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ABSTRACT

Flexible Pavement Condition-Rating Model for Maintenance and Rehabilitation
Selection

Wael Elias Tabara

Keeping asphalt-surfaced highways and roads in an acceptable condition is the

major goal that departments of transportation and pavement engineers always strive to

achieve. According to ASCE 2009 report card, an estimated spending of $186 billion is

needed annually to substantially improve highways conditions. Hence, prediction models

of current and future pavement condition should be rationalized and studied from cost

effective perspective. In modeling the pavement condition, two major categories of

models have been used: (1) deterministic and (2) stochastic. Existing models consider

some factors that might be more critical than others, such as roughness measurements and

distress information. They ignore other factors that could have a real effect on the

accuracy of the pavement performance model(s), such as climate conditions.

Therefore, the current research aims at developing a comprehensive condition-rating

model that incorporates a wider range of possible factors significantly affecting flexible

pavement performance. Data for this research were collected from the records of

Nebraska Department of Roads (NDOR) called "Tab Files". In addition to a

questionnaire that was designed and sent to pavement engineers and experts in North

America. An integrated model was developed using Multi-Attribute Utility Theory

(MAUT) and multiple regression analysis. Sensitivity analysis of the developed

regression models is done using Monte-Carlo simulation to quickly identify the high-
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impact factors. Models' validation shows robust results with an average validity percent

of 94% in which they can be utilized by Departments of Transportation (DOT) and/or

Pavement Management Systems (PMS) as a useful tool for assessing and predicting

pavement conditions.
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CHAPTER 1: INTRODUCTION

1.1 Problem Statement:

In today's transport systems, only marine and pipeline transportation do not make

use of pavement, which justifies the importance of pavement as one of the major

components of transportation and infrastructure systems. Although the function of the

pavement varies with the specific user, the purpose of pavement remains the provision of

a safe, reliable, efficient, and comfortable driving environment in the highway and

roadway systems. Highway agencies are facing challenges to keep serviceability of their

pavements to an acceptable level due to the expansion of ground transportation systems

and higher costs of construction, maintenance, and rehabilitation of pavement. During the

last two decades, the issue of proper design, high-quality construction, optimum

maintenance and rehabilitation of pavement have been the focus of highway agencies,

contractors, consulting engineers, and researchers.

According to ASCE 2009 report card, America's major roads are assessed with a grade of

(D-) which clearly indicates that they are in poor or mediocre condition. Roads in poor

conditions lead to severe wear and tear on motor vehicles and can also lead to an

increased number of crashes and delays. The current spending level of $70.3 billion per

year for highway capital improvements is well below the estimated $186 billion needed

annually to substantially improve highway conditions. Therefore, knowing the current

condition of pavement is essential to departments of transportation (DOT) because it

assists them in predicting the performance of pavement and in optimizing maintenance

and rehabilitation activities.
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Deterioration of flexible pavement is neither uniform nor identical in which it varies

based on different environmental, physical, and operational factors. Thus, it is crucial to

inspect and assess most of these factors in order to effectively study their impact on

pavement condition and overall performance.

The available prediction models of the current condition of flexible pavement are either

of deterministic or stochastic nature. But in modeling the pavement condition, these

models are only based on some factors that might be more critical than others, such as

roughness measurements and distresses information (i.e. longitudinal cracking, transverse

cracking, and rutting). However, the impact of other factors, such as climate conditions

(temperature and rainfall), has been clearly neglected. Previous research works are only

limited to the causes of surface distress without considering the direct effect they might

have on pavement condition. Therefore, the main objective of the current study is to

provide the municipalities and DOT with an effective and practical model that

incorporates a wider range of possible factors that significantly impact flexible pavement

condition.

1.2 Research Objectives:

The objectives of the current research can be summarized as follows:

• Develop a condition-rating model to assess the condition of existing flexible

pavement.

• Build deterioration curves for flexible pavement.

• Design a condition rating scale for flexible pavement.
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• Develop a web-based automated tool that helps decision makers in their

management plans.

1.3 Research Methodology:

In order to meet the aforementioned objectives, the current research methodology

was adopted. It consists of many stages as follows:

(1) A comprehensive literature review of the flexible pavement condition-rating

protocols.

(2) The data collection phase (includes data for both model development and validation

process).

(3) Based on the collected data an integrated MAUT/Regression condition-rating model

is developed.

(4) Results of the developed models are tested and validated using Monte-Carlo

simulation.

(5) A web-based automated application is built to allow the developed model to be used

by DOT and other authorities in managing their highways and road networks.

1.3.1 Literature Review:

A comprehensive literature review is carried out in all the areas related to

modeling flexible pavement condition. The topics included in the current literature are:

development of pavement management systems, current evaluation processes used to

assess the condition of flexible pavement, condition-rating and performance models, and

3



the applied techniques in the current study (Multi-Attribute Utility Theory MAUT,

Analytical Hierarchy Process AHP, Multiple regression, and Monte-Carlo simulation).

1.3.2 Data Collection:

The data-collection process consists of two parts required to run and build the

integrated MAUT/Regression model. In part one, a questionnaire is designed and sent to

sixty pavement engineers and experts mainly in Canada and the US to collect the data

related to MAUT model development. In part two, historical data are collected from the

records of the Nebraska Department of Roads (NDOR) to obtain real network data, which

are used in building and verifying the integrated MAUT/Regression model.

1.3.3 Model Development:

The development of the proposed condition-rating model consists of four major

phases as follows: (1) developing a MAUT condition-rating model, (2) developing an

integrated MAUT/Regression condition-rating model, (3) testing the model applications

using the Monte-Carlo simulation technique, (4) designing a web-based tool to predict

the condition-rating values.

1.4 Thesis Organization

In order to achieve the objectives of this research, the thesis is organized according

to the following structure: Chapter 2 presents a comprehensive literature review that

covers different topics, such as development of pavement management systems (PMS),

major criteria for condition assessment, current condition-assessment models, in addition

to a detailed description of the applied techniques that include; Multi-Attribute Utility
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Theory (MAUT), Analytic Hierarchy Process (AHP), Multiple Regression, and Monte-

Carlo Simulation.

Chapter 3 provides an overview of the proposed research methodology adopted in this

study, including a brief description of every phase from literature review to model

development and web-based application.

Chapter 4 describes the data-collection process, and includes the real data obtained from

NDOR files, and the data collected via questionnaires from pavement engineers and

experts.

Chapter 5 illustrates the model-development process divided into three main parts. Part

one describes the MAUT implementation framework, which includes the steps for

building the MAUT condition-rating model and its application results. Part two presents

the integrated MAUT/Regression model design and validation processes, including the

different statistical tests and diagnostics applied during these processes. Finally, in Part

three the application of Monte-Carlo simulation on the developed models is presented, in

addition to discussions of results and sensitivity analysis.

Chapter 6 contains the methodology of developing a web-based application for

condition-rating of existing flexible pavement. The step-by-step process of the web

application is described in detail.

Chapter 7 presents conclusions, limitations of the developed models, research

contributions, and recommendations for future work.
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CHAPTER 2: LITERATURE REVIEW

2.1 Introduction:

This chapter consists of four main sections as follows: Section 2-2 provides a

literature review of the development of pavement management systems and their

applications. Section 2-3 illustrates the concept of pavement-condition assessment and

the four main procedures for assessing the current condition of any road segment, which

are: surface distress, structural capacity, ride quality, and skid resistance. Section 2-4

provides a literature review of the existing condition-rating and performance prediction

models, including distress-based models, roughness-based models, and composite

indices.

The last section, Section 2-5 presents an overview of the adopted techniques in this study,

which are: Multi-Attribute Utility Theory (MAUT), Analytic Hierarchy Process (AHP),

Multiple Regression, and Monte-Carlo Simulation.

2.2 Development of Pavement Systems Methodology:

In the late 1960s and early 1970s two groups of researchers in USA; the American

Association of State Highway Officials (AASHO), and the Texas Transportation Institute

of Texas A&M University (Scrivner, 1968) initiated a study to make new breakthroughs

in the design of pavement using a systems approach. At the same time in Canada a third

group of researchers was conducting a similar independent study about the need to link

all the planning, designing, constructing and maintaining activities together forming a

unified pavement system (Hutchinson et al, 1968).
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In fact, the effort of these three groups of researchers was the foundation of the

development of pavement management systems.

2.2.1 Pavement Management Systems (PMS):

ASSHTO has defined PMS as a set of methods and tools used to help decision-

makers in finding the optimal strategies for providing and maintaining pavement at an

adequate level of service over a period of time. (ASSHTO, 2001, 1993) and (Delaware

DOT, 2000). A total Pavement Management System (PMS) must serve different

management needs or levels and must interface with any sort of transportation

management system involved. Figure 2-1 shows the major components of PMS.

PAVEMENT MANAGEMENT SYSTEM (PMS)

NETWORK LEVEL

PROGRAMMING

PLANNING

BUDGETING

DATA
BASE

RESEARCH AND
SPECIAL STUDIES

PROJECT LEVEL

DESIGN

CONSTRUCTION

MAINTENANCE

REHABILITAION

Figure 2-1 : Major Components of a Pavement Management System (Hass et al, 1994).



The coordinated set of activities that PMS consists of can be classified into two

distinctive levels: the network level and the project level (Hass et al, 1994).

The network level is more like a wider view of the pavement infrastructure and normally

more related to the overall budget and planning issues, while the project level has a direct

focus on a particular section or project within the whole network system. Figure 2- lists

the major activities occurring at each level.

In 1986, Roger Smith conducted an interesting survey to determine the importance of the

various management activities (which PMS assists on both network and project levels).

The respondent agencies indicated that the following three PMS activities would be the

most useful to them (Smith, 1986):

1 . A feasible tool to objectively quantify the pavement condition.

2. A list of maintenance and rehabilitation treatments which are most cost-effective.

3. Means of matching problems to suitable treatments.

In part one of the survey, a list of network-level activities were given to the agencies and

they were asked to rank them from most to least useful (importance) on a scale of 1-10,

with 1 = most useful and 10 = least useful. Table 2-1 provides the importance of network-

level PMS components.
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TRANSPORTATION, HIGHWAY / STREET SYSTEM MANAGEMENT

NETWORK MANAGEMENT LEVEL

Sectioning, Data Acquisition (field data on roughness, surface distress,
structural adequacy, surface friction, geometries, etc., plus traffic, costs and
other data) and Data Processing.

Criteria for Minimum Acceptable Serviceability, Maximum Surface Distress,
Minimum Structural Adequacy, etc.

Application of Deterioration Prediction Models.

• Determination of Now Needs and Future Needs; Evaluation of Options and
Budget Requirements.

• Identification ofAlternatives, Development of Priority Programs and
Schedule of Work (rehabilitation, maintenance, new construction).

PROJECT MANAGEMENT LEVEL

• Subsectioning, Detailed Field / Lab and other Data on Scheduled Projects,
Data Processing.

• Technical (Predicting Deterioration) and Economic Analysis of Within-
Project Alternatives.

• Selection of Best Alternative; Detailed Quantities, Costs, Schedules.

• Implementation (construction, periodic maintenance).

Figure 2-2: Basic Operating Levels of Pavement Management and Major Component
Activities (Hass et al, 1994).
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Table 2-1: Importance ofNetwork-Level PMS Components (Smith, 1986).

Item Katin»

1 . Present overall condition 3.0
2. Prioritization of projects requiring major or
preventive maintenance

3.0

3. Identification of projects requiring major
rehabilitation 3.1

4. Identification of projects requiring preventive
maintenance 3.1

5. Budget needs 3.3
6. Future overall condition 4.3

In a similar manner, part two of the survey repeats the same procedure as part one, but

this time in order to investigate the importance of project-level activities. Table 2-2

provides the importance of project-level PMS components.

Table 2-2: Importance of Project-Level PMS Components (Smith, 1986).

Item

1 . Identify feasible major maintenance alternatives
2. Identify feasible preventive maintenance
alternatives
3. Provide present condition
4. Determine cause of deterioration
5. Perform economic analysis of selected alternatives
6. Project future conditions

Ratini;
2.6

2.8

2.9
3.9
4.1
4.4

In another part of the survey, the DOT and highways agencies were asked to rank the

level of importance of data components that (PMS) usually collect and keep in their data-

bases. The ranking scale was from 1 to 10, with 1 indicating the highest level of

importance and 10 no importance. Table 2-3 provides the order and ranking of

importance of inventory data.
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Table 2-3: Importance of Inventory Data (Smith, 1986).

Item Kilting

1 . Pavement condition 1.5

2. Maintenance history 2.7
3. Design and construction information 3.5

4. Structural capacity 3.6
5. ADT and functional class 4.6

6. Ride quality 4.8
7. Skid resistance 6.0

From the previous surveys, we can see that providing evidence of the pavement's present

condition is one of the most important activities that any department of transportation

(DOT), highway agency, and road management system should identify in a precise and

reliable way, because all the future work, such as maintenance and rehabilitation

selection, budget allocation... etc, will be totally dependent on the condition assessment

results and its level of accuracy and validity.

2.3 Pavement Condition Assessment:

One of the most common questions that people ask is: "For any specific facility or

infrastructure asset such as highways, bridges, or water mains, what is the present

condition or current status?" When this question is applied to the departments of

transportation, the pavement management engineer should be able to respond with solid

helpful information, which in most cases depends on the pavement condition assessment

analysis. According to (Hass et al., 1997) pavement evaluation begins with data

collection of the following aspects: type and severity of surface distress, structural

capacity, ride quality, and skid resistance of a specific road or a highway section.
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Table 2-4 lists different evaluation measures affecting the overall performance and

condition of the pavement.

Table 2-4: Concepts for In-Service Monitoring and Evaluation of Road Pavements (Hass
et al, 1997).

Monitoring

Longitudinal roughness
Surface distress and defects
(cracking, deformation, patches,
disintegration, surface defects)
Deflection testing
Skid resistance or surface friction

Ride quality

Appearance
Traffic
Costs (construction, maintenance,
user)
Location reference, geometric and
structure data, longitudinal and cross-
fall deficiency, coring for layer
thickness
Environment (climate, pavement
temperature, drainage, water below
surface, freeze/thaw)

I ? alitatimi

Serviceability

Deterioration, overall composite
index, and maintenance needs

Material properties and structural
capacity
Safety against skidding
User evaluation of overall pavement
quality
Aesthetics
Performance and remaining life
Unit-cost summaries for economic
evaluation

Verification of inventory database,
inputs for structural evaluation,
safety against potential hydroplaning
Material degradation, distress and
defects progression, structural
integrity, performance

2.3.1 Surface Distress:

Distress evaluation is an important consideration of any pavement management

system, by which the selection of the most effective maintenance and rehabilitation

strategies can be determined. A comprehensive description of each instance of pavement

distress including its general mechanism, level of severity (low, medium, and high), and

measurement methods, can be found in the Highway Pavement Distress Identification
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Manual published by the Federal Highway Administration (Smith, 1986). The types of

distress or failures in asphalt-pavement can be classified as follows: (1) Structural failure

which is associated with the pavement ability to carry the design load. (2) Functional

failure which is associated with ride quality and safety of the pavement. (3) Load-

associated distress which is caused mainly by traffic. (4) Non load-associated distress

which is caused by climate, materials or deficiencies in design or construction. Table 2-5

lists all the possible types of distress in asphalt-pavement as follows:

Table 2-5: Distresses Types in Asphalt Pavements (Yang, 2004).

Types of Distress

Alligator or fatigue
cracking

Structural Functional
I.oiid

Associated
Non-load

Associated

Bleeding
Block cracking
Corrugation
Depression
Joint reflection

cracking
Lane/shoulder dropoff
or heave ?

Lane/shoulder
separation
Longitudinal and
Transverse cracking
Patch deterioration
Polished aggregate
Potholes
Pumping and water
bleeding
Raveling and
weathering
Rutting
Slippage cracking
Swell ?
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Among the previous several distresses in asphalt-pavement, two types only will be

explained in detail in this study, namely, rutting and transverse cracking.

2.3.1.a Rutting:

A typical pattern of deformation in asphalt pavement is rutting as shown in Figure

2-3, which during the first few years of construction develops at a somewhat rapid rate

and then decreases to a much slower rate. A rut, by definition, is a surface depression in

the wheel paths, and it becomes more noticeable after a rainfall when they are filled with

water. Pavement uplift may occur along the sides of the rut, in addition to the fact that

ruts filled with water can cause vehicle hydroplaning and lead to major structural failures.

There are two basic types of rutting that take place either in any of the pavement layers

(mix rutting) or in sub-grade (sub-grade rutting). Figure 2-3 shows an example of the

surface distress (rutting) (WSDOT, 2009).

Il p?

¦

¦
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Figure 2-3: Surface Distress (Rutting) (WSDOT, 2009).
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Rutting can be usually caused by: (1) Consolidation or lateral movement of the materials

due to traffic loading, (2) Inadequate compaction of HMA layers during construction.

Rutting is measured in square feet or square meters of surface area, and the severity is

determined by the mean depth of the rut. Usual treatments for repair are: in the case of

Low ruts (L) % to 1A in: can generally be left untreated. Medium ruts (M) greater than 1A

in. up to 1 in: shallow, partial or full-depth patching. High ruts (H) greater than 1 in: full-

depth patching or milling and overlaying.

2.3.1.b Longitudinal and Transverse (Thermal) Cracking:

These two types of cracks are usually not caused by loads. Longitudinal cracks

are cracks parallel to the pavement's centerline or lay-down direction and can be caused

by a reflective crack from an underlying layer, or the poor construction of a lane joint,

whereas, on the contrary, transverse (thermal) cracks extend in a perpendicular way to the

pavement's centerline or lay-down direction and can be caused as well by a reflective

crack from an underlying layer beneath the asphalt surface. However shrinkage of the

HMA surface due to low temperatures or asphalt binder hardening is considered the main

cause of transverse cracks. Both kinds of cracks are shown in Figures 2-4 and 2-5

(WSDOT, 2009).

Longitudinal and transverse cracks are measured in linear feet or meters. Furthermore, in

the SHRP manual the longitudinal is divided into wheel path longitudinal cracking and

non-wheel path longitudinal cracking.

For the repair of the cracks, strategies are determined on the basis of the severity and

extent of cracks, and for the both types (longitudinal and transverse cracking) a quite
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similar procedure of treatment is followed: In the case of Low severity cracks (< 1A inch

wide) the perfect solution for preventing the penetration of moisture into the sub-grade

through the cracks is the crack seal. On the other hand, removing and replacing the

cracked pavement layer with an overlay is the preferred solution in the case of high

severity cracks (> Vi inch wide).

Figure 2-4: Surface Distress (Longitudinal Cracking) (WSDOT, 2009).

.:«! '
—'Hf1"'

Figure 2-5: Surface Distress (Transverse Cracking) (WSDOT, 2009).
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2.3.2 Structural Capacity:

By definition, structural capacity is the ability of pavement to safely carry the

projected traffic load. It is usually determined by any of the structural test methods,

which are categorized as destructive or nondestructive methods. The major difference

relates to whether or not physical disturbance of materials is allowed to occur or not.

The destructive method of evaluation is usually in-place testing of component materials

using a test pit. A non-destructive method is used when no major disruption of structure

of the pavement is required, and it involves many techniques. However, the most

effective and widely used ones are surface deflection measurement techniques.

Normally, non-destructive testing methods (NDT) are preferable to destructive ones due

to: (1) Less damage to pavement structure. (2) A lower cost for testing. (3) Less

interruption to traffic. (4) These tests are relatively quicker than the destructive ones,

allowing more evaluations to be completed in less time.

Consequently, the required overlay thickness design, the elastic modulus of each of the

structural layers and the permissible loads for a specified number of load applications are

determined using the NDT methods on Asphalt pavements.

2.3.3 Ride Quality:

The general public perception of a good road is one that provides a smooth ride.

Consequently, a major focus of state highway agencies in management of their highway

networks has been to determine the ride quality of the pavement deriving from roughness
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characteristics. Usually, to auto drivers and passengers, rough roads mean discomfort,

decreased speed, and potential vehicle damage.

According to (Hass et al, 1994), roughness can be defined as irregularities in the

pavement surface that affect the ride quality of the pavement, and are often experienced

by the operator or passenger of a vehicle travelling over the surface. These irregularities

can be divided into three profile components of distortion: transversal, longitudinal, and

horizontal profiles. They are mainly caused by factors such as: traffic loading,

environmental effects, construction materials, and built-in construction deficiencies.

Highway agencies use many devices for roughness evaluation; these devices are based

either on measuring the surface profile of the pavement, or on a response-type road-

roughness measuring system (RTRRMS) (Shahin, 2005). The latter is very popular due to

the historical cost of profile-measuring devices. A survey of 48 states in the USA shows

that (RTRRMS) are the most used devices for roughness measurements in 22 states (Epps

et al, 1986).

In order to compare the different measures of roughness on a common quantitative scale,

the International Roughness Index (IRI) was developed by the World Bank at the

International Road Roughness Experiment held in Brazil in 1982. IRI is used to define

the longitudinal surface profile in the wheel-path and constitutes a standardized

roughness measurement. It is expressed in units of inches per mile (in/m), meters per

kilometer (m/km), or millimeters per meter (mm/m). More description of the relationship

between roughness and serviceability will be discussed in the following sections.

Figure 2-6 shows the IRI roughness scale developed by (Sayers et al, 1986).
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Figure 2-6: International Roughness Index (IRI) Roughness Scale (Sayers et al., 1986).

2.3.4 Skid Resistance:

Most DOT and road agencies have an obligation to provide users with a roadway
that is "reasonably" safe. In addition, inadequate skid-resistance evaluation will lead to

higher incidences of skid-related accidents. That explains why skid resistance is an
important pavement evaluation parameter.

Skid resistance changes over time. Typically, it increases in the first two years following
construction as the roadway is worn away by traffic and rough aggregate surfaces

become exposed. Then it decreases over the remaining pavement life as aggregates
become more polished. Skid resistance is also typically higher in the fall and winter and
lower in the spring and summer.
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The phenomenon of skidding involves a complex interrelationship between four major

elements, namely, the roadway (characteristics of the pavement), the vehicle (mainly

tires), the driver, and the weather. In reality, the pavement characteristic which dominates

the measurement of skid resistance is thefriction of the pavement surface.

According to (HRB, 1972) surface friction is defined as the force developed when a tire

that is prevented from rotating slides along the pavement surface. Skid resistance is

generally quantified using some form of friction measurement, such as a friction factor or

skid number.

?
Friction Factor: f=- Eq: (2-1)

Skid number: SN = 100 x / = 100 x (£) Eq: (2-2)
Where:

• F = frictional resistance to motion in the plane of the interface.

• L = load acting perpendicular to the interface.

For measuring the pavement friction the best known standard is the locked wheel skid

trailer as specified in (ASTM, 1991) "Standard Test Method for Skid Resistance of Paved

Surfaces Using a Full-Scale Tire".

Both traffic speed and the method of measurement play a major role in determining the

minimum skid resistance required for a pavement. Table 2-6 shows the minimum skid

numbers measured according to ASTM E950 (ASTM, 1991).
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Table 2-6: Recommended Minimum Skid Number for Main Rural Highways (Yang,
2004).

Traffic Speed SN measured at SN measured at
(mph) traffic speed 40 mph

30 36 31
40 33 33
50 32 37
60 31 41

_________70 31 46
Note.l mph = 1.6 km/h.

It is clear from Table 2-6 that for a mean traffic speed of 50 mph (80 km/h), the NCHRP

Report 37 recommended a SN of 37 measured at 40 mph (64 km/h), as the minimum

permissible for standard main rural highways. And since there are no definite federal and

state standards on the minimum SN required, most highways agencies follow the

guidelines recommended by NCHRP Report 37 (NCHRP, 1972).

2.4 Existing Condition Rating Models:

Due to the critical role that pavement condition data (surface distress, structural

capacity, ride quality, and skid resistance) play in performing any PMS functions,

especially those related to project the present and future condition of the pavement and

determine maintenance and rehabilitations needs, strategies, and budget allocations

(Smith, 1986) . Therefore, several condition-rating indices and prediction models have

been developed in order to quantify these vital measures and the overall performance of a

roadway or highway section.

In 1994, the National Cooperative Highway Research Program (NCHRP) conducted a

survey of 50 states in the USA, the District of Columbia, and 9 Canadian provinces,
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giving a total of 60 agencies to determine the common practices in pavement condition

rating and predicting performance. The survey results showed that it was not a prevailing

practice to use structural adequacy and skid resistance in routine evaluation of pavement

because of the high costs. However, regarding the other two criteria (surface distress and

ride quality) there was a clear consensus about their major roles in pavement evaluation

(NCHRP, 1994).

In modeling the pavement performance, three common types of prediction indicators can

be summarized as:

• Distress-Based: in which the information on distress (such as type, severity, and

extent of the observable surface distress) is combined in a single numeric

statistic, such as a Pavement Condition Index (PCI) on a scale of 0 to 100

(Shahin, 2005).

• Roughness-Based: in which roughness information is converted into an index

such as the international roughness index (IRJ) or the Present Serviceability

Rating (PSR).

• Composite indices: in which both distress conditions and pavement roughness

are combined to form panel-rating indices such as the Present Serviceability

index (PSI) created by (ASSHO, 1960).

Table 2-7 shows specific examples of common indicators related to the above categories.

A detailed explanation of the models will be presented in the following sections.
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Table 2-7: Examples of Performance Indicators (Hass et al., 1997).

