
AUTOMATIC NON-LINEAR VIDEO EDITING

FOR HOME VIDEO COLLECTIONS

VAISHNAVI RAJGOPALAN

ATHESIS

IN

THE DEPARTMENT

OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE

DEGREE OF MASTERS IN APPLIED SCIENCE (SOFTWARE ENGINEERING)

AT

CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA
APRIL 2010

© Vaishnavi Rajgopalan, 2010

?F? Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliothèque et
Archives Canada

Direction du
Patrimoine de l'édition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre référence
ISBN: 978-0-494-67129-0
Our file Notre référence
ISBN: 978-0-494-67129-0

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

AVIS:

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans le
monde, à des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse. Ni
la thèse ni des extraits substantiels de celle-ci
ne doivent être imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformément à la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thèse.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

¦+¦

Canada

Abstract

Automatic Non-linear Video Editing for Home Video Collections

Vaishnavi Rajgopalan

The video editing process consists of deciding what elements to retain, delete, or com-
bine from various video sources so that they come together in an organized, logical, and

visually pleasing manner. Before the digital era, non-linear editing involved the arduous
process of physically cutting and splicing video tapes, and was restricted to the movie in-
dustry and a few video enthusiasts. Today, when digital cameras and camcorders have
made large personal video collections commonplace, non-linear video editing has gained
renewed importance and relevance. Almost all available video editing systems today are
dependent on considerable user interaction to produce coherent edited videos. In this work,
we describe an automatic non-linear video editing system for generating coherent movies

from a collection of unedited personal videos. Our thesis is that computing image-level vi-
sual similarity in an appropriate manner forms a good basis for automatic non-linear video
editing. To our knowledge, this is a novel approach to solving this problem.

The generation of output video from the system is guided by one or more input keyframes
from the user, which guide the content of the output video. The output video is generated in
a manner such that it is non-repetitive and follows the dynamics of the input videos. When

no input keyframes are provided,_our system generates "video textures" with the content
of the output chosen at random. Our system demonstrates promising results on large video

collections and is a first step towards increased automation in non-linear video editing.

m

IV

Acknowledgements

I would like to thank Dr. Sudhir Mudur for his immense support throughout my association
with Concordia University. His ideas formulated this research problem and his experience
and expertise guided me to develop it into the present form. I express my deep gratitude
to him for supervising and guiding me during the entire research work. Above all, I thank
him for being so patient and accommodating.

I express my deep gratitude to Dr. Ananth Ranganathan for being a constant source of
guidance and ideas. His support has been invaluable during this period.

A big thank you to all my colleagues, faculty members and staff of our department for
being so wonderful and supportive all throughout!

I ascribe whatever I have achieved to Ramgopal Rajagopalan who has been my idol and
mentor throughout my life. I dedicate this thesis to him and to my parents. ^-

?

Contents

List of Figures viii

List of Tables ?

List of Algorithms xi

1 Introduction 1

1.1 Thesis Objectives and Summary 4

1.2 Applications 5

1 .3 Technical Challenges 9

1 .4 System Overview 11
1.5 Contributions . 14

1.6 Thesis Outline 15

2 Background and Related Work 16

2.1 Indexing and retrieval 17

2.2 Histogram Representation of Images 19
2.3 Bag of Words Models 22
2.4 Automatic Video Editing, Summarization, and Storytelling 23

3 Spatial Pyramid Histogram 27

3.1 Approximate Feature Correspondence using SPH 28

vi

3.1.1 The Histogram Intersection Metrie 30

3.2 Image Features for SPH Computation 33
3.2.1 SPH using Dense SIFT 33
3.2.2 SPH using Texture 36
3.2.3 SPH using Census Transform 39

3.3 Computation of the Spatial Pyramid Histogram 40

4 Automatic Video Editing 43
4. 1 Pre-processing 44

4.1.1 Repframe Computation 46
4.2 Video Generation at Runtime 51

4.2.1 Finding visually similar frame(s) 52
4.2.2 Greedy path finding algorithm . . . 53
4.2.3 Incorporating dynamics into the metric for smooth output 56
4.2.4 Incorporating time weighting to avoid repetition 57
4.2.5 Generation of Video Textures 58

5 Experiments and Results 61

5.1 Quantitative Comparison of Features 61
5.2 Efficiency of Repframe Computation 64
5.3 Output Sequences 66

6 Discussion 71

6.1 Applications 72
6.2 Future Work 73

VIl

List of Figures

1.1 Semantic Photo Synthesis 3
1.2 Automated Storytelling: Original Narrative 6

1.3 Automated Storytelling: Modified Narrative 8
1.4 High-level schematic of system 13

2.1 Histogram-based Representations of Images 20
2.2 Facets of Video Editing in the literature . . . 23

3.1 Feature Correspondence 29
3.2 Example of matching using a three-level pyramid on discretized features . . 30
3.3 The Spatial Pyramid Matching Algorithm . 32
3.4 Keypoint descriptor computation 35
3.5 Examples of texture as repetitive patterns 36
3.6 Two commonly used filter banks for computing texture 37
3.7 Texton map of an image 38
3.8 Example of a census transformed image. Figure from [83] 40
3.9 The Spatial Pyramid Histogram using Dense SIFT features 42

4.1 Histogram equalization 45
4.2 Hierarchical k-means 47

4.3 Workflow for SPH computation for the frames in the video collection. ... 50

4.4 Workflow for Repframe computation for videos in the collection 50

Vili

4.5 Selection of next frame of output video 53
4.6 Working of the Greedy-path Algorithm 55
4.7 Evolution of a video texture 60

5.1 Comparison of the use of different features for automatic non-linear video
editing 63

5.2 Effect of use of dynamics on smoothness of output video 64
5.3 Evolution of an output sequence between a pair of input keyframes 67
5.4 Distance matrix showing pairwise distances 68
5.5 The three-level Spatial Pyramid Histogram (SPH) for an output frame ... 69
5.6 Evolution of output video when given two vastly differing input keyframes . 70

IX

List of Tables

1.1 Some popular photo and video editing software 4

5.1 Comparison of generation times for output video 65

?

List of Algorithms

3.1 Computation of Spatial Pyramid Histogram . 41
4.1 Standard K-means 49

4.2 Recursive algorithm for Hierarchical K-means using the histogram inter-
section function · 49

Xl

Chapter 1

Introduction

As the adage goes "A picture is worth a thousand words". Man has evolved from a prim-
itive form of Homo sapiens to create a highly intellectual and technological society today.
Starting from the cave and rock art of Stone Age to the modern media of today, he has
used visual representations as an important vehicle to convey his thoughts. In today's era,
where there is an outburst of ever-evolving technologies, presenting visual data in more

interesting ways has become a significant research challenge.
In present society, to the above adage we might also add "A video is worth a thousand

pictures!" A static image merely captures an instant of time while a video can capture
memories at length. Video also provides a powerful vehicle for informational, instructive,
artistic, and many other forms of narrative. However, a major disadvantage of video is
that it is a linear medium and the time required to view it is often large. While a photo

collection containing hundreds of photos can be browsed in a few minutes using currently
available software, a long video can be viewed only in a linear way such that we cannot
randomly access any part of video without losing context. In today's world, this restriction
on linear viewing is prohibitive in terms of time. People prefer shorter videos to longer
ones, except when watching movies. Hence, popular video sharing sites such as YouTube
usually restrict video lengths to ten minutes or so with no adverse effects on their usage

1

statistics. Consequently, systems for viewing and organizing video collections in a manner
that can help mitigate shortcomings due to this limitation will have a wide impact.

While long videos are difficult to view due to time constraints, large collections of
short video clips present a different problem. Such collections are commonplace today
since some of the most ubiquitous devices are digital cameras and camcorders, which can
capture short clips at will. Using these has become so intuitive that any enthusiast with
minimal or no training can shoot videos of reasonable quality. Further, with the Internet
being almost an integral part of our lives, the world is a small place today where sharing
our pictures, videos or movies is just one-click away. At the same time, browsing video
collections and editing video clips into a coherent movie remains far from easy. Hence,
again, we encounter a growing need for applications that organize and present users' video
collections in novel and efficient ways.

A number of applications and websites exist which cater to the specific needs of image
organization, sharing, and editing. While digital albums and slideshows are convenient for
organizing and viewing photos, photo editors also encompass a panoply of sophisticated
features that have now become basic requirements, such as enhancement of color, sharp-
ness, brightness, and contrast, highlight/shadow adjustment, image stitching and panorama
creation, image layering etc. In addition, applications like Photoshop and Photofunia also
allow creation of artificial images by splicing together elements of existing images. This
form of image creation is being taken to the next level by research work such as Semantic
Photo Synthesis [25], which can put together appropriate pieces from images in an image
collection when given just a text based description of the final image desired (Figure 1.1).
Phototourism [70] provides another very novel interaction method with photo collections
by creating a 3D model of a monument or landmark for which photos are available from a
large number of viewpoints.

While image applications have achieved the level of sophistication described above, the
corresponding video editing software still has some ways to go. Firstly, there is no simple

2

1I

Figure 1.1: Semantic Photo Synthesis: In (A), the user specifies only a semantic caption.
(B) and (C) show the automatically selected source images used to synthesize the designed
photograph (D). Images taken from [25].

organizing system for video collections. The simplest concept is that of a playlist which
is naturally suited only to linear access. Additionally, we can only know about the content
of the video from the title or other textual description, which has to be supplied by the

user. Providing such annotation is a tedious task and is also unsuitable for the short clips
typically shot by amateurs using digital cameras. In the absence of a good organizational
structure, applications have defaulted to visualizing the organization of videos in a manner
similar to photos, by simply displaying a poster frame for each video. Currently available
video editing tools are also largely focused on user-driven interaction with comparatively
few generic editing tools available. Popular movie editing software such as Muvee and
PowerDirector require that the user select and specify the order of the video clips to be
edited into a movie. Removal of defects such as blur and unwanted camera motion have to

be manually performed. Some of the top photo and video editing software available today
are listed in Table 1.1.

3

Photo editing software
Adobe Photoshop elements
Corel Paint Shop Pro Photo

Serif PhotoPlus

Ulead PhotoImpact
ACDSee Photo Editor

Video editing software
CyberLink PowerDirector

Corel VideoStudio
Adobe Premiere Elements

Magix Movie Edit Pro
Muvee Reveal

Table 1.1: Some popular photo and video editing software.

1.1 Thesis Objectives and Summary

In this thesis, our goal is to create a system for automatically creating visually coherent
videos from a given collection of video clips. We focus on using unedited video clips that
would be typically obtained from a digital camera or a camcorder when used by an amateur.
We abjure use of any textual annotations to the video clips since annotation is a tedious task
and requiring them would be impractical. For the same reasons and because personal video
clips usually do not have reliable audio, we also do not use any audio information in our
system.

Our aim is to obtain visually coherent movies by concatenating appropriate segments
selected from the video clips in the collection. By selecting segments that have similar
image characteristics, we can obtain a video that does not contain too many abrupt transi-
tions. At the same time, boundaries between video clips in the collection cannot be always

removed and may appear in the output. The user can drive the selection and ordering pro-
cess by optionally providing a set of input keyframe images that serve as "waypoints" for
the output video, in the sense that the system has to select frames visually similar to the
input keyframes in the sequence presented while also preserving visual coherence. The
user can also determine, through the use of a parameter, how closely the output follows the
video clips in the collection, i.e. how often it inserts transition frames in a video clip.

In summary, the objective of this thesis is -

Develop algorithms and build a system for automatic creation of visually co-
herent videos. The two inputs to be initially provided to the system are (1)

a collection of video clips containing only image information, and (2) an op-
tional set of keyframes that guide the content of the output video.

1.2 Applications

The primary application that we envision for our work is that of a presentation mechanism
for video collections. Since our system can automatically put together coherent videos

whose content can be driven by the user at a very high level, it is ideal for creating topical
"highlights" of video collections. In addition, our system can also remove many video seg-
ments that have been rendered unusable due to improper lighting, motion blur, occlusions,

and other technical shortcomings. Removing such unpleasant portions improves the quality

of video clips significantly. Note that since our system does not explicitly detect motion
blur or saturated lighting, it can only remove these where they are abrupt and severe. How-

ever, if required, special detectors for motion blur and saturated lighting [86] could be used
in conjunction with our system. While we focus on personal video collections in this thesis,
our system can be extended to automatically create sports highlights and movie trailers in
a straight-forward manner. In these cases, audio input contains a large amount of informa-
tion and cannot be ignored. The importance of these applications is attested to by the large
amount of research in this area ([79] and references therein).

If no input keyframes are presented, our system creates a randomly generated, but still
visually coherent, video which can be of infinite length and therefore, be useful as a screen-
saver video. This is similar in intent to VideoTextures [60], where video "sprites" were

animated with random motions to create infinite videos. The sprites, in turn, were moving

objects such as fish segmented out from other videos. In our case, the generated video
has personal content from the video collection, instead of sprites learned from a few input
videos. Personalized screensaver videos have the potential to become as popular as image

slideshow Screensavers that are currently widely used.

5

áH

"rSäSS^J

W
Figure 1.2: Image sequence showing a narrative where a man enters a room, sits on a sofa,
picks up and reads a book from the table, keeps the book, picks up coffee mug, takes a sip
of coffee, keeps the coffee mug on the table, walks to a window, and finally walks out of
the room.

6

Another interesting application of our system is what is referred to as user-defined
storytelling or automated storytelling. When a video collection contains many small clips
that are visually similar, it may be possible to sequence them in more than one way while
still maintaining a narrative. Of all the sequences possible, only one will represent an
actual sequence in the video collection while the others will be sequences that were never
shot in reality. These alternate sequences are called stories, and the creation of such videos
is called automatic storytelling. Note that automated storytelling can use many modalities
and sensors [56] even though the description just given only takes into account visual input.

An instance of automated storytelling is the following scenario where the user's video
collection contains four short video clips. The content of the clips are as follows:

1. Clipl: A man walks into a room and sits on a sofa. He picks up a book from the
table, reads it and later puts it back on the table.

2. Clip2: The man picks up the coffee mug from the table, sips the coffee and later
keeps it down.

3. Clip3: The man gets up from the sofa and goes to the window.

4. Clip4: The man walks from the window and sits on the sofa. He then gets up and
exits out of the door.

These four videos can be recombined in an interesting manner to make a single video that

narrates a different sequence of events. We inter-mix the actions performed to create the
following sequence:

• The man exits the room and after a while enters back into the room and walks to the

window. He then sits on the sofa. He picks up the coffee mug from the table, sips the
coffee and later keeps it down. He picks up a book from the table and starts reading
it. Later, he keeps the book on the table and walks out of the room.

