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Abstract

Framework for Automatic Verification of UML Design Models: Application to UML
2.0 Interactions

Vitor Nunes de Lima

Software-intensive systems have become extremely complex and susceptible to defects
and vulnerabilities. At the same time, the consequences of software errors have also
become much more severe. In order to reduce the overall development cost and
assure the security and reliability of the final product, it is of critical importance
to investigate techniques able to detect defects as early as possible in the software
development process, where the costs of repairing a software flaw are much lower
than at the maintenance phase. In this research work, we propose an approach for
detecting flaw at the design phase by combining two highly successful techniques
in the information technology (IT) industry in the field of modeling languages and
verification technologies. The first one is the Unified Modeling Language (UML).
It has become the de facto language for software specification and design. UML
is now used by a wide range of professionals with very different background. The
second one is Model Checking, which is a formal verification technique that allows
the desired properties to be verified through the inspection of all possible states of the
model under consideration. Despite the fact that Model Checking gives significant
capabilities to developers in order to create a secure design of the system, they are still
not very popular in the UML community. There are many challenges faced by UML
developers when it comes to combine UML with model checking (e.g., developer are
not familiar with formal logics, the verification result is not in the UML notation, and
the generation of the model checkers code from UML models is a problematic task) .
The proposed approach addresses these problems by implementing a new verification
framework with support to property specification without using the complexity of
formal languages, UML-like notation for the verification results, and a fully automatic
verification process.
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Chapter 1

Introduction

Software-related systems are nowadays part of our everyday life. From simple elec-

tronic gadgets to complex satellites, people lives surrounded by these technological
innovations. It is evident all the benefits brought by this scientific progress. On the

other hand, software products have become extremely complex and susceptible to

defects and vulnerabilities. At the same time, the consequences of software errors

have also become much more severe. Consequently, the software engineering disci-

pline must now play a predominant role in the process of building secure and reliable
software.

The construction of complex software-related systems includes, in summary, re-

quirements engineering, design, code implementation and testing. Requirement en-

gineers typically prepare a requirements document in order to describe the required
or expected behavior of the new software. Usually, this document is written in prose

with no formalism [5]. The requirements state the anticipated behavior of a system
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component in reaction to a sequence of external stimulus. The requirements docu-

ment is then used, at the design phase, as input for designing models that reflect the

desired properties of the system. Developers use these models to build the code at

the implementation phase. The models may also serve as input in designing test cases

to test the code at testing phase [5].

A great need in software development process is to advance error detection to early

phases of the software life cycle. It has been shown that costs of repairing a software

flaw during maintenance are approximately 500 times higher than fixing them at early

design phase [6]. Figure 1 gives a clear idea of how error introduction, detection and
repair costs are distributed through the developments process.

Analysis Conceptual
Design

Programming Unit Testing System Testing Operation

50%

40%

30% -t-

20%

10% -h

0%

detected
errors (in %) / cost of

/correction ~_10
\ ' per error
V(in 1,000 US $)

-7.5

introduced
errors (in %)

12.5

-2.5

Time (non-linear)

Figure 1: Software lifecycle and error introduction, detection, and repair cost [6]

From the figure, only 15% of flaws are detected at the initial design phase, whereas
the cost of fixing them at this phase are extreme low when compared with the cost of

corrections at the testing stage where most of the errors are found. E.g., if a design



model contains errors, the errors are transited to the developers during the coding

and to the test engineers during the test design. Any code or test case construct will

likely present the same errors as the model. These defects may not be revealed until

the acceptance test, or worse, after the system is fully installed [5]. Therefore, in

order to reduce the overall development cost and assure the security and reliability of

the final product, it is of critical importance to investigate techniques able to detect

defects as early as possible in the software development process.

For the purpose of advancing error detection, the verification of design models

appears as one of the most prominent solutions. Briefly, the objective of this verifica-

tion is to determine whether the design models actually possess the desired properties

specified at the requirement phase. In the state-of-the-art, there are many verification

techniques targeting at design models. Including informal approaches such as peer

reviewing and testing, as well as formal methods, static analysis, theorem proving,

model checking, etc. Different approaches are usually more applicable to different
areas.

In this research work, we combined two highly successful techniques in the infor-

mation technology (IT) industry in the field of modeling languages and verification

technologies. The first one is the Unified Modeling Language (UML) [44]. It

has become the de facto language for software specification and design. UML is now

used by a wide range of professionals with very different background, e.g.: software

architects, database professionals, business planner, software developer and etc. The

second one is Model Checking. It is a formal verification technique which allows

the desired properties to be verified through the inspection of all possible states of

3



the model under consideration. The attractiveness of model checking is the following:

it is completely automatic, it offers counterexamples in case a model fails to satisfy

a property assisting as a valuable debugging in information, and finally, the perfor-

mance of model-checking tools has proven to be mature since they have been used

by a number of successful industrial applications [6]. The combination of UML and

Model Checking gives significant capabilities to developers in order to create a secure

design of the system and, at the same time, verify the correctness of models at the

beginning of the software life cycle.

Even though the model checkers have been successful in implementing high-perfor-

mance verification algorithms, they are still not very popular in the UML community.

There are many challenges faced by UML developers when it comes to combine UML

with model checking. First, most of developers are not familiar with formalism used

by model checkers. Concepts like temporal logics and labeled transition system are

some prerequisites to use model checking techniques. However, most of developers are

resistant to get used to these concepts. Second, even if the developers are able to deal

with the formalism, the output from the verification tool is not similar to the UML

notation and it is not easy be understood in the UML context. Finally, the generation

of model checkers code is a very problematic task. It demands specialized knowledge

such as: (1) a detailed understanding of the semantics of the UML diagrams in order

to extract the correct behavior from the models. (2) an advanced knowledge about the

semantics and syntax of the model checker language to guarantee that the generated

code reflects exactly the behavior extracted from the UML model. In addition to

that problems, a simple UML model may require many lines of model checker code,
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which makes it a very tedious and demanding task when the code generation is done

manually.

The approach proposed in this thesis addresses all these problems by implementing

a new verification framework with support to property specification without using the

complexity of formal languages, UML-like notation for the verification results, and

a fully automatic verification process. As the model checking verification process is

completely automatic, this mechanism can be incorporated into the development

methodology without the need to give training to users about the mathematical

foundations and the verification algorithms. The result of this approach is an ef-

ficient tool for advancing error detection. This tool inherits the rigor and soundness

of formal techniques (which is of vital importance when it comes to verification of

security-critical and high-reliable software) and, simultaneously, it hides its complex-

ity. Moreover, since it targets at the early stages of the development process, it can

reduce considerably the overall development cost.

This thesis is part of the research initiative supported by Ericsson Canada Soft-

ware Research. This cooperation program aims at developing a Model-Based Frame-

work for Engineering Secure Software and System (MOBS2)1. The targeted security
concerns are: capturing security requirements, specification and design of security

mechanisms, verification and validation of security properties/policies, and automatic

generation of secure code. Appropriate security profiles and UML language exten-

sions will be used in the capture of security requirements as well as the specification

and design of security solutions.
1 http://mowglish.ciise.concordia.ca
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In the following, we enumerate the objectives of this research work along with the

proposed approach and the framework designed to achieve these goals.

1.1 Objectives

This main objective of this thesis consist in proposing a mechanism to advance error

detection in the software development process by creating verification framework

capable of analyze UML design models using model checking techniques and provide
meaningful and easy-to-understand results. This framework needs to provide support

for properties specification without using the complexity of formal languages. In
addition, the verification procedures need to be transparent to the developer, meaning

that the proposed approach should be as much as possible automated in order to hide

the complexity of model checking.

More specifically, the detailed goals are the following:

• Investigate the state of the art approaches in the fields of properties specification
and software verification at the design level.

• Provide alternatives for the property specification using behavior diagrams, and

propose a new language on top of formal logics.

• Define the translation rules of UML models and properties into the input lan-

guage of the model checker.

• Prototype the approach into a framework for verification design models, and
incorporate it into a Integrated Development Environment (IDE).
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• Conduct case studies with the objective of demonstrating the feasibility and

effectiveness of the proposed approach.

1.2 The Approach

As previously mentioned, our approach comes from the harmonious combination of

two successful techniques, software modeling with UML" and formal verification using

model checking. Figure 2 depicts the overview of our approach.

Design Design
Models

Semantic
Compilation

Semantic
Models

System
Requirements

Properties
Specification

System
Properties Formalization

Formal
Properties

Model
Checkin

Assessment
Results

Figure 2: Approach Overview

The verification process stars with the System Requirements developed by the re-

quirement engineers. Typically, this artifact is a well-structured document containing

all what the system should and should not do. The System Requirements, are then

used as input to two important activities: Design and Properties Specification.

The Design has the purpose of translating the requirements into a specification

that describes how to implement the system [32]. The output of this activity is the

Design Models having the structural and behavioral specification of the system. In



this thesis, we assume UML as the modeling language used in this activity, since it

has proved to be very powerful, versatile and well-accepted by the industry.

The Design Models needs to be accompanied with a specification of properties of

interest to be verified. At the Property Specification activity, we provide developer

with alternatives (e.g., UML profile, templates, etc) to facilitate the task of writing

properties without the need to uses formal languages.

The subsequent steps of the proposed approach are all automatic. The verification

engine receives the models and the properties and transforms them into Semantic
Models and Formal Properties, respectively. The Semantic Models are derived from

the models by following the OMG UML specification [44]. For the Formalization of

system properties, Linear Temporal Logics (LTL), Computational Tree Logic (CTL),
and automata-based properties are used as the underlying formal language.

The Model Checking algorithms are implemented by the existing model checking

tools. In this work, we decided to use SPIN which is a well-known model checker.

SPIN is one of most popular and powerful tool for detecting software defects in

concurrent system designs. It has been developed at Bell Labs in the eighties and

nineties. In 2002 SPIN was recognized by the Association for Computing Machinery

(ACM) with its most prestigious Soßware System Award. The tool has been applied in
several application from verification of complex call processing software that is used in

telephone exchanges, to the validation of intricate control software for interplanetary

spacecraft [24].

Finally, the results are presented as an easy-to-understand graph automatically

generated by analyzing the model checker's outputs. These results are then utilized
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by the developers to refine the design models in order to remove all the found errors.

This main contributions introduced in this approach are the followings: (1) In the

property specification activity, the new proposed alternatives to write properties are

based on UML state machine diagrams and natural language, which are appealing to

developers. Moreover, the work of formalization and translation to the input language

of the model checker is completely transparent to the developer. (2) The semantic

compilation is also automatic and transparent to the developer. In addition, our

approach can handle the new element of UML 2.0 interaction, which allows developer

to verify very complex scenarios with non-straightforward execution trace. Finally,

(3) in the assessment results, our approach address the problem of output generated
by the verification tool not being similar to the UML notation. Our tool generates

graphical results that can be easily compared to model being analyzed. Consequently,

a developer can quickly identify the problem when reading results.

1.3 Framework

Our framework demands an underlying UML modeling tool where the developers can

create the UML design models. We have chosen IBM Rational Software Architect2

(RSA) as the environment for development, since it contains a very powerful UML
modeler. In addition, it can be augmented with Eclipse plug-ins, which allows the

verification engine to be embedded into the development environment.

Figure 3 shows the structure of the main components of the framework. We decided

to divided our tool into three layers. The first one is the Modeling Layer. This is
2http://www.ibm.com/software/awdtools/architect/swarchitect/

9



Modeling Layer:

Result
Viewer

Property
Editor

UML
Modeler

Design
Models

System
Properties

ormano?
Clear

Results
Semantic
Compiler

Property
Refiner

Result

Analyser
FormalSemantic

PropertiesModels

Translator Unclear
Results

Model Checker
Code

Model
Checker

Verification :
Layer '¦

Figure 3: Framework Components Overview

the layer that interacts directly with the user (the developer). It is composed of

UML Modeler, Property Editor and Result Viewer. The UML modeler comes as

part of the IBM RSA and its elements are accessed using eclipses plug-ins. We

developed the property editor and the Result Viewer to facilitate the specification

of system properties and to present the result in a friendly manner, respectively.

The second layer is responsible to translate models and properties into the input

language of the model checker by extracting the semantic models (Sematic Compiler),
formalizing the properties (Property Refiner), and translating then into the model

checker code (Translator). Moreover, this layer receives the output from the model
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checker and analyzes it (Result Analyzer) in order to produce meaningful and easy-

to-understand results. Finally, the third layer contains the actual verification engine.

