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ABSTRACT
Fault Recovery of an Under-Actuated Quadrotor Aerial Vehicle

Mina Ranjbaranhesarniaskan

The research on autonomous flying robots has intensified considerably due to re-
cent growth of civilian and military interests in Unmanned Aerial Vehicles (UAV).
Miniature UAVs with the ability to vertically take off and land such as quadrotor
aerial vehicles exhibit further advantages and features in maneuverability that have
recently gained interest among the research community.

Reliability of control systems require robustness and fault tolerance in presence
of anomalies and unexpected failures in actuators, sensors or subsystems. Autonomy
of dynamical systems that are vulnerable to the above failures has been an important
topic of research during the past several years. Particularly, in small aerial vehicles
due to hardware redundancy limitations design of a reliable control system plays an
important role in ensuring acceptable and efficient performance.

In view of the above, an autonomous recovery from actuators faults in under-

actuated quadrotor aerial vehicles constitutes the main focus of the research investi-

gated in this dissertation. A self-recovery mechanism, which extends the capabilities
of the quadrotor system to operate under the presence of actuator faults is devel-

oped. The solution proposed takes into account the management of the control
authority in the system by taking advantage of the post-fault model of an actuator.

The first step in accomplishing this task is achieved by developing a controller
under healthy condition that guarantees the stability of the quadrotor system in
response to the commanded trajectories. This controller is then extended to incor-

porate the effects of a certain type of actuators fault by estimating the post-fault
model of the system and then by properly commanding the faulty actuators accord-
ingly. The performance of the proposed fault recovery scheme in presence of noise
in the input and output channels and under different fault severities is evaluated
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through numerical simulations. It is shown that a significant reduction in the aver-

age tracking steady state errors are obtained through the application of the proposed

recovery mechanism. The proposed scheme is applicable to rotorcraft systems even

in presence of multiple faults in actuators.
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Chapter 1

Introduction

Unmanned Aerial Vehicles, or UAVs are becoming widely used as valuable tools in

today's society. These vehicles provide an added measure of safety and convenience

when applied to numerous situations that previously required a full-sized aircraft

with pilot.

Unmanned vehicles are important when it comes to performing a desired task

in a dangerous or unaccessible environment. Unmanned indoor and outdoor mobile

robots have been successfully used for some decades [2].
As their application both in the military and in the industrial sector increases,

potential miniature UAVs have constantly gained interest among the research com-

munity. Mostly used for surveillance and inspection tasks, building exploration or

missions in unaccessible or dangerous environments, the easy handling of the UAVs

by an operator without hours of training is of paramount interest [3] .
UAVs have several basic advantages over manned systems including increased

manoeuvrability, low cost, reduced radar signatures and less risk to crews. Vertical

take off and landing type UAVs exhibit further advantages in manoeuvrability fea-
tures. Such vehicles are to require little human intervention from the take-off to the

landing [4].
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Quadrotors have become an exciting new area of unmanned aerial vehicle

research in the last few years. It is an aircraft that is lifted and propelled by four

rotors in a cross configuration and its basic motions are generated by varying the

speeds of all the four rotors. The quadrotor rotorcraft is not a new configuration.

It already existed in the year 1922 [5]. The uniqueness of this type of UAV is in
its vertical landing/take off capability, hovering ability, great maneuverability and

being simple to manufacture.

The quadrotor is a 6 Degree of Freedom (DOF) device with only four actuators,

which make it an under-actuated vehicle with unstable dynamics and highly coupled

states. In order to develop a reliable control to guarantee the capability of a stable

autonomous flight, the development of simple and robust control laws stabilizing

the quadrotor becomes more and more important.

Furthermore, more reliability and safety of the system due to occurrence of

faults in actuators are shown to be achieved by incorporating Fault Diagnosis, Iso-

lation and Recovery (FDIR) mechanisms in the design of the control system.

The present work is focused on the controller design and a model-based actua-

tor fault recovery for the under-actuated quadrotor vehicle. As in an under actuated

systems the degrees of freedom are more than the actuators and no redundant actu-

ator exists to cover the performance of the faulty one. Therefore, only certain types
of faults could be recovered.

1.1 Problem Statement

The purpose of this work is to design a controller to stabilize the under actuated

quadrotor model and then to propose a recovery mechanism for the quadrotor that

is subject to a fault in one or more of the actuators to ensure stability of the system.
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1.2 Literature Review

1.2.1 Fault Detection, Isolation and Recovery

A Fault Detection, Isolation and Recovery (FDIR) module is in charge of detecting,

identifying, isolating and generating a mechanism to allow acceptable performance

of the system that is subject to a fault. The main objective of this module is to

enhance the reliability, performance and survivability of the system. Some main

concepts used in the area of FDIR are listed below.

• Fault refers to an unexpected change in a system, such as component mal-

function and variations in operating conditions, that tend to degrade overall

system performance.

• Failure refers to the situation where a component has stopped working.

• Fault detection is the determination of the presence of faults in a system.

• Fault isolation is the determination of the origin, location and the time of
the detected fault.

• Fault identification corresponds to the recognition of the type, size, nature
and behavior of the detected fault.

• Fault diagnosis includes the fault isolation and identification modules and
tasks.

• Fault recovery refers to the reconfiguration of the system using healthy or

the available components and actuators/sensors.

A general classification of the types of the faults can be summarized as follows
[6]:
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• Gross parameter changes in a model, which arise when there is a distur-

bance entering the process from the environment through one or more inde-

pendent variables.

• Structural changes, which refers to changes in the process itself and occur

due to hard failures in the equipment.

• Malfunctioning sensors and actuators, which lead to deviation of the

plant state variables beyond acceptable ranges.

In general, the methods for implementing fault detection are classified into two

categories, namely process-history based method and process-model based method

[6]. The first approach depends on the knowledge processed from past experiences
and the availability of large amount of historical data, while the latter relies on in-

teractions between various dynamical system components and variables and a priori

knowledge about the process.

1.2.2 Fault Recovery

The goal of the fault recovery mechanism is to select an optimal possible configura-

tion of non-faulty components in a system where a fault has occurred and diagnosed,

to maintain the quality of the performance of the system despite the presence of

faults.

Over the past decade many researchers have proposed different approaches for

the fault recovery problem. Broadly speaking, these methods fall into two main

categories [7], [8]:

• Passive methods which make use of robust control techniques to ensure that

a closed-loop system remains insensitive for certain types of structural failures

that can be modeled as uncertainty regions around a nominal model. Any
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failure which does not push the system outside of the stability radius given

by the robust controller will still have satisfactory stability and performance.

However, the drawback of this method is that, any controller with a large

enough stability radius to encompass most failure situations will likely be

unnecessarily conservative and there is no guarantee that unanticipated or

multiple failures could be handled or even that such a controller exists. On

the other hand, there are also many types of common failures, such as actuator

or sensor faults, which cannot be adequately modeled as uncertainty.

• The active or reconfigurable methods differentiate themselves from passive

approaches in that they take fault information explicitly into account and do
not assume a static nominal model.

The existing active methods for the fault recovery problem are classified into

the following approaches [9], [7]:

• Multiple Model

There are basically three methods that fall under the heading of multiple model
control:

- Multiple Model Switching and Tuning (MMST) [10], [11],

- Interacting Multiple Model (IMM) [12], and

- Propulsion Controlled Aircraft (PCA) [13].

In the first two cases all expected failure scenarios are enumerated during a

Failure Modes and Effects Analysis (FMEA) and fault models constructed

which cover each situation. When a failure occurs MMST switches to a pre-

computed control law corresponding to the current failure situation. Rather

than using the model which is closest to the current failure scenario, IMM

computes a fault model as a convex combination of all pre-computed fault
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models and then uses this new model to make control decisions. PCA is a

special case of MMST, where the only anticipated fault is a total hydraulics

failure, and in this case only the engines are used for control.

• Adaptive Control Methods

The following methods fall under this category of active approach to fault

recovery problem:

- Model Reference Adaptive Control (MRAC) or Model Following method

- Adaptive feedback linearization

An adaptive controller is a controller with adjustable parameters and a mech-

anism for adjusting those parameters. Model following is an attractive can-

didate for the redesign process associated with fault tolerant control, because

the goal is to emulate the performance characteristics of a desirable model [8].
In this approach a desired reference model is assumed, then the control laws

of the system vary adaptively so that the output of the system in the healthy

or faulty mode tracks that of the desired one. In the indirect adaptation ap-

proach, by using a parameter estimation technique, the new parameters of

the faulty system are estimated and then the control law is designed so that

the output matches the desired one. Direct adaptive control attempts to esti-

mate the controller parameters directly rather than first computing the model

parameters. This method is fully addressed in [14] and [15].

One of the nonlinear control tools available for the fault recovery problem is

feedback linearization [7], [8], [16]. The main idea behind feedback lineariza-
tion is to transform the nonlinear system into a linear one through a change of

coordinates and nonlinear feedback. If feedback linearization is feasible [17],
it is possible to achieve first cancellation of the nonlinear function and sec-

ond, desired closed loop performance through the application of linear control
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methodologies. In this approach the faults are identified indirectly by esti-

mating the parameters of the system, and then these estimated parameters

are used to update the new parameters of the controller. Artificial neural net-

works or least-square parameter estimation are some of the techniques used to

estimate the post-fault model of the system.

• Control Allocation Problem

Control allocation is the problem of producing a desired set of forces and

moments from a (usually large) set of actuators [7]. In fault recovery problem,
the idea of this method is to use the redundancy of the operable actuators

to cancel the effect of the failed ones due to the fault in the system. Clearly,

the greater the control redundancy, the better this approach is suited for [18].
References [19] and [20] contain a list of recent work on control allocation
and provides exploratory discussions on several control allocation approaches

based on quadratic and linear programming methods. Application of control

allocation in fault recovery is also addressed in [18], [21], [22] and [23].

• Model Predictive Control (MPC)

Model predictive control has been proposed as a method for reconfiguration

due to its ability to handle constraints and changing model dynamics sys-

tematically [7]. Since MPC relies on an internal model of the system a fault
model is required. MPC with fault detection and isolation capabilities can be

applied in fault tolerant control systems. In case of detecting a faulty compo-

nent in the process, the diagnostic information can be used to accommodate

or reconfigure the control system to improve the availability of the process.

• Eigenstructure Assignment (EA) and Pseudo-Inverse Modeling (PIM)

The idea behind the EA method is to place the eigenvalues of a linear system

using state feedback and then use any remaining degrees of freedom to align
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the eigenvectors as accurately as is possible. The eigenvalues determine the

natural frequency and damping of each mode while the eigenvectors control

how much each mode contributes to a given output [7]. There are several
limitations to this approach when applied to reconfiguration. First, only linear

systems have been considered and actuator limitations have not been taken

into account. On the other hand, a perfect fault model is assumed and the

effects of uncertainty have not been extensively studied.

The PIM principal is to modify the constant feedback gains so that the recon-

figured system approximates the nominal system in some sense. This method
uses no fault detection and isolation mechanism and certain fault models are

assumed [8]. Due to significant limitations of these two methods, only a few
researchers have addressed these methods.

• Artificial Intelligence (AI) Methods

The AI approaches to reconfigurable control seek to automate the expertise of

the pilot and control system designer in reconfiguring the nominal control laws

in case there is a failure [24]. In the case of fault diagnosis in complex systems,
one is faced with the problem that no, or no sufficiently accurate, mathematical

models are available. The use of knowledge-model-based techniques either in

the framework of diagnosis expert systems or in combination with a human

expert is then the only feasible way [13]. Neural networks and fuzzy logic
approaches are powerful tools used in AI methods.

1.2.3 Controlling the Quadrotor

Various researchers have used the quad-rotor platform for studies in control. The

quadrotor is an under-actuated system and it also requires observer style sensors

(GPS, camera, ultrasound, etc.) for full attitude and position control.
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In 1922, Georges de Bothezat built a quadrotor with a rotor located at each end

of a truss structure of intersecting beams, placed in the shape of a cross [5]. In time
due to the tremendous improvements in manufacturing techniques and innovations

in material knowledge more precise and smaller sensors can now be produced. As a

result of this improvement in technology very small quadrotors are developed around

the world. Some examples of the most recent and important quadrotor projects can
be listed as follows:

• Dragonflyer, a commercial RC toy [25].

• Mesicopter in Stanford University [26], [27].

• Starmac in Stanford University [28].

• ANU X-4 Flyer in Australia National University [29].

• CEA X4-flyer [30]

• OS4 in Ecole Polythechnique Federal De Lausanne [1], [31].

• RAVEN in Massachusetts Institute of Technology [32].

Many researchers have also developed different control methods to stabilize

the quadrotor. The work done in [33], [32], [34], [35] and [36] have used optimal
Linear Quadratic Regulator (LQR) for the controller design.

Lyapunov theory is also used as another design technique as it could be found

in [37], [38], [39] and [40]. According to this method, it is possible to ensure, under
certain conditions, the asymptotic stability of the helicopter.

The authors in [35], [2] and [41] have used PD2 feedback and PID structures for
control law design. The strength of the PD2 feedback is the exponential convergence

property mainly due to the compensation of the Coriolis and gyroscopic terms.



Backstepping and sliding mode control have been used in the work done by [42],
[43], [44], [45], [46], [47] and [48]. In the respective publications the convergence of
the quadrotor internal states is guaranteed, however, a large number of computations

is required.

A few work are also based on visual feedback. The camera used for this purpose

can be mounted on-board [49], [50] and [51] (fixed on the helicopter) or off board [52]
and [53] (fixed on the ground). Other control algorithms have been developed based

on fuzzy techniques [54], neural networks [55], and reinforcement learning [56].
Feedback linearization method was first used by the authors in [57] to make

the quadrotor track a reference trajectory. They developed the dynamic model

in non linear state space representation, and used an exact linearization and non-

interacting control for the global system to evaluate translational motion and yaw

angle outputs.

This method was also used by the authors in [58] . In their work a PD controller
was designed to control y and the yaw angle, and the feedback linearization con-

troller was implemented to control ? and ? (translational motions) . In [59] , feedback
linearization with a high-order sliding mode observer was presented for a quadrotor

and in simulation it was shown to be quite robust against wind disturbance and

noise. In [46], feedback linearization method and adaptive sliding mode control for
a quadrotor are presented and compared.

Among the work in the literature as reviewed briefly above, the feedback lin-

earization technique and the LQR controller together are considered to be quite

adequate for the application of our proposed fault recovery solution. The quadro-

tor has a nonlinear and highly coupled dynamic equations. Moreover, being an

under-actuated system limits the possible choices for a proper method for control

and fault recovery. As we will see in next chapters, adaptive feedback linearization

is employed for the purpose of fault recovery which shows relatively an acceptable
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behavior and performance in presence of certain fault types in actuators.

1.3 Thesis Contribution

To the best of author's knowledge, the problem of autonomous fault recovery in

under-actuated nonlinear vehicles as well as quadrotors is still an open area of re-

search and the present work constitutes a new contribution to the problem.

A comprehensive analysis of the operation and the model of the quadrotor and

actuators are provided. A control scheme is proposed to stabilize the system by tak-

ing into account the dynamics of the input moments to the system, derived from the

dynamics of the actuators, which other works in the literature have not considered.

A comprehensive stability analysis of the healthy system without faults is provided

and investigated through simulation results. These simulations are carried out by

using a model that includes relevant environmental disturbances and noise as well

as parameter uncertainties.

