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ABSTRACT

Fault Tolerant Control for Bimodal Piecewise Affine Systems

Nastaran Nayebpanah

This thesis addresses the design of fault-tolerant controllers and a fault identi-

fication technique for bimodal piecewise affine systems. A new fault-tolerant control
methodology is presented. Fault-tolerant, state feedback controllers are synthesized for
piecewise-affine (PWA) systems while minimizing an upper bound on the expected value
of a quadratic cost function. The controllers are designed to deal with partial loss of con-
trol authority in the closed loop PWA system. The proposed controller design technique
stabilizes and satisfies performance bounds for both the nominal and faulty systems. An-
other contribution is the development of a fault identification technique for bimodal piece-
wise affine (PWA) systems. A Luenberger-based observer structure is applied to estimate

partial loss of control authority in PWA systems. More specifically, the unknown value
of the fault parameter is estimated by an observer equation obtained from a Lyapunov
function. The design procedure is formulated as a set of linear matrix inequalities (LMIs)
and guarantees asymptotic stability of the estimation error, provided the norm of the input
is upper and lower bounded by positive constants. The new PWA identification method
is illustrated in a numerical example. As a third contribution, an active fault-tolerant
controller structure is proposed for bimodal PWA systems. The new active fault-tolerant
controller structure is illustrated in a numerical example.
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Chapter 1

Introduction

1.1 Motivation

Increasing reliability of complex systems has received much attention for the past two
decades. In particular, design of more reliable aircraft is of great importance in order to
avoid fatal aircraft accidents. NASA's aviation safety program (AvSP) [41] is an example
of the projects that were initiated to fulfill this demand. "AvSP is working to develop
advanced, affordable technologies to help make travel safer on commercial airliners and
smaller aircraft", as claimed in [41]. Research is conducted on both "accident preven-
tion" and "accident mitigation". In the area of "accident mitigation" the goal is to make
accidents more survivable.

Occurrence of faults in any subsystem of an aircraft might result in aircraft acci-
dents and eventually loss of life and property. Thus, measures must be taken to detect and
identify these faults and reconfigure the systems or the aircraft to maintain the required
performance or reduce the effect of the fault in the system. On the other hand, in order
to analyze the pre-fault and post-fault system for recovery, one needs a precise model-
ing of the system. Most of the complex systems like aircraft exhibit nonlinear behavior.
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However, most of the present methods for fault identification and reconfiguration are de-
signed for linear models of the nonlinear systems. Linear models of nonlinear systems
are valid only within a small range around the equilibrium point about which the system
is linearized. Piecewise affine (PWA) systems are a class of hybrid systems and provide
a framework to describe hybrid dynamical systems exhibiting switching. Such switching
might be due to the nature of the system such as dead-zone, saturation and hysteresis. Fur-
thermore, PWA modeling is a good approximation technique for nonlinear systems. PWA

approximations of nonlinear systems can be used to globally model a nonlinear system to
provide the designer with a more precise model of the system and thus a better chance to
successfully reconfigure the faulty system. A PWA approximation of nonlinear dynamics
works at a global scale yet, locally, it does not have the same complexity of nonlinear
dynamics.

This thesis addresses the design of a fault identification mechanism, a fault-tolerant
controller and an active fault-tolerant controller structure for bimodal PWA systems.

1.2 Literature Review

1.2.1 Partial Loss of Control Authority

Partial loss of control authority or Loss-of-Effectiveness (LOE) faults occur due to a re-

duced gain in the mechanisms that drive the control actuators. Particularly, in aircraft,
LOE faults might result in less controllable surface movement for a given command
signal than in the pre-fault case. Furthermore, LOE faults may be due to a reduction
in aerodynamic coefficients and thus generation of less aerodynamic forces for a given
control surface movement [47]. The following subsections present some examples of
Loss-of-Effectiveness in aircraft control. LOE faults have been widely investigated in the

2



literature [10], [11], [12].

Loss of Elevator Effectiveness due to Aircraft Icing

Aircraft icing is one of the main problems that causes performance degradation for a hor-
izontal tail. Accumulation of ice in the horizontal tail is a potentially hazardous condition

especially during approach and landing while it is working near its performance limits.
The main problem that icing causes is a major reduction of the maximum lift for any
aerodynamic surface like the vertical tail or the wing. However, aircraft icing is of main
concern on the horizontal tail due to the down-wash caused by the wing. Tail icing is gen-

erally not observable from the cockpit. Reference [39] addresses a technique for detecting
icing on the horizontal tail by continuously estimating elevator control surface effective-
ness. Fig. 1.1 taken from [47] shows how the slope of the lift curve and the maximum
lift of airfoils reduce when it is contaminated with various ice shapes. Fig. 1 .2 borrowed

from [48] shows accumulation of ice on the leading edge of a wing.
In the past 50 years, ice has played a role in numerous accidents that have killed

crews and passengers and destroyed aircraft. Some examples of icing-related aircraft
accidents include the following:

• "A commuter flight impacted terrain during landing in December 1989, in Pasco,
Washington, U.S., killing both crew members and all four passengers. The aircraft
had been in icing conditions for about 10 minutes on approach.

• A commuter flight went out of control in icing conditions and dived into a soybean
field en route to Chicago, Illinois, U.S., in October 1994. killing all 68 aboard."
[44]

3
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Figure 1.1: Lift curves for clean airfoil and airfoil contaminated with various ice shapes

Loss of Tail-rotor Effectiveness in a Helicopter

Loss of tail-rotor effectiveness (LTE) is a flight characteristic that may result in an uncom-

manded yaw rate. In order to maintain a constant heading while hovering, the pilot should
maintain tail-rotor thrust equal to the trim thrust. The tail-rotor trim thrust, is the thrust

required to cancel the effect of the main rotor torque. The required tail-rotor thrust in

actual flight is modified by the effects of the wind. If an uncommanded right yaw occurs

in flight, it may be because the wind reduced the tail-rotor effective thrust.

The wind can also add to the anti-torque system thrust. In this case, the helicopter

will react with an uncommanded left yaw. The wind can and will cause anti-torque system

thrust variations to occur [42]. If LTE is not corrected, it results in loss of helicopter

control. LTE has been a contributing factor in several helicopter accidents [42]. The
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Figure 1.2: Accumulation of ice on wing leading edge

following are examples of accidents due to loss of tail-rotor effectiveness

• "A helicopter collided with the ground following a loss of control during a landing
approach. The pilot reported that he was on approach to a ridge line landing zone
when, at 70 feet above ground level (AGL) and at an airspeed of 20 knots, a gust of
wind induced loss of directional control. The helicopter began to rotate rapidly to

the right about the mast. The pilot was unable to regain directional control before
ground contact.

• A helicopter entered an uncommanded right turn and collided with the ground. The
pilot was maneuvering at approximately 300 feet AGL when the aircraft entered
an uncommanded right turn. Unable to regain control, he closed the throttle and
attempted an emergency landing into a city park." [42]
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1.2.2 Piecewise Affine (PWA) Systems

A system is defined as being "hybrid" when its state has continuous time-driven and
discrete event-driven components that evolve with the dynamics of the system. The spread

use of computers for the regulation of physical systems with continuous dynamics has

spurred the application ofhybrid systems in modern engineering [40]. Examples ofhybrid
systems for aerospace applications are multi-mode aircraft control and gain scheduled

control laws. PWA systems are a class of hybrid systems where each ith subsystem is
affine:

x(t) = Aix(t) + B(u(t) + m¡
(1.1)

y{t)=Qx(t)+Diu{t)
where u(t), x(t) and y(t) represent the input, state and output of the system respectively.
The matrices Ai,Bj,Q and D¡ and vector of constant values m¡ which are called the affine

terms, contain real entries. PWA systems provide a framework to describe hybrid dynami-

cal systems exhibiting switching. Such switching might be due to the nature ofthe system

such as dead-zone, saturation and hysteresis. Furthermore, PWA systems may result from

piecewise approximations ofnonlinear dynamics. Using a PWA model of a complex non-

linear system enables the designer to have a global approximation of the system while

locally having simpler affine dynamics. PWA systems pose challenging problems due to

their switching nature [28].

State feedback control of continuous-time PWA and piecewise-linear systems have

received much attention for the past decade [33], [34], [31]. In [31] analysis and con-

troller synthesis of piecewise linear systems is addressed. In [34] the use of piecewise

quadratic cost functions is extended from stability analysis of piecewise linear systems to

performance analysis and optimal control. The theory of continuous-time PWA systems

has been applied to several different systems, such as, production systems [18], aerospace
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systems [19], wheeled robots [21] and electric circuits [22]. In [55] reconfigurable control
for PWA systems is addressed. State observer design for general PWA systems was first
considered in [58] and later addressed for PWA bimodal systems in [57]. In [23], lin-
ear local controllers are extended to PWA controllers that can guarantee global stability.

Discrete-time PWA systems have also received attention recently. In [32] a constructive
LMI based design procedure for certainty equivalence control of discrete-time PWA sys-
tems with continuous dynamics is addressed.

1.2.3 Fault-Tolerant and Reconfigurable Control

In order to increase safety and reliability of safety-critical systems such as aircraft, many
researchers have worked on the development of fault-tolerant control systems and recon-

figurable control. It is necessary to design control systems which are capable of tolerating
potential faults in order to improve the reliability while providing a desirable performance.
These types of control systems are often known as fault-tolerant control systems (FTCS)
[35]. In [14] an integrated fault detection, diagnosis, and reconfigurable control scheme
based on the interacting multiple model (IMM) approach is proposed. Fault detection and
diagnosis (FDD) is carried out using an IMM estimator. In [36] an introductory overview
on the development of fault-tolerant control systems is presented. [36] summarizes some

of the important results in this subject area. Reference [37] provides a perspective on the
state of the art in robust approaches to fault-tolerant control and gives some indication of
ways in which future research might evolve. In [38] an overview of fault-tolerant control
is presented, beginning with robust control, progressing through parallel and analytical
redundancy, and ending with rule-based systems and artificial neural networks.