Herein, we consider only model checking tools, but this layer can expanded to also

include other verification tools such as theorem provers or static analyzers. It is

import to mention that the first two layers are into the IDE. This feature makes the

incorporation of the verification mechanism very smooth and reduces considerably

the work with configuration and training.

1.4 Related Publication

The significance of this research work gained scientific visibility with the following

publications:

• In [57] , we present an extensive survey about usability of security specification

approaches for UML Design. It shows how the main adopted can be used for

property specification along with a comparative study. The details of this study

can be found in chapters 2 and 3.

• In [37], we present an efficient technique for formal V&V of UML 2.0 sequence

diagrams. This paper focus on the semantics of UML sequence diagrams and its

verification using SPIN model checker. The details about the proposed approach

can be found in chapter 4.

1.5 Structure of the Thesis

The reminder of the thesis is organized as follows:

11



• Chapter 2 provides a review of literature. It shows the theoretical background

about the OMG Unified Modeling Language, and software verification. It also

depicts the state-of-the-art survey of property specification and verification of

UML diagram.

• Chapter 3 shows different alternatives for writing properties. It shows how UML

artifacts can be used for property specification. In the end, it presents the new

alternatives using UML behavior diagrams and a new language on top of the

formal logics.

• Chapter 4 presents the application of our approach in UML interactions. It starts

presenting the semantics of UML interactions. Then it shows how to compile

interaction semantics into PROMELA semantics, which is used as the input for

the SPIN model checker. Subsequently it presents a case study to demonstrating

the feasibility and effectiveness of the proposed approach.

• Chapter 5 gives a detailed description of the tool implemented to support our

approach.

• Chapter 6 presents the summarizing conclusion of the thesis.

12



Chapter 2

Review of Literature

This chapter introduces the main concepts needed to support the work developed

in this thesis. We present the theoretical background on modeling languages (with

focus on UML), starting from the classification of UML diagrams to the different

views of the models. In addition, the foundation on software verification is also

presented. Finally, the state-of-the-art survey on property specification in UML and

UML models verification is detailed in the end of this chapter.

2.1 The OMG Unified Modeling Language

Nowadays, models appear constantly in our routine. Any person, even with no mod-

eling background, is used to read models representing, for example, driving directions,

furniture assembling instructions, device safety procedures, and so on. Models are an

appealing way of representing a system in many different fields. It is not a surprise

that modeling languages are increasingly becoming more and more important in soft-

ware engineering. Modeling abstracts a real system to a level where only the essentials
13



aspects matter. It provides means of understanding extremely complex software, as

well as it makes the communication among the development team much more efficient

and effective [58]. Hereafter, we introduce the modeling language which has become

the de facto standard language for software specification and design: UML.

The Unified Modeling Language (UML) is a language and notation system used to

specify, construct, visualize, and document models of software systems. Before UML,

software developers used to have a collection of mismatched diagram techniques,

notation, and semantic approaches [36]. The creation of UML came as solution in

order to have an unified notation and semantic model. UML covers a wide range

of applications and is suitable for technical (concurrent, distributed, time-critical)

systems and so-called commercial systems [62]. It is now used in many different

ways by people with very different backgrounds. Weilkiens and Oestereich, in [62],
enumerate some interesting examples of professionals using UML:

• business planners, as a language to specify the planned operation of a business

process, perhaps in concert with a business process language such as the Business

Process Modeling Notation (BPMN) [45].

• consumer device engineers, as a way to outline the requirements for an embedded

device and the way it is to be used by an end user.

• software architects, as an overall design for a major stand-alone software product.

• IT professionals, as an agreed-on set of models to integrate existing applications.

• database professionals, to manage the integration of databases into a data ware-

house, perhaps in concert with a data warehousing language such as the Common

14



Warehouse Metamodel (CWM) [46].

• software developers, as a way to develop application that are flexible in the face

of changing business requirements and implementation infrastructure.

UML is now at the version 2.2. A major update has been done at version 2.0

compared to the version 1.x. UML 2.0 improved behavioral modeling by deriving

all behavioral diagrams from a fundamental definition behavior, In contrast to UML

l.X where different behavioral models were completely independent [42]. It also

improved relationship between Structural and Behavioral Models. Now UML allows

to designate that (for example) a State Machine or Sequence is the behavior of a class

or a component.

The new version of UML goes beyond the Classes and Objects modeled by UML 1.x

to add the capability to represent not only behavioral models, but also architectural

models, business process and rules, and other models used in many different parts of

computing and even non-computing disciplines [42].

2.1.1 UML Diagrams

There is a wide range of UML diagrams with different capabilities. The OMG UML

specification classifies the models into two main categories: structural and behavioral

diagrams. A Structural model shows the static structure of the objects in a system

[44], i.e., how the elements are composed. A behavioral model shows the dynamic

behavior of the objects in a system, including their methods, collaborations, activities,

and state histories [44]. Unhelkar, in [58], proposed an additional classification for

15



UML diagrams based on the time dependency of each diagram. He suggests that UML

models can have either a static or a dynamic nature. Dynamic models are those which

display various states of elements and the events that causes state changes, and those

diagrams which are frozen in time are then static.

Diagram

Structure
Diagram

Class
Diagram

Component
Diagram

Composite
Structure
Diagram

Package
Diagram

Deployment
Diagram

Object
Diagram

Profile
Diagram

Behavior
Diagram

—5—
Activity
Diagram

Use Case
Diagram

StaticA

Use case
Activity

Interaction Overview

State Machine
Diagram Behavioral

interaction
Diagram

Sequence
Diagram

Communication
Diagram

Interaction
Overview
Diagram

Timing
Diagram

State Machine
Sequence

Communication
Timing

Dynamics r

Package
Class

Deployment
Component

Profile

Structural

Object
Composite structure

(a) (b)

Figure 4: (a) OMG classification of UML diagrams, (b) Diagrams classification including structural
and characteristics as well as their static versus dynamic nature [58]

To illustrate the different applications of UML diagrams, figure 5 depicts a hy-

pothetical situation where the system needs to implement two use cases [login and

logout). This requirement is shown in figure 5(a) by the Use Case diagram. In order

to implement these use cases, a developer can decide to define two classes which are:

User and Authenticator. The static structure of these classes is shown in figure 5(b)

as a Class diagram. The interaction among the instances of the classes in the login

scenario is presented as a Sequence diagram in figure 5(c). This diagram shows that
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a database with user credentials should also be implemented in this system. Finally,

internal behavior of the authenticate is specified using a State Machine Diagram.

uc login-logout ) class user 7
User

usemame

password

Authenticator

+loginO
+ logout ()

(b)

sd authenticator

login I
I

gelCredentials J
credeniials I

?« 1

ï>
£ ,

validate

stm authenticator J

waiting Request

Validating Credential

fvalidalion/OK J / grant [validation Failed],'deny

(c) (d)

Figure 5: Example of using UML diagrams

Table 1 provide a brief description of all diagrams. It is possible to see that each

diagram has a different purpose and a precise strength for particular tasks inside the

software development process. Choosing the right set of diagrams to model a system

is very important to make the design understandable and approachable [58].

2.1.2 Views of the Model

There are many ways to break up UML diagrams into perspectives or views that cap-

ture a particular aspect of a system. In this research work, we follow the Kruchten's
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UML Diagrams
Use case
Activity
Class
Sequence
Interaction Overview
Communication
Object
State Machine
Composite Structure
Component
Deployment
Package
Timing
Profile

Represents
system functionality from the user's viewpoint
a sequence of actions of a flow within the system
class, entities, business domain, database
interactions between objects
interactions at a general high level
interactions between objects
objects and their links
the run-time life cycle of an object
component of object behavior at run-time
exécutables, linkable libraries, etc.
hardware nodes and processor
subsystems, organization units
time concept during object interactions
UML extensions

Table 1: UML diagrams [58]

4+1 view model [31] to describe the role of each diagram in the overall model. This

approach has become a de facto standard to classify the views of the model. The 4+1

view model organizes a description of a software architecture using five concurrent

view, each of which address a specific set of concerns [31], as shown in Figure 6 .

Logical
View

Process
View

Use Case View

Physical
View

Development
View

Figure 6: Kruchten's 4+1 view model

Each view is defined in the following [40]:

• The logical view describes the abstract description of a system's parts. Used to

model what a system is made up of and how the parts interact with each other.

The UML diagrams typically used in this view are class, object, state machine,
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and interaction diagrams.

• The process view describes the processes within your system. It is particularly

helpful when visualizing what must happen within your system. This view typ-

ically contains activity diagrams.

• The development view describes how your system's parts are organized into mod-

ules and components. It is very useful to manage layers within your system's

architecture. This view typically contains package and components diagrams.

• The physical view describes how the system's design, as described in the three

previous view, is then brought to life as a set of real-world entities. The diagrams

in this view show how the abstract parts map into the final deployed system.

This view typically contains deployment diagrams.

• The use case view describes the functionality of the system being modeled from

the perspective of the outside world. This view is needed to describe what the

system is supposed to do. All of the other view rely on the use case view to

guide them. This view typically contains use case diagrams, descriptions, and

overview diagrams.

2.2 Software Verification

During the recent years, a number of approaches have been proposed to insure the

correctness of software-intensive systems. These techniques are either informal or

formal as well as manual or automated. Software verification approaches focus on

checking if a product is being built correctly, i.e., they make sure that the program
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functions have the expected behavior. We also investigate software validation tech-

niques. These approaches ensure whether the software meets the user's needs, i.e.,

they check if the correct product is being built.

Among all the proposed approaches, formal methods are now getting a considerable

attention from the research community because of their rigor and soundness. This

attribute has even more importance in the software security development where the

need of vulnerabilities-free software is main goal. Next sections describes the main

formal verification approaches as well as the formal language used in these approaches.

2.2.1 Formal Methods for Verification

Due to the fact that software architectures are becoming increasingly complex, it is

each time more difficult to assure the satisfaction of all required properties only by

using of test-based techniques. In order to overcome this problem, formal methods

appears as very important option to guarantee high-quality of software-based sys-

tems. Formal methods are techniques based on logics, set theory, and algebra for the

specification of software systems models and verification of models' properties [15].
The use of formal methods has become widespread, especially during early phases of

the software development process. The concept is to create an abstract model of a

software system which can be used to verify whether the software under development

satisfies a given set of properties. Indeed, the detection and prevention of faults is one

of the main motivation for using formal methods. Verifying a formal system specifi-

cation can help to detect many design flaws; furthermore, if the specification is given

in an executable language, it may also be exploited to simulate the execution of the
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system, making the verification of properties easier (early prototyping) [15]. Static

Analysis, Theorem Proving and Model Checking are the three major approaches in

the state-of-the-art. These approaches are described below.

Static Analysis

Static Analysis techniques are those approaches that scan for errors using the static

specification of a system. In other words, any tool that analyzes a code without

executing it is performing static analysis [13]. Static analysis tools are often compared

with spell checkers. The latter can rise an alert when the writer makes a well-known

mistake, nevertheless they are unable to interpret a text and detect a misuse of

certain word (e.g., spell checkers may not tell that you should have used meet instead

of meat). Currently, there exist many commercial and open-source static analysis
tools and they are widely used in the software development process. Type checking,

style checking, vulnerability finding, security review are only few examples of the
applicability of static analysis.

Despite its popularity, there is a common complaint against static analysis tools

regarding the number of false positives. A false positive is a defect reported by the

verification engine where no problem actually exists. Since the runtime behavior is

not used in this technique, at many points the tool is not able to determine whether

an unclear situation has a real bug. Consequently, it gives several alarms. A very

important motivation to generate many false positives is to minimize the number of

false negatives. A false negative is the most undesired situation where a real problem

actually exists, but the verification engine does not report it. On the other hand, a
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large number of false positives can induce the developer to overlook some severe bugs.

Theorem Proving

Theorem proving tool is an application that, given a calculus (for some logic) and a

formula, attempts to find a proof by repeatedly applying the inference rules of the

calculus [54]. There are two main types of theorem provers: Interactive Theorem

Provers (ITPs) and Automated Theorem Provers (ATPs). ITPs are tools where the
application of operations and inference rules is performed manually by executing com-

mands and creating command scripts. Whereas ATPs algorithms perform automatic

search for a proof. There also rare cases where due to the formalism involved (e.g.

hidden circular references leading to a logical paradox), a given conjecture cannot be

either proven or disproven [H]. The high level of complexity of this technique is one of

the main reasons why it is not yet widely used for the verification of software-related

systems.