Furthermore, different types of actuator faults are introduced and their effects

on the model and performance of the system are analyzed. The solution to the au-

tonomous fault recovery problem takes into account the management of the control

authority in the system by taking advantage of the non-faulty actuators. In other

words, the recovery mechanism that is proposed in this thesis does not utilize hard-

ware redundancy (which does not exist in an under-actuated system) as the existing
actuators are used to perform the required control action. The post-fault model of

the faulty actuator is estimated through proper algorithms and the control laws are

modified to be compatible with the post-fault system model.
In order to eliminate the need for a fault diagnosis and isolation module, the

proposed fault recovery method is then extended to a general scheme which is able to
monitor the performance of all the actuators and in case of fault occurrence propel-
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control commands are generated to accommodate the anomalies due to the faults.

The proposed fault tolerant control system is also capable of recovering in case of

multiple faults in different actuators. Simulation results are presented that show

successful recovery regardless of the severity of the faults. Steady state errors are

also analyzed to study the performance of the proposed fault recovery method.

1.4 Thesis Outline

This dissertation is divided into five chapters that are described as follows. Chap-

ter one introduces the objectives of this thesis. An overview of the motivations,

the statement of the problem and a brief discussion regarding FDIR approaches

and the problem of controlling the quadrotor system are made. Furthermore, the
contributions of this thesis are also detailed.

The second chapter presents the mathematical model of the quadrotor and

the actuators. In the first place, a simple description of the quadrotor coordinate

system, physical shape and different movements are provided. The kinematics and

dynamic equations that describe the quadrotor system are presented and the motor

dynamics considering the gearbox and the propellers are provided.

Chapter three is dedicated to the control of the healthy quadrotor. It contains

details regarding the dynamics of the input moments to the system resulting from

the actuator dynamics. Comprehensive description of the methods for designing

the controller are made and by taking into account some assumptions the system

is partitioned into four semi-decoupled subsystems. Proper controllers are designed

for each subsystem by employing LQR and feedback linearization techniques. The

stability analysis of the closed-loop system is also addressed in this chapter. The final

section presents the results obtained from simulations of the proposed controller.

The fourth chapter begins with a discussion on different types of faults in
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actuators followed by the modeling of these faults in the quadrotor system. Imple-

mentation of a fault recovery system is discussed in detail. The proposed adaptive

feedback linearization method is then introduced, which is able to estimate the post-

fault parameters that are subject to change due to a fault in an actuator. Stability

analysis of the closed-loop system recovered from failure is provided. The proposed

adaptive controller is then extended to a fault tolerant controller that is capable of

monitoring the performance of all actuators and provide proper control commands

in case of faults in one or more actuators. A discussion on the types and models of

faults which the system can not be recovered from by using our proposed method

is also provided. Simulation results corresponding to different fault scenarios are

presented in the final section of this chapter and a discussion on the performance of

the fault recovery mechanism is also provided.

The last chapter lists the conclusions and the work accomplished in this the-
sis as well as the open problems that the author considers to be addressed and

investigated in future.
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Chapter 2

Mathematical Model of the

Quadrotor System

In this chapter, the quadrotor model derivation is discussed. The importance of this

chapter is due to the fact that it describes how the helicopter moves according to

its inputs. Newton-Euler formulation and DC motor equations are used to model

the quadrotor in this work. We will use these equations of motion to design the

controller for the system in the next chapter.

In the first section 2.1 the main idea of the quadrotor dynamics is discussed. It

intuitively describes which movements are allowed and how this vehicle manages to

perform hovering flight. The second section 2.2 is about the mathematical derivation

of the quadrotor model. In the last section 2.3, the motor dynamics considering the

gearbox and the propellers are provided.

2.1 Basic Concepts

The quadrotor simply consists of four dc motors on which propellers are mounted in a

cross configuration. Each propeller is connected to the motor through the reduction

gears. All the propellers axes of rotation are fixed and parallel. Furthermore, they
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Left

O4

Rear

Ve *X* Xe °3
Figure 2.1: Simplified quadrotor model at hovering and coordinate systems (body
and earth frame)

have fixed-pitch blades and their air flows point downward (to get an upward lift).

These considerations point out that the structure is quite rigid and the only things

that can vary are the propeller speeds [I].
The front and the rear propellers rotate counter-clockwise, while the left and

the right ones turn clockwise. This configuration of opposite pair directions removes

the need for a tail rotor (needed instead in the standard helicopter structure).

In Figure 2.1 a sketch of a simplified quadrotor structure is shown, fl^rads-1)
refers to the propellers rotation speed. For each propeller, two arrows are drawn: the

curved one represents the direction of rotation and the straight upward arrow shows

the vertical thrust force generated by the propeller. Let us consider the body fixed

frame (ig, yß, ?ß) and earth fixed frame (xe, Ve, ¿e) as shown in Figure 2.1.
While at hovering, all the four propellers rotate at the same speed which means

that O? = O,? for i — 1,2,3,4 to counterbalance the acceleration due to gravity.

Although the quadrotor has 6 DOF, it is just equipped with four propellers, hence

it is not possible to reach a desired set point for all the DOF and the system is under-

actuated. However by selecting four controllable variables properly, it is possible to

Front

Right
O3
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(a)
Left Front
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?
RightRear

(b) (e)
Left LeftFront Front

Right RightRearRear

d e)Left Front Left Front

RightRear RightRear

Figure 2.2: Quadrotor movement concepts; (a) Going up; (b) Moving right; (c)
Moving forward; (d) Rotating left; (e) and Rotating right.

design a controller so that the vehicle could reach a desired height and attitude.

Basic movements in the quadrotor are achieved by the differences between

the propellers speeds. Vertical rotation is achieved by creating an angular speed

difference between the two pairs of rotors. Increasing or decreasing the speed of the

four propellers simultaneously permits climbing and descending. Rotation about the

longitudinal and the lateral axis and consequently horizontal motions are achieved

by tilting the vehicle. This is possible by conversely changing the propeller speed of

one pair of rotors as described in Figure 2.2. In this figure the width of the arrows

is proportional to the propellers angular speed.

Considering O µ (rad s'1) as the speed of the propellers at hovering condition
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and O?, O2, O3 and O4 referring to the speed of the front, right, rear and left propeller

respectively, then the movements can be described as follows:

• O? = O// + Aa for i = 1, 2, 3, 4 leads to a vertical force (Ul) with respect to

body-fixed frame which raises or lowers the quadrotor. This is shown in Figure

2.2(a). A^ (rad s-1) is a positive variable which represents an increment with
respect to the constant O#.

• O? = O3 = O// L· O.2 — O// — A,t, O4 = O// + ?? lead to a roll moment (JJ2)

coupled with its lateral motion along the x¡, axis. The positive variables ?^

and Ag (rads"1) are chosen to maintain the vertical thrust unchanged. This
is shown in Figure 2.2(b).

• O? = O,? + ? 4, O3 = ÜH — AB & O2 = O4 = O// lead to a pitch moment (Us)

coupled with lateral motion with respect to y¿, which is similar to the pitch
moment but it differs in the direction of the lateral movement.which is shown

in Figure 2.2(c).

• O? = O3 = ?.? & O2 = O4 = G??+?? or O? = O3 = ???+?? L· O2 = O4 = O?

lead to a torque (U4) with respect to the z\, axis which makes the quadrotor

turn left or right. The yaw movement is generated due to the fact that the

left-right propellers rotate clockwise while the front-rear ones rotate counter

clockwise. This is shown in Figures 2.2 (d) and (e).

2.2 Newton-Euler Model

This section provides a mathematical model for the quadrotor derived from Newton-

Euler formulation. At the start descriptions of the kinematics and dynamics which

identify a 6 DOF rigid body are presented.
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2.2.1 Kinematics Model

Kinematics is a branch of classical mechanics that describes the motion of objects

without consideration of the causes leading to the motion. To describe a 6 DOF

rigid body two reference frames are defined [60]:

• Earth inertial reference frame (E-frame)

• Body-fixed reference frame (ß-frame)

E-ïvame (xe,Ve,ze) is used to define the linear position G?(t?) and the angular
position T? (rad) of the quadrotor. The J5-frame (xb,Vb,zb) is attached to the
body. The linear velocity VB(ms~1), the angular velocity u)B(rads~1)i the forces
FB(N) and the torques t?(?p?) are defined in this frame. The linear position G?
is determined by the coordinates of the vector between the origin of the ß-frame

and the origin of the ?-frame with respect to the E'-frame as in equation (2.1)

G? ? y ?

T

(2.1)

The angular position T? of the quadrotor is defined by the orientation of the
5-frame with respect to the £-frame which is given by three rotations about the

main axes that take the E'-frame into the 5-frame. Euler angles (roll, pitch, yaw)

are used for this purpose as in equation (2.2)

?£ = f ? f
t

(2.2)

Considering a right-hand oriented coordinate system, the three single rotations are

described separately by:

• Rotation about the x-axis of the f angle (roll) through ??(?,f).

• Rotation about the y-axis of the ? angle (pitch) through R(y,0).
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Figure 2.3: Quadrotor rotation; (a) Roll; (b) Pitch; and (c) Yaw.

Rotation about the z-axis of the f angle (yaw) through R(z,ip).

This is also shown in Figure 2.3. These rotation matrices are presented in [60]:

R(x, f) =

R(y,e) =

?(?,f)

1 0 0

0 cos f — sin f

0 sin f cos f

cos ? 0 sin ?

0 1 0

- sin ? 0 cos ?

cos ? — sin f 0

sin f cos f 0

0 0 1

(2.3)

(2.4)

(2.5)

The complete rotation matrix Rq is obtained by multiplying these three matrices.

Re = R{x.^)R{y, ?)?(?.·f) (2.6)
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which results in :

Re

cos f cos ? cos f sin ? sin f — sin f cos 0 cos f sin 0 cos f + sin ^ sin f

sin ·0 cos 0 sin f sin 0 sin f + cos ^ cos f sin </> sin 0 cos f — sin 0 cos f

— sin 0 cos ? sin 0 cos ? cos f
(2.7)

The linear VB and the angular ?? velocities are defined in the ß-frame as

VB =
-? T

?

UVW

? q r

(2.8)

(2.9)

The relations between linear and angular positions and velocities in the ß-frame

and the £-frame are defined from (2.10) and(2.11) [60]:

Ve = tE = RB.VB

?? = ?? = ??.??

(2.10)

(2.11)

where Tq is given by

To =

1 0 - sin f

0 cos f cos ? sin (

0 - sin f cos ? cos ?

(2.12)

For complete represent ion of the body in space we can combine linear or angular

quantities and define generalized position ? and velocity ? vectors as in (2.13) and
(2.14) according to

? = E C1EG* ? ? y ? f ? f (2.13)
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V = Ve ?1 u ? W ? q r (2.14)

From (2.10) and (2.11) it is possible to relate the generalized position ? in the
¿"-frame with the generalized velocity ? in the B-frame as in equation (2.15):

YE

QE

? = JqV

Rq 03?3

Û3x3 Tq

VB

??

(2.15)

(2.16)

2.2.2 Dynamic Models

Dynamics is a branch of mechanics that is concerned with the effects of forces on

the motion of a body or system of bodies, especially of forces that do not originate

within the system itself.

In deriving the dynamical equations of the quadrotor the following assumptions

are taking into account [1], [61] :

• The structure is supposed to be fully rigid.

• The structure is considered symmetric.

• The propellers are assumed to be rigid.

• The thrust and the drag are proportional to the square of the propellers speed.

• The origin of the body fixed frame is coincident with the center of mass of the

body.

• Axes of the body fixed frame coincide with the body principal axes of inertia.

Assuming that the structure is rigid and the propellers eliminate the consider-

ation of forces acting on individual elements of the mass, while the last assumption

leads to a diagonal inertia matrix I , simplifies the equations considerably.
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Since a rigid body has both translational and rotational motion, two inde-

pendent balance laws are required to fully specify the motion of the body. As a

result of Newton's second law, Euler's two laws are used to completely specify the

translational (first law) and rotational (second law) motions of a rigid body [62].
Euler's first law describes how the forces control the translational motion of

the rigid body. In other words, it states that the resultant force applied to a rigid

body is equal to the product of the mass of the rigid body and the acceleration of
the center of mass of the rigid body shown in equation (2.17):

mfE = FE (2.17)

where fE (m s~2) is the quadrotor linear acceleration vector with respect to E-
frame, m (Kg) is the quadrotor mass, and F (N) is the forces vector with respect
to the E-hame. From (2.17) we can derive (2.18) where the relation in expressed in
the 5-frame

rnRÓV8 = RqFb

m{ReVB + ReVB) = ReFB (2.18)

The following relation also exists for the rotation matrix Re, namely

Re = ReS{u;) (2.19)

In (2.19), S (?) is a skew-symmetric matrix such that S(u)V=u ? V for any vector
V G M3, where ? denotes the vector cross-product. In other words, for a given vector
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like K =
-? T

k\ fî2 ks the skew-symmetric matrix S(?) is defined as follows:

S(u) =

0 -A3 k2

k3 0 -ki

-k2 kx 0

(2.20)

Using equation (2.19) one can rewrite and simplify (2.18) as in (2.21),

m R0[VB + ?? ? VB) = RqF*

m(VB+LüBxVB) = Fh (2.21)

Euler's second laws describes how the change of angular momentum of the rigid

body is controlled by the moment of forces, that is

IQ1 (2.22)

In (2.22), I (Nm s2) is the body inertia matrix (in the body-fixed frame),
QE(rads'2) is the quadrotor angular acceleration vector with respect to the E-
frame, and rE (Nm) is the quadrotor torques vector with respect to the E1- frame.

Expanding the relation in (2.22) results in (2.23) where a>B(rads~2) is the
quadrotor angular acceleration vector with respect to the ß-frame as

??? + ???(???) = t? (2.23)

By putting equations (2.21) and (2.23) in one equation it is possible to fully describe
the translational and rotational equations of motions of a 6 DOF rigid body as given
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by (2.24) that is

m.hx3 03x3

03x3 /

VB

??
+

?? x (mVB)
?? x (???)

FB

-,?
(2.24)

where the notation Z3x 3 denotes an identity matrix with dimension 3x3.

By introducing a generalized force vector as in equation (2.25), one can rewrite
the equation (2.24) in one matrix form as shown in (2.26)

?
-, t

FB TB
->T

G? Fy " ? Tx Ty Tz (2.25)

Mßi> + Cß(i/)i/ = ? (2.26)

where ? is the generalized acceleration vector with respect to the 5-frame. The

?ß[+] and Cßiy) matrices are defined as in equations (2.27) and (2.28) by

m 0 0 0 0 0

OmOO 0 0

0 0 m 0 0 0
Mß =

rn.hxz 03x3

03X3 / 0 0 0 4 0 0

0 0 0 0 Iyy 0
0 0 0 0 0 Izz

(2.27)
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Cß(i/) =
03?3 -mS(vB)
03?3 -S(Ilub)

(2.28)

0 0 0 0 mw —t??

0 0 0 — mw 0 mu

0 0 0 mv —mu 0

0 0 0 0 Izzr -Imq
0 0 0 -I2Zr 0 Ixxp

0 0 0 -Iyyq -Ixxp 0

Equation (2.26) is a general equation for any rigid body provided that the
considered assumptions are valid. The forces that are effective on the quadrotor

body can be divided to three components as

• The force due to gravity.

• The torque due to the effect produced by the propeller rotation.

• The thrust force and body moments due to the forces generated by rotors.

The gravitational vector is given by (2.29) due to the acceleration from the

gravity g(ms~2). This force is about the z-axis and is only effective on the linear
and not the angular equations

Gb(O =
FE
J3xl

RS1 FE
J3xl

RT?

