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ABSTRACT 

Asymptotic Bounds to Outputs of the Exact Weak Solution of the Three-Dimensional 

Helmholtz Equation 

Shahin Ghomeshi, Ph.D. 

Concordia University, 2010 

In engineering practice, the design is based on certain design quantities or "outputs of 

interest" which are functionals of field variables such as displacement, velocity field, or 

pressure. In order to gain confidence in the numerical approximation of "outputs," a method 

of obtaining sharp, rigorous upper and lower bounds to outputs of the exact solution have 

been developed for symmetric and coercive problems (the Poisson equation and the elasticity 

equation), for non-symmetric coercive problems (advection-diffusion-reaction equation), and 

more recently for certain constrained problems (Stokes equation). In this thesis we develop 

the method for the Helmholtz equation. 

The common approach relies on decomposing the global problem into independent 

local elemental sub-problems by relaxing the continuity along the edges of a partition­

ing of the entire domain, using approximate Lagrange multipliers. The method exploits 

the Lagrangian saddle point property by recasting the output problem as a constrained 

minimization problem. The upper and lower computed bounds then hold for all levels of 

refinement and are shown to approach the exact solution at the same rate as its underlying 

finite element approach. The certificate of precision can then determine the best as well as 

the worst case scenario in an engineering design problem. This thesis addresses bounds to 

outputs of interest for the complex Helmholtz equation. The Helmholtz equation is in gen-

iii 
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eral non-coercive for high wave numbers and therefore, the previous approaches that relied 

on duality theory of convex minimization do not directly apply. Only in the asymptotic 

regime does the Helmholtz equation become coercive, and reliable (guaranteed) bounds can 

thus be obtained. Therefore, in order to achieve good bounds, several new ingredients have 

been introduced. The bounds procedure is firstly formulated with appropriate extension to 

complex-valued equations. Secondly, in the computation of the inter-subdomain continuity 

multipliers we follow the FETI-H approach and regularize the system matrix with a complex 

term to make the system non-singular. Finally, in order to obtain sharper output bounds 

in the presence of pollution errors, higher order nodal spectral element method is employed 

which has several computational advantages over the traditional finite element approach. 

We performed verification of our results and demonstrate the bounding properties for the 

Helmholtz problem. 
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Chapter 1 

Introduction 

Acoustics refers to the transmission of sound through solid and fluid media. Sound can 

be described by pressure oscillations in an elastic medium resulting from the vibrations 

imparted to that medium. These oscillations are traveling waves, which act as disturbances 

generated by space-time evolution of mechanical perturbations in a fluid (which produce 

sound waves) or solid (which produce elastic waves such as in the plucking of a violin string). 

As a result, the mathematical models describing acoustic phenomena are derived from the 

linearization of the equations of continuum mechanics, where only the first order terms are 

retained after making small perturbations to some ambient values for the velocity, density 

and pressure. There are three phenomena encountered in acoustics, the most important 

of which is the wave propagation, and is also the only one which occurs in an infinite 

homogeneous medium. The second, is scattering, which can occur due to various obstacles 

encountered by the wave. Finally, the third phenomenon deals with dissipation processes 

that can cause the absorption and dispersion of waves. 

Wave propagation, in general has been studied in numerous scientific fields. For exam­

ple, the simulation of vibro-acoustic problems for mufflers and silencers can be approximated 

by linear time-harmonic wave propagation, which is governed by the Helmholtz's equation. 

The search for efficient computational approaches for solving such problems more accu-

1 



1: Introduction 2 

rately have been going on for decades. These efforts have contributed to the developments 

of many advanced noise control technology. The work herein is focused on the development 

of a numerical approach in solving the linear time-harmonic wave propagation problems, 

where the acoustic phenomena occurs in enclosures. The numerical procedure used, enables 

more accurate simulations of the phenomena. However, every numerical result contains 

discretization errors and we often do not know quantitatively, how large is this error. Error 

estimation procedures are therefore used in assessing the accuracy of the numerical simula­

tion result which can then quantify the accuracy of the solution. Ultimately, the aim of the 

error estimation is to deliver certainty information, which will bolster trust in the numerical 

simulation. 

1.1 Acoustic Wave Propagation Problem 

In this section we present the basic assumptions leading to the model equation for time 

harmonic wave equation, in particular the Helmholtz equation. Moreover, we briefly discuss 

some typical boundary value problems which frequently occur in practical applications. For 

more details on the subject of acoustics, the reader can consult [30, 54]. We begin with the 

following assumptions: 

• The unperturbed values of pressure, density, temperature, and velocity are assumed 

to be time independent and are given by (p,p,T,u); 

• An acoustic signal passing through a fluid is small perturbation of the pressure, den­

sity, temperature, and velocity and are expressed as p + p, p + p, T + T, and u. The 

unperturbed velocity u does not undergo macroscopic motion and is set to zero. The 

assumption on these perturbed values are p <C p, p -C p, and T <^.T. 

• Sound transmission through the fluid is sufficiently transient that there is no time 
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evaluated at the 
isentropic 

for heat transfer to occur resulting in an adiabatic process. Furthermore, no energy 

losses occur due to friction or dissipative effects which indicate that the flow through 

the system is also reversible. 

• No external forces act on the flow and that the fluid is inviscid and that the pressure 

depends on the density, eg. p = g(p). 

Under these assumptions, expanding the continuity and momentum equations in terms 

of the perturbed values and applying the fact that we have an isentropic (adiabatic and 

reversible) process with an ideal gas law (compressible flow) we arrive at the linear wave 

equation 

0 - C 2 V 2 P = O, (1.1) 

where c is the speed of sound in an acoustic medium and is c2 = jf-

background density. Equation (1.1) is a hyperbolic equation and thus it represents a non-

dispersive wave. For a thorough discussion of hyperbolic and dispersive waves, the reader is 

referred to [63]. Much of real life acoustic phenomena have a periodic (or quasi periodic) time 

dependency and are composed of a linear combination of harmonic components. Therefore, 

for time harmonic (steady state) waves, we write 

p(x,t) = $(x)e- i a J t , i = y/=l 

in which the wave equation reduces to the Helmholtz equation: 

V 2 $ + fc2$ = 0, (1.2) 

where k = UJ/C is the wave number, and u is the angular frequency. 

1.1.1 Model Problems in Acoustics 

Here we present a review of certain kinds of applications which exist in acoustic wave 

propagation problems in fluids. The applications can be either for interior problems or 
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exterior problems where the model equation is the Helmholtz equation, however the different 

situations lead to different boundary conditions. In the following, we let SI be a bounded 

open domain of R3, with boundary dQ. Moreover, the normal derivatives at the boundaries 

are given by ^ = n • V3> in the direction of the outward normal vector n to <9S1. 

Interior problems 

Interior problems deal with acoustic phenomena in enclosed regions of space, examples 

may include a cavity, room acoustic, or mufflers and silencers. In vibro-acoustics, the 

boundary value problems consist of finding the spatial components of the acoustic pressure 

field $ : H H C such that: 

' V 2 $ + fc2$ = 0, in SI (a) 

$ = $o, on TD (b) 
(1.3) 

| f = ipckvn, on TN (c) 

. | f - ipckG® = g, on TR (d) 

where TD U TN U TR = SS~2, and T^nTiv = TNDTR = 0. The boundary conditions (1.3(b)) 

is the part of the boundary T^ c dfl which contains the Dirichlet boundary conditions and 

consists of a simple pressure release condition $ = i>0. The part of the boundary Tjy C d£l is 

the Neumann boundary condition (1.3(c)) where the wall is rigid and vibrates with normal 

velocity vn. Finally, for vibro-acoustic problems, the vibrational parts of the wall introduce 

a forcing term(see Figure 1.1), and so the complex-valued function g is prescribed in the 

general Robin boundary condition (1.3(d)). Here G is the field admittance in the normal 

direction and is related to the impedance Z — 1/G. In an acoustic medium, the force 

is generated by a change in the pressure; and the ratio of this change in pressure by the 

velocity in the normal direction is defined as the impedance Z. G depends on the nature 

of the enclosure. For example, in the case of homogenous Robin boundary conditions (i.e. 
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vibra t ing 
walls 

F i g u r e 1 1 Computational domain fi for a vibro-acoustic problem (picture adapted from [46]) 

<7 = 0), having G = 0, will imply that the walls are rigid with only Neumann boundary 

conditions §f = 0 prescribed If G —> oo, then the wall is considered to be acoustically soft 

and one then obtains the homogenous Dinchlet boundary conditions $ = 0 For the case 

0 < G < oo, the wall acts as an absorbing surface and so we have an absorbing boundary 

condition We note that the boundary value problem Equation (13) is very general 

Exterior problems 

Exterior problems may include radiation, scattering or transmission problems which involve 

the characterization of the acoustic field surrounding a given structure For these type of 

problems, the computational domain is unbounded in space As an example, we consider a 

radiation problem to find the radiated acoustic pressure field <£ Q i—> C such that 

( V 2 $ + k2$ = 0, in n (a) 

| f = ipckvn, on 3D (b) (14) 

| f - ipck® = q, on dB (c) 

It is assumed that the region D e l 3 occupied by the body is embedded m a homogeneous 

isotropic medium at rest Here D is a bounded simply connected domain with boundary 

3D If the walls of the body vibrate with a normal velocity vn and that radiated waves 

propagate into free space then the physical requirement is that the radiated waves cannot 
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vibra t ing 
body 

Computa t iona l 
domain 

F i g u r e 1.2: Radiation problem for a vibrating body D and computational domain Q (picture adapted 

from [46]) 

reflect at infinity. Such a requirement leads to the Sommerfield radiation condition given 

by 

lim r — - ik§ = 0. (1.5) 
r—>oo \Or J 

where r = |x| and d/dr is the derivative in the radial direction. The Sommerfield radiation 

condition requires that the Helmholtz equation be solved in an infinite domain. Since 

computational techniques such as the finite element method require a bounded domain, 

a sufficiently large ball B C K3 with boundary dB is introduced that contains D (see 

Figure 1.2). One can approximate the Sommerfield condition at infinity by Robin (non-

reflecting) boundary condition on dB using the Dirichlet-to-Neumann map (DtN) technique 

in Chapter 3 of [34] by Equation (1.4(c)), namely, 

9 $ 
— ik& = q on dB, 
on 

where n is the unit normal to dB. With this boundary condition, the computational 

domain is given by Q = B\D with boundary d£l — dB U dD. In addition to the given 

boundary conditions, the pressure release condition $ = $ 0 , and the absorbing condition 

| ^ — ipckGQ = g may also be prescribed on parts of the boundary. 
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1.1.2 N u m e r i c a l Chal l enges 

Solving the Helmholtz problem by the finite element method results in stability problems 

associated with the Helmholtz operator, in particular the loss of ellipticity for high wave 

numbers. Such stability issues are a consequence of the pollution effect for high wave 

numbers which is associated with the phase error. Regardless of the stability properties of 

the finite element method used in the discretization, a certain minimal number of elements 

per wave length is always required to correctly represent the physical phenomena and to 

obtain a fully resolved numerical solution. However, as discussed in [34], due to the pollution 

effect, it is difficult to meet the appropriate resolution requirements for higher frequencies. 

This is mainly because in order to obtain a solution with high precision, very fine meshes 

are often necessary which will in turn lead to a significantly large-scale system of equations 

that must be solved. Higher-order methods however, have been shown [36] to significantly 

reduce the pollution error. A comparison between the traditional finite element method and 

the higher-order nodal spectral element methods for applications to mufflers and silencers is 

given in [41]. The approach that we will undertake is on employing the higher-order methods 

with a domain decomposition procedure. Therefore in addition to higher-order accuracy, 

the domain decomposition procedure is not only required in the bounds approach, but will 

also make the method amenable to parallel computation. 

1.2 Error Estimation 

A major drawback of all computational results obtained from pde models of an event, is 

the presence of numerical errors which leads to uncertainty. Since much of the present day 

technology depends upon simulation based engineering design, modeling and simulation 

predictions can have a significant impact. Consequently, for the engineering designers and 

practitioners, the credibility of the computational result becomes of great concern. Knowl-
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edge of such errors, however, can provide a means for assessing the accuracy and reliability 

of the computation. 

The primary means by which to assess the accuracy and reliability in computational 

simulations are through the process of verification and validation (V&V). An extensive 

review of verification and validation in computational fluid dynamics is discussed in [42], but 

here we briefly highlight the differences between the two. In verification studies, the accuracy 

of a computational solution is measured relative to either an exact solution (if available or by 

construction), or a very highly accurate solution of the mathematical model. The strategy 

then becomes a purely mathematical and computer science issue where the objective is to 

identify, quantify, and then reduce the error between the computed solution and the true 

solution of the model. In the validation process, the goal is to assess how accurately the 

computed results measure in relation to the experimental data (if available) or the real world, 

which is both a mathematical and physical science issue. Therefore, verification provides 

evidence that the continuum model is solved correctly by the discretized formulations, while 

validation provides evidence of how the computed results simulate reality, and in particular, 

it addresses the question of the fidelity of the model to the specified real world problem. 

However, the terms "evidence" and "fidelity" in a computed solution, bring about the 

important concept of error estimation, which can be based either on a prion error estimates, 

or a posteriori error estimates. 

A priori information relies on the part of the numerical algorithm which is associ­

ated with the partial differential operators and its initial and boundary data; and does not 

rely on direct knowledge of the solution of the PDE. A priori estimates generally involve 

normed estimates of the error which demonstrate stability and convergence of the approx­

imation, and that are also used in facilitating existence theorems. A priori estimates for 

the Helmholtz equation can be readily found in [60, 61]. Although such estimates reveal 
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the correct asymptotic rate of convergence, they do involve norms of the unknown solution 

and thus are of limited use if one requires numerical estimate of the accuracy. A posteriori 

information on the other hand, does require knowledge of the solution of the relevant PDE. 

Hence, a posteriori error estimates are expressed in terms of the computed solution, using 

the output of the Finite element computation to assess the accuracy, which enables the 

quantification of the error. Examples of a posteriori error estimators for the Helmholtz 

equation are available in [5, 35] . 

In order to predict the accuracy of the numerical solution using a priori estimation in 

the verification process, will generally require spatial convergence studies which can become 

computationally very expensive especially for three dimensional problems. The application 

of a posteriori estimators forms the basis for effective control of adaptive grid strategies 

which can be used to reduce the computational expense. However, adaptive methods have 

the shortcoming that a desired error reduction target is not guaranteed, and in order to 

gain reliability in the numerical solution, efficient error estimators are necessary, but the 

questions "what error is relevant" and "will an adaptive mesh refinement lead to a desired 

solution accuracy" must be answered. 

Much of the present interest in a posteriori error estimation began with the work of 

Babuska and Rheinboldt [7] in 1978 on the development of rigorous global error bounds 

for finite element approximations of the linear elliptic two-point boundary value problems. 

Here, a posteriori error estimation techniques are then used in approximating the error in 

energy or an energy norm on each finite element K. These estimates formed the basis for 

adaptive mesh techniques used in the control and minimization of the error. Much of the re­

cent work on error estimation is based on the idea of using complementary energy techniques 

to obtain bounds. Prior to the work of Babuska and Rheinboldt, de Veubeke [62] introduced 

the idea of obtaining upper and lower bounds for the energy norm of the error minimizing 
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the complementary energy of a global dual approximation. However, the method failed in 

popularity because the error estimates were based on global calculations. Ladeveze and 

Lequillon [38] advanced the idea of using complementary energy formulations by proposing 

the construction of solving local dual problem in conjunction with the equilibrated fluxes as 

boundary conditions, in order to avoid the global computation of the dual approximation. 

This approach is widely referred to as the equilibrated residual method, but it has also been 

given the name hybrid-flux residual method. The notion of obtaining equilibrated fluxes 

or tractions through a post-processing of the finite element approximation have also been 

pursued by Bank and Weiser [9]. They obtained estimators for affine approximation on 

linear triangular elements by solving a primal problem. Prom their numerical results they 

then conjectured that the resulting estimators always lead to an upper bound on the error. 

This conjecture, was then proved later by Ainsworth and Oden [2] for general hp-finite 

element approximations. For a more detailed review of a posteriori estimates, the reader 

is encouraged to consult [3] and [64] for more recent review. However, we briefly mention 

that the works described above belong to a large family of methods within the general class 

of a posteriori estimation called implicit residual methods, which are based on a series of 

local problems with appropriate boundary conditions. Other methods within this class also 

exists such as the constitutive relation error developed by Ladeveze and co-workers [39]; 

and on recovery-based methods developed by Zienkiewicz and Zhu [65] for a certain types 

of problems and finite element approximations. 

These original implicit methods [2, 9, 38] were developed for linear self-adjoint oper­

ators, where the aim was to provide bounds for the energy norm of the error. In practice 

however, one is seldom interested in the error in the energy norm. A latter study on the 

investigation of possible extensions of error norms [6], lead to the idea of error estimators 

associated with engineering outputs that are often referred to in the literature as "goal ori-
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ented" error estimation and which was further extended in the late 1990's [44, 48, 50, 53] 

These quantities of interest which may include the flux across a boundary, the normal force 

on a surface, heat transfer, transmission loss etc are from a functional analysis context, 

manifested as functionals of field variables such as the velocity field or displacement, temper­

ature, and pressure While the earlier work was based on estimating the error e = Uh~ uex 

(where u^ is an approximate solution and uex is the exact solution) measured m the energy 

norm, the work of Oden and Prudhomme [44, 53] exploited this idea to obtain quanti­

tative estimates for the error in quantities of interest The various work of Paraschivom 

et al [48, 50, 49], employed a different technique towards goal-oriented error estimation, 

where they obtained computable upper and lower bounds consisting of solving the problem 

of interest using two discretization schemes of different accuiacy and using the diffeience 

in the approximations as an estimate for the error This is referred to as the two-level 

residual based approach where the bounds are obtained on a fine mesh (or "truth mesh") 

based on coarse mesh global solves Initially bounds on quantities of interest was applied to 

symmetric elliptic problems (I e the Poisson equation) [50], non-symmetric coercive prob­

lems (I e convection-diffusion equation) [48], certain constrained problems (I e the Stokes 

problem) [49, 43, 45], and non-coercive problems (I e 2D Helmholtz equation) [57] More 

recently though, goal oriented estimation techniques have been advanced m the study of 

transient parabolic problems [21], and also acoustic wave propagation problems [46] 

It was not until the early to mid 2000's that the focus on employing a posteriori error 

estimation shifted from obtaining estimates using local computations for better adaptive 

strategies to focusing more on employing the error estimation techniques in order to obtain 

certainty information The work on guaranteed bounds on exact outputs called "exact 

bounds" were first proposed m [58, 59, 51] and for time dependent outputs [13] However 

very recently, the work was developed for the Stokes problem [15], and through a different 
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approach, strict error bounds have been obtained with improved effectivities for the Poisson 

equation [52], and for applications to linear solid mechanics problems [19]. The upper and 

lower computed bounds holds for all levels of refinement and are shown to approach the 

exact quantity of interest at the same rate as its underlying finite element approach. This 

certificate of precision can determine the best as well as the worst case scenario in an 

engineering design problem. Moreover, the method can be termed "cost effective" as it can 

be used to determine the size of the mesh required to achieve a desired level of accuracy. 

This approach also answers the initially stated question where error in a design quantity is 

important. 

The strategy involved in the computing of bounds on exact outputs of interest is similar 

to the former hierarchical method [48] in that it involves decomposing the global mesh into 

several elemental subdomains and relaxing the continuity requirements along the edges of 

each subdomain. A Lagrangian is first constructed so that the output problem is recasted as 

a constrained minimization problem where the constraints are the continuity requirements 

along the edges of the subdomains and the equilibrium equation. The gradient condition of 

the Lagrangian will then lead to the primal-adjoint pair and the equilibration equation that 

will determine the candidate inter-element continuity multipliers. The bounds are finally 

obtained through local sub-problem calculations. At this stage, the method differs from 

the former two-level residual method because by exploiting the Lagrangian saddle point 

property, existence of such bounds on the exact solution output is guaranteed, however 

the bounds are practically un-computable. The key ingredient relies on constructing a 

complementary energy functional chosen from a suitable finite dimensional set that can 

be used to bound the infinite dimensional problem [58, 59, 15]. Finally, we point out that 

amongst the implicit residual methods, there exists two approaches that have been employed 

in the computation of the exact bounds. One is the approach undertaken in [58, 59, 15] for 
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obtaining exact bounds, which is based on hybrid-flux methods where the local problems 

are element based (subdomains are non-intersecting) and the other approach used in [19, 52] 

is based on flux-free methods where the subdomains are patches of elements. A comparison 

between the two methods has been done in [17]. 

1.3 Objectives and Scope of Thesis 

Our goal in the thesis is to develop the formulation of the exact bounds method for the 

three-dimensional Helmholtz equation based on the work developed in [59] via the hybrid-

flux approach. The work here also includes several new ingredients as compared to previous 

work in this field. Firstly, the exact bounds procedure is formulated with particular empha­

sis on appropriate extension to complex-valued equations. A key ingredient to the bounds 

method is based on decomposing the global mesh into several elemental subdomains and 

relaxing the continuity requirements along the edges of each subdomain. A Lagrangian is 

first constructed in such a way that as the error in the approximation is minimized (goes 

to zero in the limit), the output of interest is obtained. Such a Lagrangian contains the 

continuity requirements at the edges of each subdomain and the equilibrium equation as 

constraints. For the Helmholtz equation, the Lagrangian is modified by adding a complex 

lumped interface mass matrix as the interface problem associated with solving the equili­

brated fluxes for the Helmholtz equation can become singular. Such an approach follows 

the work done in [26] where the additional complex regularizing term will result in a non-

singular system of equations. The current approach in calculating the equilibrated flux 

has an additional advantage that it avoids the need for global calculations as in previous 

approaches, moreover, the computations are calculated locally and consequently, are intrin­

sically parallel. Lastly, in order to obtain more accurate solutions for higher wave numbers, 

high-order finite element method (nodal spectral element method) has been incorporated 
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with the exact bounds approach. 

In Chapter 2 we will describe some of the technical aspects associated with the compu­

tational method for the Helmholtz equation where we again discuss the numerical challenges 

involved. In chapter 3 we will present the domain decomposition procedure that we will 

use in the bounds method. Chapter 4 will go over the theory of the exact bounds method 

and its application to outputs of the Poisson equation. In Chapter 5 we will present the 

formulation for the method as applied to the complex Helmholtz equation. Finally Chapter 

6 will contain the discussion of the results, and Chapter 7 will conclude with possible ways 

to improve the method and potential extensions to practical engineering applications. 



Chapter 2 

Numerical Methods for the 
Helmholtz Equation 

In pursuit of our objectives, we proceed with the mathematical model describing acoustic 

wave propagation in fluids, in particular, vibro-acoustic problems in three-space dimensions. 

It was previously mentioned that upon considering time-harmonic acoustics (steady state) 

waves, then the model of interest is the Helmholtz equation. Although there exists an 

abundant of numerical techniques to solve the Helmholtz equation, we will confine ourselves 

to polynomial based methods such as the Galerkin Finite Element method (FEM) and 

higher-order nodal spectral element method (SEM). Moreover, a review of certain technical 

issues pertaining to the numerical simulation of acoustic phenomena will be discussed, as 

this will also in part, give cause to our choice of a higher-order polynomial based numerical 

method. 

2.1 Model Problem 

2.1.1 Strong Formulation 

We are concerned with interior problems where the acoustic phenomena occurs in enclosed 

regions of space, for potential applications to mufflers and silencers. Vibro-acoustic prob­

lems, deal with forced acoustic fields due to the vibrational parts of the enclosed walls. 

15 
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Therefore, with an external acoustic source term denoted by function f(x, y, z) we write 

the strong statement for the general complex Helmholtz equation as: finding the spatial 

component of the acoustic pressure $ : fl i—> C such that 

- V 2 $ - /c2$ = / in domain ft (2.1) 

$ = gD on boundary Y — TD. (2.2) 

where we have assumed for simplicity of presentation that we have only Dirichlet boundary 

conditions and go is the boundary data on I\ For notational simplicity, we will throughout 

our presentation designate the acoustic pressure <£ with u. 

