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ABSTRACT

Real-Time Motion Planning and Simulation of Cranes in Construction

Homam Al-Bahnassi

Real-time planning the motion of heavy equipment (e.g. cranes) is an important issue in

construction projects, where rapid and accurate planning directly affects the safety and

productivity of operation. The work presented in this thesis is directed towards

automatically generating an accurate motion plan in space and time for cranes by: (1)

Investigating and utilizing motion planning algorithms to generate feasible paths with

respect to all considered constraints; (2) Extending the efficiency of motion planning

under complex global constraints (i.e. geometrical constraints) that represent static and

dynamic obstacles found in the construction site; and (3) Considering local constraints

that are related to the stability of the crane itself. Local constraints include engineering

constraints (e.g. workloads for cranes) in addition to kinematic and dynamic constraints

for the crane joints.

The methodology presented in this thesis was applied to develop a specialized motion

planning system for construction equipment called Intelligent Construction Equipment

motion Planner (ICE-Planner). This system was integrated into the 3D software to define,

solve and visualize motion planning in real time.



The proposed methodology provides: (1) A motion planning framework for supporting

cranes with the ability of generalizing over different types of equipment; (2) practical

equipment planning which is aware of local constraints derived from engineering and

kinematics properties of the equipment itself; (3) more accurate and realistic motion

planning with efficiency in re-planning dynamic cases found in actual sites; and (4) the

ability of visualizing and simulating motion planning results in real-time.
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CHAPTER 1 INTRODUCTION

1.1 GENERAL BACKGROUND

Planning the motion of heavy equipment is an important issue in construction projects,
where detailed and accurate planning directly affects the safety and productivity of

operation. The increasing complexity of construction site conditions and equipments
constraints makes manual planning either inefficient to prepare or inaccurate to execute.

Taking cranes as an example of heavy construction equipment, from 1992 to 2006, there
were 323 deaths related to cranes in the U.S. (NIOSH, 2009). These accidents were

caused by contact with overhead power lines, workers struck by booms/jibs, struck by
crane load, caught in between, etc. In Canada, there were 56 accidents related to cranes in

the province of British Columbia in 2006 (WorkSafeBC, 2009); and during the period of
1974 to 2002, there were 23 accidents with injuries, 26 accidents with death, and 13

accidents with material damage related to cranes in Quebec province (CSST, 2009).

Furthermore, the numbers of reported accidents and the resulting deaths are increasing

during the past 10 years (Crane Accident Statistics, 2009).

Recent research tends to enhance safety and productivity by applying motion planning

algorithms and simulation tools to plan and coordinate construction equipment. This still
does not guarantee realistic and accurate motion planning for the equipment since it
ignores completely or partially local constraints that represent the engineering, kinematic
and dynamic constraints of the equipment itself, and focuses only on global constraints
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caused by obstacles in the environment. Furthermore, current approaches represent
obstacles as accurate, well-defined 3D models and ignore the uncertainty in their

representation that is caused by the way capturing technologies work which results
incomplete or low resolution 3D models that suffer from high uncertainty where a large
number of small details are missing. Moreover, it is assumed that obstacles are static

during the operation time ignoring the dynamic properties of the construction site.
Finally, most implementations of the motion planning algorithms are customized towards
specific types of equipment which limits the planning efficiency for realistic sites where
different types of construction equipment can be found working together closely.

To fulfill tasks efficiently and safely in a complex environment with known and unknown
obstacles, several methods are proposed for motion planning. During the planning stage,
the model-based approach is used based on a 3D model of the site, which means initial
information about the geometry of the equipment and the obstacles is given beforehand,
so path planning becomes a one-time off-line operation. During the execution stage, the
dynamic environment needs another approach, called sensor-based planning, with the
assumption that some obstacles are unknown, and this is compensated by local on-line
(near real-time) information coming from sensory feedback (Spong et al., 1992).

2



1.2 RESEARCH OBJECTIVES

The main objective of this research is to investigate real-time motion planning algorithms
and simulation methods for planning heavy construction equipments (mainly cranes)
while considering engineering constraints of equipments, in addition to the dynmic

properties of construction sites. Several approaches are proposed to first represent a
computational model of the equipment and the environment. Then planning algorithms
are applied to find feasible paths that satisfy all equipment constraitns in dynamic
construction environments. Our research objectives are:

1. To propose a framework for real-time motion planning that is applied for cranes
as a case study and can be extended to other types of heavy construction
equipment.

2. To investigate computational methods for modeling construction equipment and
applying motion planning algorithms and 3D simulation tools to generate realistic
planning.

3. To apply real-time intelligent decision-support system that is able to consider the
dynamic properties of the construction environment by efficiently re-planning
equipment paths.

4. To develop a prototype simulation system to test the above mentioned framework
and algorithms in several case studies that can be the base for full construction
equipment automation in risky environments.

3



1.3 THESIS STRUCTURE

In the next chapters, a literature review is discussed in Chapter 2 including 3D
visualization and construction simulation, robotic kinematics and spatial representation,

motion planning algorithms and agents. Chapter 3 proposes the research methodology,
which includes a framework for real-time motion planning system, methods for deriving

computational models of the problem, path planning and re-planning algorithms for
construction equipment, and approaches for visualizing the results. In Chapter 4,
requirements and the workflow for defining the motion planning problem, a summary of
the implementation details, and the testing and validation are discussed. The research
contributions and future work are described in Chapter 5.
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CHAPTER 2 LITERATURE REVIEW

2.1 INTRODUCTION

This chapter focuses on related topics from construction simulation, robotics applications
in construction equipment automation, motion planning for construction equipment and

path planning algorithms. The purpose is to investigate the trends in research for utilizing
such advanced algorithms and technologies from computer graphics, artificial

intelligence and robotics to get real-time intelligent support for motion planning of
construction equipment.

2.2 3D VISUALIZATION AND COMPUTER GRAPHICS

Computer graphics have become a mandatory tool for visualizing virtual worlds in which
concepts, prototypes and simulations are developed. Such facility is capable of closely
representing many real world aspects through 3D visualization by applying a series of
operations on a virtual world stored as a digital 3D data set and representing it onto a
display device (commonly a flat display panel).

There are various formats in which digitized 3D data can be expressed, each being more

suitable to certain applications than others. Amongst these formats, polygonal surface
modeling has become one of the most popular methods of 3D data representation, due to
their flexibility and relative ease of use. As the name implies, models built with

5



polygonal modeling are made of a connected set of 3D polygons, forming a single
continuous shell surface called a polygon mesh. The choice of the type of polygons in use

is liberal, but most 3D rendering and collision detection libraries prefer using simple

polygons such as triangles or quadrilaterals as the basic primitive type from which the
entire mesh is made. Triangles are like atoms, in that the surface made of them can be

rendered. The process of splitting polygons into more tractable primitives, such as

triangles or quadrilaterals is called triangulation or, more generally, tessellation.
Tessellation is the process of splitting a surface into a set of polygons (Akenine-Moller et

al., 2008).

Polygonal meshes can be generated via several ways, including hand-modeling or
surfacing of a cloud of 3D points. The latter method of generation relies on algorithms in
the field of computational geometry. Two main approaches have been developed, the first
is volume (or voxel) based approach, while the second approach is more boundary
oriented (Amenta et al., 1996). Marching Cubes algorithm (Lorensen and Cline, 1987) is
a good representative of the first approach. It constructs a high-resolution 3D surface by
creating a polygonal surface representation of constant density from a 3D array of data.
For the second approach, several algorithms are available that attempt to construct a

polyhedral model of the object that bounds an unstructured cloud of points in 3D. One of
these algorithms is the Quickhull Algorithm (Ericson, 2005). The concept for creating a
3D surface using this algorithm is illustrated for the 2D case in Figure 2.1. The first step
shown in (a) locates the four extreme points (on the Bounding Box (BBox) of the point
cloud), (b) all points inside the region formed by those points are deleted, as they cannot

6



be on the hull, (c) for each edge of the region, the point farthest away from the edge is

located, (d) all points inside the triangular region so formed are deleted, and at this point

the algorithm proceeds recursively by locating the points farthest from the edges of these

triangle regions, and so on.

(b)(a

(e) (d)

Figure 2.1: Steps for constructing 3D surface using the Quickhull algorithm (Ericson,
2005)

3D visualization can be accompanied with collision detection to provide reasoning about

the virtual environment. Collision detection is part of what is often referred to as collision

handling, which can be divided into three major parts: collision detection, collision

7



determination, and collision response. The result of collision detection is a Boolean

saying whether two or more objects collide, while collision determination finds the actual
intersections between objects; finally, collision response determines what actions need to
be taken in response to the collision of the two objects (Akenine-Moller et al, 2008).

Directly testing the geometry of two objects for collision against each other is often very
computationally expensive, especially when objects consist of hundreds or thousands of
polygons. To minimize this cost, object bounding volumes are usually tested for overlap
before the geometry intersection test is performed. A bounding volume (BV) is a single
simple volume encapsulating one or more objects ofmore complex nature. The idea is for
the simpler volumes (such as boxes and spheres) to have cheaper overlap tests than the
complex objects they bound (Ericson, 2005).

2.3 APPLICATIONS OF 3D VISUALIZATION IN CONSTRUCTION

SIMULATION

To achieve better understanding of construction processes, simulation tools have been

developed to: (1) simulate and visualize these processes (Kamat and Martinez, 2001), (2)
analyze and avoid collisions between equipment (Zhang et al., 2007), (3) test and
visualize equipment location and manually plan the path (Cranimation, 2009; LiftPlanner,
2009), and (4) train operators of heavy equipment using virtual reality (Simlog, 2009).
The advantage of visualizing the work processes is that the user can simulate and check
the functional constraints and interferences that may happen in reality between the 3D

physical elements and virtual workspaces.
8



Figure 2.2 shows an animation snapshot of a construction site. The visualization is based
on the results of the simulation, which is not equipped with any collision detection

mechanism, and it does not have any feedback about the unplanned environment changes.
Therefore, if a spatial problem is detected in the visualization phase, the simulation has to
be repeated after changing the input data.
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Figure 2.2: VITASCOPE animation snapshot of a construction site (Kamat and Martinez,
2001)

Figure 2.3 shows a simulation for automatic pouring system of a concrete boom pump.
The trajectory of the boom is analyzed using inverse kinematics to define the path of the
boom; however, no collision detection is applied between the boom sections and the
obstacles in the environment.
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Figure 2.3: Automatic pouring system simulation (Zhou and Zhang, 2007)

A generic method to model and simulate construction cranes in operational details is
discussed in the work of Kang (2006). The numerical model is used to help in visualizing

crane activities on computers so that the goal of virtual construction environment can be

realized. This work focused on rendering realistic animation of crane motions in a virtual

environment where the generated animations are stored using the time histories of crane

motions instead of the video formats to save disk space in long-period projects.

In the research of Chi et al. (2007), a prototype system is introduced for simulating and

visualizing crane manipulation and cooperation. A dual-crane scenario is used to
exemplify crane cooperation. Animation for crane usage is developed based on a
numerical model that includes a suspension model for the cables and a manipulation

model for the other components manipulated by the operator as shown in Figure 2.4. This
prototype does not consider obstacles in the environment and only focuses on visualizing
cranes operations.
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Figure 2.4: The dual crane scenario (Chi et al., 2007)

Lai and Kang (2009) presented simplified collision detection methods for visualizing a
virtual construction scenario on a computer. In this work, different methods are used to

approximate the common objects in construction sites, including tower cranes, mobile
cranes, and structural elements. The approximation methods significantly reduce the

computational cost by eliminating the collision checks between objects which are
unlikely to collide. Although this work applies collision detection in ,construction
simulation, it does not include any reaction events that affect the simulation based on the

collision detection. Figure 2.5 shows different approximation methods applied to tower

and hydraulic cranes.
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Figure 2.5: Different approximation methods: (a) Spherical outer crane boundaries; (b)
Cylindrical outer crane boundaries (Lai and Kang, 2009)

A database system for automating the selection process of cranes on job sites was
presented by Ai-Hussein et al. (2000). This system includes operational information
about crane geometry, lift configurations, lift capacity settings, accessories, and

attachments. The developed database features, the capability of accommodating different

types of cranes using different units of measurements, storing and querying capabilities
and a user-friendly interface supported by graphics in a multimedia environment.

An optimization algorithm for selecting and locating mobile cranes on construction sites
was presented by Ai-Hussein et al. (2005). The developed algorithm and its optimization
module provide practitioners with an evaluation tool for assessing lift configurations
retrieved from the crane's database. It overcomes the limitations arising from the use of

the limited information provided by the cranes' manufacturers in the form of lift-capacity

charts.
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Manrique et al. (2007) presented the concept used to construct a unique and complex tilt-
up-panel structure utilizing an optimization model, 3D CAD, and animation. 3D
animations were used to experiment with the construction process prior to construction in

order to avoid potential costly on-site errors. In addition, the 3D animations were also

used as a training tool for the contractors. This work focuses on describing the

methodology used to integrate a crane selection algorithm and optimization model with
3D modeling and animation. The crane selection process followed the algorithm

developed by Al-Hussein (1999); AutoCAD was used to develop the 3D objects of the
crane, the panels and the site; MS-Solver was used for the optimization of the casting
plate size and location of the cast panels, and to minimize the crane relocations; and 3D
Studio MAX was used for the animation.

