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Abstract 

Modeling of Tailings Flow Following a Dam Breach 

Using Smoothed Particles Hydrodynamics 

Poulad Daneshvar 

Choosing impoundments as the method of tailings disposal for mining processes 

necessitates the construction of tailings dams. As various types of chemicals remaining 

from the mining processes are retained in the pond behind a tailings dam, a dam failure 

may result in environmental damages in addition to threatening lives. Therefore, the 

distribution and distance to which tailings would travel in the case of a dam failure is 

important to determine the amount of potential damage. 

The aim of this research was to study the feasibility of modeling tailings following a 

dam breach based on the available data in the literature and reach the same distribution 

and travelling distance of the tailings as in the physical incidents. 

The numerical tool chosen for this research would simulate tailings as a Non-

Newtonian fluid using a Smoothed Particle Hydrodynamics (SPH) method. 

To calibrate the simulation tool a series of flume tests on two different tailings pastes 

from two different operation stages of Bulyanhulu gold mine (Tanzania) was modeled. 

The flume was created in the simulation tool and more than 30 simulations were run to 

calibrate the simulation tool. Through these tests the effects of changes in the values 

assigned to parameters related to tailings and their environment on the model were 

studied. 
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Practical application of the model was performed by using a digital elevation model 

(DEM) of the areas of two reported tailings dam failures in the simulation tool and 

repeatedly running tests with changes in the values for the terrain and tailings 

parameters to compare the results with the literature reported distribution of tailings 

outflow. 
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Introduction 

1.1 Introduction 

Mining has been one of the main activities for many countries to provide their industry 

with the necessary raw materials. Besides minerals, activities performed on a mining 

site result in production of tailings and as the process of mining and mineral extracting 

continues, the tailings produced increases in volume and therefore, a method of 

retaining the tailings has to be included. Disposal in impoundments, disposal as free 

standing piles and disposal by filling open pits are some of the methods utilized by the 

mining operators (EPA, 1994) among which impoundment of slurry tailings is the most 

common one due to economical and operational considerations (Environment Canada, 

1987). 

Proper consideration has to be given to potential environmental and urban-planning 

problems, as a failure in the embankment will probably result in considerable damages 

and losses. Based on the type of ore being treated in the mining and extraction process 

there are different types of chemicals in the tailings impoundment behind the tailings 

dam; therefore any leakage in the structure might result in the environment being 

exposed to chemicals. This , in a severe case might result in the inhabitants of the area 

being poisoned or the vegetation damaged. Another probable incident could be the 

failure of the tailings dam structure and as a result the flow of a relatively great amount 
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of tailings into the area facing the dam which might cause damages to structures or take 

lives. The risk of environmental damages is also amplified in such cases. 

In relation to dam failure, cases such as flow of tailings into the city adjacent to the dam 

damaging buildings, causing death and covering a distance of approximately two 

kilometers (Van Niekerk and Viljoen, 2005) have been reported. There are also reports 

on cases of flow of tailings into the river nearby and thus being transported to other 

areas (Harder and Stewart, 1996); or flow of the tailings on the ground destroying all 

the structures and facilities on the way and finally coming to a rest at a twenty five 

kilometer distance from the dam (Van Niekerk and Viljoen, 2005). The damages in such 

incidents would have been reduced or would not have occurred if there could be a way 

to predict the tailings flow direction and length, and the area it would cover in case of a 

dam failure. 

This study focuses on utilization of the Smoothed Particles Hydrodynamics method 

(SPH) in the simulations of tailings flow. The simulation tool had to be calibrated in 

order for the correct range of input data and its variation to be found. As a result, case 

studies of tailings dam failures can be simulated and the results will be compared to the 

data collected from the reports of the failures to indicate whether the simulation tool is a 

suitable one to fulfill the goal of producing a realistic model of the incident. 

In general, this study, by using simulation tools to simulate the previously occurred 

tailings dam failures, will take a step forward to providing the engineers with the 

chance to predict the consequences of such failures and make decisions on the locations 

of future dams and the precautions to take accordingly. By modeling the failure of 

existing tailings dams and studying the distribution of the tailings, proper steps could 

be taken to reduce the potential damages and losses caused by the out flow of the 
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tailings. Moreover, modeling the future dams and studying the distribution of the 

tailings in case of a failure could help the engineers with finding the best location for the 

future tailings dam. 

1.2 Objectives 

There have been several reports, such as Van Niekerk and Viljoen (2005) and Harder 

and Stewart (1996), of disasters caused by tailings dam failures resulting in major losses 

and damages in some cases and minor damages in others. One of the methods of 

attempting to minimize the losses of such phenomena is predicting the run out distance 

of the tailings in case of a failure, and thus planning and designing the structures and 

performing urban planning in the perimeters of the dams or even choosing the location 

of future dams based on such data. Therefore, the objectives of this thesis can be 

summarized as follows: 

1. Determining the possibility of utilizing a simulation tool to model the flow of 

tailings as Non-Newtonian fluids. 

2. Calibrating the simulation tool based on a physical experiment performed and 

reported by literature. 

3. Implementing the reported tailings dam failures and comparing the results with 

the actual incidents. 

The methodology opted to achieve the abovementioned objectives was to determine the 

behavior of tailings by studying previous research on tailings flow and accordingly 

utilize the properties of tailings in the simulation tool and calibrate the program based 

on one of the experiments performed in previous studies by other researchers. Finally, 
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two case studies in which the tailings traveled a distance before coming to a rest were 

modeled using the simulation tool and the results of the simulations were compared to 

the run out distances and approximate shapes of the tailings flow in the mentioned 

incidents. 
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Chapter Two: 

Production, Impoundments and 

Physical Properties of Tailings 
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Production, Impoundments and Physical Properties of Tailings 

2.1 Introduction 

Vick (1983) refers to 'tailings' as a generic term used for any kind of solid mine or mill 

waste including rock sized stripping waste, underground mine muck, and finely ground 

mill waste. The EPA, The U.S. Environmental Protection Agency (EPA, 1994), defines 

'tailings' as the large quantities of fine grade particles, ranging from sand sized down to 

a few microns in size, produced by mining due to the necessity to be able to separate 

metals and minerals from the ores. 

Tailings are one of the principal by-products, not necessarily beneficial, of mining and 

milling procedures. Therefore, currently, it has become a great concern to deal with 

these wastes and manage them in a way to have the most economical disposal while 

having the least influence on the environment. 

However, before introducing the disposal of tailings, its conditions and prerequisites, 

the way in which tailings are produced during the mineral processing will be presented. 

2.2 Production of Tailings 

To understand the type and properties of the tailings used in the simulation, production 

of tailings was studied as a part of literature review. 



Tailings are produced as the ores undergo processes depending on specifications such as 

size and the kind of mineral they contain which in turn defines the physical 

characteristics of tailings. Therefore, mining processes differ from ore to ore; however, 

there are a few fundamental processes which are frequently used in processing different 

ores. 

The ore cannot be sent to the grinders directly after stripping. The grinders need to be 

fed with ores smaller in size than the ones stripped off the mine. Different crushers are 

used to make the ore ready to be ground. There are usually two stages for crushing the 

ores, the primary stage and the secondary stage. During the primary stage, the ores are 

crushed to have them in sizes of approximately 254 to 305 millimeters (Vick, 1983). 

Applying the secondary crushing, which is the more important of the two stages, since 

the final output is going to be taken from this stage, reduces the size of the fragments to 

approximately 0.85 millimeters (Vick, 1983) which is small enough to go to the 

grinders. However, according to Metso Minerals, depending on the size of the feeders of 

the grinders, the number of crushing stages can be increased or decreased (Core 

Industries, 2008). 

There are different types of crushers; jaw crushers and gyratory crushers are used at the 

primary stage while hammer mill crushers and cone crushers perform the second stage 

of crushing. However, a gyratory crusher is sometimes used at the secondary stage as 

well. Moreover, Nielsen and Kristiansen (1995) suggested that using more powerful 

explosives can result in better crushing and grind ability of the ores. 

After the desired size for the fragments is achieved, the particles are sent to grinders. 

This is the last stage of size reduction of the tailings and the particles produced are the 

ones which are processed in the rest of the mineral processing progress. 
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Usually there are two different grinders to perform this process, the rod mill grinder 

and the ball mill grinder. In a rod mill, the rock particles are ground in a rotating drum 

being plunged and crushed by heavy metal rods. This will reduce the size up to 

approximately smaller than 2 millimeters (Vick, 1983). In order for the resizing process 

to be complete, the output of the rod mill will be sent to the ball mill where the same 

process as the rod mill will occur with the exception that there are heavy metal balls 

inside instead of rods. This final process will reduce the size of the particles to smaller 

than sieve No. 20 (Vick, 1983). 

There are more modern types of grinders, autogenous and semi-autogenous grinding 

mills, which facilitate the process of grinding by having the ability to be fed by 

relatively larger particles than the ones previously mentioned. Rock fragments can be 

directly sent to these grinders even after the primary crushing which gives these types 

of grinders the potential of replacing the rod mill. 

In a semi-autogenous mill, grinding takes place by means of rocks and metal balls. As 

the rolling drum rotates, the plates which are placed on the inner wall of the drum lift 

the material which then falls from a higher elevation. This plunge causes the input 

material to become finer and the larger rocks get broken up. Some examples of using 

semi-autogenous mills are in gold mining (Bartrum, Bowler, Butcher, 1986), copper 

(Carter and Russel, 2005) and platinum (Knecht and Patzelt, 2004). 

An autogenous mill also uses the same method. The only difference is that there are no 

metal balls in the drum anymore and the crushing is done by only using rocks. 

Other types of grinding mills are pebble mills and high pressure grinding rolls. In a 

pebble mill (rock pebbles are used in the system) both friction and crushing are used to 

grind the material. This method may be used where product contamination by iron from 
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steel balls must be avoided. It also raises the capacity of the mill as a result of utilizing 

pebbles which occupy almost 40% less volume than the balls in total (Lynch and 

Rowland, 2005). In a high pressure grinding roll two cylindrical rollers are pushed 

towards each other while the ores are passing through the space between them in the 

opposite direction. The exerted pressure brakes and crushes the ores into finer particles 

(Lynch and Rowland, 2005). 

The degree to which the particles are ground is related to the mineral extraction 

method which is subsequently going to be used and the so related efficiency expected 

from the method. It usually takes detailed mineralogical and metallurgical examination 

as the key to choose the most efficient and suitable method of extraction. If leaching is 

going to be the primary extraction method, then high specific surface area is sometimes 

what it is looked for to get to the maximum efficiency; whereas finer particles may lead 

us to the maximum efficiency where flotation is considered as the primary extraction 

method. 

Due to the force exerted on the ores during crushing and grinding, the produced 

tailings particles are highly angular (Pettibone and Kealy, 1971). Even particles which 

can be categorized as silt sized material show angularity such as broken glass (Hamel 

and Gunderson, 1973). Ores principally consisted of shale and also the ones with high 

clay contents are exceptions to this kind of categorization. Crushing and grinding such 

ores results in tailings' having particles shape and hardness reflecting the silt and clay 

particles in the parent material (Vick, 1983). 

When the grinding process is finished, as mentioned before, depending on the efficiency 

of the process and based on detailed examinations the best method of extraction of 
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minerals will be chosen. The three most common options are concentration, leaching 

and heating (Vick, 1983). 

The content of minerals in the ground ore differs from ore to ore. By concentration, the 

ores with greater amount of mineral will be separated from the ones containing 

negligible amounts, which will form the "tailings", to have the mineral extracted. The 

method chosen for concentration depends on the type of the mineral which is going to 

be extracted. However, according to Vick (1983), there are. three major and common 

ways used for concentrating the ores which are gravity separation, magnetic separation 

and froth flotation. 

When there is a considerable difference between the specific gravity of a type of mineral 

and the rock holding it, then using the gravity separation is a beneficial method. Gold, 

iron, coal and tin have much lower specific gravity than the rock itself; therefore gravity 

separation is a useful way to extract them (Vick, 1983). Water is usually the means to 

perform gravity separation. One way to do this is by a spiral classifier (Vick, 1983) or 

concentrator (Matthews et al., 1999). Spiral concentrators perform separation on the 

basis of particle density and size. They are consisted of a central axis about which an 

open trough twists downward vertically and thus separates a thin-film slurry of mineral 

and waste material in a radial format (Matthews et al., 1999). A pinched sluice can also 

be used to perform concentration; however, this device is not as efficient as the other 

devices. Therefore, regarding the fact of sluice being an economical device in both 

capital and operating expenses and the operator having the benefit of manufacturing it 

locally, in the cases where the capacity is low and flexibility is needed, sluices are still 

used. In order to overcome the efficiency problem, in contrary to the other devices' 

processes this process is performed in several stages. The sluice is fed with the slurry of 
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50% to 65% solids and as the path becomes narrower the height of the slurry will 

increase and gradually, as the result of heavy and light minerals getting separated and 

going together, segregation will happen. Subsequently, the heavy and light parts are 

separated into two flows by splitters to either proceed to the next stage or repeat the 

same procedure once again (Ergun and Ersayin, 2002). The concentrating process can 

also be done using a jig. Through jigging process particles are stratified with respect to 

density by water and particles' moving regularly with pulse air. The motion and 

stratification of the particles in a jig are affected by water motion (Kuang, Xie and Ou, 

2004). 

Magnetic separation is used for separating iron from magnetic ores such as magnetite 

(Vick, 1983). In some cases there is a rolling belt rolling around a permanently 

magnetized core which separates the magnetic particles as it moves and rolls. In some 

other cases a magnetic field is provided to attract the magnetic particles inside a drum 

separator and sticks them to the body of the drum. In "open gradient" separators the 

"falling curtain" method is used where a stream of mixed particles is run and magnets 

will deflect the magnetic particles among the stream of ores (Watson, 1998). 

Froth flotation is one of the widely used methods in mineral concentration and Vick 

(1983) believes that its one of the most complicated procedures through which 

concentration takes place. As a result of using different reagents ores containing 

considerable amounts of minerals will become water repellent and will be willing to 

receive air bubbles. Therefore, these ores will stay on top of the suspension and will be 

skimmed while the rest of the ores remain in the suspension as tailings. In fact flotation 

is the first stage of extraction process where a chemical reagent enters the process and 
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therefore, it is also a critical stage since this entrance may have serious effects on the 

effluent in the mill and in the impoundment in the future which might be problematic. 

The reagents used in the froth flotation process depend on the mineral or minerals 

which are going to be extracted. As a result there is usually no specific reagent with the 

ability to be used as a general reagent. Moreover, the reagent acts in different ways, 

some reagents will coat particles to become water repellent and some will change the 

pH in a way to promote flotation (Vick, 1983). 

Finally; the concentrate is ready to either be delivered to the consumer, in case of coal, 

or to be transported to the refinery for the minerals to be extracted. Nevertheless, in 

some cases some other processes are used either alongside or in preference to 

concentration. Two frequently used processes of this kind are leaching and heating. 

Leaching is a process where the minerals are separated from the ground particles by 

directly being exposed to strong acid or alkaline solutions. Choosing either one of the 

solutions depends on the type of the ore being treated. According to Vick (1983) the 

most common acid reagent used in this process is sulfuric acid (H2SO1) and the most 

common alkaline reagents are hydroxides and carbonates of sodium or ammonium. 

Leaching may have some effects on the physical condition of tailings and might also 

cause some changes in it. While physical breakdown and alteration of rock fragments 

has been caused by acid leaching of rock waste dumps, much less physical breakdown of 

this kind probably occurs in tailings' case (Vick, 1983). One way of performing the 

leaching process is in situ leaching or ISL which has been used by some countries such 

as the United States, Uzbekistan, Kazakhstan, Australia and some European countries 

(Dobrzynski, 1997). 
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This method can have some harmful consequences and has to be operated with great 

attention, accuracy and supervision since there is a great chance to contaminate the 

ground water and also the rest of the environment if the mining area is flooded (Taylor 

et al., 2004). In this method acid or alkaline solutions are injected directly into the 

ground water through boreholes (wells). The solution strips uranium (this method is 

mostly used for uranium) off the rocks and dissolves it into the ground water. Usually in 

the center of these wells there is a pipe through which the ground water is pumped and 

sent to the plant where the ground water is treated to separate the uranium and the rest 

will be pumped away. While the uranium is being stripped off the rocks, other 

radioactive materials and other products of leaching such as aluminum, iron and 

manganese are solved into the ground water (Shatalov et al., 2001). If a proper way to 

treat these elements is not considered in the process, then there is a great 

environmental danger awaiting the area. 

Heating is a process through which some minerals will be extracted from the ores. It 

can be performed on both ground ores and also slurry suspensions. Heating is also 

known as "calcining" and the most frequent example for heating is the extraction of oil 

from oil sands (Vick, 1983). Calcining is usually performed by heating the ore (ground 

ore or the slurry suspension) in a confined container until the desired changes are 

achieved. These changes can be either chemical or physical depending on the material. 

There is more than one way to perform calcination and the best way is chosen 

concerning the required temperature, the size of ores, resistance of the material to 

changes and other special physical and chemical characteristics the material might have. 

Calcination is usually performed with a heat between 1800° F and 2200° F; however, this 

temperature range is sometimes changed to between 400° F and 3200° F (EPA, 1995). 
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The final stage of mining process is dewatering. From the word itself it might be 

incorrectly assumed that the process of dewatering is performed to produce dry tailings, 

however, the goal of this stage is to reduce the amount of water in the tailings and also 

reuse this excess amount water in the mining process if possible. There are some 

tailings such as the ones containing acid leach uranium (Vick, 1983) from which water is 

taken but this water contains some contaminants which lower the efficiency of the 

process of extraction if reused. Such cases cause some concerns for the disposal stage of 

running a mine. 