Model Checking

Model checking is a formal verification approach for detecting behavioral flaws (in-

cluding safety, reliability, and security-related flaws) of software systems based on

suitable models of such systems [15]. Model checking is fully automatic, has a very

good coverage, produces valuable results (counterexamples), and it can uncover soft-
ware defects that might go undetected using other verification techniques. However,

there are still some shortcomings in model checking. Indeed, there are still several bar-

riers to fully integrate it into software development process. More specifically, model

22



checking has a major scalability issue; also, there is still a gap between model checking

concepts and notations and the models used by engineers to design systems [15].

Unfortunately, the number of states may proliferate even for relatively simple pro-

grams, making the model checking approach computationally very expensive. How-

ever, space search algorithms allowing more than 1020 states have been available for

several years now, and today's model checkers can easily manage millions of state

variables. In addition, a number of techniques have been developed to prevent state

explosion and to enable formal verification of realistic programs and designs [15].
The theoretical concept supporting model checking techniques is state reachability

analysis, which has the advantage of being conceptually simple. Basically, the verifier

states the properties it would like the program to possess; then a model checker

tool searches the program state space looking for error states, where the specified

properties do not hold [15]. It is important to mention that the property specification

prescribes what the system should do and what it should not do, while the model

description address how the system behaves. If the tool is able to find a state for which

the property under consideration fails, it provides a counterexample that indicates

how the model could reach the undesired state. The counterexample describes an

execution path from the initial system state to a state that violates the property

being verified. With a simulator, the user can replay the violating scenario, obtain

useful debugging information, and adapt the model (or the property) accordingly [6].
Figure 7 shows an overview of the model checking approach.

From figure 7, it is possible to see that the model checking approach has a very good

similarity with the approach proposed in figure 2. Both approaches have activities
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Figure 7: Model Checking Approach Overview [6]

to generate system properties and design models. The assessment results from figure
2 would encapsulate the elements after the model checking in figure 7 (i.e. satisfied,
violated + counterexample, simulation and error location). This was one of the main

reasons why we decided to choose model checkers as the verification engine supporting

the error detection in UML diagrams. In the following, we introduce the SPIN Model

Checker, which is verification tool chosen for this research work.

SPIN Model Checker

SPIN is a generic verification system that supports the design and verification of asyn-
chronous process systems [25]. SPIN verification algorithms focus on proving the cor-

rectness of process interactions. These interactions can be specified using SPIN ren-
dezvous primitives that allow specification of asynchronous messaging passed through
buffered channels and accessed by shared variables. The name SPIN was originally
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chosen as an acronym for Simple PROMELA Interpreter, since the specification lan-

guage that it accepts is called PROMELA. SPIN can be used in two basic modes: as a

simulator or as a verifier. In simulation mode, SPIN is used to get a quick impression

of the types of behavior that are captured by a system model, as it is being built.
This can be of considerable help in the debugging of models. However, no amount of

simulation can prove the satisfaction or not of a given property; only a verification

run can do so [24]. In the verification mode, SPIN checks if there is at least one

execution path that leads to an undesired state, the it uses the simulation mode to

display the error trace.

The internal structure of SPIN is shown in figure 8. SPIN comes with a graphical

front-end: XSPIN. The PROMELA parser is able to receive properties written in

Linear Temporal Logic (LTL) and translate them into the PROMELA language. For

the verification purpose, SPIN generates an optimized C code from the PROMELA

specification. This code needs to be compiled by a C compiler and the output of the
executable file is the result of the verification. If a property fails, an execution trace

is generated from the verifier and it can be used guide a simulation showing the steps
that lead to undesired situation.

2.2.2 Temporal Logics

Temporal logic is a form of logic specifically tailored for statements reasoning which

involve the notion of order in time [8]. Although the term temporal suggest a relation-

ship with the real-time behavior, this is only true in an abstract sense. A temporal

logic allows the specification of relative order of events. It does not support any
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Figure 8: SPIN structure [25]

means to refer to the precise timing of events. In terms of transition systems, neither

the duration of taking a transition nor state residence times can be specified using

the elementary modalities of temporal logics. Instead, these modalities allows the

specification of the order in which state labels occur during an execution, or to assess
that certain state labels occurs infinitely often in a (or all) system execution [6].

Temporal logic also offers concepts immediately ready for use. Its operators mimic

linguistic constructions (the adverbs "always", "until", the tenses of verbs, etc.) with
result the natural language statements and their temporal logic formalization are

fairly close. Finally, temporal logic comes with a formal semantics, an indispensable

specification language tool [8].
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In the following, we describe the two most commonly used temporal logics in

model checking tools: Linear Temporal Logic (LTL), a temporal logic that is based

on a linear-time perspective, and Computational Tree Logic (CTL), a logic that is

based on a branching-time view.

Linear Temporal Logic (LTL)

Linear Temporal Logic is a logic for reasoning about properties of computational

paths. A LTL formula, in the context of a given execution, considers only one possible
future in a moment. It cannot examine alternative executions which split of the

execution when a nondeterministic choice is possible [8].

The basic ingredients of LTL-formulae are atomic propositions, the Boolean con-
nectors like conjunction ?, negation ->, and two basic temporal modalities O (next)

and U (until). The O operator is a unary prefix operator. The formula ?f holds
at the current moment, if f holds in the next "step". The U operator is a binary

operator. The formula 0iU</>2 holds at the current moment, if there is some future
moment for which f2 holds and f? holds at all moments until that future moment [6].

The until operator allows deriving the temporal modalities eventually (denoted O)

and always (denoted D) as follow:

0F = truelle (1)

?f = -.0-0 (2)
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Figure 9 shows the semantics of temporal operators for the case where the argu-

ments are just atomic propositions.

atomic prop, a f~
arbitrary

-»*
arbitrary

—*·
arbitrary

—?·
arbitrary arbitrary

arbitrary
Oa ·—

arbitrary
—*·—

arbitrary arbitrary arbitrary
?·

oA->i aA-'ft al\~-b ??-·6
aUi · *· *+ »·

??-fc

Oa
-^a

a
?a F-

a

arbitrary

arbitrary
—»· *··

arbitrary

arbitrary

execution steps

Figure 9: Semantics of Temporal Operators

Computational Tree Logic (CTL)

Computational Tree Logic is a branching-time logic. The semantics of this temporal

logic is not based on a linear notion of time, but on a branching notion of time (an

infinite tree of states). Branching time means that at each moment there may be

different future paths. The semantics of branching temporal logic is defined in term

of an infinite, directed tree of states. Each traversal of the tree starting from its root

represent a single path [6].

The temporal operator in branching-temporal logic permit the expression of prop-

erties of some or all computations that start in a state. In order to allow this kind

of expressions, CTL supports the existential (denoted 3) and universal (denoted V)
path quantifiers. Figure 10 presents the semantics of the CTL operators.

• In figure 10(a), there are two paths that is possible to reach a white circle. Since
the condition to 30 white be true is to have at least one path reaching a white
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circle, this property holds in that tree.

• In figure 10(b), there is one path that the color is always white. This makes the

property 3D white true in that scenario.

• In figure 10(c), for all paths there is at least one white color. This is condition

for VO white to be true.

• In figure 10(d), all the colors are white, then VD white holds in this scenario.

• In figure 10(e) , there is a path where the colors are gray until the first black. In

other words, grays is true until black. Therefore, 3(gray U black) is true.

• In figure 10(f), the condition grays is true until black holds in all path. Then

V (gray U black) is true.

Expressiveness of CTL vs. LTL

Even though CTL and LTL allow the specification of many important properties,

those logics are not comparable in terms of their expressiveness. In other words, there

are properties that can only be expressed using LTL, whereas some other properties

can only be expressed in CTL. Below are some examples of the difference between
LTL and CTL.

• LTL g CTL

- ODa e LTL, but ODa g CTL (idea: VOVDa f VODa)

• CTL g LTL

- VD30a e CTL, but VO30a f LTL (idea: no 3 in LTL)
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Figure 10: Semantics of CTL operators
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CTLLTL

Figure 11: Expressiveness of CTL vs. LTL

There are still many debates regarding the complexity of the verification algo-

rithms in both languages. However, in practice there is no measure that can reliably

tell which method can solve a given problem more efficiently [24]. CTL model checkers

have been very popular in the development of the early tools for hardware verifica-

tion, while LTL model checkers have become dominant in applications of software

verification [24]. The logic itself, though, is not the only factor that determines the

success of a model checkers. Implementation issues as well as the domain where the

tool is being applied could also be mentioned as important factors to its performance.

2.3 Property Specification for UML Design

In this section, we present a survey on the main state of the art contributions that

are related to specifying and designing security for UML.

The UMLSec approach by Jürjens is among the first efforts in extending UML for

the development of security-critical systems [27]. It provides a UML profile where

general security requirements such as secrecy, integrity, fair exchange, etc are encap-

sulated using UML stereotypes and tagged values. It also defines a tailored formal

semantics to formally evaluate UML diagrams against weaknesses. In order to an-

alyze security specifications, the behavior of a potential adversary that can attack
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various parts of a system is formally modeled. However, UMLSec lacks in expres-

siveness since security properties are predefined using UML stereotypes and tagged

values. This framework cannot be used to specify user-defined properties.

Pavlich-Mariscal et al. propose an aspect-oriented approach to model access con-

trol policies [48]. They augment UML with new diagrams to represent Role-Based

Access Control (RBAC), Mandatory Access Control (MAC) and Discretionary Access

Control (DAC) schemes, that are separated from the main design. MAC, DAC and

RBAC are decomposed into security features which represent specific elements of an

access control policy, e.g. permissions, MAC security properties, delegation rules, etc.

This is the only approach that combines MAC, DAC and RBAC into a set of security

diagrams separated from the main design. Modeling security as aspects reduces the

scattering of access control definitions in the entire application. It is also possible to

make changes to the design without impacting the entire security of the application.

Moreover, Pavlich et al. supports an AOP [29] code generation to enforce access

control policies at execution time. However, this approach is limited to access control

policies.

Zisman proposes a framework to support the design and verification of secure peer-

to-peer applications [64]. The design models and security requirements are specified

using UMLSec. The modeling of abuse cases to represent possible attack scenarios

and potential threats helps designers to identify the security properties to be verified

in the system. In addition, this approach artifacts expressing properties to be verified

by defining a graphical template language. It also allows verification of the models

against the properties and visualization of the verification results.
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Lodderstedt et al. (SecureUML) propose an approach to model RBAC policies for

model-driven systems [38]. It also provides additional support to specify authoriza-

tion constraints related to the state of the system. In contrast to other approaches,

SecureUML proposes a general schema for building systems by combining design

modeling languages with a security modeling language; it does not fix one particular

design modeling language. However, it only focuses on specifying RBAC model, and

does not support secure code generation.

The approach of Doan et al. incorporates RBAC, MAC and lifetimes into UML

for time-sensitive application design [17]. The main focus of this approach is that the

process of designing and integrating security in a software application captures not

only the current design state, but allows tracking the entire design evolution process

via the creation and maintenance of a set of design instances over time. The design

tracking allows a software/security engineer to recover to an earlier design version

that satisfies specific security constraints.

Montangero et al. (For-LySa, DEGAS project) present two UML profiles to model

authentication protocols [41]: the Static For-LySa profile which describes how the au-

thentication protocol concepts (Server, Principals, Keys, Messages, etc.) can be mod-

eled using UML class diagrams, and the For-LySa profile which models the dynamic

aspects of the protocol in sequence diagrams, as well as the information needed to.

analyze the protocol. In order to validate a protocol, the approach For-LySa defines

a specification language with semantics to write pre/post conditions and invariant

constraints. This approach focuses only on the modeling of authentication protocols.

The approach of Ray et al. uses parameterized UML diagrams to model RBAC
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and MAC frameworks and then compose them manually to produce a hybrid access

control policy [50]. It is the first approach that attempts to combine RBAC and

MAC. However, it focuses only on how to model RBAC and MAC systems in UML

without considering how this approach can be used to design a secure software sys-

tem. In another effort [56], Ray et al. integrate RBAC and MAC policies into an

application using an aspect-oriented approach to separate access control features from

other application features.

Alghathbar and Wijesekera (AuthUML) propose a framework to incorporate access

control policies into use case diagrams only [4]. The aim of AuthUML is analyzing (not
necessarily modeling) access control policies during the early stages of the software

development life cycle before proceeding to the design modeling to ensure consistent,

conflict-free and complete requirements.