Reconfigurable control acts on-line in response to component faults by restructur-
ing the control loop. Reconfigurable controllers use the estimation of the fault from a

7



fault detection and identification (FDI) component to correct the faulty system once the
fault has been detected and identified [55]. Fault-tolerant and reconfigurable control has
been a subject of research since the initial research on restructurable control and self-
repairing flight control systems in the early 1980s [45]. An early review on the design
issues for fault-tolerant controller synthesis for aircraft was given in 1985 [46]. In [46]
the problem of accommodating faults in aircraft is addressed. Techniques which may be
used to either passively tolerate or actively detect and compensate for component faults
are reviewed, and suggestions are made for integrating these techniques into a restruc-
turable flight control system. A recent review on reconfigurable (active) fault-tolerant
control systems (FTCS) is presented in [35]. This thesis proposes a fault-tolerant and a
reconfigurable controller design technique. The following definitions for fault-tolerant
and reconfigurable control systems in this thesis are now presented.

Definition 1.2.1 A controller is fault-tolerant when it does not actively detect component
faults. Therefore, in the off-line design offault-tolerant controllers, measures are taken
to tolerate potentialfaults. Note that the design offault-tolerant controllers is performed
off-line and a fault detection and identification (FDI) component is not present in the
system. Therefore, a fault-tolerant controller does not have any information about the
presence and magnitude ofafault in the system.

Our next definition is given below.

Definition 1.2.2 A reconfigurable controller (activefault-tolerant controller) acts on-line
in response to componentfaults. An FDI component provides the information about the
presence and the magnitude of a fault in the system. In this thesis, the reconfigurable
controller switches among different controller gains based on the information provided
by the FDI component.

8



1.2.4 Fault Detection and Identification (FDI)

Fault detection addresses the problem ofmonitoring the occurrence of faults in the system.
Fault isolation locates the fault in the system once detected. Fault identification measures

the magnitude ofthe fault in the system. Once the fault is detected, isolated and identified,
measures can be taken to mitigate its effect in the system. Many researchers have studied
and developed fault detection, isolation and identification (FDI) methods for linear sys-
tems. In [53] adaptive observers are applied to detection and isolation of actuator faults in
a linear aircraft model. In [13] an approach to detection and diagnosis ofmultiple faults in
a dynamic system is proposed. It is based on the interacting multiple-model (IMM) esti-
mation algorithm. Reference [51] addresses fault detection and isolation for a network of
unmanned vehicles using a linear time invariant system representation. In [52] adaptive
observers are applied to fault identification and fault-tolerant control of a linear aircraft
model. However, dynamical models ofmost complex systems involve nonlinear phenom-
ena. Some researchers have focused on the development of methodologies to detect and
isolate faults for nonlinear systems. In [49] a fault detection and isolation architecture for
nonlinear uncertain dynamic systems is presented. This approach uses a bank ofnonlinear
adaptive estimators. In [50], [54] a methodology for detecting, isolating and accommo-
dating faults in a class of nonlinear dynamic systems is presented. In [55] reconfigurable
control of PWA systems after actuator and sensor faults are detected, is addressed. How-
ever, [55] does not address fault identification. In [56] an active fault-tolerant control
strategy and a fault estimation observer are developed for systems described by multiple
linear models. State observer design for general PWA systems was first considered in [58]
and later addressed for PWA bimodal systems in [57]. This thesis builds on these previ-
ous methods and proposes a fault parameter identification observer for bimodal PWA slab
systems. PWA slab systems are a class of PWA systems where switching depends on only

9



one state of the system. This thesis only addresses identification of the fault parameter.
Therefore, a fault detection and isolation logic is not presented.

1.2.5 A Brief Comparison of PWA Systems with Other Switched Sys-
tems

A class of switched control systems is Gain Scheduling (GS). In GS, controllers are de-

signed for local linear models of a nonlinear system. In classic GS control, stability of
switching among different models is not guaranteed. One extension of the classic GS con-
troller design is so-called Linear Parameter Varying (LPV) modeling and control. This

approach enables to obtain linear models of the nonlinear system at different operating
points. GS performs a continuous interpolation of the gains while PWA performs discrete
switching between a finite number of gains. Another class of switched systems is Takagi-

sugeno fuzzy systems. In this class, a convex combination of the controllers for different
linear or affine subsystems is used to calculate the controller gains. The convex combi-
nation of the controllers is obtained using fuzzy membership functions. Multiple Model
(MM) and Interacting Multiple Model (IMM) approaches, include embedded estimators
for FDI purposes by using multiple Kaiman filters.

1.3 Contributions of the Thesis

The main contributions of this thesis are the following:

• To propose a new fault-tolerant controller synthesis methodology for PWA systems

• To propose a new fault identification mechanism for bimodal PWA systems

• To propose an active fault-tolerant controller structure for bimodal PWA systems

10
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Missouri, USA, June 10 - 12, 2009, P: 222-226.
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Chapter 2

Fault-Tolerant Controller Synthesis for

Piecewise Affine Systems

2.1 Introduction

PWA systems pose challenging problems due to their switching nature [28]. Switching
among each closed loop model, either nominal or faulty, may destabilize the system even
if each closed loop model is stable and has good performance in its allowed working re-
gion [30]. However, if controllers for the PWA nominal and faulty models in all regions
are designed together in such a way that there exists a global Lyapunov function for all of
them, it is guaranteed that any switching between closed loop PWA models for both nom-
inal and faulty systems will be stable [30]. It is also possible to consider a performance
criterion in the controller design problem. In this chapter, an upper bound on the expected
value of a quadratic cost function is minimized for all PWA models of both nominal and
faulty systems. The controller design criteria is cast as a set of Linear Matrix Inequali-
ties(LMIs) and solved with SeDuMiAALMIP [59]. The resulting controller will not only
handle large deviations from equilibrium points for systems with nonlinear phenomena,

12



but it also shows a fault-tolerant behavior in the presence of faults without performance
degradation for the example in section 2.4.

2.2 Piecewise Affine Representation

Consider a nominal piecewise affine system of the form (2.1). Equation (2.1) might be
the natural dynamics of the system or the result of approximating nonlinear dynamics by
PWA dynamics.

x(t) = Aix{t) + Bju{t) + m,- Vx G Sèi (2- !)

In (2.1), x(t) G W is the state vector of the system, u(t) G Rk is the input to the system
and S¿¡, i G { 1 ,---,M] is a polytopic partition of the state space defined as [28]

P1- = {x I HiX > 0} (2.2)

where H¡ =
Hi hi

0 1
, X =

1

For the regions containing the equilibrium points, one has

MiQ = {x I H1X > 0} (2.3)

The vector m¡ is the affine term for each affine model which is a constant matrix

and nii = 0 for the regions including the equilibrium points.
Ellipsoidal Covering: An exact approximation of the polytopic partitioning of the state
space with ellipsoidal cell boundings for the regions that do not contain the equilibrium
points can be built for slab systems where switching depends on only one state [28]. This
bounding enables a convex formulation of the quadratic stabilization problem for PWA
slab systems [28]. The description of the ellipsoidal cells is

Sei Q Ej, and Ej Ç Sêj

13



where

e, = {*||| £*+/;· ||<i} (2.4)

and Ei and _/) follow directly from the polytopic partitioning. More precisely, if^- = {x |
d\ < cfx <d2}, then the associated ellipsoidal cell is described by E¡ = 2c] /(d2 -d\)
and fi = -(d2 + d\)/(d2 - d\). A PWA representation for a faulty system with partial
loss of control authority is as follows

x{t)=Ajx(t)+Bfiu(t)+mi Vxeâëi (2·5)
The state space partitioning for the faulty system is the same as the nominal system. The
matrix Bf encapsulates the fault in the system in each affine model, valid for <%u i E
{I,..., M}. This type of faulty system representation considers partial loss of control
authority in all of the actuator channels. Partial loss of control authority is a common type
of fault that occurs in certain actuator channels [1 1, 12, 10]. It can be modeled as a factor

that multiplies the B matrix for the nominal system and reduces the amount of control
authority. The faulty B matrix modeling partial loss of control authority can be written as

B? = Bip (2.6)

where the diagonal matrix ? is composed of unknown values of partial loss of control
authority for j e { 1 , 2, . . . , k] actuators in the system

p=diag[pi,p2,...,pk] (2·7)

The coefficient pj is a nonzero real number in the unit simplex, i.e, pj e (0, 1]. The
case pj = 0 corresponding to total loss of control authority is not addressed in this thesis.
Therefore, a given value pjmi„ is introduced where pjmi„ is a given value which represents
the most severe LOE fault that could happen in the j'h actuator channel of the system i.e
Pj G [pjmin A]-

14



2.3 Controller Structure and Performance

It is assumed that for each of the nominal and faulty systems described by equations (2.1)

and (2.5), respectively, the state feedback controller is parameterized by K1,, i G { 1 , . . . , M}
as

U = KiX1XE^. (2.8)

A performance criterion will be added to the design considerations to synthesize a guar-
anteed cost controller [15, 16]

J= / (??? + ??'????-= / ?1 (?+?/???)?? Vxe&¡ (2.9)Jo Jo

where ? = ? 6 M" is the state vector of the system, u = K¡x, K¡ = K¡ 0 ,ï

Y 0

0 0
, and Y > 0 and ? > 0 are weighting matrices.

Theorem 1: An upper bound of the expected value of the cost function (2.9) over

random initial conditions verifying

E{jc(0)xt(0)} = /, E{x(0)} = 0 (2.10)

is minimized for the PWA system (2.1) in closed loop with the controller (2.8) if there is
a solution to

min Trace (P)
s.t. P>0 and (2.11) VxG^,

15



where, Vx e ^/, (2.1 1) is given by
t

{At + BiKiYP + P(Ai + BiKi) Pm¡
mÏP

< -

t „

?+ K[EKi O
O O

Proof: We define a global quadratic candidate Lyapunov function as

V{x)=xTPx

(2.11)

(2.12)

where P = PT > 0. The derivative of (2.12) for the PWA system (2.1) in closed loop with

the controller (2.8) is

V(t) = l(Ai + BiKi)x(t)+mi]TPx(t) +xT(t)P[{Ai + BiKi)x{t)+mi} Vx G M¡ (2.13)

which can be written in matrix form as follows

Vit) =

It is required that

t _

(A1 + BiKi)7P + P(Ai + BiK1) Pm1
m\P

Vx 6 Sii

? (Ai + BiK1) TP + P(Ai + BiK1) Pm1
m\P

(2.14)

x< -j? (Y + Ki EKi)x Vx e Mi (2.15)

therefore,

4 (xTPx) < -? (T + Ki 'EKi)x Vx G ®iat

Multiplying both sides of (2.16) by minus one yields,

£ (? + K17EKi)x < -j (XTPx) Vx ß &i
Integrating both sides yields

3 rao ?