Facility
Service anil
user ratini»

Safety and
.sufficiency

1'hvsical
condition

Structural
; integrity/ load ¡

capaci!*

Highways,
roads, streets,
parking areas

Present
Serviceability
Rating (PSR),
ride quality,

vehicle
operating costs

Ratings based
on skid

resistance,
accidents,

congestion,
and pollution

Present
Serviceability
Index (PSI),
International
Roughness
Index (IRI),
Pavement
Condition

Index (PCI)

Structural
rating based on

deflection
testing,

remaining life,
load capacity

2.4.1 Distress Based Models:

The main causes of observable deterioration and disintegration of asphalt-

pavement are: excessive loads, environmental impact, age, inadequate pavement design

and material degradation. The information regarding the type, severity, and extent of this

distress is usually collected from deterioration inspection reports and surveys. Then a

composite index combining the various kinds of distress is developed.

In Washington State, an early procedure for determining a composite index of pavement

distresses was introduced involving the use of deducted values. This approach of

deducted values was further developed for PAVER (Shahin, 2005) and has been widely

implemented in other systems derived from the PAVER method.

In the deducted value approach, an index of 1 00 is assigned to a perfect pavement (newly

constructed, reconstructed, overlaid pavement surface prior to the development of the
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first crack or other distress). Subsequently, a cumulative deducted value is generated

based on the level and severity of observed distress and subtracted from the index of 100.

In the PAVER system, deduct value curves were developed for each of the distress types

such as those shown in Figure 2-7, in which the X axis represents the density or extent of

the distress ,the Y axis represents the deducted value, and three curves correspond to the

severity of the distress (High, Medium, Low). Afterwards, the total deducted value is

computed by adding the individual distress-type deducted values.

0.1 0.5 1 5 10

Dsitress density-Percent

50 100

Figure 2-7: Example of a Deduct Value Curve for Alligator Cracking (Hass et al, 1 994).
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To overcome some of the deficiencies of the previous charts, a series of curves were

established to correct the total deduct value. It was called Corrected Deduct Value (CDV)

as shown in Figure 2-8.

^
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Figure 2-8: Corrected Deduct Value Curves (Hass et al, 1994).

This value is then subtracted from 1 00 to define the composite distress index called the

Pavement Condition Index (PCI) on a scale of 100 to 0, where 100 means a road in

excellent condition and 0 one in poor condition. The PCI is calculated using the

following equation (Shahin, 2005):

PCI = 100 - SCDV Eq: (2-3)

Where:

• SCDV: Sum of corrected deduct value of each surface distress.
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The PCI for each pavement section is computed as the average of the PCI of each sample

unit observed for the pavement section. Figure 2-9 shows the PCI scale associated with

qualitative descriptions for PCI ranges.

P C I

? oo

70

5 5

4 0

2 5

1 0

R a tin g

£ ? e e Ile ? ?

Very Good

Good

Fair

Poor

Very Poor

Failed

Figure 2-9: Pavement Quality versus Pavement
Condition Index (Hass et al, 1994).

Although the PCI concept is widely applied, major disadvantages of using it as the only

performance indicator can be recognized. One of the limitations is that the deduct value

curves were developed for a certain set of values for distress type and severity level. If

the user agency tried to modify these values, especially the ones regarding the severity

level, then the deduct value curves would have to be carefully examined and modified in

an appropriate manner, which could be not applicable and would be time-consuming

(Hass et al, 1994).
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Another limitation that could be found is that a distressed pavement with low PCI will

often have poor ride quality as well. In this case, the problem is usually solved by

applying the rehabilitation for the pavement to address the low PCI, which will also

improve the ride quality indirectly. But a more problematic situation would be, when a

pavement has an acceptable PCI but has a poor ride quality. The current DOT procedures

do not have suitable provisions for identifying pavement in a similar condition for the

correct rehabilitation and maintenance remedies. Thus, a pavement in that condition

would continue to be in service with a low ride quality and increased public
dissatisfaction.

A neural-network system for the determination of condition rating for flexible pavement

was developed by (Eldin et al, 1995). The proposed neural-network system was based on

the condition-rating scheme established by the Oregon Department of Transportation

(ODOT). In this computational scheme, the pavement condition rating is computed on the

basis of the cracking and rutting indices. The lower of these two indices is then

transformed into a global condition rating on a range from O to 5, where larger index

values indicate better pavement conditions.

(Paramapathy et al, 2000) developed a Monte-Carlo simulation model to study the time-

dependent uncertain deterioration of a pavement section. The distributions of the

pavement condition index (PCI) were estimated and compared against results from a non-

homogeneous Markov model. In the proposed model, four independent variables were

considered and randomized, which are annual average daily traffic (AADT), subgrade

deflection (w), initial pavement condition index (Po), and traffic growth rate (R).

27



Although the predicted cumulative distribution of time to pavement failure can be used as

a useful decision-making tool by pavement engineers, the uncertainties related to the

components of both environmental and construction deterioration were not

accommodated in the proposed model.

A pavement rehabilitation prioritization model was developed by (Bandara et al, 2001).

It was formulated by incorporating experienced highway maintenance engineers'

subjective assessments regarding pavement condition deterioration rates in the Markov

transition process. Fuzzy set mathematics was used in quantifying the rapidly adjusted

severity levels and extensive subjective evaluations of four different distress typés

(alligator cracking, potholes, edge failures, and raveling). The proposed model is limited

only to the impact of distress on pavement conditions, without taking into consideration

other environmental impacts and the impact of traffic conditions.

2.4.2 Roughness Based Models:

The main use of the objective roughness measurements is to identify the

pavement serviceability, which can be defined as "the ability of a specific section of

pavement to serve traffic in its existing conditions". Thus, in order to correlate the

subjective (i.e., user) rating of pavement ride quality (serviceability) with objective

measurements (roughness) a Present Serviceability Rating (PSR) was developed in the

American Association of State Highway Officials (AASHO) Road Test (Highway
Research Board, 1962).

The PSR is the mean of independent ratings of the present serviceability of a specific

section of a roadway, made by individual raters who drove around the test track and rated
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their ride on a scale from 0 to 5 as shown in Figure 2-10, which is the rating form used

during the AASHO Road Test. Since PSR is based on passenger interpretations of ride

quality, it generally reflects road roughness because roughness largely determines ride

quality.

Acceptable?

Yes

No

Undecided

Section Identification
Rater Date

5

4

3

2

1

O

Very Good
Good

Fair

Poor

Very Poor

_____ Rating
Time Vehicle

Figure 2-10: Individual Present Serviceability Rating Form (after Carey et al, 1960).

According to (Hass et al, 1994), in modeling user observations as in the PSR model of

the AASHO Road Test, some assumptions are involved in the development of rating

scales. These assumptions neglect certain systematic problems, especially those related to

rater behavior, which must be anticipated and probably accounted for in the development

of rating procedure. Such problems are: (1) Leniency, the tendency of a rater to

consistently rate too high or too low. (2) Central tendency, the tendency of a rater to

hesitate in giving extreme ratings. (3) Considering the raters capable of providing ratings

on a direct interval scale.

In 1 994, relationships between PSR and IRI were developed by Al-Omari and Darter for

the three pavement types: flexible, rigid and composite. This study used data from the
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states of Louisiana, Michigan, New Mexico, New Jersey and Indiana, and suggested the

following nonlinear model (Al-Omari et al, 1994):

PSR =5 x e(-o.oo4ix/R/) Eq. (2.4)

Where:

PSR: present serviceability index.

IRI: international roughness index in inch/mile.

In the previous equation, if IRI = 0 the equation is forced to pass through PSR = 5, which

clearly indicates that the equation is biased and not statistically correct (Guien et al.,

1994).

2.4.3 Composite Indices:

The composite indicators are based on the combination of two or more pavement

condition attributes using appropriate weights for the attributes and reliable modeling

techniques. As mentioned before, using the roughness information only is the best way to

predict PSR for a given pavement. However, to relate serviceability to physical

deterioration, which can be modeled mechanistically, a PSR model based on certain

distress types is desirable.

An example of a composite indicator is the Present Serviceability Index (PSI) developed

at the AASHO Road Test (Carey et al, 1960), which is based both on pavement
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roughness and on distress conditions, such as cracking, rutting, and patching. The original

functional form of the PSI equation is (Highway Research Board, 1962):

PSI = C + (AiRi + ...) + (BiD1 + B2D2 + . . .) Eq: (2-5)

Where:

• Ri: function of profile roughness [log(l H- SV)], where SV - mean slope

variance obtained from the CHLOE profilometer.

• Di: function of surface rutting [RD2], where RD = mean rut depth as measured
by simple rut-depth indicator.

• D2: function of surface deterioration [J(C + P)], where C + P = amount of
cracking and patching determined by procedures developed at the AASHO

Road Test.

After the determinations of coefficients (C, Ai, Bi, and B2) using multiple linear

regressions applied by the AASHO Road Test on 74 flexible sections, the final PSI

equation will be (Highway Research Board, 1962):

PSI = 5.03 - 1.91 log(l +SV)- 1.38 W2 - O.OlV(C + P) Eq: (2-6)

Two major shortcomings can be noticed in the previous PSI equation:

1 . Since PSI is based on the evaluations of the Road Test rating panel, the question

to be asked is whether the public's perception of serviceability is the same today

as it was 30 years ago, especially since vehicle properties, travel speeds and

highway characteristics have changed significantly.
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2. Although the distress data (cracking amount, rut depth, and patching) are used

for computing PSI, it is the roughness information that provides the major

correlation variable. According to (Zaniewski et al, 1985), after the addition of

distress data to PSR, an increment of only about 5% was added to the correlation

coefficient between PSR and PSI. In other words, the contribution of the

physical distress to PSI is relatively small and can be neglected. That explains

why many agencies rely only on roughness to estimate PSI.

Another example of composite indicator is the Riding Comfort Index (RCI) developed in

Alberta (Karan et al, 1983), in which up to 25 years of data on roughness, surface
distress, traffic, deflection and other factors were used.

For conventional granular base pavements the following regression equation was
proposed (Karan et al, 1983):

RCI = -5.998 + 6.870*Log (RCIS) - 0.162*Log (AGE2 + 1) + 0.185*AGE -
0.084*AGE* Log (RCL3) - 0.093 *AAGE Eq: (2-7)

Where:

RCI = Riding Comfort Index (scale of 0 to 10) at any AGE.

RCI5 = previous RCI.

AGE = age in years.

AAGE = 4 years (particularly for this equation)

For the previous equation, the standard error of estimate is 0.38 with a squared
correlation coefficient (R2) of 0.84.
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It was found that the equation was biased to only two variables (AGE, and ROß) while a

number of variables were considered, such as traffic in terms of ESALs, climate zone,

sub-grade soil type, and others. The reason for this bias is that the pavement was

primarily designed for environmental deterioration, with structural layers significantly

thicker than required by traffic alone. A plot of the RCI equation is shown in Figure 2-11.

I
Ï

10 15
Âge (years)

Figure 2-1 1 : Performance Prediction from RCI Equation (Karan et al, 1983).

A pavement performance index called the Pavement Quality Index (PQI) was developed

by (Reza et al, 2005). The proposed composite index incorporates ride quality together

with distress surface by combining the Pavement Condition Rating (PCR) with the

International Roughness Index (IRI) in one equation. The PQI treats IRI as a deduction

from PCR, which gives a primary control to PCR and prevents PQI from being greater

than PCR. This guarantees that pavements rated poor by just using the PCR would still be
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poor under the proposed model, and pavements that have little distress would be

considered in a good condition although they might have a bad ride quality.

Moreover, (Ruotoistenmäki et al, 2007) developed a road condition-rating tool to

calculate values for existing or newly constructed roads. The model is based on a factor

analysis of three measured road condition variables: structural factor, roughness factor

and transversal unevenness factor. Factor final scores are calculated as the means of the

log-transformed variables in each factor. Condition rating is conducted as the weighted

sum of the factor scores and used as an input in strategic level decision-making.

In this study the rating scale extended from oo (poor condition) to -oo (excellent

condition), thus there are no theoretical limits to the rating values, which means that it

cannot be used for practical purposes where the rating values need to be transformed into

a finite scale divided into certain categories. In addition, variables describing surface

texture and surface distress (i.e. cracking) were not included in this model.

2.5 An Overview of the Applied Techniques in the Current Research:

2.5.1 Multi-Attribute Utility Theory (MAUT):

In its basic form, MAUT assumes that a decision maker is to choose among a set

of alternatives whose objective function values or attributes are known with the presence

of risk or uncertainty. It focuses on the structure of multi-criteria or multi-attribute

alternatives, and on methodologies for assessing individual values and subjective

probabilities. MAUT embraces both a large body of mathematical theory for utility
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models and a wide range of practical assessment techniques that pay attention to limited

abilities of assessors. Information obtained from assessment usually feeds into the parent

problem to rank alternatives, make a choice, or otherwise clarify a situation for the

decision-maker (Hammond et al, 1999).

The foundation of MAUT is the use of utility functions, which represent the assessor's

preferences, given a certain set of decision attributes. The utility functions transform an

attribute's raw score (i.e. dimensioned such as; feet, pounds, gallons, per minute, dollars,

etc.) to a dimensionless utility score between 0 and 1. The utility scores are then

multiplied by the weight of the decision attributes, and aggregated (linearly or non-

linearly) to calculate the total score for each alternative (Keeney et al, 1993).

The MAUT evaluation method is suitable for complex decisions with multiple criteria

and many alternatives. Additional alternatives can be added to MAUT analysis. Once the

utility functions have been developed, any number of alternatives can scored against
them.

2.5.2 Analytic Hierarch Process (AHP):

The Analytic Hierarch Process (AHP) is one multi-criteria decision-making

method that was originally developed by Prof. Thomas L. Saaty in the 1970s. The AHP

provides a comprehensive and rational framework for structuring a decision problem, for

representing and quantifying its elements, for relating those elements to overall goals, and

for evaluating alternative solutions. It is used around the world in a wide variety of

decision situations, in fields such as government, business, industry, healthcare and

education. Decision situations to which the AHP can be applied include: (1) the selection
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of one alternative from a given set of alternatives, usually where there are multiple

decision criteria involved. (2) Ranking of alternatives from most to least desirable.

Using the AHP, the procedure for modeling a multi-criteria decision problem can be

summarized as:

1. Model the problem as a hierarchy containing the decision goal, the criteria for

reaching it, and the sub-criteria for evaluating the criteria, as shown in Figure 2-

12.

Criteria 1

GOAL

Sub-Criteria Sub-Criteria
1.2

Criteria 2

Sub-Criteria
2.1

Sub-Criteria
2.2

Figure 2-12: Hierarchy of Three Levels.

2. In order for the participants to incorporate their judgments about the various

elements in the hierarchy, decision-makers use pair-wise comparison matrices to

compare the elements two by two.

3. Establish priorities among the elements of the hierarchy by filing the pair-wise

matrices with numerical values from a scale of (1-9), which represent the relative

importance or likelihood of one sub-criteria /sub-factor over another. The scale of

(1-9) with its linguistic meanings is shown in Table 2-8.
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4. Synthesize these judgments to yield a set of overall priorities for the hierarchy.

These overall priorities are called priority vectors, and calculated for each

reciprocal matrix (from paired comparison).

Table 2-8: Pair-wise Comparison Scale (Saaty, 1995).

Intensity of Importance Definition Explanation

1.0 Equal importance
Two elements contribute
equally to the objective

2.0 Weak Between equal and
moderate

3.0 Moderate importance
Experience and judgment
slightly favor one
element over another

4.0 Slightly more than
Moderate

Between moderate and
strong

5.0 Strong importance
Experience and judgment
strongly favor one
element over another

6.0 Slightly more than Strong Between strong and very
strong

7.0 Very strong

An element is favored
very strongly over
another; its dominance
demonstrated in practice

8.0 Approximately Extremeimportance Between very strong and
extremely strong

9.0 Extreme importance
The evidence favoring
one element over another
is of the highest possible
order of affirmation

5. Check the consistency of the judgments by calculating Consistency Ratio (CR).

Prof. Saaty proved that for a consistent reciprocal matrix, the largest eigen value

is equal to the size of the comparison matrix, or Xmax = ?. Then he gave a measure

of consistency, called Consistency Index (CI) as deviation or degree of

consistency using the following formula (Saaty, 1982):
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CI = ^^ Eq: (2.8)n-1 ^ v '

Where: Xmax: is the maximum eigen-value of the reciprocal matrix. And ?: is the

matrix size.

Then, he proposed what is called Consistency Ratio (CR), which is a ratio

between Consistency Index (CI), and the average Random Consistency Index (RI)

for random comparisons for a matrix of the same size from a 1 to 9 scale. The

following equation is used to calculate (CR) (Saaty, 1982):

CR = J1 Eq: (2-9)
If the value of consistency ratio (CR) is smaller or equal to 10%, the

inconsistency is acceptable. On the contrary, if the (CR) is greater than 10%, a

revision of the subjective judgment needs to be applied.

6. Come to a final decision based on the results of the previous process. The final

overall ranking output for each element (sub-factor) is calculated based on

combining its consistent priority vector (weight V¡) with the weight of its criteria

(main factor- weight W¡). A detailed explanation of the previous steps is presented

in Section 5.1 (MAUT Condition-Rating Model).

2.5.3 Multiple Regression Analysis:

Multiple regression analysis is one of the most widely used of all statistical

methods. The general purpose of multiple regression (the term was first used by Pearson,

1908) is to learn more about the relationship between several independent or predictor

variables and a dependent or criterion variable. An experimenter typically will wish to

investigate a number of predictor variables (independent) simultaneously, because almost
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always more than one key predictor variable influences the response (dependent).

Applications of multiple-regression exist in almost every field, especially in the pavement

field where the dependent variable is a quantitative measure of some condition or

behavior. A good example of regression equations developed from the performance of

the existing pavements, are those equations used in the pavement evaluation systems

COPES (Daretr et al, 1985) and EXPEAR (Hall et al, 1989). Although these equations

illustrated the effect of various factors on pavement performance, the materials and

construction of the pavements that were studied were not well controlled; therefore a

wide scatter of data and a large standard error were found.

The general response function for linear regression model is as follows:

Yi = ßo + P1Xi, + P2Xi2+-.. + Pp-iXp-i + Si Eq: (2-10)

Where Y¡ is the value of the response variable (dependent) in the ilh trial, Po, Pi, P2, and
Pp-i are regression parameters, Xn, X¡2 and Xip-i are the value of the predictor variables

(independent) in the il trail, and e, is the random error. Ordinarily, the values of the

regression parameters po, pi, P2 and pp_i are not known and need to be estimated from

relevant data. According to (Kutner et al, 2005) multiple regression requires a large

number of observations. The number of cases (participants) must substantially exceed the

number of predictor variables that are used in the regression model. The absolute

minimum number of observations is five times as many data points as predictor variables.

A more acceptable ratio is 10:1.

A major limitation of observational data is that they often do not provide adequate

information about cause and effect relationships. That's why an initial examination of
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relationships and interactions between predictor variables must be applied before we

begin modeling the data at hand. It is recommended that we first plot the data points, then

by examining these initial plots we can easily assess whether the data have linear

relationships or interactions are present, and whether transformation of predictor

variables should be taken into consideration or not.

According to (Kutner et al, 2005) models with transformed variables involve complex,

curvilinear response functions, yet still are special cases of the general linear regression

model, and the regression assumptions still applied on them.

After the application of preliminary diagnostics for relationships and interactions, and the

definition of different functional forms of predictor variables (inputs), the multiple

regression model development process can be started. The following steps summarize

this process:

1 . Fitting the regression model with VIF (Variance Inflation Factor) values.

2. If any VIF > 5, then the variable with highest VIF should be eliminated, if

all VIF values < 5, then we can proceed to step 4.

3. Fitting the regression model with VIF values for the new model (without

the deleted variable).

4. Performing best-subset analysis with the remaining predictor variables.

5. Listing all models that have Cp < (P + 1), where P is the number of

predictor variables in the model.
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6. Among models listed in step 5, the best model using the best-subset

criteria (Cp < P + 1, lowest standard deviation S, and the highest R2 adj)
should be chosen.

7. Performing a complete analysis for the chosen model including:

• Determining the goodness of fit (Coefficient of determination R2 and

R2 (adj), F-test, and t-test).
• The residual analysis which examines the regression's assumptions, it

includes (Normality Test, Independency Test, and Homoscedasticity

Test).

A detailed explanation of the previous steps is presented in Section 5.2 (Integrated

MAUT/Regression Model) and Appendix (B).

2.5.4 Monte-Carlo Simulation:

The Monte-Carlo method was invented by scientists working on the atomic bomb

in the 1940s, who named it for the city in Monaco famed for its casinos and games of

chance. Its core idea is to use random samples of parameters or inputs to explore the

behavior of a complex system or process. The scientists faced physics problems, such as

models of neutron diffusion that were too complex for an analytical solution, so they had

to be evaluated numerically. The Monte-Carlo simulation proved to be surprisingly

effective at finding solutions to these problems. Since that time, Monte-Carlo methods

have been applied to an incredibly diverse range of problems in science, engineering,

finance and business applications in virtually every domain of industry.
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The Monte-Carlo simulation is categorized as a sampling method because the inputs are

randomly generated from probability distributions to simulate the process of sampling

from an actual population. The Monte-Carlo sample uses always a new random number

between 0 and 1 . There is no single Monte-Carlo method; instead, the term describes a

large and widely used class of approaches. However, these approaches tend to follow a

particular scheme as follows:

• Creating a parametric model where [y = f(x)], followed by a definition of

possible uncertain inputs.

• Each uncertain parameter is defined by the most fitting probability

distribution function.

• Random numbers range from 0 to 1 start to be generated by Monte-Carlo

simulation.

• These random numbers are then used to generate values randomly for the

uncertain parameters from the predefined probability distributions.

• This step is repeated for several iterations, and results of each iteration are

aggregated into final simulated output.

A detailed explanation of the previous steps is presented in Section 5.3 (Monte-Carlo

Simulation) and Appendix (C).

2.6 SUMMARY:

A comprehensive literature review was carried out in this chapter to test the available

literature in the intended subject. Several topics were reviewed, such as:
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1. The development of Pavement Management System (PMS),

2. Major components of a PMS,

3. Why does the pavement condition-assessment is considered as one of the most

important activities of a PMS,

4. A detailed explanation of the four major procedures used for assessing the current

condition of any road segment, which are (surface distress, structural capacity, ride

quality, and skid resistance),

5. An overview of the existing condition-rating and performance prediction models

including distress-based models,

6. Roughness-based models, and

7. Composite indices.

8. A brief explanation of the four techniques used in this study, which are Multi-

Attribute Utility Theory (MAUT), Analytic Hierarchy Process (AHP), Multiple

Regression, and Monte-Carlo Simulation.

Based on the literature review, it is clear that the deterioration of flexible-pavement is a

complex phenomenon that depends on many factors. Therefore, several condition-rating

indices and prediction models have been developed. However, these indices and models

are only based on several factors, which might be more critical than others such as, the

roughness measurements, the distress information, or a combination of both of them

without considering other factors that could have a real impact on the accuracy of the

condition-assessment model(s). Therefore, the current study proposes a new condition-

rating model that incorporates a wider range of possible factors such as environmental

and traffic factors.
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CHAPTER 3: RESEARCH METHODOLOGY

3.1 Introduction:

The methodology of the current study is illustrated in Figure 3-1. It comprises the

following steps: a comprehensive literature review, a data-collection phase that consists

of two parts, a MAUT condition-rating model, an Integrated MAUT/Regression Model,

an application of the Monte-Carlo Simulation, a web-based condition-rating tool, and

finally conclusions and recommendations. A summarized description of the previous

steps is given below:

3.2 Literature Review:

Chapter 2 of the current thesis describes in detail the relevant literature and presents

it in different sections. In Section 2-2, an overview of the development of pavement

management systems and the different PMS activities on both the project and the network

level is presented.

Section 2-3 illustrates the concept of the pavement condition-assessment that begins with

major evaluation measures {surface distress, structural capacity, ride quality and surface

friction) affecting the present condition and future performance of the pavement.

Section 2-4 presents comprehensively the existing condition-rating and deterioration

models, such as the Pavement Condition Rating (PCR), the International Roughness

Index (IRI), and the Present Serviceability Index (PSI).

Finally, the techniques used in the current study for developing the condition-rating

models are explained in detail in Section 2-5. These techniques are the Multi-attribute
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Utility Theory (MAUT), the Analytic Hierarchy Process (AHP), the Multiple-Regression,

and the Monte-Carlo simulation.

3.3 Data Collection:

The collected data for this research consists of two parts. The first part is the data

received from the records of the Nebraska Department of Roads (NDOR) called "Tab

Files". The NDOR has grouped the "Tab files" on a yearly basis and the data at hand are

limited to a period of eight years from 1997 to 2003. They include information on

highway sections, such as an assigned code to each highway section, the beginning and

the ending reference post, the pavement age, the distress amount (rutting, transverse

cracking... etc), and the average daily traffic (ADT). The data were sufficient to build and

verify the model. Eighty percent of the data-points were used to build the proposed

integrated MAUT/Regression models, while the rest twenty percent were used in

verifying the models. The second part involves the data collected by a designed

questionnaire sent to pavement engineers and experts in the municipalities and the

departments of transportation in Canada, the USA, and worldwide. The main goal of

sending the questionnaire was to collect the missing information that "Tab files" did not

include, especially those regarding the condition-rating score of each highway section.