2.1.2 Preliminaries from Functional Analysis 

The discretization process associated with the finite element method, involves reformulating 

the given differential equation as an equivalent variational problem. For elliptic problems 

this is transformed into a minimization statement of the form 

Find u eV such that F(u) < F(v) for all v GV, 

where V is a given set of admissible functions and F : V \—> K is a functional representing the 

total energy associated with the functions v £ V. The gradient condition of such functional 

leads to the variational weak form of the model problem, which is discretized by the finite 

element method. The functions v often are continuously varying quantities, however when 

working with variational formulations of boundary value problems for partial differential 

equations it is natural to work with spaces which are larger (contain more functions) then 

the spaces of bounded continuous functions. Therefore, we introduce a special category of 

Sobolev spaces namely, the Hilbert Spaces and allow V to be a Hilbert space, where the 

most common of these are the spaces H°(n) EE L2(n),H1(Q,),H^(Q,), H2(D,), and H2{n). 

For the convenience of the reader we give a brief description of these spaces, however for 
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details the reader is referred to the many references [1, 55]. Throughout we shall assume 

that the problems are posed in a domain 0 of M3, with a sufficiently smooth boundary 

di} = F. Now we define L2{£1) to be the space of square integrable functions on 0.: 

L2{£1) = y\j M 2 d x = WvWh(n) < +°° 

and in general, for integer m > 0 the spaces Hm(fl) are: 

Hm{Vt) = (v\Dav G L2(0) ,V|a | < ml, 

where 
Q\a\t 

these derivatives being taken in the sense of distributions. On these spaces we shall use the 

g a * = f i s ? i - - f e g - ' | a | = a i + - " + a " 

semi-norm 

and the norm 

v\%m = V f \Dau\2dx 
\a\=m 

\a\<m s<m 

Since we deal with boundary value problems, we are not only concerned with the value of 

functions on open domains fl, but also with the value of the functions on the boundary 

F. According to the Trace theorem (see [1, 55]), for a sufficiently smooth boundary dQ, 

there exists a unique bounded linear operator 7 : H1^) 1—> L2(T) for every v smooth (say 

for v e C1(f2)). 7(1;) is then called the trace of v on F and written as v\r, even if v is a 

general function in i71(fi). A more involved analysis indicates that the range of 7 is not all 

of i 2 (T) , only a portion of it (i.e. a subspace of L2(F)); moreover, such a subspace contains 

i71(T) as a proper subset. Hence 

H\F) C 7 ( # 1 ( ^ ) ) C L2{F) = H°(F), 
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and so it can be seen that 7(i?1(fi)) belongs to the space Hl/2{T) for functions v e H1^). 

More precisely we have 

^ 1 / 2 ( r ) = 7 ( ^ l ( n ) ) 

and the norm for functions gi, defined on part of the boundary is given as 

iv = gh 

More generally though, for m > 1 and u € Hm(D,), the trace will have the mapping 

7 : Hm{0,) ^ Hm-l/2(T). We now define the spaces 

Hl$l) = {v\v e H\tt),v\r = 0} , 

and 

H2(Q) = L\v e H2(n),v\r = 0, ̂ | r = o | 

We will see in the next subsection that the variational weak form of the model problem 

is written as 

b(u,v) =£(v) 

where the form b : V\ x V2 H^ K, and ^ : V2 H-> K for K = R or C. Depending on whether 

or not we are dealing with the complex Helmholtz equation , the mapping b(u,v) will be 

bilinear, or sesquilinear. It is bilinear (occurs in the case K = R) if it is linear in both 

arguments, but sesquilinear (occurs in the case K = C)if it is linear in the first argument 

and antilinear in the second, namely if 

b(a(ui +u2),v) = a(b(ui,v) + b(u2,v)) 

b(u, a(vi + v2)) — a(b(u, v\) + b(u, v2)) 
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for complex number a, and its complex conjugate a. Although our demonstration of the 

bounds method has been applied to a more theoretical problem where the solution u is real, 

our formulation and the C code used allow for general complex valued functions, for this 

reason we often refer to the forms used as sesquilinear or antilinear. 

The spaces V\ and V<i for the weak formulation, are typically H1^) and HQ(Q,) respec­

tively, and the operator £(v) is a bounded antilinear operator on the vector space HQ(£1) 

belonging to the space of bounded antilinear functionals with the name dual space denoted 

by a prime with the convention: 

Remark 2.1 For bounded linear functionals the action of a functional £ on an element v 

is more correctly denoted by (£,v) rather than £(v), however in certain areas where it is 

convenient the later notation may be used. 

2.1.3 N o t a t i o n s and W e a k Formulat ion 

For any complex number z £ C , let z be the complex conjugate of z, and \z\ its modulus. 

Now introduce the space 

Z(Sl) = {v = vR + wI :vReH1(n),vI e f ' f i l ) } , (2.3) 

Superscript R and I are the real and imaginary parts, respectively, that is, vR = R(v) and 

v1 = ^s{v). We then introduce the sets 

Z = iv G Z(Q) : v\rD = o} (2.4) 

ZD = {veZ(n):v\rD=gD} (2.5) 

which reflect the essential boundary conditions. We proceed by introducing the weak for­

mulation of problem (2.1)-(2.2). For a sufficiently smooth function v : £1 i—> C belonging 
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to the space Z, we integrate the Helmholtz equation against a test function v (where we 

recall the over line designates the complex conjugate of v). Upon integrating by parts and 

imposing the boundary conditions, we obtain the weak formulation of equation (2.1), as 

follows: 

find u £ ZQ, such that 

A(u,v)=0, VveZ, (2.6) 

where the form A : Z{Vt) x Z(fl) i-» C is defined as 

A(u,v) = a(u,v) — m(u,v) — {/, v), (2.7) 

and the sesquilinear forms are given by: 

a(w,v) = jVw-Vvdtt, (2.8) 

Jo. 

with the duality pairing 

(f,v)= [ fvdn. (2.10) 

Remark 2.2 We note that in order to be consistent with the definition of the inner product 

on complex vector spaces (where we have sesquilinear forms), the complex conjugate of v, 

namely, v is used as the test function. 

2.1 A Linear Funct iona l O u t p u t s 

Engineering design is based on the prediction of certain quantities of interest that are 

generally expressed as functionals of the field variables. In the present work we are interested 

in real outputs s, that measure the acoustic performance of mufflers and silencers, however 

we will simplify the matter by expressing the outputs as linear functionals of the solution 

u — uR + IU1. More generally though, we set s — $l{S(u)}, where S(u) : Z(£l) >—> C. We 

will give details of the specific outputs used, in the following chapters. 
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2.2 Discretization Methods 

In this section we briefly describe the finite element method and the nodal spectral element 

method which are used in the approximation to the Helmholtz equation. The first step 

consists of making a partitioning of the domain D, into a finite number Nei of tetrahedrons 

f21 ,02 , • • • Or" with the property that the elements are nonoverlapping and cover Q so 

that: 

1. 

ri = ( j nfce 

ke=i 

2. 

ftfc«nft*/ = 0 for ke^kf. 

Instead of defining local basis functions for each element Qke with respect to its physical 

coordinates x = (x\,X2,x$), the problem is simplified by setting up a standard (reference) 

tetrahedron £7 given in terms of a barycentric coordinates system (£1,^2, £3, £4), a n d having 

vertices 
" 1 " 

0 
0 

, v /z = 
" 0 " 

1 
0 

, V / / / = 
" 0 " 

0 
_ 1 _ 

, V / v = 
r 0 1 

0 
0 

which is isolated from the actual finite element mesh. We note that actually as 0 < £„ < 1, 

n — 1, 2, 3,4, for the reference tetrahedron £1 + £2 + £3 + £4 — 1 and only three of these local 

coordinates are independent. The reference element has the same system of nodal points as 

the elements ttke and can be used to generate a smooth and invertible map ^ke : f2 H^ Qke 

as seen in Figure (2.1). This type of mapping is called an affine mapping and is a function 

of some elemental local basis functions hi(£) for i = 1 • • • J\f . For further explanation on 

the mappings we refer the reader to [16]. The relation between the physical coordinates 
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n* 

ix3 

( £ l , & ft) = **<=(*, y , z ) 

(x,y,z) = Vkz 1($ 

~X2 

X\ 

Figure 2.1: Mapping between the tetrahedral element flke in the partitioned mesh and the 
reference element Q given in terms of barycentric coordinates. 

and the local coordinates of the reference element are given by 

Ne 

x(£i.6,&) = $]xl
fceM£i,a&) (2.11) 

1 = 1 

where Ng is the number of local nodes in each element, and x s
e represents the coordinate 

of the local node i of element flke. The local basis functions ht defined on the reference 

element are polynomials and are associated with a nodal set £, in f2. Consequently, the 

/ij's have the requisite property which allows one to approximate any given function w by 

polynomial interpolation Wh, 

N, 

u>(£i,f2,£3) « w / i ( C i » 6 , 6 ) = ^w^fa,^,^). (2.12) 

with 

^ ) = { S ; otherwise <2"13) 

Under the approximation (2.12), the problem (2.6) is recast as: find Uh 6 Z^ such that 

A(uh,v)=0 Vv£Zh. (2.14) 
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Having partitioned the domain into Mel elements and denned the suitable local basis func­

tions ^(Cj) over each element ke, the integrals over the domain fi in Equation (2.6) can be 

rewritten as a sum of integrals over the reference element tt where we have for the volume 

integrations 

/ Vu • VvdQ, -k2 uvdQ. = S^ ( Vu- Vudft - k2 / uvdflj . 
Jo. JQ fc~L \Jnke JQ^ J 

Doing a change of variables and using the approximation (2.12), we can transform the 

integrations one over the reference element fl, thus obtaining 

Vit- VvdSl-k2 / uvdtl 

V^ f^9u 8£n ^ 

Nt Ne 

1=1 3=1 

3 

E 

— dfl - k2 / uv\J\ d£l 
\J\ JQ. 

m=\ 

y ^ 8h% djn j v - dh3 8£'n 

^ d?n dxm t 

1 
— dfl-kz l^hthjlJldtl 

L ~ 1 ~S<& Illy I \ , .. 

where J is the Jacobian of the transformation which for straight edged tetrahedrons, is 

given by 6 x volke where volke is the volume of each element. However more generally it is 

a function of the reference coordinates £i,£2,£3, and is given by 

dx\ (8x28x3 dx2dxs\ dx\ (8x28x3 8x28x3s 

^1,6 ,6) 3£iU&06 d&db) 8^Widi3 d&dh) ( 2 J 5 ) 

dxi (8x2 8x3 8x2 8x3 
+ 8& V^i % 96 % 

The element stiffness matrix in terms of the local coordinates (£1, £2, £3) is now given by 

1 

Jil m=l 

y> 8hz d£n j 

and the elemental mass matrix is given by 

- ^ dhj d£n> j 

\n' = \ 
8£,n' dxr \J\ 

d£l (2.16) 

Mt hlh3\J\ dfl. (2.17) 
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The problem matrix is now written as 

iik; = Kk; - k2Mk; + Sk; (2.18) 

where the coefficients S e represent the contributions from the surface integrals of each 

element flke needed in invoking boundary conditions. The analogous mass matrix needed 

in two-dimensions is represented as 

Wflj = f[hf]t[hf]3\Jf\ dT l<i,j> Nef, (2.19) 

where the subscript / implies that the terms are evaluated on the faces of the elements. 

Moreover, the two-dimensional Jacobian J / is constant for the straight faced elements and 

is equal to Jf = 2Areap, and can be evaluated from the three-dimensional Jacobian by 

•//(&, &) = ./(£i, 6 , 0 ) . 

These mappings depends on the basis functions h(£i,£2>£3) and must be defined appropri­

ately for the tetrahedral elements. The work here uses basis functions of varying orders 

based on higher-order Jacobi polynomials, in which we will now briefly review. 

2.2.1 Nodal Points 

The subdivided tetrahedral domains contains nodes or nodal points which plays a key role 

in the finite element method. These nodes are allocated at least at the vertices of the 

elements as seen in Figure(2.1), but in order to improve the approximation, further nodes 

are introduced. For example in the finite element method to go from a linear approximation 

(nodes only on vertices) to a quadratic approximation, additional nodes at the midpoints 

of the sides of the element are added. Basis functions of higher than quadratic are also 

available, but typically when using higher-order spectral elements the nodal sets consist 

of non-equispaced points. For nodal sets of varying polynomial orders we refer the reader 

to [41]. 



2: Numerical Methods for the Helmholtz Equation 25 

The focus of the numerical procedure used, is on the hp-version of the finite element 

method (referred to a spectral element method), where we simultaneously increase the num­

ber of elements and increase the interpolation order within the element in order to improve 

the approximation. This is referred to as an h refinement and a p enrichment. The pa­

rameter h 6 (0,1), and its magnitude gives some indication of how close the approximation 

space Vh is to the infinite dimensional space V; and the number N represents the number 

of basis functions or nodes in the approximation. In the limits N —> oo, [h —> 0), the basis 

functions are chosen in such a way such that Vh approaches V. Increasing the polynomial 

order p (corresponds to more nodes on each element) can provide fast convergence, small 

diffusion and dispersion errors, and consequently, as will be discussed further, can be an 

advantageous numerical approach for the Helmholtz equation. 

2.2.2 Bas i s funct ions 

The expansion basis associated with the nodal points for the finite element method are the 

Lagrange polynomials hz associated with the nodal sets £j. For the nodal spectral element 

methods, higher-order Lagrange polynomials over tetrahedrons are described in [33], and 

are extended in the work [41] for the local coordinates (£1,62! £3) covering [0, l ] 3 . Here we 

briefly review the higher-order basis functions described in [41], as we incorporate these 

into our Code and adapt it for the exact bounds method. Considering the complete three-

dimensional polynomial basis of order at most n, where pt(£) €E Pn , any function can be 

interpolated as 

3=1 

where f = [f\, • • • /yvj is the vector of expansion coefficients and f = [/(£i), • • • f{£,Nt)\ is the 

vector of nodal values at the grid points. Equation(2.20) can be re-expressed as the matrix 

equation Vf — f where V y = Pj(£i) is the Vandermonde matrix. Through the Lagrange 
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basis functions hz(^i,^2,^3) satisfying (2.13), one can also write the relationship 

f(O = £f(£)M£0- (2-21) 
0=1 

Upon combining Equations (2.20) and (2.21), by invoking f = V _ 1 f in (2.20) we obtain 

M£i>&,&) = Y^V^PAZI,^) (2-22) 
3 = 1 

Therefore, the Lagrange polynomials h% are related to another set of polynomials (which can 

be chosen to be any set) through the Vandermonde matrix. The inverse of the Vandermonde 

matrix must exist in order for the interpolation to exist. Moreover, the polynomial basis pt 

must be orthonormal with respect to some inner product in order to maximize the degree 

of linear independence of the basis and consequently avoid severe problems in computing 

V - 1 where the condition number of the matrix V can grow exponentially with increasing 

order n. Henceforth, the basis that has been applied in [41] is given in terms of the Jacobi 

polynomials p(a>^) to be: 

T M * . & , 6 ) = ( ( 1 ~ 8 f "* ) ) , pr ) w( j ^) J P 3
( 2 t + 1 ' 0 ) W (2-23) 

x Pf4 + 2 j + 2 , 0 )(i) , i,j,k>0,i+j + k<n, 

where the mappings (r,s,t) are the collapsed coordinate system described in [37] and are 

given by 

" - 2 C l 1, s = ^ 2 - l , i = 2 & - l . (2.24) 
i - & - & 1 - 6 

The Vij,fe's satisfy the following orthogonality condition 

Jn 

where 5lJtk,p,q,r is the three-dimensional Dirac delta function, and "llthk is a normalization 

coefficient given by 

1 1 1 

2i + l 2{i + j) + 2 2(t + j + h) + 3' 
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The polynomial set ipij,k is now expressed in terms of modified Jacobi polynomials 

Vw(£i ,&,&) = [Pr}[m{Zi,t2,&) x [ f t f + 1 ' 0 ) ( 6 , 6 ) x [P t ] f+ 2 j + 2 ' 0 ) (6) , (2.26) 

where these modified polynomials are defined to be 

(2.27) 

which can be expressed alternatively, as 

n + a \ / n + (3 
iprt'0) = i E ( I ( 2 ^ + 2 6 + 2 6 - 2 ) " - ( 2 e i ) m , (2.28) 

in K^l>^2,^iJ -

[Psfc^fab) -

lPt}n
a'P\& -

- Vx ^ <,A) ± n U _ 

= (i - i.YP^ ( ^ • 

= Pi^)(2£3-l), 

-6-

-0 
- 6 

5 

1r> 
m I \ n — m 

2n 2—i I 
m=0 \ 

2" ^ 1 
m=o y 

2" ^ 1 
m=0 \ 

n / n + a \ / n + (3 
lPst'P) = ^ E 1(26 + 2 6 - 2 ) ^ ( 2 6 ) ™ , (2.29) 

271 

m I \ n — m 
n /n + a \ / n + /3 

[Ptt^ = ^ . Y \ | ( 2 6 - 2 ) " — (26)"\ (2.30) 
m I \ n — m 

where 
m m! 

n!(m — n)! 
n 

Now the polynomials J ~ are orthonormal (i.e. satisfying Kronecker delta property) 

and are modal (Hierarchical set of polynomials). For simplicity of notation, we designate 

the combination of i,j,k in xjjlt3tk with 5, where 1 < 6 < Ng and write tps- Moreover, the 

normalized polynomials -^= are a suitable choice for the p^'s presented above. Therefore 

from Equation (2.22) we can express the Lagrange polynomials which are a nodal (non-

hierarchical basis) set of basis in terms of the normalized modal basis functions as 
Ne 

h3 
fc.(6,a6) = E V ^ K i y 3 ) - v* (2-31) 

3 = 1 
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where the components of the Vandermonde matrix are given by 

V„ = ̂ 0 . (2.32) 

In order to calculate the surface integrals for the boundary conditions, we require the 

two-dimensional version of these basis functions. These can be retrieved from the three-

dimensional modal basis functions 

[^ / ] . J (6 ,6)=^o(ei ,6 ,0) , for i,j > 0,1+j <n (2.33) 

The corresponding orthogonality condition for the face reference element is now 

JJ>l>f]ij WfU dr = b/].j [<*/W (2-34) 

where [Sf]iJPq is the two-dimensional Kronecker delta, and [jf]ij is the normalization factor 

M« = 27TT W^H2- (2-35) 

We again combine the indices i and j and designate the combination by 5', where 1 < 5' < 

Ng and write [ipf}ij as [V1/].?'- Analogous definitions for the two-dimensional higher-order 

Lagrange polynomials in terms of these normalized modal basis functions is written as 

lhM^) = EiVf];^f]^2)- (2-36) 
Jit Vhfh 

These higher-order basis functions hz are then used in the calculation of the elemental 

matrices described earlier which include the stiffness and mass matrices, (2.16), (2.17), and 

(2.19). 

2.3 Some Key Concepts 

Variational forms which arise from the Helmholtz equation are in general, not positive 

definite and since we are concerned with solving the Helmholtz problem via FEM or SEM, we 
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must address the issue of whether or not the boundary value problem is weakly solvable and 

if the solutions are unique, as these generalizations to indefinite forms do not immediately 

follow. Moreover, for a boundary value problem to be well-posed for a given set of data, 

a solution must not only exist, and be unique but must depend continuously on the initial 

data. Therefore, stability of the numerical solution also becomes of paramount importance, 

especially when addressing convergence issues, as small errors in the data may cause a 

large error in the solution. For the Helmholtz problem, existence and uniqueness results are 

generalized from the Lax-Milgram theorem which holds only for positive definite variational 

forms. There are two such generalizations, one where the variational form satisfies an inf-

sup condition, and another which satisfies a Garding inequality. As these concepts are 

important for the understanding of the numerical difficulties associated with the Helmholtz 

equation, and in the computation of the bounds, a brief discussion of them is warranted. 

In order to explain some of the ideas related to solvability conditions for the Helmholtz 

problem, let us first consider the variational (weak) formulation of a boundary value problem 

of the form 

J Find u G Vx : 
\b(u,v) = (f,v)\/vev2,

 [Z-6I) 

where V\ and V2 are normed linear spaces for the trial and test spaces respectively. The form 

b can be either biliear or sesquilinear, and / is a bounded linear (or antilinear) functional 

defined on Vi-

2.3.1 P o s i t i v e def inite forms 

The Lax-Milgram theorem states that for sesquilinear forms a : V x V ^ C defined on a 

Hilbert space V satisfying 

1. Continuity(boundedness): 

3 M > 0 : \a(u,v)\<M\\u\\v\\v\\v, V«,wGV, (2.38) 
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2. V-Elhpticity(positive definiteness): 

3a > 0 : \a(u,v)\>a\\u\\l, Vw e F, (2.39) 

and for a bounded linear functional / defined on V, we can find a unique element u = tt» G F 

such that a(it*,i>) = (f,v). From the ellipticity condition, it can be shown that the solution 

u* is bounded by the data / , requiring that 

\\u*\\v < - | | / | | y , a 

thus showing stability and regularity. As an example, for the Poisson equation with homo­

geneous Dirichlet boundary conditions, the sesquilinear form a(u,u) is given by Equation 

(2.8) defined on the Hilbert space V = HQ(Q) C H1^) containing all H1 functions that 

vanish on V can be shown to be V-elliptic, i.e. 

a(u,u) > ^ — ^ | | V u | | ? 

where C is a positive constant and ||.||i denotes the i71-norm. This follows from an appli­

cation of the Pomcare inequality: 

IMIL2 fs C | | V U | | L 2 . 

2.3.2 inf — sup c o n d i t i o n 

For the Helmholtz problem, the sesquilinear form is 

b(u, v)= f (Vu • Vv - k2uv) cm (2.40) 

which becomes indefinite for large k, thus the Lax-Milgram theorem cannot be applied as 

the condition of V-ellipticity no longer holds. Under slightly weaker conditions (where V-

ellipticity is not assumed) however, a generalization of the theorem to indefinite forms was 

shown by Babuska and guarantees the existence of a unique solution u* € V\ such that 

b(u*,v) = (f,v) for a sesquilinear form b : V\ x Vi >—> C on Hilbert spaces V\, V2 satisfying 
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1. Continuity 

3 M > 0 : \b(u,v)\ < M\\u\\Vl\\v\\V2, VueV1,v£V2, (2.41) 

2. inf — sup Condition: 

3 / 3 > 0 : 0< sup ^ V M V O ^ u e V i , (2.42) 

3. Transposed inf— sup Condition: 

sup \b(u,v)\ > 0, V0 ^ v e Va, (2.43) 

and an antilinear bounded functional / : V2 1—> C defined on V2. The solution u* then can 

be shown to satisfy the stability estimate 

IKHv! < dl/llv2'-

As already mentioned, in the FEM (SEM) we are concerned which approximations which 

belong to finite dimensional subspaces VN C V. Therefore, the above conditions for exis­

tence of a unique solution must also extend to the approximation spaces. For definite forms 

(Lax-Milgram theorem) this has an immediate extension, however for indefinite forms, the 

theorem of Babuska does not extend to subspaces V ^ because by restricting to a subspace 

of V, the supremum can decrease, where as the infimum may not and so the inf — sup con­

dition will not be satisfied. This motivates the definition of the discrete inf — sup condition 

which guarantees a unique solution to problem (2.37) with u G V\N, and v € ViN and gives 

stability estimates for these approximation. The question of when the numerical solution 

for the Helmholtz equation satisfies the discrete inf — sup condition, will rely on the notion 

of V-coercive forms. 
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2.3.3 V - C o e r c i v e forms 

The Helmholtz equation is an elliptic partial differential equation, however we know that the 

sesquilmear (bilinear) form corresponding to Helmholtz problem is not V-elhptic There­

fore, elliptic boundary value problems do not generally correspond to V-elhptic variational 

forms, rather V-coercive forms 1 will be associated with elliptic boundary value problems 

Henceforth, a sesquilmear form b I ^ X F H C defined on a Hubert space V = i? 1 (0) (fi is 

a bounded domain) is called V-coercive if for u 6 V it satisfies a Gardmg inequality 

b(u,u) + C\\u\\z
L2m > a | | u | | ^ 1 ( n ) (2 44) 

with positive constants C, a We point out that this definition holds for a Gelfand triple (see 

[32], Section 6 5 13) which for the special case V = H1^) is H1^) C L 2(0) c H'1^) 

This definition can be interpreted as the V-elhpticity property of 

a(u,v) =b(u,v)+C{u,v)L2{pj-) 

It is seen that by setting C = k2, the Helmholtz variational form will satisfy the Gardmg 

inequality 

Remark 2.3 Although we are concerned here with the well-posedness of the Helmholtz prob­

lem, and that the theorem of Babuska gives conditions for existence and uniqueness of in­

definite variational forms, there are those frequencies where the interior Helmholtz problem 

does not have a unique solution Let us consider the homogeneous Helmholtz equation in a 

unit cube fl, 

V2V> + k2ip = 0 in n, 

ip = 0 on r , 
xOften many textbooks on the subject, use the notion of coercive bilinear forms l e a(u,u) > a | |u | |2 for 

constant a > 0 and speak of the Helmholtz problem being noncoercive However, we follow the definition 
used in Hackbusch [32], and speak of the Helmholtz variational form as being V-coercive and satisfying a 
Gardmg inequality 
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where the problem has nontrivial solutions (the eigenmodes) for \n,m,l = k2 — ir2(n2 + m? + 

I2), l,m,n € N given by 

ipn,m,i{x,y>z) — sm(nTTx)sm(m,Try)sixi(lTrz). 