One of the most common methods of dewatering which is not only used in mining but 

also in some other activities such as sewage management and recycling is the use of 

thickeners. The slurry suspension is conducted into a huge pot, and then the settled 

tailings are pushed towards the center of the pot by usually two rotating arms where 

they will be collected and pumped to the disposal point. Vick (1983) mentions that 

hydro cyclones are sometimes used instead of thickeners, however, some old fashioned 

devices such as drum, disc and belt filters which perform the dewatering process by 

vacuum suction of water through screens or clothes can also be used. Moreover, Zhang 

and El-Shall (2003) have tried methods such as sedimentation thickening, filtration, 

centrifugation, dewatering on screens, seepage induced dewatering and consolidation in 

their experiment to dewater the suspension. 

2.3 Fa te of Tailings 

When the mining and mineral extraction processes are finished the tailings have to be 

transported to the impoundment. The tailings at such moment are usually in a slurry 

15 



suspension form most probably inclusive of 40% to 50% water (Vick, 1983). Almost all 

the tailings that are collected from the thickeners are in slurry suspension form since 

further dewatering of the tailings is economically unreasonable (Vick, 1983). 

Historically, convenience and cost effectiveness were two important factors of choosing 

the location of tailings disposal and thus, tailings were often disposed of in flowing 

water or directly into drainages. As concerns arose regarding downstream 

sedimentation, water use and such matters the method of forming impoundments 

behind earth dams, which were often built using tailings and other waste material, was 

chosen by mine operators. Moreover, in some regions besides containing tailings, the 

impoundments also served the purpose of reusing the water in the impoundment due to 

the lack of water resources in the area (EPA, 1994). 

The transportation of the tailings is sometimes done through flumes (EPA, 2001) and 

troughs (Rubinstein, 1995); however, the most common transportation system in this 

case is through pipes. Slurry is generally abrasive with high viscosity and its water 

content usually reaches up to 50%, and therefore, designing piping systems for slurry is 

not as simple as designing for water systems. High concern and attention is needed to 

consider a minimum flow rate since if the slurry suspension's running speed falls below 

a certain amount or even if the pipe is designed too large (Abulnaga et al., 2002) the 

system might face slurry settlement in the pipes which may result in a blocked system. 

On the other hand, a maximum flow rate should also be calculated and considered in the 

process since too high speed might result in head loss in addition to damages to the pipe 

itself and eventually lowering the durability of the system (Vick, 1983).Where 

necessary, pumps should be used according to the difference in the elevation of the 

impoundment and the thickener to keep the slurry moving. On the contrary, in some 
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cases, such as steep down slopes, there is a necessity to reduce the flow rate by means of 

energy dissipating points to prevent the pipes and the system from being damaged. 

Moreover, a discharge system should also be planned to provide the operator with the 

chance of emptying the pipes from tailings in case the system shuts down in order not 

to let the tailings settle down and harden in the pipes (Vick, 1983). 

In the case of a tailings dam, the common tailings disposal method usually used is the 

above water disposal method where the tailings are disposed around the perimeter of 

the tailings dam. This method can be performed in two ways; single point discharge and 

spigotting (Vick, 1983). 

As for single point discharge method there is only one outlet for the tailings pipe on the 

perimeter of the dam. This means that in different intervals the place of the outlet has to 

be changed along the perimeter to let the tailings form similar deltas next to and 

connected to each other in order not to let the tailings be distributed unevenly along the 

dam and to prevent pile ups (Vick, 1983). 

When the spigotting method is used there are several spigots placed in the pipe located 

in equal distances from each other. When the tailings are passing through the pipe, they 

will be disposed through spigots along the embankment. Using this method there is no 

need to relocate the spigots as frequently as the former method and also usually each 

spigot has a separate valve so the operator would be able to control the disposal of the 

tailings through each spigot separately (Vick, 1983). There are various particle sizes in 

the tailings and as a result the same gradation exists in the pond behind the dam. As the 

tailings pour out of the spigot, the coarser particles settle in the area closer to the dam 

itself and the finer ones are thrown and taken farther than the dam where they will 

settle in the stationary water. 
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Cycloning is also another method of tailings disposal for tailings dams where the finer 

particles and the water will be discharged from the top of a cyclone into which the 

tailings enter under pressure and the coarser particles (usually sand) will be discharged 

from the bottom to be used in the further construction of the dam (EPA, 1994). 

If necessary, some amount of the water behind the dam in the tailings pond might be 

taken back into the system to be reused for the mining process (Vick, 1983) or to protect 

the dam from overtopping (Babaeyan-Koopaei, 2002). There are usually two ways to do 

this, pumps or siphons and decant towers. 

Pumps or siphons are floated on the water surface using barges and pontoons (Vick, 

1983). Water is pumped and goes through pipes over the dam to the mill. A decant 

tower is made of a hollow concrete column which extends vertically from the bottom of 

the pond to the water surface. There are some ports on the column to take the water in; 

however, the ports located in the elevation range of the tailings are closed. Water runs 

through the column and it flows into a conduit which is extended perpendicular to the 

dam and goes beneath the dam toward the mill (Vick, 1983). 

The decant tower system is usually less preferable than the floating pump method. The 

conduit for the decant tower is subject to settlement and rupture which might result in 

internal erosion and the collapse of the dam. The decant tower is made of concrete and 

concrete having the possibility of being affected by different acids and sulfates that 

might be in the tailings suspension is one reason this method is not as popular as the 

other one. Moreover, the pond might be divided into different parts in order for each 

segment to be handled individually. In such cases the pump or the siphon can be pushed 

to each segment very easily whereas an individual decant tower must be built for each 

segment (Vick, 1983). 
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As the U.S. Environmental Protection Agency (1994) states there are several other 

disposal methods besides disposal of tailings slurry suspension in impoundments such as 

disposal of dry or thickened tailings in impoundments where the tailings are thickened 

or dried before disposal which minimizes the seepage and the area of the land needed for 

the impoundment in addition to providing the chance of simultaneous tailings 

deposition and reclamation of the mixed water. However, it is an expensive method 

since considerable amount of energy and equipment are needed. Other methods are 

disposal as free standing piles and disposal by backfilling underground mines which is 

used to provide ground or wall support and stabilize the mined out area which will 

greatly decrease the occupied above ground area. It should be noted that only that part 

of the tailings which has high permeability, is less compressible and has the quality of 

getting dewatered rapidly (the sand fraction) is used underground. Cement can be added 

to this part of tailings in order to achieve even more satisfactory results. In this method 

the slimes are deposited above ground. Disposal by filling open pits is another method 

where the tailings are deposited into an abandoned pit or a part of an active pit which 

the former is a bit unusual to find because an embankment has to be built in the pit in 

order not to let the tailings go toward the active pit and also the seepage might affect 

the embankment and cause problems. There is also subaqueous disposal which is limited 

to coarser tailings which can settle quickly where the tailings are disposed in deep lakes 

or oceans which will prevent the process of oxidation of sulfate from taking place 

resulting in inhibiting acid generation. This method is used for areas with steep terrain, 

high precipitation and high seismicity. Ripley et al. (1982) stated that unless the proper 

way of disposal is organized, the tailings could cover large areas of the ocean or lake 

floor and cause turbidity. This method can be performed as depositing the tailings in 
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pits or impoundments permanently which can almost have the same benefits. However, 

the water level and the effect of seepage on ground water have to be monitored 

constantiy. Nevertheless, the most suitable method should be chosen based on the 

situation and the location. 

2.4 Impoundments of Slurry Tailings 

Impoundment of slurry tailings is the most common method of tailings disposal and the 

reason for this, as Environment Canada (1987) states is the method's, in comparison to 

the other methods, being economically preferable and also easier to operate. According 

to Environment Canada (1987) designing a tailings impoundment is also to take care of 

a number of treatment functions such as removal of suspended solid by sedimentation, 

separation of heavy metals by forming hydroxides, containing of the settled tailings 

permanently, equalization of waste water quality, stabilizing some constituents that are 

prone to oxidization, stabilization and storage of the recycled water from the suspension 

and balancing the incidental flow caused by storm. There are some disadvantages as 

well, which are having difficulty maintaining a well distributed flow and draining water 

from the uncontaminated parts. Reclamation is generally difficult but in presence of acid 

generating tailings because of the material characteristics and large surface area it 

becomes more difficult. Since the bio-oxidation process is exposed to seasonal changes 

and its efficiency is therefore variable, the treatment process is inconsistent. Moreover, 

it takes great expense and difficulty to collect the seepage through the structures and 

finally, unless the surface is stabilized by vegetation, chemical binders or rock cover, the 

finer part of the tailings material is seriously prone to wind dispersion. 
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2.5 Surface Impoundments 

There are generally two major types of surface impoundments; water retention dams 

(Figure l) and raised embankments. Based on topography of site, site situation, 

availability of materials and economic situation impose each of these major types of 

impoundments can be designed as ring dikes, in pits, specially dug pits and a variety of 

valley designs (EPA, 1994). 

The amount of fill affects the cost of construction of a dam; therefore it is beneficial to 

be able to reduce the size of the dam and also to use local material, in this case tailings, 

to build the dam. 

The water retention dam is constructed with its full height which will not give the 

operator a chance to change the height in the future. According to Vick (1983), the 

internal zoning of a water retaining dam which is used for tailings is very similar to a 

conventional earth dam's technology; however, since a water retaining tailings storage 

dam does not experience draw-downs as rapid as a normal water retaining dam, 

therefore, its upstream slope can be built steeper. 

Whenever there is a need for a high quantity of water storage, a water retaining dam is 

preferable, for instance, where the constituents in the processed effluent prevent the 

operatoi" from recycling water, which will require larger evaporation areas and water 

storage (Vick, 1983). 
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Impervious core 

Figure 1. Water retaining dam for tailings storage, after Vick (1983) 

Raised embankments are built in stages depending on the need of the site and the 

increase in the amount of produced tailings and effluent needed to be impounded. 

Construction starts with a 'starter dike' usually constructed with natural soil which is a 

type of retention structure and will be developed later on as time passes and needs 

grow. As a result of the construction and development taking place in stages, by 

constructing a raised embankment the operator undergoes a lower initial cost and since 

it starts with a starter dike which needs less material than a water retaining 

embankment, it is a more economical choice. Moreover, according to Vick (1983), as a 

result of a smaller quantity of material being used for construction of a raising 

embankment at the starting point, choices are available to choose from as construction 

materials. This means that while natural soil is used for construction of a retaining dam, 

one has the choices of natural soil, sand tailings or waste rock to choose from. Usine a 

combination of the above mentioned materials is also possible. 
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Due to the raised embankments' staged method of construction, the operator has the 

opportunity to remedy the possibly occurring problems without having to have a great 

deal of materials or tailings moved or put the embankment out of service. 

Starter dikes are usually constructed for the first couple of years in order to keep the 

processed effluent and the volume of possible flood in the first couple of years of mining 

activities. The upcoming raises in the embankment should be in a way that can stand 

the pace of rise in volume of the tailings plus the storage allowance for a possible flood. 

A wide range of materials such as natural borrow soils, pit mine waste, underground 

development muck, hydraulically deposited tailings, or cyclone sand tailings might be 

used in order to build embankment raises (Vick, 1983). 

There are three methods of raising the embankment regardless of the type of materials 

used in the construction of each model and they are recognized by the position of the 

crest in relation to its position on the starter dike as the embankment is raised higher 

and higher. Each method has its own advantages and disadvantages and they are known 

as upstream, centerline and downstream methods. 

2.5.1 Upstream method (Figure 2): The construction of the embankment commences 

with a starter dike and a beach is formed by the tailings being squirted from the top of 

the crest by a spigot. The second dike is built on the beach upstream, and so the 

construction goes on with the next dike. Vick (1983) mentions that as a general rule, the 

amount of sand in the discharged whole tailings should not be less than 40% to 60% and 

thus, for tailings in soft rock or fine categories the option of using upstream method is 

eliminated. This also applies to tailings from which the sand fraction is removed for use 

as underground mine backfill. The most significant advantages of choosing the 

upstream method are the simplicity and the low cost of the process. The dikes are built 
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on the beach upstream the starter dike, therefore, there is usually very little amount of 

fill needed to be added mechanically to the new dike and as a result the embankment can 

go higher and higher with a low cost. 

Although the upstream method has the mentioned benefits it also has some very critical 

and challenging restrictions. The location of the phreatic surface is a critical issue in the 

upstream embankments and the important factors to control this location are the 

permeability of the foundation in relation to the tailings, the grain-size segregation 

degree and lateral permeability variations within the deposit and the location of the 

pond behind the embankment. When the pond gets closer to the face of the 

embankment, it boosts the phreatic zone to a higher level and the stability of the dam 

will be endangered. 

In fact, the only factor that can be controlled during the operation is the pond 

encroachment on the beach which can be done by increasing the spigotting action in the 

areas where the distance between the face and the pond has become critical and also by 

increasing the decanting speed. However, this pond control is very difficult when a flood 

or great inflows are gathered behind the embankment. Consequently, an upstream 

embankment is not generally built for the use of water accumulation and storage, 

Moreover, an upstream embankment's low density and high saturation degree result in 

its being vulnerable to seismicity which makes the upstream embankment unsuitable for 

the locations with high seismicity. 

As an important consideration, the rate of raising an upstream embankment should also 

be controlled since the higher the rate, the higher the excess pore pressure in the 

embankment will be (Vick, 1983). 

24 



Tailings discharge line 

I
Starter dike 

Figure 2. Upstream method of tailings embankments raising, after Vick (1983) 

2.5.2 Downstream Method (Figure 3): In this method, construction starts with a 

starter dike, however, in order to raise the embankment the fill will be deposited on the 

downstream face of the dike. The raised embankments are equipped with interna] drains 

and impervious cores, therefore, the location of the phreatic surface is kept low and also 

by having the fill compacted, water storage behind the embankment can be possible in 

addition to the structure's being highly seismicity tolerant. 

The raising rate in an upstream embankment is a critical factor in its stability. This 

factor, however, is not of importance in a downstream embankment since its method of 

construction makes it independent of the beach and the tailings on the upstream side. 

The fill on which the embankment is raised, as previously mentioned, can be compacted 

in addition to the existence of the internal drains and impervious cores. Vick (1983) 

states that regarding structure soundness and behavior, dams constructed with 

downstream raising method and water retention type dams have the same value. 
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In spite of all the mentioned benefits, construction of a downstream embankment 

requires some preplanning since as the embankment rises, the toe of the dam moves 

outward and as a result the dam will occupy more space. To prevent this procedure 

from interfering with or crossing roads, piping systems and other facilities, sufficient 

planning has to be done before the construction commences. Moreover, construction 

using this method needs a great amount of fill which makes the method costly and also 

if the mine waste and the tailings are used as the fill since their production rate is 

usually constant and the demand for the fill goes higher as the embankment rises, 

material shortage might be faced as the construction process advances. 

Ponded water 

Starter dike 

Impervious zone 

Internal drain 

Figure 3 Downstream method of raising tailings embankments, after Vick (19S3) 

26 



Decant pond 
Spigotted tai l ings beach 

Tailings discharge line 
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Figure 4. Centerline method of raising tailings embankments, after Vick (1983) 

2.5.3 Centerline method (Figure 4): This is a method in-between the previous two 

methods, which means that it has some benefits that others have and also some of the 

disadvantages present in the previous methods have been shrunk or minimized in this 

method. In the centerline method, as well as the other ones, the construction starts with 

a starter dike and the waste and tailings are spigotted behind the dike and a beach is 

formed, however, the raise is performed differently. In this case, the structure is raised 

by putting the fill on the beach and the downstream face of the dike simultaneously 

keeping the center of all the dikes on a vertical line which passes through all of them. By 

using this method the amount of fill needed to raise the embankment would be 

something in between the upstream and the downstream methods by which a lower cost 

of embankment raise is provided. Fewer problems regarding the fill production and its 

demand will be faced performing the centerline method. Due to the existence of internal 



drains in the embankment there should be no concerns about the distance of the beach 

and the embankment face regarding the phreatic zone. 

While spigotting and forming a beach is not necessary in the downstream method, it is 

necessary for a centerline embankment to have a beach since it is needed for the 

embankment to be raised on. 

An embankment built using this method is not suitable for retaining water for a long 

time. It is possible to keep water behind the dam for a while but for a long term 

program this method is not the one functioning well. As Vick (1983) has mentioned, the 

rate of raising the dam is not affected by the pore pressure dissipation but the undrained 

shear strength of the beach material should be considered. As a result of the internal 

drainage being present and the fill in the body being compacted, this kind of 

embankment should have good seismic resistance. In case of liquefaction, the upstream 

might be damaged, however, as long as the center and the downstream parts are not 

affected and the effluent is not ponded directly at the upstream face of the embankment, 

the structure is considered as stable and unaffected. 

2.6 Physical Properties of Tailings 

There are various types of tailings based on the ore type which is being processed at the 

mill. Amongst several existing tailings types, physical properties of coal tailings, oil 

sands and gold tailings are included in this thesis. 



2.6.1 Coal 

It is not always needed for coal to be processed. The procedure of processing ores is 

sometimes done in order to improve the quality of the coal and the burning process. 

Processing coal is also done to decrease the amount of the sulfur in the coal by 

removing the pyrites from it. Gravity separation is used in the mill in order to process 

coal by which coarse refuse is produced, which is handled dry. However, when wet 

cleaning or froth floatation methods are applied, the produced tailings are called fine 

refuse or sludge (Vick, 1983). 

According to Vick (1983), tailings produced from coal wash generally consist of fine 

grained materials; mostly clay and silt particles from the existing shale and also coal 

particles which result in a low specific gravity for the tailings. This composition, for the 

amount of its clay content, also results in the tailings having some plasticity. As an 

example from the same source and reported by Wahler (1973), the specific gravity of 

fine coal refuse in Buffalo Creek, W.V. is between 1.4 and 1.6, the liquid limit is between 

20% and 40% and the plasticity index is in the range of 2% to 12%. 

2.6.2 Oil Sands 

For oil sands or tar sands, such as in Athabasca Tar Sand region in northern Alberta, 

Canada, the ore usually does not need to be ground and therefore, a considerable portion 

of tailings is coarse material. However, clay, silt and oil residue, mostly as bitumen, 

consist a small part of the tailings (Vick, 1983). 