7

& ^5T B2 al

s^Pp^a^

^Mi

Figure 1.3: A simple instance of automated storytelling through re-arrangement of images
in the sequence from Figure 1.2 . Note that the rearranged sequence maintains visual
coherence, which is a necessary (but not sufficient) condition for it to carry a narrative.
The narrative involves a man who goes out through a door, comes back again, walks to a
window, sits on the sofa, sips coffee, reads the book, gets up and walks off.

8

This alternate sequence is a valid possibility that, however, never happened in reality. Our
system can create such alternate sequences when appropriately guided by the user through

input keyframes that drive the sequencing. The example above is illustrated through an
image sketch sequence in Figures 1.2 and 1.3.

1.3 Technical Challenges

Automatic Video editing requires the solution of two problems -

1 . Data storage and retrieval, and algorithms for fast comparison of image frames:
The problem of storing and retrieving video frames from a large collection, which
was a significant hurdle during early research, is no longer a serious concern with

rapid increases in size of primary and secondary memory. However, comparison
of image frames is a basic step in all automatic video editing methods since this
determines visual similarity. If the features extracted from the video frames are in an
amenable form (i.e. that of vectors), extremely fast nearest neighbor methods can be

used for performing the comparison [62]. This is what is generally done in current
work. Other specialized methods which are harder to scale to large video collections
include image registration [53] and graph matching [51]. However, it is fair to say
that the current state of the art can cope with image comparison up to the order of

millions of images [74]. Note, however, that none of the popular image search tools
on internet perform actual image comparison but instead rely on contextual text,
captions, and metadata to return image search results.

2. Video content understanding:

This relates to the ability to understand semantic content in the video collection

which is a prerequisite to making coherent narratives. We discuss this problem in
more detail below due to its inordinate importance for automatic editing.

9

Automatic video editing at the level of a human requires that the system understand the
content of the videos, i.e the events occurring in the video, the objects in the frames, and the
setting of all the scenes. Once all this is known, the system can put together this information
along with the constraint of similarity to generate videos that will be indistinguishable from
what a human can produce. Clearly though, this level of understanding is not possible
given the current state of computer science research. We are currently at the stage where
we can reliably recognize very few objects, faces being an exceptional case of recognition

performance. Recognizing events and scene settings (i.e outdoors, office, etc) in a reliable
manner is far beyond the abilities of current algorithms. Consequently, automatic editing
also lags behind human level performance significantly.

The difficulty in detecting and recognizing events, objects, and scenes is due to the vast
variation that is possible in imagery. Even when the setting is the same, changes in lighting
and camera perspective can make a video look very different. If we add in possibilities of
occlusion, where a part of the scene is blocked by some object, along with the changes in
location of objects in the scene, the task becomes orders of magnitude harder. Due to these
same reasons computing image similarity is also a hard task which has not been solved
satisfactorily. The overwhelming majority of existing algorithms compare images on the
basis of low-level features, assuming that the similarity at the pixel and patch level also
holds at the semantic level. However, this assumption quite often fails in reality either

when two semantically similar frames yield different low level features and vice versa due
to lighting, perspective etc.

Given the current state of the art, three levels of implementing the task of comparing

two images are possible (moving from higher to lower level comparison but from lower to
higher accuracy):

1. Comparison based on the objects inside the images (Object recognition)

2. Comparison using annotations or labeling of the images under different scenarios,
like nature or wildlife (Context-based)

10

3. Comparison based on color, texture, edges, and gradients of an image (Content-
based)

In this thesis, we take the third approach and base our image similarity comparison on
SIFT features computed densely on images. SIFT features have become the mainstay of
feature-based computer vision work in the last decade due to their reproducibility, invari-

ance to color and limited perspective change, and computational amenability. We compute
an image representation using SIFT features that includes some location information from
the image and provides a greater degree of robustness in image similarity comparison.
However, as a consequence of the reasons stated in the above discussion, we note that
SIFT-based image comparison is also not infallible.

1.4 System Overview

Our automatic video editing system consists of three stages -

1 . Feature Detection

2. Computing Image Representation

3. Video Generation through image similarity computation

Feature Detection

We use SIFT features as the basis for detecting visual similarity in our system. SIFT fea-

tures are detected on every video frame of the video collection, and are computed at a set of
pixel location obtained by placing a grid over each frame. This is called dense SIFT com-
putation and differs from initial work which only computed SIFT features around points
of intensity maxima in scale-space [39]. SIFT features have been shown to be invariant to
color and perspective and much more informative for the purposes of encoding underlying
image characteristics than color, texture, and edge features. By covering the image with

11

densely detected SIFT features; we are assured of a reasonably unique feature set that will
yield high similarity with other images only when they are truly similar.

Computing Image Representations

The image representation we use is a Spatial Pyramid histogram (SPH). In a straight for-
ward scenario we would match the features from a frame with another frame to compute

their similarity. Since each frame has thousands of features and the video collection itself
may have thousands of frames, this can become intractable very quickly. Instead, the Spa-
tial Pyramid (SP) approximates SIFT feature matching in a discretized space and is fast to
compute.

The discretized feature space on which the Spatial Pyramid operates is obtained by
clustering the feature space. All the features detected on all the frames are clustered to
obtain a pre-specified number of clusters in SIFT feature space. Subsequently, for each
frame, the SP computes histograms on the frequency of features occurring in each cluster.
Histograms are computed at various spatial scales and on various parts of the image. All the
histograms are then concatenated to yield the final image representation. Since histograms
computed on various parts of the image have been included, the SP histogram contains
rudimentary location information, making it even more robust for the task of computing
image similarity. SP histograms are computed for every frame in the video collection.

Video Generation

Video generation is based on similarity between frames, which is computed using the His-
togram Intersection metric on the SP histograms. As the video is generated, the next frame
is selected as the one that is most similar to the current one. This requires comparing the

current frame with all the frames in the video collection, which would be computation-

ally expensive if done naively. We employ a two-level hierarchical method for the nearest
neighbor search. The user may provide input keyframes that constrain the sequencing of

12

Video
Collection

Pre-processing
.,-'SlFTd;.-

Descriptor
computation

K-means
clustering

Greedy planning
for sequencing

frames

Spatial Pyramid
Histogram

computation

Spatial Pyramid
Histograms
of all frames

Hierarchical
K-means

clustering
Video

Repframes

Time
Weighting

{loop removal)

Mm^.
Preserving
Dynamics

(for smoothness)

Frame
Similarity

computation

SPH

computation
of input

keyframes

Selection of next frame

Video Generation

Output
Video Keyframes

Figure 1.4: High-level schematic of our system: Pre-processing of the video collection is
done offline while video generation can be performed online when the user presents input
keyframes to the system that determine the content of the output. A detailed explanation
occupies Chapter 4.

13

various videos. These are accommodated by computing a greedy shortest 'path' through the

frames of the video collection where the path is constrained to pass through the keyframes.
While the histogram intersection metric is easy to compute, the visual similarity com-

putation is made slightly more complicated by the need to avoid short loops and repetitive-
ness. At the same time, the transition from one video to another can be highly dissimilar

but cannot be avoided. Finally, dynamics of the video, i.e. motions present in them, have

to be preserved as far as possible to provide visual coherence. All these constraints are
built into our visual similarity metric so that the correct frame is chosen for inclusion in the
output video.

When computing similarity, the use of dense SIFT combined with an approximate
matching scheme, implies that our system can perform rudimentary object detection when
the object covers a large percentage of the video or is in a relatively uncluttered scene. For
example, if we give an image depicting a Dalmatian as the input keyframe, the system will
compare it to the frames in the videos and select those frames which are visually similar
i.e. which contains Dalmatian. These frames are then combined with appropriate transition

sequences, if available, to generate coherent videos. As mentioned before, our system does
not require any annotation and only visual information derived from the frames is used.
A high-level block diagram of our system is shown in Figure 1.4. Subsequent chapters
provide required definitions and detailed descriptions of the various components of this
system.

1.5 Contributions

This thesis makes four contributions. The primary contribution is:

A novel system for automatically generating visually coherent videos from a
video collection. The system needs minimal user input, scales to large video
collections, and can also generate infinite videos similar to VideoTextures.

14

The secondary contributions are:

1 . Use of dense SIFT-based spatial pyramid histograms for computation of frame simi-
larity.

2. Introduction of spatial pyramid histograms using texture and census transforms, and
their use as in (1 .) above.

3. A greedy path computation method for generating video with visual similarity con-
straints.

1.6 Thesis Outline

In the next chapter, we provide background and related work in fields that overlap with our
work. This is followed by a description of the Spatial Pyramid histogram in Chapter 3.
Chapter 4 describes our overall system and contains the core of this thesis. Experiments
and results are described in Chapter 5 followed by a conclusion and discussions in Chapter
6.

15

Chapter 2

Background and Related Work

Nonlinear video editing refers to editing methods that can perform random access on the
source material. Before digital editing methods were invented, nonlinear editing involved

cutting and pasting film rolls to perform the desired edits. It was thus a destructive process.

Non-destructive methods became possible only with the advent of digital media. In this

chapter, we provide background on non-linear editing methods and related research work,
both at the system level and at the level of component methods used.

Human editors use their extensive semantic knowledge and their knowledge of the

video narrative to produce edited videos. Automatic editing at such a level is currently
not possible. Even basic semantic knowledge, such as events in a video and identity of
objects that are being manipulated, is hard to obtain consistently. The problem of obtaining
semantic information from low-level image features is called the semantic gap. Bridging

the semantic gap in entirety would be equivalent to solving artificial intelligence. Due
to the enormity of this problem, in this thesis we forego the use of semantic knowledge
and focus on visual consistency. While many previous systems also claim to enforce visual

consistency, we use features and image representations that are suitable for detecting visual
similarity even in the presence of changes in color and perspective, thus obtaining greater
robustness.

16

In this chapter, we discuss the work by other researchers on automatic non-linear edit-
ing, and also give some background on components we use in our system. We use image-
level features in the form of histograms for similarity matching. We discuss our use of
these features and also briefly give an overview of the methods used in other research. In
addition, our system and the techniques presented in this thesis are closely related to a
number of topics in computer graphics, video processing, and computer vision. Our sys-
tem automatically generates video based on existing videos in a collection, and is based on
selecting visually similar frames. Thus, our work is related to the areas of image indexing
and content-based retrieval. Our use of image histograms is an instance of a "bag of words"
model, which is a well-known method in computer vision. In computer graphics, our work

can be considered to be an extension of video textures [60] to large, realistic video collec-

tions. The connection to methods such as Semantic Photo Synthesis [25], which creates

novel images from pieces of annotated images available in a database, are also obvious.
More directly, at a system level our work relates to video segmentation and summa-

rization, both of which have received significant attention in the literature. Automated

storytelling is an application of non-linear video editing, which is also well-represented in
the literature. We present relevant papers from these areas in the following sections.

2.1 Indexing and retrieval

Video data is generally stored sequentially in the form of frames which does not allow
random access efficiently. Indexing and retrieval refers to transformations of the data or
methods for extracting information from the video which lead to efficient random access
and non-linear browsing. As discussed in Section 1.3, this is a hard and as yet unsolved
task, though many systems that perform at a high standard exist. A comprehensive survey
of the literature in image indexing is available in [8] and of video indexing in [2]. In this
thesis, we index a video collection using the spatial pyramid histogram computed on each

17

frame. This transforms the indexing task to a nearest neighbor search.

We deal with an easier variant of the indexing and retrieval problem called "aimed

search" [68], which involves finding a specific image similar to the input, the harder variant
being category search. However, even this is made significantly hard by the wide variation
in domain and visual characteristics.

Early methods for video indexing consisted of matching simple features such as color
and texture histograms [73] [69], scale space pyramids computed using Laplacian filters
[55], and multiresolution wavelet coefficients [22]. More sophisticated indexing methods

leverage the motion cues present in the video [54][1], while object-based indexing methods
have also been popular [7]. The "Video Google" system by Sivic et. al [66]is a prime ex-
ample of this approach. Video Google also uses view-invariant features which are matched
between frames to recognize things of interest. Such features were introduced in [59] and
a retrieval system based on these features was presented in [76]. Many variants of these
features including Harris-Laplace [43] and maximally stable extremal regions [42] are now
available, and an extensive comparison on various applications is presented in [44].

Transformations that convert image frames to other more amenable representations
have also been used. Early work on iconic indexing is of this type, where the image is
converted into a string representation [81]. More generally, a signature of the image frame
or a region within the frame is computed. Image and region signatures have traditionally
been modeled using probability distributions. The most common signature representation
in the literature is using histograms modeled using discrete distributions. This is because,
even though continuous distributions offer a more faithful representation [32, 9], they are
less amenable for computational purposes.

We next discuss histogram representations and the associated bag of words models
which are the most commonly used form of representation in image retrieval and computer
vision.

18

2.2 Histogram Representation of Images

A histogram is simply the frequency counts of features that appear in each of the bins of
the quantized feature space. Histograms have been the favorite image representation be-
cause they are easy to compute and offer multiple methods for feature matching during
retrieval. Feature matching reduces to finding the distance between histograms for which

various distance metrics with well-studied properties are available. The various compo-

nents of obtaining a histogram representation are the underlying features used, the feature
quantization method, and the histogram computation from the features. Additionally, we
will also review various methods for histogram matching.

Widely disparate features have been used for computing image and region histograms.
The common ones include color [73], texture derived from various type of filterbanks

[41, 23], and image patch based features such as SIFT [66], census transforms [87], edgelets
[82], and contour fragments [64]. Some of these are illustrated in Figure 2.1. That his-
tograms can be computed from such a variety of features is itself an important reason for
their popularity. Another advantage is that histograms computed using these different fea-
tures can be combined to give a representation that captures multiple aspects of the image.

Feature quantization consists of discretizing the feature space so that each discrete com-

ponent corresponds to a bin of the histogram. Quantization is very simple in the case of
grayscale pixel values and consists of dividing the single dimensional value into segments.
This can also be extended to RGB and other color spaces [48]. In some specific cases,
such as with the Census transform, the feature space is itself discrete so that no additional

quantization method is necessary [84]. More commonly, quantization is performed through
clustering such as the widely used k-means algorithm. Sophisticated techniques that adap-
tively focus on regions in feature space with higher densities have also been tried and shown
to yield better results over a number of tasks including image retrieval and categorization.