Popp et al. propose an extension to the conventional process of developing use

case oriented processes [49]. In addition to modeling security properties with UML,

this approach provides a method to incorporate these security aspects into a use case

oriented development process.

Painchaud et al. (SOCLe project) provide a framework that integrates security

into the design of software applications [47]. It also includes verification of UML

specifications and a graphical user interface tool that allows the designer to visualize

the verification results and to inspect the diagrams' execution graph. But in this

approach, security policies are simply specified using the Object Constraint Language

(OCL) constraints.
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Ledru et al. (EDEMOI project) aim at modeling and analyzing airport secu-

rity [34] . The security properties are first extracted from natural language standards
and documents, and integrated into UML diagrams as stereotypes in a UML pro-

file. The UML specifications are then translated into formal models for verification

purposes. This approach is not general enough to be used for software development.

Epstein and Sandhu's work is one of the first approaches that investigate the use

of UML to model RBAC policies [18]. However, it is limited to only one specific

RBAC model which is the RBAC Framework for Network Enterprises (FNE). The

FNE model contains seven abstract layers that are divided in two different groups.

This approach allows to present each of the FNE model's layers using UML notation

by defining new stereotypes. This approach can assist the "role engineering" process,

however, it does not include subtle properties of RBAC such as separation of duty

constraints and it does not provide a method for deriving roles. In addition, there is

no formal semantics for verifying UML models.

Ahn and Shin propose a technique to describe the RBAC model with three views:

static view, functional view and dynamic view using the UML diagrams [I]. This

approach focuses only on the way that UML elements can be used to model RBAC
policies rather than taking a larger view of examining secure software design. It does

not provide a systematic modeling approach that can be used by developers to create

applications with RBAC models.

Brose et al. extend UML models to support the automatic generation of access

control policies for CORBA-based systems [9]. They specify both permissions and
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prohibitions on accessing system's objects since the analysis phase in use case dia-

grams. The UML design is used to generate an access control policy in VPL (View

Policy Language) that is deployed together with the CORBA application.

Vivas et al. propose an approach for the development of business process-driven

systems where security requirements are integrated into the business model [61]. Se-

curity requirements are first stated at the high level of abstraction within a functional

representation of the system given by UML diagrams using tagged values. Next, the

UML specification is translated into XMI representation that allows automatic pro-

cessing of the specification. Finally, the resulting specification is translated into a

formal notation for consistency checking, verification, validation and simulation.

Fernandez provides a methodology to build secure systems using patterns [19]. The

main idea of this approach is that security principles should be applied through the use

of security patterns at every stage of the software development process (requirements,

analysis, design and implementation stages). At the end of each stage, audits are

performed to verify that the security policies are being followed.

Chan and Kwok [12] propose a design methodology for e-commerce systems to

specify design details for three processes: Risk, Engineering, and Assurance, which

represent the main areas of security engineering in the systems security engineer-

ing capability maturity model (SSE-CMM) on which this methodology is based. A

security design pattern is used to specify each of those processes.
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2.4 Verification of UML Design Models

During the recent years, many techniques have been proposed for verification and
validation of UML diagrams, e.g., static analysis, theorem proving, model checking,

etc. Those approaches have different strengths in different areas. Since model checkers

provide automated tools for verification of a given behavioral property, they have
often been used in behavioral diagrams to ensure whether the system meets the pre-

defined requirements. Though, most of the proposed approaches target only activity

and state machine diagrams [10,21,22,28,33,39,53,55]. There are some approaches

targeting sequence diagram [3, 60]. However, when it comes to interactions, it is

important to analyze the type of messages being exchanged, as well as their source and
destination, and their send and receive events. The proposed approaches targeting

sequence diagram mainly focus on getting a formal representation of interactions,
and they miss a well-defined methodology to analyze all these important elements.

Moreover, those works either do not take into account UML combined fragments

(components newly introduced to UML 2.0 that allow designers to describe a number
of traces in a compact and concise manner [44]) or their semantics models are not in

accordance with the semantics defined in the UML 2.0 specification.

Alawneh [3] proposes a framework for V&V of some popular UML diagrams (Class,
State Machine, Activity and Sequence diagrams). In this approach, a semantics model

called configuration transition system (CTS) is extracted from behavioral diagrams
and then translated into NuSMV [14] code. This approach allows V&V of behavioral

models against properties written in computational tree logic (CTL). Even though
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this approach is dealing with some UML 2.0 sequence diagrams elements, the proposed

semantics model is not in full accordance with the standard semantics specified in [44]

due to the lack of send and receive events. As a consequence, some traces cannot be

captured in this approach.

Leue [35] presents a detailed description of the translation of Message Sequence

Charts (MSCs) [26] into PROMELA. Since the MSCs are the basis of UML sequence

diagrams [52], many of the proposed translation decisions can be applied to sequence

diagrams. However, the proposed approach deals only with the basic components

and decisions; consequently, its PROMELA representation of MSCs does not cover

the behavior of combined fragments introduced in UML 2.0 interactions diagrams.

Amstel [59, 60] proposes a set of techniques to improve the quality of sequence

diagrams. One of these techniques is trace analysis by using model checkers. To

obtain PROMELA code from sequence diagrams, this technique provides a translation

scheme that is based on [35]. However, since this approach is intended to UML 1.5

diagrams, combined fragments are not taken into account. In addition, the authors do

not propose a mechanism to use source and destination for writing formal properties.

In [16,30,53], they determine whether a given interaction can be successfully exe-
cuted in a system where the behavior is specified using state machines. These works

assume sequence diagrams as properties to be verified.

38



Chapter 3

Property Specification for UML

Design

In this chapter we investigate properties specification for UML design. It starts

with the detail explanation of the main adopted approaches in the area. Section 3.1

presents how to specify properties using the existing UML artifacts. Section 3.2

and section 3.3 show how to define properties by extending the UML meta-language

and creating a new meta-language, respectively. In the section 3.4, we compare

these approaches through a usability discussion. Finally, in section 3.5, we address

the problems of the existing approaches by providing our new mechanism to specify

properties.

From the state of the art presented in the previous chapter, three main UML

artifacts can be used for property specification: (1) stereotypes and tagged values,

(2) OCL, and (3) behavior diagrams. In addition, two other approaches can be used:

(1) extending the UML metalanguage or (2) creating a new metalanguage. Table
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2 summarizes the use of these approaches to specify security requirements by the

contributions presented previously.
Contributions

UMLSec [27]

Stereotypes and
tagged values

/

OCL Behavior
diagrams

Extending UML
metalanguage

New meta-
language

P. Mariscal et al. [48] / /

SecureUML [38] / /

Zisman [64] /

SOCLe [47]
For-LySa [41]
Epstein and Sandhu [18]
Brose et al. [9]

/
/
/

/

Ahn and Shin [1]
AuthUML [4]

Table 2: The Use of Security Specification Approaches in the State of the Art

In the following, we present each of those approaches and explain how it can be used

for security specification. The activity diagram of Figure 12 will be used throughout

the following subsections to show how security requirements can be specified for UML

design. The diagram specifies the behavior related to the admission of patients in

a medical institution. This example is a simplified version of the business process

used in [51]. The activity diagram consists of three main partitions: (1) Patient
who starts the activity by filling out an admission request, (2) Administration area-

where insurance and cost information are collected, and (3) Medical area which is

responsible for admission tests, exams, medical evaluations and sending the medical

results to the patient.
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Figure 12: An Activity diagram: admission of patients in a medical institution

3.1 Property Specification Using UML Artifacts

3.1.1 Stereotype and Tagged Values

Stereotypes are provided as a mechanism for extending the UML meta-language.

Therefore, a stereotype is considered as a user-defined meta-element. Its structure

matches the structure of an existing UML meta-element which is referred to as "base

class" . In that sense, a stereotype represents a subclass (subtype) of the base class.

It has the same form but with a different intent. A stereotype can have tagged values

used to define the additional information needed to specify the new stereotype intent.

Besides, constraints can be defined on both the base class attributes as well as the

tagged values. Code generators and other tools, such as those used for verification

and validation, reserve special treatment to stereotypes.

41



Use for Property Specification: System requirements are specified by attach-

ing stereotypes along with their associated tagged values to selected elements of the

design (e.g., subsystems, classes, etc.). Thus a specific profile should be created by

some expert for the specification of these stereotypes. The compiler used to parse

UML diagram is then modified such that it can read and interpret the stereotypes

annotating the design. This interpretation consists in generating a formal represen-

tation of the property corresponding to the used annotation. This requirement is

generated on the basis of the intent of the expert while taking into consideration the

specificities of each design. In addition, a formal semantics is associated with the

design. Then, the formal properties together with the formal semantics are provided

as inputs to a verification tool (usually a model checker). The result of verifying the

property on the design is translated into some representation that any non-expert

developer can understand. Some stereotypes are parameterized over the adversary

type. These stereotypes are used to specify security properties that need to be verified

against a specification of an attacker (adversary). Fair exchange, secrecy, and authen-

ticity are examples of these properties. The adversary type specifies the adversary's

computation capabilities and initial knowledge. Figure 13 shows how stereotypes can

be used to specify security requirements on the UML design of Figure 12. The used

stereotypes are Privacy, Auditing, Access Control, Critical, Integrity, and Non Repu-

diation. For example, the stereotype Privacy is attached to the Patient partition to

specify that unauthorized disclosure of sensitive information about the patient is not

permitted.
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Figure 13: An example of specifying properties using stereotypes

3.1.2 Object Constraint Language (OCL)

The OCL is a formal language used to express constraints over UML diagrams. These

constraints mainly specify those conditions that must be satisfied by the system being

modeled. The OCL is mainly used to specify application specific requirements for

UML models. In addition it is used to specify invariants of the UML meta-language.

More precisely, the main purposes for which OCL can be used are the followings: (1)

To specify invariants on classes and types in the meta-language, (2) to specify type

invariant for Stereotypes, (3) to describe pre and post conditions on operations and

methods, and (4) to describe guards [43].

Use for Property Specification: Since OCL is a language for constraints spec-

ification, it is natural to be used for property specification. OCL has been used for
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security specification following three main directions. First, for the security profiles

extending UML for security specification, OCL is used to define constraints on ele-

ments described by stereotypes and tagged values. Second, for those stereotypes used

for the specification of access control properties, OCL can be used by the designer to

define access control constraints (pre conditions and authorization guards). Third,

some OCL extensions [63] allow the specification of temporal logic formulas and thus

are used to specify security requirements in temporal logics, e.g., LTL, CTL, etc.

Figure 13 shows how OCL can be used to specify a constraint on the action "Fill ad-

mission request" . This constraint restricts the execution of this action to the working

hours. This will protect the system from malicious use during nights. The condition

start by specifying its context, i.e., the method on which it is applied, which is the

method FillAdmissionRequest of the class Admission. Then the constraint specifies

the pre-condition to be satisfied before executing the controlled method.

3.1.3 Behavior Diagrams

Behavior diagrams are UML diagrams used to depict the behavior features of the

system under design. These include activity, state machine, and use case diagrams

as well as four interaction diagrams.

Use for Property Specification: Behavior diagrams can be used for property

specification in two ways. The First one is to specify the behavior that 'MUST' be

observed by the system and the second one is to specify the behavior that 'MUST

NOT' be observed by the system. The later has been investigated by some recent
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contributions [64] where the used diagrams are called "Abuse cases diagrams" . Fig-

ure 14 shows an example of an activity diagram specifying the behavior that must

be followed by the system after filling the cost information until sending the medical

evaluation to the patient. This behavior is required for enforcing faire exchange be-

tween patients and the medical institution. Enforcing this behavior inside the original

design of Figure 12 results to the new design presented in Figure 15. This represents

one possible scenario of using behavior diagrams to enforce security requirements.

A non-security expert designer will use this "safe design" and integrate it inside its

original design. Another possible scenario is when the behavior diagram, specifying

a security requirement, is used to verify, through model checking or theorem proving,

whether the design satisfies or not the security requirement. In this case, the diagram

is translated into a (1) transition system (finite state machine or automata, etc.) or

(2) a logic formula, both expressed in the input language of the target verification

tool. Indeed, many contributions establishing the correspondence between transition

systems and temporal logics can be found in language theory [7]. A third possible sce-

nario is the use of behavior diagram to specify security aspects. Indeed, aspects [29]

are usually defined by specifying a behavior that is inserted before or after some ex-

ecution point. Thus this behavior can easily be specified by a behavioral diagram.

However, the weaving of aspects and the original design can be performed on the

level of design by weaving UML diagrams or postponed to the implementation phase.