Sixty questionnaires were sent to DOT experts and engineers by emails, telephone and

direct interviews. In return, ten questionnaires only were received, and on the basis of

their data the global weights of each main factor and sub-factor were developed in

addition to the final condition-rating index.
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Figure 3-1 : Research Methodology.
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3.4 The MAUT Condition-Rating Model:

To fill the gap of the historical data "Tab files", a condition-rating model was built

using the Multi-Attribute Utility Theory (MAUT). The main reason for the selection of

MAUT is that, it is very useful when the decision-making process is complex, for

instance, when it is unstructured.

The (MAUT) is concerned with expressing the utilities of multiple-attribute outcomes or

consequences as a function of the utilities of each attribute taken singly. Applying the

MAUT, the condition-rating score (CR) of each highway section is obtained by

multiplying the importance weight of each factor (W¡) by its attribute's utility scores (U¡)

as follows:

CR = Yi=I Wi * Ui Eq: (3-1)

Where:

• n: is the number of considered factors affecting flexible-pavement condition.

• Wj : importance weight of each factor.

• U¡: attribute's utility score of each factor.

The importance weights (W¡) were calculated using the Analytical Hierarchy Process

(AHP). The AHP is used because, when the decision cycle involves a variety of multiple-

criteria whose rating is based on a multiple-value choice, it splits the overall problem into

as many evaluations of lesser importance, while keeping at the same time their part in the

global decision. On the other hand, the attribute's utility scores (U¡) were extracted from

the utility-scoring functions. These utility-scoring functions are constructed based on the
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experts' preferences collected from the questionnaires. Figure 3-2 illustrates the general

framework of the MAUT. The first step was to set the selected factors of this study (that

have a direct impact on the flexible-pavement condition) in a hierarchy-level structure.

The main categories (Climate Conditions, Physical Properties, and Operational Factors)

and their sub-factors that were included in the proposed model are described in the

following Table:

Table 3-1 : Description of Sub-Factors Included in the Developed Model.
Category

VJ
a
O

?
S
O
U

S

VJ

« · —
.a t,
Vj V
>> a,
? o

Pw

Sub-Factor

Air Temperature

Pavement Temperature

Description
Average air temperature readings collected
annually in summer seasons (June, July, and
August) of years 1997 to 2003
Average pavement temperature readings
collected annually in summer and winter
seasons of years 1997 to 2003.

Rainfall Amount

Freezing Temperature

Surface Layer Depth

Base Layer Depth

Pavement Age

Average rainfall amounts collected annually
in summer seasons (June, July, and August)
ofyears 1997 to 2003.
Average freezing temperature readings
collected annually in winter seasons
(December, January, and February) of years
1997 to 2003.

The thickness of the top layer of a full-depth
asphalt pavement in inches.
The thickness of the bottom layer of a full-
depth asphalt pavement in inches
Number of years since the first construction
of pavement segments.

Vj
U
O
W

ta

"«
a

ce
'-
OJ
C
O

Average Daily Traffic (ADT)
The average number of vehicles passing a
specific point (two ways) in a 24-hour
period.

Roughness Measurements Measuring the texture of a pavement surface
to determine the ride quality.

Transverse Cracking Amount
Cracks perpendicular to the pavement
centerline or lay-down direction (Pavement
Distress)

Rutting Amount A surface depression in the wheel paths
(Pavement Distress).
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Four pair-wise comparison matrices between the main factors and their sub-factors are

constructed. These matrices have to be filled by the participants with numbers on a scale

of (1-9). A reliability test using the cronbach's coefficient alpha is then performed on

these numbers to test whether or not they are reliable in building the importance weights

of the studied factors. Afterwards, the importance weight of each sub-factor is calculated

mathematically.

Subsequently, the logical consistency of the final weights is verified based on the

consistency ratio (CR). The consistency ratio (CR) should be less than 10%, in order for

the results to be consistent. Finally, a condition-assessment value is generated by

combining the attribute's utility score with the importance weight of each sub-factor.

3.5 Integrated MAUT/Regression Model:

The real data received from the NDOR records along with the condition-rating

values of the MAUT model are both tabulated for each highway section. Then, multiple

regression technique is applied using Minitab ® 15 statistical software. The integrated

MAUT/Regression model development process adopted in the current study consists of

four major phases: (1) preliminary examinations for possible correlations between the

variables, (2) building the model, (3) statistical tests for model adequacy, and (4) residual

analysis such as the normality test, the independency test, and the homoscedasticity

test. ..etc. Figure 3-3 shows these four phases, which are explained in detail in Section 5.2

and Appendix B.
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Figure 3-2: MAUT Condition-Rating Model Methodology Framework.
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Consequently, the most appropriate regression models are selected for the validation

process. Figure 3-4 presents an overview of the methodology of the validation process.

As shown in Figure 3-4, the validation process includes four procedures as follows: (1)

plot of actual vs predicted outputs, (2) descriptive statistics, (3) mathematical measures

(AIP-Average Invalidity Percentage, AVP- Average Validity Percentage, RMS-Root

Mean Square Error, and MAE-Mean Absolute Error), and (4) a comparison between the

proposed model and the existing condition-rating models. The calculations and the values

of these procedures are shown in detail in Section 5.2 and Appendix B.

3.6 Deterioration Curves:

In the current study the deterioration curves are built on the basis of the proposed

integrated MAUT/Regression condition-rating models. These curves are constructed by

building the relationship between the condition-rating of the pavement and its age. This

relationship is based on different climatic, physical, and operational factors. The curves

are intended to assist the decision-makers in managing their maintenance and

rehabilitation programs. The curves are presented in Section 5.2 and Appendix B.
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Figure 3-3: Regression Model Building Methodology.
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Selected Model for Validation

Validation Procedures :
1. Actual vs. Predicted Output Plot.
2. Descriptive Statistics (mean and standard deviation
values of the actual and predicted outputs).
3. Mathematical Validation Method (AIP, AVP, RMS, and
MAE).
4. Comparison of the proposed model with the existing
assessment models (PSI, PCI, and PQI).

Satisfactory
1

Condition Rating Model is Applied

-Unsatisfactory- Select a New
Model

Figure 3-4: Regression Model Validation Methodology.

3.7 Monte-Carlo Simulation:

Since the developed regression models are based on several uncertain parameters
interacting to produce the condition-rating outcome, the Monte-Carlo simulation is used.

The main purpose of the application of the Monte-Carlo simulation is to deal with the

uncertainty propagation. The Monte-Carlo simulation application consists of four main

phases: (1) model preparation by defining distributions for inputs and outputs, (2)
determining the required number of iterations and simulations, (3) conducting the
simulation results, and (4) performing a sensitivity analysis. Figure 3-5 shows these four
phases presented in more detail in Section 5.3 and Appendix C.
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3.8 Web-based Automated Condition-Rating Tool:

After building the MAUT/Regression condition-rating models, a web-based

automated tool is developed using the C# programming language. The tool will help

pavement engineers and experts to predict the condition-rating scores of existing

road/highway segments, which will assist them in their management plans regarding

assigning maintenance and rehabilitation treatments.

3.9 SUMMARY:

This chapter presented the adapted methodology in the current study. The

methodology includes literature review, data collection (which consists of model

information and validation data), the MAUT condition-rating model, the integrated

MAUT/Regression condition-rating model, the application of the Monte-Carlo

simulation, and the development of web-based flexible pavement condition-rating tool.
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Figure 3-5: Monte-Carlo Simulation Methodology.
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CHAPTER 4: DATA COLLECTION

4.1 Introduction:

This chapter describes the data-collection process required to build and run the

integrated MAUT/Regression model. This process consists of two parts as follows: Part

One, in which the information needed to build the MAUT model is collected by

questionnaires; Part Two, which contains real-network characteristics data. These data

are then combined with the data of the MAUT model to develop the integrated

MAUT/Regression model. Figure 4-1 shows the data-collection process and its two parts.

MAUT Model
Information

Factors' Weight

Collected By:
Questionnaire

Data Collection

1
Factors' Utility

Scores

Collected By:
Literature Review
- Questionnaire

MAUT/Regression
Model Information

Factors and Data

Collected By:
Historical Data from

DOT

Figure 4-1 : Data Collection Process.
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4.2 The MAUT Model Information:

The MAUT model development process requires two sets of information: factor

weight and factor performance impact (utility scores). Accordingly, a questionnaire was

designed and sent to practicing pavement engineers and experts in the municipalities and

the departments of transportation in Canada, the USA and Worldwide (a copy of the

questionnaire is attached in Appendix D). The primary mission of the questionnaire is to

collect data regarding the factors' weights, factors' impact criteria and the required

maintenance and rehabilitation (M&R) actions.

In the second part of the designed questionnaire, the AHP pair-wise comparison matrices

are founded. By filling the cells of each pair-wise comparison matrix with numbers on a

scale of 1 -9 by the expert respondent, the relative weight of each factor at each level of

the constructed hierarchy is calculated mathematically.

4.2.1 Factors Weights:

A total of sixty questionnaires were sent to DOT experts and engineers by emails,

telephone and direct interviews. In return, ten questionnaires were only received and they

can be summarized according to their locations as follows: State of Nebraska: seven

responses, Ontario: two responses, and Alberta: one response.

The results of the main factors' pair-wise comparison matrix showed that (80%) of the

participating experts considered the "Operational factors" to have the highest priority and

impact on the condition-rating model, while (10%) of the experts selected the "Physical

Properties" as having the highest priority and impact on the condition-rating model. The

remaining (10%) ranked equally the "Operational and Physical factors" as having the
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highest priority and impact on the condition-rating model. These results are shown in

Figure 4-2.
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Figure 4-2: Results of Experts' Preferences for the Main-Factors Impact.

Regarding the Climate Conditions' pair-wise comparison matrix, results showed that

(80%) of the participating experts considered the sub-factor "Freezing Temperature" to

have the highest priority among sub-factors of the climate conditions. However, (10%) of

the experts stated that "Freezing Temperature" and "Air Temperature" have the same

highest priority rating. The remaining (10%) stated that "Freezing Temperature" and

"Pavement Temperature" have the same highest priority rating. On the other hand, (40%)

of the participating experts considered the sub-factor "Air Temperature" as having the

lowest priority among the climate conditions sub-factors. A similar percentage of (40%)

selected the sub-factor "Rainfall Amount" as the lowest priority sub-factor. The

remaining (20%) ranked equally "Air Temperature" and "Rainfall Amount" as having the

lowest priority and impact on the condition-rating model. These results are shown in

Figure 4-3.
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Figure 4-3: Results of Experts' Preferences for the "Climate Conditions" Impact.

The results from the Physical Properties' pair-wise comparison matrix showed that

(40%) of the participating experts considered the sub-factor "Pavement Age" as having

the highest priority among sub-factors of the physical properties. On the contrary, a

similar percentage of (40%) of the experts considered "Pavement Age" as the lowest

priority sub-factor. The remaining (20%) ranked equally "Pavement Age" and "Surface

Layer Depth" as having the highest priority and impact on the condition-rating model.
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Finally, the results from the Operational Factors' pair-wise comparison matrix showed

that (60%) of the participating experts considered the sub-factor "Transverse Cracking

Amount" as having the highest priority among sub-factors of the operational factors.

However, (30%) of the experts stated that "Transverse Cracking Amount" and

"Roughness Measurements" have the same highest priority rating. The remaining (10%)

stated that "Transverse Cracking Amount" and "Rutting Amount" have the same highest

priority rating. On the other hand, (70%) of the participating experts considered the sub-

factor "Average Daily Traffic-ADT" as having the lowest priority among sub-factors of

the operational factors. A percentage of (20%) of the experts state that "ADT" and

"Rutting Amount" have the same lowest priority rating. The remaining (10%) ranked

equally "ADT" and "Roughness Measurements" as having the lowest priority and impact

on the condition-rating model. These results are shown in Figure 4-4.

The final weights of each main factor and its sub-factors are presented in detail in Section

5.1 (Table 5-9).

4.2.2 Factors Performance Impact:

Although the final collected relative weights are essential components in the

building process of the MAUT model, they only represent the general impact of the sub-

factors on the flexible-pavement condition. Each sub-factor may have different attributes

that vary in their impact on the condition of the pavement. Therefore, to better represent
this impact, specific scores should be assigned to the different attributes.
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Figure 4-4: Results of Experts' Preferences for the "Operational Factors" Impact.

For example, the sub-factor "Average Daily Traffic-ADT" is studied in the current

research with three different attributes. These attributes are Low, Moderate and Heavy.

In the third part of the designed questionnaire, the respondent is asked from his/her

expertise to assign the corresponding score to each attribute, by answering the following

question: "On a scale of 0-10, how do you rate the impact of the sub factor (x) on the

6\



condition of the flexible-pavement of a road section." The proposed scale with the

linguistic meaning of each numeric score is shown in Figure 4-5.

02 3 4567 8 10
Hxtremcly Very Moderately Neg Even Pos Moderately Very Hxtremeh

Ncg Neg Neg Impact Pos Pos Pos

Neg: Negative impact on flexible pavement condition.
Pos: Positive impact on flexible pavement condition.
Even: Neither negative nor positive impact on flexible pavement condition.

Figure 4-5: The Scoring Scale of the Sub-Factors' Attributes.

4.2.3 Selection of Maintenance and Rehabilitation Treatments:

In order to determine the required maintenance and rehabilitation (M&R)

treatments, the experts' feedback are obtained in the last part of the designed

questionnaire. A list of the common M&R treatments are suggested based on the severity

level of two types of distress (transverse cracking and rutting). And on the basis of his/her

experience, the participating expert has to select the most suitable M&R treatment that

corresponds to the distress type and severity.

In the case of transverse cracking distress, two levels of severity were investigated as

follows: low-severity cracks (< 13 mm wide) and high-severity cracks (> 13 mm wide).

Five M&R treatments were proposed which are: chip seals, thin hot mix asphalt (HMA)

overlays, hot in-place recycling, full-depth reclamation, and slurry seals.
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In the case of rutting distress, two levels of severity were investigated as well: slight ruts

(< 9 mm deep) and severe ruts (> 9 mm deep). Three M&R treatments were proposed:

doing nothing, micro-surfacing, milling-off and replacement.

Data from the ten received questionnaires showed that, regarding the low-severity cracks

(< 13 mm wide), (40%) of the participating experts selected the chip seals as a suitable

treatment for this case. A similar percentage of (40%) went with the thin hot mix asphalt

(HMA) overlays as a better treatment for low cracks. The remaining (20%) suggested a

new treatment (route & seal) that was not included in our list, to be the best one for low

cracks. Moreover, in the case of high-severity cracks (> 1 3 mm wide), a percentage of

(50%) of the participating experts selected hot in-place recycling as a suitable treatment

for this case. (30%) of the experts went with full-depth reclamation as a better treatment

for high-severity cracks. (10%) of them suggested a new treatment not included in our

list, which is cold in-place recycling. The remaining (10%) of the participating experts

proposed two new alternatives, cold in-place recycling and route & seal treatments, as the

best solutions for this particular kind of high-severity cracks. These results are shown in

Figure 4-6.

100

90
80

70
^

Chip Seals Thin Hot Mix Asphlt Route & Seal
(HMA) Overlays

M&R Treatments for Low-Severity Cracks
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Hot ¡?-Place Full-Depth Coldin-Place Coldln-Place
Recycling Reclamation recycling recycling+ Route

&Seal

M&R Treatments for High-Severity Cracks

Figure 4-6: Results of Experts' Selection for the "Transverse Cracking" Distress.

On the other hand, the received data regarding the rutting levels showed the following
results: In the case of slight-ruts (< 9 mm deep), (60%) of the participating experts chose
micro-surfacing as the most suitable solution for the slight ruts and (40%) chose to do
nothing about the slight ruts. For the severe-ruts (> 9 mm deep), all the participating
experts selected the milling off and replacement as the best treatment for severe ruts.

These results are shown in Figure 4-7.

l·

Micro-Surfacing Doing Nothing

M&R Treatments for Slight-Ruts

Figure 4-7: Results of Experts' Selection for the "Rutting" Distress.
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4.3 Integrated MAUT/Regression Model Information:

The integrated MAUT/Regression model development-process required two parts

of information as well. The first part consists of the real values of the sub factors'

attributes collected from the historical records of the Nebraska Department of Road

(NDOR) called "Tab files". The second part consists of the MAUT model outputs of

condition ratings. The MAUT model information was explained earlier in the sections

above. The real values of the attributes of sub-factors will be presented in the following
section:

The Nebraska Pavement Management System (NPMS) manages all rural and urban-

marked maintained highways and recreation roads. Its records include all highways and

roads on the National Highway System. The information used in NPMS includes

pavement inventory data, historical and current pavement condition data, pertinent traffic

characteristics information, and construction and maintenance cost information. The

NPMS database is structured on a milepost basis. The pavement data are stored for each

milepost in the system. The data is collected for network level sections, which are listed

in order by highway number and reference post number. Contests are validated by the

personnel in the pavement management department. These network pavement sections

were specified using geographical, geometrical, traffic, and pavement design information.

An example of the collected information is the pavement condition data that is used to

describe the surface condition of each segment of the highways within the state. The

historical condition data and performance measures are used to monitor and evaluate

maintenance, rehabilitation, and reconstruction designs and techniques, calibrate
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performance prediction curves and design procedures, and provide information for
special research purposes.

The NDOR conducts condition surveys on the paved road network, which includes a

uniform pavement rating system for highways throughout the state on an annual basis.

The available "Tab files" data were grouped according to year and contained information

on highway sections, such as beginning reference post, ending reference post, district

number, state functional code, county code, national functional code, rural-urban code,

the completed date of a strategy, and accident data along with detailed information on

geometry, distress amount, traffic, pavement design, etc.

The geometrical information includes lane direction, centerline mile amount, and

shoulder width. The distress information consists of values for different distresses, such

as rutting, slab cracking, transverse cracking and joint cracking. It also includes values

for performance indicators, such as the International Roughness Index (IRI), restoration
index, cracking index, etc.

The information regarding traffic contains the average daily traffic (ADT) of vehicles,

truck ADT, and the growth of the number of vehicles after 20 years. The pavement

design data include; the thickness of the base and the surface course layer, the roadway
material type, the pavement age, etc.

The NDOR has classified pavements into three categories: rigid pavements, bituminous

pavements and full-depth asphalt pavements. In the current study, the analysis was

limited to the records of the full-depth asphalt pavements, and the "Tab files" had only

been acquired for a period of eight years from (1997-2003).
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Table 4-1 shows an example of a "Tab file" for the year 1997. Not all the data in the tab

files were used in this research. Some information, such as beginning reference post,

ending reference post, number of lanes, all performance indicators (IRI, PSI, cracking

index, etc.) were eliminated from this study.

On the other hand, some modifications were made to the information used in this study.

For example, the pavement distresses were limited to only two distress types "transverse

cracking and rutting", the traffic information was limited to only the Average Daily

Traffic (ADT), and the pavement age was limited to a maximum of 15 years as a

threshold for applying maintenance and rehabilitation treatments. For example, a road

segment of 1 6 years of age will be considered in a good condition because the age of 1 5

years is the threshold for M&R treatment application as an obligatory procedure, not only

as a necessary one.

Information on surface and base course layer depth was used as it is without any

modifications, but the International Roughness Index (IRI) was replaced by roughness

measurements to prevent the correlation and the calibration procedures between the

developed model and the (IRI).

After applying suitable modifications to the collected data, a new data set was available

for model development. However, the new data set is still missing the climate data taken

into consideration in the current research. The considered climate data include the air

temperature, pavement temperature, rainfall amount, and freezing temperature.
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4.4 Climate Conditions:

Both the pavement surface and the underlying supporting layers are exposed to

continuous changeable climate influences. For this reason, statistical data and general

information on the following climate variables were gathered before starting the model

development process:

4.4.1 Air Temperature:

The air temperature has a direct influence on the strength of the supporting layers,

the type and amount of the bitumen that should be used in the flexible-pavement and, as a

result, on the overall performance of the pavement. Also, sudden variations in

temperature between the top and the bottom surfaces of the pavement affect its deflection

and load-bearing capacity, which may result in cracking, spalling, or even the blow-out of

some slabs.

In the current research, based on the temperature variations between the yearly seasons,

two sets of data were developed. The first data set accounts for summer with climate

conditions of air temperature, pavement temperature, and amount of rainfall. The second

data set accounts for winter with climate conditions of freezing and pavement

temperature.

The North-American regional weather networks collect and archive hourly weather

information in an accessible database. Each highway segment in the "Tab files" was

located in its climatic zone, and on that basis climate information was obtained for each

specific climatic zone (NARWN, 2009).
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In this study, the readings of the air temperature covered the months of June, July, and

August from 1997 to 2003. These readings of air temperature were recorded for each day

and averaged on a yearly basis.

4.4.2 Pavement Temperature:

According to (Solaimanian et al., 1993), during the winter season, the minimum

pavement temperature is in most cases one or two degrees Fahrenheit (0F) higher than the

minimum air temperature. Therefore, the asphalt institute provides the following equation

for determining the low pavement temperature (AI, 1995):

Tmin= 0.859 Tair+ 1.7 Eq: (4-1)

Where: Tm¡n is the minimum pavement temperature (0C) and Ta¡r is the minimum air

temperature (0C).

The previous equation is applied in the current study for calculating the pavement

temperature of each highway segment for both summer and winter data sets.

4.4.3 Rainfall Amount:

The rainfall has an influence on the stability and strength of the supporting layers

because it affects the moisture content of the sub-grade and sub-base. In cold regions

where the pavement is exposed to freezing temperatures, the moisture content acts as a

supply, which causes the growth of ice lenses under the pavement and may contribute to
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frost damage. Also, where the frost problem is absent, the moisture content will vary with

rainfall and this will in turn affect the expansion and contraction of the pavement.

The rainfall amounts for each climatic zone were collected from the archive of the North-

American regional weather networks for the years between (1997 and 2003) and were

determined for each highway section within its specific climatic zone (NARWN, 2009).

4.4.4 Freezing Temperature:

Most researchers refer to the effect of freezing temperature by using the "Frost"

terminology. This term generally involves two concepts: (1) the existence of freezing

temperature below 32 0F (0 0C). (2) The action of the freezing temperatures upon the soil,

which leads to the state of frozen soils. When the pavement is subjected to freezing

temperatures, several phenomena occur, such as the rapid freezing of the water film on

the pavement's surface, which leads to skid-related accidents, and layers or lenses of a

clear ice of several inches in thickness are built up under the pavement system.

In a similar way, the readings of the freezing temperature covered the months of

December, January, and February from 1997 to 2003. These readings were recorded for

each day and averaged on a yearly basis. Also, the pavement temperatures for winter data

set were extracted from the Equation (4-1) in a similar manner, and then used for analysis

and model development processes.
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4.5 SUMMARY:

This chapter presented a detailed discussion regarding the collection process of the

required data. Two parts of data were collected; one part via a designed questionnaire for

the MAUT condition-rating model. The other part was collected from the records of the

NDOR called "Tab Files" for the building and validation of the integrated

MAUT/Regression condition-rating model; in addition to the collection of the climate

data from the archive of the North-American regional weather networks.
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CHAPTER 5: DEVELOPMENT OF FLEXIBLE PAVEMENT
CONDITION-RATING MODEL

Keeping asphalt-surfaced highways and roads in an acceptable condition is the major

goal that departments of transportation and pavement engineers always try to achieve.

This requires a reliable tool for predicting the performance of pavements in a network.

The objective of the current study is to develop simplified pavement condition-rating
models that can be used for various pavement management purposes. These models

predict the present condition rating based upon knowledge of different climatic, physical,

and operational factors. The model-building procedure requires a detailed analysis of

historical data. In the following sections, the development of a flexible pavement
condition-rating model is comprehensively explained and discussed.

5.1 THE MAUT CONDITION-RATING MODEL

5.1.1 Application of AHP in MAUT Model:

The AHP technique is used in order to assess each factor's relative weight in the

MAUT model, which represents the relative importance of this factor among other

factors towards the goal decision of flexible pavement condition-rating. The procedure
for using the AHP (Saaty, 1982; 1995) can be summarized as follows:

5.1.2 Model the Problem as a Hierarchy:

The goal is to structure the problem into humanly-manageable sub-problems. To

do so, iterating from top (the more general) to bottom (the more specific), splits the
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problem into sub-modules that will become sub-hierarchies. Navigating through the

hierarchy from top to bottom, the AHP structure of the MAUT model comprises:

Level 1: contains the Goal (Condition-Rating value ranging from 0-10). Level 2: contains

the Criteria (main factors: climate conditions, physical properties, and operational

factors.) Level 3: contains the Sub-criteria (sub-factor evaluation parameters such as: air

temperature, pavement age, average daily traffic ADT....etc).

Figure 5-1 shows the constructed hierarchy of the proposed model.

<
O
Ü
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Climate Conditions
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Temperature

Pavement
Temperature
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Pavement
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1
Operational Factors

Average Daily
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Roughness
Measurements

I Transverse
-*¦'< Cracking

I Amount

Rutting
Amount

Figure 5-1: Hierarchy of the Developed Model.
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5.1.3 Pair-wise Comparison Matrices:

In this step, four pair-wise comparison matrices were developed, one among the

main factors of the second level: (Climate conditions, Physical properties, and

Operational factors) and the other three among the sub-factors of the third level.