0

0

-mg

O3Xl

mg sin ?

—mg cos ? sin <

-mg coso sin <
0

0

0

(2.29)

where FE[N) is the gravitational force vector with respect to the 5-frame and
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Fq(N) is the one with respect to the E-frame. It is to be noted that Rq is an
orthogonal normalized matrix and its inverse is equal to its transpose.

The quadrotor also experiences a torque due to the gyroscopic effects produced

by the propellers according to equation (2.30) [4]. Since two propellers rotate clock-
wise and the other pair rotates counter clockwise, there is an overall imbalance if

the algebraic sum of the rotor speeds is not zero. The axes of these propellers (spin
axes) are parallel to z-axis of the platform. When the quadrotor rolls or pitches it

changes the direction of the angular momentum vectors of the four motors. The

result is a gyroscopic torque that attempts to turn the spin axis so that it aligns
with rotation around the z-axis, that is

0B(u)

O3Xl

fc=l
tp ?? x

V

o

o

1

\

(-1)*O* Jitp

O3Xl

-q

?

o

??

= J,tp O (2.30)

0 0 0 0

0 0 0 0

0 0 0 0

q -q q -q

-vv-vv

0 0 0 0

In the above equation Ob(v) is the gyroscopic propeller matrix and Jtp(N m s2)
is the total rotational moment of inertia around the propeller axis which will be

discussed in the next section. The variables Vtrirads"1) and Quads'1) are the
overall propellers' speed and the propellers' speed vector, respectively, as defined in

equation (2.31)
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OG = -O? + O2 - O3 + O4; O =

O!

O2

O3

O4

(2.31)

A voltage applied to each motor results in a net torque being applied to the

rotor shaft, which results in a thrust T,. Forward velocity also causes a drag force

on the rotor that acts opposite to the direction of travel D¿. As stated in the

assumptions in the beginning of this section, the thrust and the drag are proportional

to the square of each propellers speed as given by (2.32)

Ti = btf and D¿ = dû2 (2.32)

In equation (2.32) b and d denote the thrust and the drag coefficients, respectively.

The thrust force and the body moments effective on the quadrotor due to the

combination of the rotors rotation are modeled by equation (2.33) as a movement

vector Ub(O), that is

UB(n) = EBn2 =

0

0

U1

U2

U3

U4

0

0

6(O? + nj + nj + nj+)
lb(Q24 - O|)
ib(ü¡ - ?2)

d(-ü\ + n22 - ?§ + ni)

(2.33)

where l(m) is the distance between the center of the quadrotor and the center of a

propeller, Ui, U2, U3 and U4 are the movement vector components introduced in the

previous section and Eb is also a constant matrix defined in (2.34), that is.
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Er. (2.34)

0 0 0 0

0 0 0 0

b b b b

0 -lb 0 lb

-lb 0 lb 0

— d <i —dd

Considering the above mentioned forces and torques in (2. 29), (2.30) and (2.33)

we can rewrite equation (2.26) to fully describe the dynamics of the quadrotor vehicle

as given by equation (2.35), that is

MBv + CbW) » = Gb(O + ObW + EBtt2 (2.35)

By rearranging equation (2.35) it is possible to isolate the derivate of the

generalized velocity vector with respect to the 5-frame ?, according to

Ù = M3-1WCeWnU + GB(£) + 0BW) + EBW) (2.36)

Equation (2.37) shows the previous expression as a system of equations, namely.

ù = (vr — wq) + g sin ?

? = Wp ~ ur) ~ 9 cos ? sin f

w = (uq — vp) — g cos ? sin f +

? = l^1^qr - ^qiiT + ?-'ÏI 'il ¿XX

q = '"-'"pr + ?^?Ot + r1* TJTJ J TJT/ ' TJTJ

Ux
m

(2.37)

yy

* *xx Jy? V +?-1ZZ *zz
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where the propellers' speed inputs are given through the equation (2.38)

U1 = &(O? + O? + O| + O^)

U2 = Ib(Ql - O!)

< U3 = ?d(O§ - O?) (2-38)
CZ4 = d(— O? + O^ - O§ + O?)

OG = -O? + O2 - O3 + O4

The quadrotor dynamics in equation (2.37) is written in the 5-frame. It is

more useful and practical for control purposes to write the dynamic equations in the

E-frame and for the generalized position vector as defined in (2.13). For simplicity
of the equations it is possible to assume that the angular velocity in the E-frame 0E

is equal to the angular velocity in the B-frame ?? . This assumption can be verified
through the fact that in hovering condition the transfer matrix Tq, as defined in

(2.12), is close to an identity matrix.

By using the relation defined in (2.15) and assuming Tq = Isx3 in (2.16), it is

possible to map the system dynamics in (2.37) from the ß-frame to the i?-frame as

given by equation (2.39)

? — (cos f sin ? cos f + sin f sin f) —

y = (cos f sin ? sin f — sin f cos f)^
? = —g + (cos f cos ?) —

(2.39)
F = ?f(^^) - $*-ènT + t3-J XX J XX 1XX

? = W(Iv=Ix*) + ?±f??t + ?.lyy lyy lyy

? = f?{?**?±??) + Ul

where the propellers' speed inputs are the same as in the system with respect to the
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Figure 2.4: DC motor model

ß-frame and given through the equation (2.38).

2.3 The DC Motor Actuator

The DC motor is an electromechanical device with an electrical input (voltage,

current) and a mechanical output (speed, torque). Operating as an actuator, it
converts the electrical energy into the mechanical energy.

The DC motor basically consists of a fixed stator and a rotor which is free

to rotate around the stator. The characteristics of a DC motor can be analyzed

through a well-known model which links both electrical and mechanical quantities.
The model consists of three elements in series for the stator as shown in Figure

2.4. It is characterized by an inductance L, due to the windings and a resistance

Rmot, due to the dispersions in the conductor. The input to the motor is the volt-

age u(V) and the generator e , called as the back-EMF, also supplies a voltage
proportional to the motor speed.

Applying the KCL to the circuit diagram of Figure 2.4 results in
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u = Rrnoti + L- +e (2.40)at

where

e = keum (2-41)

In equation (2.41), ke (V s radr1) is called the back-EMF constant and um(rad s_1)
is the motor angular speed. Most of the motors used in robotics have small and neg-

ligible inductance due to the construction optimization [61]. For more simplicity
and having a first order dynamic equation instead of a second order one, the effect

of inductance could be neglected. With this assumption equations (2.40)-(2.41) are

simplified to

u = Rmoti + keum (2.42)

The dynamics of the motor is described by the following equation

JtmCjm = Mt - M1 (2.43)

where Jtm (N m s2) is the total motor moment of inertia, ùjm (rads~2) is the motor
angular acceleration, Mt (N m) is the motor torque, and M¡ (N m) is the load torque.
The torque produced in the motor is proportional to the current i and is given by

(2.44) where kt (N m A'1) is called the torque constant, that is

M1 = k,i (2.44)

It is to be noted that the torque constant kt (N m A"1) has the same numerical value
as the back-EMF constant ke (V srad~l). This is verified through the fact that the
mechanical and electrical power are equal in the motor.

From equations (2.42) and (2.44), the dynamic equation in (2.43) is rewritten
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as in (2.45), namely

t- ? U ~ "-ewm ?/?Jtm^m = Kt 5 »?tímot ^2 _45)
wm - M/ + ——tí

-T^mol ***.

The real motor system is composed of the motor itself, the gear box and the pro-

peller. The gear box has a reduction ratio r, which is equal to the motor speed ?t?,

divided by the propeller speed ??. It also has an efficiency factor ? which binds the
mechanical power of the motor axis Pm to the propeller axis one Pp (Nms-1), that
is

(2.46)
PpV = -^

Considering the propeller and the gearbox, the load torque experienced by the

motor is given by equation (2.47), that is

M1 = —3?? (2.47)

where d(Nms2) is the aerodynamic drag factor. The total inertia seen by the motor
can also be described as

Jtm = Jm+^ (2-48)r\r¿

where Jm (N m s2) is the rotor moment of inertia about the motor axis and Jp (N m s2)
is the rotor moment of inertia about the propeller axis.

Equation (2.45) could be rewritten according to (2.46) and (2.48) as follows

(Jm + \)ûm = -?ß-Um ~ AW™ + T^"« (2^)? Rmot ?? Jimot

Equation (2.49) is formulated with respect to the motor axis. It is possible to
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reformulate this equation from the propeller axis as shown below (2.50).

(Jp + ?t2 Jm)UJp = --^-?t2?? - ??2? + -^—?t?. (2.50)ftmot ¿i-mot

From equation (2.50), the total rotational inertia around the propeller axis Jtp (N m s2)
can be defined as follows:

Jtp = (JP + W2Jm) (2.51)

By setting ^—^-¡-r\r2 = ^- , the equation (2.50) could be rewritten as:

?? = ?„ — ??2 + u (2.52)? µ kerrt

The above dynamic equation of the motor system will be used in the next chapter

to design a controller for the quadrotor vehicle.

2.4 Conclusions

In this chapter the fundamental concepts on the quadrotor motion and dynamics

are introduced. Furthermore, the description of the coordinate systems, kinematics

and dynamic models and the Newton-Euler formulation of the system are presented.

The model of the actuators of the quadrotor are also discussed and included in the

entire model of the system to obtain a complete representation of the quadrotor

system.

The next chapter .wiH be devoted to designing a controller for this system to

meet the goal of tracking a given reference trajectory without any faults.
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Chapter 3

Control Design for the Healthy

Quadrotor System

In this chapter a controller is designed to stabilize the quadrotor. As mentioned
in Chapter 2, quadrotor has a nonlinear and a highly coupled dynamics with 6
DOF and four inputs which makes it an under-actuated system. The Feedback
Linearization (FL) and Linear Quadratic Regulator (LQR) techniques will be used
in this chapter for designing the controller.

FL technique is known as a powerful method for control of nonlinear systems.

It has been used in both the control and the fault recovery mechanism of systems.

One of the important reasons for choosing this method over the other existing control
methods is the fact that we are considering the actuator dynamics in controlling

the system. In FL technique these dynamics are taking into account directly and
therefore in case of fault occurrence, the system is able to accommodate the fault

by changing the feedback law adaptively to reduce the fault effects on the system.
The LQR technique is also used along the FL method to meet the goal of tracking
a desired trajectory optimally.

The first section (3.1) discusses the basic simplifications that are assumed
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in the quadrotor model that is developed in Chapter 2 for control design. These
simplifications will reduce the complexity of the control algorithm.

The second section (3.2) derives the dynamics of the input moments to the
quadrotor from the dynamics of the rotors. By using a simple transform it is possible
to decouple the dynamic equations to simplify the design of the controller.

In the third section (3.3) the controllers that are designed for the quadrotor
by using the FL and the LQR techniques are presented.

The last section of this chapter presents the simulation results for the closed

loop system of the quadrotor.

3.1 Control Modeling

The dynamics of the quadrotor is well described in the previous chapter. The most
important concepts can be summarized in equations (3.1), (3.2) and (3.3). The
first equation shows how the quadrotor accelerates according to the basic movement
commands given. It should be noted that the following equations in the £-frame
are derived by assuming that the rotation matrix Te defined in (2.10) is close to an
identity matrix, that is

(3.1)

? = (cos f sin ? cos f + sin f sin f)^
y = (cos f sin ? sin f — sin f cos f)^
? = -g + (cos f cos ?) ^-

? = ff(?^??^) + t*fOt + ?-

f = fß(1^??) + Ua.
The second system of equations explains how the basic movements are related
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to the propellers7 speed, namely

U1 = b{n¡ + ni + ?§ + ?^)

U2 = Ib[ClI - ?\)

< U3 = lb(Q¡ - O?) (3·2)
Ui = d(-nj + O^ - O| + Ql)

Ot = -O? + O2 - O3 + O4

The third equation takes into accounts the motors dynamics and shows the

relation between propellers' speed and motors' voltage, that is

ni = --Q.-dtif + Tl—u (3.3)Tt kerrt

Since the motion of the quadrotor can be assumed close to the hovering con-

dition, small angular changes occur (especially for the roll and the pitch). Since
the rates of change in ? and f are small, the terms due to the gyroscopic effects

appearing in the dynamic equations of f and ? in (3.1) are also negligible. These

assumptions are also verified through simulation results.

Moreover, since the structure of the quadrotor is symmetric, the body moments

of inertia Ixx and Iyy are equal. This fact will also simplify the dynamic equation of
? in (3.1).

Considering the above mentioned facts, equations (3.1) and (3.2) can be rewrit-

ten as in (3.4)and (3.5), respectively, that is
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? = (cos f sin ? cos f + sin f sin -0) ^

y = (cos 0 sin 0 sin -f — sin f cos ?)^
? = —g + (cos 0 cos 0) —

_ 1/2.

61 = -p-
C/4

(3.4)

(3.5)

^ = Z

U1 = 6(O? + O| + O| + O^)

IZ3 = /6(O| - O?)

{74 = d(-Q\ + O? - O^ + O.?)

The control algorithm to be designed is used to give the appropriate signals

to the actuators. Since there are only four propellers, no more than four variables

can be controlled in the loop. It is possible to define the position of the quadrotor
G 1Tin space completely by the linear position G? = ? y ? and the yaw angle

(heading angle) f. These four variables are indeed selected for control purposes in
this work.

3.2 Moment Dynamics

The dynamic equations of the propeller angular speeds Qi (rad s'1) were defined
according to equation (3.3). On the other hand, the input moments to the quadrotor
system that are defined in equation (3.5) are related to the propeller's speed. Hence,
it is possible to derive these input moment dynamic equations and complete the
quadrotor model by considering the effects of the motor dynamics on the dynamics
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of the entire system.

In Chapter 2, the thrust and the drag forces were introduced according to

??='6O? and D¡ = ?O? i = 1, . (3.6)

where f2¿ (rads~1) is the speed of the the ith propeller. It is clear that £)¿ = JT1.
From equations (3.6) and (3.3) the input voltage to the propeller i, t¿¿, and to the

thrust Ti dynamic equation could be obtained as follows:

Ti = 2OfIiQ1
26

?
2

œ - 2dbœ + 2bfli
kerrt (3.7)

^ 2d f- 2Vb f-? J=Ti^fTi + V TiUi? Vb kerrt

Since the differential equation (3.7) is nonlinear, a suitable approach is to
linearize this dynamics around an operating working point, To. The first order

Taylor series expansion has been chosen here to derive the linearized model given

by

T = AtT + B1U1 + Ct (3.8)

In the above equation, the parameters A1, BL and Ct are the linearized coefficients

and are defined as follows:

? —2 Zd /rp

Bt = r^-vñ
a

kerri v
3

d rplVb1O

(3.9)

The set point corresponding to the linearizing condition could be calculated

from the fact that at hovering the total thrust should be equal to the gravitational
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force effective on the quadrotor. In other words, we have

S Ti = mfi (3.10)
i=l

It is possible to rewrite equation (3.5) in terms of T¿ for i = 1, .... 4 as in equation

(3.11), that is

U1 = T1 + T2 + T3 + T4

U2 = -IT2 + IT4

U3 = -IT1 + IT3

U^-fa + fa-ÎTs + fa
The above equation can also be represented in a matrix form as

(3.11)

U - LUTT (3.12)

where U = U1 U2 U3 U4 is the movement vector and T = T1 T2 T3 T4

is the thrust vector.The constant matrix Ljjt is defined from

1111

0 -I 0 /

-/0/0
Lut —

d d
' b b

(3.13)

Using the linearized dynamic equation for the thrust T1 developed in (3.8), it
is possible to find the dynamic equations from the input voltage to the propellers to
the movement moments. For this purpose it is useful to write the dynamic equation
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in (3.8) in a matrix form for the thrust vector T T1 T2 T3 T4 as follows

T = -ATT + BTu + C7 (3.14)

where ?? = ?-^(4?4) anc^ &t = BJ(ix4) are constant matrices and Ct = Ct
->r

1111

is a constant vector. The notation 7(4X4) refers to an identity matrix of the dimension
t

4, the variable u U\ U2 Uz U4 is also defined as the vector of the input

voltages to the propellers.