In the later case, the weaving is performed on selected files of the source code and

the actual aspects expressed in existing aspect languages, e.g., AspectJ, and resulting

from the refinement of their initial behavior diagrams.

45



Patient

Receive
Medicai

Evaluation

Accounting

C
?

Fítl Cost
Information

3?
)

Check payment

{Payment
received]

Medical Evaluation

Evaluate
Patient Exams

?
)

Medical
Evaluation

Figure 14: Fair exchange requirement inside medical application

Patient
Administration Area

Admission Accounting

Medical Area

Medical Evaluation Exams

1
FiH Admission 1

Request I<
-M Clinical

Data

ÉL·
Capture

Insurance
Information < Fill Cost

Information

Í Pre-Ad mission ]
L_l!f!__J

IL [exams)

Check
Payment

< Make
Exams

. [Payment
Nr received]

JL·
Clinical

Information

-O
Receive
Medica! j^-

Evaluation

C Evaluate
Patient Exams

m
}

Medical
Evaluation

Figure 15: Enforcing the security requirement of Figure 14 in the activity diagram of Figure 12

3.2 Property Specification by Extending the UML Meta-

language

In this approach, the UML meta-language is directly extended by a meta-language

specification language as MOF (the Meta-Object Facility) [44]. The MOF defines
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a simple meta-metamodel, and the associated semantics, allowing the description of

metamodels in various domains including the domain of object design and analysis.

Extending the UML meta-language (meta-model) is usually needed when extension

mechanisms provided by UML (mainly stereotypes) are not appropriate for the target

extension or when the resulting complexity is not tolerated.

Use for Property Specification: The two reasons stated above are the same

motivating the extension of UML meta-language for property specification. Although,

stereotypes allow the specification of a wide range of security requirements, they are

not appropriate for specifying structured security policies: Those that are usually

specified using well structured specification languages. Access control properties and

security aspects are the main requirements for which it is better to have dedicated

meta-elements than using standard UML meta-elements annotated by stereotypes

and tagged values.

3.3 Property Specification by Creating New Meta-languages

In this approach, a new meta-language is defined using a metalanguage specification

language as MOF. The motivations of creating a new metà-language are the same

as those of extending the UML metalanguage. The vocabulary used by the meta-

elements defined by the new meta-language have domain-specific intuition and are

much more precise than the one used for UML meta-elements. Thus, the interfaces

needed for manipulating the new meta-elements are too simpler compared to those

required for UML design.
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Use for Property Specification: The motivations of creating new meta-languages

for property specification are exactly the same of extending the UML meta-language

for property specification. Indeed, the approach is used for the same objectives and

allows the specification of almost the same security requirements.

3.4 Usability Discussion

This section discusses the usability of each property specification approach using

the following criteria for evaluation: expressiveness, tool support, veñfiability, and

complexity.

3.4.1 Stereotypes and Tagged Values

In the following we discuss the usability of stereotypes and tagged values for security

specification.

• Expressiveness: UML artifacts provided by standard UML mainly stereotypes

and tagged values are the most used by the majority of the contributions. Among

these contributions, we can cite: UMLSec [27] by Jürjens which provides a

UML profile and an open-source tool for specifying security requirements such

as secrecy, integrity, authenticity, fair exchange, role-based access control, se-

cure communication links, and secure information flow. Stereotypes are used

by Pavlich-Mariscal et al. [48] and Basin et al. [38] for specifying access control

policies and by Montangero et al. [41] for modeling authentication protocols.

These contributions show that various security requirements have been specified
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using stereotypes and tagged values.

• Tool Support: Has an excellent tool support since any standard UML modeling

framework supports profile specification.

• Verifiability: A lot of work is done in background to generate a formal seman-

tics for the UML design, formally specify the security requirement, verify the

property against the design, and show the verification result to the end user

(UML designer). The later usually consists in displaying counter examples and
providing advices to improve the design and fix the vulnerabilities.

• Complexity: The complexity of the information related to stereotypes and tagged

values added for security specification, depends on the number of stereotypes and

tagged values attached to each UML element. For example, if different security

stereotypes are associated with the same UML element then it will be complex

for the user to select all these stereotypes and edit the associated tagged values.

In this case, the security profile designer has the responsibility of compacting as

possible the architecture of his profile design.

3.4.2 OCL

The OCL is also used by many of the surveyed contributions to express formal con-

straints in the specification of security properties. This is due to the fact that OCL is

part of the UML standard, and by its formal nature, it allows precise specification of

security constraints. The approach of Painchaud et al. (SOCLe project) [47] is based

on temporal logic extension of OCL for security specification. OCL has been also
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used by [38] to specify additional authorization constraints related to the state of the

system. As we mentioned previously, it is natural to use OCL for security specifica-

tion. However, it is important here to distinguish between using OCL as a support for

some security specification artifact as stereotypes and behavior diagrams, and using

it as security specification language. In the former case, the use of OCL improves the

usability of any specification artifact by allowing the definition of constraints over the

UML design entities. Accordingly, we focused our usability evaluation on the later

case. In the following we discuss the usability of OCL for security specification.

• Expressiveness: As a security specification language, the standard OCL [44]

is limited to specifying pre and post conditions and invariants that should be

satisfied by the application behavior. However, some OCL extensions allow the

specification of temporal logic properties.

• Tool Support: Standard OCL benefits from the support of different tools pro-

vided by standard UML modeling frameworks. However, the usability of OCL

extensions is limited by the availability of tools supporting the specification and

the compilation of security requirements.

• Verifiability: Once compiled and analyzed by the tool, security requirements

specified using OCL extensions are systematically provided as input formulas

for verification tools (model checkers and/or theorem provers). However, as for

stereotypes, a lot of work is done in background to generate a formal semantics

for the UML design, verify the properties against the design, and show the

verification result to the end user (UML designer).
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• Complexity: The complexity introduced by this approach depends on the number

of OCL expressions added to specify security properties and whether they are

crosscutting the application functionalities design or separated from them.

3.4.3 Behavior Diagrams

We notice the lack of using behavioral diagrams for security specification among the

surveyed approaches. In fact, only the approach of Zisman et al. [63] that proposes the

modeling of abuse cases to represent possible attack scenarios and potential threats to

the system security. In the following we discuss the usability of behavior diagrams for

security specification. We distinguish in our discussion between the use of behavior

diagrams to specify security requirements for the sake of verification and their use to

specify security aspects for the sake of security enforcement or hardening.

• Expressiveness: Is limited to specify those security requirements that are nat-

urally expressible via transition systems. These include mainly attack scenar-

ios and dynamically enforceable security requirements. As for security aspects

specification, behavior diagrams are very useful for specifying advices behavior.

However, stereotypes should be defined to allow the specification of patterns

needed for the definition of pointcuts.

• Tool Support: Behavior diagrams benefit from a wide tool support. However,

tool support for this approach depends also on the tool support of stereotypes.

• Verifiability: When used for security requirements specification, behavior dia-

grams are translated to transition systems or logical formulas in order to be
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verified on the system design. While the former translation is almost system-

atic, the later is limited to those diagrams satisfying some structural constraints

(e.g., determinism) and constrained by the availability of translation algorithms

in language and logic theory. As for stereotypes and OCL, a lot of work is

done in background to generate a formal semantics for the UML design, verify

the properties against the design, and show the verification result to the end

user (UML designer). When used for security aspects specification, as for the

first approach, a lot of work is done in background to (1) identify diagram en-

tities (e.g., methods/actions) matching the specified patterns and (2) weaving

diagrams specifying advices and those specifying the system behavior.

• Complexity: Relatively acceptable since the behavior diagrams specifying secu-

rity requirements are separated from those specifying the system behavior and

are easily distinguishable from them. The complexity of security aspects speci-

fication is comparable to that of security requirements specification.

3.4.4 Extending the UML Metalanguage

Only few contributions [48] have investigated the extension of the UML metalan-

guage for security specification. This is due to the fact that this kind of modification

requires a high expertise and knowledge of the UML meta-language and its objec-

tives. Indeed, the extension may require the modification of the whole metalanguage

which is too complex. In the following we discuss the usability of extending the UML

metalanguage for security specification.
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• Expressiveness: Comparable to that of stereotypes.

• Tool Support: The extension is heavyweight so that "may require one to extend

the CASE-tool itself, in particular the storage components, i.e., the repository,

and the visualization components" [38]. This impacts negatively the portability

of any extension since any UML modeling framework is heavily modified to allow

the use of the new meta-elements and their interpretation.

• Verinability: A lot of work is done in background to generate a formal semantics

for the UML design, verify the properties against the design, and show the

verification result to the end user. However, if the extension targets some low-

level policy specification language or AOP language, then the effort spent in

background is limited to parsing the specification and translating it to the target

language.

• Complexity: The complexity is comparable to that of using behavior diagrams.

3.4.5 Creating a New Metalanguage

As for the previous approach, only few contributions [38] have investigated the cre-

ation of new meta-languages for security specification. In the following we discuss

the usability of creating a new metalanguage for security specification.

• Expressiveness: Comparable to the expressiveness of extending the UML meta-

language.

• Tool Support: Better than that of extending the UML metalanguage and com-

parable to that of stereotypes. In addition, the compiler needed to parse the
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specification can be easily plugged in to the UML modeling framework.

• Verifiability: Better than that of the verifiability of extending the UML met-

alanguage. Indeed, the security specification is exclusively based on the new

meta-elements and thus is easier to parse and translate.

• Complexity: Comparable to the complexity of extending the UML metalan-

guage.

3.5 Our Approach for Property Specification

3.5.1 State Machine-Based Properties

In table 2, we can see that only one approach has investigated the use behavior

diagrams to express system properties. There are few approaches attempting to define

how UML behavior diagrams can be used as properties. In [64] , it is mentioned that

state machines can be used to represent properties, however it does not provide details

how to use these diagram as a input to the model checker.

As previously cited, behavior diagrams can be translated into transition system o

logic formula. Since UML state machines are semantically close to transition system,

we decided to provide developers with a mechanism to write using these diagrams by

implementing the approach depicted as an activity diagram in figure 16.

The approach starts from the developer creating a new state machine property.

This state machine has some special characteristics. First, it needs to be marked with

property stereotype. It is important to ensure that what is described in there is part

of the system functional design. Then, it needs one, and exact one, final state. The

54



State Machine Property Approach
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Figure 16: State Machine Property Approach

final state symbolizes the unsecure state, meaning that, if the state machine reach

the final state, it is in an unsecure situation and the property failed. Moreover, the

transitions are triggered by propositional formulas assigned to its label. These are

logical formulas composed by system atomic propositions. A transition is fired if an

outgoing transition of the current has its proposition formula equal to true. All this

characteristics are checked automatically and, if any error is found, the problem is

informed to the developer.

Once the state machine if defined and well-formed, it is formalized and translated

to never claims statements in PROMELA. This statement can be used to determine

a behavior that must never happen. It is executed in parallel with the based model

(verify action in figure 16). If it reach its final state (that is, its closing curly brace),
it means that the property failed and the model checker provides a counterexample
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from the beginning of execution up to that point.
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Figure 17: (a) A generic state machine property, (b) respective never claim statement used by SPIN

3.5.2 MOBS2 Language for Property Specification

In order use all the expressiveness of formal logics and, at the same time, reduce the

gap between them and the natural language, we propose a new language on top of
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LTL and CTL to allow developers to write properties in a higher level. To achieve

this goal, we define the following two requirements to this language:

1. This language needs to express its operator in a way that a developer familiar

with propositional logic will be able use then.

2. Properties written using this language need to be easy to read (even for a non-

expert), so it can be attached to the regular documentation of the system.

First, we define the following mapping rules for the operators:
Operator

D

U
O

true

MOBS2 Language
ALWAYS

EVENTUALLY
UNTIL
NEXT

FORALL
EXIST
IMPLY

any

Table 3: Mapping rules from logical and temporal operators to the MOBS2 Language

Even though these mapping rules are simple, it improves significantly the read-

ability of the final property.

To improve even more the new language, we attempted to remove the repetition

of boolean operators by identifying some patterns that appears very often in many

properties. We found that property for interaction diagrams have very often an

and combination of the sender, message and receiver. The new language allows

the developer to write this situation as simple English sentences like "sender sends

message to receiver" or "receiver receives message from sender" .