Cranimation (Cranimation, 2009) is a crane selection software, which calculates the
outrigger forces for mobile cranes, the distribution of ground pressures for crawling
cranes, and the minimum and maximum radius ranges. Figure 2.6 shows a sample result

of positioning a crane on site. LiftPlanner (LiftPlanner, 2009) is a 3D crane and rigging
planning software, which produces drawings to plan and document critical lifts.
However, these software systems focus on the engineering constraints of the crane and

provide detailed selection and configuration of the crane, but require the users to
manually plan the path for moving the object considering obstacles in the 3D
environment.

13
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Figure 2.6: Crane positioned in a 3D environment (Cranimation, 2009)

Training simulation for equipment operation has been used as a cost-effective tool for the
operators (Ritchie, 2004). Simlog (Simlog, 2009) provides training for different
equipment with various scenarios, such as pouring concrete using bucket lifted by a tower
crane (Figure 2.7). The shortcoming of the training software is that it does not have the
real construction environment and it is not designed to provide path planning.
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Figure 2.7: Simlog training scenario (Simlog, 2009)

The advantage of simulating construction environment and processes is providing a tool

for visually checking potential collisions or other problems to ensure the reliability of a

plan.

2.4 ROBOTIC KINEMATICS

Kinematics of a robot permit the study of its motion without regards to the forces which

cause them. The purpose of the kinematic modeling of a robot is to describe its motion in

a mathematical form. To kinematicaly describe a robot, firstly it is decomposed to a

series of rigid links (rigid-bodies). These rigid links are connected by joints which allow
relative motion of neighboring rigid bodies (links). Two types of joints are commonly
used in robotics. The first one is the revolute joint which allows relative rotations

between neighboring rigid links. The other one is sliding connections, also called

prismatic joints, which allow relative displacement between links. The second step for
defining the kinematics of a robot is to define the relationships between links.
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This can be done based on the Denavit-Hartenberg notation (DH-notation) (Denavit and

Hartenberg, 1955), where each link ? is described relatively to its parent Link i-1 with

four parameters, a¡.j, d¡, a¡.j, and 9¡. a¡.i denotes the length of Link i-1, which is the

mutual perpendicular distance between Axis i-1 and Axis i. Likewise, a¡ represents the

length of Link i, which is the mutual perpendicular distance between the axes between
Axis i and Axis i+1. d¡ is called link offset. It is a signed distance measured along Axis i

from the point where a,·./ intersects with the Axis i to the point where a¡ intersects with

Axis /'. a,-./ denotes the twist angle between Axis i-1 and Axis i in the right-hand sense

with respect to the direction of a,·.; from Axis i-1 to Axis /'. 0,- is a parameter that describes
the amount of rotation about this common axis between one link and its neighbor. Figure

2.8 shows these parameters.
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y /y

y y \ y/ \ -\\ Link iyZi-I \/ \yy'
\

£Z Z:K i-1 C/ 1

&/
/// û/-7 ¿/ A7 ẐXìrì/
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Figure 2.8: Parameters used in DH-notation (Craig, 2004)
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By using the parameters defined in Figure 2.8, the relationship between Link i-1 and Link
i is essentially the transformation matrix between coordinate system {i-1} and coordinate

system {/} . This matrix can be represented in a homogeneous transformation matrix '" T¡
as follows:

i-lf —? =

c0¿ -s0t

0 0

0 a4_!

0 1

(Equation 2.1)

In order to obtain a more concise presentation, c&is used to represent COs(Oi), sd.is used

to represent Sm(Oi), sa¡-\ is used to represent sin(a¡-i), and ca¡-\ is used to represent cos(cu-\).

2.5 ROBOTIC SPATIAL REPRESENTATION

A robot's internal representation of its space is typically required for at least three
different classes of tasks:

1. To establish which parts of the environment are free for navigation. This is a

requirement to represent and manipulate the part of the environment that is free of
obstacles. This region is known as free space.

2. To recognize regions or locations in the environment as special regions that are
free but not safe.

3. To recognize specific objects within the environment (Dudek and Jenkin, 2000).
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These requirements entail having a unified representation for the space in either the work

space or a space representing the configuration of the robot, which is known as

Configuration Space (C-space) (Choset et al., 2005).

2.5.1 Configuration Space (C-Space)

Most of the current approaches to path planning are based on the concept of C-space

introduced by Lozano-Pérez and Wesley (1979). The C-space of the robot system is the

space of all possible configurations of the system; and a configuration is simply a point in

this abstract space. As a result, the dimensionality of the C-space is affected by the

number of Degrees-of-Freedom (DoFs) of the robot. We should be able to specify the

location of every point on the robot, since we need to ensure that no point on the robot

collides with an obstacle. Once the C-space is generated, path planning requires only a

search between the initial configuration (origin) and goal configuration (destination) in

the C-space.

For cases where the robot has fewer controls than DoFs (C-space dimensionality is

greater than controls) because of a variety of motion constraints that cannot be expressed

as configuration constraints, it is considered a non-holonomic robot. A familiar example

of such a system is a car. At low speeds, the rear wheels of the car roll freely in the

direction they are pointing, but they prevent slipping motion in the perpendicular

direction. This constraint implies that the car cannot translate directly to the side. This no-

slip constraint is a non-holonomic constraint.
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2.5.2 Topology of C-space

One reason that we care about the topology of C-space is that it will affect the

representation of the space. Another reason is that if it is possible to derive a path-

planning algorithm for one kind of topological space, then that algorithm may carry over

to other spaces that are topologically equivalent.

In general, the C-space topology is different from the work space (W) topology. In some

special cases, it can be the same. For example, in the case of a circular mobile robot, any

xt, y? ER can be selected for translation, this alone yields an R2 C-space which is the same
as the work space. While for a two-joint planar arm, any rotation, ? £ [0, 2p), can be

applied. But since 2p yields the same rotation as 0, they can be identified, which makes

the set of 2D rotations into a manifold that wraps to a circle (S1) for the first joint, and
similarly for the second joint. To obtain the manifold that corresponds to all rigid-body

motions, simply take C = S1 *S] . The answer to the question is that the C-space is a kind
of torus (T2). Figure 2.9 shows the topology of the C-space for a two-joint planar arm: (a)

two joint planner manipulator with two revolute DoFs (q¡ and q2), (b) C-space

representation of the manipulator as a manifold that wraps into both directions q¡ and q2,

and (c) Unwrapped representation of the manifold, note that it does not show the

continuity of the DoFs. Thus for a boundary point, there will be two possible positions

for it in the unwrapped representation.
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Figure 2.9: The topology of the C-space for a two-joint planar arm: (a) two joint planner

manipulator, (b) C-space representation of the manipulator as T2 manifold (c) Unwrapped
representation of the manifold (Adapted from Latombe, 2009)

If there are multiple bodies and they are allowed to move independently, then their C-

spaces can be combined using Cartesian products. Let Q denote the C-space of the rigid-

body A1. If there are ? free-floating bodies in W = R2 or W = R3, then C = C1 * C2 x ... x
Cn. If the bodies are attached to form a kinematic chain or kinematic tree, then each C-

space must be considered on a case-by-case basis. There is no general rule that simplifies

the process (LaVaIIe, 2006).

2.5.3 Obstacles in C-space

Previous subsections defined C-space in the absence of any collision constraints. The

current subsection removes from C-space the configurations that either causes the

equipment to collide with obstacles or cause some specified links of the equipment to

collide with each other. The removed part of C-space is referred to as the obstacle region

(C-obstacles). The leftover space is precisely what a solution path must traverse. A
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motion planning algorithm must find a path in the leftover space from an initial

configuration to a goal configuration.

We define a configuration space obstacle CB1 to be the set of configurations at which the

robot intersects an obstacle WB¡ in the workspace:

CB1 = {qe C\A(q) ? WB1 F 0} (Equation 2.2)

where:

• q is the configuration

• C is the set of the C-space

• A(q) is the robot set at configuration q in the workspace

• IPFB,- is the workspace obstacle

A C-obstacle region is defined as the union of all C-obstacles (CBi): [JfI1 CB1. Based on

the C-obstacle region, the free space can be defined by removing the C-obstacles region
from C:

Cfree = C\ U^1 CB1 (Equation 2.3)

To gain an understanding of how a C-obstacle can be constructed, consider the case of a

triangular robot A and a rectangular obstacle B, robot A in the plane has three degrees of

freedom, two for translation and one for rotation. For a fixed orientation, the
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configuration space of the polygon is reduced to R2 and the C-obstacle can be constructed
by sliding the robot around the work space obstacle to find the constraints the obstacle
places on the configuration of the robot, i.e., the possible locations of the robot's
reference point as shown in Figure 2.10.

To include the orientation DoF of the robot, one way is to "stack" a set of two-

dimensional configuration spaces, where each slice in the stack corresponds to the (x, y)

configurations of the robot at a fixed orientation ? and the vertical axis represents the
orientation of the robot. An example is shown in Figure 2.1 1 .

Figure 2.10: The C-obstacle for a triangle robot with a fixed orientation (Adapted from
LaVaIIe, 2006)
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Figure 2.11: Representation of obstacle B in C-space for a three DoFs (x,y, T) robot A

(Choest et al., 2005)

Although both the workspace and the configuration space for this system can be

represented by slices of R2, and the obstacles appear to simply "grow" in each slice, the
configuration space and workspace are different spaces, and the transformation from

workspace obstacles to configuration space obstacles is not always so simple. For this
reason, grid-based representations of the configuration space are sometimes used. For

example for the case of a two-joint planar arm, for which C-space is ?2, a grid on the
surface of the torus can be defined, and for each point on this grid a fairly simple test can

be performed to see if the corresponding configuration causes a collision between the
equipment and any obstacle in the workspace. If each grid point is represented by a pixel,
the configuration space obstacle can be visualized by "coloring" pixels appropriately.
Figure 2.12 shows how the C-obstacles (CB; and CB2) for a 2 joint planner arm generated

using this method.
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Figure 2.12: Obstacles representation in workspace and C-space: (a) Obstacles in the

workspace of a robot; (b) The C-space showing the representation of the obstacles

(Adapted from Choest et al., 2005)

The free configuration space (C/ree) is the set of configurations at which the equipment

does not intersect any obstacle in the C-space. In Figure 2.12 (b), the filled cells show the

obstacle space, and the rest of the space is the free space for the robot.

2.6 ARTIFICIAL INTELLIGENCE

2.6.1 Agents

The concept of agents comes from developing a thinking machine with the capability of

solving a problem on its own. An agent can be a computer program that is capable of

accomplishing tasks on behalf of its user. Agents has provided the foundation for

computers to deal with complex tasks, such as monitoring and controlling industrial
24



processes, assisting in medical diagnosis, or designing new machines. Agents are
relatively independent and autonomous entities operating within communities in
accordance with complex modes of cooperation, conflict and competition in order to

survive and perpetuate themselves (Russell and Norvig, 2003).

Actions are taken by the agent to satisfy its objectives based on some satisfaction/survival
function which it tries to optimise using its skills. The actions carried out by an agent will

change the agents' environment, and thus its future decision making. Agents are endowed
with autonomy, meaning that they are not directed by commands coming from a user, but
by a set of tendencies, which can take the form of individual goals to be achieved or of
satisfaction or survival functions which the agent attempts to optimise.

A number of researches involving agents have been done to utilize them in the

construction industry for resolving problems. For example, agent systems have been used
for construction claims negotiation (Ren and Anumba, 2002) and dynamic rescheduling

negotiation between subcontractors (Kim and Paulson, 2003). Bilek and Hartmann (2003)
have presented an agent-based approach to support complex design processes in
Architecture, Engineering, and Construction (AEC). Zhang et al. (2009) has presented
recent research on the application of agents together with Ultra Wide Band (UWB)

technology in construction.
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2.6.2 Path Planning Algorithms

Autonomous robotic path planning depends on path planning algorithms for generating

collision-free path. A collision-free path from an initial configuration to a goal
configuration of the equipment implies that at every step there is no collision between a
piece of equipment and a static or dynamic obstacle in the environment.

Available algorithms for solving the path planning problem can be grouped under several
categories: cell decomposition, roadmaps, potential functions and sampling based
algorithms. Each algorithm inherits the advantages and disadvantages from the group it
belongs to.

Cell-decomposition methods, including trapezoidal, quad tree or grid, depend on
representing the free space by the union of simple regions, called cells, and encoding the
adjacency relationships of the cells with an adjacency graph. Assuming the
decomposition is computed, path planning with cell decomposition is about searching for
a path within the adjacency graph. A* is common searching algorithm that is used to
search for paths within adjacency graphs (Hart et al., 1968). These planners show good
results in low-dimensional C-spaces, but for high-dimensional C-spaces become

inefficient to implement and solve (Choset et al., 2005). Figure 2.13 shows an example of
the grid-based method to represent the free space.
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Figure 2.13: Grid example of cell-decomposition method (Adapted from Bruce, 2009)

Some of the most impressive results have been obtained using potential field methods.
Such methods are attractive, since the heuristic function guiding the search for a path, the

potential field, can easily be adapted to the specific problem to be solved, in particular the
obstacles and the goal configuration. The main disadvantage of these planners is the

presence of local minima in the potential fields. These minima may be difficult to escape.
Local minima-free potential functions (also called navigation functions) have been
defined in (Koditschek, 1987), (Rimon and Koditschek, 1992) and (Barraquand and
Latombe, 1991). But these functions are expensive to compute in high-dimensional C-
spaces and have not been used for many-DoF robots. Figure 2.14 shows the working
principle of potential field method where: (a) the goal location generates an attractive
potential - pulling the robot towards the goal, (b) the obstacles generate a repulsive
potential - pushing the robot far away from the obstacles, (c) the sum result of the two
potentials generated in (a) and (b).
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Figure 2.14: Working principle of potential field method: (a) Attractive potential; (b)

Repulsive potential; (c) Sum ofpotentials (Adapted from Dudek and Jenkin, 2000)

Roadmap methods including the visibility graph (Lozano-Perez and Wesley, 1979),

Voronoi diagram (O' Dunlaing and Yap, 1982), and silhouette methods (Canny, 1988)
have nice features that make them attractive for path-planning application in many fields.