As an example we see that \ij,2 = 2̂,5,5> but this value corresponds to different eigenfunc-

tions. At these frequencies, the mhomogeneous problem is also no longer uniquely solvable. 

However, if the vibrations are damped, which occurs by introducing a nonzero imaginary 

boundary term,, then the interior problem will generally have a unique solution. 

We will see in the next chapter that in the discrete model, having no damping will 

result in the system matrix becoming singular, whenever k2 becomes numerically close to 

an eigenvalue of the problem. Therefore a damping term is introduced in order to make the 

system matrix non-singular. 

The above remark hints at the fact that having a nonvanishing imaginary boundary condi­

tion is essential for the proof of uniqueness. However, once a uniqueness is established, the 

existence of a solution to the boundary value problem (2.37) is shown in (see [32], Theorem 

6.5.15) to follow from the Fredholm alternative for a sufficiently regular domain f2, in which 

the embedding H1^) C L2(Q.) is compact. The Fredholm alternative states: that either the 

problem (2.37) has a solution u & Hl{Q.) for all / , or there exists a non-trivial solution to 

the homogeneous problem (with / = 0). Thus, for the above remark, if for the homogeneous 

case one obtains non-unique solutions, then it can be expected that the non-homogenous 

problem, if a solution exists, will also yield non-unique solutions. Moreover, the number of 

solutions will be sum of the solutions to the homogeneous and non-homogeneous problems. 

2.3.4 Variational methods 

The aim of this subsection is to demonstrate some properties of the convergence behavior 

related to the numerical approximation of Helmholtz boundary value problem as compared 



2: Numerical Methods for the Helmholtz Equation 34 

to boundary value problems having V-elliptic variational forms, where in particular, we will 

use the Poisson equation as an example. The variational weak form of the Poisson problem 

is given by find u £ V — i?1(Jl) such that 

a(u,v) = (f,v) VveV (2.45) 

with a : V x V ^R given by 

a(u,v) = f Vu-VvdQ.. (2.46) 

Jo. 

In the FEM(SEM), the solution to the variational weak form, is also the minimizer of an 

energy functional J(u) given by 

J(u) = -a(u,u) - (f,u). 

Thus, the same problem of solving Equation (2.45) can be expressed as a minimization 

problem, which is the basis for the Ritz method. By considering approximation spaces 

VN c V the Ritz method seeks an approximation uN £ VN C V that minimizes an energy 

functional in VN. The consequence of such a minimization leads to the Galerkin weak form 

a(uN,v) = (f,v) VveVN. • (2.47) 

Subtracting Equation (2.47) from Equation (2.45) gives the finite element error equation 

a{u-uN,v) = 0 \/v<EVN, (2.48) 

which indicates the error u — uN is orthogonal to VN with respect to the energy norm ||.||a 

given by 

H 0 = (|a(« Iu)|)1/2. (2.49) 
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Convergence properties 

Using Equation (2.48), and applying the Cauchy-Schwartz inequality, it is apparent that 

lln — uN\\! = a(u — uN ,u — uN) = a(u — uN ,u — v — uN+v) 

= a(u — uN ,u — v) — a(e, uN — v) 

= a(u — u ,u — v) < \\u — u \\a\\u — v\\a (2.50) 

for e = u — uN and all v € VN. Therefore, by canceling out the error norm on both sides, 

we see that the error is asymptotic when we estimate the error of best approximation as 

inf \\u — v\\a —y 0 for N —* oo, VnG V. 
vevN 

For V-elliptic variational forms a(.,.), the solution uN 6 VN is the best approximation (in 

the energy norm) of the exact solution u EV. V-ellipticity of a(.,.) implies that the energy 

functional J(u) is convex, and thus has a unique minimizer. An important observation 

for the Ritz method of minimizing an energy functional is that the solution uN begins to 

converge from N = 1 and asymptotically approaches the exact solution as the number 

of degrees of freedom in the discrete model increases. Moreover, by letting v — u in the 

continuity and ellipticity equation (2.38)-(2.39) respectively, one obtains 

a\\u\\^ <\a(u,u)\< M\\u\\^ WueV, 

which suggests that the energy norm is equivalent to the y-norm and thus from (2.50), one 

can prove Cea's Lemma which states that for a continuous,V-elliptic, bilinear form a(.,.) 

and a bounded linear functional / on V, there exists a constant C independent of N (or 

h), such that 

\\u — uN\\v<C inf ||u — v\\v, 
vevh 
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where C is a stability constant and for positive definite forms it is — where M and a 

come from Equations (2.38) and (2.39) respectively. Cea's Lemma can be viewed as an 

estimation of how far off u is from the subspace VN, which can indicate the quality of the 

approximation uN. Since for some particular vN G VN we have that 

• c II Nw ^ II ~N\\ 

mi \\u — v \\ < \\u — v , 
VN€VN 

one can get a better understanding of the convergence of approximation, if vN is chosen to 

be some interpolate of u. This is a function uN G VN which has values corresponding to 

that of u at the N points x i , X2, • • • XN in Q, 2 such that u(x.g) = uN(xg) for I — 1 • • • N. 

This indicates that the problem of convergence can be understood as whether uN n « a s 

N i—> co. 

In the case of indefinite variational forms, the convergence behavior is quite differ­

ent. Generally an indefinite variational form, satisfying Equation (2.37) is solvable if the 

continuous form b(.,.) satisfies the discrete inf — sup condition 

i&c u,v N 3/3N>0: (3N < sup ' v V O ^ u e V f , (2.51) 
o^v€V2

N \M\vA\v\lv2 

and the discrete transposed condition 

sup \b(u,v)\ > 0 , V O ^ u e V ^ V (2.52) 

However, a sufficient condition for the existence of a unique solution requires that the 

sesquilinear form b(., ) be V-coercive on V = H1^), satisfying the Garding inequality 

(2.44). In this case there exists a number ./V0 such that the variational form in (2.37) has a 

unique solution uN G VN for all N > N0 and \\uN — u\\Hi^ —> 0 as N —f co. The proof of 

this statement is given in [32], and it indicates that the convergence for indefinite but V-

coercive forms behaves erratically when N is small, but when Â  passes a critical number, we 

2 The interpolate can also be viewed locally on fi, but for preciseness we need to define those approximation 
spaces corresponding to the individual elements appropriately. 

file:///M/vA/v/lv2
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begin to observe a regular convergence pattern. Consequently, for the Helmholtz problem, 

increasing the wave number will cause the variational form to become indefinite, however, 

as it satisfies a Garding inequality, for subspaces approximating well enough, the problem 

can be made to be V-elliptic. Thus the energy functional for the Helmholtz variational weak 

form will become convex, and the method of convex minimization for obtaining bounds will 

apply. Moreover, for N > N0 when the discrete approximation has a unique solution uN 

the error u — uN will satisfy 

\\u-uN\\v <d inf | | u - u | | v \/N > NQ 
veVN 

for some constant C\ not depending on N. This is the same in form as Cea's Lemma, but it 

must be understood that the stability constant is different in this case, and typically larger 

for the indefinite forms. 

2.3.5 A n observat ion 

We let e := u — Uh, where Uh is the finite element approximation to u and e is the error. 

Letting v = u — Uh G Vh we recast the Helmholtz equation as the error equation 

6 ( e , e ) = < / , e > Ve e Vh (2.53) 

where we recall the sesquilinear operator b(e, e) to be 

b(e,e) = / Ve- Vedfi - fe2 / e-ecftl (2.54) 

If we assume a particular polynomial approximation, that Uh is approximated by piecewise 

linear polynomials, then e = 0{h2). Since the second term is quadratic in e, then the 

integral of the second term will be 0(/ i4) . The first term is quadratic in the derivatives of 

e and thus the integral in the first term will reduce as 0(h2). Therefore, integral in the 

second term goes to zero much faster than the first term, and although the second term is 
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0(h4k2), one can expect that at some h, the first term will dominate and the sesquilinear 

form will retain a positive definite structure. 

2.4 Pollution Effect 

2.4.1 Piecewise linear case 

The above observations hints at a restriction which must be applied in the design of a mesh 

for a given k. As a simple example, consider the three-dimensional Helmholtz equation as 

in problem (2.1)-(2.2) with homogeneous Dirichlet boundaries (gu = 0) and with a forcing 

function: / = 3(n2 — l)k2 sin(kirx) sm(kiry) sin(kTrz). Then the exact solution is given by 

u = sm(kTrx) sin(kiry) sm(knz). Thus the solution is periodic and for the three-dimensional 

wavelength A, with components A = Xx = Xy = \ z = | ^ will satisfy 

A nres = T ~ constant, 
h 

where the number nres is the resolution of the mesh in each direction. Extensive study of 

the one dimensional wave equation [34, 35] have referred to this as the "rule of thumb", 

where in the particular case when approximating an oscillatory function with piecewise lin­

ear interpolants, have recommended the choice nres — 10 in practice, which gives reliable 

results. As was mentioned in the previous section, the problem of convergence of a Galerkin 

approximation can be transformed into one of interpolants. Letting I/j(u) to be the projec­

tion operator which maps u to its interpolate iih, we can write some typical estimates on the 

interpolation error u — I/,(u). These estimates hold for finite elements that are not allowed 

to be arbitrarily thin, where the finite element is said to be regular. We refer to [18] for 

details. For piecewise polynomials on regular finite elements of degree p > 1 of dimension 
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d < 3 which form a partitioning of the mesh, these interpolation estimates satisfy 

| |u - I h (u) | | L 2 ( n) < Chp+1\u\HP+i{n) (2.55) 

\\u-Ih(u)\\mm < ChP\u\HP+1{n). (2.56) 

For piecewise linear polynomials p = 1, it can be shown for the solution u given above that 

HH2 < Clk\ and j ^ < C2k 
IMIL= Mm 

for positive constants C\, C2. Consequently, bounds on the relative errors for interpolation 

of an oscillatory solution u yield 

h-Ih(u)\\L^Cih2k2 ^ \WzMMEL<chk. 
IMU2 M L I 

Under the h-version of the finite element method, we see that since the resolution rule is 

determined upon by the estimate on hk, it thus controls the interpolation error. 

Despite imposing a "rule of thumb" strategy, we know from computations that the 

finite element error still grows with the wave number. In fact from a proof in [4], which 

generalizes Cea's Lemma, we can estimate the error u — u^ as: 

M 
||e||v < \\u - v\\v + \\Uh - v\\v < \\u - v\\v + ~^-\\u - v\\v 

Ph 

where v is an arbitrary function of Vh, M is the continuity constant from (2.38) and (3h 

is the constant in the discrete inf — sup condition. For smooth functions u, v is chosen to 

be the interpolant I^u of u in Vh. The error thus is characterized by two terms, where the 

first term is due to a discretization error u — \u and the second, called a pollution error 

which is related to the stability properties of the approximation of the discrete sesquilinear 

form, where large values of ¥- indicate a loss of stability. In the case of piecewise linear 

approximations, estimates which hold under the assumption hk < 1 are referred to as 

preasymptotic estimates. It has been shown in [34] that for the one dimensional Helmholtz 
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equation, the interpolant IhU is the best approximation and that under the assumption 

hk < 1, the finite element error can be shown to be 

\u — Uhln1 < (1 + Ck2h) inf \u — v\Hi. (2-57) 
v€Vh 

Assuming oscillatory behavior of the solution (i.e. "| = O(fc)), it is shown that the 

relative error (i.e. e = , , Hl) is estimated as 

~ex<C1hk + C2k
ih2, (2.58) 

where C is a constant independent of k and h. The second term is the pollution term and 

is 0(fc3/i2). 

Although the model equation representing time harmonic acoustic waves is non-dispersive 

wave equation, it should be noted that the numerical solution to the Helmholtz equation 

do not preserve the non-dispersive character. Just as in the mathematical model, the wave 

number is given as fc = cu/c, where LO is the frequency of the wave, and c is the speed of 

sound, the numerical wave will have a wave number kh — to/ch which differs from fc. This 

dispersive effect is a numerical artifact which is consequence of the discretization scheme. 

Moreover, it has been shown in the one dimensional setting that in fact the pollution error 

has the same order as the phase lag, namely 

fc3/)2 

kh = k-^~ + 0(k5h2). (2.59) 

Therefore, due to the pollution error, the optimal order of convergence is not achieved 

through the estimate hk < 1, and numerical experiments demonstrate in the case of piece-

wise linear approximations, that the condition k2h <C 1 is sufficient for quasi-optimality 

of the finite element error. In this case, as seen in (2.57), the finite element error on fine 

meshes is similar to that of the interpolation error. In practical computations, however, in 
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order to keep the error below some tolerance, one considers a mesh design under the esti­

mate k2h < constant, but a mesh size h = 0(fc^2) is considered impractical for engineering 

applications when k is large. 

2.4.2 Higher Order Elements - hp FEM 

It is seen from the interpolation estimates of order p given in Equations (2.56)-(2.56), that 

addressing the effect of pollution error for higher order polynomials that where the error 

approximation in the H1 norm is bounded by hp\u\HP+i then the derivatives of higher order 

must exist and so higher regularity of the functions are required. A detailed study of this 

is given in [34]. 

After establishing the regularity of the solution, just as in Equation (2.58), it is shown 

in [34, 36] that the relative error for general polynomial orders of p > 2, assuming oscillatory 

behavior where |w|^+i/ |w| f f i = O(fc^) is given by 

* ^ ( £ ) ' + < * ( £ ) * (2-60) 
where the first term is the approximation error and the second term represents the pollution 

term. It is apparent that when p > 2, the pollution effect is reduced significantly when the 

mesh size is restricted to satisfy | ^ < 1, since this expression is taken to the power of 2p in 

the pollution term. 

Although going to higher order significantly improves the approximation by reducing 

the pollution error, it should not be considered a panacea as this type of error is inherent in 

the polynomial based methods despite its improvement for high-orders. Moreover, according 

to Babuska et. al. [8], only in one-dimensions can the pollution error be eliminated com­

pletely. Other approaches such as the discontinuous enrichment method of Farhat [24] have 

been applied to improve approximations for the Helmholtz equation which involve using 

analytical functions such as plane wave equation which satisfy the homogeneous Helmholtz 
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equation as part of the elemental basis functions. However, this can be computationally 

more expensive, especially in the local integrations. Regardless, we are restricted to using 

polynomial based approximations as the bounds method as will be presented, is based upon 

approximations from varying polynomial fields. To obtain sharper bounds we apply the 

method with higher order polynomials in order to reduce the effect of pollution for higher 

k. 

We will see in the next chapter that the method is based on recasting the problem into a 

constrained minimization problem where the constraints involved are relaxing the continuity 

along elemental subdomains and then enforcing the continuity through the use of Lagrange 

multipliers. The subdomains which we deal with are either individual elements that were 

used in the partitioning of the domain in this case tetrahedrons, or a cube comprised of six 

tetrahedrons. Therefore we will now review a domain decomposition method that will be 

used herein in the approximation of the Lagrange multipliers. 



Chapter 3 

Domain Decomposition Methods 

In this chapter we will present two domain decomposition (DD) procedures which are based 

on a family of FETI (Finite Element Tearing and Interconnecting) methods developed for 

the parallel finite element solution of equilibrium equations [23, 25, 26, 28]. The method 

relies on partitioning the domain into totally disconnected subdomains, where the continuity 

along the interfaces of the subdomains is relaxed (torn) by the introduction of Lagrange 

multipliers called hybrid fluxes. The decomposed subdomains communicate through the 

use of Lagrange multipliers which act as forces (traction) along the interfaces. The problem 

is then reformulated as a hybrid variational principle, which can be thought of as the sum 

of an interior functional which is subdomain localized, and an interface potential which 

is the inter-partition connection. The minimization of such an energy functional leads 

to a set of equations for the hybrid fluxes. These equations include an elliptic problem 

for each subdomain with Neumann boundary conditions on the interfaces, and an inter-

subdomain field continuity enforced via Lagrange multipliers. The family of FETI methods 

are exploited, in a fast, iterative, computationally efficient solver for the numerical solution 

of the vector of Lagrange multipliers used to enforce continuity constraints (inter-connect) 

along the interfaces of the subdomains. 

The FETI method is well established in the literature [28, 23] and is based on an 

43 
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iterative procedure for solving systems of equations where the system matrix is symmetric 

positive definite (SPD) such as those arising from the discretization of the Poisson or Stokes' 

problems. This will then be the launching point in presenting the FETI-H method [25, 26] 

which is an extension of the regularized FETI method suited for solving indefinite problems 

arising from the Helmholtz equation. 

One of the advantages of the family of FETI methods is their numerical scalability 

with respect to both the mesh size h and the subdomain size. In the particular case of the 

FETI-H method, for Helmholtz equation, it has also demonstrated scalability with respect 

to the wave number. This means that for this class of DD-based iterative solver, increasing 

the mesh size of the problem or the number of subdomains, only causes the convergence 

rate to deteriorate weakly. However, for both FETI and FETI-H methods, numerical scal­

ability with respect to the number of subdomains requires a coarse space preconditioner 

which augments the DD iterative solver with a coarse grid problem that is large enough 

to propagate significant information globally, and thus accelerate convergence, while at the 

same time keep the computations affordable. In the case of the original FETI method the 

coarse space is naturally derived from the solvability conditions. However, it is not the 

case for the FETI-H, where any suitable preconditioner, both local (subdomain localized) 

and global (coarse grid) are determined based on the spectral analysis of the Laplace op-

erator(see [11]) which give a physical interpretation of the wave nature of the solution as 

it oscillates on the interface and propagates in the subdomain. Such preconditioners then 

filter out any low or high frequency waves for better convergence of the algorithm. 

As our aim in this work is to demonstrate the effectiveness of the bounds method, and 

not necessarily on computational efficiency, we have not implemented the coarse space global 

preconditioner in the interface problem for the Helmholtz equation. The methods we have 

tried, exploits the complex symmetry of the problem, demonstrates good convergence, and 
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is scalable with respect to mesh size. However, the coarse space preconditioner is required to 

make the regularized FETI method scalable with respect to the number of subdomains and 

wave number, although without this preconditioner the number of iterations for convergence 

is shown [23] to increase only sub-linearly with respect to the wave number. We will briefly 

discuss some of the iterative methods we have applied and furthermore, for the sake of 

completeness we give a brief overview of the coarse space preconditioner in the FETI-H 

method. 

3.1 The FETI Procedure - Poisson Example 

Non-overlapping domain decomposition methods have been used extensively for solving 

elliptic problems; and often are the method of choice. Here, one splits the global domain Q 

into a finite set of subdomains Q^s> satisfying 

_ Ns — 

n=\J o (s), n^ n n(9) = 0 vs ̂  q 
s=l 

where we recall that the overline denotes the closure; for example here f2 = dQ,(s> U S~l(s> 

for subdomain s. 

Domain decomposition methods usually involve solving for the restrictions to each 

subdomain of the global problem where appropriate boundary conditions on the subdomain 

interfaces are given. The original FETI method [28, 29], which is often referred to as the 

dual Schur complement method, invokes the Neumann boundary conditions 

dus 

at each interface r = dfls n dflq, where X's are the Lagrange multipliers which serve as 

the inter-connectivity between the subdomains and n s is the normalized outward normal 

vector to T . Henceforth, for / £ £ 2 (0 ) , each subdomain problem is given as: Find 
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us € H (fls) satisfying 

- V V s ) = / W in domain Q^ (3.1) 

^ = A on T{s'q) (3.2) 

boundary conditions on T n <9f^s' (3.3) 

with the continuity restrictions 

u^ = u(«) on f(s,9) (3.4) 

where we recall that the superscripts s are the restrictions of the global quantity to the 

subdomain, i.e. f^ = /|n(«), a n d that the continuity conditions ensure that u which is 

equal to u^s' on each subdomain is the solution of the global problem, and belongs to 

As the FEM(SEM) seeks out a weak solution, we proceed by recasting problem (3.1)-

(3.3) as a hybrid formulation. We first recall that the variational weak form for a Poisson 

problem with Dirichlet boundary condition is written for u 6 Hl{VL) and / 6 H~l{Q): 

I Vu-Vvdfl = / 
Jo. JQ 

X7u-\/vdn= fvdQ VveH1^). 
JQ 

Under a domain decomposition procedure just described this can be equivalently expressed 

as the argument minimum of the Lagrangian 

Ns M f f 1 Ns f 

where for some arbitrary ordering of subdomains, O1-5' < fiw, 

, , / - l x e n ( s ) n n ( 9 ) , n(»)<n(«) 
+ 1 otherwise. 
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The optimality conditions are expressed as 

9 C(vl°\\)\-x=x = 0, -^~C(v^,X)\vl.)=uM=0 (3.6) 
dv(°) v ' V I A = A ' d\ 

where the first of Equation (3.6) leads to the equilibration equation 

/ W s ) W s ) dQ = f fWyWdn- f auis)\v^dT (3.7) 
Jn(s) JQ(S) Jon*-*) 

and the second of Equation (3.6) enforces the continuity of the decoupled solution between 

subdomains, 

J ] / aQ(s)u^ dn = 0. (3.8) 

3.1 .1 D i s c r e t i z a t i o n 

In this thesis the FETI method is reviewed only as a means to give the necessary background 

and preliminaries in understanding the domain decomposition approach we undertake for 

the Helmholtz problem. The FETI method is an iterative method based on a preconditioned 

conjugate projected gradient method which targets the system 

K u = f (3.9) 

where K represents a n n x n symmetric positive semi-definite sparse matrix, which is typi­

cally the stiffness matrix, u is the n-long vector representing the discrete field solution and 

f is the n-long vector representing a generalized forcing term. Here we illustrate the FETI 

method for the Poisson equation, not only because of its symmetric positive definite (SPD) 

structure, but also because it closely resembles the Helmholtz equation, and demonstrating 

the bounds method for the Poisson equation is a stepping stone towards developing the 

method for the Helmholtz equation as will be seen in Chapter 5. We have seen that after a 

partitioning of the computational domain O, into a set of Ns subdomains 7^, the Equation 
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(3.9) can be replaced by the equivalent system 

K(s)u(s) = fM-B^A, s = l,---,N3 (3.10) 

^ B ( S ) U ( S ) = 0 ; ( 3 - U ) 

s = l 

where the restrictions of K, f and the solution u to each disconnected subdomain, fl^s' is 

denoted by K ^ , f(s) and u(s) respectively. Equation (3.10)-(3.11) is just the discrete form 

of the gradient conditions (3.7)-(3.8). Here ( . ) r denotes the transpose of a matrix, and B s TA 

represent the array of nodal points on the faces of each elemental subdomain corresponding 

to the discretization of the subdomain surface integral JQQ(S) O~Q(S)\V(S> dfl. B A should 

be thought of as an extraction process rather than a matrix vector multiplication, as B s 

is a Boolean matrix corresponding to crfi(S) which extracts the signed (±) restriction of a 

subdomain solution u^ to the interface boundary. We note that A here designates the 

nodal values corresponding to the product of a surface mass matrix and the hybrid fluxes. 