?(T + KiEKi)Xdt< / —T(XTPX) Vx G âêiJo at

(2.16)

(2.17)
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Note that Hm^c0Je(V) —> 0. In fact, the Lyapunov function (2.12) is positive definite and
V(x) —> °° as I |x| I —> oo . The derivative of the Lyapunov function V(x(t)) is required to be
negative definite in inequality (2.15). Therefore, for the system (2.1) the equilibrium at

the origin is globally asymptotically stable and therefore limí_>0ox(í) —>· O. Using this fact
in (2.17) yields

J <xT (O)Px(O) (2.18)

For random initial conditions note that [15]

E{J) <E{xT (O)Px(O)) (2.19)

where E is the expected value operator over random initial conditions x(0) verifying
(2.10). We now show that E{xr (O)Px(O) } is equal to Trace(P). Following the reasoning
in [43],

E{xr (O)Px(O) } = Trace(E{xr (O)Px(O) }) = Trace(E{x(0)xr(0)P})

Since,

one gets the result

Since Ki K¡ O and Y

E{x(0)xr(0)}=7

E{xT (O)Px(O) } = Trace(P)
? ol
0 0

, the inequality (2.15) can be written as

Vx e &i

(Ai + BiKi) 7P + P(Ai + BiKi) Prrii
mfP 0

< -
Y + K[ZKj 0

0 0

(2.20)
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which is the same as (2.1 1). This completes the proof. ¦
Remark: Inequality condition (2.20) is feasible only in the region ? G M¡. In order

to make this condition feasible for all Vx e M", the S-procedure method [28] is applied in
the next theorem.

To formulate controller synthesis as a convex problem one needs the following re-
sult.

Theorem 2: For PWA slab systems the inequality (2. 1 1) is implied by the following
set of LMIs

Q = QT>0, µ,<0, /=1,.., M
Ti + frmimf Qt1'2 Yj-E)'1 ßmfJ + QEj

T1Z2O -In 0 0
E1I1Yi 0 -4 0

J\imfJ + QEj)T ? ? -µ?{\-??)_
where G, = A1Q+ QÄJ +B1Y1 + YjB].

<0 (2.21)

Proof:

Letting sei = (Ai + B¡Kj), (2.1 1) can be rewritten as

srfJP + Pstfi Prrii
m'P 0

< -
Y +KjEXi 0

0 0
Vx G Mi (2.22)

Using (2.22) and (2.4) together with the S-procedure with multiplier X¡ < 0 [28] we ob-
serve that (2.22) is implied by

iJ.P + Ps/i + r + K/EKi Prrii
mJP 0

< -Xi
EjEi Ejfi
fiEt fffi -\

(2.23)
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Using new variables Q = P~X and µ, — X¡ x, the sufficient conditions for quadratic stabi-
lization are transformed to

ß=0G>0, M/<0, /= 1,...,Af

?/ Q-lmi + ßrlETfi
<0

where

^/v-l -???? -G-,?/ = < ?-'+?G'? + µG'???? + ?+?? EK¡

Applying Schur complement to the inequality (2.24) yields

l-fffi<0

(2.24)

(2.25)
Th + {?G^? + µt1 ETfi)^{l -fff¿)-\QT1'ni + nr1Eff¿)T < 0

Left multiplying the above inequality by Q, right multiplying it by Q = QT and rearrang-
ing yields

MQ + Q^ + QTQ + QK[EKiQ + µG l QEfE1Q+
(m¡ + HT1QETfOm(I - ff'f)-\mi + µ~? QEJf)T < 0

It was shown in [28] using the Matrix Inversion Lemma that (1 — fff)~l
fff)~xf. Thus, inequality (2.26) can be rewritten as

MQ + Q^! + QTQ + QK[EKiQ
+ µG1 QEjEiQ + ¡unum] + µ~? (QE[f)(QE[ff
+ mi(QEjf)T + QEjfmi + (Wiff + QEffiff^
? (i -fiffr\ßmff + QEffff)T < o

(2.26)

1 +ff'V -

(2.27)
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Inequality (2.27) can be further rewritten as

(2.28)

(2.29)

^iQ + Qsá? + QtQ + QK[EK1Q + \imrn]
+ µG1 (EiQf(I+ZJf)(E1Q) + miff(QEff
+ (QEj)(miff )T
+ (janiiff + QEj - QEj(l-fiff))^Jx
? (i-fiffr1 UWiff + QEj - QEj(I-Mf)Y < O

Inequality (2.28) can be rearranged as

MQ + Q^I + QYQ + QKfEKiQ + ßummf
+ Unntiff + QET)1Ij-1 (I - /iff)'1 (mmjf + QEJ)t
+ µG1 (EiQf (I + Mf)(EiQ) + miff (QEf)T
+ (QEf)(mifff + ß^ (QEf)(I-Mf)(QEf)7
-famf? + QEf^EiQ-^QEffamiff + QEff <0

which, after simplification, yields

MQ + Q<T + QTQ + QKfEKiQ + frmimf
+ (ßmff + QEf^
x(i- fiffr\ßmff + QEff < 0

Using Schur complement and the fact that 1 — fff¡ < 0 is equivalent to / — Mf < 0 smce
fi is a scalar for PWA slab systems yields

A1- WiJf + QEf
^mff + QEff -mV-/*fi) _

where ?,- = MQ + Q^f + V-mm] + QYQ + QKfEK1Q. Replacing ^- by (A¡ + BjKj),
introducing a new variable Y¡ = K¡Q and using Schur complement yields a convex repre-

sentation of the sufficient conditions for quadratic stabilization as follows

(2.30)

<0 (2.31)

Q = Q1 >0, µ,-<0, /=1,. ..,M

20



<0 (2.32)

Ti + frmim] QîxI2 YJ^I1 frrm/T + QEj
T1Z2O -In o O
?1 /1Yi O -4 O

^mff + QEf)T O O -ßi(l-fiff)
where G,- = A1Q + 0¿f + B¡Yi + Y17Bf. This completes the proof. ¦

In the next corollary, the LMIs in (2.32) are rewritten for a given value of partial
loss of control authority pmin in the system where pmin = diag[p\mini ...,pjmi», ---,Pkmin]-
pmin represents the most severe LOE fault matrix in the system. Therefore, the unknown
value of the fault parameter in the system (2.5) belongs to the interval of pj e [pjmin, 1] ·

Corollary 1: For the faulty system with the most severe LOE fault, the inequality
(2.32) is transformed to

<0 (2.33)

Q = QT>0, µ/<0, /=1,... ,M

Tfi + ßimimf Qíx>2 IfH1/2 ßimiff + QEf
T1Z2Q -In O O
E1I1Yi o -4 o

^mfl + QEjY ? ? -µ?{\-?!)_
where G/,- = A¡Q + QAf +Bfimi„Yi + YjBTfimin and Bfimin = BiPmin.

Proof: It follows trivially by replacing the minimum faulty Bfimin matrix into the
inequality (2.32). ¦

Remark: For the regions ^,o that contain the equilibrium points of the system
where m¡ = O, the inequalities (2.21) and (2.33) are not strictly feasible and are replaced
by
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<0 (2.34)
rf ex1/2 YJex¡2

T1^2O -/„ O
E^2Y1 O -Ik

where G,- = A1Q + QAf + B1Y1 + Y11Bf and

Tfi ß?1/2 YfZ1'2
T1Z2O -/„ O
S1Z2Y, O -Ik

where G/,· = ?ß+ 0¿f + 5/iOTiwî/ + YfBTfimin and 5//??-? = fi/p«;,,.
Since the P matrix does not directly appear in the inequalities (2.21), (2.33), (2.34)

and (2.35), in order to minimize the Trace(P) subject to the mentioned LMIs, it is neces-
sary to add another inequality to show that when the Trace (P) is minimized, the Trace(ß_1 ]
is also minimized. This requires that,

<0 (2.35)

P L·
>0 (2.36)

[Jn Q\
According to the Schur complement, this implies

P>Q~l

Thus, this shows that if the Trace(P) is minimized, then Trace(ß_1) is also minimized.
Therefore, to design the controller gains for the guaranteed cost fault-tolerant controller,

the following convex problem will be solved.