For example, the visibility graph has the advantage of optimality by generating the

shortest path in a polygonal C-space, while Voronoi diagrams are good for safety since

they are able to generate a safe path that has the maximum clearance around obstacles.
All these three methods compute a roadmap that completely represents the connectivity

of the free C-space. The visibility graph and Voronoi diagram methods are limited to

low-dimensional C-spaces. The silhouette method applies to C-spaces of any dimension,

but its complexity makes it less practical. Figure 2.15 shows a visibility graph that is
formed by connecting all "visible" vertices, the start point and the end point, to each

other. The thick line represents the shortest path between the initial and goal positions.

Figure 2.16 shows Voronoi diagram formed by paths equidistant from the two closest
objects.
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Figure 2.15: Example of a Visibility Graph (Fried et al., 2009)

Figure 2.16: Example of a Voronoi Diagram (Fried et al., 2009)
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Considering sampling based algorithms, Probabilistic Road Map (PRM) planner samples

the C-space for free configurations and tries to connect these configurations into a

roadmap of feasible motions. There are a number of versions of PRM but they all use the

same underlying concepts. The global idea of PRM is to construct a roadmap as a

topological graph, and use it efficiently to solve multiple initial-goal queries. Intuitively,

the paths on the roadmap should be easy to reach from each of initial and goal

configurations (q¡ and qg), and the graph can be quickly searched for a solution (LaVaIIe,

2006). The main advantage of PRM is that it is efficient for planning in high-dimensional

C-spaces and for multi-query planning; but on the other hand, it suffers from environment

updates because it needs to sample the C-space again to represent it correctly. Figure 2.17

shows the steps of the basic PRM algorithm: (a) Find random sample of free

configurations (vertices); (b) Attempt to connect pairs of nearby vertices. If a valid local

plan is found between two vertices, add an edge to the graph; (c) Find local connections
to the graph from initial and goal positions; and (d) Search over roadmap graph.

Learning Phase Query Phase
GoalGoal
NodeNode 7

/nit Node¡nil Node

(a) (b) (e) (d)

Figure 2.17: Steps of basic PRM algorithm (Adapted from Bruce, 2009)
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Another important class of sampling based algorithms is the single-query sampling-based

planners. These planners attempt to solve a query as fast as possible and do not focus on

the exploration of the entire Cfree. A representative for this class is the Rapidly-exploring

Random Tree (RRT). RRT was introduced in (LaVaIIe, 1998) as an efficient data

structure and sampling scheme to quickly search high-dimensional spaces that have both

algebraic constraints (arising from obstacles) and differential constraints (arising from

non-holonomy and dynamics). These spaces are referred as state spaces where both types

of constraints are considered. The key idea is to bias the exploration towards unexplored

portions of the space. An RRT can be intuitively considered as a Monte-Carlo way of

biasing search into largest Voronoi regions. Some variations can be considered as

stochastic fractals. As with PRM, RRT is efficient in searching high-dimensional spaces

and has many versions that can suite different planning problems. The main disadvantage

of RRT is that it is not able to guarantee the generation of an optimal path based on pre-

defined criteria; an optimization update is required to address this point. Fortunately, for

many of these algorithms, the solutions produced are not too far from optimal in practice

(LaVaIIe, 2006). Brandt (2006) has made a comparison between A* and an RRT

algorithm for motion planning of robots, and found that RRT is much faster than A*.

Figure 2.18 shows an example of the RRT with 2000 vertex.

Other interesting lines of work include the method in (Kondo, 1991) which finds paths

for 6-DoF manipulators using heuristic search techniques that limit the part of the C-

space that is explored, and the planner in Ahuactzin et al. (1992) which utilizes genetic

algorithms to search for a path in high-dimensional C-spaces.
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Figure 2.18: Example of RRT with 2000 vertex (LaVaIIe and Kuffner, 1999)

A considerable share of the research happening in the field of motion planning focuses on

introducing more efficient extensions to RRTs. Kuffner and LaValle (2000) introduced a

simple and efficient extension to the RRT algorithm called RRT-Connect for solving

single-query path planning problems in high-dimensional C-spaces. The method uses a

simple greedy heuristic called "Connect" to extend the tree efficiently. It works by

incrementally building two RRTs rooted at the start and the goal configurations. Each of

the trees explores space around itself and also advances towards its other counterpart

through the use of the greedy heuristic. Based on the comparisons between RRT-Connect

and several other RRT-based variants, it is determined that for most problems, the greedy

heuristic improves the running time, often by a factor of three or four, especially for

uncluttered environments. In highly cluttered environments, the Connect heuristic only

slightly increases running time in comparison to not using this heuristic in constructing
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the two trees. Thus, it seems that the greedy behavior is worthwhile on average. Figure

2. 1 9 shows an example of solving a simple planning problem using the RRT-Connect.
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Figure 2.19: Growing two trees towards each other (Kuffner and LaVaIIe, 2000)

A comparison of some of these algorithms is shown in Table 2.1, which is based on the

following criteria:

1. Completeness: Complete planning approaches are guaranteed to find a solution

when it exists, or correctly report failure if one does not exist (LaVaIIe, 2006). For

sampling based algorithms (e.g. RRT) completeness depends on the probability to

find solution, the probability of them producing solution approaches 1 as more
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time is spent. Improvements to the standard RRT can be done to address this issue

(Cheng and LaVaIIe, 2002). For Grid A*, finding the solution depends on the

resolution of the grid that is representing the C space, low resolution grids may

result in failure in finding the solution even if it exists. PRM combines both cases

of being probabilistic and resolution complete, this is due to its nature of finding

the path in two phases.

2. Optimal: In addition to completeness, algorithm optimality is considered as its

ability to return optimal path with respect to some metric. For single-query

sampling based algorithms (e.g. RRT), they are not able to guarantee the

generation of an optimal path based on pre-defined criteria; an optimization

update is required to address this point. Fortunately, for many of these algorithms,

the solutions produced are not too far from optimal in practice (LaVaIIe, 2006).

3. Efficient World Updates: Modifying the obstacles in the world is a very common

case. Therefore, efficiency in re-planning the path after updating the world is

important. In all the algorithms reviewed in this paper, there is no perfect

algorithm for this type of query. RRT is the best even though it is considered

semi-efficient in this type of queries.

4. Efficient Query Updates: In addition to world updates, query updates efficiency is

important for cases like re-planning to new goals while fixing world constraints.

The PRM algorithm is efficient in this type of queries, since it can reuse the

roadmap that it constructed in the preprocessing phase.

5. Good DoF Scalability: The DoFs directly affect the complexity of C-spaces, thus

configurations with high DoFs are not practical for solving by many algorithms.
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Grid A* and visibility graph are not suitable for solving configurations with high

DoFs.

6. Non-Holonomic: The capability of solving non-holonomic configurations is a key

feature in path-planning algorithms, where the algorithm is not only limited of

considering global constraints that are generated from explicit obstacles in the

environment (Kuffher and LaVaIIe, 2000), but it is also able to address

local/differential constraints that may be found in some construction equipments.

Among all reviewed algorithms, RRT stands with its high abilities in solving non-

holonomic configurations.

Table 2.1: Summary of the comparison between different algorithms (Bruce, 2004)

Approach

Grid A*

Visibility
Graph
RRT

Complete

res

yes

prob

Optimal

grid
yes

no

Efficient
World

Updates
no

no

semi

Efficient
Query

Updates
no

no

semi

Good DoF
Scalability

no

no

yes

Non-
Holonomic

no

no

yes
semiPRM prob,res graph no yes yes

Res: Resolution Complete, Prob: Probabilistic Completeness
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2.6.3 Re-Planning Algorithms

In the case of motion planning for equipment on construction sites, every task has a

schedule, and the unknown information can be assumed to be minor or less essential to

the whole plan. Therefore, a motion re-planning approach can be efficient by modifying

the off-line plan based on real-time sensed data.

During re-planning, the equipment must either wait for the new path to be computed or
move in an uncertain direction; therefore, rapid re-planning is essential. An efficient re-

planning algorithm should be able to plan optimal traverses in real-time by incrementally
repairing paths to the equipment's state as new information is discovered. Re-planning
algorithms focus on the repairs to significantly reduce the total time required for the
initial path calculation and subsequent re-planning operations. Deterministic re-planning
algorithms such as D* (Dynamic A*) (Stentz, 1994) efficiently repair previous planning
solutions when changes occur in the environment. With basic D*, optimal path planning

can be achieve in real-time by incrementally repairing paths to the robot's state as new

information is discovered. However the disadvantage of the basic D* is that it propagates

cost changes through all invalidated states without considering which expansions will
benefit the robot at its current location. For improving the efficiency of re-planning with

D*, like A*, heuristics can be used to focus the search in the direction of the robot and
reduce the total number of state expansions. The work of Stentz (1995) propose an

extension to the basic D* that utilize a heuristic function to focus the repairs based on the

robot state. Thus, the computational costs are reduced by focusing the cost updates to

minimize state expansions. This extension reduces the total time required for the initial
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path calculation and subsequent re-planning operations. The net effect is a reduction in
run-time by a factor of two to three. However, as the dimension of the search space

increases, for example, in the case of multiple cranes working together, deterministic

algorithms simply cannot cope with the size of the corresponding state space. On the
other hand, randomized approaches such as RRTs are a good choice for solving this

problem since they are not crippled by the high dimensionality. For re-planning with
RRTs, Bruce and Veloso (2002) proposed an extension to the RRT algorithm called

ERRT (Extended RRT) to build a real-time path planning system. This system is able to
interleave planning and execution. It was evaluated first in a simulation environment, and
then by applying it to physical robots. To improve re-planning efficiency and the quality
of generated paths, they introduced two novel extensions to previous RRT work, the
waypoint cache and adaptive cost penalty search. Based on the results, it is clear that
ERRT is significantly more efficient for re-planning than the basic RRT planner,
performing competitively with -or better than- existing heuristic and reactive real-time
path planning approaches. A real robot was able to perform better than previous fully
reactive schemes, traveling 40% faster while avoiding obstacles, and drastically reducing

oscillation and local minima problems that the reactive scheme had. Figure 2.20 shows

different cases for extending the RRT with waypoints cache.
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cached waypoints with probability ? with probability r with probability 1-p-r

Figure 2.20: Extended RRT with a waypoint cache for efficient re-planning (Bruce and
Veloso, 2002)

Another approach for re-planning is proposed by (Ferguson et al., 2006). In this
approach, a re-planning algorithm is presented for repairing RRTs when new information
concerning the configuration space is received. Instead of abandoning the current RRT

entirely and re-growing a completely new RRT, this approach mimics deterministic re-
planning algorithms by efficiently removing just the newly-invalid parts and maintaining
the rest. It then repairs the tree be growing the remaining tree until a new solution is
found. The resulting algorithm, called Dynamic Rapidly-exploring Random Trees

(DRRT), is considered a probabilistic analog to the widely-used D* family of
deterministic re-planning algorithms. The results demonstrate the usefulness of the

DRRTs as good substitute for D* in high-dimensional problems. In comparison with
ERRTs (as another alternative for re-planning with RRTs), on average, DRRTs

outperformed ERRTs in each case by a factor of 5. Unfortunately, the experiments that
are represented in work of Ferguson et al. (2006) are idealized and limited to a discretized
limited environment. Utilizing the DRRT for solving problems with large continuous

space is more challenging and requires further evaluation. Figure 2.21 shows the concept
of DRRT for efficient re-planning: (a) an initial RRT generated from a start position to a
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goal position, (b) a new obstacle is added to the C-space, (c) parts of the previous tree
that are invalidated by the new obstacle are marked, (d) the tree is trimmed: invalid parts

are removed, (e) the trimmed tree is grown until a new solution is generated.

O goalgoalgoal

startstartstart

(a) (b) (e)

goal©goal

startstart

(d) (e)

Figure 2.21: DRRT steps for efficient re-planning (Adapted from Ferguson et al., 2006)

2.6.4 Multi-Robot Planning Algorithms

The existing methods for solving the problem of motion planning for multiple robots can
be divided into two categories (Latombe, 1991). In the centralized approach, the

configuration spaces of the individual robots are combined into one composite
configuration space which is then searched for a path for the entire composite system
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(S'anchez and Latombe, 2002; Schwartz and Sharir, 1983). In contrast, the decoupled

approach first computes separate paths for the individual robots and then resolves

possible conflicts in the generated paths (LaVaIIe and Hutchinson, 1998; Peng and
Akella, 2003; Sim 'eon et al., 2002). While centralized approaches (at least theoretically)

are able to find the optimal solution to any planning problem for which a solution exists,

their time complexity is exponential in the dimension of the composite C-space. In

practice, one is therefore forced to use heuristics for the exploration of the huge joint state

space.