The sludge reacts poorly to consolidation and sedimentation therefore the void ratio in 

this type of tailings is high. Vick (1983) mentions it can reach up to 10 in some cases. 
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Such a high void ratio will result in the tailings' occupying a large volume in the 

impoundment. In addition, production of oil sand tailings is in a very high pace; 

therefore, there are rapid increases in the height of tailings dams which in turn affect the 

stability of embankments. 

Using Hot Water Process (HWP) in commercial oil sands operations results in the 

coarse tailings effluent's being produced in a form of slurry which is a mixture of sand 

particles, dispersed fines, water and residual bitumen. The slurry, which is hydraulically 

transported to and deposited in the tailings ponds has approximately 50% (by weight) 

solids. The solids portion consists of sand (82% by weight), fines smaller than 44 mm 

(17% by weight) and residual bitumen (l% by weight). When the tailings are deposited 

in the pond, a beach is formed due to quick segregation of sand particles. The remaining 

fine tails (6% - 10% by weight) accumulate in the pond and settle quickly to 20% (by 

weight) solid content and in a few years to 30% (by weight) solids with a stable slurry 

structure which is called mature fine tails (MFT). The M F T has a very slow-

consolidation rate and as a result keeps its fluid state for decades (Chalaturnyk et al., 

2002). 

2.6.3 Gold and Silver 

Gold and silver are usually extracted in combination. The size of the particles of the 

tailings depends on the amount of the metals in the ore. The richer the ore, the coarser 

the tailings might be. As a result of the amount of clay present in gold-silver ores, the 

produced tailings are usually low or non plastic (Hamel and Gunderson, 1973). Specific 

gravity of 2.6-2.7 is reported by Soderberg and Busch (1922) and 3.1 by Hamel and 
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Gunderson (1973). As Vick (1983) mentions, higher specific gravities are probably due 

to the presence of pyrites in gold tailings reported by several investigators such as 

Hamel and Gunderson (1973) and Blight and StefFen (1979). 

Vick (1983) has summarized the physical properties of the tailings and has classified 

them as Soft-rock tailings, Hard-rock tailings, Fine tailings and Coarse tailings. As for 

the previously introduced tailings, the fine refuse of the coal wash consists of both sand 

and slimes; however, since the clay is present in the slime part, the latter may be the 

dominant part; therefore, it falls into the soft rock tailings class. Gold-silver tailings 

may include both sand and slime fractions. There is usually low amount of clay in them 

and as a result, there is usually low or no plasticity and sand is the dominant part in the 

physical properties and that is the reason this kind of tailings belongs to the hard rock 

tailings group. As for tar sands, they have either sands or non-plastic silt sized particles 

which generally behave like sand and therefore, they fall into coarse tailings. However, 

the slimes from the tar sand tailings do not usually contain the sand fraction and the 

behavior is dominated by silt-clay particles and therefore, as mentioned before, may 

cause consolidation. The slime therefore, belong to the fine tailings group. In Table 1, 

Vick (1983) summarizes typical in-place densities and void ratios for different kinds of 

tailings. The higher void ratios and lower dry densities show the tailings which are 

closer to the surface and are newly deposited whereas the higher dry densities and lower 

void ratios belong to the tailings in deeper parts. 
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Table 1. Properties of different tailings (Vick, 1983) 

Tai l ings T y p e 

Fine 
Coal 

Refuse 

Oil 
Sands 

Lead-
Zinc 

Gold-
Silver 

Molybde­
num 

Copper 

T a c o n i t e 

Phosphate 

B a u x i t e 

Eas te rn 
U.S . 
W e s t e r n 
U.S. 
G r e a t 

Br i ta in 

Sands 

Slimes 

Slimes 

Slimes 

Sands 

Sands 

Slimes 

Sands 
Slimes 

Slimes 

Gypsum 

Slimes 

Specif ic 
Gravity 

G, 

1 . 5 - 1.8 

1 .4 - 1.6 

1 . 6 - 2 . 1 

2 . 9 - 3 . 0 

2 . 6 - 2 . 9 

2 . 7 - 2 . 8 

2 . 6 - 2 . 8 

2.6 - 2.S 

3.0 
3.1 

3.1 - 3 . 3 

2 . 5 - 2 . 8 

2.4 

2 . 8 - 3 . 3 

V o i d Rat io 
e 

0 . 8 - 1.1 

0 . 6 - 1.0 
0 . 5 - 1.0 

0.9 

6 - 1 0 

0 . 6 - 1.0 

0 . 8 - 1 . 1 

1.1 - 1.2 

0.7 - 0 . 9 

0 . 6 - 0 . 8 

0 . 9 - 1.4 

0.7 
1.1 

0 . 9 - 1.2 

1 1 

0 . 7 - 1.5 

S 

D r y 
D e n s i t y 
( k g / m * ) 

2 . 8 - 3 . 4 

2 . 8 - 4 . 4 

3 . 4 - 5 . 3 

5.44 

5.81 - 7 . 1 

5 - 6 . 4 

5 . 7 5 - 6 . 2 

5 . 8 - 6 . 9 

4 . 4 - 5 . 6 

6.9 
5.7 

6.1 - 6 . 6 

0.9 

3 . 7 - 5 . 6 

1.2 

Source 

Busch, Baker, A t k i n s 

and Kealy, 1975 
Baker, Busch, a n d 

Atk ins , 1977 
W i m p e y , 1972 

Mi t t a l and H a r d y , 
1977 

Mabes , H a r d c a s t l e 
and Wil l iams, 1977 

Kealy, Busch a n d 
McDona ld , 1974 

Bl ight and Steffan, 
1979 

Nelson, Shephe rd 
and Charl ie 

1977 

Volpe, 1979 

Guer ra , 1973 
Klohn, 1979a 
Guer ra , 1979 

Bromweil and 
Raden, 1979 

Vick, 1977 

Samogyi and G r a y , 
1979 

When the tailings are dewatered or thickened, the finer particles are retained which 

makes the tailings have a somewhat homogeneous amount of fine material throughout 

their mass (Kwak, 2004-). According to the same source, if further dewatering takes 
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place, a paste like condition is reached, which will reduce the risk of the impoundment 

failure, lower the amount of seepage in the ground, and lessen acid generation. 

Furthermore, the capillary action which is caused by the fine material in the paste and 

the low permeability of the paste as a result of its nature reduces the possibility of water 

infiltration. In addition, the shear strength of paste will increase as time passes which 

will result in more stable tailings in the impoundment. 

2.7 Tailings as Non-Newtonian Fluids 

Rheology, the study of deformation and flow of matter, classifies fluids into two 

categories based on their flow pattern: Newtonian and Non-Newtonian. One of the 

methods of tailings deposition is to deposit tailings in a concentrated 'paste like' state 

which is achieved by dewatering and pumping the tailings to the extent at which it 

behaves as Non-Newtonian material (Henriquez and Simms, 2009). Industrial tailings 

and concentrated mineral tailings often demonstrate Non-Newtonian behavior (Sofra 

and Boger, 2002a). 

2.7.1 Newtonian Fluids 

As Chhabra (2007) discussed using a hypothetical example of a layer of fluid between 

two plates and a steady horizontal force is applied to the top plate, the shear stress is 

proportional to the shear rate with a constant of proportionality "u", known as viscosity, 

which is dependent on temperature and pressure and independent of the shear stress. 
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Figure 5. Velocity profile for Newtonian flow between parallel plates, after Graebel (2001) 

The example above is the case where the force is applied in the horizontal direction (X) 

and it results in linear velocity changes in the vertical direction (Y). In case of a three 

dimensional flow, there are vertical and shear stresses on different sides and planes. In 

such case, there are two shear stresses (yz and yx for y plane as an example) and a 

vertical stress (one of Pxx, Pyy or Pzz) for each plane. This vertical stress is composed 

of the isotropic pressure and the deviatoric normal stress (Chhabra, 2006). 

The definition of a Newtonian fluid implies that this kind of fluid is the one having a 

constant viscosity (in order to maintain a linear velocity change) meaning that it is not a 

function of time and the viscosity will be the same if the stress is applied after a resting 

period; and also having the three deviatoric normal stresses [Tor the three main 

dimensions, (X, Y and ZJ] equal to zero since deviatory reflections are not usually of the 

properties of Newtonian fluids. 
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2.7.2 Non-Newtonian Fluids 

In contrast to Newtonian fluids, a Non-Newtonian fluid is defined as a fluid to which the 

previous equation for Newtonian fluids is not applicable meaning that the proportion of 

applied shear stress to the shear rate is not constant under a specific pressure and 

temperature anymore and therefore, u is not the constant of proportionality. The value 

of viscosity for Non-Newtonian fluids depends on the flow conditions such as the shear 

stress, which is developed through the fluid or shear rate, duration of shearing and 

geometry of the flow. He also lists that the Non-Newtonian fluids are divided into three 

groups. 

First, the fluids for which the shear stress (or the shear rate) solely depends on the shear 

rate (or the shear stress). These fluids are commonly known as purely viscous, time 

independent or generalized Newtonian fluids. 

This group is also divided into three sub categories: 

1. Shear thinning or pseudoplastic fluids, for which an apparent viscosity is defined 

as the shear stress divided by the shear strength. The higher the shear rate, the 

lower the viscosity will be. The reason, as Sofra and Boger (2001) mentioned, is 

that the network between the particles will develop, as the shear stress increases, 

to be in the same direction as the shear stress which decreases the resistance 

against flow. 

2. Shear thickening fluids or dilatant fluids are usually the type of fluids such as a 

concentrated suspension of solids where the viscosity increases with the increase 

in shear rate. At low shear rates, since the liquid part is almost filling most of the 

voids in the suspension, it facilitates the movement of the particles on each other; 
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however, as the shear rates increases, the structure breaks, the material expands 

or dilates and the solid parts are pushed over each other and the resulting 

friction causes a rapid increase in the apparent viscosity. The term 'dilatant' is 

generally used for the fluids which have the same reaction towards the increase 

in shear rate even if they do not expand with the change of conditions. 

3. Visco-plastics in which there is a resistance against the shear stress (yield 

stress), therefore the shear stress needs to exceed the resistance in order to make 

deformations or a flow. This kind of fluid is also known as Bingham Plastic 

Fluid. Tailings have been considered as Bingham fluids in such works as of 

Henriquez (2008), Rodriguez-Paz and Bonet (2003) and Kwak et al. (2005) and 

therefore, it is considered the same in this thesis. Henriquez (2008) mentions 

that considering Herschel-Bulkley model a constitutive equation can be 

described for the visco-plastic fluids: 

T = Ty + (kym) where T> Ty (eq. 1) 

Ty is the yield stress and m and k are constants. The fluid is a dilatant when 

m > 1, shear thinning when m < 1 and is a Bingham in case of m ~ 1. 

Second, the fluids for which not only the shear stress and the shear rate have the 

relationship they have in the first group, but the relationship also depends on aspects 

such as the duration of shearing which are usually called time-dependant systems. 

Finally, there are the visco-elastic fluids which will react elastically and have a recoil 

reaction when deformed and generally have the properties and characteristics of both an 

elastic solid and a viscous fluid. 
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Larson (1999) describes the yield stress present in the visco-elastic fluids the transition 

zone between the elastic behavior and the viscous behavior of the fluid. The solid parts 

in the suspension tend to make bonds with each other forming a network or flock in the 

suspension. To make the suspension flow, breaking this structure is necessary and if the 

shear stress is smaller than the yield stress the fluid will act as an elastic material and 

will recoil after the shear stress is applied. When the shear stress exceeds the yield 

stress the material acts as a viscous fluid and starts to flow. Cements, soils, paints, 

pastes, printing inks, greases, pharmaceutical creams and ointments, and a large variety 

of food products such as dressings, sauces and spreads are among the materials having a 

yield stress (Lidell and Boger, 1996). Examples of yield stress material from Barnes 

(2000) mayonnaise and toothpaste for which the relationship between the viscosity and 

the applied shear stress are plotted in Figures 6 and 7. The sudden fall in the viscosity 

after being quite constantly a high value, can be explained by the idea of the yield stress. 

In the range of low shear stress values the material resists against the shear stress and 

later when the yield stress is overcome by the shear stress the material starts to flow 

and it experiences a fall in viscosity. 

Rheological factors like yield stress and viscosity in turn,-can be influenced by factors 

such as physical conditions, zeta potential and temperature (Henriquez, 2008). For 

tailings at a specific solids concentration, changes in the particle size distribution affect 

the yield stress for that type of particular tailings. A study performed by Sofra and 

Boger (2002b) on several types of tailings revealed that the more concentrated the 

tailings are, the higher the yield stress becomes. As an example, it is shown in the same 

study that the yield stress for a gold tailings sample with almost 67 percent of weight 

37 



concentration is approximately 50 Pa and the same factor for a gold tailings sample of 

almost 16 percent of weight concentration is 1600 Pa. 
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Figure 6. The relationship between viscosity and shear stress for mayonnaise, after Barnes (1999) 
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Figure 7. The relationship between viscosity and shear stress for toothpaste, after Barnes (1999) 
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As a result, tailings with higher concentration and therefore higher yield stress will 

settle closer to the discharge point or if there is a gate and flume closer to the gate. 

On the other hand, tailings with lower concentration which have lower values of yield 

stress will spread over the site or through the flume (Kwak, 2005). Tailings are mostly 

consisting of 70% to 80% solids by weight (Henriquez, 2008) and according to the 

definition of yield stress when the distance between the particles decreases the 

interaction between them increases and as a result the value of yield stress rises. Finally, 

according to Kwak (2005), if a tailings paste consists of a minimum of 15 percent of its 

mass of particles smaller than 20um it will be able to flow through a pipe without 

segregation and also keeps enough water to prevent bleeding. 

A negative or positive electrical charge exists on the surface of a particle in a medium 

like water (Henriquez, 2008). Kwak (2004) mentions that when a particle under the 

effect of an electrical field moves with some ions, there will be a boundary between the 

particle and moving ions together and the stationary ions. This is called the shear plane. 

Since the charge cannot be measured, the potential at the slip plane is measured which is 

called the zeta potential. In other words it is the magnitude of repulsion or attraction 

between the particles. If there is attraction-between them, aggregates will form in the 

slurry and consequently there will be an increase in the viscosity in comparison to when 

there is repulsion. Mpofu, et al. (2003) have shown that the yield stress is affected by the 

variations in the zeta potential. 

Temperature also affects the rheological properties of the fluid. Viscosity is affected by 

temperature in both Non-Newtonian fluids (Pinarbasi and Imal, 2005) and Newtonian 

fluids (Wright, 1977). 
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Figure S. The relationship between yield stress and pulp density for gold paste tailings, after 

Henrique/. (2008) 

Kwak (2004) has concluded from the previous studies on rheological behavior of mineral 

suspensions and slurries that their rheological behavior is influenced by the 

measurement technique and also by their physical and chemical environments. 

In an experiment on dewatered tailings including two-dimensional parameters 

performed by Sofra and Boger (2001), it was observed that after the dam or the obstacle 

retaining the movement was taken away, the tailings flowed from the reservoir into the 

flume connected to it. Bingham model was used to get an approximation of the flow-

behavior in this study. It was observed that the velocity increases from zero to a 

maximum and eventually declines to zero. They defined the maximum velocity as: 

V = (2gHTy/2 (eq. 2) 

where V is the maximum velocity, g is gravitational acceleration and H> is the sum of 

the height of the flume and the height of tailings in the reservoir. 
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When the tailings came to rest, the depth at toe and the depth at gate were measured in 

addition to the length of tailings to determine the angle with which the tailings had 

come to rest. Moreover, they observed that the volume of tailings in the reservoir and 

also the angle of the flume's floor influence the flow of fluid from the reservoir into the 

flume. In order to explain this influence, they introduced Ty as a yield stress without 

dimension which depends on the maximum velocity, the yield stress and the density of 

tailings. 

Ty 
?v - 9 = . — (eq- 3) 

where Fis the maximum velocity, 7V is the yield stress and p is the density of the fluid. 

They also developed a relationship between the angle of repose (the angle to which the 

tailings come to rest at the toe) and other dimensionless parameters such as Reynolds 

and Froude numbers which is: 

Having defined Reynolds number as: 

R. = ^ <«,. 5) 

where /F i s the width of the flume, Fis the velocity of the fluid, p is the density of the 

tailings and rjp is the kinematic viscosity and Froude number as: 

Fr=— (eq. 6) 
r Wg V M / 

the above mentioned relationship for the repose angle can be written as: 
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This yields that the angle of repose is affected by the balance between the parameters 

resisting flow, which are the yield stress and viscosity, and those contributing to flow, 

which are the fluid density, flume width, gravitational acceleration and the maximum 

velocity (Kwak, 2004). 

Sofra and Boger (2001) after performing the tests on tailings, kaolinite, titania and 

Laponite, "Laponite is a synthetic hectorite Qsoft, greasy clay mineral], which forms 

exfoliated silicate layers when dispersed in water." (Daniel et al., 2008), reached the 

conclusion that the mentioned relationship for the repose angle is a linear relationship. 

In other words, approximately all the values resulted performing the test for all four 

materials fall on a straight line if the angle of repose is plotted versus the right side of 

equation 7.There are several techniques to simulate a Non-Newtonian fluid such as 

MAC (Marker and Cell), which uses finite difference equations with the variables of 

velocity, pressure and divergence. MAC breaks the area into several cells which have 

their own pressure and velocity. The Marker-and-Cell (MAC) method uses a grid to 

evaluate the dynamics of an incompressible viscous fluid in which variables of pressure 

and velocity are employed. This method has particular application to the modeling of 

fluid flows with free surface (Tome and McKee, 1994). 

Another method is SPH (Smooth Particle Hydrodynamics), in which a group of particles 

with associated properties like mass, position, velocity and density, discretize the 

continuum of the flow. The governing equations are constructed in a Lagrangian form 

considering that the particles move with the material velocity of the continuum 

(Rodriguez-Paz and Bonet, 2003). 
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In addition to the aforementioned methods, Henriquez (2008) describes that there are 

other methods which have simplified the procedure by applying simplifying assumptions 

to the Navier—Stokes equations and basically solve the reduced form of the equations. 