Clustering using an ensemble of decision trees [46] and clustering through minimization of
information loss [28] are two instances of work in this direction. All the quantization meth-

19

î3>iS

??????
&***·

(a) (b)

*BiA.- -'-i ».-:].

çm^ÂW? ¥jgs*

Figure 2.1: Histograms can be computed from a wide range of low-level image character-
istics and features. Shown here are histograms computed from (a) Color (b) Contour (c)
Texture (d) Census transform response (e) Edgelets (f) SIFT descriptors of Harris corner
features.

20

ods discussed so far are unsupervised methods. For many domain-specific requirements,
supervised learning using a training dataset is the best option [34].

Computing the histogram from the quantized feature space is straightforward though
interesting variations exist. The most common method is to compute one histogram for
the whole image by assigning all features from the image to the histogram bins. However,
histograms can also be computed for regions of the image separately. These histograms are
then concatenated to obtain the final image representation [84]. Alternatively, histograms
can be computed at different spatial resolutions and then concatenated, and many variants
of these multi-resolution histograms also exist [16]. In this thesis, we use a multi-resolution
histogram computed on image regions obtained by placing successively finer grids on the
image.

During image retrieval and for the purposes of image similarity computation, a number
of histogram metrics are currently in use. The commonly used Euclidean distance is not
theoretically appropriate but still often used due to force of habit, often with good results
[26]. The Ll -norm metric is another widely used distance function, especially useful for

sparse histograms in which most entries are zero. The theoretically correct metric for com-
paring histograms is the Chi-squared metric, which is obtained by weighting each quantity
in the Euclidean distance inversely by its frequency. The Chi-squared metric has a "vari-

ance stabilizing" property that compensates for greater spread at higher frequencies. The
histogram intersection distance [85], which we use in this thesis, is useful when computing
distance between unnormalized histograms, where the histograms entries are all integers.
More complicated distance measures such as the Earth Movers' distance (EMD) [58] are
also in use though limited by the effort required to compute them.

21

2.3 Bag of Words Models

In computer vision, methods that model images using collections of features are called
"bag of words" models. The name comes from document modeling when documents are
represented using just frequencies of word occurrences. The location and context of words
is lost and for all practical purposes, the document may be viewed simply as a jumbled
"bag" of words. Similarly, when the location information of features detected on images is
not considered, we obtain bag of words models for images.

Bag of words models most often use histogram representations as their basis. The
first impactful application of bag of words models to computer vision was Probabilistic
Latent Semantic Analysis (PLSA) [67] which was used for object detection [12] and image
classification [10]. PLSA has also been used for image annotation based on both image

features and textual information [45]. Extensions to PLSA that allow location information

have since become available [4] and more sophisticated models that can infer information

about image segmentation and scene components have also appeared recently [72, 33].
Initially, learning of bag of words models was done in an unsupervised manner. However,
this led to systems that could produce good results only on relatively simple datasets [52].

Supervised training methods have shown greater promise [5]. Bag of words models have
also been used in video processing applications, such as for video segmentation [54] and
clustering videos by the location they were shot in [61].

We use Spatial Pyramid Histograms [29] in this thesis, which is a bag of words model
that uses multi-resolution histograms. Location information is maintained by computing
histograms at various resolutions and spatial locations on the image and subsequently con-
catenating all the histograms. This provides more accuracy in the image matching and
retrieval process than a model without any location information.

22

Video

summarization

Automatic video

generation

Figure 2.2: Automatic Video Editing is known by and closely relates to many video pro-
cessing tasks in the research literature. Some of these tasks are illustrated here.

2.4 Automatic Video Editing, Summarization, and Story-

telling

Automatic video editing is the focus of this thesis. However, the tasks that can be named
automatic editing go under various names in the literature, including video summarization,
automated storytelling, and automatic highlights creation as shown in Figure 2.2. We now
review some of the literature in this area by providing a few instances to showcase the

manner of problems categorized as automatic video editing while, at the same time, also
describing the techniques used therein.

Peng et al. [50] introduce the problem under the name of "Automatic Video Skimming"
and provide a method for accomplishing this. A major characteristic of their system is
the attempt to satisfy aesthetic constraints by using movie editing theory [89] to compose
scenes from existing video. This also includes removing unwanted portions containing
blur, saturated lighting, and camera motion, which are done using simple heuristics. For
instance, blurred images are defined to be those that have a lot fewer sharp edges than

Video

¡skimming-

Automatic \
highlight creation y

Automatic

video
editing

Automatic video

syritr^sis^ig

Video
^textures

23

normal images. They also focus on using an associated music track and matching the speed
of the generated video to the rhythm of the music. Transition between shots is done through
fades, dissolves, and short cuts, though visual similarity is not considered. Transitions are
introduced by trimming shots, again based on music rhythm. This is similar to transitioning
in commercial software such as Muvee, the disadvantage being that the user cannot control

when the transitions happen and what content gets trimmed.
Automatic music video creation is another popular form of automatic video editing,

and [50] above could also be considered to be this kind of work since they use music for
tempo synchronization. Foote et al. [11] present methods for automatic and semi-automatic
creation of music videos but do not explicitly remove errors due to motion blur as done
above. Lee et al. [30] propose a video pre-processing and authoring technique facilitating
music video creation but without using music rhythm and editing theory for clip selection.

Video summarization is a closely related topic on which extensive research has been
conducted in the last decade and an exclusive TRECVID workshop on video summariza-
tion now exists l . The most basic summarization system compresses the original video by

speeding up the playback [49] but this results in significant loss of detail. The goal is to
create semantically meaningful summaries where parts of the videos that are "uninterest-
ing" are deleted. For instance, in [24] an event-oriented abstraction scheme that detects
interesting events and creates summary pieces around them is presented. Trajectories of
moving objects are detected in [71] and video frames are chosen that would simplify these
trajectories.

Automatic editing and summarization require semantic understanding of the video con-
tent. However, since this is hard, simpler approximations are often sought. Ma et al. [40]

attempts to generate summaries by detecting "attractiveness" of each video frame or the
degree that viewer may pay "attention" to the frames in the video, instead of understanding
the semantic content. This method is also used by Hua et al. [19], who describe a complex

'Proceedings of the 2nd ACM TRECVid Video Summarization Workshop

24

system for editing highlights and music videos that takes into account an "attention" mech-
anism. The attention signals are derived from motion density and entropy of the image
frames. An optimization algorithm is used to select high motion and high attention shots
for portions with high tempo music and vice versa. In [80], the authors try to ascertain
semantics by computing co-occurrence statistics between people appearing in a frame and
the background. This requires robust face detection and identification. Summarization by
clustering raw images based on color and computing a representative piece for each shot
based on the clustering is presented in [18]. Generation of sports highlights is a related
topic but one in which specialized techniques such as ball and player tracking, caption un-
derstanding, and player identification are used, an instance being [79]. Video-shop [78] is
a system for implementing the low-level methods for editing analogous to photoshop for
images. It provides methods for face replacement and painting, high dynamic range video
compression and video compositing. While relevant to our work, these tools are orthogonal
to the task of automatic video editing, which is more concerned with content selection and

sequencing.

There are a number of automatic or semi-automatic summarization systems designed

specially for home video collections, and hence, more relevant to the methods proposed in
this thesis. Lienhart [36, 35] discusses the issues of low-quality home video and presents

an automatic digest creation for home video. The method selects portions of video shots
with good quality and inserts video effects for transitions. However, no sequencing is per-
formed. Girgensohn et al. [13] propose a semiautomatic approach to home video editing,
which also tries to find the best quality video clips based on automatic analysis. However,
again sequencing is absent, and so, transitions for linking shots are not taken into account.
Lindley and Nack [37] present a system similar to this thesis, where a planning mechanism
is employed to select video clips from a video database and sequence them into a meaning-
ful presentation for viewers. However, the features used by them are very low-level so that
visual coherence is worse.

25

Another area closely related to automatic video editing is adaptive documentaries and
cooperative storytelling. However, methods that are of importance in this area are quite
far removed from those presented in this thesis. For instance, [88] presents a method to
automatically create videos given annotated audio commentary. Here the main focus is
to use a rhetorical structure commonly used in journalism to produce documentary videos

automatically. This is extended to multiple users in [56], where it is termed as cooperative
storytelling.

Some editing methods base their approach predicated on the availability of sophisti-
cated computer vision components. Kosmopoulos et al. [27] describe a system for auto-
matically producing personalized videos of museum visits. This is done by assuming avail-
ability of person tracking and identification, which allows extraction of frames in which a
specific person occurs. In [14], the authors assume the availability of object detection and
tracking for following objects of interest and modifying them in novel ways to produce new

videos. However, object recognition and tracking are very complex tasks, as can be seen
from the state of the art system proposed by Rothganger et al. [57] for this purpose, and are
far from robust for general videos. However, they work better in controlled environments

such as sports fields, and hence, are of more use for automatic sports highlights creation
methods as mentioned above.

26

Chapter 3

Spatial Pyramid Histogram

We begin the technical description of our system by describing the Spatial Pyramid his-
togram (SPH) and its construction. Though the SPH is well-known in computer vision and

has yielded the best results in image categorization so far [29], to our knowledge, this is

the first instance of its application to video processing. Also, while the SPH has only been

used with densely computed SIFT features previously; we extend its use to other types of
low level features.

We use the SPH as our image representation, i.e. all images are converted to their

corresponding SPHs before further processing is performed. The SPH is best-suited for
our needs since it characterizes images excellently, while at the same time being amenable

to similarity computation between frames. By saying that an SPH characterizes its image
well, we mean that in the majority of cases, images that look alike have similar SPHs while
images that do not, have disparate SPHs. This is so because it is a global representation but
also contains location information about various regions of the image. In addition, these

regions are distributed across various spatial scales. At the same time, there exists a well
defined distance function over SPHs that makes it simple to compute a numerical estimate

of the similarity or disparity of images.

The SPH was originally introduced for computing approximate correspondence be-

27

tween features in two images in an efficient manner. We explain this usage and the distance
function that this naturally yields on SPHs. Following this, we explain the construction of
SPHs on general feature spaces. The SPH is a histogram of lower level features, and while
only SIFT-based SPHs have been used so far, any low-level feature that can be discretized
can be used to build a SPH. Hence, we also explain the various instances of SPH used by
us in detail at the end of this chapter.

3.1 Approximate Feature Correspondence using SPH

The SPH was originally introduced in [15] to solve the problem of feature correspon-
dences between images. Correspondence refers to the problem of finding matching fea-
tures between two images and is essential for a number of tasks in computer vision ranging
from image retrieval and similarity computation to geometric reconstruction. When done
naively, a feature in the first image has to be compared with every feature in the second,
giving rise to the optimal solution with 0(n2) complexity (where ? is assumed to be the
number of features in an image). However, the problem becomes even more complicated
when we consider that the number of features in both images will invariably not be equal,

and hence, many features in one of the images will have no corresponding match in the
second. A well-known optimal solution for this partial matching problem exists, called the
Hungarian algorithm [47], but is only guaranteed to be polynomial time. Considering that
feature correspondence is a basic step in a variety of computer vision methods, this com-
plexity is too high for practical use. Figure 3.1 illustrates an instance of the optimal partial
feature matching problem.

The computational bottleneck in the above formulation is due to the insistence on op-
timal matching. By relaxing this, and searching for an approximate correspondence, we
can do much better computationally. Grauman and Darrell [15] proposed spatial pyramid
matching to find an approximate correspondence between two feature sets in n-dimensional

28

\

i ì

¦I
m

I ï mm:H
í ma

ìli
! il

g
Sa: ?

IiB !8: Ei Si
lui

îim
ï Mjm*¿9m i

i^E

a
Eani sm

Figure 3.1: Feature correspondence between images (left) full correspondence where every
feature is matched and feature cardinalities match between images (right) partial matching
for a sequence of 4 images showing a girl jumping (from [75]). The number of features in
each of the images is not the same in this case.

space. Informally, pyramid matching works by placing a sequence of increasingly coarser
grids over the feature space and taking a weighted sum of the number of matches that occur
at each level of resolution. At any fixed resolution, two points are said to match if they fall
into the same cell of the grid; matches found at finer resolutions are weighted more highly
than matches found at coarser resolutions.

The pyramid match approximation uses a multi-dimensional, multi-resolution histogram
pyramid to partition the feature space into increasingly larger regions. At the finest reso-
lution level in the pyramid, the partitions (bins) are very small; at successive levels they
continue to grow in size until the point where a single partition encompasses the entire
feature space. At some level along this gradation in bin sizes, any two points from any two
feature sets will begin to share a bin, and when they do, they are considered matched. The
pyramid allows us to extract a matching score without computing distances between any of
the points in the input sets—when points sharing a bin are counted as matched, the size of
that bin indicates the farthest distance any two points in it could be from one another. Each

29

level O
o + +

+ * +
+ »

+ · ?

level 1
* o + +

+ · ?

+ ·

+ + +

• O
O

level 2

O

+

+ +

fi fi J3- J5L JsL J±L Ü J$L Ji
I

Figure 3.2: Toy example of constructing a three-level pyramid. The image has three feature
types, indicated by circles, diamonds, and crosses. At the top, the image is subdivided at
three different levels of resolution. Next, for each level of resolution and each channel, the
features that fall in each spatial bin are counted. Figure from [29]

feature set is mapped to a multi-resolution histogram that preserves the individual features'
distinctness at the finest level.

Note that in the above algorithm, the bins at the finest level contain one feature each so
that the algorithm can find a match to every feature if possible. However, since we are in-
terested in similarity computation over a large collection of frames, we do not require such
precision matching. Instead, we follow the approach of Lazebnik et al. [29], where instead
of the features being an orderless set of points, they maintain some spatial information in
2D image space. Pyramid matching is then performed in the two-dimensional image space
while traditional clustering techniques are used in feature space. Specifically, the feature
vectors are quantized into M clusters and only features belonging to the same cluster are
matched to one another. This is demonstrated in Figure 3.2.

3.1.1 The Histogram Intersection Metric

Once we have the histogram pyramids for the two images, they need to be compared to
obtain the correspondence. As mentioned above, features in the same bin are said to have

30

matched, so that the number of correspondences for each bin of the histograms is simply

the minimum of features in the corresponding bins. Performing this procedure for each bin
of the histograms, we obtain the similarity between the histograms as

S(x,y) = £ min (//,(?),^,(?) (3-D
i

where ? and y are images or image regions, Hx and Hy are their corresponding histograms,
and the summation is over the bins of the histograms.