Definition 2.3.1 Fault-Tolerant Controller is the solution to thefollowing optimization
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problem
min Trace(P)
s.t. (2.21), (2.33) Vr S ^1-

(2.34), (2.35) Vx G ¿?;?
(2.36)

From the solution to this problem one gets the controller gains K¡ = YiQ'1, i= I,..., M.
Remark: In the Linear Matrix Inequalities (2.21) and (2.34) in the Definition 2.3.1,

there is no partial loss of control authority fault in the system and therefore pj = 1 . In
the LMIs (2.33) and (2.35), it is assumed that the most severe partial loss of control

authority has occurred in the system and therefore, py = pjm¡„ for a given value of pjmin-
In fact, since these matrix inequalities are convex, therefore, a solution to the optimization
problem in 2.3.1 will stabilize the faulty system (2.5) with any LOE fault value belonging

to the interval of pj e [pjmin, 1]·

2.4 Application to a Wheeled Mobile Robot (WMR)

In this section, the controller design technique that is introduced in this chapter is applied

to a path following problem of a WMR. The WMR is shown in Fig. 2. 1 and is assumed to
be rigid and to be driven by a torque T to control the heading angle ? of the WMR. The

forward velocity uq = Im/s is assumed to be already made constant by the proper design
of a cruise controller. The heading angle of the WMR ? is measured from the positive
x-axis in the inertial frame. The kinematic equations of the WMR are

y = uq sin ?
(2.37)

\j/ = R
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y

Figure 2.1: Schematic of the Wheeled Mobile Robot (WMR)

The dynamic equation of the WMR is

R = -T (2.38)

where T is the input torque generated by the DC motors and is the input to the system.
The moment of inertia of the WMR with respect to the center of mass is represented by
/ = 1 kg.m2. In this example, it is desired that the WMR follows the path y — 0. The
above differential equations are cast in matrix form as follows

d_
dt

0 0 0

0 0 1

0 0 0

+ 0

0

+ (2.39)

Automated methodologies to choose the state space partitioning of piecewise affine
systems is addressed in [20]. In this example, piecewise affine models of the system in
equation (2.39) are derived for the following state-space partitioning
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M1 = [Xe

M2 = [Xe

M3 = [Xe

M4 = [Xe

M5 = [Xe

?? e

?? e

¦--)}15'15J/
p p

5' 15 )}

í3l*2e(-y ,—)}

t3f^€(f,f)}

(2.40)

The criterion to choose the regions in (2.40) is to minimize the approximation error of the
t

system (2.39) by piecewise affine models. The states ofthe system are X =
t

X\ Xl X3

y ? R

with ?? = ?. The ellipsoidal coverings of the state-space partitioning for
the affine regions are

E2 = [X\

e3 = [?\

E5 = [X\

0 ? 0

0 è 0

p

0 i 0

?+2||<1}

?+2||<1}

?+2||<1}

?+2||<1}

(2.41)

The PWA model for each region is obtained by approximating the nonlinear term

sin(\j/) in the system differential equations with a line. The PWA slab models are
MXeMx

0 1 0

0 0 1

0 0 0

+ + T (2.42)
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VXg

VZe^3

VXg

VXg

O 0.907 0

0 0 1

0 0 0

0 0.2891 0

0 0 1

0 0 0

0 0.907 0

0 0 1

0 0 0

+

+

-0.018

0

0

-0.4061

0

0

+

0

0

1

+

0

0

1

0.018

0

0

+

0

0

1

y 0 0.2891 0 y 0.4061

? = 0 0 Ì ? + 0
R 0 0 0 R 0

After fault occurrence the PWA model becomes

VX G ^i

+

0

0

1

T

VXg

0 1 0

0 0 1

0 0 0

0 0.907 0

0 0 1

0 0 0

+ + PT

-0.018

0

0

0

0

1

PT

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)
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VXe^3

O 0.2891 0

0 0 1

0 0 0

+

-0.4061

0

0

+ ?t (2.49)

VXe^4

0 0.907 O

O O 1

0 0 0

+

0.018

O

O

+ PT (2.50)

VXg^5

O 0.2891 O

O O 1

0 0 0

+

0.4061

O

O

+ ?t (2.51)

where ? is an unknown value of partial loss of control authority in the system ? G
[0.1, 1] and the controller does not receive any information about this unknown value.
A fault-tolerant controller is designed for the PWA system (2.47), (2.48), (2.49) using Se-
DuMi/YALMIP [59]. An LQR controller is also designed for a linear model of the system
(2.42) for comparison purposes. The proposed fault-tolerant controller design methodol-
ogy is compared to the LQR controller, as a controller which is not fault-tolerant. This
enables us to observe the fault tolerance capabilities of the proposed fault-tolerant con-
troller design methodology. The LQR controller is designed off-line and does not receive
any information about presence or the amount of the fault in the system.
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The LQ weighting matrices in the cost function (2.9) are

(2.52)

0.1 0 0

T= 0 0.1 0

0 0 0.1

0.1

The fault-tolerant controller design is based on a maximum of 90% loss of effec-
tiveness in the control authority or pmin = 0.1. The resulting fault-tolerant controllers
are

K1 = -1.0408 -5.2769 -9.7329

K2 =K4

K3=K5 =

with

The LQR controller is

KiLQR

-1.2946 -5.0972 -10.1958

-1.3287 -5.1018 -10.2580

0.7247 1.2181 1.3220

1.2181 3.9754 5.0744

1.3220 5.0744 10.2458

1.0000 2.4142 2.4142

(2.53)

(2.54)

(2.55)

Simulations are performed for the nonlinear system in feedback with controllers
(2.53), with the maximum fault, less severe fault and no fault cases. The resulting paths
for the WMR using the fault-tolerant controllers and the LQR controller are plotted in

Figs. 2.2, 2.3, 2.10, 2.1 1. The initial conditions are ?0 = n/2,y0 = 3, R0 = 0 for Fig. 2.2
and Fig.2.3 and y/0 = p, y0 = 0, R0 = 0 for Fig. 2.10 and Fig. 2.11. Figs. 2.4, 2.5 and
2.6 show the state based switching of the controllers in the simulations with the initial
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WMR Path with fault tolerant controller
------------1 1 1 1 111)1

I — Nominal system
I 60% loss of control authority
j 90% loss of control authority -
i
?
I
I
?

I

I
I
I

/¦¦
/¦¦:

? 1 —J 1 1 1 1 1 1 — ¦-+-**
-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

y

Figure 2.2: WMR following path y = 0, FT controller ?? = p/2, y0 = 3,t/ = 5 [sec]

conditions ?? = p/2, yo = 3, Ro = 0. Figs. 2.12, 2.13 and 2.14 show the state based

switching of the controllers in the simulations with the initial conditions ?? = n,yo = 0,
Ro = 0. Fig. 2.7 shows the time variations of the heading angle ? for the initial conditions
?? = p/2, yo = 3, Rq = 0 and Fig. 2.15 shows the time variations of the heading angle ?
for the initial conditions ?? = 7t,yo = 0, Ro = 0.

Figs. 2.8 and 2.9 show the time response ofy with the nominal system and also

when a partial loss of control authority of 60% and 90% occurs at tf = 5[sec]. In this
case, the initial conditions of the system are ?? = p/2, yo = 3, Ro = 0. Figs. 2.16 and
2.17 show the time response ofy with the nominal system and also when a partial loss of

control authority of 60% and 90% occurs at t/ = 5 [sec]. In this case, the initial conditions
of the system are ?? = p, yo = 0, /?0 = 0. Figs. 2.20 and 2.21 show the time response
ofy under the influence of the fault-tolerant and the LQR controllers for an LOE fault of

? = 0.2 occurring at tf = 30 [sec] for square-wave type of desired path.
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WMR Path with LQR controller
¦ Nominal system
60% loss of control authority
90% loss of control authority

0 1
y

Figure 2.3: WMR following path y = 0, LQR controller ?? = p/2, yo = 3, t/ — 5[sec]

Controller in the loop, K -»-?, K -> 2, K375 -> 3

O J

O

Ö
O
U 1

¦ Nominal system

5 10

time [sec]
15 20

Figure 2.4: Controller in the loop, ? = 1, ?? = p/2, yo = 3,tf = 5 [sec]

30



Controller in the loop , K -» 1, K —> 2, K —> 3

60% loss of control authority

10

time [sec]

Figure 2.5: Controller in the loop, ? = 0.4, ?? = p/2, yo = 3,î/ = 5[sec]

Controller in the loop, K -> 1, K -^ 2, K -> 3

90% loss of control authority

10

time [sec]

Figure 2.6: Controller in the loop, ? = 0.1, ?? = p/2, ^o = 3, // = 5 [sec]
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Heading angle of the WMR: Fault tolerant controller

-50

--------- Nominal system
--------- 60% loss of control authority

90% loss of control authority

10 15 20 25 30 35 40
Time [sec]

Figure 2.7: Heading angle [deg], ?? = p/2, y0 = 3,t/= 5[sec]

Time response of y with fault tolerant controller, t = 5 [sec]

?

- Nominal system
60% loss of control authority
90% loss of control authority

- fault occurrence

10 20 30 40
time [sec]

50 60 70

Figure 2.8: Time response ofy, ?? = p/2, yo = 3, t¡ = 5[sec]
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Time response of y with LQR controller, t = 5 [sec]
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Figure 2.9: Time response ofy, ?? = p/2, yo = 3, if = 5[sec]
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WMR Path with fault tolerant controller
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Figure 2.10: WMR following path y = 0, FT controller ?? = n,yo = 0, if = 5 [sec]
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WMR Path with LQR controller
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ure 2. 1 1 : WMR following path y = 0, LQR controller ^0 = p, yo = 0,t/ = 5 [
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Figure 2.12: Controller in the loop, ? = 1, ?? = p, yo = 0, t/ = 5 [sec]
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Controller in the loop , K -» 1, K -> 2, K -> 3

• 60% loss of control authority

10 15

time [sec]
20

Figure 2.13: Controller in the loop, ? = 0.4, ?? = p, yo — 0, tf — 5[sec]

Controller in the loop, K} -> 1, K374 -> 2, K375 -* 3

? 3O ?
_?
?

ö
?

- 90% loss of control authority

10

time [sec]
15 20

Figure 2.14: Controller in the loop, ? = 0.1, ?0 = p, yo = 0, tf = 5[sec]
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Heading angle of the WMR: Fault tolerant controller
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¦ Nominal system
• 60% loss of control authority
90% loss of control authority
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Figure 2.15: Heading angle [deg], ?? = p, yo = 0, t¡ = 5[sec]

Time response of y with fault tolerant controller, t = 5 [sec]
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• Nominal system
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Figure 2.16: Time response ofy, ?? = p, yo = Q,t/ = 5{sec]
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Time response of y with LQR controller, t = 5 [sec]
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Figure 2.17: Time response ofy, ?? = p, yo = 0, t/ = 5{sec]

WMR Path with PWA controller design based on nominal system
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Figure 2.18: WMR following path y = 0, controller designed without the LMIs (2.33)
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PWA controller design based on nominal system, L= 5 [sec]
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Figure 2.19: Time response ofy, controller designed without the LMIs (2.33)

It is observed that the fault-tolerant controllers, which are designed for a PWA

model of the system, stabilize the faulty nonlinear system up to 90% partial loss of control

authority. It also keeps the performance of the faulty closed loop system the same as the

performance of the nominal system. However, as it is observed in the simulations, the

LQR controller fails to stabilize the nonlinear system at 90% of loss of control authority.