The same source also mentions the Lubrication Theory as an example of reduced 

Navier-Stokes equations with the assumption of slow spreading of a thin layer of liquid. 

The continuity and momentum equations for lubrication theory are simplified assuming 

that the ratio of the thickness of the flow to its length is small. Moreover, it is assumed 

that the Reynolds number is small and as a result the flow is laminar. In other words, 

the velocity is so slow that the ratio of the inertial forces to viscous forces in the 

momentum equation will be omitted (Henriquez and Simms, 2009). For instance, Liu 

and Mei (1989), applying the Bingham model, used the Lubrication Theory and the 

mentioned assumptions to study the flow of fluid mud. The momentum equation 

became: 

£ = pgSinB+£ (eq.8) 

where P is the pressure, the 'x axis is the direction of the inclined plane, p is the bulk 

density, gis the gravitational acceleration, 9 is the angle of the inclined surface, r i s the 

shear stress and the 'z' axis is normal to the surface of the plane. 

If in the above mentioned study the pressure is assumed as hydrostatic, then the 

equation will change to (Henriquez and Simms, 2009): 

P = pg(h-z)Cos9 (eq. 9) 

where h is the height of the free surface or the thickness of the flow at a particular 'x. 
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If the equation is solved for shear stress (r) depending on depth (z), the following 

equation results (Henriquez and Simms, 2009): 

T = pg(h — z)Cos6(tan6 — —) (eq. 10) 

As for a flat bed 9 can be set to zero and if the steady state of the fluid or the tailings is 

considered z should be set to zero. In this case, noting that the shear stress is smaller 

than the yield stress ( r < r,), the following equation will be achieved (Henriquez, 2008): 

h2~h0
2 = ^ - O - x 0 ) (eq- 11) 

where ho is the height at xu. 

Deriving from the previous equation, according to Yuhi and Mei (2004) the equation for 

the steady state flow profile of a flow from the top of a hill might be (Henriquez and 

Simms, 2009): 

ti - h'0 + ln( l - h') - x - x'0 (eq. 12) 

w here 

h = h (—y—) (eq. 13) 

and 

x = x'CotOC Ty ) (eq. 14) 
ypgSin9 J V / 

Henriquez (2008) reports that comparing the results achieved from the aforementioned 

equations with field measured profiles, Simms (2007) has confirmed the applicability of 
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the equations for a flat bed and the flow from top of a hill to the in situ physical 

condition in the field. 

Yuhi and Mei (2004) studied the spreading of fluid mud over a surface with a small 

angle for the slope. Bingham model was assumed and the Lubrication Theory was 

applied. They introduced an equation for depth integrated flow for one dimension for 

constant mass (Henriquez and Simms, 2008): 

f = f^(3'-'v-2«)^-H)2 < « • • • « ) dt \i dx 6 

where h is the vertical height of flow, // is the dynamic viscosity, H is the bed elevation 

and hy is the depth above which plug flow occurs. 

Henriquez (2008) reports the depth integrated law of mass conservation for one 

dimensional limit equation in a different arrangement of variables: 

dt p "£[ ( -£ ) ' ] = » («••«) 

where 

F = -(3h-ho- 2H)(h0 - H)2 (eq. 17) 

and 

Ty ,dx^ h° = h-H^ to-18) 

where h is the free surface height and ho is the yield surface height and H the channel 

bottom height. 
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Chapter Three: The Smoothed 

Particle Hydrodynamics Method 
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The Smoothed Particle Hydrodynamics Method 

3.1 Introduction 

The ability of mesh free methods, among which is the Smooth Particle Hydrodynamics 

(SPH) method, to treat large deformations without dealing with difficulties of a twisted 

mesh has made such methods popular in the recent years. SPH is a method relying on 

conservation laws in which some clearly separate particles are followed in the 

continuum and kernel functions are used for the physical quantities to be interpolated 

(Rodriguez-Paz and Bonet, 2003). According to Rodriguez-Paz and Bonet (2003), in the 

SPH method particles having properties such as mass, velocity, density and position are 

used to discretize the continuum. Assuming that the particles move with the material 

velocity of the continuum, results in the construction of Langrangian type governing 

equations for this method. The partial differential equations are transformed into 

integral equations as a result of reproducing kernel approximation being used to assess 

the spatial derivatives of the sample points and particles. 

The main purpose of this method is the interpolation of a certain function such as j[x) 

based on equation 19 where it is evaluated by a kernel function W(x, h): 

f(x) = JD f(x')W(x - X ,K)dx\ (eq. 19) 

which in terms of discrete particles will be: 
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/ ( * ) = T,bf(XbW(x - Xb)Vb = fh(x), (eq. 20) 

where h is the smoothing length — a significance of the area around a particle in which 

the dynamics of the first particle are considerably affected by a second particle - and Vb 

is the volume associated with point b; or as Crespo et al. (2008) state: 

f(x)=^mAwab (eq.2l) 
Pb 

where m and p are the mass and density for particles 'a' and 'b' respectively and the 

kernel function is: 

Wah = {xa - Xh,K) (eq.22) 

On account of a kernel function being used to interpolate the values resulted for the 

sample particles, in addition to Crespo et al. (2008), who suggest the kernel function 

having to satisfy consistency, positivity and being monotonically decreasing, Swegle et 

al. (1995) also mention that the chosen kernel function has to satisfy the following 

requirements: 

a. having delta function behavior, meaning that 

l i m ^ o W(x, K) - S(x) (eq.23) 

b. being normalized 

jW(x,k)dx = l (eq.24) 

c. being zero everywhere except in the smoothing are 

W(x,h)=0 for \x\>2h (eq.25) 
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While a general form for a kernel function is: 

a W ( J U ) = - ^ _ / t f ) ; £ = 7 (eq.26) 

where dm is the number of dimensions and a is a factor that ensures the satisfaction of 

the consistency condition f W(x)dx — 1, Rodriguez-Paz and Bonet (2003) used the 

following form of the kernel equation to simulate debris flows: 

(*'*> = 6 ^ 

f (2 - O 5 - 16(1 - - f ) 5 i / 0 < f < l 
( 2 - 0 5 ifl<{<2; ( = ^ (eq.27) 

0 if f > 2 

where h is the smoothing length which would be an equivalent for an element in 

methods such as FEM. All the mentioned functions have a compact support of radius 2h 

which would be equal to the elements next to the sampled one. 

Alternatively, Monaghan and Lattanzio (1985) developed the following spline kernel: 

' l - j q 2 + f<73 ifO<q<l 

W(x, h) = ^ <j i ( 2 _ q)3 if l<q<2 w h e r e <? = I H - 2 8 ) 
4 

otherwise 

r being the distance between the sample particles a and b. 

A debris flow- which is widely considered to perform as a Non-Newtonian Bingham 

plastic How in a certain regime, it is comprised of two layers; the first and the upper 

layer is the plug layer where the material forming the debris are transported and the 

lower layer known as the shear layer where the other portion of the same material 

experiences shear (Rodriguez-Paz and Bonet, 2003). 
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Figure 9. Uniform Bingham flow (Rodriguez-Paz and Bonet, 2003) 

The Bingham model, which is shown in figure 9 and as mentioned before is: 

T = - T y + | l £ (eq.29) 

r, being the yield stress, ju the viscosity and u the velocity in the 'x direction. In a 

dimensional case the same model would be: 

o = -pi + <$>XD (eq. 30) 

where 

(eq. 31) 



and 1 in "-pi" being the unit tensor, Z?the rate of deformation tensor and 0 i s the scalar 

function of the three principal invariants of D(h, IID, MD) (Rodriguez-Paz and Bonet, 

2003). 

Pastor et al. (1999) expressed an equation derived from the original Bingham model 

introducing an exponent 'n' which covers the behavior of the fluid providing the ability 

to also cover some other types of Non-Newtonian fluids: 

T = T y + K i r ) n <eq-32) 

where for n — \ the original Bingham model is described, for n < 1 a pseudo plastic 

behavior and for n > 1 a dilatant fluid behavior are described. As for its three 

dimensional equation it would be: 

^=-^= + 2^4110^-^ (eq.33) 

According to Rodriguez-Paz and Bonet (2003), more advanced equations have been 

introduced by adding a second order to the term D, as ( which is the combined 

dispersive turbulent parameter, adding the turbulence and the inevtial impact of the 

particles into the considerations: 

T = T y + »K+tU ^ 3 4 ) 

with 

C = Pm& + ZiPstfd* (eq. 35) 
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pm being the density of the mixture, ]m the mixing length, ps density of the sediment 

particles, a, Bagnold's empirical constant, ds diameter of the particles and A linear 

concentration which demonstrates particle size and concentration affecting the 

turbulent parameter. 

3.2 Governing Equations 

The equations in the SPH method are used to simulate the motion of interpolating 

points in the fluid, which are assumed as particles, using the properties of each particle 

such as mass and velocity. 

3.2.1 Momentum Conservation Equation: A general form for the momentum 

conservation equation is as follows: 

2JL=-ivP + g + 0 (eq.36) 
Dt p a V M / 

where 6 stands for the diffusive terms. Among different diffusive equations used to 

reach a momentum equation, the Artificial Viscosity' approach has been used hy 

Monaghan (1994) and Crespo et al. (2008) which results in the following equation for 

particle 'd in SPH method: 

^f=-Zbmb(^ + ^ + UabyaWab+g (eq.37) 

where g — <0, -9.81, 0>, P i s the pressure and |7is the gradient of the kernel and 



.2 

nU=j PS" "«**«*<" (eq.38) 
[0 vabxab > 0 

and 

_ hvabxab 

v-ab - r2 ,„2 (e(i-S9) 

where 'x and V present the position and the velocity of the particle, xab = xa - Xb, 

Vab = va- Vb, T] = O.Olh2, 'd is the speed of sound: 

c^ = ^ (eq.40) 

Monaghan (1994) suggests taking /? = 0 and states that the phrase containing a in 

equation 38 contains both bulk and shear viscosity, however since there are such low 

changes in the density value as a result of the fluid being considered incompressible, the 

phrase almost totally represents shear viscosity. While Rodriguez-Paz and Bonet (2003) 

mention that ' d typically has a value between 0.001 and 0.1, Monaghan (1994) states 

that it is commonly taken as 0.01. 

Moreover, the rate of change in the thermal energy for each particle or the thermal 

energy per unit mass becomes: 

- = j Z * m 6 ( g + ^ + n a f c ) v a b V a W f l h (eq.*i) 
d\i0 1 
dt 

3.2.2 Density and Continuity Equation: The SPH method is based on laws of 

conservation. According to conservation of mass law: 

jJpdV = Q (eq.42) 

53 



The objective of using the SPH method is to reach a rate of change for density, find 

smoothed density for each particle and sum over the particles in the effective radius of a 

sample point. 

P = T,b™bWab (eq.45) 

Since the fluid is considered incompressible, or to be easier to solve the problem, 

slightly compressible and for fluids such as water the density on a surface falls to zero 

(not continuously), to be able to avoid this artificial density decrease near the interfaces 

and have correct pressure values and make the calculations easier, Crespo et al. (2008) 

suggested using the following equations which assigns the same initial density to all the 

particles which only changes when they are in motion (Monaghan, 1994): 

^f-=lbmbVabVaWab (eq.44) 

3.2.3 Particle Motion:The rate of changes in the position of a particle ' d can be shown 

by: 

-^ = va (eq.45) 

However, in order to avoid particle penetration and keep the order of particles especially 

in a high speed flow, Monaghan (1989) proposed an XSPH variant 'Aa' which is used in 

other works such as Monaghan (1992) and Crespo et al. (2008) and will be added to the 

right side of equation 45: 

— - - v a + e } , b — = = — W a b (eq.46) 
al Pab 

where '£ is suggested to be taken as 0.5 (Monaghan, 1989). 
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3.3 Constitutive Models Implementation 

In order to be able to model a debris flow or a free surface flow adopting a proper 

constitutive model is necessary. In the corrected SPH (CSPH) method which is 

presented by Rodriguez-Paz and Bonet (2003), a constitutive model is needed to have 

the internal forces equation as well. For Non-Newtonian fluids with no memory, the 

same reference states the following general form: 

a = - p i + $!(IID, II1D)D + d>2(UD, UlD)D2 (eq. 47) 

Although this equation needs the fluid to be incompressive, some of the most accepted 

debris flow models are based on such a model (Rodriguez-Paz and Bonet, 2003). 

Applying the corrections mentioned previously, the gradient of velocity can be 

evaluated using: 

Vva=Y$=1VbVb®VWb(xa) (eq.48) 

Since the rate of the deformation tensor is: 

D=l(Vv + Vv'!"), (eq. 49) 

therefore, having the value of the gradient of velocity, yields the deformation rate. 

Knowing the value of rate of the deformation tensor, a desired constitutive model such 

as Bingham model can be utilized. 

3.3.1 Pressure Evaluation and the Equation of State: Despite the fact that pressure 

should be evaluated assuming the fluid being incompressible, assuming the fluid being 

55 



water and slightly compressible allows time integration and the evaluating equation 

will be (Rodriguez-Paz and Bonet, 2003): 

P = P"f [& ~ *] ^ 5°) 

where p and p„ are the current and initial densities for any particle, Pref is an artificial 

compressibility modulus (high enough to ensure realistic simulation) and for water '^ ' is 

equal to 7 (Monaghan, 1994) and therefore according to Crespo et al. (2008),' po is taken 

as 1000 (kg-m-3). 

To determine the value of Pref both Rodriguez-Paz and Bonet (2003) and Monaghan 

(1994) have suggested using the speed of sound in the fluid: 

(23SS-) p 

Pref = V ; V™x = CCC (eq. 51) 

where 'd has a value between 0.001 and 0.1 £0.01 suggested by Monaghan(l994)J and 

the speed of the sound 'c for such equation of state is: 

c — —'J- (eq. 52) 

According to Crespo et al. (2008), it is also possible to calculate P„r from the following 

equation: 

Pref = ^ (eq-53) 

where 'a, is the speed of sound at the reference (initial) density. 
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3.3.2 Boundary Conditions: For the boundary friction to come into account the 

boundary is discretized into line segments and using algorithms, the penetration of 

particles into the boundary and the forces interacting on each particle during the 

contact are detected (Rodriguez—Paz and Bonet, 2003). According to a restitution 

coefficient a force normal to the boundary affects the normal velocity of a particle. There 

is an impulse to a particle, which is a tangential drag force proportional to the dynamic 

friction coefficient jlf. 

|i^ = tan Sf (eq. 54) 

where 8r'\s the bed friction angle. 

The tangential and the normal velocities of a particle are affected by the mentioned 

tangential and normal forces. The penetrating particle's position in the boundary is 

calculated according to its normal distance from a boundary. Then it is assumed that the 

particle will bounce back from a rigid boundary and an energy loss is calculated 

according to the friction and restitution coefficients 'e'. The particle will bounce back 

with a momentum which is defined by the new velocity which is the result of the impact. 

The normal velocity is calculated according to 'e' and (if (Rodriguez-Paz and Bonet, 

2003). 

Crespo et al. (2007) have applied a Dynamic Boundary condition in which the governing 

equations for fluid particles must be applied and satisfied by the boundary particles. The 

only exception to this condition is the equation of motion with the XSPH correction 

since the boundary particles are considered to be fixed and stationary unless external 

forces exist. According to this method when a particle approaches a wall of boundary 

particles in an order that the distance between the fluid particle and the boundary 
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particles becomes smaller than 2h, the density of that part increases (continuity 

equation: eq.44) and therefore, the pressure will be increased (equation of state: eq.50). 

To calculate this pressure a 'Normalized Pressure Term' is introduced: 

(P/^) 
NPTZ = } ^ (eq.55) 

where 'Z is the distance between the approaching fluid particle and the boundary 

particles and 'R' is the minimum distance between them. 

3.3.3 Kernel Corrections for Density Reinitialization: The aforementioned 

conditions and equations result in fluctuations in the pressure value. To correct such 

inaccuracy in the data, several corrections have been made to the kernel function by 

different scholars. Colagrossi and Landrini (2001) applied two correction orders to the 

kernel by re-assigning density values to each particle in different time steps; the 

Shepard filter and the Moving Least Squares approach. 

3.3.3.1 The Zero Order: The zero order actually applies a filter (Shepard Filter) over 

the density to help re-assign new values to the density field in specific periods. This is 

done by applying a correction to the original kernel every SO time steps: 

Pa=Zb™bWab (eq.56) 

where p„ is the new density for particle 'a and Wab is the corrected kernel which is 

calculated by: 

Wab = ab
mb (eq.57) 
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3.3.4 Time Stepping: In order to apply a time stepping to the governing equations, the 

Verlet algorithm is used in this work. The algorithm is written in two parts for the 

position of the particles, one for the next step and one for the previous step: 

vn+l _ vn-\ + 2Atpn (eq.58) 

P 2 + 1 = Pa'1 + 2AtDa" (eq.59) 

<+1 = *2 + AtVJ1 + 0.5At2Fa
n (eq.60) 

Ua+1 = w""1 + 2btU2 (eq-61) 

dva _ dpa . dxa . . . _ dua 

dt " dt " dt a dt 

To stop the time integration diverging, variables are calculated in the following way 

every A7" time step: 

<+1 = < + AtFJ1 (eq.62) 

pl*=pl+btDl (eq.63) 

x£+i = *£ + AtVy + 0.5At2 + Fa
n (eq.64) 

wS+1 = ua + Atf/a (eq.65) 

and TV is a time step on the order of 50 (Gesteira et al., 2008). 