Correspondences at the different resolutions have to be weighted according to bin sizes
to obtain valid implicit partial correspondence based on the finest resolution histogram cell
where a matched pair first appears. We accomplish this by normalizing the histograms
computed at various resolutions, shown in Figure 3.2, and concatenating them so that the
final comparison can be done simply using a single application of (3. 1). If there are L levels
in the spatial pyramid, with level 0 corresponding to the whole image, and level L being the
finest region, the histogram representation of the image, which we call the Spatial Pyramid
Histogram, is given by

where h¡ is the concatenated histogram from level /. Note the concatenation has to be done
consistently, i.e. by taking the histograms from the various regions in the same order. The

computation time of both the pyramids themselves as well as the weighted intersection
is linear in the number of features. This may not seem true at first sight since the num-
ber of bins in the concatenated histogram for L levels and M clusters in feature space is

MY}=q<\1 = y (4L+1 - l), where we have assumed a spatial subdivision into four parts at
each level as in Figure 3.2. Hence for the typical values of M — 200 and L = 3, we ob-
tain a histogram of length 17000 for each image. However, the important point is that the
histograms, especially at the higher resolutions, are extremely sparse so that neither mem-

31

iitin(H (y), HKz))1 F

I =2
o

,_«Jmin(H,(y), àÂz»
üHj
>$?·£&;|

vi

min(H,(y), H,(z»
——I

Figure 3.3: The spatial pyramid matching algorithm determines similarity between images
based on partial correspondence by matching points once they fall into the same histogram
bin. In this example, two 1-D feature sets are used to form two histogram pyramids. Each
row corresponds to a pyramid level. In the first column, the set Y is on the left side, and the
set Z is on the right. (Points are distributed along the vertical axis, and these same points
are repeated at each level.) Light dotted lines are bin boundaries, bold dashed lines indicate
a new pair matched at this level, and bold solid lines indicate a match already formed at
a finer resolution level. In the second and third columns, multi-resolution histograms are
shown for the two sets Y and Z, with bin counts along the horizontal axis. In the fourth
column, the intersection counts between these histograms are shown. These intersection
counts are used to measure how many new matches occurred at each level. A weighted
sum of these gives the final pyramid match value. Figure taken from [15]

ory nor computational requirement increases with increasing L. The process of matching
features using the histogram intersection function is illustrated in Figure 3.3.

Note that the histogram intersection value from (3.1) is a similarity value but not a
metric since it gives a value of unity of exactly similar images, which reduces down to zero

for totally disparate images. This is equivalent to an inner product in a vector space and we
convert this into a metric as

D(x,y) = j?(x,x) + J?{y,y)-2*y(x,y) (3.3)

32

The histogram intersection metric of (3.3) is fast to compute, takes into account fea-
tures at all spatial resolutions, and hence, is accurate in most of the cases. However, the
effectiveness of (3.3) as a similarity metric is greatly dependent on the type of underlying
feature used and we will discuss this further in the next section.

3.2 Image Features for SPH Computation

The only requirement for a feature to be used to compute a SPH is that it should be dis-
cretizable into clusters. Though this is the case, SPHs have been computed in the literature
only using dense SIFT. We describe SPHs using three features, namely dense SIFT, texture,
and census transforms, in the following discussion. We have found these features to yield

the best results for our application with some trade-off possible among the three in terms
of computational efficiency, as we will discuss in Chapter 5.

While it is possible to compute SPHs using even more basic features such as color,
these do not yield good similarity values since even a slight change in lighting of the scene
results in different features so that correspondence is lost. Hence, even though a feature

space may be amenable to SPH computation, it may not be wise to use it in this manner
since the feature itself may not maintain invariance required to provide good similarity
values. We demonstrate this by implementing SPH with color as well and comparing it in

Chapter 5 against the other features described below.

3.2.1 SPH using Dense SIFT

The use of dense SIFT for SPH was introduced by Lazebnik et al. [29]. Dense SIFT refers

to the computation of SIFT descriptors on a set of patches in the image that cover most
of the image. Most often, the set of patches is generated by placing a grid on the image.
Dense SIFT provides good coverage of the image, and hence, is suitable for global image
similarity computation.

33

Computation of SIFT descriptors is not be confused with SIFTfeatures [39], which are
obtained as maxima in scale-space of the image. SIFT features are computed using differ-
ence of Gaussian filters, and hence are also known as DoG features. In his introduction of

SIFT features, Lowe [39] used DoG detectors as interest point operators on images, i.e. to

detect point features of interest in the images. Image patches around these interest points
were then converted into a standardized 128-dimensional vector called the SIFT descriptor

of the image patch. In our work, we only utilize the SIFT descriptor, and not the DoG
detector.

Moosmann et al. [46] demonstrated that the use of interest point detectors does not

offer any advantage when attempting to capture the global characteristics of an image or
image set. Instead, SIFT descriptors computed on randomly generated points on the image
yielded better results. We follow a similar approach but instead of randomly generated
points, which would make SPH computation cumbersome, we use points generated on a
grid whose dimensions are a parameter of our system, though a typical value used is 8x8
pixels. Patches centered around pixels on this grid are used to compute SIFT descriptors.

Since we do not use the SIFT features themselves, we do not discuss them further.

Instead, we focus on computation of the SIFT descriptor at a given image location. The
descriptor is computed in a manner so that it is highly distinctive and partially invariant
to variations such as illumination, 3D viewpoint, etc. While the original SIFT algorithm
requires a scale at which to compute the descriptor, we simply use the natural image scale
for this purpose in all cases.

We use a 16x16 pixel region, which we will call the image patch, around the desired
location to compute the SIFT descriptor. This 16x16 patch is further divided into 16 regions
of 4x4 each and histograms of 8 bins are computed from the magnitude and orientation
values of samples for each of these 16 regions. This yields a 4x4 array of histograms with
8 bins each. During this computation, the magnitudes are further weighted by a Gaussian
function with standard deviation equal to half the width of the descriptor window, i.e. 8

34

__iK2S£52S&-aï ¡3ïSS|K Xf

^
I

a I

?*
<m—* -^t

N*ä

T3

:*,«:ä «
iWJ?«StEiESSi

1 I

**1? -f ^
a« ? iïSei -4* H * tr "t /AfAä

-c/L&

äßKSHöESHäaass asssíKs^iííítiïïÎ&SaS

Image gradients Keypoint descriptor

Figure 3.4: A keypoint descriptor is created by first computing the gradient magnitude and
orientation at each image sample point in a region around the keypoint location, as shown
on the left. These are weighted by a Gaussian window, indicated by the overlaid circle.
These samples are then accumulated into orientation histograms summarizing the contents
over 4x4 subregions, as shown on the right, with the length of each arrow corresponding to
the sum of the gradient magnitudes near that direction within the region. This figure shows
a 2x2 descriptor array computed from an 8x8 set of samples for illustration purposes, while
in reality 4x4 descriptors computed from a 16x16 sample array are used. Figure taken from
[39].

pixels. The descriptor then becomes a vector of all the values of these histograms. Since
there are 4 ? 4 = 16 histograms each with 8 bins the vector has 128 elements. This is shown
in Figure 3.4.

Finally, the 128-dimensional vector is normalized to unit length in order to enhance
invariance to affine changes in illumination. A change in image contrast in which each
pixel value is multiplied by a constant will multiply gradients by the same constant, so this
contrast change will be canceled by vector normalization. A brightness change in which
a constant is added to each image pixel will not affect the gradient values, as they are
computed from pixel differences. Therefore, the descriptor is invariant to affine changes
in illumination. However, non-linear illumination changes can also occur due to camera

saturation or due to illumination changes that affect 3D surfaces with differing orientations

by different amounts. These effects can cause a large change in relative magnitudes for
some gradients, but are less likely to affect the gradient orientations. Therefore, we reduce

35

##n

m?

* ?? 1
IRfB

R «

Vfl 1

mmmWMS
W

é'4
i

hi t i
- *v ?

O * ^*?4 hfitik *ì ïfr · ft
mEÈfìL· fÄ*r *"¦¦« «V/ 1& * ?*7 +

I * 1

I
Figure 3.5: Examples of texture as repetitive patterns in real world objects. Note that
texture can occur at different scales and can have different intrinsic orientations. Figure
taken from [77]

non-linear illumination effects by applying a threshold of 0.2, as in [39] and renormalizing
the vector. The SIFT descriptors obtained are also partially invariant to perspective (3D
viewpoint) and in-plane image rotation.

Once computed, the SIFT descriptors can be clustered and used to compute the SPH as
described in Section 3.3.

3.2.2 SPH using Texture

Texture refers to repetitive patterns in an image and the various types of textures can be
used to characterize an image effectively for similarity computation. Since patterns are
more common in images than regions of uniform intensity (objects such as wood, cloth,
skin etc., as shown in Figure 3.5), texture is more useful than color in most cases.

Detection of texture requires care since the pattern defining it can occur at different
scales and orientations. Hence, texture is usually detected not using a single detector but

36

\ J / ^
9«8?

? ?" ï '¦/ - ^i~4ÉH~ij& ¦mm.:

a
^- \¡??**? ? ?» ^.

mi

i

* * BIHHH
(a) The Leung-Malik filter bank of Gaussian filters.

o '# O ^ F O <

(b) The Schmid filter bank of rotationally-invariant Gabor filters.

Figure 3.6: Two commonly used filter banks for extracting texture from an image.

using a filter bank, consisting of a large number of filters, each having the capability to

detect texture at different scales and orientations. The image is convolved with the filter

bank to obtain responses at each pixel which capture the texture over the image. Commonly
used filter banks include the Leung-Malik filter bank [31] which consists of 48 filters - 2

oriented derivatives of Gaussian filters at 3 scales and 6 orientations, 8 symmetric deriva-

tives of Gaussian filters, and 4 are low-pass Gaussian filters at different scales. This is

shown in Figure 3.6(a)1 . Another commonly used filter bank consists of wavelets at vari-
ous scales and is known as the Schmid filter bank (Figure 3.6(b)). 13 rotationally invariant

Gabor wavelet functions comprise this filter bank. Though oriented textures cannot easily
be captured using this filter bank, it is popular since the number of filters is much less than
in the Leung-Malik case while texture recognition and segmentation performance is only
slightly degraded [77].

Though the representation of textures using filter responses is extremely versatile, one
might say that it is overly redundant. First, for an N-dimensional filter bank, each pixel

'Figures from http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

37

B EfflSSisfSSSO · li
¦¦¦¦. . B i> iwmclustering andTX)OBH · 1

pu«!
assignment

h"· HKBB

input ¡mage filter bank texton map
(colors O texton indices)

Figure 3.7: A texton map of an image is obtained by assigning the filter responses of the
pixels to their corresponding clusters. Figure taken from [65].

of the image is converted to an N-dimensional vector after convolving with the filter bank.
For large images, this implies a huge memory requirement. Second, it should be noted
that since we are characterizing textures, which are entities with some spatially repeating

properties by definition, we do not expect the filter responses to be totally different at
each pixel over the texture. Thus, we expect that there should be several distinct filter
response vectors and all others are noisy variations of them. This intuition has led to the
use of clustered filter responses, called textons, rather than the original response vectors
themselves [31, 41]. Textons can be considered as a set of prototype response vectors or as

a dictionary of the various types of textures possible. Due to the latter analogy, textons are
also known as texture words in the literature.

Textonization, the process of obtaining textons from filter responses, is performed by
clustering the responses for the whole set of images of interest. Clustering is usually done
using K-means with the number of desired textons being provided as an input parameter.
The number of textons is conservatively chosen to be larger than the expected types of tex-
tures. This is because a larger number of textons only results in slightly less computational
efficiency while too few textons can result in a massive reduction in retrieval performance.

Once textons are generated, the image pixels are mapped to their corresponding texton
number (cluster in texture space). The resulting image is called a texton map (Figure 3.7).

The texton map is much sparser texture representation than the filter responses since it
consists of merely one number per pixel.

38

Computing the SPH using the texton map is straight-forward since the feature space
has already been discretized. This is explained in Section 3.3.

3.2.3 SPH using Census Transform

We next describe the Census Transform [87] and SPH computation using it.

The Census transform is a non-parametric local transform originally designed for es-
tablishing correspondence between local patches. It compares the intensity value of a pixel,
which is the center of a patch of interest, with the remaining pixels in the patch, as illus-
trated in (3.4) for the case of a 3x3 patch. If the center pixel is bigger than (or equal to) one

of its neighbors, a bit 1 is set in the corresponding location. Otherwise a bit 0 is set.

32 64 96

32 64 96

32 32 96

The eight bits generated from intensity comparisons in the above case, can be put to-
gether in any order (we collect bits from left to right, and from top to bottom), which is
consequently converted to a base-10 number in [0 255]. This is the Census transform value
for this center pixel. Similar to other non-parametric local transforms which are based on

intensity comparisons, Census transform is robust to illumination changes and gamma vari-
ations. Analogous to a texton map, we can also replace the pixel values of an image with
their census transform values. An example of this is shown in Figure 3.8.

Computation of an SPH using the Census transform is almost trivial since the feature
space is intrinsically discretized as it can only take integer values. For instance, for the case
of a 3x3 image patch illustrated above, the census transform can only take integer values
between 0 and 255, which can be regarded as 256 clusters in feature space. For larger

image patches, the number of clusters defined in this manner increases exponentially, and
hence, conventional clustering methods may again be required. The computation of SPHs

39

1 1 0

I o => (HOlOIlO)2 =* 214 (3.4)
1 1 0

I

^*-

?ros

g^ffl SBlleas»

HIB
(SSä*

mamt

m

Hl
mí

-ÄÄ=

Figure 3.8: Example of a census transformed image. Figure from [83].

using the census transform is explained in the next section.

3.3 Computation of the Spatial Pyramid Histogram

The SPH is obtained by computing a multi-resolution histogram of the image using a dis-
cretized feature space. The discretized feature space is obtained by clustering the features
over all the video frames in the video collection. The general algorithm for computing

SPHs on any feature space is given in Algorithm 3.1.

In the case of dense SIFT features, we extract SIFT descriptors from all the video

frames, as explained in Section 3.2.1, and cluster them using the K-means clustering algo-
rithm. The number of clusters is typically chosen as between 200 to 400. After clustering
has been performed, for every image, we assign the features in the image to their corre-

sponding clusters. In the case of K-means, this is done by computing the cluster center
nearest to the feature and assigning the feature to this cluster.