Furthermore, in order to show the importance of the LMIs (2.33) in fault-tolerance

capabilities of the proposed controller design method, for the simulations in the Figs.

2.18 and 2.19 the controllers are designed only with the LMIs in (2.21) with the nominal

B matrix. It is observed that the resulting controllers cannot stabilize the system for 90%

of loss of control authority, as expected.

38



Time response of y with fault tolerant controller, t = 30 [sec]
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• — ¦ — ¦ 80% loss of control authority

Desired path

fault occurrence ->-

10 20 30 40
time [sec]

50 60 70

Figure 2.20: Time response ofy, tf = 30 [sec], ? = 0.2

>* 1

-1

-2

Time response of y with LQR controller, t = 30 [sec]

--------- Nominal system
--------- 60% loss of control authority
¦ - — 80% loss of control authority

DesireH nath

fault occurrence -*i
10 20 30 40

time [sec]
50 60 70

Figure 2.21: Time response of y, tf = 30[SCc], ? = 0.2
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2.5 Summary

In this chapter, fault-tolerant controllers are synthesized for PWA systems to deal with
LOE faults. A quadratic global Lyapunov function is applied for stability analysis and
controller synthesis for PWA nominal and faulty systems. An upper bound on the ex-
pected value of the quadratic cost function is minimized for both the nominal and faulty
systems. The fault-tolerant controller is capable of stabilizing the PWA system with guar-
anteed cost performance in the presence of severe LOE faults while an LQR controller is
not.
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Chapter 3

Fault Identification for Bimodal

Piecewise Affine Systems

3.1 Introduction

Increasing reliability of complex systems has received much attention for the past two

decades. This interest has spurred a growing demand for fault detection, isolation and
identification of complex systems. Fault detection addresses the problem of monitoring

the occurrence of a fault in the system. Fault isolation locates the fault in the system once

detected. Fault identification measures the magnitude of the fault in the system. Once

the fault is detected, isolated and identified, measures can be taken to mitigate its effect

in the system. Many researchers have studied and developed fault detection, isolation

and identification (FDI) methods for linear systems. In [53] adaptive observers are ap-

plied to detection and isolation of actuator faults in a linear aircraft model. Reference

[51] addresses fault detection and isolation for a network of unmanned vehicles using a

linear time invariant system representation. In [52] adaptive observers are applied to fault
identification and fault-tolerant control of a linear aircraft model. However, dynamical
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models of most complex systems involve nonlinear phenomena. Therefore, some re-
searchers have focused on the development of methodologies to detect and isolate faults
for nonlinear systems. In [49] a fault detection and isolation architecture for nonlinear

uncertain dynamic systems is presented. This approach uses a bank of nonlinear adaptive
estimators. In [54], [50] a methodology for detecting, isolating and accommodating faults
in a class of nonlinear dynamic systems is presented. In [54], the proposed fault diagno-
sis architecture consists of a fault detection estimator and a bank of isolation estimators,
each corresponding to a particular fault type. In [50] a unified methodology for detecting,
isolating and accommodating faults in a class ofnonlinear dynamic systems is presented.

This chapter addresses identification of the magnitude of a fault in piecewise affine
(PWA) slab systems. In PWA slab systems, the switching among several affine or linear
models is based on variations of only one state variable in the system. Work on recon-
figurable control in PWA systems can be found in [55]. In [55], reconfigurable control
of PWA systems after actuator and sensor faults is addressed. However, [55] does not
address fault identification. In [56] an active fault-tolerant control strategy and a fault
estimation observer are developed for systems described by multiple linear models. How-
ever, it does not address PWA systems.

The type of fault considered in this chapter is partial loss of control authority or
Loss-of-Effectiveness (LOE). LOE faults occur due to a reduced gain in the mechanisms
that drive the control actuators. As examples ofLOE faults, the effect of aircraft icing and
loss of tail rotor effectiveness in helicopters can be mentioned.

This chapter presents an observer-based fault identification methodology for PWA
slab systems. State observer design for general PWA systems was first considered in
[58] and later addressed for PWA bimodal systems in [57]. This chapter builds on these
previous methods and proposes a fault parameter observer for bimodal PWA slab systems.
The observer design is cast as a set of Linear Matrix Inequalities (LMIs) and solved
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with SeDuMi/YALMIP [59]. The chapter is organized as follows. First the system and

observer structure are introduced. Then, the observer design method is developed. Finally,

a numerical example is presented, followed by conclusions.

3.2 System and Observer Structure

Consider a bimodal PWA representation for a PWA system with partial loss of control

authority as follows,

{?(?=???(?+????(? VxG^i
y(t) = ClX(t)

(3.1)

{x(t)=A2x(t)+Bpu(t)+m2 Mx e ^2
y(t) = C2x{t)

where x{t) e R" is the state vector, u(t) e MA is the input and the diagonal matrix ? is
composed of unknown values of partial loss of control authority for k actuators in the

system as

p = diag\pi,p2,...,pk] (3.2)

where p; e (0, 1]. It is assumed that ¿¡?2 admits an ellipsoidal description of the form

@2 = {x\\\E2x + f2\\<l} (3.3)

This description can always be found when the two regions have hyperplane boundaries.

More precisely, if for example ^e2 = {x | d\ < c\x < d2}, then the associated ellipsoidal
covering is described by E2 = 2c\/(d2 —d\) and f2 = — (d2 +d\)/(d2 — d\). The vector
m2 is the affine term in region &2 which is a constant matrix. Without loss of general-

ity, the dynamics in region ¿%\ , which contains the equilibrium point of the system, are
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considered to be linear, therefore, m\ — 0. The switching of the two subsystems in (3.1)
occurs at the boundary of the regions M\ and M2 of the state space. The actual input
might be reduced by a coefficient matrix ? due to faults in the system. The structure of
the proposed observer is as follows,

x(t) = A1X(I) + Bp(t)u(t) + Gx(y(t) -y(t)) Vx e Mx
y(t) = ClX(t)

(3.4)

i(/) = A2x(t)+Bp(t)u(t) + m2 + G2(P(O -y(t)) Vi e M2
y(t) = C2x(t)

where y, ? and ? are estimated variables. Depending on the initial conditions of the sys-
tem and the observer they might or might not work in the same mode. Therefore, the

dynamics of the estimation error of the observer e(t) = x(t) —x(t) can be divided in four
different cases,

Case 1:

\/xeMx, Vx e Mx

k

è(t) = (A1 + G1COe(Z) + X b¡ ~Pi(t) Ui(t) (3.5)
¿=i

Case 2:

Vx e Mx, Vx e M2

k

è(t) = (A2 + G2C2)e(t) +m2 + [(A2 -A1) + G2(C2-Q )}x(t) + £ b¡ p¡(t) u¡{t) (3.6)

Case 3:

Vxe&2, Vx e Mx
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k

è(t) = (A1 +G1Cx )e{t) - m2 + [(A1 -A2) + G1 (C, - C2)]x(t) + £ b> A(O ««(0 (3-7)
Case 4: Vx e M2, Mx e M2

k

è(t) = (A2 + G2C2MO + S b¡ P/(0 «KO (3·8)
where ß (? = p(t) — ? is the fault estimation error and è,- corresponds the ith column of
the B matrix.

Remark: The presented observer design methodology can be extended to general
piecewise affine systems with multiple modes following the same reasoning in this chap-
ter. However, the number of the error dynamics equations will grow to n2 for n number
of PWA modes.

Observer design for bimodal systems was addressed in [57]. However, this paper
did not address the fault identification problem. The next theorem presents a result on the

asymptotic stability of the fault identification observer. In order to proceed, the following
assumptions are necessary

• Assumption 1 (Constant Fault): Once a fault occurs, its amount remains constant.
Thus, pi = 0 and therefore, p¡(t) = p¡(t), where /' represents the i'h control channel.

• Assumption 2 (Persistent Excitation) : The control input u(t) to the system is upper
and lower bounded by positive constants eu and it, i.e, 0 < eu < \u(t)\ < u.

Theorem 1: Suppose that Assumptions 1 and 2 hold. The origin of the observer
with the states (e(t),p(t)) verifying (3.5), (3.6), (3.7), (3.8), (3.9), is asymptotically stable
if there exists a positive definite matrix P = PT > 0, matrices W\, W2, scalars X2 < 0, A3 < 0
and fixed positive constants e and /,·, / = \,...,k such that a solution is obtained for the
following design problem.
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/3/(0 = -heT (t)PbiUi(t) (3.9)

mm ?

s.t. ? >0, e? <?<?e?

(3.10), (3.11), (3.12), (3.13)
where (3.10), (3.11), (3.12) and (3.13) are given by

Gt?/GA\ P +PA1 +W1Q +Cf W{ < 0 (3.10)

AlP +PA2 + W2C2 + C¡W¡
+X1ElE1

-PE1 + X1ElE1 Pm2 + X1EIf1

-Ei1 P + X2Ei1 E2

m¡P + X2/?E2

X2E2 E2 X1E1 f2

XifiE2 Xiiflfi-r

<0 (3.11)

A[P' + PA1 +WiCi+ Cf Wf PZi -Pm2

eTp

-mTp

X^E1 E1 X^E1 f2

X3flE2 X3(flf2-l)

-T1TrT

<0 (3.12)

AlP + PA2 + W2C2 + Ci W2J <0 (3.13)
where Ei=(AA + G1AC), E2 = (AA + G2AC), AA = Ax -A2, AC = Cx- C2. From a
solution to this problem one gets the observer gains Gj =P~XWX and G2 = P~l W2.
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Proof:

Consider a candidate Lyapunov function of the form

V(e,p)=eT(t)Pe(t) + j^SP- (3.14)
This function is positive definite because P = PT > 0 and /,· > 0, / = 1, . . . ,k. To prove
stability, we will first show that the derivative of V with respect to time is negative semi-
definite and then the set of values for which V = O will be examined in detail. Enforcing
that

V < o,

yields

èT(t)Pe(t) + eT(t)Pè(t) + 2 ¿ MMl < 0 (3.15)
Replacing the estimation error dynamics (3.5), (3.6), (3.7) and (3.8) into (3.15) yields the
following four cases,

Case 1:

Vx e ^i , Vxe&i

V =eT(t)[{Al+ G1Ci)7P +P(A1 +G1QMt)
k k AíAñfA (3·16)+ 2 £ eT (???f^?? + 2 ?ß< 0i=l /=1 li

The last two terms in equation (3.16) cancel out each other if ßj(t) has the structure (3.9).
This yields

V = /(Z)P1 +GiCi)7P + P(Ai+ GiC1)Je(Z) <0 (3.17)
and thus
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[A1 + G1QfP +P(A1 +G1Ci)K O (3.18)
In order to write the above matrix inequality in a convex form Gi = P~^W] is defined.
Therefore this replacement in (3.18) yields (3.10).