By left-multiplying the transfer matrix between U and T, Lut to (3.14), the

following equation is obtained

LutT = —(LutAt)T + [LiJtBt)IL^ \L¡jtCt) (3.15)

It should be noted that:

LutAt = LuT(AtI(4x4)) = At(I(4X4))LTir = ATLUT

LjjTBt = BtL\jt

From equation (3.12), it is possible to rewrite the equation (3.15) as

U = -ATU + BTv + DT (3.16)

In the above equation the dynamics corresponding to the movement vector are
,t

is defined according toobtained. The new input vector v_ = ^1 V2 y3 Vi

equation (3.17) as a linear transfer by Lut from the actual input voltage vector u,
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that is

V1

V2

V3

V4

1

O

-I O

1

O

/

1

I

O

U1

U2

U3

U4

(3.17)

The constant vector Dt is also defined as follows

Dx — LjJtLt

4Ct
0

0

0

(3.18)

The system of equations shown below represent the dynamics of the movement

vector as in (3.16) but now in a non-compact form, namely

U1 = AtU1 + B1V1 + ACt

U2 = A1U2 + Btv2

U3 = A1U3 + Btv3

U4 = AtU4 + Btv4

(3.19)

The purpose of the controller design is to find the proper inputs to the pro-

pellers that guarantee the system stability and desired closed-loop performance. By

considering the new input vector y_ as the virtual input to the system and designing

the controller to get the proper virtual input signal, it is possible to find the actual

input voltages through the inverse of the transfer matrix Lut as in (3.20), that is

u = (Lut) V. (3.20)
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By putting together the system dynamics developed in (3.4) and the moment

dynamics in (3.19) the system of equations in (3.21) fully describe the dynamics of

the quadrotor. It is to be noted that the rotor dynamics are taken into account in

this representation of the system through the moment dynamics, namely

? = (cos f sin ? cos f + sin f sin f) —

y = (cos f sin ? sin f — sin f cos f) —

? = — g + (coS(/>cos#)^-
1- Mí

(3.21)

Ui = AtU1 +'BtV1 +4Ct

U2 = AtU2 + BtV2

U3 = A1U3 + Btv3

U4 = A1U4 + B1Vi

3.3 Development of Control Schemes for the Healthy

Quadrotor

The first part of this section provides an overview on the Linear Quadratic Regulator

(LQR) [63] and Feedback Linearization (FL) [64], [65], [17] techniques in controlling a
system. Moreover, the designed controller for the quadrotor system is also discussed.
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3.3.1 LQR Controller

The general equations for representing a linear time invariant system in state space
form is shown as

¿(f) = Ar(i) + Bu{t)
(3.22)

y(t) = Cx(t)

where u(t) G R, y(t) G R are the input and output variables, respectively, x(t) G Rn
is the state of the system and Anxn, Bnxi and Cixn are the matrices defining the

system. The purpose of LQR design is to find an optimal state feedback control law

Kc given in (3.23) that minimizes the cost function J defined in (3.24) that is

u(t) = -Kcx(t) (3.23)

J= Í (xTQx + uTRu)dt (3.24)
where Q and R are symmetric positive-definite weight matrices of proper dimension.

Kc is given by:

Kc = R-1 Br P (3.25)

where P is the solution of the continuous time algebraic Riccati Equation given by

ATP + PA -PBR-1P + Q = O (3.26)

It should be noted that full access to the states is assumed in this controller. In

other words, it is assumed that all states of the system are measurable. In designing

a controller, in addition to providing the stability of the system, it is also desirable

that the outputs of the system converge to a desired set point value, like r¿- This

can be achieved by making the state ? and the input u of the process (3.22) converge
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to values ?* and u* for which:

O = Ax* + Bu*
(3.27)

The first equation in (3.27) states that the output vector y will converge to r¿

as ? and u converge to x* and u* and the second equation implies that when these

values are achieved, ? = 0 and therefore ? will remain equal to x*. In other words

x* is an equilibrium state.

Given a desired set point rd, it is possible to find x* and u* from the set of

equations in (3.27) as given in (3.28). It is to be noted that unless there exists a
zero at the origin of the transfer function between y and u (which will always make
y converge to zero when the input converges to a constant) , the system of equations
in (3.27) has at least one solution, that is

<
x* = Frd

u* = Nrd
(3.28)

where F and N could be found by solving the equation given in (3.27), that is

A B

0 C ?G

0 A B

0 C

0

Td
(3.29)

By setting the input signal u as defined in (3.30) the output of the system y

will converge to the desired set point r,¡, namely

ii = —K,.(x — x*) + u* (3.30)
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? = Ax + Bu
y

Figure 3.1: The schematic of the set-point optimal LQR control.

where x* and u* are given by (3.28) and Kc is the optimum gain matrix. The state

space model for the closed loop system is shown in Figure (3.3.1).

The closed loop system equations can be written as in (3.31).

x = Ax + Bu = (A - BKc)x + B(KCF + N)rd

y = Cx
(3.31)

In order to show that by setting the input signal u as stated in (3.30), the output of

the system y will converge to the desired set point r<¿, suppose three new variables

as defined in (3.32), namely
JU *ls *Aj

» VL = U — U* (3.32)

y = y - u

where ?* and u* are defined in (3.28). It is possible to show that:

= Ax + Bu = A(x - x*) + B(u - u*) + Ax* + Bu*

y = Cx- rd = C(x - x*) + Cx* - rd
(3.33)
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Considering the equation in (3.27), the above equations can be rewritten as

x = Ax + Bu

y = Cx

The state feedback control law in (3.30) could also be represented as

(3.34)

— u* = —Kc(x — x*) =$¦ u = —K¿? (3.35)

where Kc is minimizing the following cost function:

J0 = (xTQx + ûTRu) dt (3.36)

This controller makes the system (3.34) asymptotically stable, therefore x, ü and y,

all converge to zero as t —? oo, which implies that y converges to r<¿.

3.3.2 Feedback Linearization Control Design

Feedback linearization (FL) is a common approach used in controlling nonlinear
systems. The approach involves obtaining a transformation for the nonlinear sys-

tem that maps the system into an equivalent linear system through a change of

coordinates and a suitable control input.

Assume that the nonlinear system is defined by [64]:

x(t) = f(x(t)) + g(x(t))u(t)

y(t) = h(x(t))
(3.37)

where u(t) E R, y(t) G K and x(t) G M" are the input, output and state vectors
respectively. We assume that the vector fields / : D —> M" and g : D —> R" are
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smooth in the domain D G W, that is their partial derivatives with respect to ? of

any order exist and are continuous in D, and h : D —> R is also assumed to be a

smooth scalar function. We are searching for a state feedback law that renders a

linear input-output map between the new input w and the output y. An outer-loop

control strategy for the resulting linear control system can then be applied [65].

Definition 1. [65] Let h : D —> M be a smooth scalar function, and f : D —> M.n
be a smooth vector field on D G M", then the Lie derivative of h with respect to f is

a scalar function defined by Ljh = \/hf.

In the above definition \/h denotes to the gradient of h as \/h = ||. Thus,
the Lie derivative Lf h is simply the directional derivative of h along the direction

of the vector /.

In this work we have used input- output linearization [65] to find the control

law. By input-output linearization we mean the generation of a linear differential

relation between the output y(t) and a new input w. The basic approach of input-

output linearization is simply to differentiate the output function y(t) repeatedly

until the input u(t) appears, and then design u(t) to cancel the nonlinearities.
The process of repeated differentiation means that we start with:

y = vMx)(/(ar) + Áx)u) = Lf K*) + Lg h(*)u (3.38)

If Lg h(x) F 0 for some ? = xq , then the input transformation as defined in (3.39)
will result in a linear relation between the output y(t) and a the new input w as

given in (3.40), that is

u= r , . J-Lfh(x) + w) (3.39)L9 h(x)

y = w (3.40)

If Lg h(x) = 0 for all ? then the act of differentiation on y(t) should be repeated
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for i times as in (3.41), namely

yd) = L) h[x) + L9 Uf1 h(x)u (3.41)

until for an integer i = r, Lg Uf1H[X) f 0 for some ? = xq. Then the control law
given by (3.42)

"= Lj^W) {-L'< 4M + "' (342)
applied to the equation (3.41) while i = r, yields the following linear relation:

y(r) = w (3.43)

Definition 2. [17] The nonlinear system in (3.37) is said to have relative degree r,
1 < r < n, in a region D0 C D if

L9Uf1H[X) = O, ¿ = l,2,...,r-l; L9Uf1H[X) f 0 (3.44)

for all ? G Do-

Definition 3. [17] A function F : Kn > W1, defined in a region D is called a
diffeomorphism if it is smooth, and if its inverse F-1 exists and is smooth.

Lemma 1. [17] Let F[?) be a smooth function defined in a region D ml". // the
Jacobian matrix ?F is non-singular at a point ? = xq of ?, then F[?) defines a

local diffeomorphism in a subregion of ? like Do-

Theorem 1. [65] Suppose that the nonlinear system in (3.37) has relative degree r
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in Dq. Let

f? (?) = h(x)

(t>2{x) = Lfh(x)

fG(?) = L1J-1H(X)

Ifr < ? there exists (n — r) smooh functions ft+?(?), ..., f?(?) such that the mapping

F?(?)

f2{?)

F?{?)

F(?) (3.45)

has a nonsingular Jacobian matrix in D0, and thus the F(?) defines a diffeomophism

in a neighborhood ofxo G D0. Furthermore, it is always possible to choose ft+?(?), ..., f?(?)

in such a way that

Lgfi(x) = 0 i = r + 1, ..., ? Vx € D0

The proof to this theorem can be found in [65] , where it is shown that the gra-
dients V01, V<fo) ···; VcAn are linearly independent, provided that f7.+?(?), ..., f?(?)

are selected properly as stated in Theorem 1.

Therefore, it is possible to construct a coordinate transformation Z = F(?)

that could map the nonlinear system (3.37) into a linear one [64]. The first r
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components of Z are exactly as

zi=y = Kx)

Z2=V = Lfh(x)

zr = y(r-l) = Lrflh(x)

The normal form [17] of the system can now be written as:

Zl = Z2

¿2 = Z3

(3.46)

zr = a(z) + b(z)u

¿r+1 = Qr+l(z)

¿n = qn(z)

y = z\

where

and

a{z) = Lrfh{x) |.t=F-?(?)
b(z) = LgLrrlh{x) |?=F-? (*)

Qi(z) = L) |?=f-?(2)

(3.47)

(3.48)

By setting the input u as in (3.42), the closed loop system in the norm,al form is
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obtained as

Zl = Z2

¿2 = Z3

(3.49)

?/? — J <Cj-

Zr = W

ZT+\ <]r+l(z)

Zn = qn(z)

y = zi

It is seen that the control law has acted in such a way that the closed loop sys-

tem has been partitioned into linear and nonlinear parts. More precisely, let Z =
t r -,r r ? t

?t ?t where ? = Zi Z2 and ? zr+l Zr+2 Zri

Therefore, the equations (3.49) could be rewritten as

i = ??? + Bnw

y = cni

(3.50)

where An, Bn and Cn are the canonical representation form of the first r equations

in (3.49) and ?(?, ?) ir+1 Qn

Therefore, the dynamics of the nonlinear system is decomposed into an exter-

nal (related to ?) and an unobservable internal part (related to ?). The external
part consists of a linear relation between y and w and it is simply possible to design
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the input w so that the output y behaves as desired. Since the control design must

account for the entire system dynamics, the internal behavior has to be studied to

guarantee the stability of the entire system. The internal dynamics are described

by:

? = ?(?,?) (3.51)

Setting ? = 0 in (3.52) results in the following

J7 = ç(0,7?) (3.52)

which is called the zero dynamics [17].
The system is said to be minimum phase if equation (3.52) has an asymptot-

ically stable equilibrium point [17]. In the special case where r = n, or in other
words the relative degree of the system is equal to n, the normal form reduces to

? = ??? + Bnw

y = a,,?
(3.53)

where Z — ? — Zl Z2

-? T

and the ? variable does not exist. In this case

the system has no zero dynamics and by default is said to be minimum phase [17].

3.3.3 Quadrotor Control Scheme Design

At the end of section (3.2) the entire dynamic equations describing the quadrotor

system were derived in (3.21). It should be noted that the dynamic equation related
to the yaw ? is controlled by [Z4 and ?4. Therefore, it is possible to design a controller
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for this decoupled subsystem (f — U4), namely

U4 = AtU4 + Btv4
(3.54)

For the above linear subsystem an LQR controller is designed by considering

the following state space representation,

X =

X1

X2

Xi

F

F

U4

(3.55)

X =

0 1 0

0 0 fJ ZZ

0 0 At

X +

0

0

Bt

V4

(3.56)

y 1 0 0 X

By setting Q = 7(3X3) and R = I and solving the Riccati Equation in (3.26), the gain
-¡t

vector K1I, =? ki/,1 ???2 &i/j3 is obtained. By setting the control input v4 as in

(3.57), the (? — U4) subsystem becomes asymptotically stable as stated in Section
3.3.1, namely

V4 = -Kx

F

F

U4

(3.57)

It should be noted that in this control law the desired output is set to zero, that is

?* —>0.
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Now, the remaining variables to be controlled are x, y and z. It is possible to

assume that the altitude ? could be controlled by U1 ¦ The dynamics governing the

? is given by

? = — g + (cos f cos T) ^
U1 = A1U1 + B1V1 + iCt

If the altitude ? reaches a desired set-point like z¿, then ? —> 0. As stated before,

in hovering condition the total thrust should be equal to the gravitational force

effective on the quadrotor, in other words:

(3.58)

£/i S* = mg (3.59)
¿=i

Therefore, if ? —? 0 and f and ? are sufficiently close to zero, then U1 —> mg.

By assuming U1 —? mg and ? —> 0, it is possible to simplify the dynamic

equations of ? and y defined by (3.21) as given by equations (3.60) and (3.61), that
is

y — ~9 sin '

= U2.

U2 = AtU2 + Btv2

(3.60)

? = g sin ?

? = ?- (3-61)
U3 = AtU3 + Btvz

Through these assumptions, which would be verified by simulations, the dy-

namics of the quadrotor in (3.21) is partitioned into four semi-decoupled subsystems

of [Z1U1), (y,U2), (x,U3) and (0, U4) as defined in (3.58), (3.60), (3.61) and (3.54)
respectively. The reason for calling these subsystems semi-decoupled is because ? is
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still coupled with f and ?.
For the control of the altitude z, the input-output linearization technique de-

scribed in section (3.3.2) is employed to derive a linear relation between the output

and a new input variable.