Decoupled planners determine the paths of the individual robots independently and then

employ different strategies to resolve possible conflicts. Accordingly, decoupled
techniques are incomplete, i.e. they may fail to find a solution even if there is one. A

popular decoupled approach is planning in the configuration time-space (Erdmann and
Lozano-Perez, 1987) which can be constructed for each robot given the positions and

orientations of all other robots at every point in time.

Another approach to decoupled planning is the path coordination method which was first
introduced in O'Donnell and Lozano-Perez (1989). The key idea of this technique is to

keep the robots on their individual paths and let the robots stop, move forward, or even
move backward on their trajectories in order to avoid collisions (Bien and Lee, 1992).

A less studied approach to motion planning for multiple robots, which is nevertheless

often used in practice, is prioritized planning (Bennewitz et al., 2002; Clark et al., 2002;
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Erdmann and Lozano-Perez, 1987). In a prioritized approach, each of the robots is

assigned a priority. Then, in order of decreasing priority, the robots are picked. For each
picked robot a trajectory is planned, avoiding collisions with the static obstacles as well
as the previously picked robots, which are considered as dynamic obstacles. This reduces
the multi-robot motion planning problem to the problem of motion planning for a single
robot in a known dynamic environment, which is a complex problem in itself, but not as

complex as the centralized approach.

2.7 CONSTRUCTION EQUIPMENT PATH PLANNING

Although motion planning algorithms have been studied in computer science and robotics
for more than thirty years, little research has been focusing on motion planning for
construction equipment.

Hornaday et al. (1993) proposed a system for developing a computer-aided planning for
heavy-lifts. The proposed system suggests the utilization of planning algorithms for
fulfilling the requirements of the system, but it did not develop a suitable algorithm or
investigates available path planning algorithms.

Tserng et al. (2000) proposed a methodology and several algorithms for interactive
motion planning that are developed for multi-equipment landfill operations in an
Automated Landfill System (ALS). It simulates the operational processes of landfill
vehicles and equipment in pre-planning a landfill project as well as finding efficient and
collision-free motion patterns to control autonomous landfill equipment during the
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construction phase. However, this system depends on pre-defined patterns to do motion
planning for the equipment. This prevents the system from solving actual cases where
there could be equipment in the construction site that do not follow any of the specified

patterns moving as dynamic obstacles.

Kim et al. (2003) introduced a path-planning method for a mobile construction robot to
find a continuous collision-free path from the initial position of the construction robot to

its goal position. This work presents an improved Bug-based algorithm, called SensBug,
which can produce an effective path in an unknown environment with both stationary and
moving obstacles. The contributions, which make it possible to generate an effective and
short path, are: (1) an improved method to decide a local direction, which allows the
mobile construction robot to generate an effective path in the environment with both

stationary and movable obstacles; (2) a reverse mode, which can provide a mobile
construction robot with a way to overcome the problem of obstacles in a complex

configuration; and (3) a simple leaving condition, which allows the mobile construction
robot to leave the obstacle boundary as soon as possible. These improvements make it

possible to overcome the weak points of the previous algorithms. However, these
improvements did not overcome the safety issue in all variations of bug algorithms where
generated paths touch the obstacles. This issue is caused by the behavior of how bug
algorithm navigates through the environment where it depends on wall-hugging the
obstacles until it reaches the specified goal.
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In the area of multi-equipment planning, Varghese and his colleagues have tried different
algorithms, such as A* and Genetic Algorithms (GA) for optimizing the path for
cooperative lift with two cranes (Sivakumar et al., 2003). In the research of Ali et al.
(2005), a GA algorithm is used and compared with the A* algorithm, and the former is
considered as a better solution for two cranes working together. Figure 2.22 shows a path

traced by hook ends of two cooperative manipulators using a GA. However, they
assumed that the site contains only static obstructions, and the proposed solutions only

provide off-line planning, rather than real-time control of the movement. Gireesh and
Vijayan (2007) have proposed a fuzzy logic approach to secure a collision free path
avoiding multiple dynamic obstacles.
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Figure 2.22: Path of cooperative manipulators using GA search (Ali et al., 2005)

Kang and Miranda (2006) have proposed an incremental decoupled method to plan
motions for multiple cranes to avoid collision among any of the cranes as well as possible

43



collisions between the cranes and the transported objects. Three different algorithms,

QuickLink, QuickGuess, and RandomGuess, were integrated to find a path efficiently.
Moreover, path refining algorithms were developed to optimize a given path, as shown in
Figure 2.23. Although this research considered dynamic changes on site to make the path
more realistic, it assumed the environment information is known by following the work
schedule.
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Figure 2.23: An example of the path refining process (top view) (Kang and Miranda,
2006)

Zhang et al. (2009) investigated motion planning algorithms to integrate them in
collaborative multi-agent systems to support construction equipment operators using
agents, wireless communication, and field data capturing technologies. Data collected
from sensors attached to the equipment, in addition to an up-to-date 3D model of the
construction site, are processed by the multi-agent system to detect any possible
collisions or other conflicts related to the operations of the equipments, and to generate a

new plan in real time. The potential advantages of the proposed approach are: more
awareness of dynamic construction site conditions, a safer and more efficient work site,
and a more reliable decision support based on good communications.
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2.8 ROBOTICS APPLICATIONS IN CONSTRUCTION AUTOMATION

Unmanned construction is work performed by remotely operated construction machinery

that corresponds to an operator controlled robot. Unmanned construction was used in
civil engineering work for the first time in Japan in 1969 when an underwater bulldozer
was used to excavate and move deposited soil during emergency restoration work at the

Toyama Bridge that had been blocked by the Joganji River disaster. Since then,
unmanned construction by excavators inside pneumatic caissons and by backhoes has

been carried out. The restoration work following the volcanic eruptions that began in

1994 at the Unzen-fugendake Volcano and restoration work executed following the

eruption of the Usuzan Volcano in 2000 were the first executions of large-scale
unmanned construction and have spurred rapid progress in unmanned construction

technologies and encouraged their wide use (Ban, 2002).

More research about construction automation is carried out in the National Institute of

Standards and Technology (NIST, 2007) in the U.S. Construction Metrology and

Automation Group (CMAG) is involved in the development of position/orientation
tracking systems and sensor interface protocols. The Computer Integrated Construction
(CIC) group is doing research on the visual representation and simulation of construction
models (Furlani et al., 2002). Intelligent Systems Division with CMAG are researching
robotic structural steel placement project called Automated Steel Construction Testbed

(Lytìe et al., 2002; 2004).
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CMAG has been conducting research in crane automation since the mid 1980's. A

robotic crane (RoboCrane) based on an inverted, cable actuated Stewart-Gough platform
(2009) principle was invented at NIST at that time. Since then, several versions of the
RoboCrane concept have been developed for various applications. Currently, CMAG is
developing a generic crane controller using NIST real-time control system methodology
in order to test and evaluate various automated crane control schemes. In addition,

CMAG is working on methods and algorithms to identify construction components from
high-resolution 3D laser scanning data and to determine their position and orientation.
The use of low-resolution 3D range cameras for obstacle avoidance and crane load

docking are also being investigated (Saidi and Lytle, 2008).

Computer Integrated Road Construction (CTRC) project has been aiming at introducing a
new generation of control and monitoring tools for road pavement construction. Two
prototypes are developed: CIRCOM for compactors (Bouvel et al., 2001), and CTRPAV
for asphalt pavers (Peyret et al., 2000). Figure 2.24 shows a compactor instrumented with
a GPS antenna, a gyro, a radar, and so on.
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Figure 2.24: Instrumented compactor (Bouvel et al., 2001)
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Oloufa et al. (2003) reports on research related to situational awareness of construction

equipment using differential Global Positioning System (DGPS), wireless and web-based
technologies. The technology presented here has a lot of promise, however, several areas
have to be evaluated such as optimum system architecture, signal reliability, GPS

accuracy and potential differential signal latency and communications issues.

The study of (Tseng et al., 2007) proposes the idea of using an autonomous robot to
perform the pavement inspections for evenness and distress. Because inspection
instruments are assumed to be mounted on the robot's platform, this robot is capable of

inspecting pavement conditions while at the same time planning the upcoming motion
path according to the inspection results. The authors propose four motion planning
methods for robots as shown in Figure 2.25.

Unmanned and semi-automated construction systems could be used not only at disaster

restoration sites, but also to increase safety and efficiency at ordinary construction sites.

However, it is mentioned that the efficiency of unmanned construction is roughly 60% to
70% ofthat of manned construction, but sharply decreases in cases where the machinery

moves or high precision work is necessary (Ban, 2002). Therefore, artificial intelligence
(AI) methods can be used as an auxiliary tool to support the equipment operators, as was
explained in Section 2.7.
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Figure 2.25: Pavement inspection with obstacles: (a) Traversal Mode; (b) Longitudinal
Mode; (c) Random Mode; (d) Grid Mode (Tseng et al., 2007)

2.9 SUMMARY AND CONCLUSIONS

A wide range of literature from civil engineering, computer science, and robotics areas
was reviewed, including automation in construction and current research trends. Different

path planning algorithms were studied to select the most suitable one for real-time path
re-planning in high-dimensional spaces that is found in construction equipments.
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CHAPTER 3 METHODOLOGY

3.1 INTRODUCTION

As discussed in Chapter 2, the development of simulation software is enabling the

visualization of equipment motion planning using virtual environments. However, many
of these simulation tools focus on one side of the problem, and in all previous research

approaches, the dynamic properties in the construction site are ignored. For example,
some of the tools consider automatic motion planning, but make many simplifications

and assumptions (e.g. ignoring engineering constraints). On the other hand, other tools
consider engineering constraints, but they depend on manual motion planning. Therefore,
an accurate motion planning system for coordinating the paths of construction equipment
is necessary.

Current research shows trends towards integrating different disciplines including

robotics, artificial intelligence and computer graphics to improve the operation of
construction equipment. Since safety and productivity are major concerns when
automating or supporting construction equipment operation, new approaches are required
to generate realistic motion plans for construction equipment that can address the
dynamic nature of the construction processes.
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A computational model of the construction equipment can be built based on robotic
concepts and computer graphics. Integrating this model into a 4D environment that
represents the construction site with its dynamic characteristics generates a 4D simulation
of the construction processes in near real-time. Based on the 4D simulation information,
artificial intelligence algorithms can be applied to search for realistic motion paths under

specified constraints to provide interactive intelligent support in near real-time. The
results of the simulation are then visualized and analyzed in a 4D environment to help in

decision-making before and while operating equipments.

In this chapter, a framework is developed to integrate and simulate real-time motion
planning for construction equipment. The framework considers engineering constraints
and the dynamic nature of construction sites. Several computational aspects of this
framework are discussed, and it is used to develop a motion planning prototype system

for construction equipment. The system is applied in case studies of hydraulic crane and
tower crane as will be introduced in Section 4.6.

3.2 REAL-TIME MOTION PLANNING FRAMEWORK FOR CONSTRUCTION

EQUIPMENT

The framework presented in this section shows the integration and relationships between
the different components that are proposed for near real-time motion planning systems
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for construction equipments. The general structure of the framework is shown in Figure
3.1.

Construction Equipment Definition

Kinematics Properties

Kinematics (Number of DoFs)

Kinematics (DoFs types)

Engineering Constraints

Geometrical Representation

Environment Definition

Static Obstacles

Dynamic Obstacles

C-space

Dimensionality

Topology

H Joints Limits

Dilation

C-obstacles

Solver

Collision Detection

T
Planning Algorithm

Re-planning Algorithm

U Updating simulation

4D Visualization

Real-Time Rendering

Figure 3.1: Framework for construction equipment motion planning/re-planning

The solver component in this framework is the core unit for computing feasible motion
paths (planning), and modifying existing ones based on environment updates (re-
planning). This component is based on algorithms that utilize continuous collision
detection queries to search the C-space for optimized feasible paths. The C-space is
generated based on the construction equipment and environment definitions. Under the
Kinematics Properties, the number of DoFs of the equipment determines the
dimensionality of the C-space, and the types of these DoFs specify its topology as
described previously in Section 2.5.2. More modification to the C-space is done to
accommodate the engineering constraints and dilation for ensuring realistic and safe

51



motion paths for the construction equipment. In the environment definition, the
construction site environment is presented with either static or dynamic obstacles. Static

obstacles represent all predefined known obstacles that are considered in the planning
phase only. Dynamic obstacles represent all other obstacles that are not predefined prior
to the planning phase and have high uncertainty that is reduced after executing the plan
and only can be avoided with re-planning. Both of these two obstacle types are converted
from their geometrical representation in the work space to C-obstacles representation in
the C-space. The result of this conversion completes the generation of the C-space as it
will be used by the solver to compute the optimized path.

The visualization component in this framework is essential for viewing and analyzing the
results in an interactive simulation environment. All results are rendered in a 4D

simulation environment where users can easily navigate in the 3D space using navigation

tools. It is necessary for the visualization to be able to render in real time since it should
reflect the dynamic updates and the re-planning results as the solver modifies the motion
paths. The high level of interactivity in the simulation environment enables the users to
experiment with the dynamic nature of the construction site by interactively controlling
the dynamic obstacles.