Case 2:

Vx G^i, ViG^2

In this case, the derivative of the candidate Lyapunov function is

V =eT(t) [(A2 + G2C2)7P+ P(A2 + G2C2)]e{t) +xT(t)[-AA - G2ACfPe(t)

+ eT(t)P[-AA - G2AC]x(t)+mlPe(t) +eT(t)Pm2 (3 19)
+ 2S* p/Op/CO *

h + 2jjeT(t)Pbipi(t)ui(t)
The suggested structure for p¡(t) in case 2 is also (3.9). The remaining terms in the
candidate Lyapunov function are written in matrix form as

V =

? T

e(t)
x(0

1

(A2 + G2C2YP + P(A2 + G2C2) -P[AA + G2AC] Pm2
-[AA + G2AC)7P 0 0

0 0m\P

e(t)
x(0

1

<0

(3.20)

From the fact that for case 2, the state of the system ? is in ¿2ê\ and the state of the observer

? is in âê2, the following inequality can be written.

\\E2x + f2\\ < 1

It is possible to rewrite the above inequality as follows

(3.21)

(E2x + f2)T(E2x+f2)<l (3.22)
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Since e{t) = x(t) —x(t) inequality (3.22) can be rewritten as

e7E[E2e + e7E[E2x + xTE2TE2e + X7E[E1X + e7E[f2
+ x7E[f2+f7E2e + f7E2x + f[f2 < 1

Thus for Vx e ^i , VxG^2,

(3.23)

e(t)
x(t)

1

<0 (3.24)
E[E2 E[E2 E[f2
E2 E2 E2 E2 E2 f2

/[E2 /[E2 f2f2-\_
is obtained. The S-procedure [60] is now applied in order to relax (3.20) for ? e &2
yielding for some X2 < 0

e(t)
x(t)

1

? T

e(t)
x(t)

1

(A2 + G2C2)7P + P[A2 + G2C2) -P[AA + G2AC] Pm2
-[AA + G2AC]7P

m[P
0

0

0

0

-X2 x{t)
1

e(t)
x(t)

1

e(t)
x(0

1

<

E[E2 E[E2 E[J2
E2 E2 E2 E2 E2 J2

J7E2 /7E2 f2f2-\_
The replacement of G2 =P~lW2 in the above inequality yields (3.11).

Case 3:

VxG^2, Vx G ^i

In this case, the derivative of the candidate Lyapunov function is

(3.25)
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V =eT (t) [(A1 + G1C1)7P +P(Ai+ GxC1 )}e(t)+xT{t)[AA + GxAC]7Pe(t)
+ e7(t)P[AA + GxAC]x(t) - m7Pe(t) - eT (t)Pm2

+ 2 £ mMâ + 2 £ eT WbipMuiit)
/=1 '' /=1

(3.26)

The suggested structure for p¡(t) in case 3 is also (3.9). The remaining terms in the
candidate Lyapunov function are written in matrix form as

<0

-? T r

(Ax +G1CxYP + P(Ax + GxC1) P[AA + GXAC] -Pm2
[AA + GxAC]7P 0 0

0 0

J(3.27)
From the fact that for case 3, the state of the system ? is in M2 and the state of the observer
? is in Mx, the following inequality can be written.

e(t)
x(t)

1 -m\P

e(t)

x(t)
1

||£2*+/2||<i

It is also possible to rewrite the above inequality as follows

(3.28)

(E2x +f2)7 (E2x + f2)<\

or, alternatively, as

(3.29)

x7E7E2x + x7E7f2+f27E2x + f7f2 < 1 (3.30)

Thus for Vx G M2, Vx e Mx ,
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-? T r

e(t)
x(t)

1

OO 0

0 ??2?2 E¡f2
0 /?E2 f¡f2-\

e(t)
?(0

1

<0 (3.31)

is obtained. The S-procedure [28] is now applied yielding for some ?? < 0 yielding

e(t)
x(t)

1

-A3

(A1 + G1Ci)1P+ P(Ai +G1Ci) P[AA + G1AC]
[AA + G1AC]7P

e(t)
x(0

1

-m\P
0 0 0

0 ElE2 EIf2
0 f¡E2 flh-X

0

0

-Pm2

0

0

e(0
x(0

1

e(t)
x(0

1

The replacement of G1 = P 1W1 in the above inequality yields (3.12).
Case 4:

VxG^2, Vx G ¿?2

In this case, the derivative of the candidate Lyapunov function is:

<

(3.32)

V =eT(t)[(A2 + G2C2YP + P(A2 + G2C2)]e(t)

+ 2 ? er (OPO1-P1-(O^(O + 2 S^^ < 0 (3.33)

i=l /=1

The last two terms in equation (3.33) cancel out each other if /3/(0 has the structure (3.9).
This yields

V = eT(t)[(A2 + G2C2)TP + P(A2 + G2C2)]e(t)<0 (3.34)

and thus
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(A2 + G1C2)7P +P(A2 + G2C2) < O (3.35)

In order to write the above matrix inequality in a convex form G2 = P~XW2 is defined.
Therefore the replacement of G2 in (3.35) yields inequality (3.13).

Inequalities (3.10), (3.1 1), (3.12) and (3.13) yield V < 0. Let the set S be defined as

S={(e,p) \V = 0} (3.36)

For (e,p) <£ S, V < 0. Therefore, there exists a time t > 0, maybe infinity, for which
(e,p) e S. But from (3.9), (3.16), (3.19), (3.26) and (3.33), V = O if and only if e = 0. If
e = 0, ? = i and the system state will fall under either case 1 or case 4. Since e = 0 and the
control input has bounded norm by Assumption 2, then the equation for ? in (3.9) yields
p = 0, which implies ? will be constant. This constant value must be zero from the error
dynamics (3.5) and (3.8) because 0 < eu < \u(t)\, or otherwise, e ? 0, which would be a
contradiction. Therefore, there will be a t > 0, maybe infinity, for which the trajectories

in the space (e, p) converge to the origin, proving asymptotic stability. ¦
Remark: Notice that one needs the assumption that the control input will not be

zero while detecting the fault. This assumption is used in the argument of the proof
and it physically corresponds to the need of having persistent excitation. However, this
assumption can be relaxed if one asks that the control input be nonzero until the fault is
considered to be detected in practice instead of demanding it to be nonzero for all time.
Once the fault has been detected, the control input does not need to be persistent anymore

and can be equal to zero.
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3.3 Application to a Wheeled Mobile Robot (WMR)

In this section, a simplified model of a Wheeled Mobile Robot (WMR) introduced in
chapter 2 is used as an example. It is desired that the WMR follows the path shown in

Fig. 3.1. The desired path is different from the desired path of the same WMR in the
example of chapter 2 since in this chapter, it is necessary to have persistent excitation in
the system. Persistent excitation in the PWA system is necessary to enable the observer
to identify the partial loss of control authority fault.

PWA models of the system for a regulation problem are derived as

VZ e Mx
?? 0 1 0 ?? 0

X2 = 0 0 1 X2 + 0 pu (3.37)
X3 0 0 0 X3 1

VXeM2

Xl

X3

0 -0.6366 0

0 0 1

0 0 0

where u = T is the torque input, X =

Xl

X2

X3

+ + pu (3.38)

y ? R and ? e (0,1] is the[Xl X2 X3J
unknown amount of partial loss of control authority which should be identified by the
observer. The state-space partitioning is

{ZGR3|x26(-|,f)}
p 3p\

X2 e (-,t)}
(3.39)

M2 = [Xe'.
The state space partitioning in (3.39) is different from the partitions of the example in
chapter 2 since in this chapter, it is necessary to choose only two regions in order to

have a bimodal PWA system. The criterion for choosing these regions is to minimize the

approximation error using two regions.
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The ellipsoidal cell of the state-space partitioning is only defined for ^2 where the
system is affine

e? = {?\ p X-2\\<\} (3.40)

In this example a path-following problem is addressed. Therefore, the tracking error is
G 1Tdefined as d(?) = X(t) —Xdes where X¿es = ydes 0 0 and the rate of change of the

tracking error as d(? = X{t) -Xdes- It is assumed that X^5 = 0. Therefore, ô(t) =X{t)

d?

d?

¿3

0 1 0

0 0 1

0 0 0

d?

d?

d3

+ pu (3.41)

V<5e¿?2

where d =

d?

d?

d\ d? &

0 -0.6366 0

0 0 1

0 0 0

d?

d?

S3

+ + ? U (3.42)

??

y -ydes ? R ¦ Note tnat ?2{? = S2(O = ?(?- There-
fore, the state space partitioning and the ellipsoidal cells from (3.39) and (3.40) still hold
for the system of the path-following problem in (3.41) and (3.42).