3.3.5 Time Step Control: The suggested variable time step is calculated according to 

the equations Monaghan and Kos (1999) proposed and depend on the Courant-

Friedrichs-Lewy (CFL) stability condition, the force terms and the viscous diffusion 

term (Crespo et al., 2008): 
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At - 0.3min(Atf,Atcv) (eq.66) 

where 

Atf=min[ I— 1 (eq.67) and Atcv = min 
Cc+max 

hvabxab 
(eq.68) 

In the above equations Atf is based on the force per unit mass fa where the forces are all 

the forces acting on particle 'a' following the momentum equation and Atcv combines the 

Courant and the viscous time step controls (Crespo et al., 2008). 

3.4 Algorithm for the Two Dimensional SPH Free Surface Flow 

Rodriguez-Paz and Bonet (2003) presented the following algorithm for SPH free surface 

solver: 

1. Evaluate initial values: po,a, ma, ha. 

2. Find the new density for current time step (eq.44, eq.59 and eq.63). 

3. Evaluate the pressure using equation of state (eq.50). 

4. Find internal forces based on constitutive behavior (eq.30, eq.34 and 46). 

5. Evaluate external forces such as self weight and boundary forces. 

6. Assemble equation of motion. 

Newton's second law is used in this step which can be written as: 

'a * a ™a " a (eq. 69) 
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where F represents the external forces and T represents internal forces due to 

current state of the material. 

7. Update particle positions and find new velocities. 

8. Output results for current time. 

9. Repeat steps 2 to 8 if t < tmax. 

61 



Chapter Four: Numerical 

Simulation of Tailings Flow 
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Numerical Simulation of Tailings Flow 

4.1 Introduction 

The simulation task required a modeling solution which could simulate liquids. It also 

had to take tailings properties into consideration and more importantly could simulate a 

Non-Newtonian fluid such as tailings. It had to have the capacity of simulating particle 

movements in the continuum and demonstrating the effects of changes in key 

parameters engaged in the flow of the fluid being simulated. Therefore, RealFlow 4 was 

chosen to be used as the simulation tool. It could also provide the user with an option of 

defining and simulating the fluid in both three and two-dimensional environments. 

4.2 Real Flow 

Real Flow is a fluid flow and general dynamics simulation software. It consists of a 

standalone program and a set of plug-ins by which the data can be imported and also 

exported to some other graphical software. It can be used to simulate fluids, water 

surfaces, fluid-solid interactions, rigid bodies and soft bodies and provides the option of 

adding meshes to the model meshes. In order for the user to increase the program's 

capabilities, overcome some possible limitations and to have more control on different 

aspects of the program the creators have used Python as the scripting language. 
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As used in RealFlow4, the SPH method assigns various properties such as density and 

mass to the particles to control the continuum and develops the simulations based on 

particle interaction. It also does not require a predefined mesh to calculate properties 

and movement of the continuum. Common material properties can be assigned to 

particles and the governing equations of SPH stated in the previous chapter apply to 

them: 

4.2.1 Density: A change in the density (kg/m3) of the fluid affects the density of a 

particle proportionally and therefore the behavior of a continuum can be influenced and 

controlled in this way. 

• Resolution and Mass.- A parameter that directly cooperates with the density in 

RealFlow is resolution. The higher the resolution is, the lower is the mass (kg) 

of particles and the lighter are the particles, while an increase in the density has 

an opposite effect. 

4.2.2 Internal Pressure: The forces between a group of adjacent particles are 

represented by internal pressure. The higher the internal pressure is, the higher is the 

interaction between the particles and as a result the distance between the particles 

increases and the volume occupied by the mass of particles becomes greater. 

4.2.3 External Pressure: In order to keep the particles together and prevent the 

flowing fluid from expanding, RealFlow uses external pressure. This is a force which is 

exerted on the model. The force increases as the value of external pressure increases. 

For both pressure types above the values are between 0 and 1. 

4.2.4 Viscosity: Viscosity is a dimensionless parameter in RealFlow. Thin fluids such as 

water are represented by values between 1 and 5. The thicker the fluid is the higher the 
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value for viscosity will be. However, these values do not represent the physical viscosity 

of such fluids. 

4.2.5 Surface Tension: Adding surface tension to a simulation in RealFlow will result 

in an increase in the cohesion between the particles in the fluid skin and will also be an 

asset in simulating high viscous fluids. 

The most basic and fundamental components of a RealFlow model are emitters and 

daemons. Emitters which come in a range of different shapes generate fluid particles and 

the basic behavior of the fluid is actually controlled by them (Botella et al., 2006). The 

fluid is generated by producing particles for which the properties are defined by 

aforementioned parameters. The maximum number of particles emitted can be defined 

to reach the desired simulation result. 

"Daemon" is a term used to define forces in RealFlow. Adding a daemon to the 

simulation model will result in exerting a force on all or a part of the particles which are 

included in the model (Botella et al., 2006). A gravity daemon, as an example, will add 

the gravity force to the forces which have to be computed for each particle. One other 

kind of daemon which is called a killer daemon uses boundaries for the simulation model 

to eliminate the particles which do not have the desired condition or locatieru It in other 

words "kills" them and as a result there is no more computation or graphical results for 

these particles (Botella et al., 2006). 

A 'view from above' scene from RealFlow 4 is shown in Figure 10. It demonstrates flow 

of tailings in a flume after the gate to the reservoir (vertical line in the middle) was 

lifted. The numbers at the bottom of the figure represent the simulation time (ST) up to 

this specific scene and the corresponding actual time (TC) for the physical flume test 

which is modeled. 
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Figure 10. Sample scene from RealFlow 4 
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Chapter Five: Model Calibration 
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Model Calibration 

Several tests were run in RealFlow with the target of becoming familiar with the 

program's environment and studying the effects of changes in the values assigned to 

terrain and fluid properties, with fluids not necessarily having tailings properties. It was 

concluded that the values assigned to some key characteristics of flow such as viscosity 

are not very realistic or the changes in values such as density do not show the expected 

physical results. This fact emphasizes the necessity of performing a program calibration. 

5.1 Variables in Calibration Tests 

As there are some properties which play key roles in the movement of fluids, in this case 

tailings, and there are also a few of them which are effective in the simulation process in 

RealFlow, the following properties were chosen as the variables in the program 

calibration: 

5.1.1 Density: One of the most important aspects in the movement of the fluid which 

can have a behavioral control is the density. Density is the proportion of mass over 

volume. For a constant volume as the number of particles increases in the fluid and it 

becomes denser the interaction between the particles also increases in number. Density 

in RealFlow is one of the few parameters that has the physically accurate value and 

dimensions. Since the default value for density in RealFlow is for water, and the 

tailings have higher values, knowing that there are several types of tailings with 
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different densities a range of values for the density which represents the density of 

tailings had to be found. As a result density was chosen to be one of the variables in 

order for the effects of changes in the density to be studied. 

5.1.2 Resolution (Spatial Resolution): As mentioned in the previous section, 

resolution and density have a close relationship in RealFlow. The higher the density is 

the higher the resolution should be in order to achieve better results. In situations 

where there is a great difference between the density and the resolution, especially 

where the resolution appears to be lower than the expected value in coordination with 

density the result of the simulation could be rather vague. 

Density and resolution have opposite effects on the mass of the particles. The higher the 

density is the heavier is the particle, however, if the resolution increases the particles 

become lighter. 

In addition, there is a parameter called Maximum Particle in the program by which the 

number of the particles and as a result, in relation with the density and the resolution, 

the volume of the fluid can be controlled. 

5.1.3 Viscosity: Viscosity is the resistance of the fluid against flow or deformation 

which is normally caused by shear stress. Viscosity is a type of internal resistance of the 

particles in the fluid against flow which has a direct effect on the behavior of the fluid. 

The degree of liquidity of the substance is higher and its movement is easier if the 

viscosity is low. Since RealFlow is a particle based simulation program this parameter 

plays a key role in the results of the simulations. 

The default value for viscosity in the program which is assumed for water is not 

representative of the real viscosity of water and the value is an arbitrary chosen value 

and is therefore considered dimensionless. Therefore, it was important to test a range of 
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values for the viscosity to reach a value or a range of values which provide the closest 

result to the real world processes for the simulations. 

5.1.4 External Pressure: External pressure is a parameter used only in RealFlow 

which represents a force which is exerted on the whole system and collection of 

particles in order to keep them closer to one another. Raising the value of external 

pressure results in the particles being more attached to one another and prevents 

splashes from happening frequently. Due to the fact that the simulated fluid was 

tailings, and tailings are closer to a paste like substance rather than water, having an 

external pressure value greater than the internal pressure, which causes interactions 

between the particles resulting in the easiness in the particles being separated from the 

continuum, to keep the particles closer to one another produces the simulation of a 

material closer to tailings. 

5.1.5 Friction: Friction is a force which prevents two surfaces from moving on each 

other easily and smoothly which acts in the opposite direction of the movement. This 

parameter is a property of the terrain in the case studies or one of the properties of the 

plane on which the fluid is moving on or is in contact with in RealFlow. This property 

of the environment has a direct effect on the speed at which the tailings move forward in 

the simulation or surge after a dam break and also on the distance up to which the 

tailings move forward and the distance they reach. 

5.1.6 Roughness: One of the other properties of the terrain is the roughness which 

represents the unevenness of the surface or the heterogeneity of the material the terrain 

is consisted of. Roughness not being a force itself, affects the fluid by causing friction 

forces to be created. Therefore the result of the effects of the roughness on the fluids 

movement or the distances it covers is similar to the ones produced by friction. The 
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main effect roughness has on the particles, which makes it different from friction, is 

making a slight variation in the direction of the particles when they collide with the 

surface for which roughness has been defined. This provides the option of avoiding 

perfect and symmetrical collisions. 

One other parameter which was not kept at the default value assigned by RealFlow and 

was changed was the stickiness. This parameter is also one of the properties of the 

terrain or the plane the fluid runs on and determines the extent to which the fluid 

particles become attached to the surface of the terrain or are slowed down as a result of 

the surface being sticky. The value of stickiness in RealFlow can be chosen between 0 

and 1. Since the odds of having a sticky terrain where the tailings flow are low therefore 

a low value (0. l) was assigned to stickiness in all the performed simulations. 

5.2 Calibration Tests 

T o apply correct values to the abovementioned parameters in order to have a realistic 

simulation, a suitable real life project or phenomenon by which the simulation program, 

RealFlow, could be calibrated had to be utilized. The research had to be on the 

characteristic of tailings related to the purpose of this study such as the 'angle of repose' 

or the 'covering distance'. Utilizing a reference project a form of a simulation would be 

created that could provide useful calibrating information regarding the changes in the 

values of the parameters such as density and viscosity by changes in the simulation 

results. The reference project was chosen to be the flume test for tailings which was 

performed by Crowder (2004). Several tests were performed by Crowder on three 

different tailings pastes, retrieved from Bulyanhulu gold mine, in order to examine their 
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characteristics. The first paste, or paste A, was made using the ores taken from the mine 

during the first developing stages of the mine. The second paste, or paste B, was taken 

from the mine's paste plant at a later time and the third paste, or paste C, was taken 

from the same place as paste B a year later. 

Among the test performed on the pastes, a number of flume tests were performed on 

pastes A and C and paste B was left out due to insufficient amount of paste available. 

The flume tests were performed on two different states of the tailings pastes, 'As 

Received Paste' and 'Deflocculant Added Paste'. The tests were run in a flume shown in 

Figure 11 which consisted of a box with the length of 2.30m where the first 0.30m was 

used as the reservoir and was separated from the 2m run out length with a lift gate. 

2.30 m 

/ / 
2.00 m 

Figure 11. The side view of the flume used in the tests 

The tests would start by filling the reservoir with the tailings sample up to the height of 

0.20m. It was then when the vertical lift gate was lifted to the height of 0.095m quite 

rapidly in order for the whole freed plane to be able to react at the same time. While the 

tailings paste was running along the run out length of the flume the distance covered, 

the angle of the tailings stack with the horizontal plane and the speed at which the stack 
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was moving were monitored and finally at the end of the test, where the paste would 

come to a rest, the angle of repose, the height and the run out distance were measured. 

T o calculate the angle of repose for the material at rest the data collected from each test 

was put into an equation introduced by Sofra and Boger (2001) with the assumption of 

the surface profile being linear: 

6r = tan-1
 (^Y1) (eq. 69) 

where 0r stands for the angle of repose for the material at rest, Hi and Hs are the 

heights of the material at the beginning of the run out length which is the gate and the 

toe of the flowing material when it comes to rest respectively and L is the distance the 

paste has covered from the gate to come to a stop. Since Crowder's flume test where 

performed with different water contents for the tailings paste, therefore a sample of the 

paste was also taken from the toe after each test was finished. 

Based on Crowder's research, a similar flume was created in RealFlow in order to 

perform the same tests to calibrate the program by comparing the results obtained from 

the tests with the ones in the reference research. It has to be mentioned that due to the 

program's using the SPH method to calculate the interactions between particles and 

also between the particles and the surface of the container, the higher the values for the 

aforementioned variables, as the main RealFlow and physical calibrating parameters, are 

the longer the simulation time will be. Therefore, the majority of the tests run in this 

program took long time (from 7 hours to even a week) in order to let the paste come to 

a rest and the simulation finish completely. Therefore, lack of time was an important 

parameter which prevented having as many runs as possible and reduced the number of 

simulations. 
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Moreover, the arbitrary essence of most of the parameters in the program such as 

viscosity, results in using some assumptions and unrealistic values for the paste 

characteristics to define the fluid. 

The calibrating tests were performed in three different ways. In other words, three 

different assumptions were made to perform three series of simulations: 

1. The first series of simulations were run with the aim of achieving an overall 

understanding of the general regime of changes in the angle of repose or the 

covered distance with the fluctuation in aforementioned core parameters of the 

fluid and the program. Considering this goal some ranges of values were chosen 

for the parameters. According to the program's instructions about the resolution 

stating that the ideal resolution for the simulations without changing the scales 

in the platform is a value between 1 and 10, the value of 5 was chosen for this 

series of simulations. It was not too high to take plenty of time for the program 

to process each simulation and it was not too low not to serve the goal of 

simulation correctly and vividly. 

As the value of the density of water being 1000 kg/m3 was actually correct in the 

program therefore the assumed values from tailings started from 3500 kg /m 3 

and units of 500 kg/m 3 were used to increase the value for the next tests. This 

value was selected due to the general definition and combination of tailings 

presented in the first part of this work in comparison to the standard density 

value for water. 

Externa] pressure was another facto)- considered in this series. The value is by 

default set to 1 as the minimum value and equal to the internal pressure in 

RealFlow. In addition to this value some higher values were also tested in this 
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part of simulations with the goal of exerting more pressure on the particles as a 

whole and keep the particles together and have fewer chances to get separated 

from the whole body of particles as in a tailings-like rather than a water-like 

movement. 

Viscosity is one of the parameters in RealFlow which has not been assigned a 

realistic value. As most of the example simulations shown in RealFlow using the 

default values are performed to simulate water, therefore it is.assumed that the 

default value 3 is for water with the actual viscosity of 1.002xicra N-s/m'-. 

Therefore, the minimum value taken for viscosity was 20 which corresponded to 

a viscosity value of approximately 7X10~3 N-s/m2 and it was increased in units of 

5. 

As for friction and roughness of the terrain, the default arbitrary values assigned 

were 0.001 and 0.0001 respectively. Since the type of surface in the final 

simulations was going to be the land behind a tailings dam, the values assigned 

to these parameters were decided to be increased. The minimum value for 

friction was decided to be 0.2 and the value of 0.1 was assigned to roughness. 

Bounciness is a factor that does not have a large value with regards to the 

terrains that tailings pastes were going to move on. As a result, the default 

arbitrary value of 0.25 was decreased to 0.1 to create a potentially realistic 

simulation model. 

To simulate the flow with the correct amount of tailings paste in the reservoir a 

specific number of particles had to be chosen for each simulation to which the 

density and the resolution are directly proportional. 



When the reservoir was filled with the tailings paste with the desired properties 

and the simulated material would come to rest, the gate was lifted to allow the 

paste to flow in the created flume under gravity. Finally, when as a result of the 

interactions between all the forces it would come to rest, the distance covered, 

the height of the paste at the gate and the height of it at the toe were measured 

and after that using equation 69 the angle of repose would be calculated for each 

simulation. 

2. Having performed the first series of tests and understanding the general 

behaviour of changes in the simulation results as a matter of random factors in 

the previously defined range, the second series of simulations were run with the 

goal of finding the effect of changes in the individual parameters on the result of 

the tests. In this case, the effect of these changes, such as increases in the value of 

density or viscosity, on the angle of repose or the distance covered by the 

tailings whether the value increases or decreases can be studied and analyzed. 

T o serve the purpose of the test the value of one of the individual parameter was 

considered as variable and the values for the rest of parameters were taken as 

constant. In this way, as the variable parameter would change, its effect on the 

angle of repose and the distance would be observed. The second series of test 

were performed in three sections to study the effect of changes in a single 

variable. 

a. The first section was performed with the density being the variable. Having 

an assumed range for density of tailings made it necessary to be taken as one 

of the major variable parameters. Thus, the behavior of the paste under 

different values of density and the effect of the particles having different 
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weights and being slightly different in numbers in various tests could be 

observed. Due to the paste-like characteristic of the type of tailings being 

simulated the range of values chosen for density was 3000 kg/m 3 to 4500 

kg/m3. 

b. Taking viscosity as a variable parameter was the second section of these 

series of tests. Different types of tailings have different viscosity values. 

Therefore, the effect of the paste changing from being a bit more viscous to 

being far more viscous than water was necessary to be observed. The values 

assigned to variable density and viscosity were integers ranging from 10 to 

35 increasing steadily with the same pattern from the lowest to the highest 

one. 

c. As friction and roughness are both related to the terrain and the surface the 

paste is running on and they both almost have the same effect on the paste 

and its movement, since roughness will also affect the paste by exerting a 

friction force, it was decided to take the same values for both friction and 

roughness. In other words, the two similar parameters were considered as 

one. Since it was observed that changes in the roughness or friction of the 

terrain is directly proportionate to the time the paste takes to advance in the 

running length and the ease of the movement of the paste on the surface, it 

was decided to take the two mentioned parameters together as the third 

variable parameter in the third section of these series of the simulations. The 

tests started with lower values (starting from 0.2 which was yet higher than 

the default values) being assigned to the parameters and continued with 



regular steady increases in the values with the maximum friction and 

roughness of 0.7. 