5.1.4 Assign Priorities:

Once the matrices have been constructed, the participants use AHP to establish

priorities for all its main factors and sub-factors. In doing so, information is elicited from

the participants and processed mathematically. Consequently, filling the cells of each

pair-wise comparison matrix with numbers on a scale of (1-9) by the expert respondent,

will lead to calculating the relative weights of each sub-factor in its group. Tables 5-1, 5-

2, 5-3, and 5-4 present an example of assigning priorities by "Respondent No.l".

Table 5-1 : Main Factors Pair-wise Comparison Matrix (Respondent No.l).

Main Factors

Climate Conditions

Climate
Conditions

1

Physical
Properties

1/2

Operational
Factors

1/4

Physical Properties 1/2

Operational
Factors

Table 5-2: Physical' Sub-Factors Pair-wise Comparison Matrix (Respondent No.l).

Sub-Factors Surface Layer Depth Base Layer Depth Pavement Age
Surface Layer

Depth 1 1 1/2

Base Layer
Depth 1/2

Pavement Age
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Table 5-3: Climate' Sub-Factors Pair-wise Comparison Matrix (Respondent No.l).

Sub-Factors Air
Temperature

Pavement
Temperature

Rainfall
Amount

Freezing
Temperature

Air
Temperature

1 1 1/3

Pavement
Temperature

1/3

Rainfall
Amount

Freezing
Temperature

1/2 1/2 1/6

1

Table 5-4: Operational' Sub-Factors Pair-wise Comparison Matrix (Respondent No.l).

Sub-Factors Average Daily
Traffic (ADT)

Roughness
Measuremen

ts

Transverse
Cracking
Amount

Rutting
Amount

Average Daily
Traffic (APT)

1 1/2 1/3 1

Roughness
Measurements

2/3

Transverse
Cracking Amount

3/2

Rutting Amount 1/2 1/3

5.1.5 Reliability Test:

After filling the matrices with numerical values based on a scale of relative

importance (1-9), this scale was tested to see whether its measuring values were reliable

or not. In other words, can we rely on these scores in building our model or not?

The reliability of the nine-point scale used in this study was determined by applying

Cronbach's alpha test, which is a widely used measure of reliability (Wei et al, 2007).
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Cronbach's alpha (a) is an index with values between (0-1) for estimating the reliability

of a scale containing several items.

According to (Kaplan et at, 1993) the lowest acceptable limits of (a) are 0.50 -0.60, and

the closer (a) is to 1.00, the better the internal consistency of the items in the scale being

assessed. Table 5-5 shows the results of the reliability analysis, Physical properties has

the lowest reliability coefficient (a = 0.552) but within the acceptable range (0.5-0.6);
thus their results were included in the model.

Table 5-5: Reliability Results of the Measuring Scale.
Variable

Main Factors
('run bach's (u)

0.998

Reliability

High
Climate Conditions 0.781 High
Physical Properties 0.552 Low (acceptable)
Operational Factors 0.957 High

Since all the reliability results range between 0.552 - 0.998, the scale can be considered

reliable with the sample and priority vectors can now be calculated based on the values in

the matrices.

5.1.6 Establish Priority Vector:

Having a comparison matrix filled with priority values ranging from 1 -9, we can

now perform the computing of priority vectors. The priority vector is the normalized

eigen vector of the matrix using Saaty's methodology (1982). Since it is normalized, the

sum of all elements in each comparison matrix is equal to 1. The priority vector

(weighting vector W1) shows relative weights among the factors that we compare. In our

study, Table 5-6 shows those weights [W1) in which the Operational factors have the
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highest effect on the condition of flexible-pavement with a weight of (0.571), followed

by the Physical properties with a weight of (0.286), and at last the Climate conditions

with a weight of (0.143). On the other hand, within the Climate conditions, freezing

temperature has the highest weight of (0.545); pavement age weight is also the highest in

Physical properties (0.500); and finally Transverse Cracking Amount has the highest

weight of (0.428) in Operational factors.

5.1.7 Checking the Consistency of the Judgments:

In this step the Consistency Index (CI) and the Consistency Ratio (CR) are both

used to verify the logical consistency of the priority weights. Table 5-6 presents the
values of CI and CR for all main and sub factors.

Table 5-6: Weighting Vector; Consistency Index; Consistency Ratio Values for Pair-wise
Matrices, (Table 5-1 to 5-4), filled by "Respondent No.l".

Factors

Climate Conditions

Weights
TO

0.143

CI

0.00

CR (%)

0.00

Physical Properties 0.286

Operational Factors 0.571

Air Temperature 0.182 0.00 0.00

Pavement Temperature 0.182

Rainfall Amount 0.091

Freezing Temperature 0.545

Surface Layer Depth 0.250 0.00 0.00

Base Layer Depth 0.250

Pavement Age 0.500
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!•'actors Weights (M C.R(%)

Average Daily Traffic (ADT) 0.142 0.00 0.00

Roughness Measurements 0.287

Transverse Cracking Amount 0.428

Rutting Amount 0.143

The previous results show values of CR < 10%, which means that all the matrices

received from practitioners were consistent, and thus the weight vectors are accepted and

can be incorporated in the proposed model.

In Table 5-7, the final weighting vectors (W¡) for the ten questionnaires are presented.
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5.1.8 Decomposed Priority Weights:

In this step, the decomposed weight of each sub-factor (which represents its

overall weight among its group) will be calculated. Equation (5-1) shows the calculation

of the decomposed weight of a sub-factor by multiplying the main factor weight by its

sub-factor weight (Al-Barqawi and Zayed, 2006).

SDWjj = Wi * Vjj Eq: (5-1)

Where: SDWy: sub-factor decomposed weight. W¡: weight of main factor i. Vy: weight

of sub-factor j within the main factor i.

As an example, Equation (5-1) is applied to the "Respondent No.l" and the results with

the overall weights for sub-factors are shown in Table 5-8.

Table 5-8: Sub-factors Decomposed Weights.
Sub-Fsielor

Air Temperature
Wj

0.143
Vi,

0.182
SDWjj
0.026

Pavement Temperature 0.143 0.182 0.026
Rainfall Amount 0.143 0.091 0.013

Freezing Temperature 0.143 0.545 0.078

Surface Layer Depth 0.286 0.250 0.072
Base Layer Depth 0.286 0.250 0.072

Pavement Age 0.286 0.500 0.143
Average Daily Traffic

(APT)
0.571 0.142 0.081

Roughness Measurements 0.571 0.287 0.164
Transverse Cracking

Amount 0.571 0.428 0.244

Rutting Amount 0.571 0.143 0.082

A similar application of Equation (5-1) was repeated for all of the 10 received

respondents, and as a result, the final weight of each main factor with its sub-factors was
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determined as the average of the ten values. Table 5-9 shows the values of the final

weights, in which it is noticed that Operational factors contribute in condition

assessment of flexible-pavement with (59%), Physical Properties with (29%), and finally

Climate Conditions with (12%). Figure 5-2 graphically presents the final weights of the

three main factors in condition-rating assessment.

Total Weight Of Main Factors

mm
m

m

aclimate Conditions

ß Physical Properties
?

II» a Operational Factors

Figure 5-2: Total Weights of Main Factors in Condition-Rating Assessment.

Accordingly, the final contribution of each main factor and sub-factor to the condition of

flexible-pavement is shown in Table 5-9. The weight of each main-factor and sub-factor

is calculated by taking the average (mean) of the ten received questionnaires. Computing

the average value is valid since no outliers were found in the ten observations. Along

with the average (mean) values, both the variance and the standard deviation are

calculated as well. The minimum standard deviation value is (0.007), corresponding to

the sub-factor "Air Temperature" which means that the air temperature data (ten values)
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is more clustered together around the average. On the other hand, the maximum standard

deviation value is (0.062), corresponding to the sub-factor "Roughness Measurements"

which means that the roughness measurements data (ten values) is more spread out from

the average. The highest contributing sub-factor is "Transverse Cracking Amount"

(Operational-24.40%); then "Rutting Amount" (Operational- 14.30%) with approximately

the same contribution of "Roughness Measurements" (Operational-14.20%). On the other

hand, the least sub-factor is "Air Temperature" (Climate-2.00%).

Figure 5-3 graphically presents the final weights of sub-factors in the MAUT condition-

rating model.
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Figure 5-3: Total Weights of Sub-Factors Included in MAUT Model.

83



Table 5-9: The Final Weights of Main and Sub-Factors in the MAUT Condition-Rating
Model.

Factors \.vcra»e (W1) Variance Std. Dcv

Climate Conditions 0.119 0.00060 0.024

Air Temperature 0.020 0.00005 0.007

Pavement Temperature 0.023 0.00008 0.009

Rainfall amount 0.021 0.00018 0.014

Freezing Temperature 0.055 0.00034 0.018

Physical Properties 0.289 0.00152 0.039

Surface Layer Depth 0.099 0.00106 0.033

Base Layer Depth 0.089 0.00088 0.030

Pavement Age 0.101 0.00267 0.052

Operational Factors 0.592 0.00260 0.051

Average Daily Traffic
(ADT)

0.063 0.00016 0.013

Roughness
Measurements

0.142 0.00038 0.062

Transverse Cracking
Amount

0.244 0.00349 0.059

Rutting Amount 0.143 0.00219 0.047

5.1.9 Attributes Utility Functions (Ua):

Owing to the fact that each sub-factor may have several attributes that differ in

their impact on flexible-pavement condition, the utility score (Uy) of each attribute was

used. The modeling survey was designed to provide preference scores for selected sub-

factors required to estimate the utility-scoring functions. Respondents were asked to

evaluate the impact of each sub-factor by assessing its different attributes. The
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respondents had provided scores for each level (attribute) of a particular sub-factor.

These scores were provided on a scale of 0 to 1 0, where (0) means the lowest negative

effect of an attribute and (10) means the highest positive effect. Moreover, given that the

objectives are to obtain multi-attribute utility functions based on experts' preferences, a

mean-score approach was adopted. The mean-score approach of each attribute is based

on averaging scores derived from several respondents, which represents the single-

attribute utility function for that attribute.

A sample of the received data (scores) from experts (respondents) is presented in Table 5-

10, in which a utility score is assigned for each attribute's value of sub-factor (Roughness

Measurements).

Table 5-10: Utility Values of Sub-Factor's (Roughness Measurements) Attributes.

Roughness
Measurements ( in in /in)

Smooth (RM < 2.48 )

S.

y.
If

f.

il
3!

"i
u
y.
S

C
y.
it

X.

X

¦r.
a
y.

y.

il
y.

y.
it

r-
it
t
c

y.
¿s

y.

y.

y. y.

^^

y.

2

Sl

7.9

Moderate (2.49 < RM <
3.33) 5.0

Rough (3.34 < Rm <6J8) 1.8

Table 5-11 shows the final averaged utility scores for all the sub-factors' attributes, based

on the proposed scale.
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Table 5-1 1 : Utility Scores (Uy) for Sub-Factors' Attributes.
AttributeAttribute Utility I tilitv

1.1 Air Temperature (T8)
0°C< Ta < 10 0C
10°C< Ta < 22 0C
Ta > 22 0C

1.2 Pavement Temperature (TP)
Tp>|-22°C|
1-22 °C|> Tp > 1-10 °C|
|-10°C|>Tp>|0°C|
0°C< Tp < 10 0C
10°C< Tp < 22 0C
Tp > 22 0C

1.3 Rainfall Amount (RF)

Low: Rf < 0.5 mm/hr
Moderate: 0.5 < Rf < 3 mm/hr
High: Rf> 3 mm/hr

1.4 Freezing Temperature (TF)
TF>|-22°C|
1-22 °C|> TF > 1-10 °C|
1-10 °C|>TF> I 0 °C|

2.1 Pavement Age
Less than 5 yrs
5 yrs < Age < 9 yrs

9 yrs < Age < 12 yrs
12 yrs < Age < 14 yrs
Equal to 15 yrs
1 6 yrs < Age < 1 9 yrs
1 9 yrs < Age < 22 yrs
22 yrs < Age < 26 yrs
26 yrs < Age < 30 yrs
More than 30 yrs

5.2
7.9
3.5

0.8
1.3
2.3
3.6
7.0
4.1

7.1
5.4
2.5

0.7
1.4
2.6

8.6

7.9
6.2
4.2
1.5
7.8
5.0
4.4
1.9
1.2

2.2 Surface Layer Depth (SDL)
SDL < 2 in
SDL > 2 in

2.3 Base Layer Depth (BDL)
BDL > 4 in
BDL > 4 in

3.1 Average Daily Traffic (ADT)
Low (ADT < 20 vch/day)
Moderate (20 < ADT < 100)
Heavy (ADT > 100 vch/day)

3.2 Transverse Cracking Amount
(Crk)

Low(Crk< 13 mm)
High(Crk>13mm)

3.3 Roughness Measurements (RM)
Smooth (RM < 2.48 mm/m)
Moderate (2.49 < RM < 3.33)
Rough (3 .34 < RM < 6. 1 8 mm/m)

3.4 Rutting Amount (Rut)
Low (Rut < 9 mm)
Moderate (10 mm < Rut < 13

mm)
High (14 mm < Rut < 20 mm)
Critical (Rut > 20 mm)

0C: degree Celsius,
mm/hr: millimeters per hour
in: inch,
yrs: years.

vch/dy: vehicles per day.
mm/m: millimeters per meter,
mm: millimeters.
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Accordingly, in order to represent the relationship between the values of attributes and

utility scores, utility functions were constructed. Scores of the different attributes

obtained from the responses were used to model the utility functions. A wide variety of
functional forms and transformations were investigated. Models were fitted using mean-
scores and individual-level scores. The ability of each function to reproduce utility scores

directly was assessed. After all the investigations, the following functions emerged as the
best functional form for converting attributes values into utility scores. (An example of
one of the sub-factor's utility functions will be explained here; the rest will be illustrated

in Appendix E).

Figure 5-4 shows the Average Daily Traffic (ADT) utility scores (0-10) towards its range
of attributes values (ADT in vehicles per day) based on collected questionnaires. A

quadratic function does exist, and tells that the greater the ADT value is, the smaller the

utility score is, and the more negative impact the ADT have on the pavement condition.

ADT Utility Function
Utility Score = 9.446 - 0.07873 ADT

+ 0.000180 (ADT)A2
lO-i

9-

8- N.

* 4 ^*\
3 »\^

0 25 50 75 100 125 150 175 200 225
ADT (vehicles per day)

Figure 5-4: Utility Function of the Sub-factor (ADT) Attributes.
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5.1.10 Condition Rating Scores:

Finally, the overall condition-rating score is generated mathematically by

multiplying the decomposed weight of each sub-factor (Table 5-9) with the utility score

of each sub-factor attribute (Table 5-11), followed by a summation of results of each

criterion within the road segment. The following Equation was used for both summer and

winter cases:

CR= E™iSDWij*Uij Eq: (5-2)

Where:

m: number of sub-factorsy.

SDWjj: sub-factor decomposed weight.

Uiji utility score of each sub-factory within the main factor /.

5.1.11 The MAUT Model Application:

Based on the developed MAUT model (Equation 5-2) condition-rating scores of

each highway segment are calculated for the available data sets (NDOR "Tab files") as

shown in Table 5-12. Once the condition of each pavement section has been defined,

multiple regression analysis is applied in order to build the most appropriate condition-

rating models for flexible pavement.
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5.2 INTEGRATED MAUT/REGRESSION MODEL

5.2.1 Introduction:

This chapter presents an integrated MAUT/Regression model for evaluating the

condition of flexible-pavement. It considers the impact of different climate condition,

physical properties, and operational factors on the overall condition of flexible pavement.

As mentioned before, the output (condition-rating score) was not included in the received

historical data; therefore the MAUT model was developed to provide this missing value.

However, the application of multiple regression analysis is focused on building the most

appropriate models for condition assessment of flexible-pavement. Figures 3-3 and 3-4

presented the applied methodologies for building and validating the proposed model. The

detailed explanation of these methodologies will be described in the following sections.

5.2.2 Model Development Process:

As stated earlier, the current research deals with two sets of data. One set is based

on the NDOR "Tab files" contains the real values of the considered sub-factors in this

study. Yet another set consists of the questionnaires' responses corresponding to the
MAUT condition-rating model. The two sets of data were combined and stored in

Microsoft Excel because of its capability of turning easily among various tasks. Then, for

data processing and the model development phase, Minitab ® 15 statistical software is

used. According to (Kulandaivel, 2004) Minitab ® 15 is one of the most powerful,

flexible, and easy to use statistical software packages.

Many regression models are designed in order to cover the wide range of influence that

predictor variables (sub-factors) have on response output (condition-rating score).
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Based on temperature variations between the yearly seasons, two models were built (for

summer and winter seasons). Only the building process of the summer model is presented

in detail (the winter model can be found in Appendix B). The model development steps

are as follows:

5.2.2.a Initial examination of relationships and interactions:

Prior to modeling the data in hand, it is recommended that we first plot the data

points. Then by examining these initial plots we can easily assess whether the data have

linear relationships or interactions are present.

An X variable (e.g. ADT) that has a linear relationship with Y (condition-rating) will

produce a plot close to a straight line, as shown in Figure B-Ia (Appendix B), which is

the ideal case. However, some exceptions may come across our own modeling, such as in

Figure B-Ib, c, and d (Appendix B), where transformation of variables should be taken

into consideration in order to get better results.

In the current study, plotting each input variable (sub-factor) against the output variable

(condition rating-CR) resulted in three patterns of figures:

Pattern One, in which the data plot looks like Figure B-Ib (Appendix B), and a

transformation of variable X to (VX) was applied. Six sub-factors followed pattern one in
their relation with the output CR (condition rating), which are (rainfall amount, pavement

age, ADT, roughness measurements, transverse cracking amount, and rutting amount).

Figure 5-5 is an example of pattern one between the sub-factor "Transverse cracking-

Tran Crak" and the output (CR).
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Fitted Line Plot

7

6-

u 3

4-

3- 1 1 1 1 1 1 1 G"1
0 10 20 30 40 50 60 70

Tran Crak

Figure 5-5: Plot of Transverse Cracking (Tran Crak) against Condition Rating (CR).

Pattern Two, in which the data plot looks like Figure B-Id (Appendix B), and it is

recommended to transform the variable X to Log X. Two sub-factors followed pattern

two in their relation with the output CR (condition-rating), which are (Air Temperature
and Pavement Temperature). Figure 5-6 is an example of pattern two between the sub-

factor "Air Temperature-Air Temp" and the output (CR).

Pattern Three, in which the data plot looks like Figure B-Ia (Appendix B), which is the

ideal case, and there is no need for any transformation to be applied. Two sub-factors

followed pattern three in their relation with the output CR (condition-rating), which are
(Surface Layer Depth, and Base Layer Depth). Figure 5-7 is an example of pattern three
between the sub-factor "Surface Layer Depth-SLD" and the output (CR).
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Fitted Line Plot

g 5-1

27 28 29 30
Air Temp

31 32

Figure 5-6: Plot of Air Temperature (Air Temp) against Condition Rating (CR).

Fitted Line Plot

Figure 5-7: Plot of Surface Layer Depth (SLD) against Condition Rating (CR).

93



5.2.2.b Testing for Multi-colinearity:

The statistical phenomenon (multi-colinearity) refers to a situation in which two

or more predictor variables are highly correlated in a multiple regression model. A

perfect multi-colinearity between two or more independent variables means a correlation

value equal to 1 or -1. The multi-colinearity presence leads to some of the following
consequences; the estimation of the impact of an explanatory variable X on its dependent
variable Y tends to be less accurate and precise than if independent variables were not
correlated with one another, which means that the two independent variables with high
correlation will contribute redundant information to the multiple regression models.

Another consequence will be the producing of unstable coefficients for the model (large
standard error and low t values.)

In the current study, multi-collinearity will be investigated by calculating the sample
correlation matrix for the independent variables. The correlation matrix for the summer

model with its ten independent variables before and after transformation is constructed as

shown in Figures 5-8 and 5-9.

Correlations: Air Temp, Pav Temp, Rain, AGE, SLD, BLD, ADT, Rough, ...
Air Temp Pav Temp Rain AGE SLD BLD

Pav Temp 0.7 64
Rain 0.275 0.183
AGE 0.062 0.157 -0.281
SLD -0.061 -0.115 -0.118 -0.300
BLD -0.361 -0.345 -0.118 -0.293 0.849
ADT -0.098 0.020 -0.201 0.181 0.362 0.289
Rough 0.254 0.230 0.301 0.302 0.015 0.128
Tran Crak 0.484 0.383 0.285 0.219 -0.042 -0.143
Rutt 0-300 0.118 0.369 -0.368 0.332 0.151

ADT Rough Tran Crak
Rough 0.033
Tran Crak 0.058 0.274
Rutt -0.171 0.000 0.291

Cell Contents: Pearson correlation
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Matrix Plot of Air Temp, Pav Temp, Rain, AGE, SLD, BLD, ADT, ...

Matrix Plot of Independent Variables Before Transformations
25.0 27.5 30.0 0 20 40 a? 2.5 5.0

L__J

Air Temp

Rain

Rough

Tran Crak

28 30 32 0.5 1.0 1.5 2 3 4 0 100 200

Figure 5-8: Correlation Matrix Plot of Summer Model Input Variables before
Transformation.

Correlations: Log Air Temp, Log Pav Temp, VRain, VAGE, SLD, BLD, VAUT,
Log Air Temp Log Pav Temp

Log Pav Temp
VRain
Vage
SLD
BLD
VaDT
VRough
VTran Crak
VRutt

BLD

VADT
VRough
VTran Crak
VRutt

VRutt

0.763
0.267
0.024

-0.059
-0.362
-0.074

0.210
0.466
0.37 6

SLD
0.849
0.383
0.053

-0. 040
0.304

VTran Crak
0.4 62

-0
0

-0
-0

0
0
0
0

.174

.123

.114

.347

.028

.180

.341

.183

BLD

0.284
0.165

-0.147
0.119

VRa

-0.267
-0.119
-0.118
-0.194
0.243
0.255
0.391

Vadt

0.067
0.077

-0.111

Vage

-0.332
-0.296

0.206
0.249
0.148

-0.430

VRough

0.221
0.071

Cell Contents: Pearson correlation
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Matrix Plot of Log Air Temp, Log Pav Temp, VRain, ?/AGE, SLD, BLD, ...

Matrix Plot of Independent Variables After Transformations
I» *
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Figure 5-9: Correlation Matrix Plot of Summer Model Input Variables after
Transformation.

Recall that a correlation value greater than 0.7 (in absolute value) generally indicates

multi-collinearity is a problem. Both Figures (5-8 and 5-9) show existing relationships
and interactions between some variables. However, they are weak relationships based on

the weak (positive and negative) correlation values in both cases (before and after

transformation). The only two exceptions are the positive correlation coefficient between

the two variables (Air Temperature and Pavement Temperature) before (0.764) and after

(0.763) transformation, and the positive correlation coefficient (0.849 before and after)

between (Surface Layer Depth and Base Layer Depth).
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Usually, in similar cases when two variables are highly correlated, a decision should be

made to eliminate the one that is "logically" less important.

For this study, a statistical parameter called variance inflation factor (VIF) is used to

determine the severity of multi-colinearity and which variables should be eliminated.

5.2.2.C Variance Inflation Factor (VIF):

By definition, VIF is a statistical index that measures how much the variance of

an estimated regression coefficient (square of the standard deviation) is increased because

of colinearity. In other words, VIF quantifies the severity of multi-colinearity.

For example, if the variance inflation factor of an independent variable equals 9, it means

that the standard error of the coefficient of this independent variable is (V9 = 3) times

larger than it would be if the mentioned independent variable was not correlated with

another independent variable.

A common rule of thumb is that, if any independent variable's VIF > 5 then multi-

colinearity is high, and the variable should be eliminated from the regression model. Also

the value of 10 has been proposed by (Kutner et al., 2005) as a cut off value.

In the current study, the following steps regarding VIF are applied:

1 . Fit regression model with VIF values for the set of selected independent variables.

2. If any VIF > 5, then we have to eliminate the variable with highest VIF, or in case

of all VIF < 5 then we have to proceed directly to step 4.
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3. Fit regression model with VIF values for the new model without the deleted

variable.

4. Perform best-subsets regression with remaining explanatory variables.

Figures 5-10 and 5-1 1 show an example of Minitab output for VIF.

Fit regression model with VIF values for the set of selected independent variables.

Regression Analysis: CR versus Log Air Temp, Log Pav Temp, ...

Predictor
Constant
Log Air Temp
Log Pav Temp
VRain
Vage
sld

BLD

Vadt
VRough
VTran Crak
VRutt

Coef
11.823
0.933

-3.519
-0.0126

-0.26426
0.1089

SE Coef
5.638
4.887
3.829

0.3245
0.04578
0.1166

T

2.10
0.19

-0.92
-0.04
-5.77

0.93

P

0.038
0.849
0.360
0.969
0.000
0.352

-0.05375 0.03376

0.00343 0.01282
-0.2896 0.1062

-0.27242 0.01921
-0.18654 0.03988

VIF

3.877
2.551
1.522
2.041
7.427

-1.59 0.114 7.678

0.27 0.790 1.524
-2.73 0.007 1.652

-14.18 0.000 1.844
-4.68 0.000 2.386

Highest VIF > 5

S = 0.370945 R-Sq = 86.1% R-Sq(adj) = 84.8%

Figure 5-10: Minitab Output of VIF Test for all Independent Variables versus the Output
CR.