The grammar rule for this language is defined below:
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<consts> ::= any

<prop> ::= <consts>| P1 | P2 \ P3 . . . (atomic propositions)

|!<prop>

|<prop>'&&'<prop>

|<prop>'||'<prop>

|<prop> IMPLY <prop>

|<prop> sends <prop> to <prop>

|<prop> receives <prop> from <prop>

<tempExpr> ::— <prop>

I ALWAYS (<tempExpr>)

I EVENTUALLY (<temPExpr>)

I (<tempExpr> UNTIL <tempExpr>)

I NEXT (<tempExpr>)

I FORALL (<tempExpr>)

I EXIST (<tempExpr>)

This is an abstract grammar. It can represent both LTL and CTL formulas. In

practice, the scope the properties that can be specified will be restricted by the input

language of the model checker.

58



Chapter 4

Verification and Validation of UML

2.0 Interactions

In this chapter, we apply our framework in one important type of UML diagrams:

interaction diagrams. In Section 4.1, we briefly introduce the semantics of UML

interactions. Section 4.2 discusses how to get PROMELA code according to the

semantics of UML 2.0 interactions. In Section 4.3, the mechanism for V&V using

source/destination and send/receive events is presented. In Section 4.4, we present a

scenario applying our approach, as well as experimental results.

UML interaction diagrams come in different variants (see figure 4(a)). The most

common variant is the Sequence Diagram that focuses on the exchanging of messages

among lifelines. Communication diagrams is very similar to sequence diagram but is

focused on the objects and the number of messages between them, rather than on a

sequence of events [36]. Interaction overview presents an interaction in a way that
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highlights the overview of the control flow. Timing diagram focuses on showing timed-

based message events of the system. Herein, we illustrate out approach using the most

popular variant of interaction diagrams which is sequence diagram. Nonetheless, since

these diagrams share the same metamodel, the presented approach can be applied to

any of them.

UML sequence diagrams are behavioral diagrams used to specify interactions

among system entities in many different situations. They are used to get a better

grip of an interaction situation for an individual designer or for a group that needs to

achieve a common understanding of the situation [23]. Along with class diagrams and

use case diagrams, sequence diagrams are the most popular diagrams of UML [60].
The main contribution of this work is to provide an efficient mechanism to be

able to track the execution state of an interaction, which allows designers to write

relevant properties involving send/receive events and source/destination of messages

using LTL. This mechanism was implemented in such a way that allows the designers

to select the portion of the information that is relevant to their properties. Conse-

quently, it gives them flexibility to write very expressive properties. Another impor-

tant contribution is the definition of the PROMELA structure that provides a precise

semantics of most of the newly UML 2.0 introduced combined fragments, allowing

the execution of complex interactions. It allows the developer to simulate much more

complex sequence diagrams, with non-straightforward execution trace. The result of

these contributions is an efficient approach which is capable of detecting more flaws

on more complete and complex interactions.

The proposed approach creates a PROMELA-based model from UML interactions
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expressed in sequence diagrams, and uses SPIN model checker to simulate the exe-

cution and to verify properties written in Linear Temporal Logic (LTL) or state ma-

chines. PROMELA/SPIN was chosen because it provides important concepts (send-

ing and receiving primitives, parallel and asynchronous composition of concurrent

processes, and communication channels) that are necessary to implement sequence

diagrams [35]. This makes the implementation easier since the communication primi-

tives and channels are already available in PROMELA and it does not need any extra

effort to implement them. The whole technique is implemented as an Eclipse1 plugin,

which hides the model-checking formalism from the user and allows the V&V engine

to be embedded into the development environment.

4.1 Semantics of UML Interactions

Interaction in UML is considered a pattern of message exchanges to accomplish a

specific purpose [52]. The semantics of an interaction is given as a pair of sets of

traces [P,I] [44]. P represents valid traces, whereas I is the set of invalid traces.

A trace is a particular execution history, i.e., it is a sequence of event occurrences.

Equation 3 shows the notation for traces.

Trace i= (ei,e2)... ,en) (3)

The set of traces of an interaction is mechanically built from the the semantics of

its constituent interaction fragments by ordering and combining them using the weak
1 http://www.eclipse.org/
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sequencing operator. Usually all traces are valid; invalid traces are those associated

only negative combined fragments. The next sections show how to extract the se-

mantics of interactions in different scenarios as well as the corresponding PROMELA

code.

4.2 Translation of UML 2.0 Combined Fragments into PRO-

MELA

In this section, we briefly present the PROMELA representation of the basic elements

of sequence diagrams as defined in [35,59]. Then we present the trace semantics of the

most popular combined fragments and their respective PROMELA code that correctly

simulates the execution traces. The composition of the presented translation rules

allows the simulation of complex interactions with interesting and non-straightforward

execution trace.

4.2.1 Basic Elements

The work presented in [35] specifies how to translate basic elements of MSCs into

PROMELA and [3] shows that this schema can be reused for basic elements of se-

quence diagrams. The translation rules for basic elements presented here are based on

the work proposed in those approaches, and they will be the basis for the next (and

more complex) interaction elements. The PROMELA elements used for represent-
ing basic components of interactions are: (1) proctype: it is used for declaring new

process behavior, (2) mtype: it defines symbolic names of numeric constants that are
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used as messages in the communicating process. (3) cham: it declares and initializes

communication channels. Finally, (4) !/? operators: Theses symbols are used for

sending/receiving messages to/from channels, respectively.

Table 4 provides the PROMELA representation of the basic elements shown in

figure 18. The semantics of this interaction is the single trace (\m, Im) [23].
sd S17 Lifelines

Message - ?

Send.,
Event

E^
•? ·' Connector '

„ Receive
Event

Figure 18: Simple Sequence Diagram

UML element PROMELA element PROMELA statement

Lifeline Process proctype{. . .}
Message mytpe = {mi, . . .um}
Connector Communication channel for each mes-

sage arrow
chan chanName = [1] of {mtype}

Send and
events

Receive Send and Receive operations Send => ab ! m, Receive => ab?m

Table 4: Mapping of basic UML Sequence Diagrams into PROMELA

4.2.2 Interaction Fragments and Weak Sequencing Combined Fragments

An Interaction Fragment is an abstract notion of the most general interaction unit. In

other words, it is a piece of an interaction [44]. In figure 19(a) two messages (p and q)

are sent from a to b. Each message has the semantics given for the message in figure

18. The vertical positions of events represent their order on each lifeline. However, the

two lifelines are independent [23]. Thus, the possible execution traces can be derived

from figure 19(a) by using the weak sequencing operator (seq) defined in [44]. This

63



operator is also used in weak sequencing combined fragment as shown in figure 19(b).

The operator seq defines the set of traces with the following constraints [23,44]:

1. The order of events within each of the operands is maintained in the result.

2. Events on different lifelines from different operands may come in any order.

3. Events on the same lifeline from different operands are ordered such that an

event of the first operand comes before that of the second operand.

For the interactions in figure 19(a) and 19(b), we get the following result:

S2=(\p,7p) seq (\q,?q) = {(!p, Ip, \q,?q), (Ip, !ç,?P,?<?)} (4)

? /*Messages declaration* /
2 mtype = {p,q} ;
3 /+Channels declaration* I
4 chan ab_p = [1] of {mtype};
5 chan ab_q = [1] of {mtype};
6 /*Lifelines Specification* I
7 proctype a(){ab_p!p; ab_q!q;};
8 proctype b(){ab_p?p; ab_q?q; } ;
9 /*System Instantiation* I

io init{ atomic {run a(); run b();}}

(c)

Figure 19: (a) Simple Interaction Fragment, (b) Weak Sequencing Combined Fragment and (c) their
corresponding PROMELA Code
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PROMELA Representation:

The communication primitives available in PROMELA naturally implements the seq

operator following the translation map shown in table 4. This is one of the main

reasons for choosing PROMELA/SPIN for model checking of sequence diagrams. Fig

19(c) shows the PROMELA code for the interactions in figure 19(a) and figure 19(b).
In line 2 the messages are declared, lines 4 and 5 represent the channels on which the

messages are sent, lines 7 and 8 specify the lifelines using process, and line 10 is the

instruction to instantiate the system.

4.2.3 Alternative and Option Combined Fragments

Alternative and Option combined fragments represent a choice of behaviour in se-

quence diagrams. Alternative and Option operators are denoted as alt and opt,

respectively [44]. The opt operator designates that the combined fragment repre-

sents a behaviour choice where either the sole operand happens or nothing happens.

An option is semantically equivalent to an alternative combined fragment where there

is one non-empty operand and the second operand is empty [44]. The set of traces

that defines a choice is the union of the traces of the operands [23,44]. Eq. 5 shows

the set of traces of the interaction in figure 20(a).

S4 = (}p,?p) alt (\q,?q) = {(\p, ?p), (\q,?q)} (5)
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PROMELA Representation:

Alternative and Option operator are represented as if condition in PROMELA. The

guard variable is declared globally to enforce all lifelines to get the same decision at

the choice point. The non-deterministic behaviour is implemented at the set-up time

by assigning different values to the guards using if statement with two executable

conditions (lines 13 and 14 of figure 20(b)). At execution time, SPIN randomly

chooses an option and continues the simulation. In exhaustive mode, SPIN will

simulate all possible system decisions and it will provide all traces shown in Eq. 5.

figure 20(b) presents the PROMELA code corresponding to the model in figure 20(a).

[guard]

? proctype a ( ) {
2 if

3 :: (guard) -> ab_p!p;
4 : reise -> ab_q!q;
s fi; }
6 proctype b ( ) {
7 if

ß : : (guard) -> ab_p?p;
9 ::else -> ab_q?q;

io fi; }
il init{
12 if
13 : : (true) -> guard=true;
14 : : (true) -> guard=false;
15 fi;
16 ...}

(b)

Figure 20: (a) Alternative Combined Fragment, (b) Respective PROMELA code

4.2.4 Parallel Combined Fragments

A Parallel Combined Fragment, denoted by par operator, represents a parallel merge

between the behaviours of the operands. The events of the different operands can be

interleaved in any way as long as the ordering imposed by each operand as such is
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preserved [44]. Its set of traces describes all the ways that events of the operands may

be interleaved without obstructing the order of the events within the operand [23].

Eq. 6 shows the set of possible traces of the diagram in figure 21(a).

S5 = (!p, Ip) par (!g, Iq) ={(\p, ??, \q, ?q),{\p, \q, Ip, Iq), (Iq1 \p, Iq, ??),

(\q, Iq, \p, ??), (\q, \p, Ip, Iq), (\q, \p, Iq, Ip)) (6)

PROMELA Representation:

Parallel behaviour can be implemented using sub-instances of the lifelines covered by

the parallel fragment (figure 21(b), lines 9 and 11). The new element is instantiated

right before the main process starts the parallel activities. The actions inside the

parallel fragment are divided among the main process and its sub-instances. Each

one executes one operand. A synchronism mechanism should be implemented to

ensure that no event after a combined fragment will overtake an event in it. This

synchronism is done with token messages that will be sent from the subprocess to the

main process right before finishing its execution (figure 21(b), lines 10 and 12). The

main process must wait for all tokens before continuing the execution (figure 21(b),

lines 4 and 8). figure 21(b) shows the PROMELA code of the model in figure 21(a).

4.2.5 Loop Combined Fragments

The operator loop indicates that the combined fragment represents a repetition struc-

ture. The loop operand will be repeated a certain number of times according to the
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? proctype a ( ) {
2 run sub_a ( )
3 ab_q!q;
4 aSubA?token; }
5 proctype b ( ) {
6 run sub_b ( ) ;
7 ab_q?q;
8 bSubB?token; )

9 proctype sub_a ( ) {
io atomic {ab_p!p; aSubA! token; }; }
ii proctype sub_b ( ) {
12 atomic(ab_p?p; aSubA! token; }; }

(a) (b)

Figure 21: (a) Parallel Combined Fragment, (b) Respective PROMELA Code

values defined by the designer. The loop construct represents a recursive application

of the seq operator where the loop operand is sequenced after the result of earlier

iterations [44].

? proctype a ( ) (
2 byte i=0;
3 do

4 : : (i<N) -> atomici ab_m !m; i++; } ;
5 : :else -> break;
6 od}
7 proctype b ( ) {
8 byte i=0;
9 do

io : : (i<N) -> atomic) ab_m?m; i++; } ;
ii : reise -> break;
12 od}

(a) (b)

Figure 22: (a) Loop Combined Fragment, (b) Respective PROMELA Code

PROMELA Representation:

Our PROMELA implementation of loop works with a fixed number of repetition.