By differentiating the dynamic equation of ? as defined in (3.58) once, we have

?(?> = — f sinocos ? ? cos f sin ? l· cos f coso— (3.62)
m mm

,(3)

By substituting the equation for JJ1 from (3.58) in the above equation, the input vi

appears as in (3.63), that is

,(3) M- U1
— f sin f coso ? cos f sin ? l· cos f cos ? A1Ui + B1V1 + ACt

m p? m
(3.63)

Therefore, the relative degree of the nonlinear system in (3.58) is equal to ? = 3.

The normal coordinates are defined according to

F, (3.64)

which is a diffeomorphism on the region R3. There is no internal dynamics for this
nonlinear system and it is minimum phase.

By setting r>i as in (3.65), a linear relation between z^ and the new input W1
is obtained, namely

V1 = -g ÍU»! + f sin f cos ? h ? cos f???? costeóse/^ cosci) coso m m m

Therefore,

Z^ = W1

(3.65)

(3.66)
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It should be noted that the input v\ is just valid for the case that cos f cos ? f 0.Local

asymptotic stability is achieved by setting the new input w\ as:

W1 = zf> - klz{ëz) - k2z{èz) - k3z(ez) (3.67)

where z¿ refers to the desired altitude set point, ez refers to the error ez = ? — z¿ and
-.t

the gains Kz = hz k2z h¦3z are optimally obtained from the LQR method as

described in section (3.3.1).

The error dynamic equation is now derived by substituting (3.67) into (3.66),
that is

. 43) + Me2) + Me,) + Me2) = 0 (3.68)

which yields an asymptotically stable error dynamics that converges to zero as t —>

oo. Therefore, the subsystem (z, U\) is stable, that is ? —? z,¡ and Ui —> mg.

The same procedure can be followed to obtain the control laws for (y, U2) and

(x, Uz) subsystems as defined in equations (3.60) and (3.61). To obtain the input
controller, we differentiate repeatedly from the y and ? until the input terms V2 and

Vs appear, that is

t/3) = — gcj) cos f

^= gè cos ?
(3.69)

î/4) = —gf cos f + gf2 sin f

x1-^ = gè cos ? — gè2 sin ?

Substituting f and ? from (3.60) and (3.61) results in:

y^ = —g-i— cos f + g</>2 sin fJ XX

x^) — „?. cos ß _ gè2 sin ?Jvv

(3.70)

(3.71)
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By another differentiation the inputs i»2 and v3 would appear in the equations,

namely

yW = —??2- cos f + qr^-é sin f + 2?ff sin f + pf? cos <

?(5) = « Es. cos 0 - s^-(9 sin ? - 2gè'é sin ? - #03 cos (9
(3.72)

?5) ,^t^+BtW-»?-/ = — a"·-" ' -¦¦"" cos ? + ?t^-? sin ? + 2a</>-?- sin 0 + o0d cos <Jxx 'M *xx

(5) = ¿tt/3+Btt,3 cos Q _ M^q sin ö _ 29??- sin ö - gè3 cos 0
(3.73)

where (3.73) is obtained by replacing [Z2 and [Z3 by (3.60) and (3.61) in (3.72).
It is seen that the relative degrees for these two nonlinear subsystems is equal to

r = ? = 5. The normal coordinates are defined in (3.74) and (3.75), that is

F„

y

y

y

/3)
„(4)

(3.74)

F.,=

?

?

X

X

X

(3)

(4)

(3.75)

which represents diffeomorphisms on K5. Moreover, since the relative degrees are
equal to the systems order, there are no internal dynamics for these two subsystems
to be analyzed for stability.
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By setting the control variables v2 and v3 from (3.76), namely

V2 = —-¿ (w2 + g^^-cosç!)- gyi-(j)sm(f>- 2gcj)j2- ß??f - g<fi3cos(f))'— Q t— COS (D * 35 CC *XX -* XX- cos f

O3 = -B^ {w3 - ??? coso + g^èsmO + 2gè^- sino + 9Ö3cosÖ)
(3.76)

a linear relation between t/5) and x^ and the new inputs w2 and u>3 is obtained as

?/(5) = W2

x(5) = W3

It should be noted that v2 and v3 are only valid if cos f f 0 and coso f 0.

The new inputs w2 and 103 are selected as :

(3.77)

_ (5) , (4) , (3) , .. , . ,W2 — y¿ K\yty K2yCy ^3ydy ^AyCy "'Sy^y

W3 — x^ K\xex ?2?&? n3xex K4Xex K^xCx
(3.78)

where y¿ and x¿ refer to the desired set points for y and ? , ey = y—y^ and ex = x—x¿
-¡t

are defined as the error signals. The gain vectors Ky
1 7'

fc Iy "-2?/ "-3t/ ^Ay "-5y

and X7. are obtained from the LQR method that is"-Ix ?2? "\$:r ^ix k-hx

described in section (3.3.1).

The error dynamics are then obtained from (3.77) and (3.78) as :

Cy ~T rZ\y€-y ~T~ K2yÇ.y ~G K3y€.y "T fciiy&y ~T fc§y&y — U

e.i + k\xex + k2xex + k3xëx + kixèx + k5xex = 0
(3.79)

Therefore asymptotically stable error dynamics are obtained from the above selected

control inputs, where ey and ex converge to zero as t —> 00. In other words, y —> yd
and ? —> Xd as t —> oc>.
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3.4 Simulation Results

In this section the behavior of the quadrotor system with the designed FL controller

and under normal conditions is evaluated through numerical simulations by com-

manding the control system to follow a desired trajectory. The parameters of the
model are taken from the model OS4 developed in Ecole Polythechnique Federal De

Lausanne [I]. The physical parameters of the OS4 quadrotor are shown in Table
3.1. Table 3.2 also shows the parameters that are related to the propulsion group

consisting of the DC motor, gearbox and the propellers. All the simulations are
done for the nonlinear model of the quadrotor and actuators as explained in the

previous chapter by equations (2.39), (2.38) and (2.52).

Table 3.1: OS4 Quadrotor physical parameters [1]
Name Parameter Value Unit

mass m 0.650 kg

inertia on .t axis Ixx 7.5e-3 kg.m2

inertia on y axis Iyy 7.5e-3 kg.m2
inertia on ? axis Jzz 1.3e-2 kg.m2

thrust coefficient b 3.13e-5 Ns2

drag coefficient d 7.5e-7 Nms2

arm length I 0.23 m
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Table 3.2: 0S4 Quadrotor physical parameters [1]
Name Parameter Value Unit

propeller inertia Jp 6e-5 kg.m2

gearbox efficiency 77 90 %

gearbox ratio r 4:1

motor inertia Jm 4e-7 kg.m2

motor internal resistance /?.mot 0.6 O

back-EMF constant ke 5.2 V s rad""1

3.4.1 Healthy System Response to 1st Trajectory

In this section the response of the healthy system to a simple trajectory is presented.

The mission starts at the position (x, y, z) = (0, 0, 0) while the roll, the pitch and

the yaw angles are initially equal to zero. The commanded trajectory is to fly from

the initial point to the point (10. 10, 10)(m) in 20 seconds and hovering at this point.

In order to simulate a more realistic environment, we added noise to the output

signals as well as input signals. The noise is chosen to be an additive white Gaussian

noise and the power of the noise is set to a value so that the signal to noise ratio

(SNR) is a prespecified value, which represents a practical environment [I]. The
SNRs are as follows:

SNRr = 15.59 (U)

SNRy = 15.35 db
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SNR2 = 15.85 db

Figures 3.2 and 3.3 show the linear position and the Euler angles of the system

with respect to time as a response to the commanded trajectory. It is seen that the

response of the system to this trajectory is acceptable in the sense of meeting design
requirements. The error signals between the desired commanded trajectory and the

observed ones are depicted in Figure 3.6. Table 3.3 shows the mean and standard

deviation of the error signals for x, y, ? and ? angle.

Table 3.3: Mean and standard deviation (Stdv) of the error signals for the lsi
trajectory

Error Mean Stdv Unit

-0.0760 0.2938 m

-0.1393 0.4008 m

-0.0577 0.1869 m

1.6597e-004 0.0011 rad

It should be noted that the error signals are bounded within less than 1.5%
of the steady state value which satisfies the design criteria according to [1] which is
2%.

Figures 3.4 and 3.5 show the input voltage signal to the rotors and the move-
ment moments. As expected, Ui —> mg as the system altitude has been stabilized

and at hovering condition.

In order to check to robustness of the designed nominal controller to parameter

variations, we have performed the simulations while the parameters of the body
inertia matrix Ixx, Iyy and Z22 are changed by 10%. The resulting error signals are
depicted in Figure 3.7. Table 3.4 shows the mean and standard deviation of the
error signals for .-;;, y, ? and f angle while there are parameter variations in the
model of the system.
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Table 3.4: Mean and standard deviation (Stdv) of the error signals for the 1st
trajectory with 10% variations in the body inertia parameters

Error Mean Stdv Unit

ex -0.0787 0.2921 m

ey -0.1400 0.4012 m

e2 -0.0578 0.1865 m

ß? -4.5996e-005 8.1810e-004 rad

It is seen that the controller is totally robust to 10% variations in the param-

eters of the body inertia matrix and neglectable diffrences between the results from

Table 3.4 to the results from Table 3.3 obtained with no parameter variations.

3.4.2 Healthy System Response to 2nd Trajectory

The second set of simulation results is related to the trajectory that is defined as

in Table 3.6 while the quadrotor is commanded to move and reach certain points in

space and hover for a specified amount of time. In this trajectory, the initial state

of the quadrotor is assumed to be at the (0, 0, 0) position and the roll, the pitch and

the yaw angles are also assumed to be zero at the initial time.

Figures 3.8 and 3.10 show the linear position and the Euler angles of the system

with respect to time as a response to the commanded trajectory shown in Figure

3.5 . It is seen that the response of the system to this trajectory is acceptable. The

error signals between the desired commanded trajectory and the observed ones are

depicted in Figure 3.13. Table 3.5 shows the mean and standard deviation of the

error signals for x, y, ? and f angle. It is seen that the error signals are still bounded

within an acceptable range of less than 1.5%.

Figures 3.11 and 3.12 show the input voltage signal to the rotors and the
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Table 3.5: Mean and standard deviation (Stdv) of the error signals for the 2nd
trajectory.

Error Mean Stdv Unit

ex 0.0105 0.5777 m

ey -0.0110 0.3872 m

ez -0.0013 0.3960 m

ß? 5.3510e-005 7.1473e-004 rad

movement moments. As expected, U\ —> mg as the system altitude has been

stabilized at hovering condition.

3.5 Conclusions

In this chapter the dynamics of the quadrotor model are partitioned into four semi-

decoupled subsystems by considering some approximations at the hovering condi-

tion. Furthermore, the dynamics governing the input moments to the quadrotor

are derived and considered in the controller design for the system. By using the

FL and the LQR methods, controllers are designed for the nonlinear subsystems

and analysis is performed to show that the closed-loop system is asymptotically sta-

ble. Simulation results are also presented to show the performance of the nominal

controller under different trajectories in healthy condition.

The next chapter will discuss the effects of different actuator faults on the

quadrotor performance and a fault recovery module is proposed to compensate the

effect of these faults on the system.
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Table 3.6: Second Trajectory
Time(sec) Position (x, y , ?) (m) State Duration

0 (0, 0, 0) vertical flight to next position 5 sec

5 (0, 0, 10) hover 55 sec

60 (0, 0, 10) horizontal flight to next position 5 sec

65 (10,0,10) hover 55 sec

120 (10, 0, 10) horizontal flight to next position 20 sec

140 (10,10,10) hover 40 sec

180 (10, 10, 10) vertical flight to next position 5 sec

185 (10,10,0) hover 55 sec

240 (10,10,0) horizontal flight to next position 5 sec

245 (0, 10, 0) hover 55 sec

300 (0, 10, 0) horizontal flight to next position 20 sec

320 (0, 0, 0) back to the starting point ended
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Figure 3.2: Linear position response to the commanded 1st trajectory : (a) x, (b) y
and (c) ? measured in meters.
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Figure 3.3: Euler angles in response to the commanded 1st trajectory : (a) Roll
(rad), (b) Pitch (rad) and (c) Yaw (rad).
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Figure 3.4: Input voltage to the 4 propellers in response to the commanded 1st
trajectory.
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Figure 3.5: Input moments Ui, Ih, Uz and [/4 to the dynamics of the quadrotor
system in response to the commanded 1st trajectory.
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Figure 3.6: Error signals ex, ey, ez measured in meters and e^ in radian in response
to the commanded 1st trajectory.
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Figure 3.7: Error signals eT, ey, ez and ev, measured in meters and e^ in radian in
response to the commanded 1st trajectory with 10% variations in the body inertia
parameters.
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Figure 3.8: Linear position response to the commanded 2nd trajectory : (a) x, (b)
y and (c) ? measured in meters.
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Figure 3.9: 3-D representation of the linear position response to the commanded
2nd trajectory.
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Figure 3.10: Euler angles in response to the commanded 2nd trajectory : (a) Roll
(rad), (b) Pitch (rad) and (c) Yaw (rad).
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Figure 3.11: Input voltage to the 4 propellers in response to the commanded 2nd
trajectory.
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Figure 3.12: Input moments Ui, U2, U3 and CZ4 to the dynamics of the quadrotor
system in response to the commanded 2nd trajectory.

75



(a)

2

f? O
-2h

WWMWMWM m*<a#*MV»mwo,wiM^t*n*nntmii«ii#ftw NHM

50 100 150 200

time (sec)

(b)

250 300

>> OT Mi j«nit»«tteia.iwurt1iuln>i»li(jii;lm"HMiK"i'
ww/

/-\J

50 100 150 200

time (sec)

(e)

250 300

2

„N 0} - i\»mitrai ¡m, ru.*»
4

mem Ym««¦?*«!*»««

50

50

100 150 200
time (sec)

250

100 150 200

time (sec)
250

300

300

Figure 3.13: Error signals ex, ey, ez measured in meters and ßf in radian in response
to the commanded 2nd trajectory.
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Chapter 4

Fault Recovery of the Quadrotor

System

This chapter presents the results that are employed to develop a recovery solution

due to actuator faults. The first section of this chapter will describe the general rep-

resentation of the types of faults that might affect the actuators. The second section

is dedicated to modeling of partial loss of effectiveness (LOE) fault in an actuator.

The third section describes implementation of the fault recovery system. The above

sections are dedicated to describe the proposed fault recovery algorithm by designing

an adaptive feedback linearization controller. The final section presents simulation

results performed to analyze the performance of the designed fault recovery module.

4.1 Faults in the Quadrotor Actuators

Dynamical control systems may be subject to faults in actuators, sensors or abrupt

changes in the physical structure. This work is focused on the study of failures in

actuators. In this section we present the parameterization of faults, which covers
several different cases due to control effector faults.

Typical Actuator faults are classified into four categories [6]:
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• Lock-in-place (LIP)

• Float

• Hard-over-fault (HOF).

• Partial loss of effectiveness (LOE)

In the case of LIP faults the actuator freezes at a certain condition and does

not respond to subsequent commands. HOF is characterized by the effector moving

to the upper or lower position limit regardless of the command. Float fault occurs
when the actuator floats with zero moment and does not contribute to the control

authority. Loss of effectiveness is characterized by lowering the actuator gain with
respect to its nominal value.