Subsequently, the image is divided into regions according to the spatial pyramid, and
we compute the histogram for each region starting at the finest resolution. Each histogram
consists of the number of features in each cluster in that region. Hence, the length of

each histogram is equal to the number of feature clusters. The histograms of regions at
a lower resolution are obtained simply by adding the higher resolution histograms of the

regions that comprise it. More systematically, every region is divided into four regions at

40

Algorithm 3.1 Computation of Spatial Pyramid Histogram
1. Extract features from all the frames in the video collection

2. Cluster the features into a pre-specified number of clusters. (This step can be skipped
if the feature values are naturally distributed in a small discrete set, eg. census trans-
form)

3. For each frame / in the video collection

(a) Assign the features from / to their corresponding clusters.
(b) Divide / into subregions and keep dividing until the desired level in the spatial

pyramid is reached.
(c) Compute a histogram for each of the regions at the finest resolution level. Each

bin of the histogram contains the number of features in the corresponding clus-
ter.

(d) Compute the histograms at the lower resolution levels / (bigger image regions)
by adding the appropriate histograms at the higher resolution levels / + 1 .

(e) Concatenate all the histograms after multiplying them with the appropriate nor-
malizing factors given in (3.2). This is the SPH of frame /.

each level. Hence, the sum of these four histograms gives the histogram of the region at

the lower resolution. Subsequently, all these histograms are concatenated with appropriate
normalization as defined by (3.2). This is shown in Figure 3.9.

SPHs using texture are computed using textons, which are nothing but the discretized
texture space. The texton-based SPH works similar to the manner described above except
that the histogram in each region is computed as the number of pixels corresponding to
a particular texton. This can be seen visually as the number of pixels corresponding to a
particular color in the image to the right of Figure 3.7. The sub-division of the image into
regions is done as above.

SPHs using Census transform can be computed even more simply since we need to only
count the number of times a particular transform value appears in each region. However,
this is true only if the patch size used to compute the transform is less than 3x3 pixels in
size. For larger patches, we need to cluster the range of possible transform values into a

41

Pyramid level 2

Pyramid level 4 ?p????????]

Ulli

¡d ¡ss ? ?, U1y y y ina' ? a
1 Jim I ÎOO 1 JOO I !O) I Mt I !DO

Q01 ? ? ? Ej1 CD1
H Q ? B O ?
1 iûO I JCi I JOO I £00 1 ¡DO I JOO
H EQ EE E H CO
? ? m E C ?
E nf a a Off ìrs"

Figure 3.9: The Spatial Pyramid Histogram using Dense SEFT features. Histograms of clus-
tered SIFT features computed on image regions at various spatial resolutions are concate-
nated after being multiplied with weighting factors to obtain the histogram representation
of the image.

smaller and more manageable number. However, since the transform values are integers on

the number line, this can be done very fast and without resorting to clustering algorithms
such as K-means.

42

Chapter 4

Automatic Video Editing

We now describe the design and working of our system along with a detailed explanation
on the associated algorithms. The purpose of the system is as an automatic non-linear video
editor. To our knowledge, this is a first instance of a working system which, without be-
ing given any annotations, interacts with the user to automatically select and sequence the
frames of a video collection into a visually coherent narrative. Currently, our system is a

stand-alone system which is not web-based. The system can scale to large video collec-
tions.

The working of the system can be divided into two major parts based on its functionality
- pre-processing of the video collection and runtime processing for video generation. Pre-
processing involves two major tasks. First, to convert the video collection into a standard
representation that can be used to compare the input images to the videos and find the
similar images from the video. Second, to identify some of the frames from the video which
can act as visual representatives or prototypes for the entire video. The first task involves
offline computation of the spatial pyramid histogram (SPH) representation of all the frames
of the video clips to be used for video generation. These histograms are used later at
runtime for computing visual similarity between the frames. The second task of identifying
representative frames, or repframes, of a video is necessary to make computation more

43

efficient when searching for similar frames during runtime.
The runtime processing of the system involves the task of video generation. This is

when user interacts with the system to generate a video according to his specifications. The
input is given in the form of keyframes that guide the video generation process in the sense
that the output video contains frames similar to the keyframes, and in addition, the narrative
is guided by the sequence in which these keyframes are presented. Video generation is

performed using a greedy path finding algorithm that finds a sequence of visually coherent
frames between the input keyframes. Video repframes computed during the pre-processing
are used to speed up the selection of the frames during this process. We avoid repetitions
and loops in the output video by incorporating the dynamics of the video in the similarity
metric and also using time weighting to avoid repeatedly selecting a small set of frames.

4.1 Pre-processing

We compute the SPHs of all the frames in the video collection during pre-processing. Each
frame is first converted to grayscale and then histogram equalized. Histogram equalization
[20] is an image processing technique which is used for contrast adjustment in images.
The number of different light intensities in an image often does not use the whole available
spectrum and mostly accentuates a narrow spectrum. Images with such poor intensity
distributions can be difficult to compare, and a more uniform intensity distribution is more
amenable, which is the essence of what histogram equalization accomplishes (Figure 4. 11).

'Figure taken from http://en.wikipedia.org/wiki/Histogram_equalization

44

HM«K

m
i

m

Imm

8

A,Jt?W·

?. m»

Sì*^ Coffssponöina histogram (red} and cumulate33»

An unc-quaifioe image MsWersm (SiacKJ

dw4«*t-«?r*S. *-**£: ¦;»>%»: "'t,^.•fcte-s¡>»J ^2^???»**es
«**~»

*··«»
i

SÎ

immì i!H? IS
i

Ì

Í
sm109 15» 0

SITtw ssme image alter histeçram e-qualíratior) S^ ¦ Corresponding histogram (feil} and cumulative
......... Mstejram {alaao

Figure 4. 1 : Histogram equalization adjusts contrast in images by making the intensity dis-
tribution more uniform.

SPH computation has previously been explained in depth in Chapter 3. The purpose
of computing the SPHs is to enable fast similarity computation during runtime. However,
the video collection may have thousands of frames, and it is not possible to compare all of
these at each step of video generation process in an efficient manner. Hence, we resort to
a two-level matching scheme where the most similar video shot is first selected based on
representative frames, or repframes, of the video, and subsequently, the frame in the shot is
selected.

45

4.1.1 Repframe Computation

Repframe computation is related to shot-boundary detection, which is a topic on which
vast literature exists [17]. The purpose is to break down videos into smaller chunks that are
visually similar and also more manageable than the much larger collection of individual
frames. It is a basic component of many video processing algorithms, as it is in our case.
Most shot-boundary detection work is aimed at well-produced film and television videos
that have sharply defined sharp boundaries characterized by artistic transitions such as fade-
outs, fade-ins, dissolves, and wipes. However, home videos do not have these pre-defined
transitions and lower level cues have to be used to detect shots. A common method in

use has been to cluster the video into visually similar and connected parts, each of which

is declared a shot [61]. This is the approach we undertake. Following the clustering, we

then identify one frame per shot as being most representative of the visual characteristics
common in the shot. This is declared to be the repframe.

The primary difference between shot-boundary detection and our repframe computation
here is that we do not enforce that the clusters form contiguous segments of video. Hence,

the clusters do not form shots as they are defined in the literature. This is so because

our approach is not dependent on using shots as the basic building block of the output
video. We compute repframes solely for the purpose of making the similarity computation
between frames more efficient.

Hierarchical K-means Clustering

We use hierarchical k-means clustering to automatically determine the number of clusters,
and hence, the number of repframes in the video. In k-means based methods, a cluster

is represented by its center (average of all features that belong to the cluster), which is
simple and fast to compute. However, k-means requires that the number of clusters to be
computed be given as input. Hence, a straight-forward application of k-means in this case
would require us to know the number of clusters in the video, which is not the case.

46

¿?? ?^
Figure 4.2: Hierarchical k-means works by recursively dividing the data into two clusters
at each step until a stopping condition is met. The top row shows the state after a single
clustering operation. The clustering tree for this scenario is shown on the top right. The
bottom row illustrates the clusters and the clustering tree after a further four recursive clus-
tering operations on both clusters of the top row. The division into two clusters at each step
is accomplished using the standard k-means algorithm. Figure taken from [3].

Hierarchical k-means operates by dividing the data into two clusters at each step recur-

sively. The clusters can be visualized as a tree with one cluster containing all the points at
the root, as shown in Figure 4.2. The subdivision of data into two clusters at each step con-

tinues until some stop condition is met. Usually, this is either a minimum number of points
in each cluster, or the maximum average distance between points provided as a threshold.

Recursive clustering is continued until one or both of these conditions is met. In our case,
all the clusters that form the leaves of the clustering tree are declared to be video clusters.

The division into two clusters at each step is performed using standard k-means. The

above technique is called top-down hierarchical clustering. An analogous bottom-up method
is also in use, where each cluster is initialized with a single data point, and clusters are

merged pairwise until a stopping criterion is reached. We do not discuss this and other
variations of hierarchical clustering since these are not related to our work here.

47

Hierarchical K-means for Repframe Computation

The video clustering could be done in image space, i.e. simply by converting the frames
of the video into long vectors and clustering them. However, this is inefficient due to the
size of the image vectors, and also has the same problems we encountered while trying to
pick a robust visual similarity search, viz. it is not invariant to lighting, contrast, and a little
perspective change.

We choose to perform the hierarchical k-means in the space of Spatial Pyramid His-
tograms (SPH) of the frames. However, we cannot use the usual k-means method which
is based on Euclidean distance since this does not capture the visual similarity between

two SPHs. Instead, this is done by the histogram intersection function, which we use to
perform k-means. Just as in the Euclidian case, here too the center is typically not one of
the points in the data set. Hence, the centers will not represent any image except in the
most improbable circumstances. This poses a problem for us since in the usual scenario,
the repframes would be the centers of the clusters computed for this purpose. We overcome
this issue by declaring the repframe corresponding to the cluster to be the one having the
minimum distance to the cluster center, i.e. the one most visually similar to the center.

We use the k-means variant for this purpose as explained in [85], though the clustering

algorithm explained there is not hierarchical. The difference between the standard k-means
algorithm and the hierarchical k-means algorithm used by us is shown in Algorithms 4. 1
and 4.2.

In summary, we compute repframes for each video in the collection as follows. The
SPHs of the video are clustered using hierarchical k-means as explained above. We use

both the stopping criteria of specifying a minimum threshold size for the clusters and of
specifying a maximum threshold average distance among the cluster members. These stop-
ping criteria are chosen empirically so that, in the general case, 3-5 repframes are computed
per video.

A workflow for the computation of SPHs is given in Figure 4.3 while the workflow for

48

Algorithm 4.1 Standard K-means
Input: Data points X and the number of clusters required k

1 . Randomly select k data points from X as initial cluster centers.
2. While iter < Maxiter and cluster membership has changed, do

(a) Form k clusters by assigning each data point to its closest cluster center where
the distance is computed using the Euclidian metric.

(b) For each cluster in 1 to k
Calculate cluster centers using all data points contained in the cluster

Algorithm 4.2 Recursive algorithm for Hierarchical K-means using the histogram inter-
section function
Procedure Name: HKMeans(X, Nmm, DmdX)
Input: Data points X , minimum elements per cluster ?_.?, maximum average distance
among cluster members Anax

1 . Divide X into two clusters with elements Xl and Xr using k-means with the histogram
intersection (HI) metric (3.3).

2. Compute average pairwise distance in Xl and Xr according to the HI metric. Denote
these by Dl and Dr.

3. If no. of points in Xl < Nm\n or Z_ < DmdX
Find element closest to center of the cluster [Xl) · Add the corresponding frame

to the set of repframes R.
Else

HKMeans(X_, Nmin, Dmax)

4. If no. of points in Xr < Nmin or Dr < Dmax
Find element closest to center of the cluster {Xr}. Add the corresponding frame

to the set of repframes R.
Else

HKMeans(X/ì, Nmìn, Dmax)

49

Collection of

video cíips
Extract aíí frames

from all videos

Convert to grayscaie
and; perform
Histogram

Equalization

Compute 'SIFT
: ; descriptors^,;

Concatenate

histograms
- - · A

...............) „_
Compute

histograms at
different spatiai

resolutions

-J L-"

Feature

clustering
using K-means

.S

Feature

assignment to
clusters

Spatial pyramid
histograms (SPH)

of frames

Figure 4.3: Workflow for SPH computation for the frames in the video collection.

All frames of

3 Video :;; Collect SPH for each

:.?.';'.:?.:: frame ¦ '.;'vf

Foreach cluster, find
frame ciosestto

: centerof clustery: ;;vr
;ThistSiarepframeVç:Sg

Repframes of
'¦¦.'¦ the vjdeo:

Compute hierarchical
Ke rne| (c-rneans of all ,

Repframe clusters
. are at leaves of. .',

. ; j ctusterihg':tree|p

Figure 4.4: Workflow for Repframe computation for videos in the collection.

50

computing repframes is given in Figure 4.4. These two steps comprise pre-processing. We
now move on to describing the video generation procedure at runtime.

4.2 Video Generation at Runtime

Runtime is when the user presents input to the system to generate videos. Input is in the
form of frames that determine the content of the output video. We call these keyframes as

the output video passes through these frames, and they act similar to waypoints in a route.
This input is optional and the user may also simply ask the system to generate a video, in
which case the content of the output video is randomly decided upon, as we describe in a

subsequent section of this chapter.

Generating the output video requires finding visually similar frames at each step starting
from the first input keyframe, if it is provided. These frames can be imagined to form a
"path" through the video frames. Such paths are started from each input keyframe and
these are merged using a greedy path finding algorithm. By this procedure, we ensure that
the output video passes through all the keyframes and contains frames visually similar to
them.

However, video produced this way is jerky and will usually contain small loops and
repetitive frames. We avoid unnecessary repetition by introducing a time-weighting factor
into the frame selection process. This ensures that frames are not repeated too often. Video
smoothness is controlled by additionally incorporating the dynamics from the input video
clips into the frame selection process. This is done by modifying the metric to compare the
visual similarity of short sequences of frames rather than single frames. We now explain
all these components below.

