, trying to formulate

it in order to be adaptable to diverse situations.

• Take advantage of the autonomous agents self-learning capabilities to make better decisions

in future interactions. Conducting more transactions with whom they have a good history,

and have a black list of dishonest Web services.

• For our model, the initial reputation values distribution is based on normal distribution

function, this can be extended where reputation bootstrapping can be applied [28].

• Advance the game theoretic discussion such that communities that risk the malicious act

deploy a learning algorithm that enables them to measure their winning chance. To this

62

end, a continuous game can be extended that both players update their selected policies.

Similarly, we need to discuss more about controller agent's different false detection cases

that distract reputation management.

63

Bibliography

[1] Ali Shaikh Ali, Simone A. Ludwig, and Orner F. Rana. A cognitive trust-based approach for

web service discovery and selection. In ECOWS '05: Proceedings of the Third European

Conference on Web Services, 2005.

[2] Gustavo Alonso. Web services: concepts, architectures and applications. Springer, 2004.

[3] Dipyaman Banerjee and Sandip Sen. Reaching pareto-optimality in prisoner's dilemma

using conditional joint action learning. Autonomous Agents and Multi-Agent Systems, 15

(1):91-108, 2007.

[4] Jamad Bentahar, Zakaria Maamar, Wei Wan, Djamal Benslimane, Philippe Thiran, and

Sattanathan Subramanian. Agent-based communities of web services: an argumentation-

driven approach. Service Oriented Computing and Applications, 2(4):219-238, 2008.

[5] Jamal Bentahar, Zakaria Maamar, Djamal Benslimane, and Philippe Thiran. An argumen-

tation framework for communities of web services. IEEE Intelligent Systems, 22(6):75-83,

2007.

[6] David A. Chappell and Tyler Jewell. Java Web services. O'Reilly Media, Inc., 2002.

64

[7] NetBeans Community. Netbeans ide 6.5 beta download. http : //download,

netbeans .org/netbeans/6 .5 /beta/, 2008. viewed August 02 2008.

[8] Chrysanthos Dellarocas. The digitization of word of mouth: Promise and challenges of

online feedback mechanisms. Management Science, 49(10):1407-1424, 2003.

[9] Said Elnaffar, Zakaria Maamar, Hamdi Yahyaoui, Jamal Bentahar, and Philippe Thiran.

Reputation of communities of web services - preliminary investigation. In AINAW '08:

Proceedings of the 22nd International Conference on Advanced Information Networking

and Applications - Workshops, pages 1603-1608, 2008.

[10] Peyman Faratin, Carles Sierra, and Nick R. Jennings. Negotiation decision functions for

autonomous agents. Internationaljournal ofRobotics and Autonomous Systems, 24(3 - 4):

159-182, 1998.

[11] Organization for the advancement of structured information standards. Introduction to uddi:

Important features and functional concepts, 2004.

[12] Elodie Fourquet, Kate Larson, and William Cowan. A reputation mechanism for layered

communities. SIGecom Exch., 6(1):1 1-22, 2006.

[13] W3C Working Group. Web services architecture. http://www.w3.org/TR/

ws-arch/, February 2004. viewed October 11 2009.

[14] James Hendler. Agents and the semantic web. IEEE Intelligent Systems, 16(2):30-37, 2001.

65

[15] Mariusz Jacyno, Seth Bullock, Michael Luck, and Terry R. Payne. Emergent service pro-

visioning and demand estimation through self-organizin agent communities. In The Eighth

International Conference on Autonomous Agents and Multiagent Systems, 2009.

[16] Nicholas R. Jennings. Agent-based computing: Promise and perils. In In Proceedings of

the 16th International Joint Conference on Artificial Intelligence, pages 1429-1436, 1999.

[17] Radu Jurca and Boi Faltings. An incentive compatible reputation mechanism. E-Commerce

Technology, IEEE International Conference on, 0:285-292, 2003.

[18] Radu Jurca and Boi Faltings. Reputation-based service level agreements for web services.

In Service-oriented computing: ICSOC 2005: third international conference, Amsterdam,

The Netherlands, December 12-15, 2005.