Figure 3.2 shows the flowchart of the proposed real-time motion planning framework.
Figure 3.2 (a) starts with defining the motion planning problem (DEF sub-flowchart) that
is presented in (b) and explained in detail in Section 3.3 and Section 3.5. The next step is
planning the initial path based on the problem definition. The details for the planning
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process are shown in PLN sub-flowchart (c) and its details are explained in Section 3.6.
In case the planning process succeeded, the equipment starts updating its state based on
the path for the first simulation step, if the planning failed to calculate a path, the
simulation ends. The updated state is checked next against dynamic obstacles that are
controlled interactively in the system. If the updated state is valid, it is rendered and the
simulation advanced to the next step. Before repeating the process again for the next

simulation step, the current step is checked if it is at the goal, where if that is true the
simulation stops. In case of current state is not valid for dynamic obstacles, a re-planning
process is executed and again it is checked for success, where it is either succeeded and
visualized or failed and the simulation is stopped.

Figure 3.2 (b) shows an overview for the process of defining the motion planning
problem in the proposed framework. It starts with two simplification processes for the
construction equipment definition. One is for simplifying the kinematic structure
explained in Section 3.3.1, while the other one is for simplifying the geometrical
representation to bounding boxes and is explained in Section 3.7. The next two processes
are responsible for increasing the safety of the generated path as described in Section 3.5.
The first process generates critical volumes for preventing the solver from generating
paths in unsafe volumes. The other process expands the obstacles defined in the
environment to avoid unsafe paths that are too close to obstacles. This completes the
definition of the motion problem as the C-space that can be searched by the planning/re-

planning algorithms is generated.
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Figure 3.2 (e) represents the general flow of the planning/re-planning algorithm

developed in this research. This algorithm depends on RRTs as a randomized sampling

planning algorithm. It starts first by sampling a random node in the C-space and growing

a tree towards the sampled node. Details about the proposed approaches for sampling

nodes and growing the tree are explained in Section 3.6.2. The resulted node of growing

this tree is then validated in two phases; first phase is validating the node for obstacles

then the second phase for engineering constraints. If any of these two validations failed, a

new node is sampled and the process is repeated again. In the case of success, the node is

added to the tree and the process is repeated again after checking if the grown tree has

reached the goal. Details about the developed algorithm are explained in Section 3.6.
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Figure 3.2: Flowchart for the proposed real-time motion planning framework

55



Construction

equipment
definition

Simplifying
kinematic
structure

I
Generate

bounding box

I
Generate critical

volumes

Apply dilation

I
Generate C-space

(Return )

Environment

definition (static /
obstacles) /

(b) Motion planning problem definition

Figure 3.2: Flowchart for the proposed real-time motion planning framework (continued)

56



/stari '
V PLN ,

/ Engineering
/ constraints

/ database

Sample node in C-
space

Grow tree towards
node

Validate grown
node for obstacles

?

<" Node valid?

I
Yes

Validate grown
node using

engineering agent

I
<f Node valid? >-

Yes

Add node to tree

Check if the tree
reached goal No

Goal reached?

Y
Yes

T

No

No

^-Maximun< allowed nodes '
\reached?--x'

-Yes-

A1(Return)Y^

(c) Planning/re-planning algorithm

Figure 3.2: Flowchart for the proposed real-time motion planning framework (continued)

57



3.3 KINEMATIC PROPERTIES OF A HYDRAULIC CRANE

To be able to integrate the construction equipment in the framework, a computational
model is required that defines two major aspects: the kinematic properties and the
geometrical representation of the construction equipment. For the kinematic properties,
the construction equipment is considered as a robot, which is composed of a series of
links (rigid bodies) connected by joints which allow relative motion of neighboring links.
With this robotic model, defining the kinematic properties includes defining: the

hierarchal structure of the links, local coordinate systems (frames) and joint types which

are either a sliding joint (prismatic) or a rotational joint (revolute). These properties can
be defined mathematically in a homogeneous transformation matrix using the DH-
notation as explained in Section 2.4. Considering a hydraulic crane as an example of
construction equipment, there are two revolute joints (swing of the boom 6>/ and angle to
the ground ?2) and two prismatic joints (boom extension d3 and cable extension d4), and
on each joint a local coordinate system is attached as presented in Figure 3.3.

Applying DH-notation on a hydraulic crane, we can obtain four transformation matrices,
0T1, 1T2, 2T3,3T4 that specify the kinematic relations between the attached axis for each
link. 0Ti is the homogeneous transformation matrix that transforms the motion from the
base coordinate system {0} that is attached on the top of the truck to the coordinate
system {1} which is attached to the bottom of the cabin. Similarly, 1T2 transfers the
coordinate system from the bottom of the cabin to the base of the boom; 2T3 transfers the
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coordinate system from the base of the boom to the first boom extension {3}; finally T4
transfers the coordinate system from the boom extension to the cable {4}.
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Figure 3.3: Defining the kinematic structure for a hydraulic crane: (a) Frames attached to
the crane components; (b) Schematic for the hydraulic crane based on DH-notation

Once the transformation matrix for each link has been developed, the forward kinematics
function of the hydraulic crane can be found by multiplying all four link transformation
matrices. Since the matrix is essentially transferring the coordinate system from {0} to

{4}, we denote it by 0T4 as shown in Equation 3.1. Appendix C lists the Matlab code used
to calculate this matrix.
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CU1CO2 Cd1Se2 -SO1 -Ci4SO1 + Cl3Ce1SO2
SO1CO2 SO1SO2 CO1 Ci4CO1 + Ci3SO1SO2

s02 -c02 0 -d3c02
.000 1

(Equation 3.1)

Where c0¡ represents cos(0¡), c02 represents cos(02), s0¡ represents sin(Oi), s02 represents
sin(02), Oi represents the swing of the boom, O2 represents the angle to the ground, d3
represents the length of the boom, and d4 represents the length of the cable. The matrix
0T4 is a homogeneous transformation matrix, which can be used to present both
orientation and the position of the cable with respect to the coordinate system {0}. This
matrix representation is the base of the kinematic structure definition for the solver. More
discussion about the use of homogeneous transformation matrices to present robot-like

machines can be found in (Craig, 2004).

Utilizing DH-notation for modeling the kinematic structure of construction equipments is
efficient and optimized since the number of parameters required to define the
homogeneous transformation are four instead of six as is the case of affine transformation
notation. On the other hand, DH-notation depends on specific assumptions for computing

the homogeneous transformation matrix. It depends on having links arranged in a
hierarchy where each link is transformed relative to its parent and its frame is attached in
a specific way. As a result, any link is transformed based on its parent axis. This
conclusion is acceptable for most robotic applications; but for construction equipments
there may be cases where it is not acceptable to transform a link relative to its parent. As
an example, in a hydraulic crane, the cable cannot be modeled as a direct child to the
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boom, because in that case it will be transformed relative to the boom axis instead of

being transformed relative to the gravity vector. As the boom rotates, the cable will
inherit the boom's rotation instead of having constant rotation aligned to the world axis.

Figure 3.4 (a) shows the case where the cable frame {4} is parented to the boom frame
{2} through frame {3}. As frame {2} is rotating, frames {3} and {4} are inheriting the
rotation.

In this research, a solution is proposed to transform the rotation matrix of the cable
relative to the world frame instead to the boom frame while still following the DH-

notation. This solution enables the cable to stay oriented towards the gravity vector no

matter how the boom rotates. To simplify the process of deriving the solution, the

homogeneous transformation matrix of the cable is divided to its main components as
shown in the following equation:

G °/? ! 0P
LO 0 0 ! 1

(Equation 3.2)

Where 0R4 is the 3x3 rotation matrix of {4} relative to {0}, and 0P4 is the 3-dimensional
vector for the position of {4} relative to {0}. These two components are extracted from
the final homogeneous transformation matrix that is computed by multiplying successive
homogeneous transformation matrices from frame {0} to frame {4}. For the cable, to
have the rotation matrix transformed relative to the world frame {W}, a zero-link (i.e.
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abf=0) is introduced with its own frame [Z) between the cable and the boom. Thus, the
homogeneous transformation matrix will be:

0T4=0Tl1T2-2T33Tz-2T4 (Equation 3.3)

This new link is used to provide the cable frame [4} with a world-transformed parent

frame [Z), thus when transforming [4) based on the DH-notation, it will be transformed
relative to [Z) which has a matching orientation to [W). Figure 3.4 (b) shows how the
new zero-length link frame [F) matches the orientation of { W) and enables the cable
frame [4) to be transformed relative to a world oriented frame [Z) .
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Figure 3.4: The effect of different hierarchy setups on the cable: (a) Cable linked directly
to the boom, (b) Cable linked to intermediate frame that compensates for the boom

rotation
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After adding the new link, the rotation matrix is then composed of:

'R4=0Rl1R2-2R3-Rz2R4 (Equation 3.4)

To make the rotation of [Z) always match the rotation of [W), the rotation of the boom
[2) should be compensated since the rotation of [Z) is affected by [2). This
compensation is done by computing the inverted rotation matrix:

Rz = [1R2. 2R3J = Ri (Equation 3.5)

Since rotation matrices are orthogonal, the inversion of 1R3 can be computed by taking its
transpose instead computing its inversion as a simplified approach. Thus R3' will be

R3-1 = [1R2. 2R3]7 (Equation 3.6)

Regarding the position vector 3P4, since the new introduced link is zero-length, then the
position vector will remain the same and the homogeneous transformation matrix will be:

Ot _ OtU — '3- K3 K4 , Í4
Lo" "0"0"T "G (Equation 3.7)
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This solution avoids considering an additional revolute DoF for controlling the cable's

orientation; where in that case, the C-space dimension will become a five-dimsion space,

and the confguration vector will be q=(9,, ?2,a3, O41(Is) while the controlable DoFs are

only (T], O2AiAd. This leads to solve the motion planning problem as if it is a non-
honomic, which is not true because the cable motion constraint can be expressed as a

configuration constraints as show in Figure 3.5 and Equation 3.8.

r

Cable

Figure 3.5: Configuration constraint between boom rotation (Q2) and cable rotation (O4)

?4 = 90° - ?2 (Equation 3.8)

3.3.1 C-space Dimensionality and Topology

For this research all construction equipment are modeled kinematicly as holonomic

robots to avoid using state space instead of C-space. This results in that the C-space

dimensionality and topology are affected by the number and types of DoFs of an
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equipment. Based on the C-space dimensionality, a configuration in the C-space can be
expressed by a vector that has the same number of dimensions of the DoFs of the
equipment. For a hydraulic crane that has four DoFs (swing, rotate boom up and down,
extend boom and move the hook up and down), its configuration vector should be a 4D

vector that lists these DoFs as the following: q=(0i,6^AiAd- Therefore, the more DoFs

considered the more complex the C-space would be. There is strong evidence that the

planning solution requires exponential time in the number of dimensions of the C-space,

i.e., the number of DoFs of the robot (Kavraki and Latombe, 1998). For a simplified

structure of a hydraulic crane, it has four DoFs as introduced previously, but this

simplified structure is not used for simulation or control. Instead, a full kinematic
definition is used which could have up to seven DoFs, two revolute joints (0/ and ?2) and

five prismatic joints (d3, d4, d5, d6 and d7), as shown in Figure 3.6.

Solving the problem with full kinematic structure of the crane raises the complexity of
the problem. This can be avoided by solving the problem using the simplified structure
and then transferring the results to the full kinematic structure for simulation. In the case

of the hydraulic crane, the planning results for the boom extension should be transferred
from one prismatic joint to four joints for the full structure as shown in Figure 3.7.
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Figure 3.6: Degrees of freedom for a crane

DoFif 1 : Prismatic

4
DoF#1 : Prismatic DoF#2: Prismatic DoF#3: Prismatic

. ., 1- -«
DoF#4: Prismatic

Figure 3.7: Transferring planning results from one prismatic joint to several joints

Transferring the results require deriving a heuristic relationship between the simplified
and the full kinematic structure. In the hydraulic crane case, this relationship should
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satisfy rules of actions where the boom extends sequentially in the full structure starting
from the base part of the boom. The following equation establishes this relationship:

qt = max[min(£7i_mcu:, qsimvie ~ [Rsimpie-max - S)=? Qj-maxÌ) > 0] (Equation 3.9)

where:

• q¡: is the extension value of the prismatic joint number i, where i starts from the
tip of the boom.

• qi-max'· is the maximum value the prismatic joint i can have.

• qsimpie'· is the current value of the joint in the simplified structure.
• qsimpie-max- is the maximum range of joint limit in the simplified structure. This

value should equals to the sum of maximum ranges of all joints in the original

Structure (i.e. qsimPle-max = S qi.max).

As an example for applying the previous equation, Figure 3.8 shows a sample case where
it is required to transfer the current extension value from the simplified boom to the full
one based on Equation 3.8.
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Figure 3.8: Example of transferring planning results from one prismatic joint to several
joints

The values for all joints are then computed as in the following:

qi =max[min (1 0, 20-[48-(J O)J), OJ =0m

q2=max[min(ll,20-[48-(10+ll)]),0]=0m

q3=max[min(13,20-[48-(10+ll+13)J),0J=6m

q4=max[min(14>20-[48-(10+ll+13+14)J),0J=14m

(Equation 3.10)

(Equation 3.11)

(Equation 3.12)

(Equation 3.13)

For the topology of construction equipment, implicit representation of the topology of the
C-space is avoided in this research because construction equipment usually is composed
of a kinematic chain of different types of joints. One way to avoid implicit C-space

representation is to depend on randomized sampling to capture the C-space without the
need to derive its topology. This decision directs the selection of the planning and re-
planning algorithms towards the sampling-based algorithms that will be discussed in
Section 3.6.
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3.4 ENGINEERING CONSTRAINTS

To ensure realistic planning and re-planning for construction equipment, engineering
constraints should be considered in the framework to define the planning problem.