• The independent variable (Base Layer Depth-BLD) is eliminated from the model,

and step one is repeated with the new data set.

Regression Analysis: CR versus Log Air Temp, Log Pav Temp,
Predictor
Constant
Log Air Temp
Log Pav Temp
VRain
Vage
SLD
Vadt
VRough
VTran Crak
VRutt

Coef SE Coef
6.118
4.627

-3.269
-0.0242

-0.25079
-0.05188

0.00699
-0.36730
-0.27707
-0.17380

4.383
4.332
3.853

0.3267
0.04531
0.05867
0.01271
0.09494
0.01912
0.03935

1.40
1.07

-0.85
-0.07
-5.54
-0.88
0.55

-3.87
-14.49
-4.42

0.166
0.288
0.038
0.041
0.000
0.047
0.054
0.000
0.000
0.000

VIF

3.003
2.547
1.522
1.971
1.854
1.478
1.303
1.801
2.290
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S = 0.373547 R-Sq = 85.8% R-Sq(adj) = 84.6%

Figure 5-11: Minitab Output of VIF Test for all Independent Variables except (BLD)
versus the Output CR.

• All VIF < 5, now we can proceed to the next step, which is best-subset analysis.

5.2.2.d Best-Subset Analysis:

Upon concluding that the variance inflation factor VIF for all the selected

variables is < 5, the best-subset analysis can be applied. Best-subset analysis is defined as

the process of constructing the best fit regression model with the best possible
combinations of the selected variables.

In best-subset regression, three statistics should be investigated as follows:

1. The Measure of the fit of the model (Cp), calculated using the following
equation:

n SSEp , „ NCP = usEix^x^ - C" - 2P) Eq: (5-3)
Where:

• SSEp: is the error sum of squares for the fitted subset regression model

with ? parameter (p-1).

• n: is the number of observations.

• MSE (X] Xp-i): is an unbiased estimate of variance.

It is recommended that the value of Cp be less than or equal to ? + 1 , where ? is the
number of variables in the model.
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2. Standard deviation of residuals (S), (where S=VMSE: Mean standard Error) the

estimation of the standard deviation is preferred to be as low as possible, so when

S is large, the denominator of F-ratio, F = is also large, which makes the F-& ' ' MSE b

ratio smaller and possibly statistically insignificant.

3. R2 (adj), the closer the value of R2 (adj) to 1 (100%) the better the results are,
without creating other problems such as multi-colinearity.

Figure 5-12 presents an example of Minitab output for best-subset analysis.

Best Subsets Regression: CR versus Log Air Temp, Log Pav Temp,
Response is CR

L L
o o

g g V
T

AP r
xa a

r ? Vn
V RV

T TE1I VoCR
eeaASAuru

Mallows mmiGLDgat
Vars R-Sq R-Sq (adj) Cp SppnEDThkt

1 76.2 76.0 67.8 0.46692 X
1 20.9 20.3 491.9 0.85078 X
2 80.6 80.3 35.9 0.42318 X X
2 79.3 79.0 45.6 0.43683 X X
3 83.2 82.8 18.0 0.39561 X XX
3 82.4 81.9 24.2 0.40498 X XX
4 85.5 85.0 1.9 0.36851 X XXX
4 83.4 82.8 18.2 0.39460 XX XX
5 85.6 85.0 3.3 0.37909 XX XXX
5 85.6 85.0 3.4 0.37923 X X XXX
6 85.7 84.9 4.8 0.37991 XX X XXX
6 85.7 84.9 4.9 0.36205 X XX XXX
7 85.8 84.9 6.3 0.36169 XX XX XXX
7 85.7 84.8 6.7 0.36140 X XXXXXX
8 85.8 84.8 8.0 0.36185 XX XXXXXX

8 85.8 84.7 8.3 0.36236 XXXXX XXXI 9 85.8 85.6 10.0 0.36094 XXXXXXXX ?~|

Figure 5-12: Minitab Output for Best-Subset Analysis for Summer Condition-
Rating Trial Model.
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From Figure 5-12 the selected model is the most appropriate combination of variables, as

it satisfies the previous three statistics, with Cp = 10 < ? + 1 = 9 + 1 = 10, the lowest S

value = 0.36094, and the highest R2 (adj)= 85.6.

5.2.2.e Model Development:

After determining the most appropriate combination of variables based on best-

subset analysis, the next step will be building a multiple regression model for both

summer and winter cases using Minitab ® 15 statistical software. Figure 5-13 presents

the Minitab output that includes a regression equation of all the selected variables with

their estimated coefficients "ßk", the coefficient of determination R2 and R2 (adjusted) ,
and the overall significance of the regression (P value).

Regression Analysis: CR versus Log Air Temp, Log Pav Temp, ...

The regression equation is
CR = 6.12 + 4.63 Log Air Temp - 3.27 Log Pav Temp - 0.024 %/Rain - 0.251 \/AGE

- 0.0519 SLD + 0.0070 VADT - 0.367 VRough - 0.277 ?/Tran Crak - 0.174 ?/Rutt

Predictor Coef SE Coef T P
Constant 6.118 4.383 1.40 0.166
Log Air Temp 4.627 4.332 1.07 0.288
Log Pav Temp -3.269 3.853 -0.85 0.038
VRain -0.0242 0.3267 -0.07 0.041
a/AGE -0.25079 0.04531 -5.54 0.000
SLD -0.05188 0.05867 -0.88 0.047
a/ADT 0.00699 0.01271 0.55 0.054
VRough -0.36730 0.09494 -3.87 0.000
\¡Tran Crak -0.27707 0.01912 -14.49 0.000
VRutt -0.17380 0.03935 -4.42 0.000

S = 0.373547 R-Sq = 85.8% R-Sq (adi) = 84.6%

0.000

Analysis of Variance

Source DF SS MS F
Regression 9 91.896 10.211 73.18
Residual Error 109 15.210 0.140
Total 118 107.106

Figure 5-13: Minitab Output of Regression Equation for Summer Condition-Rating Trial
Model.
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In order to determine the goodness of the developed regression model, three statistics
should be examined as follows:

1. Coefficient of determination R2 and R2 (adjusted): The higher these two
values, the better the model is. An R2 of 70% or higher is generally accepted as
good. In our model R2 and R2 (adjusted) values are 85.8% and 84.6% respectively.
Both values indicate that the model fits the data well.

2. F test: we have to prove that at least one coefficient "ßk" in the regression

equation is not equal to zero. Therefore, a P (F) test of the whole model is carried

out based on a hypothesis test. The null hypothesis (H0) assumes that all

coefficients are equal to zero (i.e. ßo = ß? = ß?-? = 0). The alternate hypothesis (Ha)

assumes that at least one of the coefficients is not equal to zero (i.e. ßk f 0). The

table of analysis of variance in Figure 5-13 shows a value of P = 0.000 < 0.05,

which means that (H0) is rejected with 95% confidence. Therefore, (Ha) is

accepted and at least one coefficient in the estimated regression equation is not

equal to zero.

3. t test: we have to test whether all predictor variables are significantly related to

the response variable or not. Therefore, a "t-test" is performed for each of the

coefficients ß0, ß?·..ß?-? in a similar way to (F test). The null hypothesis of each

coefficient will be as follows:

H0:ßk = 0 ;Hi: ßk#0
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Figure 5-13 shows that the ?-value of the estimated coefficients for predictors (VAGE,
VRough, VTran Crak, and VRutt) is 0.000. Similarly, the p-value of predictors (Log Pave

Temp, VRain, and SLD) is 0.038, 0.041, and 0.047 respectively. As a result, the alternate

hypothesis is accepted and the previous predictor variables are significantly related to the

response variable (Condition Rating-CR) at a-level of 0.05 (95% confidence). However,

the case is different for the remaining two predictors. The p-value of the estimated

coefficients for predictor (VaDT) is 0.054, which is slightly greater than a = 0.05, but can

be accepted. The one that does not have a significant relation with the response variable

(CR) is the predictor (Log Air Temp) with a p-value equals to 0.288 » a = 0.05.

5.2.2.f Residuals Analysis:

Although the previous preliminary tests are always considered important indicators

for verifying the goodness of the model, the essential validating procedure will be the

testing of the linear regression assumptions. Rather than checking the linear regression

assumptions directly on the response variables, it is recommended to re-express these

assumptions in terms of the random errors, and then check them on the random errors

instead. The following three assumptions about the random errors are equivalent to the

assumptions about the response variables:

• The random errors e\ are normally distributed.

• The random errors s¡ are independent.

• The random errors s¡ have a constant variance s2 (homoscedasticity).
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Moreover, by definition Residuals are estimates of experimental error obtained by

subtracting the observed responses from the predicted responses, and can be thought of as

elements of variation unexplained by the fitted model. Since this is a form of error, the

same previous liner regression assumptions that apply to errors can be applied to the

residuals. This is the basic idea underlying residual analysis, which is a highly useful tool

for examining the aptness of a regression model.

These assumptions are described below as follows:

I. Normality of Residuals:

Although many statisticians recommend using skewness and kurtosis for examining

normality (Looney, 1995) and (Wilkinson et al, 1999) argue that skewness and kurtosis

often fail to detect distributional irregularities in the residuals. Therefore, graphical

methods can be considered as a better way for examining the normality assumption. The

normal probability plot of the residuals is used, in which each residual is plotted against

its expected value under normality. A plot that is nearly linear suggests normal

distribution of the residuals. A plot that obviously departs from linearity suggests that the
error distribution is not normal.

Consider the Minitab output for normal probability and frequency plots of residuals for

the selected model (Figure 5-14). In the normal probability plot, the normal distribution is

represented by a straight line angled at 45 degrees. The standard residuals are compared

against the diagonal line to show the departure. In our case, it is clear that the residuals

follow the straight line; which means that the departure from normality is slight.
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Figure 5-14: Normal Probability and Histogram of Residual Plots for the Summer
Condition-Rating Model.

Furthermore, in order to ensure the normality results, additional test statistics were

performed. Some researchers argue that the Shapiro-Wilk (Shapiro & WiIk, 1965) test

was originally constructed to test a sample size carrying up to 50 subjects. However, to
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examine normality for a sample size between 51 and 1999 subjects (119 subjects in our

study), other statistical tests such as the Anderson-Darling test are more recommended.

The null hypothesis (H0) of the normality test assumes that there is no significant

departure from normality, while the alternate hypothesis (H3) assumes that a significant
departure from normality does exist.

In Table 5-13 a p-value of 0.054 > 0.05 for the Shapiro-Wilk test, and 0.070 > 0.05 for

the Anderson-Darling test, means that the null hypothesis cannot be rejected and the

assumption that there is no significant departure from normality holds with a 95%
confidence level.

Table 5-13: Test Statistics Results for Normality Check.

Test Statistic

Shapiro-Wilk

Anderson-Darling

Test
Value

0.989

0.689

P-Valuc

0.054

0.070

Decision (95% confidence)

Accept Normality

Accept Normality

II. Independence of Residuals:

A regression model requires independence of erroneous terms. Again, a residuals plot
can be used to check this assumption. Whenever data observations are obtained in a time

sequence or any other type of sequence, it is better to prepare a sequence plot of the
residuals. Plotting the residuals of those observations versus the case order or time order

of the observations will test for any correlation between errors that are close to each other

in the sequence.
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When the residuals are independent, we expect them to fluctuate in a more or less random

scatter around the base line 0. Consider the Minitab output for residuals versus the order

of the data plot for the selected model (Figure 5-15). The residuals scatter around the

regression line in a random and patternless manner, which implies independent errors.

1.0

-1.0H

Residuals Versus the Order of the Data

S 0.0

t 1 1 1 1 1 1 1 ?-

1 10 20 30 40 50 60 70 80 90 100 110
Observation Order

Figure 5-15: Residuals vs. Order of Data Plot for the Summer Condition-Rating Model.

Moreover, a test called the Durbin-Watson statistic is used to detect the presence of

autocorrelation in the residuals from a regression analysis. In other words, it is used to

statistically examine whether the residuals are independent or not.

Because most regression problems involving time series data exhibit positive

autocorrelation, the hypotheses usually considered in the Durbin-Watson test are:
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Ho: ? = O (Error terms are independent).

Hi: ? > 0 (Error terms are positively correlated).

For upper and lower critical values, du and dL have been tabulated for different values of

k (the number of predictor variables) and ? (the number of observations).

IfD <dL reject H0: p = 0

If D > du do not reject Ho: ? = 0

If dL < D < du the test is inconclusive.

For the model under consideration, where k = 9 and ? = 1 19, the Durbin-Watson tables

indicate the following values; for k = 9, ? = 150 (since 119 is not included in the tables

the values at ? = 150 were taken instead), and the level of significance a = 0.05. The

critical values are dL = 1.60 and du = 1.86.

The Minitab output for the same model for Durbin-Watson statistics is:

D= 1.91 > du = 1.86 thus, the (Ho) is not rejected and the error terms are statistically

proven to be independent.

III. Homoscedasticity:

Homoscedasticity means that the variance of errors is the same across all levels of the

independent variables. When the variance of errors differs at different values of the

independent variables, heteroscedasticity is indicated, which means that the residuals are

not evenly scattered around 0 (the horizontal line). According to (Berry et al, 1985),
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slight heteroscedasticity has little effect on significance tests; however, when

heteroscedasticity is marked, it can lead to serious distortion of findings and seriously

weaken the analysis.

Scatter plots of the residuals versus the fitted values from the model allow comparison of

the amount of random variation in different parts of the data.

In Figure 5-16, the residuals vary around the zero line in a constant pattern without any

high concentration above or under it. This implies that the assumption of

homoscedasticity is not violated, and the test's results are considered satisfactory.
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Figure 5-16: Residuals vs. Fitted Values Plot for the Summer
Condition-Rating Model.
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5.2.3 The Proposed Condition Rating Scale:

Different rating scales for condition assessment of flexible-pavements have been

developed in the US and Canada. The most common ones are the scales of Pavement

Condition Index (PCI) and Pavement Serviceability Index (PSI). The rating scale of PCI

is a (0-100) scale, where the higher value (100) means a road in excellent condition, and

(0) in a poor condition (Shahin, 2005). The rating scale of PSI is a (1-5) scale, where the

higher value (5) indicates that the pavement is in a very good condition, whereas (1)

refers to a pavement in a poor condition (Carey et al., 1960).

In the current study, the overall condition-rating is measured on a scale of 0 to 10,

divided into five condition states corresponding to five ranges of numerical scores. These

condition states are: Critical, Poor, Fair, Good, and Excellent. In addition, for each

condition state a required M&R action is suggested based on the overall condition-rating

score and the distress levels. For example, on the basis of the proposed scale, a road

segment with an overall CR of (3.5) falls under the state of (Poor condition) and the

required M&R action could be a heavy rehabilitation strategy.

The developed condition-rating scale will be able to provide guidance for practicing

pavement engineers and managers to plan and maintain their pavement networks. The

proposed condition-rating scale with its numerical (scores), linguistic (states), required

actions (M&R strategies), and additional recommendations for specific distress types are

all presented in Figure 5-17.
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Scores 10

States -

Required
Actions

Critical Poor

Major
I Rehabilitation

Good Excellent

Moderate Minor Preventive
Rehabilitation Rehabilitation Rehabilitation I

Additional
Recommendations

Distress Type Severity Level Recommended Treatment

I In case of

In case of

I In case of

I
I In case of
I

Transverse

Cracking -IS-
LOW

(Cracks < 1 3 mm
wide)

-then-
Cheap Seals, or
Hot Mix Asphalt
(HMA) overlays

Transverse

Cracking

Rutting

-is-

-is-

High
(Cracks > 13 mm

wide)
-then-

Hot ln-place
Recycling, or
Full-Depth
Reclamation

Slight
(Ruts < 9 mm deep) -then- Do Nothing, or

Micro-Surfacing

Rutting -IS- Severe
(Ruts > 9 mm deep)

-then-
Milled-off and
Replacement

Figure 5-17: Proposed Condition Rating Scale.

5.2.4 Model Validation:

Although the previous statistical diagnostics that were described above are

enough to check the adequacy of the developed model, they cannot be considered at all as

accurate alternatives of the validation process. Most of the researchers consider the

validation step as possibly the most important and overlooked step in the model building
sequence. The ultimate goal of model validation is to make the model useful in the sense
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that the model addresses the right problem, provide accurate information about the

system being modeled, and make the model be actually used.

Therefore a comprehensive model validation procedure is applied on the selected models.

The validation data consist of thirty-two observations embedded into the regression

model to compare its results with the actual results using a Microsoft Excel spread sheet.

Furthermore, descriptive statistics and plots of the actual and predicted outputs are

obtained using Minitab ® 15 statistical software. A detailed explanation of the previous

steps follows:

5.2.4.a Actual vs. Predicted Output Plot:

In this step, a comparison between the actual values of condition ratings and the

predicted values obtained from the regression model is conducted, using a scatter plot as

the one shown in Figure 5-18. The Figure shows that there is no significant departure

between the actual values plot and the predicted values plot, and the predicted values

scatter around the actual values in acceptable ranges. Therefore, the first validation test

results are considered satisfactory.
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Scatterplot of Condition Ratings vs Observations

Actual Condition Ratings
Predicted Condition Ratings

15 20
Observations

Figure 5-18: Minitab Output of Validation Plot for Summer Condition-Rating Model.

5.2.4.D Descriptive Statistics:

The descriptive statistics of the actual and predicted values of condition ratings

will be checked in this step. The results showing in Figure 5-19 and Table 5-14 tell that

the mean and standard deviation values of the actual and predicted outputs are close to

each other, in spite of the fact that the predicted output has a slightly lesser value of mean

and a greater value of standard deviation than the actual output. Therefore, the second

validation test results are considered satisfactory.

Table 5-14: Descriptive Statistics for Actual and Predicted Values of Validation Data.
Descriptive Statistics Actual CR Predicted CR

Mean 6.005 5.817

Standard Deviation 0.639 0.791

No. of Observations 32 32
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Histogram of Actual and Predicted Outputs

4.8

Actual Condition Ratings
Predicted Condition Ratings

5.4 6.0
Observations

6.6 7.2
Mean StDev N
6.005 0.6385 32
5.817 0.7913 32

Figure 5-19: Minitab Output of Histogram of Validation Data for Summer Condition-
Rating Model.

5.2.4.C Mathematical Validation Method:

The final step in the validation process is the application of mathematical

equations. Based on (Zayed et al, 2005) two equations (5-4) & (5-5) are used to validate

the developed model. Equation (5-4) represents the average invalidity percent (AIP),
which shows the error of prediction. On the other hand, Equation (5-5) represents the
average validity percent (AVP), which shows the validation percentage out of 100. Both
(AIP) and (AVP) values are determined as follows:

^(^ Eq: (5-4)

AVP = 1-AIP Eq: (5-5)
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Where: (AIP): Average Invalidity Percent. (AVP): Average validity Percent.

(Ej): Estimated/Predicted Value. (Cj): Actual Value, (n): Number of Observations.

The AIP value varies from 0 to 1 . The closer the value of AIP to 0, the more the model

fits the validation data. In contrast, the closer the value of AIP to 1, the more

inappropriate the model is. In addition, two error terms are used to investigate the

performance of the developed model (Dikmen et al., 2005), namely, root square error

(RMS) and mean absolute error (MAE), which can be estimated using the following

formulas:

¡Yf=1(Actual-Predicted)2
RMS = * Eq: (5-6)

»,r/ir* S,·-? -dctuaí-Predicted „ ,c „.MAE = —*-^ Eq: (5-7)
?

The MAE value varies from 0 to infinity (oo). The closer the MAE value to 0, the better

the validation results are. By applying the previous four equations to the model under

consideration, we obtained the following results:

• AIP = 0.0631

• AVP = 0.9369

• RMS = 0.0798

. MAE = 0.3727

The results show that the predicted outputs are almost 94% accurate, with RMS and

MAE values close to zero. Thus the validation results are considered satisfactory and the

selected model does fit the validation data.
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5.2.4.d Comparison of the Proposed Model with the Existing Assessment Models:
To illustrate the validity of the proposed model in estimating the condition of a

flexible-pavement segment, a comparison was carried out between the developed model
and three common assessment-indices which are (PCI, PSR, and PQI). The four models
were applied on (32) road segments, and the results are tabulated and plotted on one
graph. Using the Pavement Condition Index (PCI), a flexible-pavement is usually rated
by assigning an index of 100 to a perfect pavement, then on the basis of the level and

severity of the observed distresses a cumulative corrected deduct value is generated and
subtracted from the index of 100 (Shahin, 2005). In the case of using the Present
Serviceability Rating (PSR), an equation (Eq: 2-5) between PSR and IRI was developed
by (Al-Omari et al, 1994) for three pavement types including flexible pavement.
Moreover, in the case of the Pavement Quality Index (PQI), the PQI treats the
international roughness index (IRI) as a deduction value from the present condition rating
(PCR) as follows: [PQI = PCR - a (IRI) b], where (a) and (b) are constants given for
interstates, freeways, and multi-lane roads (Reza et al, 2005).

As the rating scale of PCI is (0-100), that of PSR is (1-5), and that of PQI is (0-100).
Therefore, the values of the computed PCI, PSR, and PQI were all adjusted to become on
the same scale of the proposed model, which is from (0-10).

Figure 5-20 shows the values of the four indices plotted against the (32) data
observations. It is clear that the ratings of the two indices (PSR and PQI) are quite high
and distributed in the range of (CR = 8 to 10), whereas the ratings of the (PCI) are less
high than (PSR and PQI) and distributed in a wider range of (CR = 2 to 9). Finally, the
proposed MAUT/Regression model rates the data observations in an approximate similar
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pattern to the (PCI) but within a smaller range of (CR = 4 to 8). Thus, the proposed

model can be considered valid in predicting the condition ratings of flexible pavement.

Scatterplot of PCI, PSR, PQI, MAUT/ Regression vs Observations

¦¦¦¦PCI
HMMIFSR

¦MBS MAUT/ Regressen

Ó 5 10 15 20 25 30 35
Observations

Figure 5-20: Scatterplot of MAUT/Regression,PCI,PSR, and POL

5.2.5 Summary of Developed Models:

All the above-mentioned methodology for model developing and validating

processes had been explained only for the summer condition-rating model. As has

already been stated, two data sets were prepared to build two different models (summer

and winter seasons). Therefore, all the models are developed and tested based on the

same adopted methodology. The number of predictors and their transformation functions

may differ from one model to another, due to available input data and results of different
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Statistical tests. The regression equations for the developed models are listed below, in

addition to the results of validation and different statistical tests applied to all the
developed models as shown in Table 5-15.

5.2.5.a Summer Season Condition-Rating Model:

The developed regression equation is:

CR = 6.12 + 4.63 Log Air Temp - 3.27 Log Pav Temp - 0.024 VRain - 0.251 VAGE
0.0519 SLD + 0.0070 VaDT - 0.367 VRough - 0.277 YTran Crak - 0.174 VRutt

The units of all variables are the same as described in Table 5-11.

5.2.5.b Winter Season Condition-Rating Model:

The developed regression equation is:

CR = 8.09 + 0.0198 Freezing Temp + 0.0025 Pav Temp - 0.232 VAGE - 0.0377 SLD
+ 0.0032 VADT - 0.363 VRough - 0.271 VTran Crak - 0.162 ^RUtT

The units of all variables are the same as described in Table 5-11.

Table 5-15: Summary of Statistical and Validation Results for Condition-Rating Models.

Model

Summer

Winter

R2 %

85.80

86.00

R-(adj)
%

84.60

85.00

P(F)

0.00

0.00

Diirhin-
Watson
Statistics
D>du
1.9114
D>du
1.8745

AIP

0.064

0.066

AVP

0.936

0.934
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5.2.6 Deterioration Curves:

In order to predict the condition ratings (CR) of flexible pavement based on

different climate, physical, and operational factors, a relationship between (CR) and age

is built using the developed MAUT/Regression model. The deterioration curves are built

by varying one or two attributes of the regression model at a time, while keeping other

attributes constant. Figure 5-21 to Figure 5-24 represent condition deterioration of

flexible pavement with respect to ADT (Average Daily Traffic), Roughness

measurements, Transverse Cracking amount, and Rutting amount respectively.

As shown in Figure 5-21 prediction curves are developed for each of the traffic levels

(Low, Moderate, and Heavy), the X-axis represents the pavement age, and the Y-axis is

the condition-rating (CR) score. For example, if the pavement age and level of traffic for

a specific road segment are known, under the same conditions of the proposed model, a

user can easily obtain the condition-rating score by plotting the corresponding value from

the chart on the Y-axis (CR-axis).
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Deterioration Curves
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Figure 5-21 : Minitab Output of Deterioration Curves for Average Daily Traffic (ADT).
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Figure 5-22: Minitab Output of Deterioration Curves for Roughness Measurements.
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Figure 5-23: Minitab Output of Deterioration Curves for Transverse Cracking Amount.
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Figure 5-24: Minitab Output of Deterioration Curves for Rutting Amount.

121



From Figure 5-2 1 to Figure 5-24 it is clear that the rate of pavement deterioration is

significantly less whenever the traffic level is lower, and the distress severity is less. We

can also notice that an inverse polynomial relation of third degree does exist between the

condition value and age of pavement. Tables 5-16 to 5-19 show the third degree

equations between (Age) and (CR), which represent the deterioration curves of Figure 5-

21 to 5-24.