51

4.2.1 Finding visually similar frame(s)

Starting with the first input keyframe, if provided, or a randomly selected frame if not,
video generation proceeds by selection of frames sequentially. First, the SPHs of the input

keyframes are computed as described in Chapter 3 and Figure 1.4. The clusters computed

during the pre-processing step are used for this purpose. Following this, a visual similarity
search is conducted over all the frames of the video collections to obtain the next frame

which is closest to the current frame according to the histogram intersection metric (3.1).

Since the number of frames in the video collection may be a huge number, it is not

computationally tractable to perform a naive linear search to obtain the next frame. Though
nearest neighbor methods such as KD-trees [21] can perform the search in 0(logn) time
where ? is the total number of frames, these assume a Euclidian space and also require

all the SPHs to be stored in main memory, which may not always be possible. Again,

nearest neighbor methods that can deal with this by minimizing disk access or by ensuring

disk accesses are linear rather than random [6]. However, these have the disadvantage of

complexity.

We address this challenge by adopting a two-level search procedure. We first find the

most similar frame clusters by comparing the current frame to all the video repframes,

computed during pre-processing as described in Section 4.1.1. Subsequently, the most

similar frame is obtained by comparing the frames in these clusters. This two-level search

is illustrated in Figure 4.5. Only the repframes are kept in main memory at all times during

the search process. The frame belonging to the clusters corresponding to the repframes
need only be fetched when the repframe is found to be the most similar to the current
frame. Hence, the average complexity of selecting the next frame of the video is 0(NrNc)
where Nr is the number of repframes in the collection and Nc is the average number of
frames per cluster.

The comparison between the current frame and repframes (in the first stage) and cluster
frames (is the second stage) is done as follows. If the current frame is a keyframe, nothing

52

/
tei

k
|.;.J¡,h!. a m

\

MUlMiaiUriaM HCl
^ HtâKl .>

/7
sasa

/
Sv

?La Liàiii* Jl JfcuiïAtii

i. Jir ? ; ill·i jisU <4»¿< a .«i III

Video repframes Image frames
from cluster

Figure 4.5: Selection of next frame of output video, (left) The current frame is matched
with all repframes to select the closest cluster (shaded), (right) All the frames in the selected
cluster are again matched with the current frame to obtain the best one (shaded). The
current frame is shown at both the extreme left and right of the image.

more needs to be done. Otherwise, we obtain the frame succeeding the current frame from

the video clip to which it belongs. This frame is used in the search process to compute the
similarity using the histogram intersection distance metric. We use the succeeding frame
so that the output video preserves some dynamics of the input video clips. However, even
in this case, if the succeeding frame does not belong to the same repframe cluster as the
current frame, or the current frame is the last one, we simply use the current frame in the

search process. This is so because the succeeding frame may well be from a different shot
or having unwanted effects such as blurs or light saturation. Hence, by not using these we
automatically edit them out of the output video.

4.2.2 Greedy path finding algorithm

The above method only selects the next frame given the current frame. We now explain
how these frames are sequenced to obtain the output video.

53

We consider the input keyframes to be arranged sequentially and the first and last
keyframes are taken to be the start and end frames of the output video. Assuming N
keyframes and denoting these by {X\, Xi, . . .,Xn}, we compute the video segments be-
tween each pair of keyframes independently and concatenate them to obtain the output
video. For each pair of keyframes X¡ and X1+ 1 , the video segment between these keyframes
is generated using a greedy path finding algorithm.

Our greedy algorithm operates by simultaneously computing similar frames from X¡
in the forward direction and from Xl+\ in the backward direction. Forward computation is
the same as described in Section 4.2.1 above. Backward computation of frames from Xi+\

is similar except in the way that the frame used in the similarity search is selected. Instead
of using the succeeding frame from the video clip to which the current frame belongs, we
use the preceding frame, so that the video dynamics move in reverse. However, as before,
if the preceding frame does not belong to the same repframe cluster or the current frame is
the first frame of a video, we use the current frame itself in the similarity search.

The forward and backward frame "paths" are grown until they "merge", at which point
the sequence is taken to be the video segment between keyframes X¡ and Xi+ 1 as shown
in Figure 4.6. Repeating this for each pair of keyframes, we obtain the complete output
video by concatenating all the video segments. In order to ensure that merging will indeed
occur even in the cases when keyframes X¡ and Xi+l are very dissimilar, we introduce a
time weighting factor which is discussed in a following subsection.

It may appear that since we have a metric given by the histogram intersection function,
we could use an optimal shortest path such as Dijkstra's algorithm to find the video seg-
ment between the keyframes. However, this does not work since the optimal shortest path
between two keyframes is simply to transition from the first one to the second one with no
frames in between. This is so because the histogram intersection function is a true metric,

54

K,ÏB

ïÎS

W

/Q+l

Figure 4.6: The greedy path finding algorithm works by searching for visual similar frames
in the forward direction from keyframe J£/ and in the backward direction from keyframe
J%+i, and growing these paths until they merge.

i.e. it follows the triangle inequality, so that for any three frames A, B, C, we have

D(A7B) < D(A1C) +D(C7B) (4.1)

where £>(.,.) is as in (3.3). Further, previous work on video textures [60] introduced the
use of dynamic programming for computing a path between two frames given a similarity
metric: However, both the time and space complexity of dynamic programming are poly-
nomial in the number of data points. Hence, this method can only be adopted if the total
number of frames under consideration is not more than a few hundreds, as was the case

in [60]. In our case, where the total number of frames in the video collection can run into

thousands, straight-forward use of this method is ruled out. Our greedy algorithm provides
a simple but robust solution to this problem.

55

4.2.3 Incorporating dynamics into the metric for smooth output

The above algorithm while producing visually similar frames in sequence, does not main-
tain dynamics. By this we mean that if more than one frame exists, which is visually similar
to the current frame, the frame which naturally follows the current frame based on actions

occurring in the frame should be chosen. In other words, the frame order which appears in
a video of the video collection should be preferentially chosen.

To maintain video dynamics, we modify the distance function to take into account the
distance between succeeding frames. Remember that we use the succeeding (or preceding)
frame in the similarity search above. We now extend this to take into account multiple
succeeding (or preceding) frames. We take the distance between the ¿th frame of video v,
and the jth frame of video w as

?

D2(vi,Wj) = ^ckD(vi+k,wj+k) (4.2)
¿=o

where K is the number of future frames to take into account, ck are manually defined

weights which determine the importance of these future frames in the metric, and £)(.,.) is
the metric from (3.3).

A higher K leads to the output video following the videos in the collection more closely.
The weighted distance (4.2) is the same as the one used in [60]. In our implementation of

the weighted distance, we compute the two most similar repframes to the current frame.
Successor frames to wj are assumed to come from the second-most similar video if Wj is
at the end of video w or if a successor frame is not in the same repframe cluster as w¡.

If £ successor frames meeting these conditions cannot be found, the largest number of
successor frames that meet this conditions is used.

56

4.2.4 Incorporating time weighting to avoid repetition

The algorithm may get trapped into producing short, repetitive loops despite the dynamics
incorporated in the distance function. This can happen if one of the keyframes provided
is visually similar to a small set of frames but sufficiently dissimilar from all others in the
video collection. This can result not only in poor output video but also in the greedy path

finding algorithm never terminating since the paths from the two keyframes never meet up.
To avoid the above scenario, we introduce a time-weighting factor into the distance

function. A counter tw. is maintained for each frame Wj, which is initialized to unity for
all frames at the outset of video generation. Subsequently, the counter for a frame is in-

cremented by one if the frame is selected. The distance function is modified to include the
counter as

£>3(v/,wy) = tWjxD2(vi,Wj) (4.3)

so that frames which have already been selected into the output video have a correspond-
ingly smaller chance of appearing again.

Since the distance to a frame that has been been selected before is sufficiently increased

according to (4.3), the greedy algorithm is directed away from the frames that have already
been selected. Hence, the problem of forever looping within a small set of visually sim-
ilar frames is avoided. The greedy algorithm with time weighting is thus guaranteed to
converge, though in the worst case all the frames may get selected a few times.

We initially implemented a variant of the above scenario where the time weight counters
are initialized to unity in the beginning, as before, but set to a large value Tmax when the
frame is selected. At each step, all the counters are decremented by one unless they are
equal to unity. However, this setup is inferior to the method described above since Tmax
has to be set by hand for each set of input keyframes. Further, there are very few instances
when a frame can legitimately appear twice in a video.

57

4.2.5 Generation of Video Textures

We have stated that our system can operate even without user input. We now describe this
mode of operation. If no input keyframes are provided, the system defaults to generating
video textures [60]. Video textures are potentially infinite length videos obtained by per-
muting the order of input frames in a stochastic manner. Hence, the primary difference
between this mode and the previously explained mode of our system is that the next frame
is chosen from the current frame using a probability distribution rather than by determinis-
tically. choosing the most similar one.

We obtain the probability distribution on the next frame by converting the distance
function (4.3) into a valid distribution using the following expression

p(f) - exp{-D3 (/„/)} (4.4)

where fc is the current frame and / is the next frame. Since this distribution is conditioned
on the current frame, it has to be calculated afresh at every step. Note that the (4.4) has to

be normalized to be a valid probability distribution.

In practice, we select all the frames from the clusters corresponding to the three most
similar repframes according to the weighted metric (4.3) and compute the probability dis-
tribution only on these frames. This is because it would be prohibitively expensive to
compute the distribution for thousands of frames in the video collection at every step. In
addition, most of the probability values will be negligible in any case since the frames are
far removed from the current frame according to the distance metric.

The starting frame of the output video is picked uniformly at random. Subsequently,
at each step, the next frame is obtained by randomly sampling from its probability distri-
bution. Since the distance function already incorporates dynamics and time weighting, the

generated video is relatively smooth. We use the decaying time-weighting factors for video
textures since we do not mind repetitions after a certain period. The time factor initializa-

58

tion parameter Tmax determines the interval between repetitions. Even though the video is
generally smooth, occasional unrelated jumps can happen due to sampling effects. These
sampling effects occur because even frames with relatively low probability can be selected
occasionally.

The method above can be considered an extension of the VideoTextures paper [60] to

more real world images. The original work used plain image difference as the metric for
computing the probability distribution. This is suitable only for images that are extremely
similar to each other as was the case with their examples. Further, due to the use of dynamic
programming to find the optimal sequence of frames, their system could not scale beyond a
few hundred frames. Through our use of SPHs and greedy path merging, we have overcome
both these limitations so that our system is more applicable to practical use on personal
home videos. This mode of our system can be used to produce visually coherent, but non-
monotonous, video Screensavers at random from a video collection.

An instance of the evolution of the video texture mode of our system is visualized and

explained in Figure 4.7.

59

r

ïVBm I
•M *>£S Step Issi Ja*

m 7Û IM90Û 3Ü 0

??? t f
fifl 3ß *9 ?)0KO

??G?
-#-*

Step 5äa^Pm Wr
tid 1

m£0 ? mZa ? *n

î

Step 6t¡m t
»6» 3150 oaÎO JO ^o

&>

?
m

Step 54 ?·
3» QS502 4tì

I

Step 55ggej ?
90 ?ß»» 78OM HG

Step 561
50 SO tea»Ê 40 Ï0

Wf 1r^ ti . · IIIfOL· till Step 57i
EO*Ö e 90 IDOJO £IO 2»

Figure 4.7: An instance of video texture output evolution for a small example with 100
video frames. The probability distribution on the next frame is shown at each step. The
current frame location is marked by a rectangle on the distribution and the current image
is shown alongside on the left. Red denotes high probability values and blue denotes low
values as shown in the color bar on the right. Note the decaying time weighting whereby
immediately selected frames get very low probabilities (become blue) but become higher
over time. For instance, the frames selected at Steps 1 and 2 have larger probability values
again by Step 57 at the bottom of the figure.

60

Chapter 5

Experiments and Results

In this chapter, we discuss the implementation of our system along with the experiments
performed and the corresponding results. Our system is implemented in Matlab and we
perform experiments using a collection of 45 videos ranging from 1 minute to 5 minutes
in length. Each video contains approximately 1500 to 7000 frames. The videos contain
diverse material such as lectures, dancing, skiing, wildlife, and parties. All videos are read

as input and their frames are extracted. These frames are reduced to 320x240 pixels in
size and stored as images. SIFT features are detected on 16x16 image patches over a grid

with spacing of 8 pixels. We compute 200 SIFT clusters during the SPH computation with
a pyramid level of 3. The number of frames K in (4.2) is also set to 3. Repframes are
computed with the minimum number of frames per cluster set to 75 and the maximum
average pairwise distance inside a cluster set to 0.25. This results in 5-7 repframes per
video. Preprocessing the entire video collection takes about 70 minutes. Output video
generation occurs at 2-3 frames/sec.

5.1 Quantitative Comparison of Features

We start with presenting a comparison between the various features that can be used for
image representation. In addition to dense SIFT features, we have implemented our system

61

with SPHs of the Census Transform, color, and texture respectively. We use the Census
transform with window size 3 yielding a histogram with 256 bins. Texture histograms
are computed by first applying the Leung-Malik filter bank described in Section 3.2.2 to
the video frames and subsequently, clustering the output to obtain 200 textons. Color his-
tograms are obtained by clustering the color space into 75 clusters. We observed that a
higher number of clusters in the color space did not improve results but slowed down the
algorithm considerably. Preprocessing the video collection took about 70 minutes again in
the case of texture but was considerably faster for the census transform and color, being 53
and 45 minutes respectively.

These features are quantitatively compared in the context of our system using the pixel-
wise Euclidean distance between successive frames of the output video generated when

using each of the features. This is given in Figure 5.1 for an output video of length 1000
frames. Five output videos were produced per feature type and the frame differences were
averaged across the five runs to obtain the figure. A sudden jump in the graph indicates an
abrupt transition in the output, and the ideal graph would be steady and have low values. As
can be seen, dense SEFT performs the best while the Census transform and texture perform
almost equally well and slightly worse than SIFT. Using color histograms produces output
with many more abrupt transitions than with the other features, and hence, is not suited to
our application as expected.

Note that frame difference is not a perfect measure of the image retrieval and sequenc-

ing capability since two frames having similar semantic content may have a large frame
difference. Due to this reason, Content Based Image Retrieval (CBIR) systems have been

tested on human labeled data to obtain a good idea of their performance [63]. However,

in our case, since the number of videos is limited and most of the videos are completely

different in appearance, this simple measure provides a reasonable estimate of system per-
formance.