The subdomains Ns used in the partitioning are floating subdomains which means that 

they are not attached to any boundaries and as a result do not have any essential boundary 

conditions to prevent the matrices K>5' from becoming singular. Therefore, the subdomain 

problems in Equation (3.10) are ill-posed and do not yield a unique solution. To ensure that 

Equation (3.10) is solvable, it is required that the right-hand side data be in the column 

space of K.(s\ which is orthogonal to the left null space i.e. ker (K.(s> J. In the case of a 

symmetric real matrix ICS) this amounts to saying, 

(f(») _ B<s)TA) ± k e r ( K ^ ) . (3.12) 

The general solution to (3.10) is written as 

u « = K ( s ) + (f(s) - B(S)TA) + R(SWS) (3.13) 
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where K^s) is the generalized inverse of K.(s\ and H^ = ker ( A ^ ) , with the additional 

set of unknowns a^s> representing a set of amplitudes that specify the contribution of the 

null space R^s' to the solution u^s\ In order to solve for these unknowns, an additional set 

of constraints is required which must come from the solvability condition (3.12), that is, 

R ( * ) T (f(«) _ B ^ T A ) = 0 for s = 1, • • • , Ns. (3.14) 

Upon substituting the expression for the general solution (3.13) into the Equation (3.11) 

and using (3.12) the interface problem solving for A and a is the revealed as 

F / -Gj 
-Gf 0 

A 
a 

(3.15) 

where 

Ns 

F7 = ^B(S)K<S)+BW, G , = [ B ( 1 ) R ( 1 ) . . . B ( % ™ ' 
s=l 

d = ^ B W K ( J ) + f W , a « 
s = l 

[f(D 

a ( l ) . . . a ( " . ) 

R ( 1 > . . . f ! " ' ) # ' ) 
T 

(3.16) 

(3.17) 

(3.18) 

R e m a r k 3.1 We point out here that the FETI method solves Equation (3.10) for A which 

has non-unique solution. However after calculating the aSs> 's, the decoupled solutions u ^ 

are uniquely obtained for each subdomam. In the implementation of our code, we take the 

vector of all a^s> 's as 1 which specifies u^s>. 

Now we see that the FETI iterative procedure is based on a preconditioned conjugate 

projected gradient (PCPG) algorithm which augments the basic DD-based iterative method 

(here the conjugate gradient method is used) with a coarse grid problem that is large enough 

so that it can disseminate important information globally and accelerate convergence; yet 

small enough to be computationally affordable. 
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3.1 .2 T h e F E T I P C P G I terat ive P r o c e d u r e 

The FETI iterative method consists of premultiplying the first of Equation (3.15) by an 

operator P, and transform the DD interface problem into 

PF/A = P d 
(3.19) 

GjX = e. 

Here P is defined as 

P = I - G / ( G f G / ) - 1 G f (3.20) 

which is an orthogonal projector onto ker(G^). In the FETI procedure, given an initial 

value A0 that satisfies 

GTA° = e, (3.21) 

one can obtain iteratively, a solution to (3.19) by solving the homogenous problem 

PF/A = P d 
(3.22) 

G f A = 0. 

The iterates A™ are then generated by a preconditioned conjugate gradient (PCG) algorithm 

applied to PF/A = P d =>• G f An = 0. Let {pi, P2, • • • Pn} denote the set of search directions 

generated by the first n iterations applied to the interface problem (3.15). It is well known 

that the CG method is a Kryolov subspace method implied by 

An e spanjpx, • • • , p n } = span{w0, PF/w 0 , • • • , ( P F / ) n _ 1 w 0 } 

where wo is the initial residual associated with A and is given by 

w 0 = P d - PF/A° = P(d - F/A°). 

The initial vector A0 is given as A0 = ( G j ) _ 1 e = G / ( G f G / ) _ 1 e . Therefore, the FETI 

algorithm can be viewed as a two step preconditioned conjugate gradient method to solve 

the interface problem and can be found in the literature [22, 23, 28]. The algorithm can be 

summarized as in [27]: 
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1. Initialize 

A0 = G / ( G f G / ) - 1 e 

w° = P T (d-F 7 A 0 ) 

2. Iterate n — 1, 2, • • 

yn 

P" 

i /" 

An+1 

= prV, 

vn V y " F / p l 

^ P l FIP1 

y"T
W™ 

p n T F / p n ' 

= An + i / np n , 

w n + 1 = w" - ^ n P T F 7 p n , 

where F~l denotes a chosen preconditioner. The FETI iteration residual satisfies the fol­

lowing stopping criterion 

||.F—1w"|| 

l|f"ll^ 

where eg is the global FETI tolerance. 

^ < eg (3.23) 

3.2 Domain Decomposition for Helmholtz 

If the dual Schur complement method described above, is applied to the Helmholtz problem, 

then the local problems may become ill-posed whenever the wave number k of the global 

problem corresponds to a resonant frequency. As was briefly mentioned in the previous 

chapter, one can have a unique solution and make the problem well-posed by imposing 

imaginary boundary conditions, which is due to the rationale that this moves the spectrum 

of the operator associated with the Helmholtz problem in each subdomain into the complex 
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plane. However, as it will be shown, there must be special care taken to assure that the 

problem retains its desired solution. 

Although there can be several different ways of including an imaginary boundary term, 

we follow Farhat [25, 26] and replace the Neumann boundary conditions described in the 

previous section with Robin boundary conditions where 

— h iku(s' = A, where i — \/~—l 

at each interface Y 'q — dVts fl d£lq. Thus the local problems that are to be solved can be 

stated as: Find u^ <E Hl(Vi^) that satisfies 

- V V s ) - k2u^ = f^ in domain fi(s) (3.24) 

,.W = 5 W on r n d Q ( s ) (3.26) 

^ +iku^ = A on Y{s'q) (3.25) 
dns y 

I T 

where we recall gp to be the Dirichlet data from Chapter 2. Moreover, at interfaces the 

following continuity constraints must be respected 

u& = u® on Y{s'q) (3.27) 

^ + ,*«<•> = - ^ + tf = A on F ( ^ . (3.28) 
dns dni y ' 

The above reformulation (3.24)-(3.26) is valid only for a checkerboard like decomposition of 

fi where the subdomains have a special ± signing assigned to them which ensures well-posed 

local problems while at the same time guarantee that the accumulation of the contributions 

of the local decoupled solutions u^ will yield the global solution u of the original Helmholtz 

problem. Problem (3.24)-(3.26) then can be written equivalently as the minimization of 

a modified Lagrangian with continuity constraints between subdomains assembled in a 

checkerboard fashion satisfying (3.27)-(3.28). For Ns subdomains we write the modified 
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Lagrangian 

£(u(s),A) = V - f W s ) • Vv(s) dft - k2 I v^v^ dSl^ - f f^v^s)dn 

s=l dSZ s=l n M n n O ^ } L-71 

*ns,q ijfcv(«)^(») rfr(s) 

where Sn is equal to 1 if n is the outgoing normal unit vector to Q^s\ and is equal to 0 

otherwise. The last term in the Lagrangian then is the modified term and is only nonzero 

at an interface between two subdomains. As in the case for Poisson problem, the gradient 

conditions of the Lagrangian are then sought, which leads to the equilibration of the hybrid 

fluxes 

f W s ) • VZJ(S) dn - k2 [ u^v^dn + ik V (-i)*-.i / ( ^ ) ^r(s) 
u(s)v(s> dT 

o>) ./ant") 
(3.29) 

and the continuity enforcement of the decoupled solution between the subdomains, namely, 

Ns 

(3.30) 

3.2.1 Discretization 

The global Helmholtz problem in discrete form to be solved is 

K u = f where K = K - k2M 

where we recall K and M are the stiffness and mass matrices respectively, arising from 

the finite element discretization and k is the wave number which is positive. From Equa­

tions (3.29)-(3.30) we know that in the FETI-H method we replace this equation with the 
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equivalent system of subdomain equations 

2 T \ / T S Ks + ikMj us = (Ks - kzMs + ikMj) u 

fs - BsTX 
Ns 

J]Bsus = 0 

(3.31) 

(3.32) 
s=l 

where the K s and M s are the local subdomain stiffness and mass matrices, and MJ the 

matrix corresponding to the discretization of the modified part of the Lagrangian in Equa­

tion (3.29) which is nonzero only at the nodal values shared at the interfaces between two 

subdomains. It regularizes the subdomain matrix, making it non-singular, which in turn 

leads to (3.31)-(3.32) having a unique solution. Moreover, the solution of nodal values of 

the subdomain is given by us which includes interior values designated by uj and boundary 

values given by u^. These are explicitly, written as 

0 0 

Mf = 0 £ e^M bb 

U; 

where M ^ is the interface mass matrix given by 

{Mbb>^= I ^ M £ 

where we recall that ht and h3 are the finite element shape functions associated with nodes i 

and j on the interface between the subdomains. es'q is due to the checkerboard structure of 

the subdomains shown in Figure 3.1, which allows for the well-posed structure of the local 

subdomain problems and has the special signing: es'q = —eq<s = ± 1 . We point out that 

for computational efficiency, the matrix M | is constructed as a lumped matrix where all 

contributions of the matrix is on the diagonal. Our numerical experiments have shown that 

when we increase the number of subdomains, and more iterations is required for convergence, 

mass lumping improves our iterative method by reducing the number of iterations. We also 
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F i g u r e 3 . 1 : Representation of the checkerboard partitioning of the mesh (depicted in 2D), with the special 
± signing used in the regularization of the local subdomain matrices in three dimensions In this partitioning, 
each subdomain is given arbitrary sign in such a way that at least one of its neighbors has an opposite sign. 
Furthermore, the faces of each subdomain must also have the same signing as the subdomain. 

note that fs is the array of nodal values corresponding to the discretization of the duality 

pairing (f^'v^), namely, 

Ne 

0=1 

where here Ng indicates number of nodes in each subdomain, and xp are the the corre­

sponding coordinates. 

Finally, substituting Equation (3.31) into (3.32) yields the desired interface problem 

associated with the regularized subdomain equations in (3.31) given explicitly as 
F/A = d (3.33) 
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for 

F j = ^ B s ( K s + i /cM})" 1B s T (3.34) 
5 = 1 

Ns 

d = ^ B ^ K ' + i fcMf)- 1 ^. (3.35) 
s = l 

—T 
We make the observation that F j is not Hermitian (F / ^ F 7 , where over line indicates 

complex conjugate of the matrix), it is however, symmetric (F / = F T ) . This fact is impor­

tant in choosing the right iterative algorithm to solve the interface problem which exploit 

the complex symmetry of F/ . 

3 .2.2 I t era t ive m e t h o d used 

Several iterative methods have been applied to system (3.33), but as F / is non-Hermitian, 

the classical conjugate gradient method cannot be directly applied. The iterative methods 

in which we have applied are best suited for solving Helmholtz problems and in particular 

for complex symmetric linear systems. The iterative procedure we follow is that used in [26], 

which is a modification to the conjugate residual (CR), and the generalized conjugate resid­

ual (GCR) methods which have been derived from the GMRES method for the special case 

that the system matrix is Hermitian. We briefly summarize the CR and GCR methods as 

a means to adding clarity in the description of the algorithm used in [26], however, for a 

detailed description, on the CR and GCR methods the reader should consult [56]. We have 

also tried the symmetric quasi-minimal residual method (QMR), and the CSYM method 

which are also good methods in solving large sparse systems with complex symmetric coeffi­

cient matrices. With the exception of the CSYM method, all of the other iterative schemes 

are Krylov subspace methods. For the QMR method we refer the reader to [31, 56], and 

for the CSYM method the main source is [12]. We will not go into the description of of the 

other methods as they are discussed fully in the references. However we will comment on 
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the reasoning behind the choice of iterative method used and will briefly mention from our 

experience which methods perform best in solving the interface problem (3.33). 

The CR method very closely resembles the CG method which becomes eminent if we 

make the observation, that the nth residual vector rn := b — A x " (in the iterative solution 

to Ax = b), where x™ is the n approximate solution, and search directions p n are related 

in both methods through the relations 

r° = b - A r ° , p° = r°, (3.36) 

r" = r n - 1 - 7 7
n - 1 A p n - 1 , (3.37) 

p" = r
n + C n _ 1 p n ~ \ for iterates n = 1,2, • • • , (3.38) 

where the only difference in the algorithms are in the formulas I J " " 1 and (n~1. The algo­

rithms are based on seeking out approximations in the affine space x° + W given an initial 

guess x°, using a succession of orthogonal projections onto the subspace W which leads to 

the conditions 

r° _L W and Ap" ± W (3.39) 

that determine the parameters rjn~1 and (n~1. When A is Hermitian positive definite, 

• W = /C"(A, r°) leads to the CG method 

• W = A/Cn(A, r°) leads to the CR method, 

where /Cn(A,r°) is the Krylov subspace. Thus, in the CR method residual vectors are A-

orthogonal, and the Ap" ' s are orthogonal, or equivalently stated, p™'s are A^A-orthogonal, 

i.e. the inner product (Ap n ,Ap n ) = (Ap n ) T (Ap n ) = p n T A T A p n = (A T Ap",p n ) = 

0. In the GCR method, rather than storing only the previous iteration of search direc­

tions, one considers a sequence of these search directions p ^ p 1 , • • • , p " _ 1 , where each set 
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{p°, p 1 , • • • , p-7 l} for j < n forms a basis for the Krylov subspace K?(A, r°), where 

(Ap8 ,Ap f e) = 0 , for i + k. (3.40) 

The associated residual and search direction vector analogues to (3.36)-(3.38) in addition 

to the approximate solution vector are 

x" = x n - 1 + 7 ? n - 1 A p n , r ^ r ^ - ^ A p " (3.41) 
ra-l 

p™ = r n + ^ C m A p l (3.42) 

where the parameters are then determined via orthogonality conditions 

( r " , A p l ) = 0 i = 0,---,n-l (3.43) 

and (3.40). This will in turn yield the approximate solution x n , with the smallest residual 

norm in the affine space x° + K71. 

As the interface problem F / here is complex symmetric and not Hermitian as was the 

case for the CR and GCR methods, the main difference becomes in the complex conjugate. 

Therefore, in order to determine the parameters r]n~l and £m , needed in the computation 

of r" and the sequence p°, p 1 , • • • , p n _ 1 for a complex symmetric matrix A, one considers 

the following choice of subspace 

• W = A/Cn(A,r°) , 

and thus we have that for A = F / , the search directions must satisfy the orthogonality 

conditions 

( F ^ F T p ^ ) = ( F T F / P
1 , P ^ ) = 0 for i ^ k, (3.44) 

( r " , F / P
l ) = 0 for i = 0, • • • ,n - 1. (3.45) 
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Any approximate solution iterate, An, can be computed from An 1, where by exploiting 

orthogonality with the vectors F/p? for j = 1, • • • ,n — 1, gives 

(rn~1 FrD"^1) „_i = _ i r , * f p j 6 

( F 7 p - i , F / P " - i ) 

so that A" = A n _ 1 + r 7 n _ 1 p n - 1 . Multiplying this equation with F 7 F and taking the inner 

product with any p™ e AK71, and using (3.44) we have the orthogonality condition 

( F ^ F ( A " - A " - 1 ) , P ^ ) ) = 0, 

—T 

which implies that the algorithm used to solve (3.33), minimizes the F 7 F norm of the error, 

i.e. minimizes IIA — A™II— T_, . Below we summarize the algorithm we used in calculating the 

interface problem, where here we designate the complex conjugate transpose with *. 

1. Initialize vectors 

A0 = 0, r0 = d-FjX0 

y° = r° 

P° = y° 

2. iterate until convergence n= 1, 2,• • • 

rf = ( F / p ) n - 1 * r n - 1 / ( F / p ) n - 1 * ( F 7 p ) n - 1 

r n = ] .n-l_r ? n^F z pjn-l ) 

y n = rn, 

Compute Cm = - ( F / p ) I * ( F / p ) n / ( F / p ) J * ( F / p ) t for i = 0,1, • • • n - 1 
ra-l 

P" = y" + E ^ V 
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Some Comments on Preconditioning 

The above algorithm is referred to as the unpreconditioned regularized FETI method for 

complex problems. While the unpreconditioned method converges, and is numerically scal­

able with respect to the mesh size, it is however not scalable with respect to the number 

of subdomains. Moreover, a study done in [25] also shows that in the absence of precondi-

tioners the convergence of the regularized FETI method increases sublinearly with the wave 

number. The methodology for preconditioning the regularized FETI method is described 

in [25, 26] where at each iteration, the interface residual generated by the GCR algorithm 

is preconditioned by solving an auxiliary second-level problem obtained by projecting the 

interface problem onto a suitable coarse space. Such a coarse space preconditioner numer­

ically scales with respect to the number of subdomains and the wave number and thus 

accelerates the convergence. 

The current work does not implement the coarse space preconditioner as the main 

purpose of the work is to develop the exact bound method and to demonstrate the bounding 

properties. However, as the method is applied to three-dimensional wave equation in simple 

geometries using structured meshes, the computational cost in solving the interface problem 

is still affordable even in the absence of preconditioner. 



Chapter 4 

Exact Bounds Method for the 
Poisson Equation 

The strategy involved in the computation of bounds to exact outputs of interest is similar 

to the former hierarchical method [48, 50], in that it involves decomposing the global mesh 

into several elemental subdomains and relaxing the continuity requirements along the edges 

of each subdomain. A Lagrangian is first constructed so that the output problem is recast as 

a constrained minimization problem where the constraints are the continuity requirements 

along the edges of the subdomains and the equilibrium equation. The gradient condition of 

the Lagrangian will then lead to the primal-adjoint pair and the equilibration equation that 

will determine the candidate inter-element continuity multipliers. The bounds are finally 

obtained through a local sub-problem calculation. At this stage, the method differs from 

the former two-level residual method because by exploiting the Lagrangian saddle point 

property, existence of such bounds to the exact solution is guaranteed, however the bounds 

are practically un-computable. The key ingredient relies on constructing a complementary 

energy functional chosen from a suitable finite dimensional set that can be used to bound 

the infinite dimensional problem [58, 59]. 

In this chapter, we extend the exact bounds method proposed in [58] for the Poisson's 

equation to three space dimensions. While in [58], Ladeveze's procedure [38] is used in the 

61 
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calculation of the hybrid fluxes, we invoke the FETI method which has been shown [47] in 

the context of the two-level residual method of obtaining bounds to reduce computational 

time and memory. 

4.1 Bounds on Energy 

Preceding our objective of obtaining bounds on selected quantities of interest for the 

Helmholtz equation, we highlight some of the main theoretical aspects of the method, by 

applying the ideas to obtain energy bounds for the Poisson equation. Considering a simple 

boundary value problem with homogenous Dirichlet boundary conditions, we can define 

both trial and test space as: U(fl) = {u G H1^) u\mn — 0} and consider the problem of 

finding u eW, such that 

Vu-Vv<m= I fv dQ, Vu e U. (4.1) 

The total energy of the system which we would want to bound is 

e{u) = - / Vu • VudVt - I fudtt=-- / Vu • Vudtl (4.2) 

using Equation (4.1). The physical principle involved here is that the solution u minimizes 

the energy with respect to all other candidates in U, which can be stated mathematically 

as 

u = arg inf - / Vo; • Vw d£l — / fuj dQ. 
u&u 2 Jn Jn 

This statement is a result owing to the convexity of the energy functional which guarantees 

a unique minimizer. If we search for a discrete approximation of u from the finite set 

of functions Uh C U, then the convexity implies that any approximation of the energy 

term, will approach the minimum from above as depicted in Figure 4.1. Therefore, in the 

case of bounding the energy, the upper bound is just a consequence of the finite element 
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£{uh) = mine(u;) 
ueuh 

e(u) = mme(uj) 
toeu 

Figure 4 .1: Conforming nature of the upper bound. Here we see that any set of conforming functions will 
approach the exact minimum from above; thus s(uh) > e(u). 

approximation, however the upper bound alone is not enough to certify the error in the 

solution. 

In order to obtain a lower bound, we commence with the domain decomposition strategy 

discussed in the previous chapter, and relax the continuity between subdomains in the 

partitioning of the domain Q, through the use of Lagrange multipliers. Such a strategy 

leads to the introduction of the broken spaces (hat spaces) 

U = {v\v e L2{Q),v\T G i ^ C H . V T G %} (4.3) 

where here we use the notation given in [58] and denote 7^ as the mesh consisting of these 

non-overlapping subdomains T := fi^ G T^ (as was earlier presented in the previous chapter 

where Q,^ has been defined). As the global mesh is the accumulation of these subdomains 

we identify the integral over the broken domains as sums of integrals over the subdomains, 

i.e. 

/ Vu> -VvdQ = 2_] / VO)|T • V " D | T < ^ , where recall CJ\T •= to^s'. 
Ja TeTh JT 
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4.1.1 Lagrangian Formulat ion 

By enforcing continuity, we can re-formulate the above minimization statement where again 

A is used to indicate the Lagrange multipliers which have (±) signing at the interfaces 

between two subdomains tracked by cry. Let 7 £ dTh be a face of an elemental subdomain, 

then we express the continuity constraint as the strong statement given by: UI\T^ — U>\TN,j = 

0 on 7. Since to € i71(T), the trace of CJ on 7, will satisfy CJ|7 6 Hl^2(dT), and A|7 will belong 

to the dual of the trace space: A(dT) = H~l'2(dT). The weak form of such a statement 

then can be expressed for all A7 G A(7) as J (£>|T,7
 —

 WT J V ) 7)A7 cO? = 0. Therefore, such a 

re-formulation is now written as 

inf i / Vw • VcD dn - [ fudtl (4.4) 
Qeu 2 Jn Jn 

s.t. V / crTAcDdr = 0 VAeA. (4.5) 
TeThJdT 

with A = UxeThH"1/2(dT). We now express this as the Lagrangian 

£(u>, A) = - I VLJ • VLJ dQ - fvdn- V / aT\u) dF (4.6) 
2 Jn Jn rf^- J&T 

where optimality is arrived at by imposing the conditions V^JC — 0 and V\C — 0 which 

correspond to a saddle point. From the saddle point property and strong duality of convex 

minimization leads to the inequality 

£~ < nrf £(<£>, A) < sup inf^£(o), A) = inf^sup£(c2;, A) = e 

which is the basis for the bounds method and for the energy term, obtaining a lower bound. 