Al) G
(\chick>s/<lav)

Table 5-16: Deterioration Models for Average Daily Traffic.

Model

<20

Traffic
I.L-YCl

Low
¦¦ 0.0018 x3 -0.0154 x2 -
0.4531 ? + 9.2230

K-
(%)

86.50

R-
(iitlj)

84.60

Sttl.
Krrur

0.5526

P-
Yalnc

0.0255

20 < ADT <
100

Moderate Y : 0.0040 ?
0.1630 ?

3 0.0664 x2
7.2130 89.50 88.00 0.5166 0.0120

> 100 Heavy
Y = 0.0006 x3 -0.01 11 x2

0.2570 ? + 5.2060
93.90 93.00 0.3412 0.0160

Y = Condition Rating, ? 'avement Age

Table 5-17: Deterioration Models for Roughness Measurements.
Kou!>hiK'ss

(mm/m)

RM < 2.48

Scw'rily
l.c\irl"

Smooth

Model

Y = - 0.0037 xJ + 0.1224
x2- 1.4190 ? +10.810

R-
(%)

88.70

R:
(adi)
87.00

SKl.
Krror

0.5878

I'-
\;????·

0.0380

2.49 < RM <
3.33

Moderate Y = -0.0036x3 + 0.1151
?2 -1.3030 ? +8.760 83.00 80.50 0.6972 0.0410

3.34 < Rm
6.18

<
Rough Y = -0.0019 ?3 + 0.0752

?2 -1.0330 ? + 6.179 85.10 83.00 0.6115 0.0250

Y = Condition Rating, ? = Pavement Age
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Table 5-18: Deterioration Models for Transverse Cracking Amount.
Tr:ins\ crsi-
C'nukiii»

(mm)

Si'Mfrilj
l.i\el" Model (%)

U2
(U(Ij)

SId.
G.???G

I»-
\ ni ne

cracks <
13.00 Low Y = 0.0013 x3 -0.0036 x2

0.6152 ? +10.290 94.60 93.30 0.4304 0.0010

cracks >
13.00 High Y = - 0.0029 x3 + 0.0588 x2

0.6172 x + 6.373 91.30 90.00 0.4998 0.0030

Y = Condition Rating, ? = Pavement Age

Table 5-19: Deterioration Models for Rutting Amount.

Kiilling
(mm)

Seu-rily
].i\il M(I(U-I

K-
(%)

SId.
Lrror

P-
\ aliiv

R < 9.00 Low Y = 0.0028 x3 - 0.0463
x2 -0.3018 ? +10.290 91.20 90.00 0.5819 0.0130

10.00 < R
<1 3.00 Moderate Y = 0.0026 x3 - 0.0430

x2 - 0.2608 ? + 8.965 88.10 86.40 0.6194 0.0320

14.00 < R
< 20.00 High

Y = 0.0010 x3 -0.0033
x2 -0.5753 ? +8.456 86.60 84.70 0.7217 0.0000

R > 20.00 Critical Y= 0.0011 x3 -0.0112
x2 - 0.4999 ? + 7.500 88.50 86.90 0.6976 0.0440

Y = Condition Rating, ? = Pavement Age

It can be noticed from the results of (R2, adjusted R2, standard error, and P-value) that the
developed deterioration models are robust and reliable. Therefore the deterioration curves

can be used by the DOT to determine the condition-rating score of an existing flexible

pavement road/highway, under the same conditions of the proposed models.
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5.3 MONTE-CARLO SIMULATION

5.3.1 Introduction:

In order for the proposed integrated MAUT/Regression model to be more

efficient in describing the real world with all the uncertainty involved, in addition to

exploring thousands of combinations for "what-if' factors and analyzing the full range of

possible outcomes, the Monte-Carlo simulation is used.

The Monte-Carlo method is one of many methods for analyzing uncertainty propagation,

where the goal is to determine how random variation, lack of knowledge, or error values

affects the sensitivity, performance, or reliability of the system that is being modeled. The

Monte-Carlo simulation can be defined as a method of generating random sample data

based on some known distribution for numerical experiments. This method is often used

when the model is complex, or involves more than just a couple of uncertain parameters.

By using random inputs, we are essentially turning the deterministic model into a

stochastic one. Figure 3-5 presents the steps of Monte-Carlo Simulation Methodology as

follows:

1. Setting up the developed model (defining a probability distribution function for

inputs and identify outputs).

2. Determining the required number of iterations and then running the simulation.

3. Analyzing the generated results (histograms and cumulative curves).

4. Performing a sensitivity analysis to display the impact of each input variable on

the output variable.
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The previous steps were executed using a risk analysis software called"@ Risk 5.5"

which shows many possible outcomes and how likely they are to occur in a convenient

Microsoft Excel spreadsheet. The detailed explanation of the previous steps will be

described in the following sections.

5.3.2 Model Preparation:

A probability distribution of each uncertain input parameter should be defined, in

order to cover the range of all possible values that the input variable may have and the

probability that the input's value is within any measurable subset ofthat range.

Based on the collected data and by using @ Risk software, distributions that best fit the

selected input variables are chosen as the first option and ranked along with other

distributions that may fit the data as well. The ranking of the distributions is based on

three statistical tests (Chi-Squared statistic, Anderson- Darling statistic, Kolmogorov-

Smirnov statistic).

Figure 5-25 shows an example of defining probability distributions that best fits the

inputs of the summer model, in which a fit comparison is used for sub-factor "Pavement

Temperature - Pave Temp". The mean and std. deviation values are quite the same for

both the normal fitting line and the data histogram, which means that the normal

distribution does fit the sub-factor "Pave Temp".

In addition to the graphical justification, three statistical tests are used to select the best

probability fit for each sub-factor; Chi-Square (Chi-Sq), Kolmogorov-Smirnov (KS) and

Anderson-Darling (AD). Table 5-20 illustrates the test statistics, critical values, and P-
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value for Chi-Sq, KS, and AD. On the basis of these results the normal probability

distribution could not be rejected as the best fit for all the sub-factors at a significance

level a = 0.05.

For example, the critical value for the sub-factor "Pave Temp" at 5% significance level is

31.58 using the Chi-Sq test, 0.6831 using the AD test, and 0.0367 using the KS test;

however the test statistics are 28.92, 0.2926, and 0.018 for Chi-Sq, AD, and KS

respectively. Because the test statistics are less than critical values for the three tests, a

null hypothesis (in which the best probability fit is normal distribution) cannot be

rejected. Similarly, the rest of the sub-factors are analyzed; where the majority shows a

normal distribution to be the best fit (Appendix C).

Fit Comparison for Pave Temp
RiskNormal(1.4309,0.0145)

1.4069 1.4550

araaga»»««-,

Input

Minimum 1.3900
Maximum 1.4797
Mean 1.4309
Std Dev 0.0145
Values 1000

Normal

Minimum -co
Maximum +co
Mean 1.4309
Std Dev 0.0145

Figure 5-25: @ RISK Output for Defining Distributions that Best Fit the Sub-Factor
"Pave Temp".
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Table 5-20: Fitted Normal Probability Distributions for Summer Model Sub-Factors.

-M)ISub-Factor

Mean

Air
Temp
1.467

Pave
I'emp
1.430

Rain
Amt
1.002

AGK

4.733

SLD

2.66 8.643

Rough
1.662

Trans
Crak
2.498

Standard
Deviation s(%) 0.013 0.014 0.127 1.033 0.782 3.173 0.416 2.301

Normal
Distribution

Skewnes
Kurtosis

Test
Value

16.68 28.92 29.50 36.22 28.80 13.43 44.46 29.2

Chi-Sq*

Test

Critical
Value 41.33 31.58 33.45 46.81 32.94 22.72 48.27 37.9

P-
Value

0.95 0.41 0.38 0.13 0.42 0.91 0.02 0.39

Reject
HO?

No No No No No No No No

Test
Value

0.22 0.29 0.25 0.55 0.49 0.22 0.34 0.24

A-D Test**

Critical
Value

0.75 0.68 0.82 0.61 0.71 0.52 0.63 0.56

P-
Value

>0.25 0.53 0.45 0.35 0.86 0.61 0.67 0.45

Reject
HO?

No No No No No No No No

Test
Value 0.015 0.018 0.018 0.017 0.017 0.015 0.016 0.019

j^.g***

Test

Critical
Value

0.028 0.036 0.045 0.027 0.019 0.064 0.031 0.031

P-
Value

>0.15 0.26 0.31 0.18 0.28 0.13 0.72
>

0.15

Reject
HO?

No No No No No No No No

H0: the data follow a normal distribution; Ha: the data do not follow a normal distribution.
Chi-Square statistic test for a normal distribution = the P-value should be close to 1 to have the
most confidence level that the data follow a normal distribution.

** Anderson-Darling statistic test for a normal distribution = the P-value should be close to 1 to
have the most confidence level that the data follow a normal distribution.

*** Kolmogorov-Smirnov statistic test for a normal distribution = the P-value should be close to
1 to have the most confidence level that the data follow a normal distribution.

After defining the probability distribution of each input variable, the output parameter

which @ Risk will track during each iteration or re-calculation of a simulation should
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also be clearly identified. Figure 5-26 shows the calculation of the condition rating-CR

(summer model) using the Monte-Carlo simulation.

CRs = 6.12 - 4.63[Log Air Tempj- 3.27 pLog Pave Temp)- 0.024 VRain,- 0.251 WAGE- 0.0519
-' SJDpl- 0.0070 VÄDT. - 0.367 VRough:- 0,2^7 Tfran Crak- 0.1 74 \%m
KKKK K

Figure 5-26: Calculating Condition Rating for Summer Model using Monte-Carlo
Simulation.

5.3.3 Run the Simulation:

Prior to running the simulation, the number of required iterations should be

determined. By increasing the number of iterations in your model, you will increase the

accuracy of your results. However, the question that always arises is how many iterations

are enough?

Best practices suggest performing a "test" with a small (e.g. 10-100) number of iterations

first, to check the performance of the procedure. Then make a large number of (100-

1000) of iterations. The previous procedure was adopted and applied in the proposed

model (summer case) and the results of running the simulation are shown in Figure 5-27,

in which the simulation ran for 1000 iterations giving us a look at 1000 different

scenarios and the likelihood of each occurring for the data in hand. For example, in the

cumulative curve of the same data we can see that there is a 5% chance of CR value
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exceeding the rating value of 6.73, and a 5% chance of CR value being less than the

rating value of 3.97.

Condition Rating - CR
3.97 6.73

5.0%

Condition Rating

©RISK Tril
For Eva I

Minimum 2.7238
Maximum 7.9505
Mean
Std Dev
Values

5.3775
0.8665

1000

Condition Rating - CR
3.97 6.73

Condition Rating

0RlSK Trial ^ársionFor évaluation Pufposes Only
Minimum
Maximum
Mean
StdDev
Values

2.7238
7.9505
5.3775
0.8665

1000

Figure 5-27: @ RISK Output for Simulation Results of Summer Model.



5.3.4 Analysis of Results:

For a better understanding of the obtained results, three procedures were adopted

as follows:

5.3.4.a Tornado Graphs:

Tornado Graphs are used to display the most important probability distribution of

inputs in the proposed model. Figure 5-28 shows the sub-factor (input) distributions

ranked by their impact on the condition rating-CR (output), in which the Transverse

Cracking amount (Tran Crak) variable has the highest impact with a value of (0.72); then

the Pavement Age (AGE) variable with an impact of (0.29); on the other hand, the

Rainfall amount (Rain) variable almost has no impact on the model output with a value

close to (0.00).

Condition Ratings (Pere %: 1%)
Regression Coefficients

Tran Crak -

AGE-

RUTT

ROUGH ¦

PAVE TEMP -

SLD

ADT

RAIN

O ÖÖ ÖOÖÖOOO
I Il I I I ¦ ¦

Coefficient Value

Figure 5-28: @ RISK Output of Tornado Graphs for Summer Model.
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5.3.4.b Scatter Plots:

Scatter Plots are used to display the relationship between the simulated output
(Condition-Rating) and the samples from an input distribution. Figure 5-29 shows the

relationship between the simulated CR and the sub-factor "Transverse Cracking amount-

Tran Crak", in which an inverse relationship clearly exists with a negative correlation

value of (-0.94). In addition, condition ratings greater than 5.24 correspond to 45.5% of

(Tran Crak) values less than 2.53; and condition ratings less than 5.24 correspond to
43.9% of (Tran Crak) values greater than 2.53. Similar scatter plots are conducted for all

the model inputs and presented in Appendix C.

Condition Ratings vs Tran Crak

5*8

#74
Q)

CL

<?
s?

(TJ -
cu
e
o 4
+j

?3
C
o "3U J

2.53
?

'mmm

? Fvrfliir^T^ ^Version
Condition Rating (A2

j + Perc%: 1%) vs Tran Crak
(A2 Perc%: 1%)

^ X Mean 2.5263
<t £ X Std Dev 2.3917¡ ^ Y Mean 5.2450

Y Std Dev 0.9150
Pearson Corr Coeff -0.9412

Tran Crak (Perc%: 1%)

Figure 5-29: @ RISK Output of Scatter Plots for Summer Model.
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5.3.4.C Sensitivity Analysis:

The main goal of any sensitivity analysis is to study how the uncertainty in the

output of a model (numerical or otherwise) can be apportioned (qualitatively or

quantitatively) to different sources of variation in the model input. Figure 5-30 represents

a Regression-Mapped values graph that shows the actual change in condition ratings

(output) for ± 1 standard deviation change in each sub-factor value (input).

It can be noticed that the sub-factor "Transverse Cracking amount-Tran Crak" is indeed

the most important factor affecting the condition-rating (CR) output of this model; and

when this variable changes by one standard deviation, the amount of change in the CR

score from the x-axis will be equal to (-0.6225). This value (-0.6225) is shown in the bar

corresponding to the (Tran Crak) variable. Similarly, all CR change values corresponding

to each input variable are shown in Figure 5-30. Appendix (C) contains detailed reports

and graphs of sensitivity analysis for both summer and winter models.

Tran Crak

AGE

RUTT-

ROUGH ·

PAVE TEMP

SLD

ADT-

RAIN-

Ö
ID
Ö

Condition Ratings (Pere %: 1%)
Regression - Mapped Values

@RISK Trial Version
For Evaluation Purposes Only -0.0471

—i&eHitl

0.0228

-0.003081

0 O
O
O

Condition Ratings
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Sensitivity Tornado

Tran Crak H2

AGED2

RUTT I2

ROUGH G2

AIR TEMP A2

PAVE TEMP B2

SLD E2

ADT F2

RAINC2

in m io VOin in
00 LO vO

Mean of Condition Ratings

Figure 5-30: @ RISK Output of (Mapped Values + Sensitivity Tornado) for Summer
Model.

5.4 SUMMARY:

This chapter presented the development of the flexible pavement condition-rating

model. The chapter was divided into three parts as follows: Part one, in which the

development of the MAUT condition-rating model was explained, including the

application of the AHP technique to determine the relative weights of each sub-factor,

and the use of the utility functions to determine the attribute scores of each sub-factor;

Part two, in which the development of the integrated MAUT/Regression condition-rating

model was presented. The steps for building the integrated model were explained in detail

and limited only to the summer season model. These steps are: (1) the initial examination
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of relationships and interactions (2) the multi-colinearity test (3) the variance inflation

factor (VIF) (4) the best-subset analysis (5) generating the equation (model) and the

preliminary examinations, and (6) the residual analysis. Moreover, the proposed

condition-rating scale and the validation process were included in this part of the chapter.

Four procedures for validating the integrated model (summer model) were used. These

procedures are: (1) the plot of actual vs. predicted results (2) the descriptive statistics (3)

the mathematical validation method, and (4) the comparison between the developed

model and the existing condition-rating indices (i.e. PSI, PCI, and PQI). Finally, several

deterioration curves were built based on four sub-factors: ADT (Average Daily Traffic),

the roughness measurements, the transverse cracking amount, and the rutting amount.

Part three, in which the application of Monte-Carlo simulation was carried out on the

integrated MAUT/Regression model (summer season). The simulation started with the

preparation phase of the proposed model (defining the distributions of inputs and

outputs), then running the simulation, and finally, conducting a sensitivity analysis.
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CHAPTER 6: WEB-BASED CONDITION-RATING TOOL

6.1 Introduction:

To facilitate the usage of the developed integrated MAUT/Regression models of

summer and winter conditions, an automated web-based tool is developed. The main

reason behind selecting a web-based application is the ease in accessing this application

via any web browser over a network such as the internet. Another reason can be the

ability to update and maintain web applications without distributing software or installing

it on potentially thousands of user computers.

This chapter describes the framework of a web-based decision support tool for condition

rating of existing flexible pavement highways and roads. The tool is believed to assist

practicing pavement engineers and experts in evaluating a specific pavement segment and

selecting rehabilitation alternatives.

6.2 The Web-Based Tool System:

6.2.1 The Web-Based Tool Program:

The program of the web-based condition prediction tool is written in the C#

language, using ASP.NET (Active Server Pages .NET) to create the online tool web

pages. The ASP.NET is a very valuable tool for programmers and developers as it allows

them to build dynamic, rich web sites and web applications. It is not limited to script

languages but allows the user to make use of .NET languages like C#, Java, VB, etc.

There were many reasons for using the ASP.NET web application framework, such as the
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fact that it is purely server-side technology, so the ASP.NET code executes on the server

before it is sent to the browser; also the source code and HTML are together, therefore

ASP.NET pages are easy to maintain and write. Finally, the web server continuously

monitors the pages, components and applications running on it, and in case it notices any

memory leaks, infinite loops, and other illegal activities, it immediately destroys those

activities and restarts itself.

The web-based application program includes procedures that link different web-pages,

perform calculations and interpretations, and finally generate and display the condition-

rating results.

6.2.2 The Web-Based Tool Framework:

The web-based condition prediction tool employs the developed integrated

MAUT/Regression models in predicting the current condition of any flexible pavement

highway/road segment. For the pavement segment in question, the user has to prepare

input data regarding all the sub-factors that were considered during the MAUT and

multiple regression process. The following steps describe the framework of the web-
based tool.

6.2.2.a Model Main Menu:

When the user opens the web page, he/she will be welcomed with a picture of a

paved road and the "Model Main Menu" window display. The menu bar presents two

options {Summer climate conditions and Winter climate conditions), which enable the
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user to select the climate conditions that correspond to the road or highway under

consideration. The user can only select one option at a time. The first page of the web

tool is shown in Figure 6-1.

# t t? , ^f***^z*swK¡¡¡¡¡!!¡¡!¡^m:mitm .? : _ ^^^^^^^^t\k§p^^^^^^^^^^^^P^
^ Favwrtes ^OnW^crff«>CG^dftic>pRatingcfnetiblePBv«.

Du^wnflí f <?r-liOt)Jgpwn^n> " Pitch Runner Equipment ftsphatt Crack Sealing
Imtall Ml Vow MVAC Durtmxk EY Seskoatfcig - Asphalt P^ïrag Eouip. Modern Asphait Creek SealingY&ufseK Fie«, Boots. Arie More' Utility Pivert - utility.Buckets. Equipment

Ads Uy Ciocgk Adtbyi^OOgfc

ymmmämmmmmmn

w¡ñi¿m!Bnmtm s

Summet Winter

Figure 6-1 : The Web-based Tool Main Menu Window.

6.2.2.b Importing Input Data:

When the user selects one of the climate condition options, a new window opens,

which is the "Input Menu". The "Input Menu" includes the main categories (Climate

Conditions, Physical Properties, and Operational Factors). Under each category, the user
has to fill the sub-factor cells with the values that he/she has from historical information.

The user has to pay attention to input data shown in specific units such as, degree Celsius

(0C) for sub-factors of (air temperature, pavement temperature, and freezing temperature),
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millimeters per hour (mm/hr) for rainfall amount, inches (in.) for surface layer depth,

years (yrs) for pavement age, vehicles per day (vch/dy) for average daily traffic,

millimeters per meter (mm/m) for roughness measurements, and millimeters for

distresses (transverse cracking amount and rutting amount).

However, the web application has additional features that enable the user to enter the

input data in their original units without any need for the converting process. For

example, if the user has air temperature data on the Fahrenheit scale (0F) he/she does not

have to convert it to Celsius (0C); instead the user has to select the Fahrenheit option

provided in the window beside the value entering field. These features are only provided

for specific inputs which are: (1) air temperature, pavement temperature, and freezing

temperature (selecting between the Fahrenheit and the Celsius scale), (2) surface layer

depth (selecting between inches and millimeter units). Figure 6-2 shows the "Input
Menu" window.

6.2.2.C Data Processing and Results:

After the input values have been entered by the user, the user then clicks on the

"CR- Calculation" button to conduct the condition-rating result. The program executes all

the required calculations using the integrated MAUT/Regression model. After completion
the "CR- Calculation" the model outcome is shown in a new window called "Results" as

shown in Figure 6-3, in which the outcome is described numerically in the Score field,

linguistically in the Condition filed, in addition to the required Action for maintenance
and rehabilitation treatments.
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Figure 6-2: The Web-based Tool Input Menu Window.
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Figure 6-3: The Web-based Tool Results Window.
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6.3 SUMMARY:

This chapter presented the development of a web-based flexible pavement condition-

rating tool. It is based on the proposed integrated MAUT/Regression models, for both

summer and winter climate conditions. It is designed to provide practicing pavement

engineers and experts with condition-rating scores of existing asphalt roads and highways

and the required maintenance and rehabilitation actions.
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CHAPTER 7: CONCLUSIONS AND RECOMMANDATIONS

7.1 Conclusions:

In the current research a new model is proposed to evaluate the condition of

flexible pavement sections. Eleven factors are incorporated in the proposed model under

three main categories: climate conditions, physical properties, and operational factors.

Based on the different variations of climate characteristics within the four seasons of the

year, two models are developed for summer and winter climate conditions.

As a result, a new flexible pavement condition-rating model with a numerical and

linguistic condition scale is developed. Numerically, the scale ranges from 0 to 10, where

0 indicates a pavement in a critical condition and 10a pavement in excellent condition.

Linguistically, the scale is divided into five categories (critical, poor, fair, good, and

excellent). The proposed scale is designed to provide an easy tool for pavement experts to

plan the required rehabilitation and maintenance strategies of flexible pavements.

The findings of this research study can be summarized as follows:

• Based on the collected data, it can be concluded that the sub-factor "Transverse

Cracking Amount" has the highest impact on flexible pavement condition with a

weight of (24.52%), followed by the "Rutting Amount" (14.30%) and "Roughness

Measurements" (14.20%).

• The results of best-subset analysis showed that the sub-factor (Base Layer Depth)

has no effect on the pavement condition. Thus it was excluded from the multiple

regression models for both summer and winter cases.
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The coefficient of determination (R2) showed that 85.8% of the total variability in

flexible pavement condition can be explained through the summer regression

model and (R2) of 86% in the winter regression model.
Validation results show the robustness of the developed models, with an average

validity percent of 94% for the summer model, and 93% for the winter model.

On the basis of the developed models, the relationship between the condition-

rating and age is represented by generating deterioration curves. These curves were

developed with respect to Average Daily Traffic (ADT), Roughness

measurements, Transverse Cracking amount, and Rutting amount, for both

summer and winter cases.

The sensitivity analysis showed that summer and winter models are more sensitive

toward the sub-factor "Transverse Cracking Amount", and less sensitive toward

the sub-factor "Rainfall Amount" and the "winter pavement temperature",

respectively.

By evaluating the condition of flexible pavement based on different climate,

physical, and operational factors, the proposed web-based tool will assist decision

makers prioritize inspection and rehabilitation to network sections that are in poor
and critical conditions.

7.2 Contributions:

The current research contributed the following to the state of art of flexible pavement

condition-rating:
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• Identify and study a wider range of possible factors that significantly impact

flexible pavement performance.

• Develop an integrated MAUT/Regression model for summer and winter climate

conditions.

• Develop deterioration curves.

• Develop an automated web-based condition-rating tool to make the model

accessible to different DOT and other transit authorities.

7.3 Limitations:

The developed models have several limitations, such as:

• The developed models are only appropriate for the condition prediction of full-

depth asphalt pavement, that consists only of two layers (base and surface), and

cannot be used for other kinds of flexible pavements.

• The MAUT model is built based on ten received questionnaires. The more experts

involved in building the model, the more accurate the model will be.

• The developed multiple regression models are limited to a certain range of input

data. These data are from the records of the NDOR called "Tab files".

• The developed multiple regression models are built on the assumption that a

complete reconstruction is applied to each pavement segment after 15 years of

service, which is the ideal case and can be violated.

• The web-based application for predicting the condition-rating of flexible

pavements can only be run using the Internet Explorer web browser.
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7.4 Recommendations and Future Work:

More efforts for the enhancement and extension of the current research can be

summarized as follows:

> Current research enhancement areas:

& More factors (predictors) can be included in the model, such as mix

design, longitudinal cracking, sub-grade types, etc.

& Acquiring more data from other DOT and transit authorities will lead to a

better model-building process, more reliable validation results, and wider

ranges for simulation outputs.

& In addition to full-depth asphalt pavement, other types of flexible

pavements could be analyzed using the developed models.

& For the web-based automated tool, more enhancements should be added

that enable the user to modify climate, physical, and operational factors,

and to get better representation for the results (i.e. graphical deterioration

curves).