We repeated the same experiment as described above but this time to compare the dif-

62

12000

O 8000

400 500 600
Output Frame

(a)

-? 1-

14000

12000

¿ 10000
a
ß BOOO

£ WOO
4000

2000

**T<f*Wfcj¡Jflife^WÍ IiMk.
300 400 500 600

Outpul Frane

(b)

Censos Transform

0000

500

Output Frame

(e)

-? 1 1 r-r~

V i -';

I 6000
il

4000

2000

200 250
Output Frame

(d)

Figure 5.1: Comparison of the use of different features for automatic non-linear video
editing: Norm of frame difference between successive frames of output video from our
system using different types of features. The ideal graph has a steady, low value indicating
that successively picked frames are visually similar to their predecessors, (a) Dense SIFT
performs best, followed by (b) texture (c) census transform using 3x3 patches and (d) color,
which performs worst.

63

Complete System
? ? 1 1 r 1

12000 -

10000 -

5 8000

i 6000

li. 4000

^2000

250 300 450ISO 200 350 40050 100

Output Frame

(a)

Without Dynamics

12000

10000

yï

8000

E 6000

iMfcJJl·^-14000

2000
V
SO 100 150 200 250 300 350 400 450

Output Frame

(b)

Figure 5.2: Effect of use of dynamics on smoothness of output video: (a) Complete system
with dynamics look-ahead K = 3 (b) system without dynamics. Graphs show the norm
of frame difference between successive frames of output video from our system. The ideal
graph has a steady, low value indicating that successively picked frames are visually similar
to their predecessors.

ference between using video dynamics in the similarity metric and not using it. Dynamics
were incorporated by comparing a short sequence of frames instead of single frames, as
explained in Section 4.2.3. The frame differences for the complete system (using Dense
SIFT) when using dynamics and when not using it, are shown in Figure 5.2. The use of
dynamics produces videos that are much more visually coherent. Note that the effect of the
time weighting (Section 4.2.4) cannot be compared in the same manner since the greedy
path finding algorithm is not guaranteed to converge without its use.

5.2 Efficiency of Repframe Computation

We next compare the computational efficiency of the repframe-based system to one that
does simple linear search over all the frames to find the next frame which is visually simi-
lar. Note that this next frame has to minimize the distance (4.3) that includes the dynamics-

64

Time per output
frame (sees)

Simple linear 1.13
search

Repframe search 0.59

Table 5.1: Average per-frame generation time of output video using a simple visual simi-
larity search against our repframe-based method. The repframe method is almost two times
faster.

based smoothing factor as well as the time-weighting factor. Due to this reason, nearest
neighbor methods that rely on a static metric, such as KD-trees, cannot be used in this
case in a straight-forward manner. In practice, we implement the repframe method by
fetching a few of the repframes most similar to the current frame rather than just a sin-
gle repframe. This is because all the frames in the cluster belonging to the most similar
repframe may have been picked recently, and hence, may not be good candidates due to
the time-weighting factor adding a penalty factor. Table 5.1 shows the generation time

per frame of output video for the two systems under consideration, obtained from the total
time taken to generate a 1000 frame video using a video collection containing approxi-
mately 6000 frames. As can be seen, use of repframes results in a significant speed-up for
the system without any decrease in quality of the output videos. The critical factor in the
output quality is correct settings of the parameters used in the repframe computation, i.e.
the minimum number of frames per cluster and maximum average intra-cluster distance.
Unsuitable values for these parameters, i.e. those that lead to too few repframes per video,
can result in dissimilar frames being grouped into the same repframe cluster. This in turn
can lead to incorrect results in the visual similarity search process.

Note that the computation times in Table 5.1 do not only include the visual similarity
search at every step but also time spent in the other parts of the system. However, since
these other parts are the same for both the system variants under consideration, the com-
parison still holds.

65

5.3 Output Sequences

Figure 5.3 illustrates in detail the evolution of an output video sequence between two
keyframes as it passes through the four videos of the collection. All the four videos per-
tain to the same topic as the two keyframes, i.e. dance, and furthermore, the progression
of the output from the first keyframe to the second occurs in a visually pleasing manner.
Figure 5.4 shows the distance matrix for the output sequence obtained by providing two
more keyframes in addition to the ones shown in Figure 5.3. The output video is thus, an
extension of the output sequence shown in Figure 5.3 and is about 1400 frames long.

It can be seen from the distance matrix, computed using the histogram intersection

function, that the frames in the output are locally similar to the neighboring frames in the
sequence. The major discontinuities in the matrix correspond to transitions between videos
whose visual content differs significantly, for example between frames 320 and 340 of
Figure 5.3. This provides further visual and quantitative confirmation of the smoothness of
the output from our system. Figure 5.5 shows a sample SPH for a frame in one of the input
videos computed at three levels of the pyramid.

The progression of another output video sequence is shown in Figure 5.6. This il-
lustrates the behavior of our system when two vastly differing images are provided as

keyframes. In this case, a drastic transition from one video to another is unavoidable but
the output remains smooth except for this. Note that even though the first input keyframe
does not appear in the video collection, video frames containing a Dalmatian are chosen
correctly as the subject of the output. In this case, the output transitions smoothly between
two Dalmatian videos in the collection. Our system produces coherent videos and is able

to select frames resulting in smooth transitions except when such connective frames are not
available. It is hoped that larger video collections will give rise to more coherent output
videos.

66

H
m

Keyframe I Keyframe 2

Frame 120Frame 40 Frame 80Frame I Frame 20

Frame 280Frame 260Frame 220Frame 140 Frame 160

Frame 320Frame 300 Frame 380Frame 340 Frame 360

Frame 400 Frame 420 Frame 450 Frame 480 Frame 5 1

Figure 5.3: Evolution of an output sequence between a pair of input keyframes shown at
the top. The output video passes through four videos of the video collection and is slightly
longer than 500 frames in length. Note the visually pleasing gradual progression from
frames similar to the first keyframe to frames similar to the second.

67

Distances
400

I SM M?
2wSBsm

wmm
m

Hi
BjgMSBgjf1200

¦ .8? ?

.6
1000

.4

800 1.2

J*

1

600

HÉRf H 0.8

X i
400

y?

200

¦

X
400200 400 ?

Figure 5.4: Distance matrix showing pairwise distances, computed using the histogram
intersection metric, between frames of an output sequence obtained by providing four input
keyframes (two more in addition to the ones shown in Figure 5.3. Major discontinuities
(horizontal and vertical lines) occur only at a few instances and signal transitions between
videos with differing visual content.

68

BO 100 120 HO 160 ISO 200

D.Ol 2

iliiL ...J, ili

O.Ol 5

50 100 ISO 200 50 100 150 200

50100150200 E

U¿—I 0T
50100150200 50100)50200 50100150200 S0100150200, X1QJ

JiL

0.01

0.005

lLLuu
50100150200 SO1O01SÛ2OO 501001SÜ200 50100150200XlO . XtO

lWIiilM nUwiÍLli4
50100150200 50 1 QOl 50200 50100150200 50100150200

0.01

0.005 IkJlLJ O0'yULuiii ''"!IllLI
50)00)50200 50)00150200 50)00150200 50100150200

patial Pyramid Histogram (SPH) for an output frame

69

-XC

tjt^"^"*·,

h

i
i &:i&JKS*

\?*&??

r m SSSr
?G

U^íSP^
K??6

m

Sì*

s·ä3^&s&gäü&

Figure 5.6: Evolution of output video when two vastly differing keyframes are provided as
input. Output frames similar to the first keyframe (dalmatian) are selected until the time-
weighting factor forces a drastic transition into a video containing frames similar to the
second keyframe (cat).

70

Chapter 6

Discussion

In this work, we have developed an approach to automate the digital video editing process
for personal video collections. Our method presents a solution to generate visually coherent

videos out of unedited video collections. The content of the output videos is guided by

input keyframes given by the user. The output video is generated in a manner that it is non-
repetitive and follows the dynamics of the input videos. Thus, we can say that our system

is a first step towards a fully automatic non-linear video editing system. When no input is
provided, our system generates "video textures" with the content of the output chosen at
random.

We use spatial pyramid histograms as our image representation to facilitate computation
of visual similarity between images. Frame sequencing is done using a greedy algorithm
that finds a "path" through images where successive frames are selected based on the his-
togram intersection similarity metric. Selection of frames in the sequencing is performed
in an efficient manner through the use of repframes, which represent similar clusters of
frames in each video. These repframes are computed using hierarchical clustering of the
spatial pyramid histograms, and frame selection is speeded up by incorporating them in a
two-level search procedure.

We demonstrated in our experiments that the use of dense SIFT features results in su-

71

perior performance in comparison to other features such as texture and census transform.
The use of repframes significantly speeds up video generation at runtime. We also provided
instances of output video that provide evidence for the visual coherence of the system out-
put. In light of the above, we conclude that our system satisfies the objective of this thesis,
restated below from Section 1.1

Develop algorithms and build a system for automatic creation of visually co-
herent videos. The two inputs to the system are (1) a collection of video clips
containing only image information, and (2) an optional set of keyframes that
determine the content of the output video.

6.1 Applications

We now discuss some possible applications of the current work, and extensions which can
be implemented as future work. The system currently can be considered to have basic
functionality and can be enhanced in many ways to yield various advanced applications.
Our system allows a user to select frames containing specific visual content. For example,
if the user requires a short video summary to be generated from a collection of video clips
taken during a visit to a zoological garden, this is possible with our system. This can

be thought of as a content-specific view of the video collection, where the need to wade
through the complete video collection manually, is avoided. The advantage lies in intuitive
organization and ease of access. An additional advantage is that the privacy of the other
parts of the user's video collection is maintained. A web-based video editing system that
uses a common collection of videos from an online website is also a possibility.

Our system can also be used for making a video collage [38], simply by showing multi-
ple output videos simultaneously. Video collage research also includes methods for content
selection so that the various videos shown at the same time have similar themes. This could

be an avenue for future work based on our system. Automated storytelling as an extension

72

of our system has been introduced in Chapter 1 . This type of work can include on-demand
documentaries and adaptive movies, were the user can adapt the narrative and sequence
according to his/her requirements. This also enables artistic expression by the user and
makes these genres interactive rather than passive forms of entertainment. The use of huge
video collections such as that of online video sharing websites will drive these types of

applications.

Another application is that of similarity-based video search on the internet. All video
search engines, such as Youtube, currently only use text tags for this purpose. However,
this can make searching for video very difficult if the essential tags of the video, such as
name of characters, location etc are not known but only some content of the video, such as

a car chase, is remembered. Additionally, text tags may overlap in meaning, for instance

searching for videos using the keyword 'Jaguar' yields both videos of felines and of cars.
In such cases, it is more intuitive to upload one or more images similar in appearance to
the video being searched for and conduct the video search based on this information. This
is exactly what our system does.

6.2 Future Work

At the algorithmic level, we plan to make our system more efficient through the use of near-
est neighbor methods for the similarity search. This is not straight-forward since the metric
changes at every query due to the use of dynamics-based smoothing and time-weighting.
Hence, the most similar image obtained by SPH comparison alone, or even the top 50 or
100 images, may not be the ones we require because their distances become too high when
these factors are considered. Currently, the system also does not provide a means to control
the length of the output video except through a possible post-processing step. Modifying
the greedy path finding algorithm to take into account such constraints would lead to a
more usable system. It is also future work to post-process our output videos to improve

73

their quality. This can include implementing shot transitions such as fade-out fade-ins and
frame blending in the few cases where successive frames in the output are not visually
similar.

We have not used annotations in this work. However, text is still the interface of choice,

both on the internet and for people to request videos by content. It is easier to type in a
few keywords to drive the video generation rather than provide input keyframes as we have
done here. However, since automatic object detection and image categorization are still in

their nascent stage, annotation has to be provided manually. This could, at its simplest, take
the form of providing a context-based search wherein a few topical keywords are assigned
to each video in the video collection rather than frame-level annotation. When output video

is requested, only the video clips matching the required annotation need to be used for the
video generation process. This will also make the visual similarity search process faster.

Object-level annotation can also be used to improve output video quality. If the types of
some of the objects occurring in a video are known, this can be used to create videos with or
without those objects and by combining multiple objects in object-level logical operations
(table AND chair, dog OR cat, etc.). Parts of frames can also be put together to generate
completely synthetic videos, even at the frame level. This is similar to Semantic Photo
Synthesis [25] for videos. Geotagging is another popular form of annotation available
nowadays for a huge number of images from websites such as Panoramio. Geo-tagged
image and video databases could also be used to produce videos of selective locations.

74

Bibliography

[1] E. Ardizzone, M. La Cascia, A. Avanzato, and A. Bruna. Video indexing using mpeg

motion compensation vectors. In IEEE International Conference on Multimedia Com-
puting and Systems, volume 2, pages 725-732, 1999.

[2] F. Bashir, S. Khanvilkar, D. Schonfeld, and A. Khokhar. Chapter 6:multimedia sys-
tems: Content-based indexing and retrieval. In W.K. Chen, editor, The Electrical
Engineering Handbook. Academic Press, 2004.

[3] A. Bocker, S. Derksen and E. Schmidt and A. Teckentrup, and G. Schneider. A
hierarchical clustering approach for large compound libraries. Journal of Chemical
Information and Modeling, 45(4):807-815, 2005.

[4] A. Bosch, A. Zisserman, and X. Munoz. Scene classification via pisa. In Eur. Conf
on Computer Vision (ECCV), pages 517-530, 2006.

[5] A. Bosch, A. Zisserman, and X. Munoz. Image classification using random forests
and ferns. In Intl. Conf. on Computer Vision (ICCV), pages 1-8, 2007.

[6] G.-H. Cha, X. Zhu, D. Petkovic, and C-W. Chung. An efficient indexing method for
nearest neighbor searches in high-dimensional image databases. IEEE Transactions
On Multimedia, 4(l):76-87, 2002.

75

[7] S.-F. C. Chen, W. Meng, H. J. Sundaram, and H. Di Zhong. A fully automated
content-based video search engine supporting spatiotemporal queries. IEEE Transac-
tions on Circuits and Systemsfor Video Technology, 8(5):602-615, 1998.

[8] R. Datta, D. Joshi, J. Li, and J. Z. Wang. Image retrieval: Ideas, influences, and trends

of the new age. ACM Computing Surveys, 40(2): 1-60, 2008.

[9] M. N. Do and M. Vetterli. Wavelet-based texture retrieval using generalized gaussian
density and kullback-leibler distance. IEEE Trans. Image Processing, 1 1(2): 146—158,
2002.

[10] R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman. Learning object categories from
google's image search. In Intl. Confi on Computer Vision (ICCV), pages 1816-1823,
2005.