Here A is some candidate Lagrange multiplier which cannot be chosen arbitrarily. The choice 

for such candidates emerges from the finite element or spectral element approximation of 

the equilibration equation (as explained in Chapter 2) which is an equation balancing the 

contribution of the forces acting on the subdomains and consequently, guarantees that the 

inL QC(LO, A) is bounded from below for any choice of A, as shown in [58]. 
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4.1.2 Spaces and Multiplier Approximation 

The approximation spaces used for the finite dimensional problem are 

Uh = {veu\v\Te¥P(T),\/T€Th} (4.7) 

Ah = { A G A | A | 7 G P P , V 7 € 5 T J (4.8) 

for VP(T) being the space of polynomials on element T (in three-space dimensions) with 

degree less than or equal to p, and Pp(7) being the space of polynomials on element faces 7 

(in two dimensions) with degree less than or equal to p. Moreover, the global representation 

of the broken space is given by 

Uh = {v€ U\ v\Th e Pp(Th), \JTh e Th] . (4.9) 

Thus an approximation to the equilibration equation resulting from the gradient condition 

of the Lagrangian of the last section is given by 

V / aTXhvdT = / Vuh-VvdQ- [ fvdfl, v e Uh (4.10) 

which solves for A ,̂, and thus from the discussion of Chapter 2 is used to calculate u£ 

in which the accumulation of such contributions from every subdomain leads to the global 

approximation u^. As mentioned previously, the particular choice for such a candidate 

Lagrange multiplier A is taken to be A .̂ Thus it is apparent that we have a lower bound to 

the exact energy, that is 

inf £(&, A,,) < e. (4.11) 

However, as the infimum of the Lagrangian is taken over all Co G U, it involves the exact 

solution, and is thus un-computable. The strategy then, involves the use of a complementary 

energy functional, in order to bound the infinite dimensional problem from below. We will 

see that any approximation to this new functional will involve a computable lower bound 

to the lower bound in (4.11). 
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4.1 .3 S u b p r o b l e m Calcu la t ions 

Computable lower bounds are obtained through local independent subproblem calculations 

where from the lower bounding property given in (4.11) we write 

inf £(w; A/,) = >^ inf Jr(^>) 
cm T ^ uew(T) 

where JT{U) is the localized Lagrangian (subdomain localized) given by 

JT(UJ) = - / Vio-ViodQ,- / fudtt- \ (7T\hujdT. (4.12) 
2 JT JT JdT 

Now by defining the complimentary functional by 

J T (q) = i y q - q d f t (4.13) 

for functions q € H(div;T) where 

H (div; T) = {q|q E (L2(T)f, V • q 6 L2(T)}, 

we consider the inequality 

- / ( q - V C J ) 2 C ! 0 = - / q q d f i + - / Vw-VcodQ- / q Vwrffi > 0. 
2 JT 2 JT 2 JT JT 

Thus from Green's identity: — JT q • Vu; dfi = JT V • q u dQ — JaT q • n u dT we have 

- / q - q d f i + - / V u - V w d f i + / V - q w f f i - / q - n w d T > 0 
2 JT 2 JT JT JOT 

Choosing q from a space Q defined over each subdomain T given by 

Q(T) = {qGi?(div;T)| V - q = / in T, 

q • n = UT^h on dT > 

where upon substitution of this choice of q in the above inequality leads to 

- / q • qdft + - / Wuj-Vudn+ / fudQ,- \ uT\hu>dT>0. 
2 JT 2 JT JT JdT 
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Using (4.12) and (4.13), we arrive at the lower bound, but in order to find the best possible 

we consider the supremum over all q G Q, in order to obtain 

sup - J r ( q ) < i n f Jr(w). (4.14) 
q€Q(T) ueU(T) 

4.1 .4 B o u n d s P r o c e d u r e 

Here we will not go into the detail of the discrete equation used to approximate the bound 

components q as we discuss this in the next section. However, we point out that the global 

lower bound consists of an aggregate of these local quantities, where 

J{Cb) = J2 -MHr), Jc(q) - Yl JT(q|r) 
rerh Terh 

and the space Q — UTeThQ(T). To elucidate the idea behind the method further, the 

functional — J c (q) is negative definite and is a lower bound to the infinite dimensional 

problem, where we see from Figure 4.2 that any approximation —Jc(ph) for p/, G Qh(T), 

will approach the exact solution — J c (q) from below, and thus will procure a computable 

lower bound to the exact energy J(co). Therefore, in summary in order to achieve the 

bounds e^ < £ < e£, the bounding procedure contains of the following steps: 

1. Calculate the global equilibration using FETI: Find Xh G A^ such that 

Y, / crTXhvdr= / Vuh-Vvdn- / fvdQ. Vi) G Uh. 
jr^- JOT Jo, Ja 

(s) 
2. Use Xh to calculate the decoupled solutions uy

h'. 

3. Calculate the upper bound, which is just a result of a finite element approximation 

to Equation (4.2) given by 

£h = _ o / S7uh • ^uhd£l = - - Y / ^uh\r • Vuh\TdQ. 
2 Jn 2 TeTh

 JT 
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4. Calculate the dual Approximations: Find eh such that 

el = sup - J c ( q f t ) . 

where the approximations q^ require knowledge of already computed values A^,,and 

The last step consists of several sub-problem computations where we discuss in more detail 

when we introduce the output bounds procedure in the next section. We would only point 

out from the properties of the energy bounds [58] that the lower bound e^ must hold for all 

levels of refinement and converge asymptotically to the exact solution at the same rate as 

the finite element approximation converges to the exact energy. In the case of the energy, 

the finite element approximation of the energy term coincides with the upper bound. 

J(") \ \ J 

J(uh) = min J(CJ) 
ui&Ah 

Jc{Ph) = maxJ c (q ) 
q s Q h 

J c (q) 

F i g u r e 4 .2 : Lower bounding property. Here we see that any approximation of the complimentary energy 
functional will bound the exact energy functional such that J c (q/ , ) < J(ui) for the choice of a q/, chosen 
appropriately, namely from the finite dimensional set QH-
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4.2 Bounds on Quantitative Outputs 

In this section we formulate the bounds for quantities of interest s to the Poisson equation 

(4.1). Such quantities are expressed as linear functionals 

s= / f°udQ. (4.15) 

for f° G # _ 1 ( f2°) , where fl° is the region which the output component is specified. The 

objective here is to find rigorous upper and lower bounds s^1 to the exact output s such 

that s~ < s < s+ holds for all levels of refinement of the mesh. 

In the energy bound procedure, the minimization of the Lagrangian also corresponded 

to the solution of the original problem. In contrast, for the case of output bounds, the 

variational procedure must be set up such that a minimization of the Lagrangian, will yield 

the exact output. However, in order to guarantee that the minimizer also corresponds to 

the solution of the original problem, we must impose it as a constraint. Now we define the 

following linear and bi-linear forms 

a(w,v) S/w-VvdQ, £(v)= f fvdn, 
Jn Jn 

t(v) = f f°vdVL, h(io,A)= V f (jTXwdV 
JQ° TeT JdT 

and express the exact output with energy functional ^ (u^ ) : U >—> R as: 

£(o.±) 

T s = inf ^t{Cj±) + ^{a{^±,Co±)-i{{L±)+l{u)-a{u±,u)} (4.16) 

s.t a(u>±,ip)=£{ip) (4.17) 

h(w±,A) = 0 (4.18) 

where by varying the sign of the original output we can obtain an upper and lower bound. 

Here u is chosen to be an element from the set U, thus as CJ G U and U C U, then e = UJ — U G 
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U can be thought of as the error in the energy functional £(CJ±) = a{uj±,u)±—u) — £(cl;± — u), 

with the property that £(UJ) = 0 when UJ = u for an element u chosen appropriately from 

the set U. Therefore, the objective functional: ^f£°(uj±) + ^£(uj±) will be minimized and the 

minimum will be the desired output of interest. However to ensure that the original Poisson 

equation is satisfied, we have included it as a constraint with the Lagrange multipliers tp 

in addition to enforcing continuity along the faces with the hybrid fluxes A. The use of a 

parameter K is made, which is standard in the literature, and its purpose is made later in 

optimizing the bounds. 

4.2.1 Lagrangian Formulat ion 

The Lagrangian C : U x U x A i—> R, now having constraints where weak continuity is 

imposed along the faces of the subdomains and the equilibrium equation is re-enforced is 

expressed as 

C±{uj±
]iP

±,\±)=Tt{uj±) + ^{a^^-ty-e^-u)} (4.19) 

+ £{$*) - (*(£>*, ip*) - h ^ , A±), 

where in order to achieve the output bounds the saddle point property of Lagrange multipli­

ers and strong duality of convex minimization must be employed leading to the inequality: 

inf £ ± ( w ± , ^ ± , A ± ) < sup inf £ ± ( w ± , ^ ± , A ± ) = T S (4.20) 

A±6A 

for some candidate Lagrange multipliers (V'±,A±) G U x A. The bound (4.20) is un-

computable in general since it requires knowledge of the exact solution. We follow the 

work presented in [58] in order to procure computable upper and lower bounds to the 

bound in (4.20). This task first requires the approximate solutions to the Lagrange multi-
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pliers A^5 , and the decoupled solutions, u^ , iph • These approximations are then used in 

several subdomain calculations. 

4.2.2 Lagrange Multiplier Approximation 

The argument infimum of the Lagrangian for candidate Lagrange multipliers is derived at 

through its first variational form. Making the decompositions A1*1 = ^AJJ ± A^, and •0± = 

±4>h the gradient condition of the Lagrangian leads to two equilibration equations, which 

upon using the FETI method yields the hybrid flux approximations and the approximation 

to the decoupled solutions ws', and tp . The resulting set of equilibrium equations are 

independent of K and are written as: 

1. Find A^ G Ah such that 

h{v,\t)-a(uh,v) = -e(y) WSZ4, (4.21) 

2. Find A^ e Ah such that 

b(v,\t)+a(i>h,v) = -£°(v) Vv£Uh, (4.22) 

where the approximation spaces used here have been defined in (4.7)-(4.9). 

4.2.3 Local Dual Sub-problems 

In order to apply the same ideas as in the energy bounds where a finite dimensional space 

was used to bound the infinite dimensional problem, we need to first consider the local 

contributions of the Lagrangian and bound the energy term with a complementary en­

ergy functional and treat all other terms as forcing terms. The local Lagrangian in the 
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appropriate form necessary for obtaining bounds, has the disposition 

- ? { / ( / - AM)W ± dfi + /" (aTAu + Vn • n)w± d r + f fudViX 

T< [ (f° - Afyu* <Kl + f (O-TA^ + Vi> • n)w ± d r + / / ^ d f i l , 
I J T J a r JT J 

where Green's identity: — JT Vu • Vw dD, — J r AMW dO — J"9T Vu • i w d r is used to ensure 

that no term other than the dissipative term | JT Vw • Vw dfl involves derivatives of ur^. 

Recall u is any element belonging to the space U, and A ,A^, and if) are candidate Lagrange 

multipliers. The Lagrangian can now be written as 

£±(u>±; ±$, ̂ Xu ±\*) = -^J fuctoTj f$dn + J^(^±), (4.23) 

where 

j^(w±) = J f Vw±• Vw ± dn- / / ± w ± c m - f c/±o;±dr (4.24) 
2 JT JT J&T 

for 

/± = ^{f-Au}±{f°-AiP} 

g± = *r{aT\u + Vu-n}±{aT\4' + V^ • n}. 

For the positive definite functional 

where q G H(div;T) it is shown [58] that 

provided that q^ is chosen from the space of functions 

j T ( w ± ) > - i j £ ( q ± ) , (4.25) 

Q ± (T) = <^qeff(div;T) / V - q u d f i - / q -nvdr (4.26) 

f ^vdSl- f g±vdr,yveH1(T)\. 
JT JdT J 
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From (4.20) we can write 

inf_£^(u>_,i/>~, A - ) < ST < — inf_£j(tD+ , '0+ , A+), 

where ST are the local contributions to the output and the upper and lower bounds to this 

output occur as a consequence of (4.23) and (4.25) which procure bounds to these bounds. 

With the choice u = Uh € Uh C U, i/J — ip^, A" = A ,̂ and A^ = A*, we obtain the non-trivial 

upper and lower bounds 

T 4 = ? / fuhd£l± I f^hdSl + sup -i j£(q±). (4.27) 
2 7 T J T q±eg±(T) K 

Global output bounds result then from the aggregate of these local contribution. 

Sub-p rob lem A p p r o x i m a t i o n 

We recall that the data u/,,^/,, and A/, in the right hand side of the constraint (4.26) are 

polynomial approximations of order p, based on the local basis functions used. Therefore a 

suitable approximation space for the dual feasibility constraint is chosen to be 

Q±.9 = Q± n (P«(T))3, 

however, the polynomial order q must chosen so that the right hand side of Equation (4.26) 

belong to the range of operators on the left. The decomposition q^ = KVM/, + |q)J ± q^, in 

the minimization (4.25) leads to the two K independent subproblem calculations: 

q£ = arg mi Jc(qh), (4.28) 

qt = arg inf J c ( Q / l ) , (4.29) 

for the dual feasibility approximation sets: 

Qt(T) = \qe(P^T)Y V-qvdtt- / qnvdQ= (4.30) 
T JOT 

- f{f + Auh)vdn- [ (aTXu
h-Vuh-n)vdA 

JT JdT J 
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Qt(T)= qe(P'(T))3 / V-qvdtt- / q-nvdfl = (4.31) 
IT JOT 

(f°-Aiph)vcm 
T 

[ (aT\t + ^h-n)vdA. 
JdT ) 

In order to determine the degrees of freedom of the dual variables q, let us as an example 

consider re-expressing the restrictions given by (4.30) in its equivalent form 

V • q)J = — / — Attft (inside the subdomain) (4.32) 

q^ • n = VT^h ~ ^uh • n (on the contour of the subdomain). (4.33) 

It is clear that each component of the dual variables q are to be chosen to be polynomial 

of degree q. For U^\T & PP(T), implies AU^IT £ ¥P~2(T). In order for this equation 

to be solvable the forcing function / | y must be approximated with polynomial of degree 

P r(T) for q > r. A similar analysis follows with the constraint in (4.31). In this work, 

(s) 
we approximate the forcing and output vectors with the same order as the variables uh , 

is) 

iph , and the hybrid fluxes, and so we take r — p with q > p sufficing. On a further note, 

the two sets of equations (4.32)-(4.33) do not uniquely determine, and moreover there is 

one equation that is linearly dependent of the others. In order to find q minimizing the 

complementary energy, Lagrange multipliers are used where the restrictions are the two 

sets of the equations previously described. These equations can be imposed as constraints 

either in their weak form or strong form. Here we impose them weakly. 

It can be verified from the equilibration equations (4.21) and (4.22) that by choosing 

the test function v e Uh will result in the vanishing of the right hand side of (4.30) and 

(4.31), and thus impose the orthogonality condition 

] T f q • Vv dn = 0. (4.34) 
TeTh

 JT 

The right hand side of (4.30) and (4.31) are localized residuals forms, and are non-zero 
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only for the appropriate choice of polynomial approximations of both the primal and dual 

variables. These set of polynomial fields then allows for the certification of the bounds. 

Remark 4.1 To clarify this last statement, we mention here that by imposing the con­

straints weakly, we must consider the appropriate space to choose the test function v. If we 

consider v G Uh, then v G Pp , and since all o/tt^i/^.A^, A* are of polynomial order p as 

well, then from the equilibration equation, 

oT\ly dT - / Vuh • Vi> df& + fvdtl = 0 
dT JT JT 

[ aT*tv dV+ Viph -VvdQ.+ [ f°v dn 
JdT JT JT 

0 

as the FETI method applied to this equation, satisfies this over each subdomam exactly. 

Thus as mentioned previously, the orthogonality condition emerges, and will imply that the 

dual component for this choice of test function will be the trivial solution q = 0 and thus 

will not produce bounds. Hence, we choose test functions v G Vq(T) so that the right hand 

side of the subdomam equations (4-30) and (4-31) will have a non-zero residual. However, 

this implies that as the hybrid fluxes and the primitive variables are of a lower order of 

approximation, these quantities must be interpolated so that discretely they are defined, on 

the nodal points corresponding to P9(T) space. 

Now we consider the last step of the procedure, and that is the formulation of the bounds 

themselves after obtaining the dual variables q£ and q^ 

4 .2 .4 O u t p u t b o u n d s 

With the splitting described above, we expand ^ ( q * ) = JJ .(KVU/J + | q ^ ± q^) in (4.27) 

and summing the local contributions gives 

4 
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where we have invoked the orthogonality condition (4.34). Letting 

and optimizing with respect to K, where the optimum K— \ ~^t, the bounds emerge as 
V ^ 

where s/, is the bound average. 

It is shown in [58] that the theoretical convergence rate of both the upper and lower 

bounds is that of the finite element solution, and that they both approach the exact solution 

at the same rate, that is 

s - s ^ < C\u-uh\Hi\ip -iph\Hi (4.36) 

st ~ s < C\u-uh\Hi\ip-tph\Hi. (4.37) 

Thus, only when the finite element approximations are in the asymptotic regime, will the 

bounds converge at the optimal rate. 

4.3 Implementation 

We have described the FETI procedure in the previous chapter, therefore we will not cover 

this here. In this section we briefly comment on the interpolation of the hybrid fluxes which 

is needed as right hand data in the computation of the sub-problems. 

4.3.1 Interpolation of the Hybrid Fluxes 

In discrete form, the approximation to the inter-partition connections A^ and A* are given 

by the solution to the system 
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1. find {uh, A}J) e W x A , such that 

Bns)Xu(s) _ ^ w ^ w = _MWfW (4.38) 

] T BWfiW = 0 (4.39) 
fc=i 

2. find (V'/x, A^) e i i x A , such that 

BT(s)Afs) + A ( s ) ^ s ) = - M ( s ) / o ( s > (4.40) 

J ] fiWfi^ = 0 (4.41) 

where in three-dimensions, A is the stiffness matrix, M is the mass matrix, and B is the 

signed Boolean matrix described in the previous chapter. For test functions v 6 P9(T), the 

hybrid fluxes in the right hand side of constraints (4.30) and (4.31) must be interpolated. 

The FETI approach solves for the fluxes on each face, which in continuous is given by the 

quantity 

oxXv dT F = face of subdomain. 
IV 

In the discrete form, this corresponds to a product of a two-dimensional mass matrix and 

the nodal values of the hybrid fluxes which we write as M^X (where M^ is the 2D mass 

matrix for each face of the elemental subdomains) on each face. Before interpolation the A's 

must first be obtained on each face by multiplying by M^ . The right-hand side of the 

feasibility constraint now involves integrals where the test functions are approximated using 

P9(T) polynomials and the hybrid fluxes are approximated using only PP(T) polynomials. 

(f) One way to do the interpolation is to introduces a 2D mixed mass matrix Mp,^pP , then 

the product Mfi^pp-M^l^p-X^ , gives the interpolated hybrid fluxes over each face of the 

elemental subdomains. 

Figure (4.3), details the interpolation procedure, with both structured and unstructured 

subdomains which we use in this study to illustrate our results. The tetrahedral subdomains 
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are just elemental, while the cubic subdomains are comprised of six tetrahedrons. The 

difference in subdomains is that while the tetrahedrons offer more flexibility in the geometry, 

the constraint 

q • n = cxTXh 

is simpler to implement when the normals are orthogonal to the faces of each subdomain. 

Interpolating the subdomains include certain numerical errors which affect the accuracy 

of the bounds. Therefore, our choice for a more structured mesh is to avoid interpolation 

errors. For illustration purposes, Figure (4.3) depicts the case where we use tetrahedral 

subdomains with v/£',ip£',\h £ P1 and q^,q^ £ P2- Our experience has shown that going 

to higher order on the unstructured meshes will produce errors which we believe is due to 

(s) (s) 

interpolation of the hybrid fluxes. While the finite element solution uh ,iph ,Xh converges 

at their theoretical rate, the bounds lose convergence for the tetrahedral mesh at higher 

than p = 1, q = 2. Therefore, in this work we mainly consider a fully structured mesh, 

where for the case of cubic subdomains we demonstrate results when p — 2, q = 3. We see 

from the results section that for this order the bounds retain the theoretical convergence 

rate of 0(/ i4) . 

4.4 Discrete forms and Sub-problems Computation 

As mentioned previously, the minimization statements in Equations (4.28) and (4.29) can 

be solved using Lagrange multipliers. For the statement (4.28) we construct the Lagrangian, 

LuM-v) = \ f qj£-qj!dfi+ [v-qUvdCl- I c^-nvdT 
z JT JT JdT 

+ [ ( / + Auh) v dft + [ {<jT\u
h-Vuh-n)vdT 

JT JdT 

where at optimality VqZy, — 0, and VVL^ — 0 gives the set of equations 
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F i g u r e 4 3 (a) Illustration of the hybrid flux interpolation on the faces of the elemental tetrahedral 
subdomams This thick lines signify the hybrid fluxes at the vertices, calculated from the FETI , and the 
thinner lines represent the interpolated values given by the operation to the right of it (b) Illustration of 
the hybrid flux interpolation on the faces of the cubic subdomams 

Vrfc <= Vh [ q£ rhcM- [ rh Vvu
hdQ = 0 

JT JT 

- / q£ ^v' dQ= I Vuh W dQ~ J fv' dn- J UTKV1 dT W e 
JT JT JT JOT 

which has the matrix representation 

0 M<s) 

0 0 

-D t(8) -D. t(s) 

0 

0 -D. 

(s) 

-D. 0) 

' Kh ' 

(9h)2 

W)3 

. Vh . 

• o -

0 

0 

7?" 

Here, the superscript t is used to designate the transpose of the matrix distinguishing it from 

T which represents the subdomams The matrices Di,D2, D% arise from the discretization 
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of each of the terms in 

f f dv f dv f dv 
I q-VvdQ = / qi-—- dtt + / q2-—d£l + / q3 7— dQ 

JT JT
 dxi JT ox2 JT OX3 

respectively. Furthermore, TVfc is the residual denned to be 

Uu
h = - M ( k ) / ( s ) + A^uf - B™\£'\ (4.42) 

The minimization statement for (4.29) is similar and we will not repeat the process. There 

are a number of these small size subdomain calculations which involve solving the block 

system matrix given above, one for q^|r and one for q)jT- This system is solved using 

the Uzawa algorithm which is a two step conjugate gradient method for each subdomain. 

Accumulation of these quantities over all subdomains lead to the bounds as described pre­

viously. 