In order that the WMR follows the desired path, an LQR controller is designed
for the linear model of the system in (3.41). In the simulations, a partial loss of control
authority occurs while the WMR is following the desired path. The observers which are
proposed in this chapter are then applied to estimate the value of partial loss of control
authority. The weighting matrices for the LQR controller are

Q

0.001 0 0

0 0.001 0

0 0 0.001

,a = 0.1
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Desired WMR path

Figure 3.1: WMR desired path

The gains of the LQR controller are

K1LQR 0.1 0.447 0.951 (3.43)

A solution to the observer design problem in Theorem 1 is sought and obtained by Se-
DuMi/YALMIP [59] as

Gx

106929.72722 5.53193 0.00003

5.53200 -21140.12825 -0.5290

0.00003 -0.52900 -21193.96940

(3.44)

G2 =

-106641.67738

-82.25096

-0.00028

-82.25111 -0.00028

-21358.52754 -0.52855

-0.52855 -21472.71741

(3.45)
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Figure 3.2: Fault identification in torque input T, t/ = 5[sec] and ? = 0.6

3.9999 0.0000 0.0000

0.0000 3.9999 0.0000

0.0000 0.0000 3.9999

(3.46)

X2 = -8.02107 ? IO"5, A3 = -7.9994 ? ??"5, e = 4 (3.47)

Figs. 3.2-3.13 show the simulation results with the structure (3.9). In Fig. 3.2 a
fault occurs at / = 5 [sec]. In Figs. 3.2 and 3.3 the simulated fault is 40% loss of control

authority in the input. The input to the system is shown in Fig. 3.3. In Figs. 3.4 and 3.5,
20% loss of control authority occurs at / = 5[sec]. In Figs. 3.6 and 3.7, 40% loss of control
authority occurs at / = 15 [sec]. Figs. 3.8 and 3.9 show time variations ofthe heading angle
?. Figs. 3.10-3.13 show fault identification and the system inputs for ? = 0.9 (10% loss
of control authority) and ? = 0.1 (90% loss of control authority) occurring at // = 30 [sec].

In these simulations, the input changes sign a few times which means that it has a
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Figure 3.3: System input, tf = 5[sec] and ? = 0.6

1.1

^ 1.05 ?-
a

•è ?
O

Ée 0.95 -

g 0.9
o

C-t-l

13 0-8
'-6
Cu 0.75

10 20

- Estimated value of partial loss
¦ Real value of partial loss

30 40 50

time [sec]
60 70 80

Figure 3.4: Fault identification in torque input T, tf = 5[sec] and ? = Oi
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Figure 3.5: System input, if = 5[sec] and ? = 0.8
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Figure 3.6: Fault identification in torque input T, tf = 15 [sec] and ? = 0.6
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Figure 3.7: System input tf = 15 [sec] and ? = 0.6
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Figure 3.8: ?(?) [deg] for tf = 5[sec] and ? = 0.6

59



200

G 50

Figure 3.9: ?(?) [deg] for the nominal system
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Figure 3.10: Fault identification in torque input T, t/ = 30[sec] and ? = 0.9
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Figure 3.11: System input t/ = 30[sec] and ? = 0.9
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Figure 3.13: System input tf = 30 [.sec] and ? = 0. 1

zero value at a finite number of time instants, which is a set of measure zero. This shows

that even for some cases where the input is zero at certain time instants the proposed

methodology still works. This enables the observer to update the estimation of fault at

all times. In the simulations shown in this chapter, the fault is always identified in less

than 0.1 [sec]. It is observed that the proposed PWA fault identification method is capable
of estimating the magnitude of the fault fast and accurately while the control input to the

system is large enough for rapid updating of the estimated amount of fault.

3.4 Summary

In this chapter a fault identification technique for bimodal PWA systems is proposed.

The proposed method enables to precisely estimate the unknown amount of the fault pa-

rameter based on a PWA representation of the system. The unknown value of the fault

parameter is estimated by an adaptive law obtained from the Lyapunov function of the
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system. Asymptotic stability of the fault estimation error is guaranteed provided the input
norm is upper and lower bounded by positive constants. The proposed method is applied
successfully to estimation of the amount ofpartial loss of control authority in a numerical
example.
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Chapter 4

An Active Fault-Tolerant Controller for

Bimodal PWA Systems

4.1 Introduction

This chapter proposes a reconfigurable controller structure for bimodal PWA systems in
order to increase reliability of the system. Fig. 4.1 shows schematic of the structure

of the reconfigurable controller which is the interconnection of the fault identification
observer proposed in chapter 3 and two sets of the fault-tolerant controllers of chapter 2,
as a closed-loop system (CLS). The type of fault which is studied in this chapter is partial
loss of control authority. In this chapter, loss of effectiveness faults are classified into two
groups: severe faults and less severe faults. The controller design methodology proposed
in chapter 2 is applied to design two sets of fault-tolerant controllers for the severe faults

and less severe faults separately. Furthermore, the observer design methodology proposed

in chapter 3, is applied to fault identification problem for bimodal PWA systems in this

chapter. Once the fault is identified, the observer sends the estimated amount of fault to a
controller switching mechanism. The controller switching mechanism decides which set
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Figure 4.1: (a) Schematic of the CLS (b) The CLS viewed as a feedback interconnection

of the pre-designed fault-tolerant controllers must be in the loop, based on the identified
amount of fault.

4.2 Active Fault-Tolerant Controller Synthesis

A bimodal PWA system of the following form is considered

x(t)=A\x(t)+Bpu(t) \/xe&\
y{t) = C\x(t)

(4.1)

x{t) =A2x(t)+Bpu(t)+m2 Vx G ¿%i
y{t) = C2x(0

where x(t) e W is the state vector and u(t) e Rk is the input, ^1 U ^2 = JT and

¿?2 = {x| ||£2x+/2||<l} (4.2)

More precisely, if ¿^2 = {x\d\ < c\x < d2}, then the associated ellipsoidal covering
is described by E2 = 2c\l{d2 — d\) and f2 = — (d2 + d\)/(d2—d\). The vector m2 is

65



the affine term in region ^2 which is a constant matrix. Without loss of generality, the
dynamics in region ^i , which contains the equilibrium point ofthe system, are considered
to be linear. Therefore, m\ = 0. The actual input might be reduced by a coefficient matrix

1 ... Oi ... 1 The fault parameter p,? due to faults in the system where ? = diag
represents the unknown value of partial loss of control authority for only one actuator in

the system where p¡ G (0, 1]. The structure of the observer is as follows,

x(0 =Alx(t) +Bp(t)u(t) + G1 (y(t) -y(t)) Vx G Stx
>>(0 = Cix(/)

(4.3)

¿(0 = A1XiS) +Bp{t)u(t)+m2 + G2(y(t) -y{t)) Vx G &2
j)(0 = C2X(O

where y, ? and ? are estimated variables. The fault parameter error is defined as p(0 =
? (0 — ? · The estimation laws for the fault parameter have the following structure (for the
ith actuator where there is a fault)

A(O = -lieT(t)PbiUi(t). (4.4)

where b¡ is the ith column of the B matrix. The error dynamics of the observer are pre-
sented in the equations (3.5), (3.6), (3.7), (3.8) in chapter 3.

Fault-tolerant controllers presented in chapter 2, are designed off-line for partic-
ular ranges of the fault values, including the nominal system for which p, = 1. Since
Pi = 0 represents total loss of control authority and is not addressed in this paper, we
introduce p;m,„ which represents the most severe LOE fault in the ith actuator and pm¡n =
diag pimin ¦¦¦ 1 We also define p¡\ as the average value of the fault range
where p¡\ = ^^— , separating less severe and most severe fault ranges, where 0 < p,-OT.„ <
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pu < 1 and p\ = diag

eterized by

1 Pn 1 . The state feedback control problem is param-

U = K)x V pimin < pi < pn or
u = KjX

(4.5a)

V pn <Pi<l (4.5b)

where Kj represents the controllers designed for the severe faults for ? e 3%j and Kj
represents the controllers designed for less severe faults in region 8%j. The closed-loop
system will be as follows

' x(t) = (A ! + BpK\ )x(t) Vx G &\
y{t)=C\x{t)

x(t) = (A2 + BpK\ )x(t) +m2 Vx e @i
y(t) = C2x(0

VPimin < Pi < Pn

(4.6)

or

Vp/i <pi<l

(4.7)

x[t) = (Ai +BpKf)x(t) Vx e ^i
y(t) = Cxx(t)

x(t) = (A2+BpK¡)x(t) +m2 Vx G
y(t) = C2x(t)

In the fault-tolerant controller design problem a performance criterion is added to the
design. The cost function considered here is

/0~ (FYx"+??t???)?, Vx e ¿g2
J^(xTYx + uTEu)dt, Vx G i?i

J = (4.8)

where ? =

T 0

, ? G M" is the state vector of the system, n = Kx, Kj = Kj 0 T =

T > 0 and ? > 0 are weighting matrices. The reconfigurable controller design
0 Oj

problems are now presented.
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Definition 4.2.1 Fault-Tolerant Controllers for Severe Faults are the solution to the

following optimization problem, Kj = YJQx,\/x € S&j where p¡ G [?¡mim Pn]

min Trace (Pi)

s.t. (4.9), (4.10) Vxeéëj
(4.11), (4.12) Vx e ^/o

(4.13) O1=QfX), µ<0,

where (4.9), (4.10), (4.1 1), (4.12) and (4.13) are given by

?\ + µ??2??t2 QxI1I2 ?}??>?2 ßm2fl + QxEl
T1Z2Q1 -In 0 0
E1Z2Y21 0 -h 0

_{pm2fl + QXET2)T 0 0 -µ(\-/2/1)_
where I^ = A2Qx + QXA¡ + BfY¡ + Y21 TBTf, Bf = Bpx and T21 = K¡QX.

<0 (4.9)

Y\f + Vm2mT2 O1Y1/2 Y¡ T~}'2 pm2fl + QxEl
T1Z2Qi -/„ 0 0
E1Z2Y21 0 -Ik 0

_(ßm2fl + QxEl)T 0 0 -µ(?-/2#)
where G1/ = ^2Oi + Q\A +BminY¡ + Y21 ?BTmin and Bmìn = Bpmin.

<0 (4.10)

öiT1/2 yrl^-l/l

T1Z2Oi
H1Z2F1

-?,

Yr ?1

?

-?