> Current research extension areas:

& Standardization of the data acquisition tool for DOT and other transit

authorities, which will facilitate the collection of relevant climate,

physical, and operational data.

& Application of the condition-rating methodology to other pavement types,

such as rigid and composite pavements.
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& Integration of other performance models of flexible pavements with the

developed condition-rating model.

&> Linking of the web-based tool with web-GIS (Geographic Information

System) so that the condition data of a specific road segment can be

extracted and evaluated simultaneously.

145



REFERENCES

American Association of State Highway Officials (AASHO). (1968). "AASHO Highway
Definitions; Special Committee on Nomenclature. " Washington, DC.

American Association of State Highway and Transportation Officials (AASHTO).
(1993). "Guidefor Design ofPavement Structure." Washington, DC.

American Association of State Highway and Transportation Officials (AASHTO).
(2001). "Pavement Management Guide, PMG-I. " Washington, DC.

Al-Barqawi, H., and Zayed, T. (2006). "Condition rating model for underground
infrastructure sustainable water mains. " American Society of Civil Engineers 20(2),
126-135.

Al-Omari, B., and Darter, M. I. (1994). "Relationships between international roughness
index and present serviceability rating." National Research Council, Washington,
DC, United States (1435), 130-136.

American Society for Testing and Materials. (1991). "Standard Test Method for
Measuring the Longitudinal Profile and Vehicular Traveled Surface with an Inertia!
Profilometer." ASTM Standard E 950-83, Annual Book for ASTM Standards,
Section 4.

ASCE. (2009). "2009 Report Cardfor America's Infrastructure." American Society of
Civil Engineers, 99-105.

Asphalt Institute (AI). (1987). "Thickness Design, Asphalt Pavements for Air Carrier
Airports. " Manual Series No. 1 1 .

Asphalt Institute (AI). (1995). "Performance Graded Asphalt Binder Specification and
Testing. " Superpave Series No. SP-I.

Bandara, N., and Gunaratne, M. (2001). "Current and future pavement maintenance
prioritization based on rapid visual condition evaluation. " Journal of Transportation
Engineering, Vol. 127, No. 2, 116-123.

Berry, W. D., and Feldman, S. (1985). "Multiple Regression in Practice." (Sage
University Paper series on Quantitative Applications in the Social Sciences, 07-050).
Newbury Park, CA: Sage.

Boriboonsomsin, K., Bazlamit, S. and Farhad, R., (2006). "Development of Pavement
Quality Index for State of Ohio" the 85th Annual Meeting of the Transportation
Research Board, Washington, DC.

146



Carey, W. N., and kick. P. E. (1960). "The Pavement Serviceability Performance
Concept." Bulletin 250, HRB, National Research Council, Washington, DC, 40-58.

Darter, M. L, Becker, J. M., Snyder, M. B., and Smith, R. E. (1985). "Portland Cement
Concrete Pavement Evaluation System (COPES)." National Cooperative Highway
Research Program Report 277, Transportation Research Board, National Research
Council, Washington, DC.

Delaware Department of Transportation (DDOT). (2000). "Pavement Management: A
Guidefor Elected Officials. " Delaware DOT.

Dikmen, I., Birgonul, M. and Kiziltas, S. (2005). "Prediction of Organizational
Effectiveness in Construction Companies." ASCE- Journal of Construction
Engineering and Management, Vol. 131, No. 2, 252-261.

Eldin, N. N., and Senouci, A. B. (1995). "A pavement condition-rating model using
backpropagation neural networks." Microcomputer in Civil Engineering, Vol. 10,
No. 6,433-441.

Epps, J. A., and Monismith, C. L. (1986). "Equipmentfor Obtaining Pavement Condition
and Traffic Loading Data." NCHRP Synthesis of Highway Practice.

FHWA. (2001). Highway Statistics; Federal Highway Administration.

Guien, S., Woods, R., Weaver, J., and Anderson, V. L. (1994). "Correlation ofpresent
serviceability ratings with international roughness index. " Transportation Research
Board, Washington, DC.

Hall, K. T., Connor, J. M., Darter, M. L, and Carpenter, S. H. (1989). "Rehabilitation of
Concrete Pavements, Vol. 3, Concrete Pavement Evaluation and Rehabilitation
System" Rep. No. FHWA-RD-88-073, Federal Highway Administration.

Hass, R., Hudson, W. R., and Zaniewski, J. (1994). "Modern Pavement Management."
Krieger Publishing Company, Malabar, FL.

Highway Research Board. (1962). "The AASHO Road Test", Report 5; "Pavement
Research", Report 6; "Special Studies"; and Report 7; "Summary Report", Special
Reports 6 IE, 6 IF, and 6 IG; Highway Research Board.

Highway Research Board. (1972). National Cooperative Highway Research Program.
"Synthesis ofHighway Practice 14: SKID RESISTANCE". Highway Research Board,
National Academy of Sciences, Washington, DC.

Highway Research Board. (1994). National Cooperative Highway Research Program.
"Synthesis of Highway Practice 203: Current Practices in Determining Pavement
Condition. " Transportation Research Board, Washington, DC.

147



Hong, H. P., and Wang, S. S. (2003). "Stochastic Modeling ofPavement Performance. "
International Journal of Pavement Engineering, Vol. 4, No. 4, 235-243.

Hudson, W. R., Haas, R. C. G., and Uddin, W. (1997). "Infrastructure management:
integrating design, construction, maintenance, rehabilitation, and renovation."
McGraw-Hill, New York.

Hutchinson, B. G., and Haas, R. C. G. (1968). "A Systems Analysis of the Highway
Pavement Design Process." Highway Research Board, Research Record 239, 1-24,
Washington, DC.

Hammond, J. S., Keeney, R. L., and Raiffa, H. (1999). "Smart Choices, A Practical
Guide to Making Better Decisions. " Harvard Business School Press, Boston, MA.

Karan, M. A., Christison, T. J. Cheetham, A. and Berdahl, G. (1983). "Development and
Implementation of Alberta's Pavement Information and Needs System."
Transportation Research Board, Research Record 938, 1 1-20, Washington, DC.

Karlaftis, M. G., and Loizos, A. (2006). "Neural Networks and Nonparametric Statistical
Models: Comparative Analysis in Pavement Condition Assessment. " TransportationResearch Board 85th Annual Meeting, Washington, D.C, 2006.

Keeney, R. L., and Raiffa, H. (1993). "Decisions with multiple objectives: preferences
and value tradeoffs." Cambridge University Press 1993, Cambridge, United
Kingdom.

Kutner, M. H., Nachtsheim, C. J., Neter, J., Li, W. (2005). "Student Solutions Manual to
accompany Applied Linear Statistical Models. " McGraw-HiMrwin, Chicago, IL,
Boston, MA. Fifth Edition.

Looney, S. W. (1995). "How to Use Tests for Univariate Normality to Assess
Multivariate Normality. " The American Statistician, Vol. 49, 64-70.

Moavenzadeh, F. (1976) "Stochastic Model for Prediction of Pavement Performance."
Transportation Research Board, Washington, D.C, 2001, 56-72.

North-American Regional Weather Networks (NARWN). (2009). "Plains Weather
Network: Nebraska State." http://www.northamericanweather.net/ (22-April-2009
2:15 PM).

Paramapathy, P. A., and Pandey, M. D. (2000). "Time dependent structural reliability
model for pavement condition assessment. " 2000 Annual Conference - Canadian
Society for Civil Engineering, June 7, 2000 - June 10, Canadian Society for Civil
Engineering, London, Ont., Canada, 275.

148



Raymond, C5 Tigne, S., Hass, R., and Rothenburg, L. (2003). "Development ofCanadian
Asphalt Pavement Deterioration Models to Benchmark Performance. " Canadian
Journal of Civil Engineering, Vol. 30, No. 4, 637-643.

Reza, F., Bazlamit, S., and Boriboonsomsin, K. (2005). "Composite pavement
performance index for concrete pavements. " 2005 International Congress - Global
Construction: Ultimate Concrete Opportunities, July 5, 2005 - July 7, Thomas Telford
Services Ltd, Dundee, Scotland, United kingdom, 67-73.

Ruotoistenmäki, ?., and Seppälä, T. (2007). "Road condition rating based on factor
analysis ofroad condition measurements. " Transport Policy, Vol. 14, No. 5, 410-420.

Saaty, T. (1982). "Decision Making for Leaders: The Analytic Hierarchy Process for
Decision in a Complex World. " Lifetime Learning Publications, Belmont, California.

Saaty, T. L. (1995). "Decision Makingfor Leaders; The Analytic Hierarchy Process for
Decisions in a Complex World. " Lifetime Learning Publications, Belmont, California.

Sargoius, M. (1975). "Pavements and Surfacings for Highways and Airports." Applied
Science Publishers, London, United Kingdom.

Sayers, M. W., Gillespie, T. D., and Queiroz, C A. (1986). "The International Road
Roughness Experiment: Establishing Correlation and a Calibration Standard for
Measurements." University of Michigan, Ann Arbor, Transportation Research
Institute (UMTRI), Report Number 45.

Sayers, M. W., Gillespie, T. D., and Paterson, W. D. (1984). "Guidelines for the Conduct
and Calibration of Road Roughness Measurements. " University of Michigan, Ann
Arbor, Transportation Research Institute (UMTRI).

Scrivner, F. H., Moore, W. M., McFarland, W. F., and Carey, G. R. (1968). "A System
Approach to the Flexible Pavement Design Problem. " Texas Transportation Institute,
Report Number 32-1 1 .

Shahin, M. Y. (2005). "Pavement Management for Airports, Roads, and Parking Lots."
Springer Science + Business Media, Ine, New York, Second Edition.

Strategic Highway Research Program (SHRP). (1993). "Distress Identification Manual
for the Long-term Pavement Performance Project Report." SHRP-P-338,
Washington, DC.

Smith, J. T., and Tighe, S. L. (2004). "Assessment of overlay roughness in long-term
pavement performance test sites: Canadian case study. " Transportation Research
Record, 126-135.

149



Smith, R. E. (1990). "Structuring a Microcomputer Based Pavement Management System
to Enhance the Probability of Adoption and Continued Use. " Microcomputer
Applications in Transportation III, June 21, 1989 - June 23, Published by ASCE, San
Francisco, CA, USA, 898-909.

Smith, R. E. (1986). "Structuring A Microcomputer Based Pavement Management
System For Local Agencies." Ph.D thesis, Univ. of Illinois, Urbana-Champaign, IL.

Solaimanian, M., and Kennedy, T. (1993). "Predicting Maximum Pavement Temperature
Using Maximum Air Temperature and Hourly Solar Radiation." Transportation
Research Board, Washington, DC, 1-11.

Tighe, S, L., Smith, J., Mills, B., and Andrey, J. (2008). "Evaluating Climate Change
Impact on Low Volume Roads in Southern Canada. " Transportation Research Board
of the National Academies, Washington, DC, 9-16.

Washington State Department of Transportation (WSDOT) . (2009). "WSDOT Pavement
Guide, "http://training.ce.washington.edu/wsdot/modules/09__pavement_evaluation/09
-7_body.htm (17-August-2009, 1 1:30 AM).

Wei, M., Russell, D. W., Mallinckrodt, B., & Vogel, D. L. (2007). The Experiences in
Close Relationship Scale (ECR)-Short Form: Reliability, validity, and factor
structure. Journal of Personality Assessment, 88, 187-204.

Williams, E. B. (1968). "Outline of a Proposed Management System for the CGRA
Pavement Design and Evaluation Committee." Proc. Canadian Good Roads
Association.

Wilkinson, L., and Task Force on Statistical Inference. (1999). "Statistical Methods in
Psychology Journals: Guidelines and Explanations. " American Psychologist, Vol.
54, No. 8, 594-604.

Yang H. Haung. (2004). "Pavement Analysis and Design. " Pearson Prentice Hall, NJ,
Second Edition.

Yang, J., Lu, J. J., Gunaratne, M., and Xiang, Q. (2003). "Forecasting Overall Pavement
Condition with Neural Networks: Application on Florida Highway Network."
Transportation Research Board, Washington, DC, 3-12.

Zaniewski, J. P., Hudson, W. R., High, R., and Hudson, S. W. (1985). "Pavement Rating
Procedures. " Contract No. DTFH61-83-C-00153; Federal Highway Administration.

Zayed, T. M., and Halpin, D. W. (2005). "Pile Construction Productivity Assessment. "
Journal of Construction Engineering and Management, Vol. 131, No. 6, 705-714,
American Society of Civil Engineers.

150



Zayed, T. M., and Halpin, D. W. (2004). "Quantitative Assessmentfor Piles Productivity
Factors. " Journal of Construction Engineering and Management, Vol. 130, No. 3.

Zienkiewicz, O. C, and Cheung, Y. K. (1967). "The Finite Element Method in Structural
and Continuum Mechanics. " McGraw-Hill, New York.

151



Appendices

Appendix A

A.l Pavement Types:

In today's modem transport systems, except marine and pipelines transportation,

pavement plays a major role as the basic structural element that carries the load of traffic
in highways, urban and rural roads, and parking lots , as well as in the form of runways,

taxiways, and parking aprons for air travel (Hass et al., 1994).

It's safe to say that in the USA and Canada, pavement construction and maintenance cost

represents approximately one-half of the total highway sector expenditures, which

according to the US Federal Highway Administration exceeds $20 billion annually in the

USA (FHWA, 2001).

Although the term pavement has many definitions in modern technology, the most

straightforward one is by the pavement structural function or response which divides the

pavement into three main categories:

1. Flexible or asphalt pavements: in which the asphaltic concrete is used mainly for

the surface layer and sometimes for the underlying layers.

2. Rigid or concrete pavements: in this type of pavement, Portland Cement

Concrete (PCC) is the principle material in use.

3. Composite pavements: it is the type of pavement that combines rigid and flexible

elements, such as an asphalt concrete surface (top layer) and Portland Cement
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Concrete (PCC) (bottom layer). But it is rarely used as a new construction because

of its high expense.

A.2 Flexible-Pavement:

The first asphalt roadway was constructed in 1870 at Newark, New Jersey in the

United States. However, the use of a hot mixture of asphalt (HMA) as the first pavement

sheet-asphalt layer was introduced six years later in 1876 on Pennsylvania Avenue in

Washington, DC.

Flexible pavement is mainly constructed of a bituminous surface course and a base

course of suitable granular materials (Sargoius, 1975). As of 2001 (94%) of the 2.5

million miles of paved roads in the USA are asphalt surfaced (FHWA, 2001). The cross

section of a conventional flexible pavement is shown in Figure A-I.

Seal Coat -<.....«il Ii ?
Tack Coat -"'

Prime Coat ''

Í Natural Subgradé

Figure A-I: Typical Cross Section of a Conventional Flexible Pavement.

Based on the base type used in the pavement system, flexible pavement can be divided
into two main groups:

.Surface Course
Binder Course

1-2 in.

\ 2 4 irt.

Base Course

Subbasc Course

1 4-1? ™.

I4~t2ìit

Compacted Subgrade
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1. Flexible pavements with untreated granular bases:

This type is not highly recommended because of two facts:

• First, it always works as a moisture store keeping water in continuous

contact with the sub-grade, causing eventually a gradual wane in its

bearing strength.

• Second, when compared to asphalt bases, untreated granular bases

withstand the tensile stresses in less-endure manner, which means a

weaker and undependable pavement structure.

2. Full-depth asphalt pavements:

The concept of this type was first developed by the Asphalt Institute in 1960, which

implies the placement of one or more layers of HMA directly on the treated sub-grade,

and thus for heavy traffic the full-depth asphalt pavements are considered the most cost-

effective and reliable kind of flexible pavements (AI, 1987).

Figure A-2 shows the typical cross section of a full-depth asphalt pavement.

Asphalt Surface

Asphalt Base

2 to 4 in.

2 to 20 in.

Prepared Subgrade

Figure A-2: A Typical Cross Section of a Full-Depth Asphalt Pavement.
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According to the Asphalt institute (AI, 1987), the full-depth asphalt pavement has the

following advantages:

1 . Frost or moisture has no effect on asphalt bases.

2. They provide a retained uniformity in the structure of pavement.

3. Less pavement structure is required, since the asphalt base resists efficiently load

tensile stresses.

4. Water entrapping has no chance of occurring since full-depth asphalt pavement

has no permeable granular layers to hold water in.

5. According to previous studies, there is little or no reduction in sub-grade strength

under full-depth asphalt pavement structures because they do not hold moisture

contents.

6. The need for subsurface drainage is normally eliminated, unless the groundwater

table is high and must be lowered.

7. Pavement riding quality is expected to improve with a properly constructed

asphalt concrete base.
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Appendix B

Integrated MAUT/Regression Model (Winter Season)

B.l Model Development Process:

The following steps are applied in the building process of the winter model:

B. 1.1 Initial Examination of Relationships and Interactions:

Prior to modeling the data in hand, it is recommended that we first plot the data

points. Then by examining these initial plots we can easily assess whether the data have

linear relationships or interactions are present. An X variable that has a linear relationship

with Y will produce a plot close to a straight line, as shown in Figure B-Ia (which is the

ideal case). However, some exceptions may come across our own modeling, such as in

Figure B-Ib, c, and d, where transformation of variables should be taken into

consideration in order to get better results.

According to (Leslie, 2001), if the data plot looks like Figure B-Ib, it is recommended to

transform the X variable in the model to 1/X, or exp (-X). If the data plot looks like

Figure B-Ic, consider transforming the X variable to X2 or exp (X), and if it looks like
Figure B-Id, Log X or VX will be the suitable transformation of the variable X in our

modeling.
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Figure B-Ia: Relationship
Plot.

Figure B-Ib: Relationship
Plot.

Figure B-Ic: Relationship
Plot.

Figure B-Id: Relationship
Plot.

In the winter model, plotting each input variable (sub-factor) against the output variable

(condition rating-CR) resulted in two patterns of figures:

Pattern One, in which the data plot looks like Figure B-Ib, and a transformation of

variable X to SqRt of variable (?/?) is recommended. Five sub-factors followed pattern

one in their relation with the output CR (condition rating), which are (pavement age,

ADT, roughness measurements, transverse cracking amount, and rutting amount).

Pattern Two, in which the data plot looks like Figure B-Ia which is the ideal case, and

there is no need for any transformation to be applied. Three sub-factors followed pattern

two in their relation with the output CR (condition rating), which are (freezing
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temperature, pavement temperature, and Surface Layer Depth-SLD). Figure B-2 is an

example of pattern two between sub-factor (freezing temperature) and the output (CR).

Fitted Line Plot

i. î
I

"T I I P r 1 1 G"
-15 -14 -13 -12 -11 -10 -9 -8

Freezing Temp

Figure B-2: Plot of Freezing Temperature against Condition Rating (CR).

B.1.2 Testing for Multi-colinearity:

The statistical phenomenon (multi-colinearity) will be investigated by calculating

the sample correlation matrix for the independent variables. The correlation matrix for

the winter model with its nine independent variables before and after transformation is

constructed as shown in Figures B-3a and B-3b.

Correlations: Freezing Tern, Pav Temp, AGE, SLD, BLD, ADT, Rough, Tran
Crak, ...

Freezing Temp Pav Temp AGE SLD
Pav Temp 0.784
AGE -0.378 -0.334
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SLD
BLD

ADT
Rough
Tran Crak
Rutt

ADT
Rough
Tran Crak
Rutt

-0.186
-0.315
-0.234
-0.085
-0.066
0.009

BLD

0.289
0.128

-0.143
0.151

-0.051
-0.155
-0.108
-0.068
-0.094
-0.040

ADT

0.033
0.058

-0.171

-0.300
-0.293
0.181
0.302
0.219

-0.368

Rough

0.274
0.000

0.849
0.362
0.015

-0.042
0.332

Tran Crak

0.291

Cell Contents: Pearson correlation

Matrix Plot of Freezing Tern, Pav Temp, AGE, SLD, BLD, ADT, Rough, Tran Crak,

Matrix Plot of Independent Variables Before Transformation
3 4 0
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Pav Temp
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Figure B-3a: Correlation Matrix Plot of Winter Model Input Variables before
Transformation.

Correlations: Freezing Tern, Pav Temp, VAGE, SLD, BLD, ?/ADT, VRough,

Pav Temp
VAGE
SLD

Freezing Temp
0.784

-0.359
-0.186

Pav Temp

-0.311
-0.051

VAGE

-0.332

SLD
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BLD
?/ADT
VRough
VTran Crak
VRutt

VADT
^Rough
VTran Crak
?/Rutt

-0.315
-0.266
-0.129
-0.051

0.058

BLD
0.284
0.165

-0.147
0.119

-0.155
-0.137
-0.096
-0.102
-0.017

?/adt

0.067
0.077

-0.111

-0.296
0.206
0.249
0.148

-0.430

VRough

0.221
0.071

0.849
0.383
0.053

-0.040
0.304

VTran Crak

0.462

Cell Contents: Pearson correlation

Matrix Plot of Freezing Tern, Pav Temp, AGE, SLD, BLD, ADT, Rough, Tran Crak,

Matrix Plot of Independent Variables After Transformation
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Figure B-3b: Correlation Matrix Plot of Winter Model Input Variables after
Transformation.

Recall that a correlation value greater than 0.7 (in absolute value) generally indicates

multi-colinearity is a problem. Both Figures (B-3a and B-3b) show existing relationships

and interactions between some variables. However, they are weak relationships based on

the weak (positive and negative) correlation values in both cases (before and after
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transformation). The only two exceptions are the positive correlation coefficient between

the two variables (Freezing Temperature and Pavement Temperature) (0.784) before and

after transformation, and the positive correlation coefficient (0.849 before and after)

between (Surface Layer Depth and Base Layer Depth). Usually, in similar cases when

two variables are highly correlated, a decision should be made to eliminate the one that is

"logically" less important.

For this study, a statistical parameter called variance inflation factor (VIF) is used to

determine the severity of multi-colinearity and which variables should be eliminated.

B.1.3 Variance Inflation Factor (VIF):

• Fit regression model with VIF values for the set of selected independent

variables.

Regression Analysis: CR versus Freezing Temp, Pav Temp, ...

Predictor Coef SE Coef T P VIF
Constant 7.9729 0.3381 23.58 0.000
Freezing Temp 0.00553 0.04325 0.13 0.898 3.358
Pav Temp 0.00208 0.03109 0.07 0.947 2.739
VAGE -0.25126 0.04868 -5.16 0.000 2.393
SLD 0.05593 0.09870 0.57 0.572 5.518

BLD -0.03248 0.02810 -1.16 0.250 5.5201 Highest VIF > 5
VADT 0.00096 0.01245 0.08 0.939 1.491
VRough -0.32446 0.09298 -3.49 0.001 1.315
?/Tran Crak -0.27179 0.01792 -15.17 0.000 1.665
?/Rutt -0.17791 0.03938 -4.52 0.000 2.412

S = 0.364223 R-Sq = 86.2% R-Sq(adj) = 85.0%

Figure B-4a: Minitab Output of VIF Test for all Independent Variables versus the Output
CR.

• The independent variable (Base Layer Depth-BLD) is eliminated from the

model, and step one is repeated with the new data set.
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Predictor Coef SE Coef T P VIF
Constant 8.0851 0.3243 24.93 0.000

Freezing Temp 0.01983 0.04151 0.48 0.634 3.084
Pav Temp 0.00254 0.03113 0.08 0.935 2.738
Vage -0.2318O 0.04574 -5.07 0.000 2.107
SLD -0.03774 0.05641 -0.67 0.505 1.798
VAUT 0.00316 0.01232 0.26 0.798 1.455
VRough -0.36295 0.08695 -4.17 0.000 1.146
VTran Crak -0.27103 0.01794 -15.11 0.000 1.663
VRutt -0.16224 0.03702 -4.38 0.000 2.126

S = 0.364779 R-Sq = 86.0% R-Sq(adj) = 85.0%

Figure B-4b: Minitab Output of VIF Test for all Independent Variables except (BLD)
versus the Output CR.

All VIF < 5, now we can proceed to the next step, which is best-subset

analysis.

B.1.4 Best-Subset Analysis:

Upon concluding that the variance inflation factor VIF for all the selected

variables is < 5, the best-subset analysis can be applied. Best-subset analysis is defined as

the process of constructing the best fit regression model with the best possible

combinations of the selected variables. Figure B-5 presents an example of Minitab output

for best-subset analysis.
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Best Subsets Regression: CR versus Freezing Temp, Pav Temp, ...
Response is CR

F
r

e

e V
? T
i P r
na a

g ? Vn
R ?/

T T V VoCR
eeASAuru

Mallows mmGLDgat
Vars R-Sq R-Sq (adj) Cp SppEDThkt

1 76.4 76.2 70.9 0.45977 X
1 20.9 20.2 507.2 0.84123 X
2 80.9 80.5 37.5 0.41554 X X
2 79.6 79.2 47.7 0.42931 X X
3 83.4 83.0 19.4 0.38849 X XX
3 82.7 82.2 25.2 0.39704 X XX
4 85.8 84.9 2.6 0.36091 X XXX
4 83.7 83.1 19.3 0.38691 XX XX
5 86.0 84.8 3.5 0.36064 XX XXX
5 85.9 85.0 3.7 0.36110 XX XXX
6 86.0 84.3 5.1 0.36163 X XX XXX
6 86.0 84.9 5.3 0.36196 XXX XXX
7 86.0 84.9 7.0 0.36314 X XXXXXX

7 86.0 84.0 7.1 0.36324 XXXX XXX
|8 86.0 85.0 9.0 0.36478 XXXXXXX x|

Figure B-5: Minitab Output for Best-Subset Analysis for Winter Condition-Rating Trial
Model.