4.4 .1 N u m e r i c a l E x a m p l e s 

The remainder of this section, verifies the results in a cube geometry where two different 

forcing functions are considered. The output vector f° — 1.0 for all cases. Results are 

obtained on a tetrahedral mesh and are presented in Table 4.1 , where the effectivity index 

is defined as 67 = , Sh, and 9t = , Sfc, • Moreover, for the second case, a constant forcing 
h \s-sh\ h \s-sh\ ' ' fc> 

is applied, where we have for for cubic subdomains two different approximations in which 

(s) (s) (s) 1 

we consider linear approximation for the finite element solution uy
h , %py

h ', A^ ; € P and 

q , » e P 2 , and a higher order approximation where u^,tpj^, A^ e P2 and q, v € P3. 
Constructed Exact Solution 

In this case we consider as a test for validation the exact solution 

u(x, y, z) = sin(7ra;) sin(7ry) sin(7T2:) 
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satisfying the homogeneous Dirichlet boundary conditions. This leads to the forcing function 

f(x, y, z) = 37r2 sin(7ra:) sin(7ry) sin(7rz) 

where the exact output of interest which we use as a reference solution is calculated to be 

s = 8/TT3. Figure (4.4(b)) shows the convergence rate of the bounds and the finite element 

solution for the linear approximation where p = 1, q = 2. The bounds asymptotically 

approach the optimal rate of 0(/i2) which is also the asymptotic rate of convergence of 

the finite element approximation. Figure (4.4(a)) shows the bounding property, that is, 

it shows that the bounds hold for all levels of refinement and approach the exact solution 

(dashed line). In addition, it shows the predicted output s^re, namely, the bound average 

gpre _ s^ _ ^s+ _|_ s ~ ) / 2 . If we consider the normalized error of the bounds: A s ^ / s = 

\s — sh \/s and Asav/s = \s — sav\/s, from Table (4.1) we see that for the mesh size h — 1/16, 

the relative error of the upper and lower bounds are 13% and 4.1% respectively. On the 

other hand, the bound average is 0.269482, and has a relative error of 4% which compares 

well with the error in the finite element solution of about 3%. Table (4.1) also gives the 

effectivity of the bounds which compares how well the bounds converge with respect to the 

finite element solution. As is observed for this case, the convergence of the lower bound has 

a much better effectivity than the upper bound. Typically, the bound average will yield 

sharper results than both the upper and lower bounds, however the good effectivity of the 

lower bound causes it to have a slightly lower percentage relative error. As for the effectivity 

of the upper bounds, we point out that for engineering practice, these higher effectivities 

are acceptable. 
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Uniformly Forced Domain 

Here we take / = —2.0 and compare our results with the exact solution 

8 ^ y [ l - ( - l ) " ] 2 [ l - ( - l ) m ] 2 

7T7 •^-' ^—' rflm^n2 + m 2 ) 3 / 2 

n=l m—1 ' 
4g-TV'ra2+m2 2 f l -|- g -27iVn 2 +m 2 \ 

+ 7r\/n2 + m2 I « -0.0403405 
j ]_ — g—27T\/n2+m2 ]_ _ g-27iVn 2+m 2 

We note that for the optimal parameter K, choosing a constant forcing will cause the finite 

element solution to be equal to either the upper bound or the lower bound depending on 

the sign of the forcing term. In this case, the upper bound is equal to the finite element 

approximation. For p = 1, q — 2, Figure(4.5) again shows plots of the bounds and an 

asymptotic convergence rate 0(h2). When comparing the emotivities for this case in Table 

(4.1) we see that as the finite element solution is equal to the upper bound, the effectivity 

for the upper bound is 1.0 at all the refinements. This is referred to as compliance. The 

upper bound has a relative error of almost 16% and the lower bound has a relative error of 

2.8%. The sharpness of the bounds can be increased with higher-order approximations. A 

comparison of this with that of Figure(4.6) where higher-order polynomial approximation, 

p — 2, q = 3 are used, demonstrates that by using the higher-order polynomials results 

in significantly sharper bounds. The asymptotic rate of convergence for both the output 

bounds and the finite element approximations approaches the theoretical rate of 0(/i4) for 

a structured mesh. 
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h 

1/2 
1/4 
1/6 
1/8 
1/10 
1/12 
1/14 
1/16 

/ = 

s h 

0.038018 
0.148498 
0.197912 
0.220851 
0 232964 
0.240049 
0.244523 
0.247519 

3n'! sin(7ra;] 
s = 8/TT3 S= 

s+ s h 

0.380210 
0.495173 
0.416287 
0.363288 
0.331964 
0.312650 
0.300063 
0.291445 

sin(iry) sin( 
0.2580122 

Sh 

0.055517 
0.163741 
0.209552 
0.229237 
0.239116 
0.244702 
0.248149 
0.250418 

7Tz) 

«h 
1.0864 
1.1617 
1.2402 
1.2914 
1.3256 
1.3496 
1.3676 
1.3817 

°t 0.6035 
2.5157 
3.2661 
3.6585 
3.9136 
4.1049 
4.2633 
4.4024 

h 

1/2 
1/4 
1/6 
1/8 
1/10 
1/12 
1/14 

1/16 

sh 

-0.121818 
-0.092205 
-0.071412 
-0.060518 
-0.054446 
-0.050774 
-0.048397 
-0.046772 

/ = -2.0 
s ss -0.0403405 

-0.009375 
-0 026951 
-0.033440 
-0.036211 
-0.037610 
-0.038408 
-0.038902 
-0.039229 

Sh 

-0.009375 
-0.026951 
-0.033440 
-0.036211 
-0.037610 
-0.038408 
-0.038902 
-0.039229 

^ 
2.6312 
3.8735 
4.5028 
4.8862 
5.1659 
5.3990 
5.6006 
5.7863 

K 
1.0 
1.0 
1.0 
1.0 

1.0 
1.0 
1.0 
1.0 

T a b l e 4 . 1 : Tabulated bounds results and their effectivities obtained for the Poisson problem using tetra­

hedral elemental subdomains with p = 1, q = 2. 
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F i g u r e 4 .4 : Output bounds obtained for the constructed solution using a tetrahedral subdomains. (a) 

upper and lower bounds, (b) convergence of the bounds. 
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F i g u r e 4 . 5 : Output bounds obtained for a constant forcing (f=-2 0) with p = 1, q = 2. (a) upper and lower 

bounds (b) convergence of the bounds. 
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4.5 Some Results on Stokes Problem 

4.5 .1 M o d e l P r o b l e m 

Here we only present the main results for the Stokes problem in order to demonstrate 

the effectiveness of the bounds method for coercive bilinear forms where in particular the 

energy term has an intrinsic minimization principle as in the Poisson case. For details of 

the bounds calculation and the type of polynomial approximations used, we refer the reader 

to [15]. The problem considered is a steady, incompressible (density p is constant), creeping 

flow driven by a forcing term in an endless square channel with an array of rectangular 

obstacles in the center. The flow has a constant dynamic viscosity /J, and is assumed to be 

Newtonian. We let fi represent the geometry of the domain where the coordinate system 

is given by (£1,2:2,2:3), with corresponding unit vectors xi,X2,X3. The pressure gradient 

in the X3 direction is the driving force and is expressed as ^ £ , where L is a scaling length 

of the channel section, and AP is the pressure difference between two reference points 

with the distance L in the X3 direction. The fluid velocity and pressure perturbations are 

periodic in the X3 direction. We let the fluid velocity be u = (ui, 112,1*3) with uz being 

the corresponding component int the XJ direction and p be the pressure fluctuation field 

divided by the viscosity /i. The governing equation for the incompressible Stokes flow can 

be written in indicial notation as X3 direction. 

/ , in n , i = 1,2,3 (4.43) 

0 i n d (4.44) 

ut\r2 (4.45) 

itj — 0 on the other boundaries. (4.46) 

d2Ui dp 

dxj dxj dx% 

duj _ 

dxi 

with boundary conditions: 

•"ilri = 
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Here fz 
AP is the prescribed forcing term in the xt direction. For our numerical 

t 

(1,0,0) 

(0,0, 1) 

A ri 
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; 
' (0, 

„--

^ 

0,0) 

r2 

*i 

/ 

\ 

fi 

(0,1,0) 

t 
Ti 

t 
F i g u r e 4 . 7 : Geometry for the Stokes problem. Periodic boundary conditions are imposed on Y\ and F2, 

and homogenous boundary conditions are enforced on <9fi\(Ti U T-i) 

experiments we choosed fi = 1 for simplicity and as a benchmark problems we select j \ = 

fi = 0 and fs = 1. The geometry then, is the cube fi (Figure 4.7) is the bounded cubic 

domain ]0, l[x]0, l[x]0,1[ with rectangular obstacle ]0, l [ x ] | , | [ x ] i , | [ inside. Thus fi = 

{]0,l[x]0, l[x]0,1[} - { ] 0 , l [ x i , | [ x ] i , § [ } . The periodic boundaries are Ti =]0, l[x]0,1[ 

at x3 = 0 and T2 =]0, l[x]0,1[ at x3 = 1. 

In order to ensure a unique solution for the pressure, we further impose the additional 

requirement that 

I pdfl = 0. (4.47) 

The weak formulation of the Stokes problem in terms of its bilinear forms for a given 

Ui,f2,h) € ( i / _ 1 ( f i ) ) 3 is then written as: Find (u,p) € Y, such that: 

as (u, w) + bs (w, p) = Is (w) Vw G X (4.48) 
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6 s ( u , r ) = 0 V r e Q (4.49) 

where these forms are defined explicitly as 

a s (v ,w) = f ^LpldSl, V ( v , w ) e X x X (4.50) 

bs(v,r) = - r—
1dQ, V ( v , r ) e r (4.51) 

£s(w) = j flW%dn, VweX, (4.52) 

and the function spaces X, Q, and Y are defined as 

X = H^{Q) x H^(tt) x i ^ ( f i ) (4.53) 

Q = L2(fl) (4.54) 

Y = X x Q. (4.55) 

4.5 .2 O u t p u t funct ional 

The quantity of interest in this problem is a normalized flow rate where the flow rate is the 

output values divided by the volume of the computational domain which is | . The output 

functional is given as 

s(u) = j (a-u)dil (4.56) 

where a is a unit vector that indicates the direction in which the displacement is evaluated; 

and is a user defined coefficient where we take this to be a = (0,0,1). Therefore, the output 

can be expressed as 

£°{u) = [ u3<m. (4.57) 
Jn 

4.5 .3 N u m e r i c a l E x a m p l e of B o u n d Calcu la t ion for S tokes 

Table (4.2) shows the lower bound (s^), upper bound (s£), the average of the bounds (sav), 

and the discrete output to the solution (sh) obtained on the mesh size h using the exact 
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h 
1/3 
1/6 
1/12 
1/18 
1/24 
1/30 
1/36 

h 

sh 
0.002616 
0.005199 
0.006425 
0.006770 
0.006921 
0.007004 
0.007056 

= h = 0, h = 1.0 
s ss 0.007283 

s+ 
0.020594 
0.012781 
0.009708 
0.008828 
0.008437 
0.008221 
0.008087 

Sav 

0.011605 
0.008990 
0.008067 
0.007799 
0.007679 
0.007613 
0.007572 

Sh 

0.002616 
0.005199 
0.006425 
0.006770 
0.006921 
0.007004 
0.007056 

T a b l e 4 .2 : Tabulated upper bound s^, lower bound sh , finite element output soution SH, and the bound 
average sa„ obtained for the Stokes problem using cubic elemental subdomains. 

Stokes bounds method. For the finest mesh, a half bound gap 7.1% is reached. The half 

bound gap is the bound gap divided by 2 i.e. (s^ — s^)/2 and normalized with the most 

accurate output value. Moreover, the error between the finite element output value on 
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Log(h) 

(b) 

F i g u r e 4 . 8 : Bounds for Stokes output: (a) output bounds, where the dashed line represents the exact 

solution, (b) Convergence of the bounds. 

the finest mesh and the most accurate output value is 3.1%, which shows that the bounds 

are sharp. The most accurate output value is s ~ s = 0.007283, and is obtained on a 

Crouzeix-Raviart finite element space [20] with mesh size h — 0.02. We further note that 
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h 
1/3 
1/6 
1/12 
1/18 
1/24 
1/30 
1/36 

eh 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 

®t 
2 85 
2 64 
2 83 
3 01 
3 19 
3 36 
3 54 

T~h 

- 0 93 
- 0 82 
- 0 91 
- 1 0 1 
- 1 09 
- 1 18 
- 1 27 

Th 
0 
0 
0 
0 
0 
0 
0 

rt 
- 1 3 5 
- 1 3 8 
- 1 3 5 
- 1 3 3 
- 1 3 1 
- 1 3 0 
- 1 2 8 

T a b l e 4 . 3 : Tabulated results of the effectivities obtained for the Stokes problem using cubic elemental 
subdomains 

for a relatively coarse mesh h = 1/12 say, the bounds are quite large, with a half bound 

gap of 22.5%, but so is the finite element solution for this mesh with a half bound gap of 

11.8%. 

Figure (4.8) (a) shows the upper and lower bounds s^, and the finite element solution 

s/j. We note that the lower bounds output value is the same as the finite element out­

put value because the forcing term in the Stokes equations and the output functional are 

constants. 

Figure (4.8) (b) shows the convergence rate for each bound. Here we assume the most 

accurate numerical solution s has a negligent difference from the exact solution s, and is 

used for the convergence rate estimations: e^ — \s^ — s\, e/, = \sh ~ s\, and e^ = \s£ — s\. 

The corresponding convergence rates are 1.22, 1.22, and 1.13, respectively. The convergence 

rates are consistent with the predictions of the Stokes bounds method. 

Again we define the effectivity of the bounds consistent with [58], where the lower and 

upper effectivities are given by: G^ = \(s — s^\)/(\s — Sh\) and 6 ^ = \(s — s^\)/(\s — Sh\) 

respectively. These indicate the sharpness of the bounds by comparing the error in the 

bounds with the error in the finite element approximation. The effectivity of the bounds on 

different mesh sizes are given in Table (4.3) and range from 2.85-3.54. These values indicate 

that the bounds are sharp, being that they are only about three times the error of finite 

element solution This is reflected in Figure (4.8) (b), where the convergence of the exact 
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bounds, performs well compared to the convergence of the finite element output solution. 

We further point out that for the Stokes output, the effectivities show that the exact bounds 

perform even better than for the Poisson output. We also consider the predicted finite 

element output solution denoted by s^re, which is defined as the average of the lower and 

upper bounds, i.e. s^re = sav = (s£ + s~^)/2, and define the error effectivity r^ = (s — 

s^e)/(s — Sh). This index indicates that the performance of the bound average is almost 

the same as the finite element approximation of the output. Moreover, by defining yet 

another effectivity index as: rh — (sj^ — Sh)/(s — s/i) we can measure the quality of the 

error estimator sh — Sk as compared with the error s — Sh- It is seen that the effectivity of 

the lower bound is 0 which verifies that the finite element output value is equal to the lower 

bound. However the magnitude of effectivity of the upper bound r̂ ~ is close to 1.3 which 

indicates that the finite element output solution on each mesh is about half way between 

the upper bound and the exact output solution. 



Chapter 5 

Bounds for the Helmholtz 
Equation 

In this chapter we present the formulation for obtaining rigorous upper and lower bounds for 

exact outputs of interest to the Helmholtz equation. The method resembles the approach 

undertaken for the Poisson equation in the sense that the bounds are obtained solely on 

computations done on local spaces where the aggregate of several independent sub-problems 

lead to the upper and lower bounds. However, the approach here differs from the Poisson 

case, in that there does not exist an intrinsic minimization principle for the Helmholtz prob­

lem where the exact energy term can be bounded by a complementary energy functional. 

Nevertheless, the problem can be transformed into an equivalent constrained maximization 

principle that can be shown to guarantee computable bounds which preserve the bounding 

property. That is to say, it guarantees the bounds to hold for all levels of refinement on any 

polygonal domain with piecewise polynomial forcing. 

For the particular case of the Helmholtz equation, we know from the discussion of 

Chapter 2, that the Helmholtz sesquilinear form loses ellipticity for higher wave numbers, 

and thus the principle of convex minimization generally cannot be applied. However, as the 

Helmholtz operator is i71-coercive satisfying a Garding inequality, then in the asymptotic 

regime where the number of degrees of freedom in the discrete model surpasses a critical 

91 
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number, will the problem begin to have a positive definite structure and the bounding 

property of the method applies. We present our findings using high order nodal spectral 

element approximations in an attempt to reduce the pollution error and in obtaining more 

accurate bounds for higher wave numbers. 

5.1 Problem Statement and Approximation Spaces 

5.1.1 G o v e r n i n g E q u a t i o n 

In this section we continue with the exposition of the method as is applied to the Helmholtz 

equation. We are interested in bounding outputs which are functionals of the weak solution 

to the Helmholtz equation, and so we work with the Equation (2.6) in which we re-express 

the problem in the convenient form: find u 6 Zp so that 

b(u,v)=£N(v) VveZ (5.1) 

where the test space Z and the functions space Zp have already been defined in (2.4)-(2.5). 

Consistent with our notation from Chapter 2, b designates indefinite forms, where here it 

is defined as 

b(u,v) = / Vu • Vv dQ, — k2 / uvdQ,, and 
Jn Jn 

£N(V) = f fvdSl. 
Jn 

5.1.2 A p p r o x i m a t i o n Spaces 

We use the structured cubic subdomains comprised of six tetrahedrons described in the 

previous chapter. As before, we have elemental subdomains T of a partioning %, of Q. 

Associated to this mesh we define a regular piecewise continuous finite element subspaces, 
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namely, the approximation subspaces, 

Zh(T) = {D = / + M 7 : / i T G P ! ' ( T ) 1 / | T e P , , ( T ) , V T e T f t } n Z , (5.2) 

Zf(r) = {t) = / + k /:/ | rePp(T), );
; |TGP''(r),VTerfc}nZD , (5.3) 

where PP(T) denotes the space of polynomials of order p over T, and vR, v1 representing 

the real and imaginary parts of v respectively. In order to apply the method of bounds, 

additional spaces and sesquilinear forms must be defined. First, the global representation of 

Zh(T) are defined, which are the broken spaces with respect to the domain decomposition 

given as 

Zh = {V\T e Z(T),VT e Th : v
R\T € P p (T )y | r e Pp(T),Vr e %} . (5.4) 

where Z is defined in (2.3). Secondly, we designate E(7/,) to be the edge space which consists 

of the set of open faces and edges 7 between different subdomains of the partitioning Th, 

and we introduce the space defined over 7 e E(7/j) by 

Ah = {A = XR + iXI : X \ e P p ( 7 ) , A7|7 e P P ( 7 ) ,V 7 G E(Th)} . (5.5) 

Finally, we define the continuity sesquilinear form h : Z/, x Aj H C formally as 

h(v,X)= J2 [[vhM-fdr, (5.6) 

where [v]y is the jump in v across 7 when 7 is in the interior face, and the trace of v on 7 

when 7 is on the boundary F. The relation between the spaces Z^ and Zh become eminent 

when we exploit the form h(.,.) in order to enforce continuity of the hat functions as 

Z h = { « 6 Z f c : h ( « , A ) = 0 , V A e A h } . (5.7) 

Conversely, for a continuous test function v satisfying the homogeneous essential boundary 

conditions, and any function A e A^, h(v,X) = 0. 
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5.2 Error Bound Formulation 

5.2.1 O u t p u t Funct ional 

The goal here is to provide upper and lower estimators that provide upper and lower bounds 

to some exact output S(u). As previously mentioned, we do this based solely on decoupled 

calculations on the broken spaces Zh- As we are interested in real outputs s, that are 

functionals of the solution u — uR + iu1, we set s = 5R(5(u)), where S(u) : Z{Q) i—> C. In 

our numerical examples we present the bounds on outputs which are expressed as linear 

functionals of the exact solution u, although one can formulate the problem with non-linear 

outputs. For example, we can express our output as in [57] in the form 

S(uh + v) = S(uh) + £°(v) + M(v, v) 

where we have expanded a non-linear functional in a form which considers both linear and 

quadratic outputs. Here £° : Z(il) i—> C and Ai(w,w) : Z(Q) x Z(fl) \—> C are the linear an 

bilinear contributions to the output respectively. M. is required to be L2-continuous, with 

the requirement that |,M(u,u)| < C||v|||2- In this work we take M. = 0 and consider 

S(u) = S(uh + v) = S(uh) + t(v). 

More preciesely, one can express the linear output functional as 

s(u) = e°(u)= f f°u<m= f f°uhdn+ f pvdn (5.8) 

JQ° Jn° Jn° 

where f° is some prescribed forcing data mentioned in the previous chapter. As we will see, 

here v represents the error e = u — Uh-
5.2.2 Error Formulat ion 

We begin by writing the Helmholtz equation as a minimization statement where the func­

tional that is to be minimized is in terms of the error defined above as e — u — Uh, where 
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we recall that Uh is the spectral element approximation. Since u — u^ £ Z then 

b(u, u-uh)-P
N(u-uh) = 0 (5.9) 

which implies through the sesquilinearity of 5(.,.), that 

b(u ~uh,u- uh) - £N(u - uh) + b(uh, u-uh) = 0. 

Now defining the residual 

lE(v) = £N(v) - b(uh, v) VveZ 

and the energy equality can be rewritten as 

b(e,e)-£E(e) = 0. (5.10) 

5.2.3 Lagrange Mul t ip l i er A p p r o x i m a t i o n 

Now we introduce the set of functions S C Z given by 

S = Iv G Z b(uh+v,Lo) =£N(LU),VLU e Z; h{v,q) = 0 , V i 6 A J (5.11) 

where the first constraint enforces v = e, and the second enforces continuity and the ho­

mogeneous essential conditions. This suggest the formulation of the quadratic Lagrangian 

functional £ : Z X Z X A H C given by 

£*(?, pi, t) = Ti°(uh + v) + ^ (b(v, v) - £E{v)) + £N{/j) - b(uh +v,n) + b(v, t) (5.12) 

for some /x G ZD, and q G A, where the constraints given by the equilibrium equation, and 

continuity enforcement between subdomains are included in the Lagrangian. 

Modified Lagrangian 

We know from the discussion of Chapter 3, that a subdomain boundary value problem may 

become ill-posed if it is equipped with the same boundary conditions as in the Poisson 
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case, namely Equations (3 4)-(3 5) Instead, we replace these boundary conditions with 

the Robin boundary conditions at the interface between two subdomams given by (3 27)-

(3 28), keeping m mind that we must utilize the special checkerboard like signing of the 

mesh as explained in Chapter3 Therefore, under the broken spaces, where these boundary 

conditions are satisfied at the interfaces, the sesquilmear form in Equation (5 1) is replaced 

and the equation is re-expressed as find u € ZD such that 

bm(u, v) = b(u, v) + ip{u, v) = t (v), Wv G Z 

where between the two subdomams 7 ^ q^ = £ls C~\ f29, p(u,v) is defined as 

p(u,v) = k Yl Yl / ((-l)Sns"vu- (-l)Sn*°vu) dF 
7gE(Th) 1(°i)^J^q) 

Moreover, this expressed m terms of an error equation gives like before, 

bm(e,e)=C(e) 

(5 13) 

(5 14) 

(5 15) 

where 

eg(v) = eN(v)-bm{uh,v), vvez 

Now defining the set Sm C Z given by 

Sm = iv <E Z bm{uh + v,tu) =eN(uj),\/cu e Z, h(v,t) = 0,Vi G AJ (5 16) 

where again, the first constraint enforces v — e, the error, and the second enforces continuity 

of the subdomams at the interfaces Thus, the modified Lagrangian is now expressed as 

Ct(v, fi, t) = Tt{uh + v) + ^ {bm(v, v) - tg(v)) + lN{n) - bm(uh + v,fi) + h(v, t) (5 17) 

where the gradient condition of this Lagrangian solves for tjjh , \ h for the bounds Thus we 

have at optimahty 

d_ 

dv' 

d 
£ m K M ) , , ± _ , ± = 0 , —£±(v,n,t) _ ± = 0 , —Cm{v,fj,,t) 

(*-n t=K) d/j, 

d 
dt 

= 0, 
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which lead to finding e^ G Zh, tph G Z® and A^ G A^ respectively, such that the following 

set of equations are satisfied: 

h(u;, A±) = - {T£°(U) + \ (26m(e±,a;) - £(u)) - bm(u,^)} , VW G Zh (5.18) 

6 m K + e ± , w ) = ^ ( a ; ) ) V W e Z h (5.19) 

h(e±,t) = 0, V t e A „ . (5.20) 

Equation (5.20) forces eh G Z/,, which combined with the original primal problem i.e 

b(uh,v) = £N(v), Vi> G Zh, and Equation (5.19), implies eh = 0. Moreover, Equation 

(5.18) must be satisfied for all w G Zh and thus for all to G Zh C Zh- For the restriction 

w G Z/j, ^ M = ^ £ ( w ) = ° (i-e- t n e residual £N(LO) - b(uh,uj) — 0 in the global mesh). 

Therefore, by exploiting the fact that in the continuous (global) mesh £E{UJ) = 0, and 

h( , ) = 0, yields the adjoint equation 

b(co,iph) = —£°(w), or equivalently b(LU,iph) = -£°(UJ) Vw G Zh (5.21) 

with tp^ — ±iph-

Remark 5.1 We note that in the continuous global mesh, the modified term used in order 

to make each local problem well-posed becomes zero since the mesh is no longer broken 

between subdomams, and the ± contributions of the Robin boundary conditions cancel out. 

Under the broken spaces, the residual R^{UJ) = —£°{u) — bm(u}, iph) ^ 0, in fact from (5.18) 

it is evident that the equilibration equation can be expressed as 

h(w, A±) = ^ £ M =F ^ R - bm(u, i>h) Vu€Zh- (5.22) 

Now as before, we make the decompositions 

A± = ^ A £ ± A ^ and recall ^ = ±if)h, 
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which transforms the equilibration equation into two K independent equations. Therefore, 

the solution to Uh, 4>h, a n d Xh which are necessary data for obtaining bounds, can be arrived 

at through the following set of equations 

Step 1: (The original primal problem) Find Uh G Zjf such that 

b(uh,v)=£N(v) VveZh 

Step 2: (The adjoint problem) Find iph £ Zff s u c n that 

b(v,il>h) = -e°(v) VveZh 

Step 3: (Equilibration equation) Find X^ £ A/, such that 

h(v,\%)=eN(v)-bm(uh,v) VveZh (5.23) 

Step 4: (Equilibration equation) Find A^ €E A^ such that 

h(v,xt) = -F(^-bm(v,^h) VveZh. (5.24) 

In the current work we do not solve the two global problems in Step 1 and Step 2. 