The parameterization of different types of actuator faults is given by

ycl (/,), ki(t) = l,Vt>t0i No fault

h{t)ya{t), 0<c<fci(í)<l,Ví>í/i, LOE

V1^) = { O, ki(t) = 0, Vi < ta, Float (4.1)
ya(tf), ki(t) = oyt<tfi, LIP

Vim or ylM, hit) = Oyt < tfi, HOF

where y¡ is the actual output of the actuator, yci is the output of the controller
and yim and yiM are the upper and lower limit, &¿ G (e , 1] denotes the actuator
effectiveness coefficient and models partial LOE fault and e < 1 and tfi also denotes
the time instant of fault occurrence in the ith actuator. In the case of LIP fault,

yci is a value within the range of operation of the ith actuator frozen at the time of
failure (í/¿).

As discussed in the previous chapters, the quadrotor has 4 rotors as actuators.

In Chapter 2 the thrust force was introduced as:
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Ti = OQf i = 1, . . . , 4. (4.2)

where Qi (rad s'1) is the speed of the the ilh propeller. In Chapter 3 the linearized
dynamic equation from the input voltage to the ilh propeller, U1, to the thrust T,
was obtained as

Ti = At% + BtUi + Ct (4.3)

where At, Bt and Ct are the linearized coefficients and are defined as follows:

At='2

Bt =

Tt

/"» d T~>2

3d lrpVhV1O
(4.4)

where — = -5—fL-¡-m . In the above equation d and 6 refer to the aerodynamic drag

and thrust factors (N vis2), Jlp (N m s2) is the total rotational inertia around the
propeller axis, ke (NmA'1) is the back-EMF constant, Rmot is the motor resistance
in ohms, ? is the efficiency factor and r refers to the gear box reduction ratio.

In the healthy model of the system we assume that all the four thrust torques

Ti, for i = 1,2,3,4, which are proportional to the square of propellers speeds, are

equal and share the same equal parameters.
•,t

Considering T ? T2 T3 T4 as the thrust vector, the compact rep-

resentation of the dynamics becomes

T = -ATT + BTu + CT (4.5)

where AT = A ^(4 ? 4) and Bt = ^t /(4x4) are constant matrices and C't = Ct 1111
is a constant vector. The notation J(4X4) refers to an identity matrix of the dimension

^T
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T
4 and u = Ul l¿2 U3 U4 is the vector of the input voltages to the propellers.

Quadrotor is an under-actuated system and there is no redundant actuator to

compensate for the effects of fault due to other actuator failure. Therefore, in case

of other type of faults, where one of the actuators is either stuck in a certain speed

with no possibility of controlling as in the LIP and HOF or fully nonfunctional as

in the float, the other three remaining healthy actuators should be commanded to

compensate the loss of control on the faulty actuator. In this work, our concentration

is on the recovery process due to the partial LOE fault, where all the actuators

are still functional, however, a short discussion on the other types of faults is also

provided in Section 4.5

4.2 Partial LOE Fault Modeling

In case of a partial LOE fault, the output speed of the quadrotor is different from

the commanded output by the controller, that is

U1 = kiÜcí O < e < h < 1 (4.6)

where O* refers to the actual output from the ith actuator and Qd is the commanded
output by the controller. Therefore, the resulting thrust force from this actuator

varies according to the following equation

? = 6O?
2 <4J)= b(kiüci)2

The dynamics of 7¿ defined in equation (4.3) would also change due to the

LOE fault, that is
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J ? — ???? o *ci^ 'e
(4.8)

k¡At + k¡Btuz + k?Ct
or in other words,

T1 = A11T1 + BtiUl + Ct i = 1,2,3,4 (4.9)

where Ati = kfAt and Bti = kfBt. It should be noted that we have assumed that
the only coefficients subject to change due to a fault are the Ati and Bti and Ct

would stay unaffected. The term Ct is proportional to the drag and inverse square

of the thrust factor, which makes it a relatively small constant value.

Equation (4.10) is a matrix form of equation (4.9), that is

T = AT0T + BTOu + Ct (4.10)

where

ATO

Bro —

An 0 0 0

0 An 0 0

0 0 Afs, 0

0 0 0 At4

Bn 0 0 0

0 Ba 0 0

0 0 Ba 0

0 0 0 BtA

(4.11)

(4.12)
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Ct — (4.13)

Ct 0 0 0

0 C1 o 0

0 0 C1 o

0 0 0 Ct

Now if the thrust dynamics for all the actuators are not equal, the equations

for the dynamics of the movement vector U change since At f AJ and Br f BJ.

Therefore, it is necessary to derive the dynamic equations for the movement vector

while the actuators do not have the same characteristics, in other words when Au f

Atj and Bti f Btj for i, j = 1, . . . , 4, i f j.
The relation between the movement vector U and T was defined as in equation

(3.11). By left-multiplying Lut to equation (4.10), we would have

LutT — —(LutAto)T + (LutBto)u + {LutCt) (4.14)

From equation (3.11), the equation (4.14) could be rewritten as (4.15), namely

Ù = - (LutAT0LUT)U + (LutBTo)u + (LUTCT^T) (4.15)

Now we define another new input vector Vq as

V0 = (LUTBTo)u

'foi

t'02

t'03

t'04

Bn

0

-IBn

B12 B13

-IB12 0

0 IB13
do d r> d ?— %Bt\ 6-Df2 -t£>,I D13 -bDti

B1A

BiA

Bt4

dBf,

U1

U2

U3

U4

(4.16)

u = (LutBto) 1Vo (4.17)
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The matrix (Lut-^tqL^) is given by

LutAtqLut —

\(Aa + At2 + At3 + At4) ^(-A12 + At4) \(-??+?a) ^¡(-Ai + At2 - At3 + At4)
{(-Al2 + A14) \(Ai2 + Ai4) O ld(-At2 + At4)
{(-Atl + At3) O 1(An + Aa) ^1(An - At3)

i(-Atl+At2-At3 + At4) 4-b(-At2 + At4) ^iAn-Aa) \(Aa + A12 + AtZ + At4)
(4.18)

From equation (4.18), it is obvious that if the actuators share the same parameters

, in other words Ati = At and Bti = Bt for i = 1, . . . , 4, then (LutAToLÜt) = AT =
AtI4x4 as expected for the healthy system.

Hence, it is possible to rewrite equation (4.15) as

(J = -(LutAtoL^U + vo+^utCt) (4.19)

The above equation shows the dynamics of the movement vector U , while the

dynamics of the thrust forces are considered to be different from each other due to

the presence of LOE fault.

4.3 Implementation of a Fault Recovery System

Figure (4.1) depicts the modules that conform the fault recovery system developed
in this chapter. The descriptions of each component of the quadrotor control system

with fault recovery for actuator faults are provided below.

• Linear Compensator: This corresponds to assigning the control input for

the purpose of tracking the desired trajectory for the system according to an

LQR design.
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Figure 4.1: Quadrotor augmented control system with a fault recovery functionality.

• Actuators: This block contains the model of the actuators, where the input

is the voltage to the rotors and the output is in terms of the thrust force due

to the rotation of the propellers.

• Fault Diagnosis and Isolation (FDI): Is in charge of generating fault de-

tection alarms and information about the location and type of the fault.

• Parameter Estimation: Given the information from the system input and

output and the FDI information, this module is in charge of generating an

estimate of the post fault model of the actuator to be used by the feedback
linearization scheme.

• Adaptive Feedback Linearization : Receiving the information from the

FDI unit as well as the parameter estimation unit and the current measured (or

estimated) values of the outputs or states of the quadrotor system, this block

is in charge of generating a control input to linearize the system adaptively. In
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the no-fault case, this block generates the control input for the healthy system.

• Quadrotor : The full nonlinear model of the dynamics and kinematics equa-

tions of motion of the quadrotor are placed in this block.

4.4 Fault Recovery Module

The recovery strategy in this work is to adapt the control inputs so that the effects
of changes in the outputs due to the LOE fault in an actuator can be compensated
for. Therefore, it is necessary to analyze the contribution of each actuator output

in terms of the thrust force in the control of the system outputs.

4.4.1 Adaptive Feedback Linearization

At the end of Section 4.1, the dynamic equations of movement \^ector were derived in

equation (4.19). In this equation the contribution of each actuator in the resulting
movement vector was obtained. As discussed before, in case of the partial LOE fault

occurrence the parameters of the actuators may change. A parameter estimation

algorithm is presented in this section to provide an estimate of the faulty actuator
dynamics and to guarantee the stability of the closed-loop system.

Moreover, a controller based on adaptive feedback linearization technique is

designed by considering the dynamic equation of the movement vector obtained in
equation (4.19).

In Chapter 3, Section 3.3.3 the following equations were derived while designing

the FL controller for (z, Ui), (y, U2), (x, U3) and (f, U4) subsystems, namely

z^ = -¿sinocos ? Öcos0sin(? h cosacos!?— (4.20)
m m m
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y(5) = —g — cosçi> + g—<j)sm(f) + 2g(f)(f>sm<fi + g<fi3coS(
irr.T. ¿XT.

(4.21)

?(5) = g^l cos 0 _ gUz_ Q gin ? _ 2(ßQ sin ? _ ^¿3 cos ß
lyy lyy

(4.22)

F (3) = ^4 (4.23)

Without loss of generality, let us assume that the partial LOE fault has oc-

curred in the first actuator and the other three actuators are healthy, that is

T1 = AnT1 + BtlUl + Ct

T1 = A1Ti + BtUl + Ct for i -2, 3, 4

where An = k2At and Bn = k2Bt.
The dynamics of the movement vector defined in (4.15) can be written as

(4.24)

U1

U2

U3

f>4

\(Atl+3At) 0 K-An + At) ±(-An + At)
0 At 0 0

H- '

L(-Ati + At) 0 \(Atl + At) i(Ai-A)
|(-?? + ?) 0 ±{An-At) \(An +3At)
Bn Bt Bt B1

0 -IBt 0 B1

-IBn 0 2Bi 0

--bBn Bt ¡Bt

U1

U2

U3

II4

+ [LutCt)

U1

U2

U3

U4
(4.25)

The above dynamic equation is then substituted in the equations (4.20) to
(4.23) and could be rewritten in a compact matrix form. Here we are seeking a form
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to separate the terms that are related to the unknown variables Atl and Btl- This

is done in the following equation as

where

F1 =

,(3)

,(5)

,(5)

?®

= F1 + At1F2 + Fs

B11 0 0 0

0 Bt 0 0

0 0 Bt 0

0 0 0 Bt

U1

U2

U3

Ua

(4.26)

-¿sin f cos ?% - ? cos f sin ?% + ^¿^A1(P1 + \U3 + ¿?/4) + 4Ct
3o^-¿ sin á + a«/>3 cos ? - t2- cos </>^tt/2'?? Jxx

-Sposino - ^3COSO + CU4(ItA + |C/3 - |?/4)
itMíu, -é,u3 + p,)

F2 =

-(IUi-Iu3-Hj4)

F3 =

9^Hu1 + Iu3 + fdu¿)
àM-éu. + éUs + luj

cos f cos g cos f cos g cos f COS 6 COS <ft COS ?

0

g cos ? j
Í

9 cos F 1
? XX

m

0

0 ^l¦luv

g cos<j

O

Z

The input signal u is defined as

U1

U2

U3

Ui

(

F3

Btl O OO

0 Bt 0 0

0 0 £( 0

0 0 0 Bi

v1/

VL

tt>2

W3

F1 - AlF;

(4.27a)

(4.27b)

(4.27c)

(4.28)
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where At\ and Bt\ are the estimates of the unknown parameters An and Ba and

the new control input vector W = is to be defined so that theWl W2 U>3 Wi

stability and control (LQR) of the feedback linearized system is achieved.
By applying the control law defined in (4.28) to the system in (4.26), the

closed-loop dynamics could be written as

,(3)

,(5)

,(5)

i> (3)

= F!+AtiF2 + F3

Ba 0 0 0

0 B1 0 0

0 0 Bt 0

0 0 0 Bt

Btl 0 0 0

0 Bt 0 0

0 0 Bt 0

0 0 0 Bt

Fs1

W\

W2

W3

Wi

F1

(4.29)

It is possible to simplify the above equation by using the following relation,
that is

Bn 0 0 0

0 Bt 0 0

0 0 Bt 0

0 0 0 Bt

Ba 0 0 0

0 Bt 0 0

0 0 B1 0

0 0 0 Bi

Sn, o 0 0
Sti

0 10 0

0 0 10

0 0 0 1

Bn^B11 0 0 0
Bn

0

0

0

0 0 0

0 0 0

0 0 0

10 0 0

0 10 0

0 0 10

0 0 0 1

(4.30)

Let us define the estimation error d as the difference between the actual value

of the unknown parameter and its estimate, i.e. S^n = Aa — At\ and dß? = Bt\ — Ba.
Therefore, equation (4.29) can be rewritten as



,(3)

,(5)

,(5)

S (3)

Let

= F1 + AtlF2 + F3

-§^ O O O
O 0 0 0

0 0 0 0

0 0 0 0

I V1
IU2

IU3

VL W4

\

-F1- AnF2

+ F,x F,"1

W1

W2

W3

IUi

\

F\ — AaF2

W1

W2

W3

W4

+ 6AnF2 + ôBtlF3

F4 = F3

J-OOO
Un

0 0 0 0

0 0 0 0

0 0 0 0

j-000•Dil

0 0 0 0

0 0 0 0

0 0 0 0

W\

W2

W3

Wi

Fô

W1

W2

W3

Wi

-F1- AnF2

(4.31)

^3-1

V

\

- F1 - AiF2

/
Hence, the linearized dynamics of system (4.31) can be rewritten as

(4.32)

,(3)

,(5)

,(5)

F (3)

lui

W2

W3

Wi

+ dAnF2 + dBnFi (4.33)

The control inputs W1, ??2, W3 and w± are defined according to the following
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equations

W1 = zf] - klz(ëz) - k2z{éz) - kzz{ez)

W2 = yp - hy{ey4)) ~ k2y(e<y]) - k3y(ëy) - hy{è)y - hy{ey)
rvz - J^xd - fcix(ei4)) - fex(ei3)) - fax{ë)x - k4x(è)x - k5x(ex)

,(3)Wi = ipd ' - ki^ë^) - k2ip(èìp) - fc3l/,(e,/,)

(4.34)

(4.35)

(4.36)

(4.37)

In the above equations, z¿, yd, Xd and í¡}¿ refer to the desired output variables,

ez — ? — Zd, ey = y — yd and ex = x — Xd and ß? = ip — ipd are defined as error signals.
The gain vectors K

-, t

ku k2z k3z
t

Mx "-2.T "-3x "·4? fax

» Ky = fay k,2y fay fay fay

??? k2ty fa-f are obtained fromand ?f =
the LQR method as described in Section 3.3.1.

From the equations (4.33) and (4.34) to (4.37), it is possible to write the
dynamic equations of the error signals e2, ey, ex and e^ as follows

a? + kizez + k2zcz + fazez
(5) ? ?. (4) ? ?. (3) ? ?. ¦; I L "li..Cy "G fayCy ~T K2yCy I K^yCy "T KiyCy ~?~ K§yCy
(5) , ? (4) . ,. (3) , , ·¦ . , · , ,.