[11] J. Foote, M. Cooper, and A. Girgensohn. Creating music videos using automatic
media analysis. In ACM international conference on Multimedia, pages 553-560,
2002.

[12] J. Gall and V. Lempitsky. Class-specific hough forests for object detection. In IEEE
Confi on Computer Vision and Pattern Recognition (CVPR), pages 1022-1029, 2009.

[13] A. Girgensohn, J. Boreczky, P. Chiù, J. Doherty, J. Foote, G. Golovchinsky, S. Uchi-
hashi, and L. Wilcox. A semi-automatic approach to home video editing. In ACM

Symposium on User Interface Software and Technology, pages 81-89, 2000.

[14] D. B. Goldman, C. Gonterman, B. Curless, D. Salesin, and S. M. Seitz. Video anno-

tation, navigation, and composition. In ACM symposium on User Interface Software
and Technology, pages 3-12, 2008.

[15] K. Grauman and T. Darrell. The pyramid match kernel: Efficient learning with sets
of features. Journal ofMachine Learning Research, 8:725-760, April 2007.

76

[16] E. Hadjidemetriou, M. D. Grossberg, and S. K. Nayar. Multiresolution histograms and

their use for recognition. IEEE Trans. Pattern Anal. Machine lntell., 26(7):83 1-847,

July 2004.

[17] A. Hanjalic. Shot-boundary detection: Unraveled and resolved? IEEE Transactions

on Circuits And Systems For Video Technology, 12(2):90-105, 2002.

[18] A. G. Hauptmann, M. G. Christel, W.-H. Lin, B. Maher, J. Yang, R. V. Baron, and

G. Xiang. Summarizing bbc rushes the informedia way. In TRECVID BBC Summa-

rization Workshop, 2007.

[19] X.-S. Hua, L. Lu, and H.-J. Zhang. Optimization-based automated home video edit-

ing system. IEEE Transactions On Circuits And Systems For Video Technology,

14(5):572-583, 2004.

[20] R. A. Hummel. Image enhancement by histogram transformation. Computer Graph-

ics and Image Processing, 6:184-195, 1977.

[21] P. Indyk. Chapter 39 : Nearest neighbors in high-dimensional spaces. In J. E. Good-

man, J. O'Rourke, and P. Indyk, editors, Handbook of Discrete and Computational

Geometry. CRC Press, Boca Raton, FL, 2nd edition, 2004.

[22] C. E. Jacobs, A. Finkelstein, and D. H. Salesin. Fast multiresolution image querying.

In SIGGRAPH, pages 277-286, 1995.

[23] A. Jain and F. Farrokhnia. Unsupervised texture segmentation using gabor filters. In-

ternational Conference on Systems, Man and Cybernetics, 24(12): 1167-1 186, 1990.

[24] N. Jeho and H. T. Ahmed. Dynamic video summarization and visualization. In Proc.

ACM Intl. Conference on Multimedia, pages 53-56, 1999.

[25] M. Johnson, G. Brostow, J. Shotton, O. Arandjelovic, V. Kwatra, and R. Cipolla.

Semantic photo synthesis. Computer Graphics Forum, 25(3):407-413, 2006.

77

[26] K. Konstantinidis and I. Andreadis. Performance and computational burden of his-
togram based color image retrieval techniques. Journal of Computational Methods in
Science and Engineering, 5(2): 141-147, 2005.

[27] D. I. Kosmopoulos, A. Doulamis, A. Makris, N. Doulamis, S. Chatzis, and S. E.
Middleton. Vision-based production of personalized video. 24(3): 158-176, 2009.

[28] S. Lazebnik and M. Raginsky. Supervised learning of quantizer codebooks by infor-
mation loss minimization. IEEE Trans. Pattern Anal. Machine Intell, 3 1(7): 1294-

1309, 2009.

[29] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: spatial pyramid

matching for recognizing natural scene categories. In IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), pages 2169-2178, 2006.

[30] S. H. Lee, C. H. Yeh, and C. C. Kuo. Home video content analysis for mv-style video

generation. In International Symposium on Electronic Imaging, 2005.

[31] T. Leung and J. Malik. Recognizing surfaces using three-dimensional textons. In Intl.
Conf. on Computer Vision (ICCV), pages 1010-1017, 1999.

[32] J. Li and J. Z. Wang. Studying digital imagery of ancient paintings by mixtures of
stochastic models. IEEE Trans. Image Processing, 13(3):340-353, 2004.

[33] L.-J. Li, R. Socher, and L. Fei-Fei. Towards total scene understanding: Classification,

annotation and segmentation in an automatic framework. In IEEE Conf on Computer
Vision and Pattern Recognition (CVPR), pages 2036-2043, 2009.

[34] T. Li and T. Mei. Learning optimal compact codebook for efficient object categoriza-
tion. In IEEE Workshop on Applications of Computer Vision, pages 1-6, 2008.

[35] R. Lienhart. Abstracting home video automatically. In Proc. ACM International
Conference on Multimedia, pages 37-40, 1999.

78

[36] R. Lienhart. Dynamic video summarization of home video. In Proc. SPIE Storage

and Retrievalfor Media Databases, pages 378-386, 2000.

[37] C. Lindley and F. Nack. Hybrid narrative and associative/categorical strategies for

interactive and dynamic video presentation generation. New Review of Hypermedia
and Multimedia, 6: 1 1 1-145, 2000.

[38] X. Liu, T. Mei, X. -S. Hua, B. Yang, and H.-Q. Zhou. Video collage. In International

Conference on Multimedia, pages 461-462, 2007.

[39] D.G. Lowe. Distinctive image features from scale-invariant keypoints. Intl. J. of

Computer Vision, 60(2):91-1 10, 2004.

[40] Y. F. Ma, L. Lu, H. J. Zhang, and M. J. Li. A user attention model for video sum-

marization. In Proc. ACM International Conference on Multimedia, pages 533-542,
2002.

[41] J. Malik, S. Belongie, T. Leung, and J. Shi. Contour and texture analysis for image
segmentation. Intl. J. of Computer Vision, 43:7-27, June 2001.

[42] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline stereo from

maximally stable extremal regions. In British Machine Vision Conf (BMVC), pages

414-431,2002.

[43] K. Mikolajczyk and C. Schmid. An affine invariant interest point detector. In Eur.
Conf. on Computer Vision (ECCV), volume 1, pages 128-142, 2002.

[44] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky,
T. Kadir, and L. Van Gool. A comparison of affine region detectors. Intl. J. of Com-
puter Vision, 65(l/2):43-72, 2005.

[45] F. Monay and D. Gatica-Perez. Plsa-based image auto-annotation: constraining the
latent space. In ACM International Conference on Multimedia, pages 348-351, 2004.

79

[46] F. Moosmann, B. Triggs, and F. Jurie. Fast discriminative visual codebooks using
randomized clustering forests. In Neural Information Processing Systems (NIPS),
2006.

[47] J. Munkres. Algorithms for the assignment and transportation problems. Journal of
the Societyfor Industrial and Applied Mathematics, 5(1):32—38, 1 957.

[48] C. L. Novak and S. A. Shafer. Anatomy of a color histogram. In IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR), pages 599-605, 1992.

[49] N. Omoigui, L. He, A. Gupta, J. Grudin, and E. Sanoki. Time-compression: Sys-
tem concerns, usage, and benefits. In In Proc. Conf: Human Factors in Computing
Systems, pages 136-143, 1999.

[50] W.-T. Peng, Y-H. Chiang, W.-T. Chu, W. -J. Huang, W.-L. Chang, R-C. Huang, and
Y.-P. Hung. Aesthetics-based automatic home video skimming system. In Proceed-
ings of International Multimedia Modeling Conference (MMM '08), pages 186-197,
2008.

[51] E. G. M. Petrakis. Fast retrieval by spatial structure in image databases. Journal of
Visual Language and Computing, 13(5):545-569, 2002.

[52] N. Pinto, D. D. Cox, and J. J. DiCarlo. Why is real-world visual object recognition
hard? PLoS Computational Biology, 4(l):e27, 2008.

[53] A. Quddus and O. Basir. Wavelet-based medical image registration for retrieval ap-
plications. In International Conference on BioMedical Engineering and Informatics,
volume 2, pages 301-305, 2008.

[54] Z. Rasheed and M. Shah. A graph theoretic approach for scene detection in produced
videos. In Multimedia Information Retrieval Workshop, 2003.

80

[55] S. Ravela, R. Manmatha, and E. M. Riseman. Image retrieval using scale-space

matching. In Eur. Conf. on Computer Vision (ECCV), pages 273-282, 1996.

[56] C. Rocchi and M. Zancanaro. Rhetorical patterns for adaptive video documentaries.

In Adaptive Hypermedia and Adaptive Web-Based Systems, pages 324-327, 2004.

[57] F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. Segmenting, modeling, and

matching video clips containing multiple moving objects. IEEE Trans. Pattern Anal.
Machine Intel!., 29(3):477-491, 2007.

[58] Y. Rubner, C. Tornasi, and L. J. Guibas. The earth mover's distance as a metric for

image retrieval. Intl. J. of Computer Vision, 40:99-121, 2000.

[59] C. Schmid and R. Mohr. Local grayvalue invariants for image retrieval. IEEE Trans.

Pattern Anal. Machine Intell, 19(5):530-535, 1997.

[60] A. Schòdl, R. Szeliski, D.H. Salesin, and I. Essa. Video textures. In SIGGRAPH,

pages 489-498, 2000.

[61] F. Schroff, C. L. Zitnick, and S. Baker. Clustering videos by location. In British
Machine Vision Conf. (BMVC), 2009.

[62] G. Shakhnarovich, T. Darrell, and P. Indyk. Nearest-Neighbor Methods in Learning

and Vision: Theory and Practice. MIT Press, Cambridge, 2006.

[63] N. V. Shirahatti and K. Barnard. Evaluating image retrieval. In IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), pages 955-961, 2005.

[64] J. Shotton, A. Blake, and R. Cipolla. Contour-based learning for object detection. In
Intl. Conf. on Computer Vision (ICCV), pages 503-510, 2005.

[65] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost for image understand-

ing: Multi-class object recognition and segmentation by jointly modeling appearance,
shape and context. Intl. J. of Computer Vision, 81(1):2—23, 2009.

81

[66] J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching
in videos. In Intl. Conf. on Computer Vision (ICCV), pages 1470-1477, 2003.

[67] Josef Sivic, Bryan Russell, Alexei A. Efros, Andrew Zisserman, and Bill Freeman.

Discovering objects and their location in images. In Intl. Conf. on Computer Vision

(ICCV), pages 370-377, 2005.

[68] A. W. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-based
image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Machine
Meli, 22(12): 1349-1 380, 2000.

[69] J. R. Smith and S. -F. Chang. Local color and texture extraction and spatial query. In
IEEE International Conference on Image Processing, pages 1011-1014, 1996.

[70] N. Snavely, S.M. Seitz, and R. Szeliski. Photo tourism: Exploring photo collections
in 3D. In SIGGRAPH, pages 835-846, 2006.

[71] A. Stefanidis, P. Partsinevelos, P. Agouris, and P. Doucette. Summarizing video

datasets in the spatiotemporal domain. In Proc. 11th Int. Workshop on Database
and Expert Systems Applications, pages 906-912, 2000.

[72] E. Sudderth, A. Torralba, W. Freeman, and A. S. Willsky. Describing visual scenes

using transformed objects and parts. Intl. J. of Computer Vision, 77:291-330, March
2008.

[73] M. Swain and B. Ballard. Color indexing. Intl. J. of Computer Vision, 7(1): 11-32,

1991.

[74] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: a large dataset

for non-parametric object and scene recognition. IEEE Trans. Pattern Anal. Machine
Intel!., 30(11): 1958-1970, 2008.

82

[75] L. Torresani, V. Kolmogorov, and C. Rother. Feature correspondence via graph match-
ing: Models and global. In Eur. Confi on Computer Vision (ECCV), pages 596-609,
2008.

[76] T. Tuytelaars and L. Van Gool. Content-based image retrieval based on local affinely
invariant regions. In International Conference on Visual Information Systems (VI-
SUAL), pages 493-500, 1999.

[77] M. Varma and A. Zisserman. A statistical approach to texture classification from
single images. Intl. J, of Computer Vision, 62:61-81, April 2005.

[78] H. Wang, N. Xu, R. Raskar, and N. Ahuja. Videoshop: A new framework for spatio-
temporal video editing in gradient domain. Graphical Models, 69(l):57-70, January
2007.

[79] J. Wang, C. Xu, E. Chng, H. Lu, and Qi Tian. Automatic composition of broadcast
sports video. Multimedia Systems, 14(4): 179-193, September 2008.

[80] P. P. Wang, T. Wang, J. Li, and Y. Zhang. Information-theoretic content selection for
automated home video editing. In IEEE International Conference on Image Process-

ing, pages IV:537-540, 2007.

[81] Y. H. Wang. Image indexing and similarity retrieval based on spatial relationship
model. Inf. Sci. Inf. Comput. Sci, 154(l):39-58, 2003.

[82] B. Wu and R. Nevatia. Detection of multiple, partially occluded humans in a single
image by bayesian combination of edgelet part detectors. In Intl. Confi on Computer
Vision (ICCV), pages 1:90-97, 2005.

[83] J. Wu. Visual Place Categorization. PhD thesis, College of Computing, Georgia
Institute of Technology, 2009.

83

[84] J. Wu and J. M. Rehg. Where am i: Place instance and category recognition using
spatial pact. In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
pages 1-8, 2008.

[85] J. Wu and J. M. Rehg. Beyond the euclidean distance: Creating effective visual
codebooks using the histogram intersection kernel. In Intl. Conf. on Computer Vision
(ICCV), 2009.

[86] Y. Yitzhaky and N. S. Kopeika. Identification of blur parameters from motion blurred
images. Graphical Models and Image Processing, 59(5):3 10-320, 1997.

[87] R. Zabih and J. Woodfill. Non-parametric local transforms for computing visual cor-
respondence. In Eur. Conf. on Computer Vision (ECCV), volume 2, pages 151-158,
1994.

[88] M. Zancanaro, C. Rocchi, and O. Stock. Automatic video composition. In Smart

Graphics, pages 217-222. Springer Berlin, 2003.

[89] H. Zettl. Sight, sound, motion: applied media aesthetics. Wadsworth, 3rd edition,
2004.

84