As for bounciness the default value of 0.25 was decreased to 0.1 to create a more 

realistic simulation model. 

Having assigned the desired values to the parameters, the second series of tests 

was performed using the same procedure as the first series. 

3. The third series of the tests were conducted while the previous test results on 

how individual parameters affect the flow of the tailings paste were observed. 

Since the goal of all the performed tests was to be able to calibrate the program 

and gain the knowledge of simulating samples of tailings with various 

properties, the data which had been collected so far was not sufficient. The 

already obtained data and results were only taken by deliberately changing the 

values by adding or deducting predefined equal units or by keeping the rest of 

the parameters constant. This approach would not provide a complete control 

over the fluctuation of the values assigned to the parameters. For this problem 

to be solved the risk of taking any random numbers within the aforementioned 

specific defined range of input data (values) for the parameters had to be taken. 

This means that if the input data range for the density was between 3000 kg/m 3 

and 5000 kg/m3, starting the tests with the lowest value and adding 500 kg/m3 

or such units to the data for the next tests would also be considered as having 

control over the input data and does not cover all the values in the range. 

A suitable solution to overcome the stated problem was to utilize a Monte Carlo 

simulation method. "A Monte Carlo method consists in formulating a game of 

chance or a stochastic process which produces a random variable whose expected 
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value is the solution of a certain problem" (Bauer, 1958). To utilize the Monte 

Carlo method, a range or domain of input data has to be defined. An equation is 

then used to generate random values and consequently the effect of changes in 

the values of parameters and its distribution and sensitivity in the result of the 

simulations, the angle of repose at rest and the distance covered by the tailings, 

is achieved. 

The following equation was used to obtain the random values for the variables: 

Xi = \i + (j(y£
01349 - (1 - y i )

0 1 3 4 9 ) /0 .1975 (eq. 70) 

where 'yi is a random value and is confined as: 0 < yi < 1 . 

The abovementioned equation is a form of Generalized Lambda distribution 

(GLD) which is useful in performing a series of Monte Carlo simulations 

(Fournier et al., 2006). It has the general form of: 

x = A1 + (pA* - (1 - p)A*)/A2 (eq- 71) 

^r'as a function of'/7'and As'\s a GLD when p e [0>0- Having the values of the 

As' provides the data with which a histogram of the simulated values can be 

obtained which facilitates achieving a general knowledge of the population under 

study. Ai'and fo'are parameters which define location and scale, /b'defines the 

asymmetry or skewness and 'A4' the kurtosis or flatness of the histogram 

(Headrick and Mugdadi, 2005). It is rather challenging to reach correct data for 

the 'Ad and therefore there are computer programs such as LambdaFinder to 

facilitate data collection (Fournier et al., 2006). 

Due to the fact that the aim of performing the third series of tests was to observe 

the results of simulations with random values for tailings properties, the ranges 

for the values assigned to the properties of tailings were chosen to be the same 
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as the second series of tests to have the same set of data for both series of tests. 

The mean values were selected as the average of the extremes of the ranges 

since the extremes were selected as the maximum and minimum of the possible 

values for the properties therefore the values between the extremes were more 

representative of the possible values. The standard deviation for the values 

assigned to the properties, which represents the possible existing variation of the 

values from the mean, was selected to be half of the difference between the 

extreme value and the mean due to the fact that the values for properties of the 

tailings are expected to be closer to the mean values than to the extremes. 

Having determined the mean values and the standard deviations of the simulated 

tailings properties, equation 70 was applied to all the parameters included in 

each of the tailings paste movement simulations and random values within the 

range defined for each parameter was generated. Each of the obtained values 

from the equation was then used as input data with the random values obtained 

for other parameters and eventually run out distance and angle of repose values 

representative of each series of random values were obtained. 

For random values to be calculated for ^ach parameter using the above 

mentioned equation '//'is the mean value of the parameter such as 22.5 for the 

viscosity and 'a' is the standard deviation of the values assigned to the same 

parameters such as 6.25 for viscosity. 

These defined values represent a frequency versus value diagram for each 

parameter which is similar to a parabola with the focus on the top known as a 

Gaussian function. The peak of the diagram is the value of the parameter which 

most frequently occurs and the distance from the axis of symmetry to the point 
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where there is a significant change in the slope of the bell curve at either side is 

twice the value of standard deviation (Figure 12). Due to the fact that the third 

series of tests were performed by assigning random values to parameters to find 

the mean value and the distribution of other values around the mean, based on 

Gaussian distribution, the values showing the frequency of the calculated values 

obtained for angles of repose and run out lengths were expected to form a 

diagram with the same pattern as well. 

In these series of tests density, viscosity and resolution as fluid and program 

parameters and friction and roughness as terrain characteristics were taken as 

variables and relative credible ranges of input data were assigned to them. 

Friction and roughness were given the same values and the two similar 

parameters were considered as one and bounciness was set to 0.1 to create a 

more realistic model. 

<XJ 

Standard Deviation x 2 
Parameter Va lue 

Figure 12. The diagram representing Monte Carlo simulation 
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Similar to how the first and second series of simulations were run, when the 

appropriate number of particles was chosen and the reservoir was filled with the 

tailings paste with the desired properties and the simulated material would come 

to rest, the gate was lifted to allow the paste flow in the created flume under the 

gravity force and finally when as a result of the interactions between all the 

forces it would come to rest, the run out distance, the height of paste at the gate 

and at the toe were measured and after that, using equation 69, the angle of 

repose would be calculated for each simulation. 

5.3 Flume Test Results 

5.3. J Tests with Randomly Chosen Values 

The first series of tests were performed with random numbers for the major parameters 

in RealFlow with predefined equal increases in the values in order to examine how 

differently the program simulates tailings with different properties. The followings are 

the input data: 
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Table 2. Input data for the first set of calibration tests 

Test 

A 

B 

C 

D 

E 

F 

Resolution 

5 

5 

5 

5 

5 

5 

Density 

(kg/m») 

4 5 0 0 

4 0 0 0 

4 5 0 0 

4 5 0 0 

4 0 0 0 

3 5 0 0 

Viscosity 

25 

2 0 

2 5 

2 0 

2 0 

2 0 

External 

Pressure 

3 

2 

1 

] 

1 

1 

Friction 

0.4 

0 .4 

0 .4 

0.3 

0.3 

0.2 

Roughness 

0.2 

0.2 

0.2 

0.15 

0.15 

0.1 

Bounce 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

The high values for density, viscosity and external pressure suggested that the speed at 

which the paste would advance would decrease as the time passed. The followings are 

the diagrams obtained in the tests: 
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Fisrure 13. Diagrams of distance and velocity versus time for Test A 

It was observed that during the initial moments of the simulation gravity has a 

significant effect and drives the paste out of the reservoir and forces it to run on the 

flume surface. The slope of distance versus time diagram for the first 10 minutes and the 
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fact that the paste travelled for almost half of the flume length in a half hour confirms 

that the resisting forces such as friction and the viscosity of the paste were not as 

influential in the first stages of the test. As time passes, the effect of resisting forces are 

more visible than before and as it is seen in the velocity versus time diagram as gravity, 

which lets the paste advance wears out, the sudden fall in velocity is finished and the 

value of the velocity falls to a slow, but almost constant value. The same pattern was 

observed in the rest of the tests for this part. 

As time passed the corresponding data was collected in shorter intervals in all the tests 

to observe the changes in the velocity and density as the tailings moved closer to the 

end of the flume. Therefore, an accumulation of data is visible in the diagrams for the 

last minutes of the experiments. It has to be mentioned that in all the diagrams the 

corresponding time for velocity and density is the time it will take for the tailings to 

travel the distance to the end of the flume in the physical experiment and is not 

representative of the simulation time. Since the tailings selected for the experiment had 

a paste-like characteristic, the time taken for it to travel the distance to the end of the 

flume, as is shown in all the diagrams, is much greater than a fluid with low density or 

viscosity. 

Figure 14 shows the diagrams obtained from Test B in which the values for viscosity, 

density and external pressure were decreased. 
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Figure 14. Diagrams of distance and velocity versus time for Test B 

The effect of the resisting forces, which is the decrease in velocity, can be observed in 

the diagrams. While the diagrams show a trend similar to the one presented in test A, 

comparing the diagrams from both tests, it can be observed that the run out time for 

test B is slightly shorter which is due to the lower value of density and viscosity which 

allow the tailings to move more easily than in the previous test. 
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This is also noticeable in the values for the maximum velocity and the velocity at which 

the tailings reach the end of the flume, which are slightly greater for Test B. 

Figure 15 presents the diagrams resulted from Test C. The values assigned to the 

properties of tailings in Test C are all the same as the values in Test A except the value 

assigned to external pressure. External pressure functions as pressure being exerted on 

the tailings to keep the particles together during the flow of the tailings. Having the 

value of 3 in Test A, the external pressure made the particles mostly remain within the 

enclosing body of tailings whereas in Test C this value was reduced to the default value 

1, which resulted in the particles being able to leave the flow more easily. Thus, as it can 

be observed in the diagrams, the reduction in the value of external pressure resulted in a 

greater traveling time and as a result a smaller value for the velocity was observed as 

the tailings reach the end of flume. 

In Test D, while the values for density and external pressure were not changed in 

comparison to Test C, the values for viscosity, friction and roughness were decreased. 

Selecting smaller values for friction and roughness resulted in reduction in the value of 

resisting forces. Hence, tailings could flow more easily in the flume which resulted in a 

relatively shorter time for the tailings to reach the end of the flume. Ln addition, when 

the value assigned to viscosity was reduced, a rather smaller force was needed to make 

the tailings flow into the flume and keep moving forward. This fact also contributed to 

the tailings traveling the length of the flume in a shorter time in comparison to previous 

tests, as it is indicated in Figure 16. 

One other effect of reducing the value of the parameters, which also contributed to the 

tailings' run out time being shortened, was the velocity. As the friction force was 

decreased, the tailings could flow with a higher velocity and as a result a higher value 
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than the previous tests for velocity was observed when the tailings reached the end of 

the flume. 

The results of Test E are presented in Figure 17. In Test E similar values as Test D 

were assigned to all the parameters except density. The decrease in density, which 

caused less particles being present in the tailings and hence less particle interaction in 

the simulation, resulted in a slightly shorter run out time for Test E. The reduction in 

particle interaction led to a smoother flow than Test D which in turn resulted in the 

tailings' traveling the length of the flume in a slightly shorter time. 

Test F, the last test of this series of tests, was performed with the lowest values among 

the tests assigned to density, friction and roughness. As it can be observed in Figure 18, 

due to the reduction in values for the mentioned parameters, the traveling time for the 

tailings paste was significantly reduced. Lower values assigned to roughness and 

friction caused less resistance against the flow and thus the increase in velocity. Fewer 

particles were generated due to lower value of density in comparison to previous tests 

and therefore particle interaction was reduced and hence a smoother flow was observed 

which led to a significantly shorter run out time and higher velocity at the end of the 

flume. 

Comparing the results of the test with the value assigned to external pressure equal to 

the default value assigned to internal pressure ( l) to other tests which had higher values 

for their external pressures than the internal pressures, states that a higher external 

pressure value than the internal pressure delays the paste's reaching the end of the path 

and therefore provides a more realistic environment for paste-like tailings. 
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Figure 15. Diagrams of distance and velocity versus time for Test C 
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Figure 16. Diagrams of distance and velocity versus time for Test D 
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Figure 17. Diagrams of distance and velocity versus time for Test E 

91 



/ 
(m

/s
) 

s/
el

oc
it'

 

0.0065 

0.006 

0.0055 

0.005 

0.0045 

0.004 

0.0035 

0.003 

0.0025 

0.002 

0.0015 

0.001 

0.0005 

0 

25 50 75 100 125 150 

Time (min) 

Figure IS. Diagrams of distance and velocity versus time for Test F 

It was observed in the first series of the tests that none of the pastes came to a complete 

'rest' prior to reaching the end of the flume and therefore an angle of repose at rest was 
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not observed. However, as it is shown in the velocity versus time diagrams the value of 

the velocity at which the paste travels along the flume falls to very low values and, as a 

result, it takes the paste a considerably long time to reach the end of the flume and 

similarly a very long time for the program to simulate the flow of paste. Nevertheless, 

as the diagram shows, there is a point at which there is a sudden change in the regime of 

velocity decrease and from this point onward the dramatic decline in the velocity 

switches to an almost steady velocity with much smaller deductions in the value. 

Comparing the distance versus time diagrams for this part of simulations reveals that 

the majority of the simulations reach the mentioned point at approximately halfway 

through the journey along the flume. 

Based on the abovementioned observations and with the goal of the paste reaching a 

resting point, a point after which due to the significant reduction in the velocity, it took 

the system a considerable time to continue simulating the movement, could be 

determined. The velocity at which the paste moved at this particular point was chosen 

to be the 'at rest condition' velocity. Since most of the tests had the stated point at 

approximately halfway through the run out length, the velocity of 0.0005 m/s* was 

chosen to be the 'at rest condition' velocity. 

It could be concluded from the first series of the tests that when the speed of the paste 

reached the value of the 'at rest condition' velocity the test would be considered 

complete and finished. Thus the angles of repose and run out distances would be taken. 
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5.3.2 Tests with Changes in a Single Variable 

The second series of simulations were performed to observe the sensitivity of the 

simulations to changes in the value of a single parameter and therefore, while one of the 

main parameters was chosen as the variable, remaining parameters were held constant. 

Density, viscosity and friction and roughness were in turn chosen to be as the variable 

parameter. 

Using the results of the first series of tests which indicated the velocity of 0.0005 m/s 

as the 'at rest condition' velocity, at which the test would come to an end, the flow of the 

tailings paste was simulated under the following circumstances. 

Table 3. Values for Test 1 of tests with changes in a single variable 

Resolution 

5 

Density 

(kg/m*) 

3000 to 4500 

Increments: 

500 (kg/m3) 

Viscosity 

20 

Friction 

and 

Roughness 

0.2 

External 

Pressure 

2 

Bounce 

0.1 

The values chosen for the constant parameters were relative to the default values of 

RealFlow, which is assigned to water. A high resolution value for the simulation will 

require more particles to be created which results in higher number of particle 

interactions to be calculated and therefore it takes RealFlow a long time to process the 

simulation. As a result the value taken was 5 in comparison to the default value which 

was 1. Due to the default assigned value to viscosity for water being 3, an average value 
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(20) which is representative of a more viscous material than water such as tailings paste 

was assigned to the paste as the constant value. The same values were chosen for both 

roughness and friction and the tests were not performed with each one of them having 

separate values. 

The importance of one of the features of the simulation tool introduced as 'external 

pressure' was emphasized in the result of the first series of tests. Therefore, it was 

decided to have an external pressure exerted on the whole body of the paste with a 

doubled value in comparison to the internal pressure. 

As previously discussed, the terrain on which the tests were performed did not have a 

great bounciness value. Therefore, the value for this parameter was reduced to 0.1 in the 

tests. The result of the simulations with the abovementioned values can be observed in 

Figure 19. 

The existing trend in the diagrams shows that as the density of tailings paste increases 

there is a decline in the run out distance in an approximately linear fashion. Similarly, 

the density increase in the paste has a direct effect on the value of the angle of repose at 

rest. This shows that as the mass of the particles in the tailings paste in the same 

volume of material increases, the interactions between the particles increase and 

therefore a greater force is needed to pull the paste to a point at the same distance as 

before. Whereas gravity stays the same and even the change in the weight of the paste 

is not enough to drive the paste to the previous point. The mentioned changes will 

result in the paste travelling a shorter distance and therefore more material remaining 

at the gate than before and as a result the Hi in equation 69 will be higher which results 

in a greater angle of repose. 
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Computed values and the diagrams presented a realistic trend in which a gradual 

decline in the values of run out distance and a constant increase in the values of angle of 

repose were demonstrated which implies the fact that RealFlow performed the desired 

simulation for the aforementioned set of values. 
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Figure 19. The run out distance and angle of repose versus density for the tests with variable density 

(Test 1) 
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Table 4. Values for Test 2 of tests with changes in a single variable 

Resolution 

5 

Density 

(kg/m3) 

4000 

Viscosity 

10 to 35 

Increments: 

5 

Friction 

and 

Roughness 

0.2 

External 

Pressure 

2 

Bounce 

0.1 

For the second test of the second series of simulations, while the viscosity was taken as 

the variable parameter the assigned value to density was 4000 kg/cm3. This value was 

the mean value in the range of 3000 kg/cm3 and 5000 kg/cm3 which was assumed as 

the representative of the density domain to be applied to the program. The rest of the 

parameters had the same values as the previous test. The result of Test 2 is provided in 

Figure 20. 

The angle of repose versus viscosity diagram in Figure 20 demonstrates an 

approximately linear regime of changes under viscosity change. As the viscosity 

increases the force needed to be exerted on a material to move and slide the particles on 

one another also increases. Thus, since the gravity, which drags the paste along the 

flume, was constant and did not change during the simulation, it resulted in shorter run 

out distances with the increase in the viscosity and therefore having the same volume of 

materials for all of the tests the angle of repose was increased as the distance was 

shortened. The run out distance versus viscosity diagram (Figure 20) suggests that up 

to some extent as the viscosity increases the run out distance decreases in a linear 
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fashion, however, as the value of the viscosity increases over a certain point a non-linear 

trend is observed. 
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Figure 20. Angle of repose and run out distance versus viscosity for the tests with variable viscosity 

(Test 2) 
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Table 5. Values for Test 3 of tests with changes in a single variable 

Resolution 

5 • 

Density 

(kg/m») 

4000 

Viscosity 

20 

Friction 

and 

Roughness 

0.2 to 0.7 

Increments: 0.1 

External 

Pressure 

2 

Bounce 

0.1 

As the last test of the second series of the simulations, the effect of changes in the 

friction and roughness values was observed. Thus, as friction and roughness values 

were chosen to be the variables the value of viscosity was set as 20 again. Figure 21 

demonstrates the results obtained from the simulations for constant friction and 

roughness. 