From Figure B-5 the selected model is the most appropriate combination of variables, as

it satisfies the following three statistics, with Cp = 9.0 < ? + 1 = 8 + 1 = 9.0, highest R2
(adj) =85.00, but not the lowest S value = 0.36478.

B.1.5 Model Development:

After determining the most appropriate combination of variables based on best-

subset analysis, the next step will be building a multiple regression model for winter

climate conditions using Minitab ® 15 statistical software. Figure B-6 presents the
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Minitab output that includes a regression equation of all the selected variables with their

estimated coefficients "ßk", coefficient of determination R2 and R2 (adjusted) , and
overall significance of the regression (P value).

Regression Analysis: CR versus Freezing Temp, Pav Temp, ...
The regression equation is
CR = 8.09 + 0.0198 Freezing Temp + 0.0025 Pav Temp - 0.232 ^AGE - 0.0377 SLD

+ 0.0032 VADT - 0.363 VRough - 0.271 VTran Crak - 0.162 ^Rutt

Predictor
Constant

Freezing Temp
Pav Temp
Vage
SLD
^ADT
VRough
^Tran Crak
¦v/Rutt

Coef SE Coef
8.0851 0.3243

0.01983 0.04151
0.00254 0.03113

-0.23180 0.04574
-0.03774 0.05641
0.00316 0.01232

-0.36295 0.08695
-0.27103 0.01794
-0.16224 0.03702

T P
24.93 0.000

0.48 0.634
0.08 0.035

-5.07 0.000
-0.67 0.044
0.26 0.058

-4.17 0.000
-15.11 0.000
-4.38 0.000

0.364779 R-Sq 86.0% R-Sq(adj) = 85.Oi

Analysis of Variance

Source DF SS MS

Regression 8 90.000 11.250
Residual Error 110 14.637 0.133
Total 118 104.637

34.55
_P_

0.000

Figure B-6: Minitab Output of Regression Equation for Winter Condition-Rating Trial
Model.

In order to determine the goodness of the developed regression model, three statistics

should be examined as follows:

1. Coefficient of determination R2 and R2 (adjusted): the values R2 and R2
(adjusted) are 86.0% and 85.0% respectively. Both values indicate that the

model fits the data well.
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2. F test: The table of analysis of variance in Figure B-6 shows a value of P =

0.000 < 0.05, which means that (H0) is rejected with 95% confidence. Therefore,

(Ha) is accepted and at least one coefficient in the estimated regression equation
is not equal to zero.

3. t test: Figure B-6 shows that the p-value of the estimated coefficients for

predictors (VAGE, VRough, VTran Crak, and VRutt) is 0.000. Similarly, the p-
value of predictors (Pave Temp and SLD) is 0.035 and 0.044 respectively. As a

result, the alternate hypothesis is accepted and the previous predictor variables

are significantly related to the response variable (Condition Rating-CR) at a -

level of 0.05 (95% confidence). However, the case is different for the remaining

two predictors. The p-value of the estimated coefficients for predictor (VADT) is

0.058, which is slightly greater than a = 0.05, but can be accepted. The one that

does not have a significant relation with the response variable (CR) is the
predictor (Freezing Tempe) with a p-value equals to 0.634 » a = 0.05.

B.1.6 Residuals Analysis:

I. Normality of Residuals:

In the normal probability plot, the normal distribution is represented by a straight

line angled at 45 degrees. In our case (Figure B-7), the standard residuals are compared
against the diagonal line to show the departure. It is clear that the residuals follow the

straight line; which means that the departure from normality is slight.
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Normal Probability Plot
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Figure B-7: Normal Probability and Histogram of Residual Plots for the Winter
Condition-Rating Model.

Furthermore, in order to ensure the normality results, additional test statistics were

performed. Two statistical tests are applied; Shapiro-WiIk and Anderson-Darling tests.

In table B-I a p-value of 0.056 > 0.05 for the Shapiro-Wilk test, and 0.070 > 0.05 for the
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Anderson-Darling test, means that the null hypothesis cannot be rejected and the

assumption that there is no significant departure from normality holds with a 95%
confidence level.

Table B-I: Test Statistics Results for Normality Check.

Test Statistic

Shapiro-WiIk

Test
Value

0.989

P-
Nsiluc

0.056

Decision (95% confidence)

Accept Normality

Anderson-Darling 0.691 0.070 Accept Normality

II. Independence of Residuals:

When the residuals are independent, we expect them to fluctuate in a more or less

random scatter around the base line 0. Consider the Minitab output for residuals versus

the order of the data plot for the selected model (Figure B-8). The residuals scatter around

the regression line in a random and patternless manner, which implies independent errors.

Residuals Versus the Order of the Data

1.0-

0.5

0.0

S

-0.5H

-1.0·

1 10 20 30 40 50 60 70
Observation Order

90 100 110

Figure B-8: Residuals vs. Order of Data Plot for the Winter Condition-Rating Model.
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Moreover, a test called the Durbin-Watson statistic is used to detect the presence of

autocorrelation in the residuals from a regression analysis.

IfD <dL rejectH0:p = 0

If D > du do not reject H0: ? = 0

If dL < D < du the test is inconclusive.

For the model under consideration, where k = 8 and ? = 119, the Durbin-Watson tables

indicate the following values; for k = 8, ? = 150 (since 119 is not included in the tables

the values at ? = 150 were taken instead), and the level of significance a = 0.05. The

critical values are dL = 1.62 and du = 1-85.

The Minitab output for the same model for Durbin-Watson statistics is:

D= 1.87 > du = 1.85 thus, the (Ho) is not rejected and the error terms are statistically

proven to be independent.

III. Homoscedasticity:

Scatter plots of the residuals versus the fitted values from the model allow

comparison of the amount of random variation in different parts of the data.

In Figure B-9, the residuals vary around the zero line in a constant pattern without any

high concentration above or under it. This implies that the assumption of

homoscedasticity is not violated, and the test's results are considered satisfactory.
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Figure B-9: Residuals vs. Fitted Values Plot for the Winter Condition-Rating Model.

B.2 Model Validation:

A comprehensive model validation procedure is applied on the selected models.

The validation data consist of thirty-two observations embedded into the regression

model to compare its results with the actual results using a Microsoft Excel spread sheet.

Furthermore, descriptive statistics and plots of the actual and predicted outputs are

obtained using Minitab ® 1 5 statistical software. A detailed explanation of the previous

steps follows:

B.2.1 Actual vs. Predicted Output Plot:

In this step, a comparison between the actual values of condition ratings and the

predicted values obtained from the regression model is conducted, using a scatter plot as
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the one shown in Figure B-IO. The Figure shows that there is no significant departure

between the actual values plot and the predicted values plot, and the predicted values

scatter around the actual values in acceptable ranges. Therefore, the first validation test

results are considered satisfactory.

Scatterplot of Condition Ratings vs Observations

« 6.0

Variable
Actual Condition Ratings
Predicted Condition Ratings

10 15 20 25
Observations

30 35

Figure B-IO: Minitab Output of Validation Plot for Winter Condition-Rating Model.

B.2.2 Descriptive Statistics:

The descriptive statistics of the actual and predicted values of condition ratings

will be checked in this step. The results showing in Figure B-Il and Table B-2 tell that

the mean and standard deviation values of the actual and predicted outputs are close to

each other, in spite of the fact that the predicted output has a slightly lesser value of mean

and a greater value of standard deviation than the actual output. Therefore, the second

validation test results are considered satisfactory.
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Table B-2: Descriptive Statistics for Actual and Predicted Values of Validation Data.

Descriptive Statistics
Mean

Standard Deviation
No. of Observations

Actual CR

5.765

0.639

32

Predicted (U
5.554
0.753

32

Histogram of Actual and Predicted Outputs

Data

Actual Condition Ratings
Predicted Condition Ratings

Mean StDev N
5.765 0.6385 32
5.554 0.7532 32

Figure B-1 1 : Minitab Output of Histogram of Validation Data for Winter Condition-
Rating Model.

B.2.3 Mathematical Validation Method:

The results show that the predicted outputs are 93% accurate, with RMS and

MAE values close to zero. Thus the validation results are considered satisfactory and the

selected model does fit the validation data.

AIP = 0.0660, AVP = 0.9340, RMS = 0.0806, MAE = 0.3756.
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B.3 Deterioration Curves:

Figures B- 12 to Figure B-1 5 represent condition deterioration of flexible pavement
with respect to ADT (Average Daily Traffic), Roughness measurements, Transverse

Cracking amount, and Rutting amount respectively. As shown in Figure B- 12 prediction

curves are developed for each of the traffic levels (Low, Moderate, and Heavy), the X-

axis represents the pavement age, and the Y-axis is the condition rating (CR) score. For

example, if the pavement age and level of traffic for a specific road segment are known,

under the same conditions of the proposed model, a user can easily obtain the condition

rating score by plotting the corresponding value from the chart on the Y-axis (CR-axis).

Ol
E
'Zi
S.
C
.2
¦?
C

a

Deterioration Curves

—? : ? ? ? ? ? 1 1 1 1 1 1 1 1 1 1—
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

AGE

ADT
Low
Moderate

Heavy

Figure B- 12: Minitab Output of Deterioration Curves for Average Daily Traffic (ADT).
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Deterioration Curves
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7 8
AGE

—? 1 1 1 1 1 T-
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Roughness
------ Smooth
— ModerateRough

Figure B-1 3: Minitab Output of Deterioration Curves for Roughness Measurements.
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Figure B- 14: Minitab Output of Deterioration Curves for Transverse Cracking Amount.
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Deterioration Curves

Rutting
Low

------ Moderate

------ High
------ Critical

Figure B-1 5: Minitab Output of Deterioration Curves for Rutting Amount.

From Figure B- 12 to Figure B-1 5, it is clear that the rate of pavement deterioration is

significantly less whenever the traffic level is lower, and the distress severity is less. We

can also notice that an inverse polynomial relation of third degree does exist between the

condition value and age of pavement. Tables B-3 to B-6 show the third degree equations

between (Age) and (CR), which represent the deterioration curves of Figure B- 12 to B-
15.
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Table B-3: Deterioration Models for Average Daily Traffic.
ADI

(vehicles/day)

<20

20 < ADT <
100

> 100

Traffic
I .evtl

Low

Moderate

Heavy

Model

Y = 0.0024 ?3 - 0.0344 ?2
0.3094 ? +8.901

Y = 0.0030 ?3 -0.0501 ?2
0.2222 ? + 7.079

Y = 0.0008 ?3 -0.0156 X^
0.2089 ? + 4.653

94.10

94.80

89.20

R-

93.30

94.10

87.60

Std.
Emir

0.3751

0.3677

0.4181

Y = Condition Rating, ? = Pavement Age

Table B-4: Deterioration Models for Roughness Measurements.

Roughness
(mm/m)

RM < 2.48

2.49 < RM <
3.33

3.34 < RM <
6.18

Severity
Level

Smooth

Moderate

Rough

Model

Y = - 0.001 1 ? + 0.0589 ?
0.9720 ? +10.140

Y = - 0.0050 ?3 + 0.1431 x2-
1.4710 ? + 9.065

Y = - 0.0036 ?3 + 0.1183 ?2
1.3640 ? + 6.748

89.80

86.40

89.80

R-
<ad.j)
88.30

84.50

88.30

Std.
Error

P-
Valuc

0.0360

0.0080

0.4710

0.5125

0.6858

0.5503

Y = Condition Rating, ? = Pavement Age

\ :ilue

0.4330

0.0170

0.0290

Table B-5: Deterioration Models for Transverse Cracking Amount.
Transverse
Crackin«

(mm)

cracks <
13.00

cracks >
13.00

Se\eril\
level"

Low

High

Model

Y = 0.0025 x3 - 0.0327 x2 -
0.4324 ? + 9.651

Y = - 0.0018 x3 + 0.0365 x2 -
0.4875 ? + 5.905

R-
(%)

93.00

92.30

Y = Condition Rating, ? = Pavement Age

R-

(¡idj)

92.00

91.20

SUl.
Krror

0.5030

0.4492

I·-
\':iliie

0.0930

0.1580

175



Table B-6: Deterioration Models for rutting Amount.

K lining
(min)

R < 9.00

Si-verity
I.cvrl'

Low

Model

Y = 0?045 xJ - 0.0895
x2 -0.0077 ? + 9.162

It"

(%)

92.80

R-
Ci(Ij)

91.70

SKl.
l\rror

0.5116

\ alut-

0.0050

10.00 < R
<1 3.00 Moderate Y = 0.0028 xJ - 0.0577

x2 - 0.0707 ? + 8.023 90.60 89.30 0.5273 0.0750

Y = 0.0024 x3 - 0.0390
x2 - 0.3042 ? + 7.569

14.00 < R
< 20.00 High 85.30 83.20 0.7302 0.2550

R > 20.00 Critical Y = 0.0021 ? -0.0410
x2 -0.2064 ? + 6.310 85.10 83.00 0.7274 0.3130

Y = Condition Rating, ? = Pavement Age

It can be noticed from the results of (R2, adjusted R2, standard error, and P-value) that the
developed deterioration models are robust and reliable. Therefore, the deterioration

curves can be used by the DOT to determine the condition rating score of an existing

flexible pavement road/highway, under the same conditions of the proposed models.
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Appendix C: Results of Monte-Carlo Simulation

Cl Summer Model:

C.l.l Defining Probability Distributions:

Based on the collected data and by using @ Risk software, probability

distributions of input parameters were defined. Distributions that best fit the selected
input variables are chosen as the first option and ranked along with other distributions
that may fit the data as well. The ranking of the distributions is based on three statistical
tests (Chi-Squared statistic, Anderson- Darling statistic, Kolmogorov-Smirnov statistic).
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Figure C-I : @ RISK Output for Defining Distributions that Best Fit the Summer Model
Sub-Factors (inputs).
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C. 1.2 Simulation Results:

Condition Rating
3.97 6.73

Condition Rating
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Simulation Summary Information
Workbook Name

Number of Simulations
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Sampling Type
Simulation Start Time

Simulation Duration

Random # Generator

Random Seed

Summer Model

1

1000

9

1

Monte Carlo
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00:00:02

Mersenne
Twister
746157450

Summary Statistics for Condition Rating
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Filter Max

«Filtered
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Figure C-2: @ RISK Output for Simulation Results of Summer Model.
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C.1.3 Analysis of Results:
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Figure C-3: @ RISK Output of Scatter Plots for Summer Model Sub-Factors.



III. Sensitivity Analysis:
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Figure C-4: Advanced Sensitivity Analysis Percentile Graph.



Mean of Condition Rating J2 vs Percentage Change of
Inputs

S
.2 4
t3
c
O
o 3

à? à?
o o
LO o
CM CM

? ?

o
in

NP

O O
à?
o

Change From Base Value (%) '

è?
o
O

à?
O

NpON
o
O
CM

AIR TEMP A2

PAVE TEMP B2

RAINC2

AGED2

SLD E2

ADT F2

ROUGH G2

Tran Crak H2

RUTT I2

NPON
O

Figure C-5: Advanced Sensitivity Percent Change Graph.

C.2 Winter Model:

C.2.1 Defining Probability Distributions:

The following graphs are only for sub-factors (Freezing Temperature and winter-
Pavement Temperature). The rest sub factors were presented earlier in (Section C. 1.1,
Figure C-I).
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Figure C-6: @ RISK Output for Defining Distributions that Best Fit the Winter Model
Sub-Factors (Freezing and Pavement Temperature).
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C.2.2 Simulation Results:
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Figure C-7: @ RISK Output for Simulation Results of Summer Model.



C.2.3 Analysis of Results:

I. Tornado Graphs

Tornado Graphs are used to display the most important probability distribution of
inputs in the proposed model. Figure C-8 shows the sub-factor (input) distributions
ranked by their impact on the condition rating-CR (output), in which the Transverse
Cracking amount (Tran Crak) variable has the highest impact with a value of (0.75); then
the Pavement Age (AGE) variable with an impact of (0.29); on the other hand, the
Pavement Temperature (Pave Temp) variable almost has no impact on the model output
with a value close to (0.01).

Condition Rating - CR
Regression Coefficients

Tran Crak

AGE-

Rutt·

Rough ·
SLD

Freezing Temp -

ADT

Pave Temp

@RISK Trial Version I
For Evaluation Purposes-Only -0:031

0.03

[0.01
0.01

cq
o ö ö

O
Ö

Coefficient Value

Figure C-8: @ RISK Output of Tornado Graphs for Winter Model.
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II. Scatter Plots:
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Figure C-9: @ RISK Output of Scatter Plots for Winter Model Sub-Factors.



C.2.4 Sensitivity Analysis:

Figure C-IO represents a Regression-Mapped values graph that shows the actual

change in condition ratings (output) for ± 1 standard deviation change in each sub-factor

value (input).

It can be noticed that the Transverse Cracking amount (Tran Crak) variable is indeed the

most important factor affecting the condition rating output of this model; and when this

variable changes by one standard deviation, the amount of change in the CR score from

the x-axis will be equal to (-0.6560). This value (-0.6560) is shown in the bar

corresponding to the (Tran Crak) variable. Similarly, all CR change values corresponding

to each input variable are shown in Figure C-IO.
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Sensitivity Tornado
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Figure C-IO: @ RISK Output of (Mapped Values + Sensitivity Tomado) for Winterer
Model.
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Appendix D: SAMPLE QUESTIONAIRE

Urban road deterioration is a complex function of several factors that have a significant
time- dependent effect on the surface condition of the pavements. In this research these
factors have been classified into three main categories: (Climate conditions, Physical
properties, and Operational Factors). The identification of effect and weight of these
factors on pavement deterioration is vital and will be used as a base for rating the existing
condition of pavement. It, accordingly, helps engineers in choosing the suitable
maintenance and rehabilitation techniques for their existing roads and highways.

By filing this questionnaire, we will use your valuable judgment and expertise in building
the proposed model. The questionnaire is divided into four main sections.

1- Section One: Company information in which there are some questions to be answered
by the respondent and we guarantee that this information is confidential and not for
public use.

Name
Position
Type of company partnership
Years of experience

2- Section Two: is a Pair-wise comparison matrix between factors and sub-factors that
affect Condition of Flexible Pavement.

2.a Main factors pair-wise comparison matrix:

Main Factors

Climate Conditions

Climate
Conditions

1

Physical
Properties

Operational
Factors
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Condition Rating Index

Operational FactorsPhysical PropertiesClimate Conditions

3

Air
Temperature

Pavement
Temperature

Rainfall
Amount

Freezing
Temperature

Surface
Layer Depth

Base Layer
Depth

Pavement
Age

Average Daily
Traffic (ADT)

Roughness
Measurements

Transverse
Cracking
Amount

Rutting
Amount

2.b Climate Conditions' sub-factors pair-wise comparison matrix:

Sub-Factors
Air

Temperature
Pavement

Temperature
Rainfall
Amount

Freezing
Temperature

Air Temperature 1

2.C Physical Properties' sub-factors pair-wise comparison matrix:

Sub-Factors
Surface Layer

Depth Base Layer Depth Pavement Age

Surface Layer Depth 1

2.d Operational Factors' sub-factors pair-wise comparison matrix:

Sub-Factors
Average

Daily Traffic
(ADT)

Roughness
Measurements

Transverse

Cracking
Amount

Rutting
Amount

Average Daily
Traffic (APT)

1
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3- Section Three: the following table collects the impacts of the factors on pavement
condition, by answering this question [How do you rate the effect of factor (x) on the
pavement condition]. You just have to choose a number on a scale of 0 to 10; as shown
below.

0 8 10

Extremely Very Moderately Neg Even Pos Moderately Very Extremely
Neg Neg Neg Impact Pos Pos Pos

Neg: Negative impact on flexible pavement condition.
Pos: Positive impact on flexible pavement condition.
Even: Neither Negative nor Positive impact on flexible pavement condition.

Main
Factors

Climate
Conditions

Physical
Properties

Sub-Factors

Air
Temperature

Rainfall
Amount

Pavement
Temperature

Freezing
Temperature

Surface Layer
Depth

Base Layer
Depth

Pavement Age

Attributes

0°C< Ta<10°C
10°C< Ta < 22 0C

Ta > 22 0C

Rf<0.5mm/hr
0.5 < Rf < 3 mm/hr

Rf>3 mm/hr
Tp>|-22°C|

-22°C|>Tp>|-10|
-10°C|>Tp>|0°C|
0°C< Tp < 10 0C
10°C< Tp < 22 0C

Tp > 22 0C
TF>|-22°C|

-22 °C|>TF> 1-101
|-10°C|>TF>|0°C|

SDL < 2 in
SDL > 2 in

BDL < 4 in
BDL > 4 in

Less than 5 yrs
5 yrs < Age < 9

9 yrs < Age < 12
12 yrs < Age < 14

Equal to 15
16yrs<Age<19
19 yrs < Age < 22
22 yrs < Age < 26

10
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26 yrs < Age < 30
More than 30 yrs

Operational
Factors

Average Daily
Traffic (ADT)

(ADT < 20 vch/day)
(20 < ADT < 100)

(ADT > 100)

Roughness
Measurements

(RM < 2.48 mm/m)
(2.49 < RM < 3.33)
(3.34 < RM < 6.18)

Transverse
Cracking

(Crk<13mm)
(Crk> 13 mm)
(Rut < 9 mm)

Rutting Amount
(10 mm < Rut < 13

mm)
(14 mm < Rut < 20

_______mm)
(Rut > 20 mm)

4- Section Four: the following table contains a list of Maintenance and Rehabilitation
Strategies suggested by us to be used. Ifyou have any other strategies that you would like
to add or cancel, please feel free to add them in the available blank spaces.

Distress
Type

Severity
Level

Chip
Seals

Thin HMA

Overlays

Hot In-
Place

Recycling
Full Depth

Reclamation
Slurry

seal

Transverse
Cracking
Amount

Low severity
cracks

< 1/2 inch
wide

High severity
cracks

> 1/2 inch wide

Distress
Type

Severity
Level

Doing
Nothing

Micro-
surfacing

Milling off
and

replacement

Rutting
Amount

Slight ruts < 1/3
inch deep
Sever ruts

> 1 /3 inch deep
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Your cooperation with us to advance the knowledge of Flexible-Pavement infrastructure
is highly appreciated.

Supervisor,

Tarek Zayed, Ph.D., P.E.

Associate Professor Department of Building, Civil & Environmental Engineering
EV 6.401, 1515 Ste. Catherine St., Montreal, Canada H3G 1M8

Tel: (514) 848-2424 ext. 8779

Fax:(514)848-7965

Email: zayed@bcee.concordia.ca

Information Return:
Please, return this questionnaire to Tel: (514) 848-2424 ext. 7091

Wael Tabara
Research Assistant, E-mail:
Department of Building, Civil & w_tabr@encs.concordia.ca
Environmental Engineering, Concordia
University



Appendix E: Utility Functions of Sub-Factors Attributes

Utility Score = 3.569 +0.2334 Pavement Temperature
0.001321 (Pavement Temperature)A2 - 0.000265 (Pavement Temperature)A3
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Figure E-I: Utility Function of the Sub-Factor (Pavement Temperature) Attributes.
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Utility Score = 8.745 - 1.455 Rainfall Amount

-i 1 1
12 3

Rainfall Amount (mm/hr)

Figure E-2: Utility Function of the Sub-Factor (Rainfall Amount) Attributes.
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Utility Score = 4.741 + 0.3742 Freezing Temperature
+ 0.008658 (Freezing Temperature)7^

Freezing Temperature (0C)

Figure E-3: Utility Function of the Sub-Factor (Freezing Temperature) Attributes.

1.0

Utility Score = - 1.475 + 3.385 SDL
- 0.3750 (SDL)A2

1.5 2.0 2.5 3.0
SDL (inch)

3.5 4.0

Figure E-4: Utility Function of the Sub-Factor (Surface Layer Depth) Attributes.
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Utility Score = - 1.049 + 1.464 BDL
- 0.08694 (BDL)A2 + 0.001959 (BDL)A3
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Figure E-5: Utility Function of the Sub-Factor (Base Layer Depth) Attributes.

Utility = 9.542 - 0.4511 Pavement Age
+ 0.04934(Pavement Age)A2 - 0.003642 (Pavement Age)A3

-,— , , 1— 1 1 1 -r -r
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Figure E-6: Utility Function of the Sub-Factor (Pavement Age) Attributes.



Utility Score = 9.683 + 0.2832 Roughness Measurments
0.8780 (Roughness Measurments)A2 + 0.09963 (Roughness Measurments)A3
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gure E-7: Utility Function of the Sub-Factor (Roughness Measurements) Attributes.

Utility Score = 10.09 - 0.6263 Transverse Cracking
+ 0.02042 (Transverse Cracking)2 - 0.000387 (Transverse Cracking)A3

8 11 14
Transverse Cracking (mm)

Figure E-8: Utility Function of the Sub-Factor (Transverse Cracking) Attributes.



Utility Score = 9.000 + 0.0972 Rutting Amount
¦ 0.04368 (Rutting Amount)A2 + 0.001085 (Rutting Amount)A3

12 15 18
Rutting Amount (mm)

21 24

Figure E-9: Utility Function of the Sub-Factor (Rutting Amount) Attributes.
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