Taking cranes as an example, the engineering constraints of cranes are mainly from
working ranges and load charts. Working ranges show the minimum and maximum boom
angle according to the length of the boom and the counterweight (Figure 3.9). Load
charts give the lifting capacity based on the boom length, boom angle to the ground and
the counterweight. These data of engineering constraints are all stored in databases that
can be accessed later when generating paths.

T
(Feet)

10

12

15

20

25

30

35

40

45

50

35

+140,000
<«8) .

110,500
¡64)

9M00
(58.5)
78.750
I«)

59,800
(32-5)

108,500
(76)

104,500
(72.5)
91400
(69)

75,300
(62)

59,7SO
(SS)

47,300
(47)

38,650
(37.5)
28,450
(24.5)

84,200
(78)

79.850
(76)

73300
¡73)

(67.5)
KMW0
(62.5)
42,300
(56.5)
36,950

(50)
28,450

(43)
23,400
(34.5)
19,450

(23)

70

"56,450
(80)

56/450
(78.5)
56,450
(76)

56,450
(71.5)
48500
(67)

41300
(62.5)
36,400
(57.5)
29,700

(52)
24,650
(46.5)
20,700
(39.5)

(a) (b)

Figure 3.9: Working range (a) and load chart (b) of a crane (Groove Crane, 2006)

Al-Hussain et al. (2000) described the development of a comprehensive database (called
D-CRANE) designed to support efficient selection of cranes that includes operational
information about crane geometry, lift configurations, lift capacity settings, accessories,
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and attachments. In this research, the load chart data of the case study crane is added to a

simplified database to test the developed prototype system as will be explained in Section
4.4.2.

In the proposed framework, engineering constraints should be considered through all
motion planning steps in order to guarantee safe paths in terms of stability of the
equipment along the entire length of the path. This requirement leads to a planning
process that is interwoven with engineering constraints validation. While the solver is
taking decisions for the next step of the path it is generating, engineering constraints are
validated and included as additional decision factors for the solver. Validating

engineering constraints is based on a search algorithm that is developed to validate solver
queries by searching for the category that satisfies the query in the specified data cluster.
If the algorithm finds this category, a decision of acceptance is returned to the solver for
the stated query, otherwise it will reject the query and the solver has to try a different
strategy that satisfies the engineering constraints. This algorithm is implemented based on
a brute-force search. It simply loops on all values in the data cluster and does multi-
comparison queries between the current and the queried values. At the end, it returns
either true or false based on the searching results. This algorithm can be enhanced in
terms of search efficiency, but since the size of the data set is relatively small, the effect
of this enhancement is not noticeable and the current algorithm is sufficient for such

searching problems. Figure 3.2 (c) shows the flowchart for the planning phase
considering engineering constraints.
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In this research, this searching algorithm is referred to as Local Validation Algorithm

(LVA) that it is applied using the database that contains the engineering constraints.
Figure 3.10 shows pseudo code for the simplified searching algorithm. This algorithm
works by accessing first the data set from the database that matches the specified
Outriggers and Counterweight parameters (line 1), it then prepares searching variables by
converting simulation scene inputs to compatible units with of the data stored in the
database (lines 2-4). The first phase of searching starts by enumerating all available
extension groups to specify the group that encompasses the current state of boom
extension (lines 5-11). The second phase of search is done for specifying the load group
under the specified extension group after inverting the set to be able to search in reverse
order (lines 12-17). In case both searching phases succeeded, LVA will return true to the
solver for the current boom configuration, otherwise it will return false and the current

state will not be included in crane's path.
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LVA(Outriggers, Counterweight, BoomExtension_State, BoomAngleToGroundJétate,
Load, Capacity_Reduction)

1. data = queryDataSet(Owirigger,s, Counterweight);
2. d = convertToFeets^oomisxfónszoH^/ate);
3. íA = convertToDegrees(5oo«t,4ng/eroGroM«ii_5iu!ie);
4. loadjnod = Load * (100 + Capacity_Reduction)l\ 00;
5. repeat for each data: extension_class(i) in data:extension classes
6. iî{d< data -.extension class(i))
7 . extension_classJd = i+l;
8. else
9. break;
10. if (extension_classJd = null)
1 1 . returnfalse;
1 2. in\ertSort(data:extension_classJd(i));
13. repeat for each data:load_class(j) in data: extension_classjd(i)
14. if {loadjnod < data:load_class(j))
1 5 . load_classJd =j;
16. break;
17. if (load_classJd = null)
18. return/à/se;
19. return írwe;

Figure 3.10: LVA pseudo code

3.5 GEOMETRICAL REPRESENTATION

Accurate geometrical representation for the construction equipment is required not only
to render and visualize the results in a 4D simulated environment, but it is essential for

performing collision detection calculations while creating the motion paths. As discussed
in Section 2.2, polygonal meshes are preferred for such tasks, where real-time rendering
and collision detection is done more efficiently. Processing polygonal meshes starts by

tessellating them to a simple mesh of triangles. Figure 3.11 shows a 3D model for a
hydraulic crane tessellated into triangles for 3D real-time rendering.
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Figure 3. 1 1 : 3D tessellated model for a hydraulic crane

Additional processing is done that encompasses merging and linking polygonal data, as
well as deriving new data, such as normals, for surface shading and collision detection.
On top of these operations in the processing phase, another common operation called
orientation is needed to make sure that all polygons forming a surface are made to face

the same direction. Once orientation is performed, checking whether a mesh forms a solid

surface is important for its use by a number of different algorithms including collision
detection that is executed during the path planning. For the case studies introduced in

Section 4.6, the previous process is applied on 3D model of hydraulic crane and tower

crane to have compatible models with the proposed APIs and libraries for real-time
rendering and collision detection calculations.
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3.5.1 Increasing Safety by Avoiding Semi-Free Paths

When doing motion planning for construction equipment, safety is one of the major
concerns that need to be considered and enhanced in the framework. Increasing the safety

of the generated paths can be accomplished by avoiding semi-free paths. A path is
considered semi-free if the equipment touches obstacles without overlapping.

Topologically, assuming that C is the set of the C-space and Cfree is the open set of the
free space, semi-free paths are contained in a semi-free space which is a closed subset of
C and its boundary is a superset of the boundary ofCfree (LaVaIIe, 2006).

One way to ensure free paths can be done by adding a safety buffer uniformly around
obstacles. Dilated obstacle can be expressed generally as a type of convolution using

Minkowski sum (Choset et al., 2005). Let A and B be two point sets, and a and b be the

position vectors corresponding to pairs of points in A and B. The Minkowski sum is then
defined as:

A®B = {a + b£Rn\a 6A and b EB) (Equation 3.14)

Where a+b is the vector sum of the position vectors a and b. Visually, the Minkowski

sum can be seen as the region wept by A translated to every point in B (or vice versa)

(Ericson, 2005).
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Figure 3.12 shows the effect of dilation with different values around a polygonal obstacle

and the closed boundary: (a) Polygonal obstacle and boundary without any dilation, the

two configurations can be connected with feasible paths either above or below the

obstacle, (b) dilation causes the obstacle to expand and boundary to shrink which

eliminates all possible paths below the obstacle, (c) bigger dilation radius disconnect the

connectivity between the two configurations and no feasible paths can be returned.

(a) (b) (e)

Figure 3.12: Applying different dilation values to a simple 2D obstacle (Adopted from
Choset et al., 2005)

As noted in the previous figure, dilation in constrained spaces can sometimes waste good

paths or can return no paths at all even if there was one. This is because when doing
dilation around "difficult" (narrow) parts in the space, some paths will be eliminated.

Even though, this behavior is acceptable in construction equipment applications, because
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it is preferable to have no feasible path than unsafe paths that go between tight obstacles.
There is no specific value for the clearance, as an example, in the research of Al-Hussein

(2005) a clearance value around the crane boom is specified to be around 0.2 meters.

3.5.2 Critical Volumes

Safety is one of the major concerns of this research, to ensure safe equipment planning,
certain volumes in the construction space are considered unsafe if certain construction

equipment movement paths intersect them. Figure 3.13 shows an example of such
volumes where the path of one crane goes through the space between the boom and the
cable of another crane. Such cases are not desirable for safety issues and it is better to

avoid generating paths in such volumes (Fair, 1998; British Standard, 2000). In this
research, volumes that are applicable but not safe are called critical volumes.

The proposed approach to avoid generating paths that intersect with these volumes is to
construct 3D surfaces from 3D points that define the critical volume's extents. These

constructed surfaces can be used later as obstacles to prevent the solver from generating

paths that go through those critical volumes. These 3D surfaces should be recomputed
based on the spatial state that is updated based on other dynamic elements in the scene.

This leads to reconstructing these volumes dynamically as the spatial state is updating.

Thus, it is necessary to consider generated surfaces as dynamic obstacles that are detected

in real-time. Figure 3.14 shows specified points for a hydraulic crane.

76



(b)

Figure 3.13: The path of one crane goes through the critical volume that is bounded under
the boom and the cable of the other crane: (a) perspective view; (b) top view
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Figure 3.14: Points attached on the crane for defining a critical volume
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As explained in Section 2.2, several algorithms are available for constructing 3D surfaces
from point clouds. In this research points that define the critical volume are located only
on the extents of the volume and they are added in specific order, thus it is possible to

generate the 3D surface by creating a polygonal surface that connect these points in their
specified order and avoid implementing general 3D surface constructing algorithms.

3.6 THE SOLVER

After generating the feasible C-space, path planning becomes a problem of finding a path
that connects the initial configuration to a particular goal configuration, which is the

responsibility for the core component of the framework: the solver. For motion planning
of construction equipment, the planning algorithm should consider the following
requirements:

1 . Efficiency: Path planning has been proven a hard problem (Reif, 1979). In the last
decade, more interest has grown in developing practical path planners (Latombe,
1991), (Barraquand, 1997). These planners embed weaker notions of
completeness (e.g., probabilistic completeness) and/or can be partially adapted to
specific problem domains in order to boost performance in those domains. In re-
planning, efficiency is the most important factor, because decisions usually need
to be taken in real-time to cope with the dynamic nature of the environment.

78



2. Safety: enhancing the safety of the generated paths can be increased with a

planning algorithm that tends to maximize clearance around obstacles. The

dilation step in the C-space generation (Section 3.5.1) ensures safety of the paths

but it can waste existing paths. However, having a planning algorithm that avoids

semi-free paths is preferable.

3. Applicability: to ensure generating realistic paths, the algorithm needs to consider

construction equipment rules of action. Rules of actions are based on expert rules,

such as avoiding combinations of hoisting and swinging or hoisting and luffing at

the same time; and preventing the boom's motion when a crane is traveling. Thus,

rules of actions restrict equipment movement to one DoF for each step.

Generating paths that satisfy this constraint requires the planning algorithm to

generate paths where all of its components are decomposed along only one
dimension in the C-space.

4. Optimality: not all algorithms guarantee to generate optimal paths in terms of
length, time or cost. Thus, it is important to consider this factor in the investigated
algorithm.

The planning algorithm that is used in this research is based on the RRT algorithm.
Enhancement and modifications are made to make it suitable for construction equipment

applications considering the above requirements. The following subsection describes the
naïve algorithm and its modifications.
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3.6.1 Planning Algorithm

The essential RRT algorithm is outlined in Figure 3.15 (LaVaIIe, 1998). Beginning with
the initial configuration as the root node, it incrementally grows a tree until the tree
reaches the goal configuration. To grow the tree, (lines 2-8 in function GrowRRT), first a

target configuration q is randomly selected from the configuration space using the
function ChooseTarget. Then, a NearestNeighbor function selects the node qnear in the
tree closest to q. Finally, a new node qnew is created in an Extend function by growing the
tree some distance e from qmar towards q as shown in Figure 3.16. If extending the tree
towards q requires growing through an obstacle or through a state rejected by the
engineering agent, no extension occurs. This process is repeated until the tree grows to
within some user-defined threshold of the goal (line 3). A very nice property that follows

from this method is that the tree growth is strongly biased towards unexplored areas of

the configuration space. Consequently, exploration occurs very quickly.

Several choices for the steps of the above algorithm are still unspecified and need to be
modified to fit the construction equipment application. In particular, we need to define

how random configurations are created in line 4, clarify the notion of a candidate
neighbor in line 5 and the Extend function in line 6.
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InitRRTO
l.T.add(qinüy,

GrowRRTO
¿·· Çnew ~ Qinit)
3. while (Distance(ç„ew, qgoai) > distance-threshold)
4. q = ChooseTargetO;
5. gw = NearestNeighbor(#);
6. qnew = Extend(qnear, q)\
7. \Î(qnew F null)
8. T.add(qnew);

ChooseTargetO
9. return RandomNode();

Main()
10. InitRRTO;
11. GrowRRTO;

Figure 3.15: The basic RRT algorithm (Adapted from LaVaIIe, 1998)

Figure 3.16: The Extend function (Kuffner and LaVaIIe, 2000)
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Random Configuration

The nodes of q should constitute a rather uniform random sampling of Cfree. Every such

configuration is obtained by drawing each of its coordinates from the interval of allowed

values of the corresponding DoF using the uniform probability distribution over this

interval. For the hydraulic crane as an example, four random values are drawn between

the ranges of each DoF to generate a random sample q.