The diagrams in Figure 21 demonstrated the effects of changes in the terrain's friction 

and roughness values on the tailings paste's angle of repose at rest and run out distance. 

According to the diagrams, as the flume surface or terrain becomes rougher the flow of 

the paste becomes more difficult whereas the dragging gravity force does not experience 

any increase. Therefore, the rise in friction and roughness values shortened the run out 

distance which in turn resulted in a greater angle of repose at rest. However, the 

diagrams demonstrate that the interactions of the mentioned parameters under such 

condition do not follow a linear trend. As the roughness and friction values increase, the 

rate of increase in the values of angle of repose at rest and decrease in the run out 

distance decreases due to the fact that as the value for friction and roughness increases, 



the difference in the value between resisting forces and driving forces decreases and 

therefore the results of the experiments become closer to one another. 
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Figure 21. Angle of repose and run out distance versus friction and roughness for the tests with variable 

friction and roughness (Test 3) 
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5.3.3 Monte Carlo Simulations 

Having observed the effects of changes in each one of the parameters on the flow of the 

tailings paste individually, Monte Carlo simulations were chosen to observe the effect of 

changes in all the parameters at the same time or in other words the odds of obtaining 

different values for the angle of repose and the run out distance by assigning random 

values within the defined range for each parameter to each one of them was observed. 

The goal of this series of tests was to reach a mean value for the angle of repose and the 

run out length while the data was randomly chosen from the specific predefined domain 

of each parameter. 

To obtain a result as the mean value, the quantity of simulations was important. The 

more simulations were run the more accurate would the results be. On the other hand, 

time was a limiting factor for the quantity of the simulations. As it was previously 

mentioned, it would take RealFlow a great amount of time to simulate the flow of 

materials with characteristics like tailings paste as a result of the high values assigned 

to the parameters in the simulation tool. Therefore, in order to maintain the quantity 

and the quality of the tests as.many as SO tests, were performed. The details of the 

performed simulations and the specifics of the values taken for equation 70 are provided 

in the Appendix. The run out distances and corresponding angles of repose are shown 

in Figure 22. 

The following diagrams show the data obtained from the Monte Carlo simulations 

performed in RealFlow: 
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Figure 24. Diagram demonstrating the frequency of the obtained values for run out distance and the 

mean value 

The values taken for density in the third series of tests ranged from 3000 kg/cm ; i to 

5000 kg/cm3 with the mean value of 4000 kg/cm ; j which was a credible range for a 

tailings paste in comparison to the density of water. The domain chosen for resolution 

was between 4 and 16 and the mean value of 10 which was based on the information 

collected from the sample RealFlow simulations and the instructions in comparison to 

very low numbers used with lower densities to simulate the flow of water. The values 

for viscosity ranged between 10 and 35 with the mean value of 22.5. 

As for the friction and roughness values the mean was taken as 0.5 with the range of 

data between 0.2 and 0.8. The values were inputs for equation 70 and the diagrams 

above were produced from the simulations using these values. 

The minimum and maximum values obtained for the run out distance using the random 

values for the parameters were 0.942 m and 1.582 m respectively. The same values for 

the angle of repose were 1.774' and 3.943°. For the range of data, based on the 
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information taken from the diagrams, the mean value for the angle of repose was 

approximately 3.1° and the mean value for the run out distance was approximately 1.3 

m. The same data is also provided in Figure 22. It can be observed that more than 50% 

of the points on the diagram have a distance close to 1.3 m. Similarly for the angle of 

repose in Figure 23, more than 40% of the tests had an angle of repose value close to 

3.1°. This shows that there is a high probability that the distance travelled by a type of 

tailings paste similar to the one simulated and having a characteristic with the values of 

its parameters in the same range as the simulated paste would be a number close to 1.3 

m and the angle at which it comes to rest would be approximately 3.1°. 

In Crowder's experiment (2004) which was used as the base of the simulations, two 

different pastes were used for the flume tests. The first paste was from the ores 

extracted from the initial development of the mine and the second one was taken at a 

later time from the paste plant. 

Comparing the results from the Monte Carlo simulations with the ones obtained from 

Crowder's flume tests reveals that the mean value of 3.1° for the angle of repose 

obtained from the simulations is equal to the angle of repose for the first paste with the 

water content of 31.7% as the "as received" paste and 25.8%-when deflocculant was 

added to the paste, both at the temperature of 22°C. As for the second paste 3.1° is equal 

to the angle of repose of the paste at 27.7% water content when deflocculant is added 

and 41.6% and 42.9% of water content (two different tests for the same paste) for the "as 

received" paste, all of them at the temperature of 22°C. This shows that the simulations 

produced data which fits the credible area for a tailings paste and as the real pastes 

performed in Crowder's tests the higher the density and viscosity was the higher the 

angle and the shorter the run out distances for the simulations were. Moreover, to 
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enhance the result of the calibration, having the mean values for run out length and 

angle of repose and observing the effects of changes in each of the values individually, 

the same pattern can be extended and applied to other data ranges and different tailings 

pastes according to the trend observed in the previous tests. 
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Chapter Six: Modeling Case 

Studies of Tailings Dams Failure 
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Modeling Case Studies of Tailings Dams Failure 

6.1 Tapo Canyon Tailings Dam 

Tapo dam was a 24 meter high tailings dam retaining sand and gravel-sized aggregate 

mining waste, located in Northridge, California which failed as a result of an earthquake 

on November 17, 1994 (Harder and Stewart, 1996). The pond, along which the 

embankment failed was constructed within a hill which had been excavated prior to the 

construction of the pond. Since the ground water level had made the excavation 

difficult, mining was stopped and this pound was converted to be used for settling out 

the fines washed out of the sand and gravel aggregates during the mining process. Most 

of the fines were smaller than the No. 140 sieve size. The tailings were composed of 

stratified layers of soils covering a wide range of material from fat clays with plasticity 

indices as high as 30 — 50 to non-plastic sandy silts and silty sands (Harder and Stewart, 

1996). 

From 1992 for two years the pound was used by a nearby concrete batch plant for waste 

concrete. The waste concrete would be washed off the trucks driven into the eastern 

pond. This resulted in a discontinuous layer of concrete with the depth of 1.2 to 1.8 

meters on the surface of the pond. The western half still contained some water which 

Harder and Stewart (1996) believe to be as a result of leakage through the conveyance 

ditches and ponds located on the immediate northern side. 
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Liquefaction of the tailings and parts of the dam caused reductions in soil strength and 

stiffness resulted in large and relatively intact blocks of the dam sliding over 60m 

downstream, which caused the impounded tailings to flow out through the breach and 

travel several hundred meters downstream (Harder and Stewart, 1996). The failure 

occurred at a part of the dam where a gap was made between the hill and the dam as a 

result of mining activities. An approximately 60 meter long part of the dam failed and 

the dam broke at least into two parts and slid out. The two parts were displaced and 

moved for 60 and 90 meters downstream the dam respectively. The retained tailings 

behind the breach had shaped a slope toward the breach in a shape that Harder and 

Stewart (1996) describe as the tailings going through a cone. Some parts of the retained 

tailings passed through the breach and traveled up to 180 meters downstream. There 

were also up to 3 meters of settlements of the embankment close to the breach both 

downstream and upstream. Several cracks of the size of around 1 meter were found on 

the embankment as a result of displacements. The buttress and the riprap were moved 

to the opposite side of their original place and temporarily blocked the creek. The 

presence of the creek bank in the site, where the debris was stopped, had decreased the 

displacement of the embankment. "Downstream of the-principal, relatively viscous flow 

slide, more "fluid" tailings were found to have splashed up across the creek and against 

the adjacent hillside. The splashed material appears to be composed predominantly of 

clayey soils. Further downstream, tailings entered the creek channel, filling much of the 

channel to unknown depths, and flowed hundreds to thousands of meters downstream. 

Trees were found in the channel surrounded by tailings with "splashes" running as 

much as 1 m up the upstream side of their trunks." (Harder and Stewart, 1996, p.5) 
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In addition to the above mentioned, there were blocks of concrete waste, typically 1.2 to 

1.8 meters in thickness, 7.5 meters across and weighing 200 tons, which slid on the 

surface of the tailings having a mild slope and were displaced. They were stopped either 

at the end of the slope or by the buildup piles of tailings ahead of them. 

Later, two boils were found in the site both consisting of non-plastic silty sand with one 

containing 47% non-plastic fines and the other containing about 15% non-plastic fines. 

Harder and Stewart (1996) believe that using a significant amount of slimes in that part 

of the embankment in the form of upstream method of raising embankments caused the 

flow failure. They have mentioned that saturated tailings cannot be relied on for the 

slope stability as a result of the low value of shear strength this material has. They 

believe that unless this matter is considered in the design, founding or building the 

structure with this material will not result in satisfactory post-earthquake performance. 

Figure l25. View of Tapo Canyon tailings dam from above (Google Earth, 2010) 
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6.2 Merriespruit Tailings Dam 

The Merriespruit gold tailings dam was 38m high located 250 kilometers from 

Johannesburg, South Africa occupying 154 hectares. By 1978, after 16 years of 

operation, the embankment was retaining approximately 260X106 m3 of mining waste 

and later the capacity was increased to 10 million tons (Van Niekerk and Viljoen, 2005). 

The northern wall of the dam was as close as 320m to houses nearby, which were 

located in the suburbs of Merriespruit. An almost north-south extending valley is 

located between the houses and the northern wall of the dam. This shallow drainage 

valley underlies the center of the northern and the center part of the dam and is located 

below the dam. 

Later in 1993, some seepage was reported in the northern wall of the dam above the 

drainage exit and in addition, some time before the main incident the separating wall 

between the center and the northern part of the dam was broken and tailings flowed 

into the pond of the northern part as a result. These events, in addition to violation of 

the freeboard, which was recorded to be from 500mm to 150mm in some parts of the 

northern part of the dam, resulted in the accumulation of the tailings closer to the 

northern wall and farther from the decant towers (Van Niekerk and Viljoen, 2005). 

Due to unexpected heavy rainfall on February 22, 1994* water started to flow over the 

northern wall followed by a break in the dam and a gap of 150m was formed. It took 

600,000m'J (2.5 million tons (Van Niekerk and Viljoen, 2005)) of the tailings 5 minutes 

to travel a distance of 1960m through the valley and into the city (Davies, 2001) which 

resulted in 17 deaths and some serious and minor damages, to the properties (Wagener, 

1997). 

110 



S e a r c h fo r b o d i e s 3r*c3 ! 
w r e c k e d v e h i c l e s in 
t>irci s a n c t u a r y 

Figure 26. The Flow Path of Merriespruit from Van Niekerk and Viljoen (2005) 

®SSES'Bt3is,a3te>2 

ii&acta? 

Figure 27. View of Merriespruit city and the tailings dam in the south from above (Google Earth, 2010) 

The model calibration which was performed previously, demonstrated the capacity of 

the simulation tool to model a situation in which a relatively viscous fluid would flow as 

a result of a sudden break in its confining environment and would come to a rest when 
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the effects of active driving and resisting forces reach equilibrium. It also provided the 

information on how the changes in fluid parameters in the simulation tool affect the 

outcome and therefore, paved the way for implementation of the case studies' 

environment and properties of tailings in the simulation tool in order to be modeled. 

The following sections provide a detailed description of modeling the case studies 

mentioned in the previous section. The necessary considerations in modeling incidents 

are considered first, followed by an account of scene creation and value assignment, and 

the results. 

6.3 Considerations in Model Implementation 

To create the models as akin to the physical incidents as possible, there were two key 

parameters which had to be imported in the software as precisely as possible, as they 

would greatly influence the outcome of the simulation. The two parameters were the 

terrain and the properties of tailings. 

6.3.1 The Terrain 

In case of a failure in a tailings dam structure resulting in the flow of tailings in the area 

behind the dam, the terrain has an important role. The characteristics of the terrain 

influence the manner in which tailings run out and advance. The aspects on which the 

terrain can have influence include the velocity at which the tailings travel, the direction 

of the flow, the run out distance and the area the tailings cover both longitudinally and 

in width. The terrain's roughness and the existing irregularities influence the velocity of 

112 



tailings. It serves as a resisting force against the tailings' advancement which 

eventually, as time passes its constant value becomes greater than the values of the 

driving forces, which decrease over time, resulting in the tailings flow coming to a rest 

after traveling a certain distance. Depending on their sizes, the irregularities of the 

terrain can affect the direction of the flow by acting as obstacles in the flow path, the 

velocity at which the tailings flow by introducing slopes with various angles to the path 

and finally, the distance the tailings flow by trapping the tailings in pits or accelerating 

the movement by introducing rather steep slopes. 

To increase the accuracy of the models and maintain the three dimensional method of 

modeling, Digital Elevation Models (DEM), digital maps producing the elevation of a 

specific terrain (Figure 28), were selected as the objects representing the terrain. The 

area in which the dam failures in the case studies had occurred were located on the 

DEMs which were later cropped and prepared based on the longitude and latitude of the 

area where the physical incidents occurred, to be utilized in the modeling tool using 

MICRODEM (Guth, 2009), a mapping software which merges and displays models and 

maps. 

6.3.2 Tailings Properties 

Tailings properties are among the factors that affect the simulations most. The distance, 

up to which the tailings travel, apart from the effects of the terrain, depend on 

parameters such as the viscosity and density of the tailings. The more viscous the 

tailings are, the greater driving forces they need to travel longer distances; therefore, 

under the same circumstances tailings with higher viscosity and density come to rest in 
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a shorter distance from the impoundment. The same reason is valid for the run out time 

of the tailings. As the viscosity increases, due to the lower tendency in the particles to 

become separated from the body of the flow, the time in which the tailings travel a 

specific distance also increases. Moreover, the shape and the uniformity of the flow 

could be controlled by assigning various values to the special factors representing the 

properties of the tailings in the simulation tool such as internal and external pressures. 

Figure 28. Sample of a DEM of South Africa (NASA) 

The information regarding creation of the scene and the environment of each of the case 

studies and results of the simulations are included in the following section. 
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6.4 Model Creation 

This section includes the data regarding modeling tailings dam failures to be 

implemented in the simulation tool and for the results to be compared with the physical 

incidents. The incidents include Tapo Canyon and Merriespruit tailings dam failures. 

6.4.1 Tapo Canyon Tailings Dam Failure 

Based on the information provided in 'Case Studies' section and according to Harder 

and Stewart (1996), the data regarding Tapo Canyon tailings dam failure is provided in 

the following table: 

Table 6. Data regarding Tapo Canyon tailings dam 

Dam Height 

(m) 

24 

Breach Length 

(m) 

60 

Run Out Distance 

(m) 

ISO 

Tailings' State 

Highly Viscous 

After the incident, a major part of the tailings had not travelled a relatively long 

distance and had come to rest at a distance of 180m from the south western part of the 

tailings dam. This implied that considering the parameters defining the characteristics 

of the terrain, such as friction and roughness, a high value had to be selected as the run 

out distance was rather short in comparison to Merriespruit tailings dam failure. The 

DEM did not include any vegetation or other potential obstacles or changes in the 
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terrain, therefore, the dimension of the terrain in the '% direction which represented the 

height of the object, was increased to amplify the irregularities of the terrain and the 

effects of them on the flow. 

When the correct dimensions and characteristics were applied to the terrain, the dam 

had to be created and located on the terrain. The dam had a shape similar to a triangle 

with two 270m long sides and the third side being 300m in length. Having created the 

model dam using cube objects in different sizes, knowing that the breach was developed 

close to the south western wall, to create the breach in the model a separate retaining 

cube was used which would be removed at the beginning of the simulation to let the 

tailings flow out of the impoundment. In order for the model dam to resemble the real 

dam and for the simulation to represent the real incidents the sides of each square in the 

RealFlow grid were taken as 30 meters on which the whole model and scene were 

based. The location of the dam on the terrain was found according to the irregularities 

of the terrain using 'Google Earth'. 

As it was reported after model calibration the material modeled was paste-like tailings 

and therefore, large values had been assigned to parameters such as viscosity and 

density. According to Harder and Stewart (1996), the tailings retained behind the dam 

were highly viscous and as a result, in addition to traveling a short distance from the 

dam, they formed a slope from the breach to the point they came to rest. Thus, the value 

assigned to the viscosity of the tailings was much greater than the values used in the 

calibration experiment. For the same reason there was a low tendency among the 

particles to leave the continuum and therefore a greater value was assigned to the 

external pressure in relation to the internal pressure. This resulted in fewer particles 

leaving the body of the flow and as a result the decreasing the chance of splash 
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occurrences which was more similar to a paste-like tailings flow. A high density value 

was chosen for the tailings representing the almost paste- like character of the tailings 

with high viscosity. However, in order to protect the system from collapsing while the 

simulation was in progress and the motion of the particles was calculated, the resolution 

was decided not to have a high value. 

6.4.2 Merriespruit Tailings Dam Failure 

In accordance with the provided information in the 'Case Studies' section and according 

to Van Niekerk and Viljoen (2005) and Blight and Fourie (2005), the following table 

contains the information regarding Merrie Spruit tailings dam failure some of which can 

also be seen in Figure 26: 

Table 7. Data regarding Merriespruit tailings dam 

Dam Height 

(m) 

38 

Breach Length 

(m) 

150 

Run Out 

Distance 

I960 

Approximate 

Run Out Time 

(min) 

5 

Tailings' State 

Low Viscosity 

The DEM was not inclusive of all the irregularities in the area. It also did not contain 

the vegetation and the structures in the flow path. Therefore, the scale of the terrain 

along the V axis, which represented the height of the model, was increased to 

compensate for the shortcomings of the created environment. 
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The dam had five sides with the longest side (the western wall) being approximately 

1687 meters. Since the dam was a very large structure retaining the tailings in more 

than one tailings impoundment pond covering a vast area, only the northern part of the 

dam, where the breach developed, was included in the simulation. To form the breach, a 

retaining cube was embedded in the part of the dam were the breach was developed and 

was removed at the beginning of the simulation when the area behind the dam was filled 

with water. In order for the model dam to resemble the real dam and for the simulation 

to represent the real incidents the sides of each square in the RealFlow grid was taken 

as 75m on which the whole model and scene were based. The location of the dam on the 

terrain was found in the same way as Tapo Canyon's according to the irregularities of 

the terrain using 'Google Earth'. 