PROMELA defines do operator as a repetition construct. Loop fragments are imple-

mented by declaring a global variable with the total number of repetition, and a do

structure in each lifeline covered by the fragment. Fig 22(b) presents the PROMELA
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code of the model in figure 22(a).

4.2.6 Break Combined Fragments

The interaction operator break shows a combined fragment representing a breaking

scenario. If the guard condition is true, the operand scenario is performed instead of

the remainder of the enclosing interaction fragment [44] .

breaks k"frdl P

? proctype a ( ) {
2 if

3 :: (guard) -> atomic { ab_p !p;
4 goto LO; } ;
5 : :else -> skip;
6 fi;

7 ab_q ! q;
8 LO : skip; }
9 proctype b ( ) {

10 if

ii : : (guard) -> atomic {ab_p?p;
12 goto Ll; } ;
13 : :else -> skip;
14 fi;

15 ab_q?q;
16 Ll : skip; )

(a) (b)

Figure 23: (a) Break Combined Fragment, (b) Respective PROMELA Code

PROMELA Representation:

The break operator can be simulated with goto statements in PROMELA. If the

guard condition is true, the action inside the break combined fragment is performed,

then the execution jumps to the end (lines 4 and 12 of figure23(b)). The non-

deterministic behavior is implemented in the same way as in alternative and option

combined fragments, figure 23(b) shows the PROMELA code for the break combined

fragment in figure 23(a).
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4.3 Using Source/Destination and Send/Receive Events for

Sequence Diagrams V&V

In the previous section, we provided what is needed to simulate the execution of

sequence diagrams by covering the most important combined fragments. However,

the main objective of using PROMELA-based model is not to simulate the execution

of sequence diagrams, but the verification of formal properties. When it comes to

verify formal properties on SPIN, it is impossible to determine whether a send or

receive event has occurred. Indeed, the system state does not change when messages

are sent over channels [60]. To overcome this obstacle, [60] proposed a flag-based

technique to mark an occurrence of a send/receive event. This section presents an

extension of this approach that is able to determine who is sending/receiving what

to/from whom at any time of the execution. This information is very useful when one

wants to write properties to be verified. We also show how to write LTL properties

using this approach.

4.3.1 Tracking the execution state

The first step toward the formal V&V of sequence diagrams is to keep track of the

actions performed by the entities in the interaction. In other words, it is essential to

be aware of all event occurrences during the execution. In [60], the authors suggest

tracking of sending and receiving events of messages by using flags associated with

the respective event (e.g., using the flag "Sx" for "sending message x"). In spite of

the fact that they improved the set of properties that can be verified, many other
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properties are still not covered since they require the information of the entities the

are interacting (e.g., the following constraint could be specified to a particular system:

"Alice is not supposed to receive a request from Bob"). In [3], the authors define the

concatenation of sender, message and receiver as one action, but they do not include

send and receive events. Even though it provides the entities information, it does

not give the flexibility to write properties looking only at a particular element in

the model, (e.g., Server does not send anything to anyone without signing). This
flexibility is important because systems usually have many entities, but only some

of them are really critical. To address these weaknesses, we define a state transition

system such that the transitions are trigged by the send and receive events of the
interaction and each state is characterized by a 4-tuple consisting of the following

fields:

1. Lifeline that performed the last action.

2. Last performed action (send or receive).

3. Message used in the last action.

4. Lifeline to/from which the message was sent/received.

Each state contains the information we need to track, and each field can be used

separately.

In PROMELA, we represent each state as a set of flags. For each lifeline, each

message, and send/receive events a flag is declared. The values of these flags are
updated together with each send/receive event. The update is done using a dstep
statement to make the assignment of all new values as one step at the execution time.
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figure 24 shows the PROMELA code of the interaction in figure 19(a) with its flags

to represent states.

? proctype a ( ) {
2 atomic{d_step{send=l; receive=0; msg_p=l; msg_q=0; procl_a=l;
3 procl_b=0; proc2_a=0; proc2_b=l; } ; ab_p!p;};
4 atomic {d_step{send=l; receive=0; msg_p=0; msg_q=l; procl_a=l;
5 procl_b=0; proc2_a=0; proc2_b=l; } ; ab_q!q;};}
6 proctype b ( ) {
7 atomic{ab_p?p;d_step{send=0; receive=l; msg_p=l; msg_q=0;procl_a=0;
8 procl_b=l; proc2_a=l; proc2_b=0; } ; } ;
9 atomic {ab_q?q;d_step{send=0; receive=!.; msg_p=0; msg_q=l ;procl_a=0;
o procl_b=l; proc2_a=l; proc2_b=0; } ; } ; }

Figure 24: PROMELA code of the diagram in figure 19(a)

4.3.2 Using flags to specify LTL properties

After defining a methodology to track the execution state, LTL formulas can be writ-

ten in terms of boolean expressions over the flags. For example, if one wants to say "6

sends ? to a" , he/she should write the following expression: (procl_bAsendAmsg_pAproc2_a) .
A very useful property of the flag-based state is the ease of expressing sentence over

all lifelines, or all messages, or all actions only by omitting the respective element

in the expression. For example, if one wants to verify if "no lifeline receives mes-

sages from a", the respective expression is: ->(receiveAproc2_a). This example also
shows that the proposed technique gives the flexibility to write properties looking at

a particular element in the model (lifeline a in that case). Therefore, the proposed
flag-based mechanism to track execution state not only provides developers with the
information they need to write properties, but also it allows them to specify proper-

ties in a very flexible way. Below, we present two examples of LTL properties written

using flags and their respective verifications using SPIN model checker.
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Example 1: Suppose one wants to verify in the sequence diagram from figure

19(a) whether "no lifeline will send message q until b receives message p" . The

LTL formula corresponding to this property is:

i(send ? msg_q) U (procl_b ? receive ? msg^p) (7)

After model checking, SPIN reports that the property does not hold. The coun-

terexample that is returned is shown in figure 25(a).

• Example 2: In the model shown in figure 21(a), suppose one needs to verify

if "always, after b receives p, eventually b receives q from a" . The LTL formula

expressing this property is:

D((procl_b ? receive ? msg_p) ->- 0(procl_b ? receive ? msg_q ? proc2_a)) (8)

After model checking, SPIN shows that this property does not hold. The coun-

terexample is presented in figure 25(b).

fa,send,p,b} ib,receive,p,a} _-J {a,send,p,b} {b,receive,p,a}

' 7T

?q{a,send,q,b} 1 I {b,receive,q,a} l^H) I {a,send,q,b}

(a) (b)

Figure 25: SPIN counterexamples

^
F

receive.q.a}
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4.4 Case Study

This section presents part of the system presented in [2]. In that thesis, the authors

show the design of an Automated Teller Machine (ATM). The ATM interacts with two

other entities: The Customer (User) and the bank, figure 26 describes a use case where

the user starts a request by inserting his/her card. The ATM must verify the card and

the personal identification number (PIN) to proceed. If the verification fails the card

should be ejected. Otherwise, the user has the choice to perform some operations and
the card is retained in the machine until the user finishes the transactions. The first

and second combined fragments are dealing with the authentication of the card and

the PIN, respectively. The third one shows an interaction using "cash in advance"

operation.

4.4.1 LTL properties

1. The first property states that the ATM cannot allow the user to request an

operation if either the card or the PIN is not valid:

D(x -> -Oy) (9)

where ? = (start ? (-cardOK V ->PINok)), and y = (procl.user ? receive ?

msg_waitAccount)

Using the our notation the property is written as following:

ALWAYS ((!cardOK||!PINok) IMPLY

!EVENTUALLY(User receives waitAccount from any))
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par7 verifyCard
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cardStatus

waitPIN

PIN
-2

alt7 [cardOK] verifyPIN

<--
PINstatus

[else]
K- ejectCard

alt ^J
*-

[cardOKS&PINok]
waitAccount

Account

waitOperation

ppy1 [option]
cashAdvance

checkBalance

balanceStatus

¦ I

alt J!
_____/ I

[balanceOK]
pickCash

debit

[else]
*-

insufficientFunds

back

ejectCard

[else] ejectCard

Figure 26: ATM Sequence Diagram
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2. The second property is needed to avoid inconsistencies between the money given

to the user and the amount debited in the bank. It asserts that the ATM must

first debit the amount in the bank, and then give the money to the user. In

other words, the user does not receive pickCash until the bank receives debit:

^xTJy (10)

where ? = (procl_userAreceiveAmsg_pickCash), and y = (proci -bank? receive ?

msg-debit).

In our notation the property becomes:

!(User receives pickCash from any) UNTIL (Bank receives debit from any)

3. The third property deals with the usability of the ATM. It states that, if the

ATM receives insufficient funds, it should allow the user tochoose other operation

before finishing the session:

D(x -> H/ U w)) (11)

where ? = (proci _user ? receive ? msgJnsufficientFunds) , y = (end), and w =

(procl_atm ? send ? msg_waitOperation ? proc2_User)).

In our notation the property becomes:

ALWAYS ((User receives insufficientFunds from any) IMPLY

!end UNTIL (ATM sends waitOperation to User))
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4.4.2 State Machine property

• The last property is to ensure that, after a failed authentication, the ATM must

eject the card and end the session. It says that, if authentication procedure goes

to a failed state after ejecting the card, no message should be sent from the ATM

to the user until the next authentication starts. This property can be specified

using state machine as shown in figure 27.

Users receives waitAccount from ATM
WaitingForAuthentication

Bank receives vefrfyPIN from ATM Bank receives^yerifyCard from ATM

Bank receives venfyCard from ATM UNSECURE
VenfyingCardVerifying Pl N

Bank receives venfyPIN from ATM

Users receives ejêctÇard from ATM Users receive>ejectCard from ATM

AuthenticationFailed
ATM sends any to User

Figure 27: Property specified using state machine

4.4.3 ATM Case Study Results

Using SPIN to verify the properties described previously, we found that only the first

property is satisfied. The model checker was able to provide a counterexample for

each of the other properties. In the following, we present the failing trace related to

the verification of each property.

• Property 2 Counterexample: In the trace shown in figure 28(a), it possible
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Figure 28: SPIN counterexamples for LTL properties: (a) counterexample of property ii, (b) coun-
terexample of property iii, (c) counterexample of property iv
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to see that there is at least one execution path on which the user receives the

money before the bank receives the message to debit. If, for some reason, the

message to debit is not delivered, the ATM will be not able to ask the user to

give the money back.

• Property 3 Counterexample: The counterexample of figure 28(b) shows that,

after receiving insufficient funds,- the user does not have the opportunity to re-

enter a different operation. It means that, if the user does a mistake, he/she

needs to restart the whole operation from the beginning.

• State Machine Property Counterexample: figure 28(c) presents a coun-

terexample where the ATM tries to eject the card twice. This inconsistent be-

havior should be eliminated from the design.

In order to illustrate the performance of our approach regarding this case study,

Table 5 shows a summary of the results along with the number of states, number

of transitions, memory and time used by SPIN to perform the verification. It is

possible to see that the maximum time spent for verification was 0.132s, which is very

reasonable. However, it is well-known that model checkers can have state explosion

when verifying bigger models. There are some techniques to optimize the PROMELA

specification to avoid state explosion, but those techniques will be considered in a

future work.

Property | Result | Stored states | Matched states Transitions Memory Usage Time
Passed 10991 11389 22380 3.673MB 0.13s

Failed 92 2.501MB 0.06s

Failed 986 1211 2197 2.598MB 0.072s
0.14sFailed 11448 13729 25177 3.770MB

Table 5: Summary of the results
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Chapter 5

Implementation of the Tool

Support

In this chapter, we provide details about the implementation of the tool to support

the verification of UML diagrams. IBM Rational Software Architect has been as

the platform of development. It is an advanced model-driven development tool. It

leverages model-driven development with the UML for creating well-architected ap-

plications and services [20]. It contains a very powerful UML modeler compliant with

the UML 2.2 standard. Moreover, as this tool is built on Eclipse, it can be augmented

with Eclipse plug-ins, which is a very important capability to make a harmonious in-

corporation of the verification tool into the software development process.
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5.1 Framework Implementation

Figure 29 highlights the components of the framework that have been implemented

by our tool. In the following, we detail the implementation of each layer.
Modeling Layer

Result
Viewer

Property
EditorModeler

Design
Models

System
Properties

Transformation
Clear

Results
Semantic
Compiler

Property
Refiner

Result
1 Analyser

FormaSemantic
PropertiesModels

Translator Unclear
Results

Model Checker
Code

vicik

Verification :
Layer \

Figure 29: Components of the framework implemented in our tool

5.1.1 Verification Layer

Even though we used existing model checkers for the verification layer, we had to

implement the interface between these tools and our plug-in. This interface needs to

provide the following features:

1. It has to provide all functionalities of the external tools (i.e., SPIN, NuSMV and
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GCC) to the upper layers.