Nearest Neighbor and Metric in C-space

Virtually all sampling-based planning algorithms require a function that measures the

distance between two points in C (LaVaIIe, 2006). In the RRT algorithm that is presented

in Figure 3.15, a metric function is required when calculating the distance between two

configurations in C (line 3), and when searching for the nearest neighbor node in C (line
5). It is straightforward to define Euclidean distance function in R" which works well for
C-spaces that is generated from prismatic joints only. However, construction equipment
has different combinations of prismatic and revolute joints (Section 3.3 explains the

joints types for a hydraulic crane). Thus, to define a distance function over any C is more

challenging since that the topology of C can be any combination of R" and T based on
the joint type as explained in Section 2.5.2. For a simple case of one revolute joint, C is
represented by a circle (S1) or in some references called matrix group SO(2) (Choest et al.
2005). In this C-space, when calculating the distance between angles it is noticed that the

Euclidean metric for R" does not give the distance traveling along the circle. It instead

takes a shortcut by computing the length of the line segment in R" that connects the two
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points, which is inaccurate. An alternative metric is obtained by directly required to
calculate the distance between angles O1 and Q2. However, in this case special care has to

be given to the identification, because there are two ways to reach ?2 from O1 by traveling

along the circle. This causes a min to appear in the metric definition: p(d¡, ?2) = min [\6¡

- ?2\, 2p - \?? - ?2\], for which ?,, ?2 E[O, 2p]/ ~.

For more general cases, like metrics for matrix group SE(2) where the C-space is

R2*SO(2) (Choset et al., 2005), it can be formed by applying the Cartesian product rules

to a metric for R2 and a metric for SO(2), Cartesian products of metric spaces extend

nicely across Cartesian products, which is very convenient because C-spaces are often
constructed from Cartesian products, especially in the case of multiple links. Let (X, Px)

---------- and (Y, Py) be two metric spaces for any two links in the construction equipment. A
metric space (Z pz) can be constructed for the Cartesian product Z = X ? Y by defining
the metric pz as pz(z, z') = pz(x, y, x\ y') = c¡px(x, ?') + c2py(y, y'), in which C1 and C2 are

any positive real constants, and x, x' EX and y, y' E Y . Each ? EZ is represented as ? =

(?, y). Other combinations lead to a metric for Z; for example,

pz(z,z') = (C1[Px(X1X1W + c2[py(y,y')f)llp\s a metric for any positive integer p.
Once again, two positive constants must be chosen. It is important to understand that
many choices are possible, and there may not necessarily be a "correct" one. For example
in the case of construction equipment with a revolute and a prismatic joints, if C1=C2 =

1, the range for S1 is [0, 2p) using radians but [0, 360) using degrees. If the same constant
c2 is used in either case, two very different metrics are obtained. The units applied to R

and S1 are completely incompatible.

83



As noticed previously, for construction equipments it is necessary to define a metric not
only as Euclidean metric, which is the familiar Euclidean distance in R", but also a metric
for comparing angles in case of rotational joints. Also, it is important to be able to
combine different metrics for solving general cases where the equipment kinematic

definition includes both types of joints: prismatic and revolute with different ranges. In

that case, the problem of relating different kinds of quantities arises. For example, in the
case of a hydraulic crane, the C-space is composed of R2^f and the metric defined must
compare two distance and two angular quantities with different ranges. This requires
specifying four different constants (c1,C21C31C4) to create a balanced metric along all C-
space dimensions. Thus the metric will be:

|S"=? Cimï (Equation 3.15)
where:

• ? is the number of links, for a hydraulic crane ? =4.

• c is a positive constant for each DoF (q).

• m for prismatic joints is m=\d-d'\ .

• m for revolute joints is m= min [\? - ?'\, (2p - \? - ?'\)].

Specifying the weights coefficients (c,) that balance the metric along all dimensions in the
C-space is a complex optimization problem that depends on the type of all DoFs and their
ranges. Thus, these weights should be recomputed for every different kinematic structure.

84



In this research, a novel approach is presented to calculate these weights for any

combination of DoFs and for any variety of ranges. The concept for computing these

coefficients depends on calculating a speed value (dq/d? along each dimension that

enables the RRT to reach all boundaries of each dimension at the same time. For

calculating this speed, an abstract hypercube with the same C-space dimensionality is

introduced. This hypercube is subdivided to a constant number of voxels that have a

unified size along all dimensions in C-space. The speed for each DoF can be then

calculated by dividing the range of that DoF by the number of voxels along that

dimension. This concept is applied in the following equations to calculate the speed for

revolute and prismatic DoFs.

1. For prismatic joints:

dd/dt= I dmax - dmin \/hcubesubs (Equation 3.16)

2. For revolute joints:

dr/dt = min [\ ??a? - 0min \, (2p - 1 0max - 9min ])]/hcubesubs (Equation 3.17)
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where:

• dd/dt and dr/dt are the speed values for a prismatic joint and a revolute joint,

respectively.

• dmax and dmin are the maximum and minimum range for a prismatic joint,

respectively.

• Bmax - emin are the maximum and minimum range for a revolute joint.

• hcubesubs is the subdivision number of the hypercube along any dimension.

Enabling the RRT to reach all boundaries of each dimension at the same time guarantees
a balanced RRT over all dimensions that have a uniform coverage of the C-space. This

is a critical issue when RRTs are searching the C-space for paths, because

unbalanced RRTs will be unable to find paths in unexplored space.

Figure 3.17 shows a visual representation of the RRT generated in the C-space of a

hydraulic crane using the proposed metric discussed previously (a) and a metric with

predefined weights (b). In this case, only the first three DoF of the C-space can be
visualized in a 3D view. These DoFs are the swing (#/), boom angle to the ground

{?2) and boom extend (d3). Each of these DoFs has a different range where the range

for ?? = (-180°,180°), ?2 = (0°,90°) and for d3 = (10.8m,33m). Using the proposed

metric, RRT was grown in all dimensions in a balanced way that permits the tree to

cover the entire C-space. The balancing along all dimensions was generated by

computing the metric weights automatically based on a hypercube with 150 voxels.
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In case of using predefined metric weights (c;=l, c2=0.25, c3=0.5 corresponding to

??, ?2 and dì, respectively), RRT was grown poorly along the ?2 dimension, which

prevents the tree from sampling the C-space efficiently.
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Figure 3.17: RRT visualization for the first 3DoF of a hydraulic crane: (a) Balanced RRT
using the hypercube to calculate metric weights; (b) Unbalanced RRT using predefined

weights for the metric

The Extend function

The Extend function is responsible for moving towards the randomly generated point
with a small distance e. The issue of the Extend function with engineering rules of actions

is that the extension is made generally over multiple dimensions in the C-space, which

means that the equipment will move more than one DoF at the same time. This is not

allowed for construction equipments since it conflicts with its rules of actions. Thus, the
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Extend function should be modified to accommodate this requirement as will be

described in Section 3.6.2.

3.6.2 Enhancing the Algorithm

Several extensions to the basic algorithm tend to improve the speed of the search and

make it suitable for construction equipment planning. Firstly, the basic algorithm

uniformly grows the tree by always selecting q randomly. However, efficiency can be

increased by biasing the search towards the goal: in the ChooseTarget function, let q be

the goal with probability/? and choose it randomly with probability 1-p. Asp increases,

the RRT behaves increasingly like bestfirst search (Ferguson et al, 2006). Figure 3.18

shows the modified version of the ChooseTargetQ function:

ChooseTargetO Lp = RandomReal([0.0, 1 .0]);
2. if (p < biasing_probability)
3. return qgoa{,
4. else
5. return RandomNode();

Figure 3.18: Including the goal-biasing into the ChooseTargetQ function
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Additionally, better convergence to a solution can be achieved by implementing the

Connect heuristic (Kuffner and LaVaIIe, 2000) that attempts to move over a longer

distance. The Connect heuristic is a greedy function that can be considered as an

alternative to the Extend function in Figure 3.15. Instead of attempting to extend an RRT

by a single e step, the Connect heuristic iterates the Extend step until q or local/global

constraint is reached, as shown in the Connect function description in Figure 3.19. This

operation serves a similar function as the artificial potential function in a randomized

potential field approach. In both cases, the heuristic allows rapid convergence to a
solution.

Connect (qnear, q)
1 . repeat until (qnew = qor qnew = in collision or engCns(gw) = false)
2. qnew = Extend (q„ear, q)\
3. return qnew;

Figure 3.19: The Connect function

The previous Connect function naturally extends towards the sampled node along

multiple dimensions simultaneously. As mentioned previously, this is not allowed in the

case of construction equipments, as this behavior conflicts with the rules of action. To

resolve this issue, a modified version of the Connect function is used where instead of

extending along multiple dimensions to reach the sampled node itself, the extension will

only happen along the best dimension that leads the extension to reach the nearest

position to the sampled node. Thus, the Connect function will stop extending when the
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distance between the extension (qnew) and the sampled node (q) is getting bigger. Figure

3.20 shows the concept of modified function that adapts construction equipments rules of

action in case of 2 DoFs and Figure 3.21 shows the pseudo code for it.

tfgoal

I ^x

Hnear
—·— }y

¦> ? ^l new
Be.it Direction

Figure 3.20: The concept of the rules of action adapted Connect function

Connect (qnear, q)
LqDiSt = O;
2. repeat until (Distance(^„ew, q) > qDist or qnew = in collision or engCns(g„ew) = false)
3. qDist = Distance(^new, q);
4. qnew = Extend (g„ear, q)\
5. return qnew;

Figure 3.21: Adding rules of action modification to the Connect function

From an engineering point of view the Connect function is better than the Extend

function because the generated path with the Connect function is composed from the

minimum amount of nodes, which means the minimum amount of sub-tasks for the

equipment to accomplish its task. On the other hand, paths generated with the Connect
90



function tend to be longer and have unnecessary steps than those generated using the

Extend function. This is because of the greedy nature of the Connect function that tries to

reach the sampled node as much as it can. To get the best of the Connect and the Extend

functions, a modified version of the Connect function can be implemented to enhance the

optimality of the algorithm and reduce redundancy in the path. To achieve this, an
additional check is introduced in the Connect function to limit its extension when the

projection of the extended node on the perpendicular dimension reaches the goal. Figure
3.22 lists the modified Connect function that is called Limited Greedy Connect.

Connect (qnear, q)
LqDiSt = O;
2. repeat until (Distance(ç„ew, q) > qDist or

qnew = in collision or
(isExtendingTowardsGoal = true and Distance(#„ew, qgoa¡) > gDìst) or
engCns(#„ew) = false)

3 . gDist = Distance^«,, qgoai)\
4. qDist = Oistance(qnew, q);
5. qnew = Extend(q„ear, q);
6. return qnew\

isExtendingTowardsGoal(#„eor, q, qgoai)

7. qnew = Extendiçw, q);
8. if (DistanceOjw, qgoai) < Distance(gwr, qg0ai))
9. return true;
10. else
1 1 . return false;

Figure 3.22: Pseudo code for the Limited Greedy Connect
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In other words, the Connect function continues to extend towards the sampled node as

long the distance between the extended node and the goal is shrinking. Figure 3.23 shows
the behavior of the modified Connect function.

?—·

• 1 F-
tfinil

tfgoal

0X<Jnew : Vy
-·

Best Direction
¦> X

X^ 1
Figure 3.23: The behavior of the Limited Greedy Connect function

Combining all the previous modifications, the final algorithm will be as listed in Figure
3.24. The algorithm name for the combination of the new proposed modifications is
called RRTBiasedLimCon which indicates a goal biased limited greedy connect RRT.
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ChooseTargetO
l.;? = RandomReal([0.0, LO]);
2. if (? < biasing_probability)
3. return qgoai\
4. else
5. return RandomNode();

Connect (qnear, q)
6. qDist - 0;
7. repeat until (Distance(#new, q) > qDist or

qnew = in collision or
(isExtendingTowardsGoal = true and DistanceOjw, qgoaì) > gDìst) or
engCns(^„ew) = false)

8. gDist = Distance(<3w, qgoai)\
9. qDist - Distance(<3w, q);

1 0. qnew = Extend(#„eflr, q);
1 1 . return qnew;

isExtendingTowardsGoal(g„ear, q, qgoai)

12. qnew = Extend(^eflr, q);
13. if (Distance(<7„ew, qgoai) < Distance(#„ear, qgoa¡))
14. return true;
15. else
16. return false;

InitRRTO
17. T.add(qÎniiy,

GrowRRTBiasedLimConO
lo· qnew ~ qiniti
19. while (Distance(#„ew, qgoai) > distance-threshold)
20. q = ChooseTargetO;
21. ç„ear = NearestNeighbor(^);
22. qnew = Connec%„ecr, q)',
23. if(<?„ew 7^ null)
24. T.add(qnew);

Main()
25. InitRRTO;
26. GrowRRTBiasedLimConO;

Figure 3.24: RRTBiasedLimCon algorithm
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3.6.3 Multi-Equipment Planning/Re-Planning Algorithm

The RRTBiasedLimCon algorithm discussed in the previous subsection is able to

efficiently provide solutions to problems involving vast, high-dimensional configuration

spaces. However, this algorithm is unable to cope with new information concerning the
environment. As discussed in Section 1.1, initial information regarding the environment

is rarely perfect. Therefore, it is important that the algorithm is able to update solutions to

the dynamically changing environment over time. In such scenarios, RRT-based

approaches typically abandon the current solution and grow a new RRT from scratch.