According to Van Niekerk and Viljoen (2005), the entire incident, from the time the 

tailings dam failed and the tailings flowed along the valley and into the town to the time 

the tailings came to a rest, occurred in approximately 5 minutes. Moreover, the distance 

the tailings traveled to finally come to a rest, as demonstrated in figure 26, was 1960 

meters which is a rather long distance. Owing to the facts about the tailings flow in this 

incident, it was concluded that relatively • low ..values had to be assigned to the 

parameters representing the characteristics of the terrain, friction and roughness. 

Regarding the properties of the tailings, given that excessive rain contributed to failure 

of the dam (Van Niekerk and Viljoen, 2005), which resulted in the dam losing its free 

board and the development of the breach, it was concluded that the tailings behind the 

dam had been mixed with a great amount of water and therefore the characteristics of 

the tailings were up to some extent similar to characteristics of water. Thus, the values 

assigned to the parameters representing the characteristics of tailings were considerably 
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lower than the assigned values in calibration tests modeling tailings paste which was 

considerably denser and more viscous. This fact can also be verified by a comparison 

between the run out distances and their corresponding time of Merriespruit tailings 

dam failure and the calibration tests. This also implies the assignment of a density value 

closer to the density of water for the tailings. Since the nature of the tailings in this 

incident was not 'paste-like', a lower value was assigned to external pressure in 

comparison to the previous model. Thus, the flow of the material would be more similar 

to water since the possibility of the particles' leaving the body of the flow easily, existed. 

However, this value was still larger than the internal pressure's to prevent experiencing 

unnecessary splashes. To protect the simulation tool from collapsing during the 

simulation of the large amount of tailings in this model, a low value was assigned to 

resolution. 

6.5 Results and Discussion 

The following sections present the results of modeling Tapo Canyon and Merriespruit 

tailings dam failures. Several models of each of the mentioned incidents were processed 

with the values assigned to the parameters representing the terrains and the tailings 

differing from model to model. The data presented in the following sections are the 

results of the closest models to the physical incidents. 

The values assigned to each parameter in each model and the results are shown in the 

following tables and diagrams. 
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6.5.1 Tapo Canyon Tailings Dam Failure 

The values assigned to the tailings and the terrain parameters in the model which best 

resembled the Tapo Canyon incident are presented in Table 8. 

Table 8. Data for Tapo Canyon tailings dam failure modeling 

Resolution 

5 

Density 

(kg/m*) 

4000 

Viscosity 

110 

Friction 

and 

Roughness 

0.98 

External 

Pressure 

3 

Bounce 

0.1 

The tailings retained behind the Tapo Canyon dam had a paste-like characteristic, 

which resulted in the tailings behind the dam traveling a short distance and also 

forming a slope from the breach to the point it came to rest. The value assigned to 

viscosity was the highest value that could be assigned without the simulation tool's 

collapsing. In addition to the value assigned to viscosity, the run out distance also 

influenced the assigned value to friction and roughness. The value was selected to be 

quite great in order to resist the flow of the tailings and thus bring the tailings to a rest 

in a relatively short distance from the dam. In the case of Tapo Canyon's tailings, the 

material's paste-like nature implied a uniform flow with a minimum number of particles 

leaving the body of the flow and also observing fewer splashes throughout the flow. In 

order to achieve such behavior the external pressure was selected to be three times 

greater than the internal pressure. 
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Given that there was no report of the terrain's, on which the tailings flowed in the 

physical incident, demonstrating bouncy characteristic; the value assigned to bounciness 

of the terrain was relatively small. 

Figure 29 represents the result of the Tapo Canyon tailings dam failure modeling which 

is consisted of the distance the tailings flow has covered over time and its corresponding 

velocity. The non-linear trend of the tailings flow over time demonstrates that as the 

time passed the tailings needed more time to advance and cover more land whereas in 

the first minutes of the incident due to the tailings' great head behind the dam more 

areas were covered in a short time. There is also a part of the distance over time 

diagram where there is an accumulation of points. It has to be noted that due to the 

existence of higher velocities at the beginning of the incident, more observing points 

were taken in order to observe the first minutes of the flow more precisely and facilitate 

plotting a more accurate diagram. 

The velocity, as shown in Figure 28, experiences a great rise in the first minutes of the 

incident as the obstacle blocking the tailings' path (the wall of the dam) was removed in 

the form of a breach and the existing head of the tailings behind the dam drove the 

tailings out of the dam where the velocity reached the maximum value of approximately 

0.4 (m/s). As the head fell and the driving forces started to weaken, the effects of the 

terrain's friction and roughness could be observed more clearly which resulted in a rapid 

decline in the velocity. The non-linear trend of the reduction in the tailings flow's 

velocity can be observed in the velocity diagram. 

The flow of the tailings which was observed in the simulation tool was up to a great 

extent similar to the process that Harder and Stewart (1996) had described. The flow-

demonstrated the characteristics of thick, paste-like tailings and only a few signs of 
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turbulence were observed, and finally at a distance of 180m from the dam where the 

velocity had been decreased significantly in relation to the mentioned maximum value, 

the tailings formed a slope with its starting point being at the breach. 

Despite all the similarities between the physical incident and the model, there was one 

factor which did not completely satisfy the resemblance condition. As it is demonstrated 

in Figure 29, even though the tailings did not come to a rest at the distance of 180m 

from the breach, the velocity at that point decreased considerably in comparison to the 

maximum velocity. This shortcoming of the model was to a considerable degree due to 

the lack of details on the terrain. As the tailings flowed on the terrain, the only resisting 

factors against the flow of the tailings were the terrain's irregularities, friction and 

roughness, whereas in the physical incident natural and man-made obstacles and even 

the changes in the shape of the terrain caused over the time by the mining and 

extracting activities also contributed to the process of stopping the tailings from 

moving forward. 
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Figure 29. Diagrams demonstrating rim out distance and velocity versus time for Tapo Canyon tailings 

dam failure modeling 
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Figure 30. Scenes of modeling Tapo Canyon tailings dam failure demonstrating tailings at 25m, 120m 

and iSOm distance from the dam 

6.5.2 Merriespruit Tailings Dam Failure 

The values assigned to the tailings and the terrain parameters in the model, which best 

resembled the Merriespruit incident, are presented in Table 9. 
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Table 9. Data for Merriespruit tailings dam failure modeling 

Resolution 

5 

Density 

(kg/m*) 

1100 

Viscosity 

3 

Friction 

and 

Roughness 

0.0001 

External 

Pressure 

1.5 

Bounce 

0.1 

As Van Niekerk and Viljoen (2005) mentioned, the area in which Merriespruit tailings 

dam is located experienced a heavy rain fall hours before the dam failure occurred which 

resulted in the dam's losing its free board. Thus, it was concluded that there was a 

considerable amount of water added to the tailings behind the dam and therefore, the 

tailings had characteristics almost similar to water. In addition to the large amount of 

tailings behind the dam due to its great dimensions, low viscosity also influenced the 

rather long distance the tailings traveled to come to a rest. Based on this fact, a 

relatively small value was assigned to viscosity of the tailings behind the Merriespruit 

tailings dam. Due to the low viscosity of the tailings, the particles could move and slide 

past one another much easily and therefore could advance up to a farther point than 

more viscous tailings under the same circumstances. Given that due to the rain a 

considerable amount of water had been introduced to the retained tailings behind the 

dam the density of the tailings was not great in value; therefore a value close to the 

density of water was assigned to the density of tailings in this model. 

After the breach was developed, the tailings had flowed out of the impoundment and 

started to move toward the city. The tailings had traveled a distance of 1.960m in 

approximately 5 minutes which is indicative of its high velocity and also some 
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properties of the terrain. For the tailings to travel the relatively long distance in such a 

relatively short time, the roughness and friction of the terrain had to be assigned a 

considerably small value. Hence, the resistance against the movement of the flow 

created by the terrain's friction and roughness would not affect the movement as greatly 

as it did in Tapo Canyon's case. 

As the particles in tailings with very low viscosity and density have more tendency to 

leave the body of the flow and the flow has a more turbulent nature, the value assigned 

to external pressure was reduced to be slightly greater than the internal pressure. 

While this value provided the possibility of observing a more turbulent flow, by being 

slightly greater than the default value assigned to internal pressure (l) it still caused the 

tailings particles to act different from water particles. Given that there was no data in 

the literature with regards to bounciness of the terrain, the value assigned to bounciness 

of the terrain was considerably small. 

Figure 31 represents the result of the Merriespruit tailings dam failure modeling which 

is consisted of the distance the tailings flow has covered over time and its corresponding 

velocity. 
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Figure 31. Diagrams showing run out distance and velocity versus time for Merriespruit tailings dam 

failure modeling 
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Figure 32. Scenes of modeling Merriespniit tailings dam failure showing tailings at 80m, 1650m and 

1960m distance from the dam 
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According to the diagrams in Figure 31, in the first hundred seconds the tailings flow 

advanced rapidly and the velocity increased continuously. It was observed that during 

approximately the first hundred and fifty seconds of the incident, the velocity, due to the 

head of the tailings behind the dam and under gravity, continued to increase. However, 

as the time passed, the driving effects of gravity and the head started to decrease the 

flow speed rapidly, after it had reached a maximum value of approximately 4.7(m/s). 

The effects of friction and roughness of the terrain and also its irregularities became 

greater in value than the effects of the driving forces as they started to weaken and 

therefore; there is a decline in the velocity. 

Even though the selected model resembled the physical incident by having 

approximately the same shape as the physical tailings flow and also reaching the same 

point as the tailings in the incident, none of the models for Merriespruit reached zero 

velocity at the end of the simulation. One of the most important reasons for observing 

such behavior in the model is that most of the factors in modeling the incident and 

running the simulations were tried to be the closest possible to the real physical 

properties and factors of the physical incident; however, there were several parameters 

such as dimensions of the terrain, the head of the retained tailings behind the dam or the 

values assigned to the tailings properties were decided by trial and error based on the 

data collected from the calibration tests. Therefore, even the slightest deviation from 

the exact conditions of the incident might result in a different output. 

The second explanation for the behavior of the model is the condition of the imported 

terrain in the simulation tool: 

a. The terrain itself was made by converting a Digital Elevation Model into a 

triangulated geometry. To be able to have the most accurate result out of the 
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simulations, having the same irregularities on the terrain as the ones which were 

present at the time of the incident was necessary. This also applies to the case of 

Tapo Canyon modeling. The process of building the dam and also mining 

included stripping some parts of the rocks and the mountains and therefore, the 

geometry of the area was not exactly represented by the terrain used in the 

simulations. One other important point on this matter is the quality of the 

terrain object. In order to be able to locate a mining area or a dam on a DEM the 

possibility of zooming with regards to its quality is of great importance. In the 

case of the quality of the map's not permitting zooming in to the area over a 

specific degree depending on the scale of the selected area, the larger the 

modeling area is, the fewer details will be presented in the model and placing the 

model dam in the correct location with the correct dimensions would be more 

difficult, 

b. DEM maps provide the user with only the elevation of a region excluding all the 

other types of data such as the vegetation and structures. In the incident of 

Merriespruit tailings dam, the gigantic structure was built approximately three 

hundred meters to the south of the city and therefore the breach in the wall 

facing the city caused a colossal amount of tailings flow in the residential area. 

After the distance between the dam and the city was traveled, there should have 

been the shape of the city, the buildings and the streets that directed the flow. 

The width of the streets and the distance between the structures ought to have 

controlled the speed and the run out distance of the tailings. Moreover, in 

presence of such factors the width of the flow would have been controlled, the 

movement of the tailings would have faced more obstacles as a result of which 
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the tailings would have come to a rest and finally altering the dimensions of the 

terrain would not have been necessary. However, these factors were not present 

on the terrain during the modeling process and this fact must have greatly 

influenced the tailings' shape, run out distance and coming to a rest. 

c. The fluid parameters were not as precise as they have to be in the simulation 

tool. The values assigned to most of the parameters defining the behavior of the 

fluid, in this case tailings, were not representative of the physical values such 

parameters might have. This fact necessitated the calibration of the simulation 

tool and therefore the values corresponding to the parameters had to be assigned 

by trial and error. 

d. The elevation of the terrain had been increased in order to observe the effects of 

the irregularities on the flow. Therefore, some of the parameters such as the 

viscosity of the tailings and the friction of the terrain not only had to be set 

based on the incident but also based on the terrain with new dimensions. 

Moreover, the change in the scale of the irregularities changed the intensity of 

the effects of such factors on the tailings flow. 

The simulation result for Tapo Canyon shows that the direction of the flow is quite 

similar to the real incident. The tailings flowed into the valley to the south and the 

velocity significantly decreased after traveling 1 80 meters from the dam and before 

reaching either the creek or the city. 

As for the Merriespruit, as it is mentioned in segment 'd' above, the model suffered 

greatly from the lack of the structures present in the way of the flow. However, the flow-

showed the tendency toward moving in the same direction as in the incident and later 

when almost three quarters of the distance was covered due to the same reason the 
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tailings were spread over the other parts of the city as well. Moreover, the presence of 

the structures would have confined the tailings to some extent and would have given 

the tailings a greater depth during the flow and could result in the simulation being 

finished faster than the current one which would have decreased the run out time in the 

model to be in the range of the physical run out time. Figures 33 to 35 show the final 

results of modeling both case studies. 

Figure 33. Prespective views of the Merriespruk and Tapo Canyon tailings dams failure model 

demonstrating the tailings at a 1960m (Merriespruk) and a ISOm (Tapo Canyon) distance from the dam 
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Figure 34. The result of Merriespruit tailings dam failure modeling projected on the map (Google Earth, 

S2010) of the area 
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Figure 35. The result of Tapo Canyon tailings dam failure modeling projected on the topographic map of 

the area 
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Conclusion and Recommendations 

7.1 Conclusion 

This research focused on using data provided by observations performed by other 

researchers, such as Van Niekerk and Viljoen (2005), Harder and Stewart (1996), Blight 

and Fourie (2005) and Crowder (2004), of tailings flow and tailings dam failures to 

determine the possibility of utilizing a simulation tool to model the flow of tailings as 

Non-Newtonian fluids in the case of a dam failure. Performing the modeling using 

Smoothed Particle Hydrodynamics (SPH) method was the basis of this study. 

Several simulations based on the laboratory tests performed by Crowder (2004) were 

performed to calibrate the simulation tool based on tailings flow. The modeling of 

Crowder's flume test experiments revealed that although the values assigned to a 

number of the parameters defining the characteristics of the tailings and the plane on 

which the tailings flow in the simulation tool, are not representative of physical values, a 

calibration of such kind could be a means to adjust the values with the data provided in 

the physical incidents. 

Having calibrated the simulation tool, Tapo Canyon and Merriespruit tailings dam 

failures were modeled using Digital Elevation Models (DEMs). Tapo Canyon tailings 

dam failure included thick, high viscosity, 'paste-like' tailings with a long run out 

length, whereas the Merriespruit tailings dam failure consisted of thin, low viscosity 

tailings with a relatively short run out distance. The results of the tests demonstrated 
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the simulation tool's ability to simulate tailings dam failures. It revealed that even 

though the general shape of flow and the distance covered resembled the physical 

incidents to a great extent, there were shortcomings with regards to the velocity of the 

tailings flow after traveling the expected run out distances. However, these problems 

can be solved by using more accurate DEMs while sufficient data regarding the tailings' 

and the terrain's characteristics is provided. 

Hence, the results of this study revealed that the idea of modeling the flow of tailings in 

the case of dam failure by means of the mentioned simulation tool (where sufficient data 

and accurate maps are provided) has the potential to be performed. It could be used to 

predict distribution of tailings in the case of a dam failure in order to take necessary 

actions to reduce the potential damages and losses. Modeling tailings flow could also be 

considered in the preliminary phase of a tailings dam construction, and based on the 

results, location of the dam and suitable environmental and urban damage prevention 

methods can be determined. 

This research was performed to provide a new perspective in modeling tailings flow' by 

introducing the application of a simulation tool, thus generating a basis for prevention 

of future disasters caused by dam failures. 

7.2 Recommendations 

With regards to the enhancement of modeling tailings flow in the case of dam failures 

there are a number of issues that require further research: 



• Lack of data concerning the tailings dam failures such as the data regarding the 

characteristics of tailings and the terrain, the volume of tailings retained behind 

the dam, the volume of the tailings which flowed out of the impoundment 

through a breach and the viscosity of the tailings, requires further research on 

the tailings incidents in order for a comprehensive set of data to be provided for 

the desired incident. 

• With the availability of data to create a tailings dam failure model, steps to 

modeling possible future tailings dam failures (or the possible failure of existing 

dams) can be taken in order to prevent possible damages and losses. 

• The Digital Elevation Models (DEMs) used in the simulation tool as the terrain 

on which the tailings traveled, were not sufficient to create the incidents' scenes 

due to their poor quality (when focusing on a specific area) and the absence of 

structures and vegetation in the model, which had important impacts on the 

events in the physical incidents. 

• In the case of predicting the run out distance of tailings caused by a possible 

failure of a future dam, studies can be performed on possibility of making 

changes in the topography of the area in a way to reduce the flow length in order 

to control the flow. 

• The results of modeling the previously occurred tailings dam failures produced 

by utilizing RealFlow 4 as the simulating tool can be compared to the results 

produced by other tools such as SPHysics in order to determine the most 

accurate simulation tool. 
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Table 10. Values assigned to the parameters in Monte Carlo simulations 
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