ß? + KixCx T K2xCx T ????^? t K4xex ~G "-5xex
= ¿?« F2 + ¿ßtl F4 (4.38)

It is possible to represent the above equation in the state-space model. The

selected state vector for this purpose is as follows

X = (3) (3) . ¦¦ (4) (4) ..
ey ex 6y ex ez ^y ex ^-? ez ey ex &f ^z ey ex ei>

(4.39)

Therefore, we could form the state-space representation according to the above
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state vector, that is

X = ^4i6xi6·^ + Sa11F2 + Sb11F4 (4.40)

where

Fi =

Fi

0

F2

0

0

F4

16x1

-J 16x1

The j4(i6xi6) matrix in equation (4.40) is given by

(4.41a)

(4.41b)

o

o

0

0

0

0

0

0

0

0

0

0

0

-k5y
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-fox

0

1

0

0

0

0

0

0

0

0

0

0

0

0

-kiy
0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

kix

0

0

0

0

0

O

0

0

0

0

0

O

0

-k3z

O

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

~k3y
0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

-fox

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-kW

0

0

0

0

1

0

0

0

0

0

0

0

-k2z

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

-k2y
0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

-k2x

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

-fcly
0

0

(4.42)

0

0

0

0

0

0

0

0

0

0

1

0

0

0

-felx

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

All the eigenvalues of this matrix are negative according to the selection of the fc¿
parameters, in other words, A is a Hurwitz matrix.
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Now we define the update law for the estimation errors dAn and dBn according
to the following equation

i>An = -{F?PX + XTPF>)
(4.43)

OBt1 = - {F?PX + XTPFi)

where X is the state vector defined in equation (4.39), and P is a (16 x 16) matrix
obtained by solving the following Lyapunov equation, that is

ATP + PA = -I16x 16 (4.44)

where A matrix is defined in (4.42) and the notation 7i6xi6 denotes an identity
matrix with dimension 16 ? 16. It should be noted that since A is a Hurwitz matrix,

P is a positive definite matrix [65].
The following theorem provides a sufficient condition for stability of the closed-

loop system.

Theorem 2. The state trajectories of system (440) with the update law for the

estimation errors OAn and dBn given in equation (4-43) are globally stable in the
sense of Lyapunov.

Proof: To carry out the stability analysis, choose the Lyapanov function can-
didate as

V = (XTPX + ls%1 + ^ltl) (4.45)
The derivative of this Lyapunov function along the state trajectories of system (4-40)
yields

V = X1PX + XTPX + òAJAtì + ¿Btl<JBtl (4.46)
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Now, using (4-43) one arrives at the following relation

V = (AX + SAtlF^ + 5BtlF'A)TPX + XTP(AX + 5AnF'2 + dBnF1,)
+ 5Atl{-F?PX - XrPF¡) + SBtl(-F?PX - XTPF¡)

(4.47)
= XTATPX + XTPAX

= XT(ArP + PA)X

It can be concluded from (4-44) that

V = -XTX (4.48)

which guarantees the negative semi-definiteness of the derivative function V . This

implies that the origin is a globally stable equilibrium point of the system (4-4O)-

Remark 1. Stability of system (4-40) implies that the state variables defined in

(4-39) as well as the estimation errors remain bounded as t —> oo.

In this section, we studied the case of partial LOE fault recovery by assuming

that the fault has occurred in the first actuator. The same method could be applied

to design three other controllers that accommodate the LOE fault in the other three

actuators. In other words, this module of the fault recovery contains four different

controllers and based upon the information from the FDI unit the proper controller

is selected. In each of these controllers, two parameters, Ati and Bti, related to the

faulty ith actuator are assumed to be unknown and the parameters related to the

healthy actuators are assumed to be known.

It is possible to extend this adaptive FL controller so that only one controller

is designed that is capable of accommodating the partial LOE fault in all actuators.

For this purpose, we assume that Atl and Btl for % = 1, . . . , 4 are unknown parameters

and should be estimated. Therefore, in case of multiple LOE faults in two or more

actuators, this controller is capable to provide estimates of the parameters that are
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subject to change and guarantee the system stability. This is done in the next
section.

4.4.2 Generalization of the Adaptive Feedback Lineariza-

tion

In this section, we assume that the thrust dynamic parameters according to all the

actuators are unknown variables to be estimated and may have changed due to

partial LOE faults. Therefore,

Ti = AtT1 + BtUi + Ct for i = 1, (4.49)

where Ati = k?At and Bti = k^Bt for i = 1, .... 4 .
Similar to the previous section, it is possible to rewrite the movement vector

dynamic equation (4.15) to separate the unknown parameters, namely

U1

U2

U3
An

Iu1-Iu3-^u44<T

0

-^u1 + W3 lb_
id

+ A¿3

2

2TJ^"5 ' 4

Iu1 + Iu3 - I1U4

U4

-íbUi + é,Uz 1Ui

4,r

^U4

+

B11

0

-IBn

-IBa

0

-í^-m^ + \UA
Bt2 Bts

IBa 0

0 IBa

+ Ar,

A

4^1-^2+4^4
-^u1 + Iu2-^u4

0

L UU1-U1U2 + IU4
ÌUi + èiU2 + ldU4
1^u1 + Iu2 + %u4

a

Bt4

B14

0

ÍBa -ÍBl3 {Bi4

4cP

0

Au1 + 4t,U2 + \u4. W

U1

U2

U3

U4

+ (LurCr)

(4.50)
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The above dynamic equation is then substituted in the equations (4.20) to (4.23)
and can be rewritten in a matrix form, that is

,(3)

,(5)

,(5)

^3)

where

= H0+ An H1+A12H2+A13H3+ At4H4+ H5

Bn 0 0 0

0 B12 0 0

0 0 B13 0

0 0 0 BtA

H0 =

> sin f cos ? ^- - ? cos f sin ?^ + ACt
3oy^-fi) sin f + af3 cos f¦???

-3g^-èsin0- gè3 cos ?
0

H1 =

H2 =

Ih

;os f cos ? I Irr Irr b tt \—^— {-4Ui - -2?3 - Tdu4)
o

ü^{-LUl + \U3 + ^J4)
¿-A-iUi + mUt + iv*)

^m-hvi+hu,)
-^(-Lu1 + Iu2-^U4)

0

:os ¿> cos ???tt ? Irr b r r ^i

0

¿(-á^-á^ + JtZ4)

U2

U3

U4

(4.51)

(4.52a)

(4.52b)

(4.52c)

(4.52d)
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?? =

Ha

=*£* (fr + ¡U2 + A174)
O

Z-Ai^ + éU2 + ¡u4)
cos ¿coso COS f COS ? COS (¿COSO COS ¿COSE

(4.52e)

m

0
???

g cos ?

£COS0/ Q ff COS 0 t
'?3

0
(4.52f)

L /?«1 &' /^b' '?? b> Izzyb>

The input signal u is defined in (4.53) so that the system becomes linear,
namely

U2

U3

l¿4

I

H5

V

ßti 0 0 0

0 Bt2 0 0

0 0 Ba 0

0 0 0 Bu

' W1

W2

W3

\ L Wi .

-H0- AnH1 - A12H2 - At3H3 -

(4.53)

where Âti and Bti are the estimates of the unknown parameters Ati and Btl for
i = l,. ..,4.

Similar to the previous section, it is possible to form the closed-loop equation

of the feedback linearized system as follows

,(3)

,(5)

,(5)

^(3)

W1

W2

W3

W4

+ ¿0^/?) + ?>*,? (4.54)
¿=i i = l
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where

Gi=F5

G2 = H5

G3 = H5

G4 = H5

J-OOO
Bn

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0-^00
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 f 0B13

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

o o o J-

Hl

H:

H51

m

V

W2

W3

W4

W\

W2

W3

Wi

W\

W2

W3

W4

W\

W2

W3

Wi

H0 - AnHi - A12H2 - A13H3 - A14H4

Ì
(4.55a)

\

H0 - AnH1 - At2H2 - At3H3 - A14H4

J
(4.55b)

\

-H0- AaHi - A12H2 - A13H3 - A14H4

)
(4.55c)

\

H0 - AnHi - A12H2 - At3H3 - A14H4

/
(4.55d)

The control inputs w\, ??2, W3 and w4 are defined according to the equations (4.28)
to (4.31).

The update law for the parameter estimation error signals ¿4(t and 5bu is then
set as

(4.56)5Ati = - (HfPX + XTPH¡)
5Bu = -(G7PX + XTPG[)

where the matrix P and the vector X are given by (4.39) and (4.44), and the vectors
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H¡ and G\ are defined as follows

H' (4.57a)
0

Hi
16x1

G' = (4.57b)
0

Gi
J 16x1

The following theorem is an generalization to Theorem 2 and provides a suffi-
cient condition for the stability of the closed-loop system (4.54) and (4.56).

Theorem 3. The state trajectories of system (4-54) with the update law for the
estimation errors 5Ati and 5Bti for i = 1, ... 4 given in equation (4-56) are globally
stable in the sense of Lyapunov.

Proof: To carry out the stability analysis, choose the Lyapanov function can-
didate as

t=l i=l

The derivative of this Lyapunov function along the state trajectories of the system
in (4-54) yields

V = XTPX + XTPX + S 8AJAu + S SbJbu (4.59)
¿=i

Now, using (4-56) one arrives at the following relation

V = -X1 X (4.60)



which guarantees the negative semi-definiteness of V. This implies that the origin
is a globally stable equilibrium point of the system (4-54) o-nd (4-56).

Remark 2. Stability of the system (4-54)and (4-56) implies that the state variables
defined in (4-39) as well as the estimation errors remain bounded as t —> oo.

The above theorem states that the control of the system is no longer dependent

on prior knowledge of the actuator thrust dynamic parameters and these parameters
could be estimated from the input and states signals of the system, provided that

all the states of the system are available. Therefore, if the LOE fault occur in

one of the actuators, the parameter estimation module is able to estimate the post

fault model of the actuators and compensates for the error effects in the system by

proper commanding the healthy and faulty actuators and guarantee the closed-loop
stability of the system.

4.5 LIP, Float and HOF Faults Modeling

In this section, a short discussion on the effects of LIP, float and HOF faults in

an actuator is provided. However, our proposed method for adaptive feedback lin-
earization is shown to be inadequate for these types of faults as a result of the fact
that the quadrotor is an under-actuated system.

In case of these types of faults, one of the actuators is either stuck in a certain
speed with no possibility of controlling it as in the LIP and HOF or fully nonfunc-
tional as in the float fault. Without loss of generality, let us assume that one of

these faults has occurred in the first rotor and the remaining actuators are healthy.

Therefore, the speed of the first rotor has been frozen at a certain point, that is

Q1 = U1 (4.61)
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where

O, , Vi < tfi, Float

O? = < ña, , Vi < i,fl, LIP (4.62)
üim or üiM, , Vi < tfi, HOF

where O? is the actual output of the actuator, üci is a value within the range of
operation of the ith actuator frozen at the time of failure and üim and üiM are the
upper and lower limit.

The resulting thrust force from the faulty first actuator is given by

T1 = büj (4.63)

The term T1 becomes zero as Ti stays constant, that is

T1 =0

T1 = AtTi + B1U1 + Ct for i = 2, 3, 4
(4.64)

The input moments after the total LOE fault would also change according to the
following equation, namely

U1 = 6O? + T2 + T3 + T4

U2 = -lT2 + IT4

U3 = -i{bñ¡) + in

?* = -im) + in -in + ¿?
Therefore, the dynamics of the input moments become

(4.65)
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U1 = At(T2 + T3 + T4) + Bt(u2 + u3 + U4) + ACt

U2 = I A1 (-T2 + T4) + I B1X-U2 + u4) , ?
(4.66)

U3 = IA1T3 + lBtu3 + Ct

LI4 = ^A1[T2 -T3 + T4) + ^B1[U2 -u3 + u4)
It is possible to rewrite the dynamic equations in (4.66) in a matrix form as in the
following

U1

U2
U3
U4

U1

U2

U3

U4

Bt

1 1 1

-I 0 I

0 I 0

i à
' b b

U2

U3

U4

+

-At{bÙ\) + ACt
0

Atl(bÙ\) + C1
ÎMbùi)

(4.67)

Similar to the previous sections, the goal is to control the position (x, y, z) and
the heading angle, f, of the quadrotor. Substituting the above dynamic equation in
equations (4.20) to (4.23) results in the following open-loop dynamic equations for
the quadrotor system, namely

,(3)

(5)y

^(3)

where

/

= Gi + G2 At

U1

U2

U3

U4

Bt

1 1 1

-? 0 I

0 I 0

d d
' b b

U2

U3

U4

-At{bñ\) + 4Ct
0

Atl{bü\) + Ct
íAmi)

(4.68)

G1 =

-f sin ¿»coso ^3- - ? cos f sin OQ-
"?a?-f sin f + g¿3 cos f

'XX

-3q^-Òsine-gè3cose1VV

0

(4.69a)
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G2 =

cos f COS ?
m

0

0

0

0

0

g COS ß r\

1
Uz J

(4.69b)
0 0

0 0 0

We are seeking a control law to first feedback linearize the system equations

and then to stabilize the closed-loop dynamics. If we let the linearized equation to
be

G <* 1 G
W ?,(3)

y(5)

,(5)

¦F,(3)

IU2

W3

IÜ4

(4.70)

then the input voltage to the remaining healthy actuators should satisfy the following
equation, that is

1 1 1

-I 0 I

0 I 0

d
L b

d d
' b b

U2

U3 B,Gi
U>2

W3

wa

G1 - G2A1
U2

Us

U4

U2 U3 U4

-G2

-At(hÙ\) + 4Ct
0

Atl{bÙj) + Ct
ÎMbùl) j/

(4.71)

is left multiplied by aIt should be noted that the input vector

nonsquare matrix of the (4 ? 3) dimension. Since the number of coloums is larger
than the number of rows, this matrix is left invertible. In other words, since the

number of free parameters m for i = 2, . . . , 4 is less than the number of equations,
which is four, the above equation does not have a solution.

If we select to only control three of the outputs, for example z, y and f, the
above equation has a unique solution as one of the equations would be deleted.
The problem in this case is that by controlling only three outputs, the uncontrolled
output could become unstable, for example x. The physical interpretation here
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could be explained by the fact that in hovering condition the thrust forces from all
the actuators should satisfy the following criteria, that is

(4.72)

T1 + T2 + T3 + T4 = U1 = mg

-T2 + n = o

-T1 + T3 = O

-T1 + T2 - T3 + T4 = 0

where mg is the force due to gravity. This means that at hovering T1 = "? for
i = 1,...,4. Each of these equations is satisfied by controlling z, y, ? and f
respectively. Let's assume that a LIP, float or HOF fault has occurred in one of the
actuators, i.e the first actuator, therefore, T1 = b£l\ and we select to control only
three outputs say z, y and f. We now have

T2 + T3 + T4 = mg- bÙ\

-T2 + T4 = O

T2 -T3 + T4 = bU¡

(4.73)

Therefore,

T1 = bÜ¡
?? mg

2 — T

T3 = ?- bùi

T4 = ?

(4.74)

This results in -T1 + T3 = ^f -2k f O. This an additive force that generates a roll
moment and results in an unstable movement of the quadrotor in the ? direction.
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4.6 Simulation Results

In this section the behavior of the quadrotor model with the fault recovery mech-

anism is studied through simulation results. Similar to the previous chapter, the

model used for simulation is OS4 developed in Ecole Polythechnique Federal De

Lausanne [I]. The model used for control design is approximately nonlinear but we
have implemented the fully nonlinear model of the quadrotor as well as the actu-

ators for simulation and additive white Gaussian noise is also added to input and

output channels to simulate a more realistic environment. The additive noise power

is selected so that the signal to noise rate is approximately 15 db.

The desired trajectory commanded to the system is similar to the 1st trajectory

in Chapter 3, Section 3.4. The mission starts at the position (x, y, z) — (0, 0, 0) while
the roll, the pitch and the yaw angles are initially equal to zero. The commanded

trajectory is to fly from the initial point to the point (10, 10, 10)(m) in 20 seconds
and hovering at this point. The fault trajectory here assumes partial LOE failure
in the first actuator at time — 50 sec. Three different fault severities are simulated

where the first actuator losses 10%, 25% and 50% of its effectiveness. It should be

noted that in this work we have not considered the limits on the input voltage to

the actuators. Therefore, although it is possible to simulate higher severity of fault

scenario , but this may not be practical due to physical limitations and constraints

of the actuators in reality.