The approach in obtaining the hybrid fluxes and the decoupled solutions is the same as 

in the FETI iterative procedure used for the Poisson problem in Chapter 4. The GCR 

method used in solving equations (5.23)-(5.24) in Step 3 and Step 4 gives the hybrid flux 

approximations, and ultimately, the approximation to the decoupled solutions v,(s\ and ip^ 

which then in turn leads to the corresponding global solutions by the aggregate of these 

quantities. We recall that the discrete forms of these equations is given in (3.31)-(3.32), 

which is consistent with the way the FETI-H procedure solves the interface problem with 

the inclusion of the regularizing term. 
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5.2.4 Local Problems 

The Lagrange multiplier approximations, are achieved through the first variation of the 

modified Lagrangian, which is used to replace (5.12) in order to avoid singular solution in the 

system matrix. However, after obtaining these quantities, we pursue with the presentation 

of the bounds using the original Lagrangian (5.12), as the extra term does not affect the 

global solution nor the bounding property. It is premature to discuss minimization principle 

for the Lagrangian just described, as we are dealing with complex spaces, and minimum 

(or maximum) have no meaning here. We point out that although are numerical tests and 

validation are only in the real space, we have implemented our code as complex not only due 

to the additional regularizing term, but also to allow any future potential applications which 

may involve imaginary boundary conditions and complex forcing. Therefore, we present the 

method in the complex space setting. Here we only point out that as the problem involves 

bounding exact outputs, it is necessary that the Lagrangian so constructed will be such that 

the energy terms which are expressed in terms of the error will vanish in some limiting case 

as the exact error goes to zero. Consequently, in such a limit we approach the exact output 

from above or below which are the upper and lower bounds. In the previous subsection, 

the stationarity conditions of the Lagrangian £ m , are restricted to the subspaces Z^ C Z, 

Z® C ZD&nd Aft c A, in which Equation (5.19) and (5.20) indicate that the continuity 

between the subdomains resulted in e^ = 0 and hence bm{e^,uj) = 0. Now we consider the 

Lagrangian £ ± (u , iph , A^), where the error e — eR + ie1 will satisfy the gradient condition 

(see Equation (5.18)) 

«&(£*, u;) = ±£°(co) + ^£E(LU) + bfatf) - h(W,A±), (5.25) 
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which corresponds to a number of local symmetric Neumann (or Robin) subdomain prob­

lems. By taking 10 — e € Z we have 

K6(e±, e±) = %£"(£*) - ^b(uh, e±) ± r ( e ± ) + 6 ( e ± , ^ ) - h(e±, A±), 

and substituting this expression into the Lagrangian and invoking the primal problem with 

v=tl>heZhC Z°{^ b{uh,il>±) = tN(^)) we have 

L ^ ^ X ) = ^b(e±,e±)-1eN(e±) + ^b(uh,e±)Te(uh)±t(e±) 

+ iNX) - b{uhX) - K^X) + i^X) 

= - | 6 ( e ± , e ± ) T r K ) . 

Now it is apparent that one simply obtains from the above that 

s+ = - £ + ( e + , V ^ A + ) = K { £ > / 0 } + ^ ( e + , e + ) (5.26) 

s- = £ - ( e - ^ - , A - ) = K { r K ) } - | 6 ( e - , e - ) , (5.27) 

which can be shown to be asymptotic upper and lower bounds respectively for the exact 

output s = R{£°(u)}. For example, consider the gradient condition 

*Ke-,v) - -r(v) + -b(uh,v)+t°(v) + b(v,ip±) + h(v,Xh) = 0 Vz; 6 Z, 

and impose the restriction that v G Z C Z, in particular v = e. Then since in this case 

h(e, A^) = 0 , we have 

«6(e, e) - -£» (e) + -b(uh, e) + £°{e) + b(e, T/>±) = 0 

or by the fact that Uh = u — e, gives 

«6(e, e) - -£" (e) + -b(u, e) - -b(e, e) + £°(e) + b{e, V£) = 0 
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which then simplifies to 

Kb(e~,e) - -b(e,e) + £°(e) = 0 

after invoking a(u,e) = £N(e). This is the same as 

Kb(e-,e)--b(e,e)+t(e) = 0, 

and in particular 

U{Kb(e-,e)-~b{e,e)+£°{e) = 0}, 

or 

K&{b(e-,e)}--b(e,e)+e°{e) = 0. 

Adding this to (5.27), noting that u — Uh + e and that 

3?{6(e , e)} = b(e~, e) + b(e ,e)=b(e,e ) + b(e ,e), 

we have 

s~ = K { r ( u ) } - ^ ( e - , e - ) - ^ 6 ( e ) e ) + KK{6(e_,e)} 
£ Zi 

= K { f » } - %b{e-,e-) - ^ ( e , e ) + ^ ( e . e " ) + ^ ( e " , e ) 

= K { * » } - ^6(e" - e, e") + ^ ( e " , e) - %b(e, e) 

= K { f ( u ) } - - 6 ( e - - e , e - - e ) . 

The same approach will also lead to a similar expression for the upper bound. Finally, 

s+ = ^{t{u)} + ^b{e+ - e , e + - e) (5.28) 

s- = 5R{£°(w)} - ^b(e~ - e, e~ - e) (5.29) 

and asymptotically approach the exact solution when the error e —» 0. Therefore, we 

see that while the bounds (5.26) and (5.27) are asymptotic bounds to the exact solution, 
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they are un-computable as it requires the exact error. We will now formulate the exact 

bounds method for the Helmholtz problem based on the work presented in [59] for the 2D 

advection-diffusion-reaction equation; however, we generalize the approach to the complex 

space setting in the same spirit as in [57]. In real spaces, duality theory of convex minimiza­

tion is the standard proof for the bounds method. As in the case of obtaining exact bounds 

for equations where the energy terms does not have an intrinsic minimization principle, the 

ideas of duality theory are applied to transform an unconstrained minimization statement to 

a constrained maximization problem (dual problem) where any approximation of the dual 

variables satisfying the optimality conditions can be used to provide non-trivial bounds on 

the Helmholtz energy term. 

5.3 Localized Lagrangian 

Now we write the local contributions of the unconstrained Lagrangian on an arbitrary 

element T of the partitioning 7^ as 

£ ± ( u ; , ^ , A ± ) = | 6 r ( a ; , a ; ) + 4 ( c j ) + C^ (5.30) 

where 

4(« ) = 1{~4{v)+bT{uh,v)+hT{v,\l)} 

and 

C± = = F * ° K ) + trWt) ~ M ^ , ^ ) -
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Here, the definitions of the sesquilmear form 6^(0;, u), the anti linear functional £j^(v), and 

the boundary flux term \\T(V,X) over each elemental subdomam are defined as 

bT{u,v) = [ (Vw Vv-k2wv)dVt (5 31) 
JT 

l$(v) = I fvdQ. (5 32) 

hT(w,A) = / aTuJ\dT (5 33) 
JdT 

with the special signing between neighboring faces CTT as defined in Chapter 3 

5.4 An Equivalent Lagrangian Formulation 

The local unconstrained problem is un-computable m general since it must be performed 

over an infinite-dimensional space in order to guarantee the bounding property However, we 

can transform the problem to an equivalent constrained problem which effectively dualizes 

the minimization of the local energy term br(v, v) to an equivalent maximization problem 

with equality constraints We do this by first introducing two auxiliary variables H^ G 

(L2(T))3 , and p± e L2(T) satisfying l 

K / ( V w ± - n ± ) pdQ = 0, VpG (L2(T))3 (5 34) 
JT 

Kk2 f\p± - LO^V dn = 0, \/v&L2(T) (5 35) 

Define E to be the set of triples ( w ± , n ± , / 9
± ) m H1^) x (L2(T))3 x L2(T) that satisfy the 

constraints (5 34)-(5 35) Then we can write the unconstrained Lagrangian (5 30) to the 

equivalent constrained problem by introducing the functional JT (u)±,Il±, p^,^,^) given 

1Here L2(T) is defined as the space of square mtegrable complex-valued functions v T >—> C with the 
usual inner product for complex spaces The general Hm (T) spaces are also defined analogously in complex 
spaces 
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by 

J ± ( o ; ± , n ± , p ± , q ±
) r ± ) ~(f (n*)• (n±)dti-k2 Jptp*dQ 

JT JT J 

( f w ± r ± cKl- f p±r± d£l\ + 4 ( w ± ) + Cj! 

which reduces to the expression 

J±(uj±,n±,p±,q±,r±) = K{ M - H ± - q ± j •n±-k?{-p±-r±\ptdnj(5.36) 

+ K I f Vw* • q± - fc^f* dn 1 + 4(w ±) + C-

The gradient condition with respect to the variables (ut±,Tl±,p±) are: 

dj± dj± dj± 
o 

and are 

K f (ViJ • q** - fcV**) dft = - 4 ( « ) Vv G ^ ( T ) (5.37) 

K / " ( I T ^ - q ^ - p d f t = Vpe(L2(T))3 (5.38) 

Kk2 [ (p** - r**)!]dtt = 0 VveL2(T) (5.39) 

respectively. Here, the superscript (*) indicates the value corresponding to the vanishing 

of the gradient. Substituting (5.38) and (5.39) into the functional ^T^(u)±,Il±,p±,q±,r±) 

above, we have 

J r ± ( q ± , r ± ) = --icf-^dn-k2 r ^ dtt \ + C$ 

Subject to the constraint in Equation (5.37) 
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As the objective function is a real quantity, this will lead to a maximization problem where 

in fact it can be shown that 

T 4 = sup - - a ^ ( ( q ± , r ± ) , ( q ±
J r ± ) ) + $ R { C ± } 

-S(L2(T) '" 
S L2(T) 

q±S(L2(T))3 2 

(5.40) 

s.t. K£f ,((q±,r±),!)) = - ^ ( i ; ) Vv G Hl(T), 

where the form ap : (L2(T))3 x Hl{T) x (L2(T))3 x tf^T) H^ C is defined as 

4"((q,r),(p,w)) = [ q-pdU-k2 f rvdQ, 
JT JT 

and the form cf : {L2(T)f x tf^T) x Hl{T) ^ C is defined as 

cr((^r),v) = [ q- VvdQ.-k2 j rvdVt. 
JT JT 

5.5 Elemental Sub-problems 

The gradient conditions corresponding to the maximization problem (5.40) can now be 

obtained in the usual way of constructing the Lagrangian L^u : (L2(T))3 x (L2(T)) x H1^) 

as 

^ u (q ± , r ± ;0 = ~\ { / q± • q* dQ - k2 f r± r± dfA 

-« { / q* • v?dfi - k21 r^doX - 4 ( 0 + c£. 

The gradient conditions 

5Cp SjCiu 5£iu 

—— = 0 —— — 0 —— = 0 
<Jq± ' 5r± ' 5£ ' 

now reveals the set of equations 

- « / q±pdfl-K f V£-pdfi = 0 Vpe(L2(T))3 (5.41) 

nk2 I ^vdfl + Kk2 I £vdtt = 0 \lveHl(T) (5.42) 

-K\ f q±-S/vdQ.-k2 f r^doX = £±(v) W <= tfHT) (5-43) 
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in which upon adding (5.41) and (5.42) we express these equations in the compact form, 

^ ( ( q ± , r ± ) , ( p , W ) ) + / t4"((p,t;),0 = 0 V(p,v) e (L2(T)f x Hl{T) (5.44) 

- ^ ( ( q ^ r * ) , ^ ) = l±(v) toeif^T). (5.45) 

We make the decomposition 

(q±,r-±,̂ ±) = f-Jq" ± V , ~\ru ± V , -^« ± ~C" 
\ 2 K 2 K 2 K 

which we then substitute into (5.44) and (5.45) to obtain two K- independent problems: 

1. Find (qu , ru , fu) G (L2(T))3 x Hl{T) x tf^T) such that 

4 u ( ( q V " ) , ( p ^ ) ) + 4 " ( ( p ^ ) , r ) = 0 V(p,v)G(L2(T))3xH1(T) 

4u(((iu,ru),v) = 7^(v) VveH^T) 

2. Find ( q V ^ ) e (L2{T))3 x tf^T) x tf^T) such that 

a^( (q^ , r^) , (p , t ; ) )+4«((p l W ) ,^ ) = 0 V(p,V) € (L2(T))3 x ^ ( T ) 

^ ( ( q V ^ . v ) = n%(v) vveH\T), 

where we have defined the residuals lZu(v) and TZ^(v) as: 

K%(v) = -£$(v)+bT(uh,v) + bT(v,\u
h) (5.46) 

T4(v) = -e°fv)-br(v,rl>h)-hT{v,\t). (5.47) 

We notice that for v G Z^, the residuals will be zero from the equilibration equations given 

in Equations (5.23) and (5.24), and consequently, 

ap((cf,ru),(Vv,v)) = 4u((cf,ru),v) = 0 Vv e Zh(T), 

4 u ( (q^ ,^ , (V V ) «) ) = 4u((^,r^),v)=0 VveZh(T). 
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Invoking the decomposition into (5.40) now leads to the local output bounds 

=Fs^ = K{C±} (5.48) 

-|4^(q^O.(q^ru))-^4u((q^I^),(q^)^*))±i4u((q^ru),(q^^)). 

5.6 Bounding Property 

To show that the constrained maximization problem possesses the bounding property, we 

first consider the constraint equation in the form (5.40) and write 

«4"((q ± , r ± ) , V ) + ll{-e^(v)+bT(uh,v) + hT(v,Xt)} 

± {-^v)-br{v,^h)-hT(v,Xi)} = 0. 

Accumulating the local contributions and designating adu = X^reT aT" an<^ °du = ^2reT cr'' 

and once again use the diacritical hat to indicate that the function is broken across the el­

ement, we write the constraint equation on the broken domain as 

Recall v E Z, and Z C Z. Restricting v — e £ Z, and employing the relations 

h(e,Xu
h) = h(e,\t) = 0 

b(uh, e) = b(u, e) — b(e, e) using u = Uh + e 

b(u, e) = £ (e) for e 6 Z (primal problem) 

b(e,iph) = 0 for e € Z (from orthogonality of the error) 

reduces the constraint to 

/^"((q^f^.e) - -b(e, e) T {t°(e)} = 0 
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or 

KCdu{{q±,r±),e)--b{e,e)Tt{e) = 0 

which will also satisfy, 

3?{«cdu((q±, r±) , e) - -6(e , e) T ^°(e)} = 0. 

Again invoking the relationship 

l r-
K{c d «((q ± , r ± ) ,e )} = - [ c ^ ( ( q ± , f i ) j e ) + C

d t ' ( ( q ±
J f ± ) , e ) 

and employing the gradient conditions (5.44) and (5.45) where the values at this point are 

given by (qT '*,rT '*) = ( V ^ , ^ ) , we have that c^u((V0, 4>),e) — br(<t>, e) and hence, 

K3i{cd«((q±-*, ?*'•), e)} = |[6(e, £) + &(</>, e)]. 

Here we have in addition used the fact that b((j>, e) — b(e, </>). Thus, the constraint equation 

reduces to 

!&(e, £±) + ^ ( ^ , e) - %b(e, e) T 5R{£°(e)} 

= ^b(e,$±-e) + ^±,e)TW°(e)} = 0 (5.49) 

from the sesquilinearity of the operator &(.,.). Accumulating the contributions of (5.40) 

over all subdomains, where we have s^1 = Ylr^rh
 ST w e c a n n o w w r i t e 

Ts± = _!lb($±J±) T K{r K)}, (5.50) 

where it is to be noted that adu((\7(j), 4>), (V</>, </>)) = b(<f>, <j>). Summing Equation (5.49) with 

(5.50) we obtain 

Ts± = _ ^ ( e ^ ± _ e ) + ^ (0± ) e)_|6 (^±^±)T K { r(u)} 

= ^b(e, $±-e) + |&(^, e - £±) =F &{*»} 

= |6(e,0±-e)-|6(^± ,^±-e)T^°(U)} 

= -|6(0±-e>±-e)TK{r(U)}. 
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Therefore, it now follows, that 

s± = K{f (u)} ± ^6(0* - e, ^ - e) (5.51) 

We will show later that indeed in the approximations, the second term above asymptotically 

decreases to zero as the mesh is refined and thus the bounds preserve the bounding property 

where the bounds converge from above and below to the upper and lower bounds respectively 

at the theoretical rate. 

5.7 Sub-problem Computations 

In order to understand the computation of the subdomain computations, we re-write the 

constraint equations using Green's identity: 

/ q-Vvdfl = - / V-qvdn+ / qnvdF 
JT JT JdT 

and choose an appropriate finite dimensional space which is rich enough such that the 

traces of the functions q on each elemental subdomain will at least contain the continuity 

multipliers. Therefore, by writing qu • n = orA)J + Va/, • n on dT, the constraint equation 

specifying the solution pair (<iu,ru) is now expressed equivalently as 

/ ( - V • q" - k2ru) vdn = / " ( - / - Auh + k2uh) vdQ. (5.52) 
JT JT 

for all v 6 Pq(T). In addition, we recall that the spectral element approximation for the 

field variables and hybrid fluxes are polynomials of order p over the subdomain, namely, 

Uh,4>h,^ G PP(T). We see that for solvability, the data on the right must be in the range of 

the operator on the left, and therefore there is no problem for the variables (q",rM) G P9, 

and the constraint equation is solvable for q > p where we have also taken the forcing 

data to be polynomial of order PP(T). An analogous reasoning applies to the solution pair 

(q^, r^). We now formulate the pair of computable sup-problems as follows: 
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1. Find q£,r%,$ e Ql(T) x P?(T) x V*(T) such that 

ad
T

u((qu
h,r%),(p,v))+4u((p,v),0 = 0 V(q, i>) 6 (P9(T))3 x P<?(T), (5.53) 

4 U ( (qA.^ ) ,« ) = ^ r ( « ) V « e f ( T ) ; (5.54) 

2. Find q^rjf.fjf e Q.f(T) x P?(T) x V%T) such that 

4 u ( ( q ^ . ^ ) , ( P ) 1 ; ) ) + 4 u ( ( p , W ) , ^ ) = 0 V(q,z; )e(P*(T)) 3xP«(T) , (5 .55) 

4U((<li,ri),v) = l4{v) VveF^T); (5.56) 

where we have defined the finite dimensional spaces QJJ, Q* as: 

Ql = { q e ( P ' ? ( T ) ) 3 | q - n = a rAj; + V ^ - n on OT} (5.57) 

Q# = { q e (P?(T))3 |q • n = -uT\l - V ^ - n on 5 r } . (5.58) 

is) (s) 

We note that since the polynomial approximations to uy
h , ipy

h , A are less than the approx­

imations for (qJJ,rjj) and ( q ^ , ^ ) , these right hand side data must be interpolated in the 

same manner as is described in Chapter 4. 
5.7.1 D i s c r e t e Forms and A p p r o x i m a t i o n s 

As mentioned, in our implementation, we use real forcing with real boundary conditions, 

therefore the discrete forms corresponding to the above set of computable constraints are 

given for q£ = q^u + iq£u = q^u and rf — rR^ + ir^j = rh where the imaginary parts 

are equal to zero, and just express the discrete forms corresponding to the real part of the 

systems. Therefore, we have 
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1. For t h e sys tem (5.53)-(5.54) t he block m a t r i x 

M<s> 0 0 -Df 

0 M<s> 0 -Df 

0 0 M(s> -Df 

-D[s) -Df -Df -k2M 

2. For t h e sys tem (5.55)-(5.56) t he block m a t r i x 

M ( s ) 0 0 

0 M ( s ) 0 

0 0 M(s> 

M<s> 

0 

0 

-Df 

0 

M ( s ) 

0 

-Dis) 

0 

0 

M(s> 

- D ( s ) 

-D\w 

-k2M(ai 

' (€\ ' 

(QU
h)2 

(<tf)3 

L 'ft, J 

" 0 

0 

0 

.91 

_DtW 

u3 

-Df -Df -Df - f c 2 M « 

" (A " 

(9t)2 

A 
. rt . 

" 0 " 

0 

0 

I 9h J 

where 

gu
h = -M^f + A^Uh + B'Xt 

91 -AfW/° - A^iph - B*\% 

(5.59) 

(5.60) 

The Lagrange multipliers £u,and £^ are just an artifact of solving the quadratic programing 

problem with constraints, and are not required in the bounds calculations. Therefore, we 

have eliminated them from the system matrix, by noting that Equations (5.53) and (5.55) 

impose the conditions that r^ = — ££ and r^ — — £%. Here again, M^s\ A^s' are the mass 

(s) 

and stiffness matrices respectively, and the D\ for i — 1,2,3 are the same as that used in 

Chapter 4. 

Remark 5.2 The square system matrices above, can be written in the general form 

M D* 
D - C 
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where M is the 3 x 3 block matrix with the suhdomam mass matrix on the diagonals, and 

thus it is in general symmetric positive definite. The matrix D is a block matrix composed 

of the matrices D\s and has full rank. The matrix C = k2M^s' and is positive definite. 

A theorem on saddle point matrices(see [10]) guarantees that such a matrix is mvertible 

provided ker(M) fl ker(D) = {0}. Since the null space of the mass matrix is zero, and 

the null spaces of the D matrix are the space of constants (as it is the discrete form of 

j T V • q v dfl which involves the divergence operator) their intersection is the zero vector. 

Therefore, invertibihty is not a problem, and we solve the system for (q /J ,^) and ( q * , ^ ) 

which will be used in the computation of the bounds. 

5.8 Computation of the Output Bounds 

After the computation of the bounds variables, namely, ( q u , r u ) and (q^ , r^ ) , we may 

compute the bounds based on the formulation in (5.48) by summing these elemental con­

tributions. We note that the elemental sub-problems are computed independently and in 

parallel, so by summing the contributions, one will arrive at the global bounds procedure. 

It is important to point out that the formulation in (5.48) required knowledge of the exact 

solution solution. However we adhere to the fact that the variables ( q u , r u ) and (c^,r^) 

result from a maximization procedure, so that any approximation to these from a suitably 

chosen finite dimensional set satisfying (5.53)-(5.54) will be bounded above by the exact 

solution, i.e. ad u((q£'*,^ '*), (qu
h'* ,r\'*)) < adu({qu'*,ru'*),(qu'*,7^'*)). Hence the approxi­

mations (qJJ,^) and ( q ^ ^ ) ' through bounded projection will provide the bounds to the 
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exact output. If we now define 

4 = I £ 4u((qM)>(qM)), 4 = \Y. 4u((qK),(qM)), 
T£Th TeTh 

(5.61) 

TeTh 

then we can write the total output bound expression as 

s± = K{C«} - &{**} ± fa + ±zjf} (5.62) 

where 

c u = r K ) + a(uh, i/>h) - iN{i>h)} = e°(Uh), 

since a(uh,iph) — £N{^h) from the primal problem. Optimizing with respect to K we have 

Jt, and the upper and lower bounds become: 

s± = X{sh}±2y/ztzi, (5.63) 

where we have the defined the bound average U{sh} = 5K{—ẑ  + Cu}. 

5.9 Convergence Properties 

In this section we would like to verify that the bounds converge asymptotically at the re­

quired optimal rate. We have seen that calculation of the bounds which depends on several 

smaller sub-problem computations, require knowledge of the decoupled solutions in which 

their aggregate leads to the global finite element solutions Uh, and i /v These approxima­

tions have already been achieved using higher order nodal spectral element method, where 

the GCR method is used to converge the solution to \u^-s' — u^'\ < 10~6, likewise for ip£ . 