[19] Radu Jurca and Boi Faltings. Obtaining reliable feedback for sanctioning reputation mech-

anisms. Journal ofArtificial Intelligence Research, 29(1):391-419, 2007.

[20] Radu Jurca, Boi Faltings, and Walter Binder. Reliable qos monitoring based on client feed-

back. In WWW '07: Proceedings of the 16th international conference on World Wide Web,

2007.

[21] Georgia Kastidou, Robin Cohen, and Kate Larson. A graph-based approach for promot-

ing honesty in community-based multiagent systems. In 8th International Workshop on

Coordination, Organizations, Institutions, and Norms in Agent Systems, 2009.

[22] Georgia Kastidou, Kate Larson, and Robin Cohen. Exchanging reputation information

between communities: A payment-function approach. In Craig Boutilier, editor, IJCAI,

pages 195-200,2009.

66

[23] Babak Khosravifar, Jamal Bentahar, Philippe Thiran, Ahmad Moazin, and Adrien Guiot.

An approach to incentive-based reputation for communities of web services. In ICWS '09:

Proceedings of the 2009 IEEE International Conference on Web Services, pages 303-310,
2009.

[24] Babak Khosravifar, Maziar Gomrokchi, Jamal Bentahar, and Philippe Thiran. Maintenance-

based trust for multi-agent systems. In AAMAS '09: Proceedings of The 8th International

Conference on Autonomous Agents and Multiagent Systems, pages 1017-1024, 2009.

[25] Kevin Leyton-Brown and Yoav Shoham. Essentials of Game Theory: A Concise, Multidis-

ciplinary Introduction (Synthesis Lectures on Artificial Intelligence and Machine Learning).

Morgan and Claypool Publishers, 2008. ISBN 1598295934.

[26] Yutu Liu, Anne H. Ngu, and Liang Z. Zeng. Qos computation and policing in dynamic web

service selection. In WWWAIt. '04: Proceedings of the 13th international World Wide Web

conference on Alternate track papers & posters, pages 66-73, 2004.

[27] Zaki Malik and Athman Bouguettaya. Evaluating rater credibility for reputation assessment

of web services. In Web Information Systems Engineering, pages 38^19, 2007.

[28] Zaki Malik and Athman Bouguettaya. Reputation bootstrapping for trust establishment

among web services. IEEE Internet Computing, 13(l):40-47, 2009.

[29] Anne Thomas Manes. Web Services: A Manager's Guide. Addison-Wesley Professional,

2003.

67

[30] Umardand Shripad Manikrao and T. V. Prabhakar. Dynamic selection of web services with

recommendation system. In NWESP '05: Proceedings of the International Conference on

Next Generation Web Services Practices, 2005.

[31] E. Michael Maximilien and Munindar P. Singh. Conceptual model of web service reputa-

tion. SlGMOD Ree, 31(4):36-41, 2002.

[32] E. Michael Maximilien and Munindar P. Singh. Multiagent system for dynamic web ser-

vices selection. In AAMAS Workshop on Service-Oriented Computing and Agent-Based

Engineering (SOCABE), 2005.

[33] Kirk McKusick. Interview with adam bosworth. Queue, 1(1):12-21, 2003.

[34] Roger Myerson. Game Theory: Analysis of Conflict. Harvard University Press, 1997.

[35] John Nash. Non-cooperative games. The Annals ofMathematics, 54(2):286-295, 1951.

[36] Eric Newcomer. Understanding Web Services: XML, Wsdl, Soap, and UDDI. Addison-

Wesley Professional, 2002.

[37] Paul Resnick, Ko Kuwabara, Richard Zeckhauser, and Eric Friedman. Reputation systems.

Commun. ACM, 43(12):45-48, 2000.

[38] Wanita Sherchan, Shonali Krishnaswamy, and Seng Wai Loke. Relevant past performance

for selecting web services. In QSIC '05: Proceedings of the Fifth International Conference

on Quality Software, pages 493^145, 2005.