2. Since the verification may take a long time, it needs to create a new thread for

each verification request and these threads can be terminated by the user at any

time.

3. It has to identify misbehavior and errors from the external tools and handle that

or throw an exception to be handled by the upper layers.

4. It has to manipulate (i.e., open, close, create and delete) the files used in the

verification procedure.

An example of a service implemented in that layer that appears on the GUI is the

multi-thread verification. By using the Eclipse platform, we allow the developer to see

the verification progress, terminate the thread at any time, and run the verification

in background while doing different tasks. Figure 30 shows the window that appears
when a new verification is launched.

Ut yénficat on ' "Ï
Verification in progress

QiÀtvvays run ¡n background

Çup irr Background! ¡,..,...Cjn^i;-^] !.^j^tajjsj»^ ^j

Figure 30: Eclipse window showing the verification progress
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5.1.2 Transformation Layer

This layer contains major part of our tool. It provides the main capabilities to make

possible the combination of UML and model checking. All components in this layer

(i.e., Semantic Compiler, Property Refiner, Translator, and Result Analyser) have
been implemented by our research team. Below are the features this layer provides:

1. Compilation of the semantics from UML Interactions, State Machines and Ac-

tivity diagrams (the implementation of state machine and activities are based

on existing approaches [2,3,11]).

2. Translation of MOBS2 property specification language and state machines into

formal properties, i.e., LTL, CTL and transition systems.

3. Generation of SPIN and NuSMV code (NuSMV is used in state machine and

activity verification).

4. Organization of the output of the model checker in order to link the result to

the UML model and remove unnecessary information.

5. Handling of the syntax errors from the model checkers.

Among all these features, the compilation UML model is the most critical one.

The UML meta-model is very complex and for each UML meta-element it is necessary

to do a different processing (we can see this fact in Chapter 4 where each combine

fragment generate a different PROMELA code). Moreover, one can compose different

elements in a very complex manner. E.g., parallel fragments with if conditions, loops

and breaks. To illustrate this complexity, figure 31 shows just a piece of the code
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generated for the lifeline User in figure 26.

proctype iuia(){
xs wocy_36;
atomic {d_step{sends = l; receive s=0;msg_sqmu=0; msg_ewsq=0; msg_eyec=0;:msg_qmiw=0;r
msg wocy=l ; msg_oggw=0 ; msg_cgws=0 ; msg_awao=0 ; msg_smga=0 ; msg_swao=0 ; msg_aoyy=0;
msg_cqwk=0 ; msg_yums=0 ; msg_sakw=0 ; msg_wkyu=0 ; msg_kmsi=0 ; msg_yiqa=0 ; msg_qkii = 0 ;
msg_aske=0 ; msg_yegq=0 ; proc l_iuia=l ; procl_eyay=0 ; procl_cyow=0 ; proc2_iuia=0 ; pro
c2_eyay=0;proc2_cyow=l; } ;wocy_36 ! wocy } ;
run sub63b4 63b4_iuia() ;
xr qkii_81;
atomic {qkii_81?qkii;d_step{ sends=0; receives= 1 ;msg_sqmu=O;rasg_ewsq=0;msg_eyec=
O,-msg qmiw=0;msg_wocy=0;msg_oggw=0;msg_cgws=0;msg_awao=0;msg_smga=0;msg_swao=
0;msg aoyy=0;msg_cqwk=0;msg_yums=0;msg_sakw=0;msg_wkyu=0;msg_kmsi=0;msg_yiqa=
0 ;msg_qkii=l;msg_aske=0;msg_yegq=0;procl_iuia=l; proc l_eyay=0; proc l_cyow=0; pro
c2_iuia=0;proc2_eyay=0;proc2_cyow=l; } ; } ;
xs aoyy_6;
atomic { d_step{ sends=l ; receives=0 ; msg_sqmu=0 ; msg_ewsq=0 ; msg_eyec=0 ; msg_qmiw=0 ;
msg wocy=0 ; msg_oggw=0 ; msg_cgws=0 ; msg_awao=0 ; rasg_smga=0 ; msg_swao=0 ; msg_aoyy= 1 ;
msg cqwk=0 ; msg_yums=0 ; msg_sakw=0 ; msg_wkyu=0 ; msg_kmsi=0 ; msg_yiqa=0 ; msg_qkii=0 ;
msg aske=0;msg_yegq=0;procl_iuia=l;procl_eyay=0;procl_cyow=0;proc2_iuia=0;pro
c2_eyay=0 ; proc2_cyow=l ; } ; aoyy_6 ! aoyy ) ;
iuia_Sub63b4 63b4_iuia? token ;
if

: : (cardOK) -> : : else -> xr sqmu_5;
atomic {sqmu_5?sqmu;d_step{sends=0;receives=l;msg_sqmu=l;msg_ewsq=0;msg_eyec=0
;msg qmiw=0;msg_wocy=0;msg_oggw=0;msg_cgws=0;msg_awao=0;msg_smga=0;msg_swao=0
; msg_aoyy=0 ; msg_cqwk=0 ; msg_yums=0 ; msg_sakw=0 ; msg_wkyu=0 ; msg_kmsi=0 ; msg_yiqa=0
;msg_qkii=0;msg_aske=0;msg_yegq=0;procl_iuia=l;procl_eyay=0;procl_cyow=0;proc
2_iuia=0;proc2_eyay=0;proc2_cyow=l; }; } ;
fi;
if

: : (cardOKS&pinOK) -> xr aske_89;
atomic { as ke_8 9 ?aske;d_step{sends=0; rece ives=l ;msg_sqmu=0;msg_ewsq=0;msg_eyec=
0 ; msg qmiw=0 ; msg_wocy=0;msg_oggw=0 ; msg_cgws=0 ; msg_awao=0 ; msg_smga=0 ; msg_swao=
O;msg_aoyy=0;msg_cqwk=0;msg_yums=0;msg_sakw=0;msg_wkyu=0;msg_kmsi=0;msg_yiqa=
O;msg_qkii=0;msg_aske=l;msg_yegq=0;procl_iuia=l;procl_eyay=0;procl_cyow=0;pro
c2_iuia=0;proc2_eyay=0;proc2_cyow=l; } ; } ;
xs yums_22;
atomic { d_step{ sends=l ; receive s=0 ; msg_sqmu=0 ; msg_ewsq=0 ; msg_eyec=0 ; msg_qmiw=0 ;
msg wocy=0 ; msg_oggw=0 ; msg_cgws=0 ; msg_awao=0 ; msg_smga=0 ; msg_swao=0 ; msg_aoyy=0 ;
msg_cqwk=0;msg_yums=l;msg_sakw=0;msg_wkyu=0;msg_kmsi=0;msg_yiqa=0;msg_qkii=0;
msg_aske=0 ; msg_yegq=0 ; procl_iuia=l ; procl_eyay=0 ; procl_cyow=0 ; proc2_iuia=0 ; pro
c2_eyay=0;proc2_cyow=l; } ; yums_22 ! yums ) ;
xr oggw_85;
atomic {oggw_85?oggw;d_step{sends=0; receives= 1 ;msg_sqmu=O;msg_ewsq=0;msg_eyec=
0;msg qmiw=0;msg_wocy=0;msg_oggw=l;msg_cgws=0;msg_awao=0;msg_smga=0;rmsg_swao=
O;msg_aoyy=0;msg_cqwk=0;msg_yums=0;msg_sakw=0;msg_wkyu=0;msg_kmsi=0;msg_yiqa=
O;msg_qkii=0;msg_aske=0;msg_yegq=0;procl_iuia=l;procl_eyay=0;procl_cyow=0;pro
c2_iuia=0;proc2_eyay=0;proc2_cyow=l; } ; } ;

Figure 31: Piece of the model checker code from the Lifeline User in figure 26
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In the current version of our model checker code generation, we associate a unique

4-letters ID to each UML element. It avoids syntax problems due to labels used in

the model.

5.1.3 Modeling Layer

Figure 32 shows a Screenshot of the IBM RSA workspace. The label 1 and 2 of
this figure shows the Project explorer and the UML diagram editor, respectively,

provided by the IBM RSA. The label 3 and 4 shows contributions of our plug-in to

the workspace, where label 3 shows the summary of the verification result displaying

which properties failed or passed, and label 4 shows the graph of the counterexample

that is automatically generated by our tool.

Figure 33 depicts the textual property editor. In order to facilitate the task of

writing properties, the tool provides the developer with a very friendly user interface

which contains the following feature:

1. Syntax highlighter: it differentiates temporal operators, propositional formulas,

and key words like any, sends, receives, to and from. This feature is very useful

to detect typos and not well-formed properties.

2. Pre-defined operators: if helps a developer who is not familiar with temporal

operator by showing the most common used operator on the top of the property

editor. The user just needs to select the which is best suitable to his case.

3. Content assist: It is a very useful feature to help developer to pick the correct

element to be added in his property. It also helps to avoid typos when writing
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Figure 32: Screenshot of the IBM RSA workspace

the element's name.

Figure 34 shows a Screenshot of the state machine property editor. The great

advantage of this property editor is that it inheres all capabilities of the regular state

machine editor provide by RSA. Therefore, it is expected that any developer, who

is familiar with creating UML state machines, can easily use this tool to specify

properties. Moreover, a property specify using this tool can be export/imported to

a standard open-source format (XMI) and can be edited in any UML 2.0 compliant
tool.

It is also important to mention that for the developer point of view, there is no
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need to understand the mechanism that performs the verification. The translation to

PROMELA, the execution SPIN and the interpretation of the SPIN'S output are all

done in background. The developer should only assign properties to diagram, start
the verification and assess the results.
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Chapter 6

Conclusion

In this research work, we provide a framework for automatic verification of system

design models expressed in UML based on model checking techniques. The frame-
work provides a fully automatic verification engine with user-friendly mechanism for

property specification and easy-to-understand graphical verification results.

In order to solve the problem of the complexity of formal logics, we performed an

extensive investigation of the state-of-the-art on property specification in UML. It has

been shown that there is a need to provide developer with more alternatives to specify

property that can be automatically translated into a formal representation (i.e., LTL,

CTL or transition system). Chapter 3 presents the main UML artifacts used for

property specification along with a comparative study. It shows a lack of works
trying to specify properties using behavior diagrams despite the wide tool support.

This fact led us to propose a user-friendly technique that uses UML state machine

for system property specification. Moreover, we also suggested a new language, on

top of formal logics, that reduces the gap between the formal property and natural
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languages. The properties written using this language are understandable even by a

non-expert.

From the review of the state-of-the-art on verification of UML models, we observed

a limited number of works dealing with UML 2.0 interactions. Chapter 4 addresses

this problem. It introduces the semantics of UML 2.0 interactions along with the
translation rules to obtain the model checker code. Since it takes into account the

most popular UML combined fragments, this approach allows the developer to detect

flaw in more completed complex interactions. The mechanism introduced in this work

to keep track of the execution state provides the information the developer needs to

write properties. Moreover, the way it was implemented gives flexibility to write very

expressive properties. An illustrative interaction case study was explored in order to

demonstrate the feasibility and effectiveness of the proposed approach.

Furthermore, in the Chapter 5, we provide details about the implemented tool. It

shows that the proposed approach has been incorporated into the IBM Rational Soft-

ware Architect IDE. In addition, it depicts how our approach is used from developer

point of view.

The proposed methodology can be smoothly incorporated into the software devel-

opment process in order to advance the error detection to the design phase. Conse-

quently, it is becomes a powerful tool to reduce significatively the overall cost of an

application. Moreover, this verification engine can be also applied to design models

of already existing systems, which can help to discover so far unknown undesired

behaviors and vulnerabilities.

As future work, an inter-diagram analysis might provide results that are much
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more consistent in the assessment of UML models. Since many security aspects are

usually not encapsulated in only one type of diagram; normally they are scattered in

various diagrams of different kinds. Moreover, we indent to improve our approach in

order to deal with very large and distributed system design without facing the state

explosion problem. For that goal, we are developing a compositional verification

approach where the base model is decomposed into small and easy to verify modules.

Then, the result of the verification in each p^µ?ß is combined in such a way that we

can obtain the result of the verification in the whole model.
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