Therefore at this stage concerns about the loss of ellipticity of the Helmholtz operator have 

already been addressed as Uh and iph have been obtained under sufficient hp refinement. 



5: Bounds for the Helmholtz Equation 114 

However, the approximations (q)J,r^) and (q^ , r^) also suffer from the lack of stability of 

the forms adu((q^,f^), (q£,r%)) and adu((qfc,r%), (qX^h)) for higher wave numbers and so 

conditions for which these forms retain their ellipticity must be considered in the conver­

gence proofs. In order to proceed with the proof, we use the result of a proof by Maday 

and Patera [40] which shows that the Lagrange multipliers X£, and A* satisfy the following 

estimates, 

J2 hki\\\u-\u
h\\dT < C\u-uh\Hi, (5.64) 

reTh 

Y, h*Wx^ ~ xt\\dT < C\1>-i/>h\Hi (5.65) 
rerh 

where A" and A^ are the exact Lagrange multipliers. Now we prove a proposition which 

gurantees the convergence of the bounds for the Helmholtz operator. The proof is similar 

to [59] but we modify it for the case of indefinte forms. 

Proposit ion 5.3 Suppose that u^ and tph are the spectral element approximations to the 

primal and adjoint pair u and tp respectively, and that A^ and A^ are the solutions to the 

equilibration equations, then 

s-s^ < C{k)\\u-uh\\Hi\\ip-i}h\\Hi 

st ~ s < C(k)\\u-uh\\Hi\\i;-tph\\m 

provided that AJJ and A* satisfy the prerequisites (5.64)-(5.65), and the constant C depends 

on the wave number k. 

proof: 

First we re-write the gradient conditions solving for (q u , r u ) e (L2(T))3 x HX(T) as 

[ qu-pdQ-k2 [ ruvd£l+ [ p-VCdtl-k2 [ vCdn = 0 (5.66) 
JT JT JT JT 

j(f- Vvdtl-k2 [ ruvdQ = TZ^(v), (5.67) 
JT JT 
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where we observe that the first equation holding for all (p, v) will lead to the conditions 

ru,* = _ ^ q U , * = _ v ^ 

and substituting these conditions into the second equation we can write 

f qu'* • V^dil - k2 [ ru'*^dQ. = -TZ^((j)u) V0U e H^T). (5.68) 

JT JT 

At the gradient conditions we have (q^*, Tj.'*) = (V</>̂ ,'*, ($*) and where in addition to the 

fact that a^u((q, r) , (X7v,v)) = cp((q,r),v), one obtains from Equation (5.68) that 

adu((V^£u '*),(V^£u '*)) =£%(rn -b{uhA
un - h(0"'*,A£), (5.69) 

where we have again used the diacritical hats to designate functions on the broken domain. 

Just as the approximate solution Uh has the associated Lagrange multipliers \%, the exact 

solution u also has the associated exact Lagrange mulitpliers A" that satisfy the equilibration 

condition 

0 = £$(v) - b(u, v) - h(t>, Xu) VveZ (5.70) 

Letting v = <pu'* in Equation (5.70) and subtracting it from (5.69) we have 

ad u((V?u '*,0U l*),(V^u '*, ?"'*)) 

= b(u-Uh,rn + K$u'*^u-K) 

< c\\u-uh\\H1u
u'*\\H1 + Yl c\\xu - Xu

h\\dTUu'*\\dT 
TeTh 

< C\\u-uh\\^Uu'*\\m+ E Ch$\\\»-\l\\II1\\p>*\\Hl 
TeTh 

< C\\u-uh\\m\$u'*\\m+C\u-uh\mUu'*\\m 

where we have in addition, employed the continuity of bilinear forms, Equation (2.41) for 

V\ — V2 = Hl, Equation (5.64) and the inequality ||u;||aT < ^ 3 I I W I IH 1 (T ) - NOW we point 

out that the operator a^" is not coercive in the usual sense of Equation (2.39), but rather 
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is iJ1-coercive satisfying a Garding inequality (2.44). However from the inf— sup stability 

condition for indefinite forms mentioned in Chapter 2, we know that 

~.dul 

3 / 3 > 0 : 0< sup ^ '"~ v , j * V O ^ 0 U , * 6 V [ , (5.71) 
(W".*€«2 H^u'*lkill^"'*llV2 

and thus for V\ = V^ = .ff1 yields 

i 

| | £ u ' l t f i < ^ { | a d u ( ( V ^ ^ ( V ^ < * , ^ * ) ) | } * . (5.72) 

Here /3 is the stability constant, which as mentioned previously, is typically larger for in­

definite forms. For the Helmholtz sesquilinear forms in one dimension, (3 = C0Ils
k
 a • 

Therefore, 4 is at least directly proportional to k for the three-dimensional problem. Em­

ploying (5.72) and knowing that the H1 semi-norm is equivalent to the H1 norm, then we 

have 

adu((wr'*,rn,mu'*,$un) < ci i iu-^u^, (5.73) 

where C\ = -S= and will be some function of wave number. We note that this will cause no 

difficulty in the convergence of the bounds. Similar estimates hold for the bound variables 

(q^'*,r^'*). Again, by bounded projection which is a consequence of the maximization 

problem, the approximation will be bounded from above and converge to the maximum 

values. More precisely, after substituting back the relationship (V</>y*,</> '̂*) = (,c^'*,r^'*) 

and recalling that adu{(ciu
h'*,r%*), (qu

h<*,ru>*)) < adu((qu-*,ru '*), (qu '*,ru-*)), we may write 

^ ( K ' V r M q ^ ' V r ) ) < CiWu-u^, (5.74) 

and analogously, 

ad"«$\rinM,*>rt'*))<CM-^\\2Hi- (5-75) 

It is clear from the bound computation (5.63), that 

\s - sh\ < s+ " sh < 4 V V ^ < C\\u - uh\\Hi \\ijj - il)h\\m 

where s/, is the nodal spectral element approximation of s. • 

file:////ijj


Chapter 6 

Numerical Verification and Results 

In this chapter we verify the results of the bounds to the exact outputs of the Helmholtz 

equation for wave numbers k = 1,3, 5. We use a higher order nodal spectral element method 

(s) Is) 

where the approximations Xh,iph ,uh € Pp , and the bound components q^r / j e P9 with 

q > p consistent with the method as presented in the previous chapter. We consider the 

numerical examples in a cube geometry [0,1] x [0,1] x [0,1] with homogenous Dirichlet 

boundary conditions, where u 

exact solution where we take the forcing function to be 

— 0. We then verify our results against a constructed 

f(x,y,z) = k (SIT — 1) sm(fc7rx) sin(A;7ry) sm(k7rz) 

which would yield the exact solution u = sin(fc7rx)sin(&;7n/)sm(&;7r,z), satisfying the bound­

ary conditions. Also taking f° = 1.0 gives an exact output of s = T A J . For the different 

wave numbers, we do a convergence study where we plot the logarithm of the errors \s — sh | 

and \s — Sh\, versus the logarithm of the mesh size, where s^ are the computed upper and 

lower bounds and Sh is the spectral element solution to the output. Moreover, we also 

consider the effectivity of the bounds for some cases, where we recall from Chapter 4 that 

the effectivity index is defined as 97 — \ ^r and 07 = -,—M for both the lower and upper 
J h \s-sh\ h \s-sh\ rr 

bounds respectively. This is an indication of how well the bounds perform compared to the 
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spectral element solution. 

6.1 Discussion of Results 

6.1.1 For a p p r o x i m a t i o n p o l y n o m i a l s of order p = 2, q = 3 

Case I: k — 1 

The theoretical rate of convergence for the nodal spectral element solution is consistent with 

u £ P2 for structured meshes, and is 0(/ i4) . By the discussion in Section (5.9), it is expected 

that the upper and lower bounds converge at the same theoretical rate of 0(/i4) as we refine 

the mesh. We see in Figure (6.1) that the spectral element solution converges faster, than 

the output bounds, which is generally the case, however for this case the convergence rate 

and results are very nearly the same as the Poisson problem of Chapter 4 because of the low 

wave number. We see from Table (6.1) that the effectivity of the bounds for k — 1 imply 

that the bounds are sharp and compare well with the spectral element approximation as 

they are very near equal to 1.0. Figure (6.2) depicts the bounds for this case. 

Case I I : k = 3 

When we increase the wave number to k — 3 we see from the convergence study in Figure 

(6.3) that the gap between the Spectral element approximation and the bounds is widened 

which indicates loss in the sharpness of the bounds. The fact that the upper bound and the 

lower bound overlap indicates that the bounds are symmetric about the exact solution as 

seen in Figure (6.4). However from the figures and from Table (6.1) it is clear the a higher 

wave number causes the effectivity of the bounds to deteriorate, although for practical 

engineering applications, higher effectivities can also be acceptable. For improving the 

effectivities, one can used adaptive strategies and polynomial approximation of higher than 

\s—s±\ 

p = 2, q = 3. We calculate the relative error defined by —j^1 for a mesh of h = 1/18 to 

be approximately 11% error for both the upper bound and the lower bound. A mesh of 
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1/18 is relatively coarse for three-dimensional problems and an 11% error is considered to 

be within the acceptable range for engineering applications. However, we note that higher 

order polynomials can drastically reduce this error. 

/ = fca(37r2 — I)sin(fc7nr)sin(fc7ry)sin(fc7r0) 
For fc = 1, s = 8/TT3 a 0 2580122 

h 
1/2 
1/4 
1/8 
1/16 

sh 
0 21209 
0 25233 
0 25752 
0 25797 

4 0 33598 
0 26810 
0 25895 
0 25811 

6h 
1 21 
1 78 
2 30 
2 88 

< 
2 06 
3 16 
4 35 
6 83 

/ = k'^(3TT^ — 1) sm(kTTx) sm(kTry) sm(knz) 
For fc = 3, s ~ 0 00955601 

h 
1/4 
1/6 
1/8 
1/16 

sh 
-0 08295 
-0 027301 
-0 00620 
0 00799 

s+ 
0 10359 
0 04764 
0 02589 
0 01118 

6h 
21 42 
26 20 
29 76 
40 02 

tf 
21 77 
27 07 
30 86 
41 62 

T a b l e 6 . 1 : Tabulated bounds results and their effectivities obtained with the cubic elemental subdomains 
for both fc = 1 and k — 3 In both case the results are reported using p = 2, q = 3 

Case I I I : k = 5 

For this case we see from the widening between the convergence lines of the corresponding 

to the errors \s — s/,| and \s — s^\ that the effectivities deteriorate for the higher wave 

number in Figure (6.5). As mentioned before, the effectivity can be improved through 

adaptive procedures and more accurate numerical methods such as higher order polynomial 

basis. However, we further observe that as we refine the mesh for higher wave numbers, the 

convergence of the bounds will reach a plateau. This is an anomaly that we believe can be 

attributed to the interpolation of the hybrid-fluxes where we recall from Chapter 4 consists 

of interpolating from a lower order polynomial to a higher-order polynomial (with more 

discrete points on the tetrahedron) space. In this case, accurate interpolation at higher 

frequencies is not achieved and has a deleterious effect on the convergence of the bounds. 

Figure (6.6) depicts the bounds for this case which verifies that both the upper and lower 

bounds approach the exact solution at the same rate and are symmetric about the exact 

solution, although not as sharp as for the k = 1 and k — 3 case. 
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6.1.2 For a p p r o x i m a t i o n p o l y n o m i a l s of order p — 4, q — 5 

Case I: k = 3 

Higher order polynomials are used in order to improve the bounds. We do this for p = 

4, q = 5 and observe in Figure (6.7) that for the coarsest mesh of h = 1/4, the higher-

order has tightened the gap between the convergence lines where the relative error for the 

upper bound is approximately 13 5% and the lower bound is approximately 12%. Figure 

(6.8) demonstrates the bounding property for this case, where the value of the bounds is 

tabulated in Table (6.2). We point out that the relative error at h = 1/16 for the upper 

bound is 0.59% and the lower bound 0.57%. The bound average is comparable with the 

spectral element solution. Although when an exact solution is unavailable, the bounds will 

provide certainty information, where in this case, we see that the bound average gives a 

relative error of 0.009%. We then compare this to the relative errors at h — 1/16 of 17% 

and 16% for the upper and lower bounds respectively, when p = 2, q — 3. Indeed the 

higher-order has sharpened the bounds. 

It is also observed that as we refine the mesh, we reach a plateau. We again believe this 

is a result of interpolation of the hybrid-fluxes which is also affected by the interpolation of 

the hybrid-fluxes at higher polynomial orders. 

h 

1/4 
1/8 
1/12 

1/16 

p = 4, q = 5 
For k = 3, s as 0 00955601 

sh 
0 0084193 
0 0094563 
0 0094919 
0 0095017 

0 0108484 
0 0096642 
0 0096229 
0 0096121 

Sav 

0 0096338 
0 0095602 
0 0095574 
0 0095569 

Sh 

0 0096314 
0 0095590 
0 0095563 
0 0095561 

T a b l e 6.2: Tabulated bounds results obtained for the the cubic elemental subdomams for k = 3 using 

p = 4,q = 5 
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Case I I : k = 5 

Here we report the results for k = 5 using different polynomial orders in Table (6.3) where 

we demonstrate that the higher order approximation gives very improved bounds. For a 

mesh size of h = 1/20, using p = 4, q = 5 we obtain a relative error of 19% for both the 

upper and lower bounds. The bound average for this case is very near to the spectral 

element solution and has a relative error of 0.014%. Therefore, when no exact solution is 

available, one can use the bound average in order to provide very sharp estimates of the 

output. The bounds for this case is depicted in Figure (6.10). Again, we can expect from 

previous results that the convergence rate will be affected by an interpolation error of the 

hybrid-fluxes. However, as seen in Figure (6.5) for p — 2, q = 3 when h = 1/20 the log of 

the error is approximately —2.5 before it plateaus out, while for p = 4, q — 5 the log of the 

error is approximately —3.5. This implies that going to higher-order results in a significant 

improvement in the sharpness of the bounds despite the loss of convergence. Finally, Figure 

(6.11) depicts the solution u, when k = 5, propagating along the x direction. 
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h 

1/8 
1/12 
1/16 
1/20 

p = 2,q = 3 
For fc = 5 s ss 0 002064098 

sh 
-0 1497625 
-0 0496803 
-0 0193310 
-0 0084544 

0 1542674 
0 0539782 
0 0235316 
0 01261805 

Sav 

0 0022525 
0 0021489 
0 0021003 
0 0020818 

Sh 

0 0014725 
0 0018986 
0 0020051 
0 0020385 

h 

1/8 
1/12 
1/16 
1/20 

p=3q=4 
For fc = 5, s « 0 002064098 

sh 
-0 0156826 
-0 0044378 
-0 0009765 
0 0002274 

< 
0 0198758 
0 0085799 
0 0051102 
0 0039038 

Sav 

0 0020966 
0 0020711 
0 0020669 
0 0020656 

«h 
0 0020493 
0 00206798 
0 0020663 
0 0020652 

h 

1/5 
1/10 
1/15 
1/20 

p = 4 5 = 5 
For fc = 5 s a 0 002064098 

sh 
-0 0121749 
0 00091761 
0 0015841 
0 0016673 

s+ sh 
0 0164506 
0 0032158 
0 0025453 
0 0024615 

Sav 

0 0021379 
0 0020667 
0 0020647 
0 0020644 

Sh 

0 00210508 
0 0020671 
0 0020644 
0 0020642 

T a b l e 6 3 Tabulated results for the bounds and the spectral element solution Sh obtained with the cubic 

elemental subdomams for fc = 5 using different polynomial orders 
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Figure 6.1: Convergence study for k = 1 which shows the reduction of the error in the bounds and the 

spectral element solution as we refine the mesh. The error in the spectral solution converges at a faster rate, 

however this is typical and is reflected in the effectivity (Table 6.1). The theoretical convergence rate here 

is 0(h4). 
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Figure 6.2: Figure demonstrating the bounding property of the bounds for k = 1. The dashed lines 

represent the exact solution, and we see that for all levels of refinement, the bounds hold. 
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Convergence study for k=3 (p=2,q=3) 
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Figure 6.3: Convergence study for k = 3, where the theoretical convergence rate is 0(h4). 
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Figure 6.4: Upper and lower bounds for k — 3. The dashed lines indicate the exact solution. 
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Convergence study for k=5 (p=2,q=3) 

-0 5 

-1 

-1 5 

-2 

-2 5 

» -35 

-4 T 

-4 5 r 

-5 -

-5 5 -

1111111 l " " l l l l l l l l " l " " l | 1 " 1 

- 1 6 - 1 5 - 1 4 -1.3 -1.2 -1.1 -1 -0 9 -0.8 -0.7 -0.6 

Log(h) 

F i g u r e 6 .5 : Convergence study for k = 5, where the theoretical convergence rate is again 0(hA). The 

widening of the convergence lines indicates a loss of effectivity in the bounds. 
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F i g u r e 6.6: Upper and lower bounds for k = 5. The dashed lines indicate the exact solution. The bounds 

are symmetric about the exact solution and approach the exact solution at the same rate. 
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F i g u r e 6 .7 : Convergence study for fc = 3 using higher order elements, where the theoretical convergence 

rate is of 0 ( / i 6 ) . The bounds overlap which again indicates symmetry about the exact solution. 
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and exact solution and the convergence rate of the numerical approximation su in the above figure shows 

the precision of the spectral element solution. 



Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

In this thesis, we have developed the method of exact bounds for the three-dimensional 

Helmholtz equation, where we have formulated the proofs in a complex space setting. We 

report that these bounds are rigorous and provide a certificate of precision for a predicted 

output with full certainty. 

In Chapter 2 we gave a review of many of the difficulties associated with the nu­

merical solution of the Helmholtz equation. As the bounds method adheres to a domain 

decomposition procedure where the global bounds are obtained via several local subdomain 

computations, we have invoked a FETI like procedure for the calculation of the hybrid 

fluxes. The loss of ellipticity for the Helmholtz equation will render the problem as ill-

posed which will then cause the discrete system matrix to become indefinite. We have 

followed Farhat et al. [23] and implemented an additional regularizing term to the system 

matrix to prevent the problem from becoming singular. Such a procedure eliminates res­

onance between the subdomains while leaving the global nature of the numerical solution 

unaffected by the additional term. Furthermore, we have mentioned that in order to achieve 

a reliable result when approximating an oscillatory function u (solution of the Helmholtz 

equation) by finite element interpolating polynomials, the resolution of the mesh should be 
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adjusted to the wave number (the "rule of thumb"). However, while the "rule of thumb" 

controls the discretization errors, it cannot control the pollution error which is inherent 

in the Garlerkin FEM. Such an error is due to a loss of stability, and that in order to 

obtain asymptotic convergence of the numerical solution, one must restrict the size of the 

mesh to satisfy hk2 < 1 which will render the standard /i-version of the Galerkin FEM as 

very expensive, especially for practical engineering problems. The /ip-version, on the other 

hand, uses higher order polynomials and is shown in [35] to always lead to a reduction of 

the pollution error. Moreover, a study done in [41], has compared degrees of freedom per 

wavelength for polynomial orders of p = 2, and p — 5 which indicates that going to higher 

order can significantly reduce the number of degrees of freedom (DOF) of the problem, and 

consequently, reduce the CPU time. For higher frequencies, a greater reduction in DOF 

can be achieved by going to higher order. 

In Chapter 6 we present our results of the method applied to the three-dimensional 

Helmholtz problem, where we demonstrate the bounding properties. Equation 5.51, namely, 

s± = ®{£°(u)} ± ^6(£± - e, ̂  - e) 

indicates that the bounds preserve the bounding property as e —» 0 provided that the 

Helmholtz operator &(.,.) has a positive definite structure. As mentioned before, this is only 

achieved under sufficient /ip-refinement. Thus, when we mention strict guaranteed bounds, 

we are referring to bounds on the exact solution which hold for all levels of refinement. 

However in the case of the Helmholtz problem, the bounds are asymptotic in the sense that 

in order for the bounds to satisfy the bounding property the operator &(.,.) must be in 

the coercive regime. Our results indicate that by incorporating the nodal spectral element 

method with the FETI approach leads to excellent convergence results for the primal and 

adjoint pairs u^ and iph respectively. The theoretical convergence rate of the upper and lower 
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bounds is that of the spectral element solution. The results of k = 1 clearly demonstrate this, 

however we observe that for higher wave numbers the effectivity of the bounds will begin 

to deteriorate. This implies that while the bounds approach their theoretical convergence 

rate, compared to the convergence rate of the spectral element solution, they perform worse 

for higher k. 

All in all, the current work contains several new contribution which are proven useful 

not only to certifying the precision of the approximation to specified outputs, but also 

in a potentially highly accurate domain decomposition scheme for solving the Helmholtz 

problem. These new ingredients include: 

1. The development of the exact bounds method for the complex Helmholtz equation 

2. The application of FETI-H to the exact bounds method 

3. The use of FETI-H with high-order nodal spectral element method applied to the 

exact bounds method. 

7.2 Future Work 

We have solved the problem using higher-order polynomials on both structured and unstruc­

tured meshes. It is observed that invoking higher-order polynomials significantly reduces 

the bound gap A which is defined from Equation (5.63) to be 

A = s+-s-=4\/i?. 

For example, from Table (6.3) it is observed that for k = 5 with a mesh size of ft, = 1/20 we 

have 

\p=2,q=z) « 0.02107245, A ( p = 3 > g = 4 ) « 0.0036764, A ( p = 4 i 9 = 5 ) » 0.0007942, 
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which shows a reduction in bound gap of more than six times when going from p = 2, q = 3 

to p — 3, q = 4 and almost five times when increasing order from p = 3, q = 4 to p — 

A,q = 5. However, convergence results have shown that when we increase the wave number 

or go to higher order polynomials, the bounds begin to lose their convergence rate and 

reach a plateau. Therefore, as we refine the mesh for the higher-order polynomials, after a 

specific mesh refinement, we cannot expect any significant reduction in the bound gap. Our 

numerical experiments have shown that in the case of tetrahedral subdomains, where p = 1, 

5 = 2 the bounds converge at the theoretical rate of 0(/i2) while polynomial orders higher 

than this, i.e p > 1, q > 2 have demonstrated a loss of convergence for the bounds. For the 

structured mesh where we use cubic subdomains we don't lose the convergence properties 

until p > 2, q > 3. For polynomial orders p > 2, q > 3, then we get a similar behavior 

in convergence rate as in the unstructured mesh. It is believed that the plateauing out of 

the convergence rate, is a result of the interpolation of the hybrid-fluxes (see Chapter 4), 

where in the interpolating process from a lower polynomial space to a higher we tend to 

lose important information of the fluxes. As hinted earlier, using a flux-free approach may 

be deemed necessary in order to improve the method. 

Ultimately, we would like to apply the method to more practical engineering problems. 

Moreover, the method as is presented can be readily extended to more complicated boundary 

conditions. It can also be extended to more complicated geometries where we have piecewise 

straight boundaries. Such restriction of the computational domain avoids accounting for the 

geometrical error arising from the finite discretization of curved boundaries. A method could 

be developed however, so that the error contribution to the output for curved geometries is 

calculated and added to the existing bounds. 

In summary, in order to improve the method and its effectiveness our current aim will 

be directed as follows: 
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1. Improvement of the method First step is to alleviate the convergence issues de­

scribed in the previous chapter. One potential remedy, can be to use the flux-free 

approach instead of the FETI like procedure in calculating the Lagrange multipliers. 

2. Application Apply the method to more complicated geometries (with piecewise 

straight edge boundaries). In particular, investigate its potential application in cal­

culating sharp, quantitative and cost effective upper and lower bounds for the trans­

mission loss (TL) in mufflers and silencers, i.e. TLLB <TL < TLUB, where TL for 

a given frequency is the most important acoustic parameter. 

3. Minor enhancements 

(a) Possible use of adaptive methods can be invoked to improve the effectivity of the 

bounds. 

(b) Implementation of the coarse mesh preconditioner in the FETI-H method in 

order to accelerate convergence of the spectral element solution. 
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