<0 (4.11)

where G { = A ? Qx + QxA [ + 5/7/ + 7,1 B'f and 7/ = ¿G/ Q1
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T\f O1T1Z2 Y}TZ1'2
T1Z2Oi -/„ O

O -Ik

where T\f = AxQx +Q1A] +BminY¡ +Y111B;
~}I2y¡

<0 (4.12)

>0 (4.13)
In öl

From the solution to this problem one gets the controller gains for severe fault

K\ =Y¡QX <mdK¡ = Y11Q1.

Definition 4.2.2 Fault-Tolerant Controllers for Less Severe Faults are the solution to

thefollowing optimization problem, K2 = Y?Q2,\/x € £%j where p¿ £ (pu, 1]

min Trace (P2)

s.t. (4.14), (4.15) Vx e&j
(4.16), (4.17) Vx e &jo

(4.18) 02-02G>0, µ2<0,
where (4.14), (4.15), (4.16), (4.17) and (4.18) are given by

T2 + p2m2m¡ Q2Y1/2 Y¡7 ?1/2 ß2m2f[ + Q2E{
T1Z2O2 -In 0 0
E1Z2T22 0 -4 0

(ß2m2fi + Q2ElY 0 0 -µ2(?-/2/?)

<0 (4.14)

where T2 = A2Q2 + Q2A¡ + BY22 + T22 3"BT and T22 = K¡Q2.
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?2/ + µ2p?2p?t2 Q2T1/2 Y¡TEX'2 ß2m2f2T + Q2E?
T1^2Q2 -In O O
E1I2Y22 O -4 O

(µ?>?2/? + Q2El)T O O -µ2(1-/2/?)

where G2/ = A2Q2 + Q2A¡ +BfY2 + Y¡TBTf and Bf = Bp1 .

G? O2T1/2 ????}?2
T1I2Q2 -In O
E1I2Y2 O -h

<0

where T1= A1Q2 + Q2A? + BY¡ + Y¡TBT and Y¡ = £2?2.

' G,/ Ö2TV2 72^1/2
T1I2Q2 -In O
H1^72 -4

<?

where Tlf = A1Q2 + Q2A\ +BfY2 + Y2^BJ.

<0

>0

(4.15)

(4.16)

(4.17)

(4.18)
h Qi_

From the solution to this problem one gets the controller gains for less severe fault

?2 = Y22Q2 and ?2 = Y2Q2.

4.3 Application to a Wheeled Mobile Robot (WMR)

In this section, the proposed active fault-tolerant controller is applied to the same WMR
model of chapter 3 with a new state space partitioning. The PWA models of the WMR for
a regulation problem are
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VXe.

Xl

X2

X3

O 1 O

O O 1

0 0 0

X1

X2

X3

+ pu (4.19)

vxe&2

where X =

X]

X2

X3

Xl X2 X3

0 0.3729 0

0 0 1

0 0 0

Xl

X2

X3

+

0.4142

0

0

+ pu (4.20)

. The state-space partitioning is

p p\^ = {JGlj|x2e(--)7)}4'4
p p?

(4.21)
[XeR^x2 e (-,-)}

The ellipsoidal covering of the state-space partitioning is only defined for £%2 where the
system is affine

e2 = {?\ OfOp X-3\\< 1} (4.22)

In this example a path-following problem is addressed. Therefore, the tracking error is
G ??defined as d(?) = X{t) —Xdes where X¿es = ydes o 0 and the rate of change of the

tracking error as 5{t) =X(t) —Xdes- Assume that^/ei = 0. Therefore, d(?) =X(t).
V<5 G Mx

d?

S2

d?

0 1 0

0 0 1

0 0 0

d?

S2

d3

+ pu (4.23)

V<5e^2

d?

¿2
¿3

0 0.3729 0

0 0 1

0 0 0

d?

d,

d?

+

0.4142

0

0

+ pu (4.24)

71



where d= <5j S2 £3 = y—y¿es x2 X3 · Please note that X2 = O2. Therefore, the
switching, the state space partitioning and the ellipsoidal cells hold for the system of the
path following problem.

A solution to the observer design problem in Theorem 1 is sought and obtained by
SeDuMi/YALMIP [59] as

G1 =

1257010.986811 -0.333908 -0.000002

-0.333908 -1254607.949079 -0.506321

-0.000002 -0.506321 -1254607.923042

(4.25)

G2

1257139.052210 1301.965494 -0.000345

1301.965494 -1257331.495771 -0.507120

-0.000345 -0.507120 -1254958.817446

4.0000 0.0000 0.0000

0.0000 4.0000 0.0000

0.0000 0.0000 4.0000

(4.26)

(4.27)

X2 = -1.1806, X3 = -1.1847 (4.28)

The reconfigurable controllers for severe faults pTO¿„ < ? < pi for p\ = 0.55 and pmi„ = 0.2
are

K = -1.1666 -3.9598 -6.3581 (4.29)

Kj = -1.1945 -3.8971 -6.3916 (4.30)

The reconfigurable controllers for less severe faults pi < ? < 1 are
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Ki = -1.1308 -3.0356 -3.4246 (4.31)

?\ = 1.2212 -3.0164 -3.4764 (4.32)

and

Px

0.3854 0.3945 0.2206

0.3945 0.8324 0.5451

0.2206 0.5451 0.6312

xlO-3 (4.33)

Pi (4.34)

0.0005 0.0007 0.0006

0.0007 0.0020 0.0020

0.0006 0.0020 0.0032

For comparison purposes, an LQR controller is designed for the linear model of the
system in (4.23). The weighting matrices for the LQR controller are

O =

0.0001 0 0

0 0.0001 0

0 0 0.0001

,# = 0.0001

The gains of the LQR controller are

KLQR 1.0000 2.4142 2.4142 (4.35)

Figs. 4.2-4.8 show the simulation results for the active fault-tolerant controller.

In these simulations, a partial loss of control authority of 80% corresponding ? = 0.2
occurs at if = 3.0 [sec]. The path following capabilities ofthe proposed active fault-tolerant
control method subject to a fault occurrence is compared to an LQR controller. Fig. 4.2
shows fault identification by the observer. Fig. 4.3 shows the input to the system versus
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time. Fig. 4.4 shows the path of the WMR with the reconfigurable and the LQR controller.
The switching sequence of the active fault-tolerant controller is shown in the Fig. 4.5.
Fig. 4.6 shows the time response ofy for the WMR. The observer gain in the loop for the
WMR is shown in the Fig. 4.7. The time variation of the heading angle ? of the WMR
is shown in Fig. 4.8. It is observed that the LQR controller fails to follow the desired
path. However, the reconfigurable controller stills follows the desired path with a good
performance. Fig. 4.9 shows the comparison of the time responses ofthe system under the
influence of the proposed active fault-tolerant controller in this chapter, the fault-tolerant
controller proposed in chapter 2 and an LQR controller. In this figure, a partial loss of

control authority of 80% corresponding ? = 0.2 occurs at // = 30 [sec]. It is observed that
the time response of the system under the influence of the active fault-tolerant controller
has a smaller overshoot and is faster compared to the time response of the system under

the influence of the passive fault-tolerant controller proposed in chapter 2. Therefore, it
is observed that the application of the active fault-tolerant controller improved the time
response of the system.

4.4 Summary

This chapter proposes an active fault-tolerant controller structure for bimodal PWA sys-
tems. The proposed method is illustrated in a PWA model of a WMR. The path of the
WMR is compared under the influence ofboth an LQR and the reconfigurable controller.
It is observed that for severe faults, the LQR controller fails to follow the desired path
while the active fault-tolerant controller follows the desired path.
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Chapter 5

Conclusions

In this chapter the contributions of the thesis are summarized and the conclusions from
this research and potential future work are presented. In chapter 2, a fault-tolerant con-
trol design technique was introduced for PWA systems. The fault-tolerant controllers
have inherent tolerance capability to LOE faults in the PWA system. The advantages of
the proposed fault-tolerant controller design technique are that the proposed fault-tolerant
controller is capable of stabilizing the nominal and faulty systems and that it provides a
guaranteed cost performance for the nominal and fault systems. However, the drawback
is that the fault-tolerant controller does not have any information about the existence and
magnitude of a fault in the PWA system. The drawback was the motivation for the de-
velopment of a fault identification mechanism for PWA systems in chapter 3 and further
development ofan active fault-tolerant controller proposed in Chapter 4. A few interesting
extensions to the research work in chapter 2 would be the following

• to assume uncertainty in the dynamics of the system,

• to use an output feedback controller structure.
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In chapter 3, a fault identification mechanism for bimodal PWA systems was introduced.
The main advantage of the proposed fault identification mechanism is that it enables to
precisely estimate the unknown amount of the fault parameter in the PWA system. The
main drawback of the fault identification mechanism is the assumption that all the states
are available for the observer. A few useful extensions to this work would be the following

• to assume that only some of the states of the system are available to the observers,

• to provide a logic for fault detection and isolation for PWA systems,

• to modify the observers so that they can detect, isolate and identify other types of
faults such as lock-in-place and sensor faults,

• to consider multiple modes for the PWA system,

• to apply the proposed fault identification mechanisms to a complex example like an
aircraft where there are several control input channels.

In order to modify the observer for identifying lock-in-place and sensor faults, one must
design adaptive laws for the estimation of the affine term and the C matrix in the PWA
system. An alternative structure for the adaptive law of the fault identification observer is

pf(0 = -liÇipi - he1\t)Pbm{t)

which possibly results in an input-to-state stable observer. However, the alternative struc-
ture is not implementable. Therefore, an interesting future work would be to modify this
structure for implementation.

In chapter 4, an active fault-tolerant controller structure for bimodal PWA systems
was proposed. The fault-tolerant controllers proposed in chapter 2 and the fault identifi-
cation mechanism proposed in chapter 3 were integrated in chapter 4 to form the active
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fault-tolerant controller. The main advantage of the proposed active fault-tolerant con-
troller is that it improves the performance of the system and actively responds to severe
LOE faults. The main drawback is that faults are only allowed in one actuator of the sys-

tem. The other drawback is that only two fault scenarios are considered: less severe faults
and severe faults. Therefore, introducing more fault scenarios in the active fault-tolerant
controller and allowing faults in all of the actuator channels could be subjects of future
research work.
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