[39] Sattanathan Subramanian, Philippe Thiran, Zakaria Maamar, and Djamal Benslimane. En-

gineering communities of web services. In HWAS, volume 229, pages 57-66, 2007.

68

[40] W3C. Web services description language (wsdl) 1.1. http://www.w3.org/TR/

wsdl . html, March 2001. viewed October 02 2009.

[41] W3C. Soap version 1 .2 part 1 : Messaging framework (second edition), http: //www.

w3.org/TR/soapl2-partl/, April 2007. viewed October 02 2009.

[42] W3C. Extensible markup language (xml) 1.0 (fifth edition), http://www.w3.org/

TR/2008/REC-xml-20081126/, November 2008. viewed October 02 2009.

[43] Wikipedia. Rational agent. http://en.wikipedia.org/wiki/Rational_

agent, October 2009. viewed October 29 2009.

[44] Zhengping Wu and Alfred C. Weaver. Using web service enhancements to bridge busi-

ness trust relationships. In PST '06: Proceedings of the 2006 International Conference on

Privacy, Security and Trust, pages 1-8, 2006.

[45] Ziqiang Xu, Patrick Martin, Wendy Powley, and Farhana Zulkernine. Reputation-enhanced

qos-based web services discovery. In IEEE International Conference on Web Services,

2007. ICWS 2007, pages 249-256, 2007 .

69

Appendix A

Empirical Observations and Analysis of

Communities versus Single Web Services

Having a high reputation value will eventually bring high demand from users and results in over-

loading service providers beyond their capacities for handling these requests. The challenge is

to identify a tradeoff between one's capacity (maximum number of service offering at a time)

and market share (number of users that request services) so that an efficient service can handle

the requests in a way that neither it gets overloaded quickly, nor it remains idle. Therefore, the

objective of all Web services is to tackle such a tradeoff in which the service gains a stable reputa-

tion and market share level. The motivation here is to observe experimentally in an environment

populated with both single Web services and communities of Web services the better situation

and hence the reputation a Web service can have. In this context, we consider the InDemand

value (InDc and InDs) for community and single Web service respectively, to be the number

of all requests made by users to all communities and single Web services in the simulation. We

also consider in this simulation the capacity value which is the maximum number of requests a

70

Table A.l: Environment summarization over the obtained measurements.
Type I Density QoS Capacity

Communities of Web services 40.0% [20.0%, 80.0%] [100,300]
Single Web Services 60.0% [20.0%, 95.0%] [10,20]

community (Capc) or a single Web service (Caps) can handle at the same time, for example a

community with Capc = 100 can handle 100 requests simultaneously.

In this appendix, we provide an empirical analysis over the observed results regarding char-

acteristics of a typical community (C) and a single Web service (S). We motivate the join option

by depicting the challenges that a single Web service S faces when it cannot handle further re-

quests because of capacity limitation (InD^0'*^ > Caps). The simulation consists of a series
of empirical experiments tailored to show different parameters of system components in diverse

aspects. Table A.l summarizes the simulated environment which is populated with users and

providers. Users are multiple and scattered over the environment, but providers are divided into

communities and Single Web Services. Communities cover 40.0% of providers while Single Web

Services are more (60.0%). In the simulated environment, we deployed relatively lower quality of

service for communities to motivate their higher performance from their request handling rather

than solely their service qualities. In general, communities host at least 10 Web services, which

covers at least 100 requests at a time, while a single Web service handles 10 at a time.

One of the main reasons that distracts service provider's overall performance (P3 for single

Web service or Pc for community) is its reputation update range. Since they are associated with a

reputation level as a result of provided feedback by the users, if the number of interacting users is

relatively low, the update over the reputation rank would be more visible than the case when the

number of interacting users is relatively high. Figure A. 1 shows characteristics of community (C)

in the left part and single Web service S in the right part. Plots reflect average values that have

71

Communities ofWeb services
...................... IM**;"-

¡! » TS IN 1IS IS*
Time

Plot (a)

"» 25 50 "S ?ßß 1IS ?5ß 175

Tiuw
Plot(b)

s sen* /V

¡4*7 ^InD

Cap
zi:

2S 5» 75 IW 115 150 175 Î0O *%

Plot (e)

PerformaDce

ISO IT* 100

PlOt(I)

Single Wi'b services
loos:

tí im us ?» i?s zw

Plot (e) Plot (d)

Performante

Plot (h)

TS IW) II! 15» 175

Tim«

Plot©

Figure A.l: Characteristics of communities vs. single Web services.

been measured as a result of analysis over all communities of the same type. Plots(a) and (c)

respectively represent the reputation increase for the same number of RUNs while both C and 5

are gaining high reputation. Since number of interacting users with S is lower than that of C, the

effect that positive feedback make on the reputation value of 5 is relatively high compared to the

effect on C. Similarly reputation degradation (plot(b) for C and plot(d) for S) shows dramatic

change in single Web service compared to community. Overall, such high range of change reflects

lower feedback density, which also reflects lower market share (InD[g°'tl] < InDg)¦ This is
normal since single Web service would share a small portion of the market. We elaborate on the

effect of such a range more in plots(e) and (g). In these plots, the horizontal line represents a

community's capacity. What is interesting in these plots is the way that inDemand approaches

capacity. In plot(e), we observe closer oscillating curve compared to that in plot(g). This is due

to the fact that C handles its user increase until it gets overloaded (InD£°'tl] > Capc) and starts
to offer lower quality services. Therefore, being overloaded, C gets some negative feedback that

cause a drop in its inDemand. Once handling the requests again {Inuf?'ti] < Capc), C provides
quality services and obtains good feedback that increase its inDemand again (InDç' 2j). But
not necessarily C would obtain the same inDemand as before (InDc' 2' < IuDq 1), and that

72

100%
«a

80% InD-*»
B 60%

35 40%|í
**
»

x-(20% Sát It*.

0%: — - — - --
O 25 50 75 100 125 150 175 200

Time

Figure A.2: Evolution of cooperative parameters for a single Web service over time.

is simply as a result of users' evaluations that might not show interest requesting C again that

offered a low quality before. In general, inDemand value would be relaxed by capacity and

that is the point where C handles user requests at best thanks to collaboration between Web

services that share users. Such relaxation would take much longer time with S and that is due

to its lower number of interacting users. As shown in plot(g), the inDemand curve oscillates

in a higher range and takes more time to merge with S"s capacity level. We also show this fact

with performance parameter in plots(f) and (h). As shown in plot(f), C as a good community

obtains an interesting performance over time while S (see plot(h)) gets decreased. Performance

parameter can be considered as obtained utility (or payoff) as a result of acting either alone or

with other Web services in a community.

We continue our discussions in more details by comparing how the aforementioned param-

eters (inDemand and Capacity) evolve over time. In Figure A.2, characteristic of a typical Web

service is measured to observe its cooperative parameters impacts over time. In this case, once

the reputation increases, the users requesting the service increase, and thus reputation exceeds

such Caps value, users are dispersed and inDemand undergoes a faster decrease. In this figure,

73

100%t

*5 80%G

O 25 SO 75 100 125 150 175 200

Time

Figure ?.3: Evolution of cooperative parameters for a community of Web services over time.

inDemand gets the highest value since a high reputation is followed by a large number of re-

quests while satisfactions look more steady. In contrast, after a low quality service, all curves

head down among which, inDemand decreases more since users stop requesting until such a

single Web service manages to handle user requests again.

Figure A.3 illustrates the same structure analyzing the parameters regarding typical commu-

nity C hosting some Web services. In this Figure, we see a more stable inDemand, which reflects

Cs stable market share. Once the curves tend to approach each other at the end. This extends to

more details about parameters of a stable community that managed to maintain a tradeoff between

its capacity and inDemand.

In this appendix, and based on the observations on the experimental result of the simulations,

we can conclude that the Performance measurement by which a single Web service is encouraged

to join a community within which a better handling ability over the users' requests is guaranteed.

This empirical analysis takes into account the system parameters and motivates higher perfor-

mance even under lower reputation level. In this analysis, single Web services are allowed to

predict their further reputation level (and thus, performance) that let them make the best decision.

74