10% LOE in the 1st actuator

The first set of simulations is related to a scenario where a 10% partial LOE

fault has occured in the first actuator at time = 50 .sec without the fault recovery

mechanism. Figures 4.2, 4.3, 4.4 and 4.5 show the linear position, Euler angles, input

signals and the error signals corresponding to the commanded trajectory and the
observed outputs for this scenario. It is seen that only 10% LOE in the first actuator
leads to a relatively large error (approximately 80%) in the output x. Higher severity
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of LOE fault in one actuator leads to significantly large error signals that even can

make the system outputs unstable. Specifically, a 25% of LOE fault without fault
recovery mechanism leads to an unstable system.

The second set of simulations is related to a scenario where the fault tolerant

controller is implemented in the closed-loop system and a 10% partial LOE fault
has occured in the first actuator at tim,e = 50 sec. Figures 4.6, 4.7 and 4.8 and 4.9

show the linear position, Euler angles, input signals and the estimated parameters of
the faulty actuator corresponding to this scenario. Error signals are also depicted in
Figure 4.10. It can be seen that with the parameter estimation module and the fault
recovery algorithm, the outputs of the system affected by the LOE fault as depicted
in the previous set of simulations, converge to the desired commanded trajectories
even after the occurrence of the fault and the error signals also converge to zero as

t —> oo .

25% LOE in the 1st Actutor

Figures 4.11, 4.12 and 4.13 and 4.14 show the linear position, Euler angles,
input signals and the estimated parameters of the faulty actuator corresponding
to a 25% LOE fault in the first actuator at time = 50 sec. Error signals are also

depicted in Figure 4.15. Without the fault recovery mechanism, the outputs of the
system subject to %25 LOE fault become unstable but as can be seen with the fault
recovery the error signals converge to zero after the fault occurence as t —» oo.

50% LOE in the 1st Actutor

Figures 4.16, 4.17 and 4.18 and 4.19 show the linear position, Euler angles,
input signals and the estimated parameters of the faulty actuator corresponding
to a 50% LOE fault in the first actuator at time = 50 sec. Error signals are also

depicted in Figure 4.20. Without the fault recovery mechanism, the outputs of the
system subject to a 50% LOE fault become unstable but as can be seen with the
fault recovery the error signals converge to zero after the fault occurence as i —> oo.
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Multiple Faults in Two Actuators

In order to show the performance of the adaptive feedback controller in case

of multiple fault occurrences, we simulate the closed-loop system assuming that

the 10% partial LOE fault will occur in both the first and the fourth actuators at

different times, i.e. time = 50 sec in the first one and time = 80 sec in the fourth

one. Figures 4.21, 4.22, 4.23 and 4.24 show the linear position, Euler angles, input

signals and the error signals between the commanded trajectory and the observed
outputs corresponding to this scenario, while there is no fault recovery mechanism.

The effect of the LOE fault in the first actuator mostly appear on the ? output while

the y output is the one subject to change due to the fault in the fourth actuator.
The error signals in this case show relatively considerable difference between the

desired output and the observed ones.

Figures 4.25, 4.26 and 4.27 and 4.28 show the linear position, Euler angles,
input signals and the estimated parameters of the faulty actuator corresponding to
10% LOE fault in the first actuator at time = 50 sec and the same fault in the fourth

actuator at time = 80 sec with the fault recovery mechanism. The error signals are

depicted in Figure 4.29 arid as expected they converge to zero as t —> oo.

In order to gain a better understanding of the performance of the proposed

adaptive feedback controller in presence of faults, Table 4.1 shows the mean and
standard deviation values of the error signals in steady state for all the above sce-
narios. It should be noted that all the simulations were performed for the duration

of 180 seconds and with the presence of the similar additive noise on the output

signals as well as input signals. The results indicate, in general, that the system
recovered from the LOE fault presents error signals with small mean values and

prevents the faulty system to become unstable. In other words, the performance of
the system recovered from faults has considerably been improved with respect to
the faulty system.
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Table 4.2 shows the mean values related to the input signals to the rotors in

the above mentioned scenarios. It should be noted that we have not considered

limits on the input signals in this work, however, in practice this is an important

factor to be considered. Table 4.2 shows that due to higher LOE severity fault in

an actuator, higher level of input voltage is required. It is possible to verify the
maximum level of LOE fault that the quadrotor is capable of recovering by knowing

a priori the limits and bounds on the input voltage.
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4.7 Conclusions

This chapter has presented different fault characteristics in actuators and the effects
of actuator faults on the quadrotor system. The feedback linearization controller
developed in Chapter 3 is generalized to be able to compensate partial LOE fault
effects on the system. This is accomplished by introducing a parameter estimation
algorithm and deriving proper update laws for the parameters subject to changes
due to the presence of LOE fault. The algorithm is extended to monitor all the four
actuators performance to be able to recover from multiple occurrence of LOE fault
in different actuators. It is shown the system is able to recover from partial LOE
fault automatically. Simulation results are presented in this chapter that show the
effectiveness of our designed controller in presence of faults in actuators.

Next chapter will discuss the conclusions of this thesis and future work to be
conducted on fault recovery of under-actuated quadrotor aerial vehicle.
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Figure 4.2: Linear position in response to the commanded trajectory corresponding
to a 10% LOE fault in the first actuator and without fault recovery mechanism: (a)
x, (b) y and (c) z, measured in meters.
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Figure 4.3: Euler angles in response to the commanded trajectory corresponding to
a 10% LOE fault in the first actuator and without fault recovery mechanism: (a)
Roll (rad), (b) Pitch (rad) and (c) Yaw (rad).
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Figure 4.4: Input signals in response to the commanded trajectory corresponding
to a 10% LOE fault in the first actuator and without fault recovery mechanism.
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Figure 4.5: Error signals ex, ey, ez measured in meters and e? in radians in response
to the commanded trajectory corresponding to a 10% LOE fault in the first actuator
and without fault recovery mechanism.
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Figure 4.6: Linear position in response to the commanded trajectory corresponding
to a 10% LOE fault in the first actuator and with the fault recovery mechanism: (a)
x, (b) y and (c) z, measured in meters.
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Figure 4.7: Euler angles in response to the commanded trajectory corresponding to
a 10% LOE fault in the first actuator and with the fault recoven* mechanism: (a)
Roll (rad), (b) Pitch (rad) and (c) Yaw (rad).
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Figure 4.8: Input signals in response to the commanded trajectory corresponding
to a 10% LOE fault in the first actuator with the fault recovery mechanism.
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Figure 4.9: Estimated parameters in response to the commanded trajectory corre-
sponding to a 10% LOE fault in the first actuator with the fault recovery mechanism:
(a) Aa and (b) Bn
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Figure 4.10: Error signals ex, ey, ez measured in meters and ß? in radians in response
to the commanded trajectory corresponding to a 10% LOE fault in the first actuator
with the fault recovery mechanism.
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Figure 4.11: Linear position in response to the commanded trajectory corresponding
to a 25% LOE fault in the first actuator with the fault recovery mechanism: (a) x,
(b) y and (c) z, measured in meters.
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Figure 4.12: Euler angles in response to the commanded trajectory corresponding
to a 25% LOE fault in the first actuator with the fault recovery mechanism: (a)
Roll (rad), (b) Pitch (rad) and (c) Yaw (rad).
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Figure 4.13: Input signals in response to the commanded trajectory corresponding
to a 25% LOE fault in the first actuator with the fault recovery mechanism.
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Figure 4.15: Error signals ex, ey, ez measured in meters and ß? in radians in response
to the commanded trajectory corresponding to a 25% LOE fault in the first actuator
with the fault recovery mechanism.
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Figure 4.16: Linear position in response to the commanded trajectory corresponding
to a 50% LOE fault in the first actuator with the fault recovery mechanism: (a) x,
(b) y and (c) z, measured in meters.
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Figure 4.17: Euler angles in response to the commanded trajectory corresponding
to a 50% LOE fault in the first actuator with the fault recovery mechanism: (a)
Roll (rad), (b) Pitch (rad) and (c) Yaw (rad).
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Figure 4.18: Input signals in response to the commanded trajectory corresponding
to a 50% LOE fault in the first actuator with the fault recovery mechanism.
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Figure 4.19: Estimated parameters in response to the commanded trajectory corre-
sponding to a 50% LOE fault in the first actuator with the fault recovery mechanism:
(a) An and (b) Bn
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Figure 4.20: Error signals ex, ey, ez measured in meters and e^ in radians in response
to the commanded trajectory corresponding to a 50% LOE fault in the first actuator
with the fault recovery mechanism.
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Figure 4.21: Linear position in response to the commanded trajectory corresponding
to a 10% LOE fault in the first and 4th actuator and without the fault recovery
mechanism: (a) x, (b) y and (c) z, measured in meters.
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Figure 4.22: Euler angles in response to the commanded trajectory corresponding
to a 10% LOE fault in the first and 4th actuators and without the fault recovery
mechanism: (a) Roll (rad), (b) Pitch (rad) and (c) Yaw (rad).
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Figure 4.23: Input signals in response to the commanded trajectory corresponding to
a 10% LOE fault in the first and 4th actuators without the fault recover}' mechanism.
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Figure 4.24: Error signals ex, ey, ez measured in meters and ß? in radians in response
to the commanded trajectory corresponding to a 10% LOE fault in the first and 4th
actuators without the fault recovery mechanism.
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Figure 4.25: Linear position in response to the commanded trajectory correspond-
ing to a 10% LOE fault in the first and 4th actuator and with the fault recovery
mechanism: (a) x, (b) y and (c) z, measured in meters.
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Figure 4.26: Euler angles in response to the commanded trajectory corresponding
to a 10% LOE fault in the first and 4th actuators and with the fault recovery
mechanism: (a) Roll (rad), (b) Pitch (rad) and (c) Yaw (rad).
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Figure 4.27: Input signals in response to the commanded trajectory corresponding
to a 10% LOE fault in the first and 4th actuators with the fault recovery mechanism.
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Figure 4.28: Estimated parameters in response to the commanded trajectory corre-
sponding to a 10% LOE fault in the first and 4th actuators with the fault recovery
mechanism: (a) At\ and (b) Bt\
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Figure 4.29: Error signals ex, ey, e2 measured in meters and e^ in radians in response
to the commanded trajectory corresponding to a 10% LOE fault in the first and 4th
actuators with the fault recovery mechanism.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, a fault recovery module by employing an adaptive feedback lineariza-

tion technique is developed and applied to an under-actuated quadrotor aerial vehi-

cle. Partial LOE fault is simulated as variation in certain actuator parameters. A

parameter estimation scheme is designed to monitor the performance of the actua-
tors. The stability of the closed-loop system in presence of LOE actuator faults is
ensured by proper adaptive update laws.

As the first step, the mathematical model of the quadrotor system is presented

by employing the Newton-Euler formulations as well as the dynamic equations of
the actuators are formally incorporated. A comprehensive and detailed models on

the coordinate systems, the kinematics and the dynamics model of the quadrotor
and the actuators are also provided.

The dynamics of the quadrotor model are partitioned into four semi-decoupled
subsystems by considering some approximations at the hovering condition. Further-
more, the dynamics governing the input moments to the quadrotor are derived and
considered in the controller design for the system. Feedback linearization and LQR
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techniques are employed to design controllers for the nonlinear subsystems. A for-

mal analysis is conducted to show that the closed-loop system is asymptotically

stable. Simulation results are performed in MATLAB simulink and presented to

elucidate the performance of the nominal controller under different trajectories in

healthy conditions. In order to simulate a more realistic environment, we have added

noise to the output signals as well as inputs. Furthermore, the robustness of the

designed controller is evaluated through simulations and by assuming variations in

some of the model parameters. The simulations show satisfactory performance of

the designed controller for the healthy quadrotor according to the design criteria.

Different types of faults namely LIP, HOF, float and LOE in actuators are

discussed. A complete analysis of the effects of each fault on the quadrotor system

is provided. The solution proposed for the fault recovery in actuators is shown to

be effective for the reco\'ery from LOE fault. The feedback linearization controller

developed for the healthy quadrotor is generalized to compensate partial LOE fault

effects on the system. This is accomplished by introducing a parameter estimation

algorithm and deriving proper update laws for the parameters subject to changes

due to the presence of the LOE fault. The algorithm is extended to monitor the

performance of all the four actuators to recover from multiple occurrences of LOE

faults. Stability analysis of the closed-loop system with the embedded fault recov-
ery scheme is also provided. A discussion on the modeling of the LIP, HOF and
float faults is provided that indicates that our proposed fault recovery method is

inadequate for recovering from these types of faults. This is due to the fact that
the quadrotor is an under-actuated system and there is no redundant actuator to

compensate for the effect of these types of faults.

Simulation results are presented to show the effectiveness of our proposed

fault recovery methods in presence of the LOE fault in actuators. Different fault
scenarios with different se\'erities of the LOE faults in one actuator are discussed
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and the performance of the closed-loop system with and without our proposed fault

recovery strategy is evaluated through simulations. In some of the fault scenarios the

system becomes unstable without the fault recovery module, however, by including

the fault recovery algorithm the system remains stable and the output error signals

remain bounded and finally converge to zero within a sufficiently fast time.

The recovery algorithm is also evaluated for the case of multiple LOE fault

occurrences in two different actuators. Due to the capability of our proposed gen-

eralized fault recovery algorithm to accommodate multiple faults in different actu-

ators, the results obtained through simulation show satisfactory performance of the
controller.

A quantitative evaluation of the results is also made in order to compare the

performance of the quadrotor system under faults with and without our proposed

recovery strategy. The mean and standard deviations of the output error signals are

used for this analysis. The results demonstrate that the performance of the system

under recovery is considerably more efficient than the system under fault with no

recovery solution.

5.2 Future work

The present work has made some assumptions and approximations to partition the

nonlinear model of the quadrotor into four semi-decoupled subsystems. The dynamic

equations for the input moments to the quadrotor are also linearized. It is clear that

more accuracy is obtained by considering the fully nonlinear model of the system

for designing the controllers.
Environmental disturbances, such as wind gust can also be included in the

model of the quadrotor. This could be performed by considering the wind gust as

an additive torque in a certain direction. Parameters of the wind gust should be
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estimated by employing proper estimation methods so that the designed controllers
are capable of canceling the effects of this disturbance on the system.

Physical limits and and bounds on the input voltages to the actuators may

also be incorporated in the designed fault recovery algorithm so that the results are

more realistic and closer to the actual quadrotor system.

The analysis of the system should incorporate the effects of delay in fault
detection and inaccuracies by the fault detection and isolation module. This would

make it possible to determine the maximum allowable delays in the fault recovery

or fault detection system to guarantee the stability of the closed-loop system.

Another direction of the further work can also be on developing a fault recovery

algorithm in case of LIP, HOF and float faults in actuators for the under-actuated
quadrotor system. Control allocation techniques may be a proper method to inves-
tigate for the fault recovery from these types of faults.

The concentration of this work was on recovery from faults that may occur

in actuators. Faults in sensors of the system may also affect the performance of

the system. Hence, another direction of future studies can be on developing fault
recovery strategies to recover from faults in different sensors of the quadrotor aerial
vehicle.
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