This can be a very time-consuming operation, particularly if the planning problem is

complex. In this subsection, a re-planning algorithm is investigated for repairing RRTs
when new information concerning the configuration space is received. Instead of

abandoning the current RRT entirely, the proposed approach efficiently removes just the

newly-invalid parts and maintains the rest (trimming the tree). It then grows the

remaining tree until a new solution is found (re-growing the tree). The concept of this

algorithm was first presented in (Ferguson, 2006) as Dynamic Rapidly-exploring

Random Trees (DRRT). It has been modified in this research to fit the proposed

RRTBiasedLimCon algorithm for the dynamic framework.

Pseudo code for the modified DRRT is presented in Figure 3.25. The algorithm starts

with the MainQ function by inverting the growing direction of the initial tree to be from

the goal to the initial configuration (line 16). This modification allows maintaining more

of the original tree during repairing, as only the tips of the tree will be affected by newly-
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observed obstacles. Otherwise, the root of the original tree would constantly be changing

and so the entire tree would need to be re-grown. Further, since observations are typically

being made in the vicinity of the equipment (through onboard sensors), this modification
allows to maintain more of the previous tree during repair, as only the tips of the tree will

be affected by newly-observed obstacles. As the robot starts executing the path generated

by the GrowRRTBiasedLimConQ function (line 18), when an obstacle is detected in the
C-space, the InvalidateNodesQ function is called. In this function, first the edges in the
current tree that intersect this obstacle are found (line 12). Each of these edges will have

two endpoint nodes in the tree: one will be the parent of the other in the tree. In other
words, one of these nodes (the parent) will have added the other (the child) to the tree

through the proposed Connect function. The child endpoint node of each edge is then
marked as invalid (line 15). After all the child endpoint nodes of the affected edges have

been marked, the solution path is checked for invalid nodes (line 25). If any are found,

the tree needs to be re-grown through the RegrowRRTBiasedLimCon() function which is
based on the GrowRRTBiasedLimConQ function explained in Figure 3.24. This involves

trimming the tree {TrimRRTBiasedLimConQ function) and growing the trimmed tree out
to the goal {GrowRRTBiasedLimConQ function). Trimming the tree involves stepping
through the tree in the order in which nodes were added and marking as invalid all child
nodes whose parent nodes are invalid. This effectively breaks off branches where they
directly collide with new obstacles and removes all nodes on these branches. Once the
tree has been trimmed, it can be grown out to the goal. This can be performed in exactly

the same manner as the proposed RRTBiasedLimCon algorithm used for the initial

growing of the tree (Figure 3.24). However, depending on how the C-space has changed,

95



it may be more efficient to focus the growth towards areas that have been affected by

adding biasing probability for sampling random points as the goal. To enhance the

efficiency of the DRRT, it is recommended to use low-biasing probability in the planning

phase. This makes the RRT covers the whole C-space and provides more branches to

grow from when doing re-planning. While for the re-planning phase, high-biasing
probability is better to minimize the processing time by directing re-growth towards the
goal configuration.

Figure 3.26 shows a capture of a tree for a 2 DoFs circular robot that was trimmed and re-
grown based on dynamic environment updates. The black and the blue cross in the
figures represent the current configuration and the goal configuration of the robot in the
C-space, respectively. Figure 3.26 (a) shows the initial tree that considers only static
obstacles. Figure 3.26 (b) shows the tree trimmed and re-grown after detecting dynamic
obstacle at the current robot location. Blue branches represent the original tree generated

in the initial planning phase. Red branches are the newly re-grown branches by DRRT in
the re-planning phase. Red boxes are invalid sampled nodes in static obstacles and green
boxes are in dynamic obstacles. It should be noted that as the tree is re-grown, additional
invalid nodes may be detected in static obstacles.
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TrimRRT O
1. 5=0;?'=1;
2. while (/ < r.sizeO)
3 . q¡ = r.node(0; qP = Parent^,);
4. if(qp.ñag = invalid)
5. ç/.flag = invalid;
6. ifO^-.flag F invalid)
7. S = S U fe};
8. i = i+ 1;
9. r=CreateTreeFromNodesOS);

InvalidateNodes(obstacle)
10. £ = FindAffectedEdges(obstacle);
11. for each edge eE E
12. ^e = ChildEndpointNode(e);
13. qe. flag = invalid;

RegrowRRTBiasedLimConO
14. TrimRRTO;
25. GrowRRTBiasedLimConO;

MainO
16. qrobol = q¡nih Qinit ~ qgoal'i Çlgoal ~~ qroboh
17. InitRRTO;
18. GrowRRTBiasedLimConO;
19. while (qgoa¡ F qinit)
20. qgoai=?axent(qgoai);
2 1 . Move to qgoai and check for new obstacles;
22. if any new obstacles are observed
23. for each new obstacle o
24. InvalidateNodes(o);
25 . if solution path contains an invalid node
26. RegrowRRTBiasedLimConO;

Figure 3.25: Pseudo code for DRRT algorithm (Adapted from Ferguson, 2006)
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Figure 3.26: A capture of tree that is trimmed and re-grown based on dynamic

environment updates: (a) Initial planning; (b) Re-planning after detecting dynamic

obstacle

The proposed algorithm can be applied in a prioritized approach for efficient multi-

equipment motion planning as explained in Section 2.6.4. Using this approach, each of

the cranes is assigned a priority. Next, the cranes are picked in order of decreasing

priority. For each picked crane a path is planned, avoiding collisions with the static

obstacles as well as the previously picked cranes, which are considered as dynamic

obstacles. This approach will be tested with two different case studies as will be shown in

Section 4.6.
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3.7 VISUALIZATION

To achieve better understanding ofplanning and re-planning processes, 4D simulations of

the results have to be visualized while considering real-time rendering and interactivity.

For real-time rendering, computer graphics has specialized APIs for 3D real-time

rendering (e.g. DirectX or OpenGL) that can be used to do real-time rendering of the
construction site. Interactivity is achieved by providing the user the ability to control and

update the environment during executing the plan in the simulated scene. This could be
achieved by integrating the framework into an interactive 3D system. The proposed
interactive system should have the ability to capture real-time data from suitable sensing
hardware that is accurate and synchronized with the real event timing (i.e. no delays).

While rendering the results, the generated path in the C-space should be used to calculate
key frames with their interpolation parameters for determining the spatial positions each
part of a hydraulic crane in the workspace as shown in Figure 3.27.

99



WfTiL
immolili

?

Figure 3.27: Paths computed for a hydraulic crane and visualized in the work space

Having accurate and detailed models for visualization can negatively affect the collision

detection computation time, because more details means more triangles and more time to

perform collision detection queries. To enhance the quality of the visualized models

while maintaining optimized collision detection calculations, a well-known technique in

computer graphics can be used where low-resolution proxy shapes are generated from the

high-resolution models. Usually these low-resolution proxy shapes are bounding boxes

that are attached to each element's center. Figure 3.28 shows the original crane side by

side with a low-resolution proxy model that is composed from bounding boxes.
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Figure 3.28: Two versions of the same crane: (a) 3D model of the hydraulic crane, (b)
Bounding-boxes for collision detection

During the execution of the simulation in real-time rendering system, multi-sampling
collision checking is required to detect obstacles that are smaller than the step between

two successive nodes. Otherwise, the re-planning algorithm may not be able to detect

small objects that are moving in the construction site.

3.8 SUMMARY AND CONCLUSIONS

The proposed framework for construction equipment motion planning and re-planning
was discussed in this chapter. The framework focused on safety motion planning by

considering engineering factors, realistic definition of the problem, and rapid re-planning
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by proposing an efficient re-planning, algorithm. This framework extends the previous
research of crane path planning by: (1) Investigating several computational issues for

defining the construction equipment, generating the C-space and planning/re-planning
with the generality to be applied in the future for most heavy construction equipment; (2)
Introducing several methods for satisfying safety requirements when applied to heavy

construction equipment. These methods include the consideration of engineering

constraints, rules of actions, obstacles dilation and critical volumes for avoiding unsafe

paths; (3) Considering the dynamic properties of construction sites efficiently by
proposing a re-planning algorithm which is able to provide information for operators in
near real time to assist them in manipulating equipments more efficiently and safely; (4)

Considering multi-equipment planning by integrating the re-planning algorithm in a
prioritized motion planning approach; and (5) Proposing 3D visualization and simulation
of the planning results while considering real-time rendering and interactivity to cope
with the re-planning tasks. This framework makes the first attempt to integrate accurate

path-planning and re-planning for heavy construction equipment in an interactive 4D
simulated environment that has the flexibility to be updated using near real-time data

captured by suitable sensors.
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CHAPTER 4 IMPLEMENTATION AND CASE STUDY

4.1 INTRODUCTION

The work in this chapter introduces a prototype system for motion planning construction

equipment. This system is referred to as ICE-Planner, which stands for "Intelligent
Construction Equipment motion Planner." This system is able to solve off-line planning

problems in addition to real-time re-planning that is required for multi-equipment
planning and dynamic changing environments. The algorithms that were implemented in
this work depend on RRTs for solving problems with high DoFs in continuous space. For

re-planning, DRRT extension was investigated for making it suitable and efficient for re-
planning tasks. To improve the performance of the DRRT and to make it suitable for path
re-planning of construction equipments, the proposed modifications in Section 3.6.2 are
implemented in this prototype. All algorithms that are implemented in this project are
tested and evaluated for a hydraulic crane and a tower crane cases based on holonomic
robot definition.

This chapter is arranged as the following: Section 4.2 introduces the system through a
fast walkthrough over each of its components. Section 4.3 lists the development tools and

technologies that are used to implement the prototype in one integrated system. Section
4.4 demonstrates the workflow of the system. Section 4.5 covers the implementation

details in general and focuses more on the modifications and extensions that were made
on the reviewed algorithms. Section 4.6 presents comparison results and evaluations for
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the implemented algorithms through the different tests that were made with the system.
Finally, Section 4.7 presents summery and conclusions of the proposed system.

4.2 SYSTEM COMPONENTS

The introduced prototype is composed of several components. Each of these components

is responsible for a specific task, which all together provides a flexible system for
modeling, solving and visualizing real-time motion planning problems interactively.

Figure 4.1 shows the different components that form the system in addition to their
relationships. The components in the figure are separated into three blocks based on their
tasks. The first one is responsible for defining the motion planning problem using the

modeling tools found in the 3D software package. The middle block is the main part for
solving both the planning and re-planning problems based on the modeled environment in
the first block. The last block is responsible for visualizing the results using the rendering

capabilities in the 3D software for this task.

Problem Definition
3D Software

Solver

Planning Solver

I
Re-planning Solver

Collision
Detection

Library

Visualizing Results
Real-Time Rendering Engine

Figure 4. 1 : Main system components and their relationships
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Actually these components are not explicitly separated but In fact, they are interwoven in

different tasks to cope with the nature of real-time planning, where it is required to

redefine the environment, solve and render iteratively.

4.3 SELECTION OF DEVELOPMENT TOOLS

To save effort and time, certain libraries and a 3D software package are adopted to fit

with the proposed systems. Autodesk® Softimage® (formerly SOFTIMAGE|XSI)

(Softimage, 2009) is a complete 3D software for visual effects and game production.

Softimage is proposed here in the system as the main environment for creating and

defining the motion planning problem in addition to interacting and rendering the results

in real-time using OpenGL (OpenGL, 2009) and Direct3D (DirectX, 2009) APIs. Other

components are integrated into it using its Software Development Kit (SDK) and its C++
API to ensure a seamless integration that takes full advantage of its 3D capabilities. The

approach of defining the motion planning problem in Softimage will be described in
Section 4.4.

In the solver component, a C++ library called the Motion Strategy Library (MSL)

(Motion Strategy Library, 2009) was used for solving planning queries in the system.

This library provides a wide range of randomized motion planning algorithms (e.g.

RRTs). For this prototype, the library has been modified and extended to fit with the

proposed system. Modifications are mainly for updating the code to be compatible and

compiled with the Softimage C++ API. The library extensions are about adding new

classes for interacting with the data in Softimage. This interaction is required in order to
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read the motion planning problem directly from the Softimage scene which includes:

kinematic properties and geometrical representation of the equipment in addition to the

static and dynamic obstacles. More classes are added to the library for outputting the

planning results as a 4D simulation in Softimage and utilizing the OpenGL API to
visualize the results in real-time. Additional extensions to the library are made to create a

new planning algorithm based on the proposed enhancements in Section 3.6.2. The
implementation of the extensions will be introduced in Section 4.5.3.

Along with MSL, the Proximity Query Package (PQP) (PQP, 2009) was used for
performing collision detection queries on obstacles found in the environment. Again this
library has been modified and extended to be integrated seamlessly in the proposed
system, in addition to the code modifications for compatibility issues, additional classes
are implemented to be able to access the tessellated geometry directly from the Softimage
scene at every simulation step. In the proposed systems, each simulation step is defined
as one frame, and it is assumed that each second is composed of 30 frames. This

assumption provides enough accuracy for the PQP library to detect unknown or dynamic
obstacles in a construction site.

The re-planning solver was developed from scratch based on the DRRT algorithm with
the proposed modifications and enhancements introduced in Section 3.6.2. The re-
planning solver depends also on the PQP library to perform collision checks.
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As mentioned, the implementation is done with C++ programming language. C++ is a

general purpose programming language with a bias towards systems programming that is
a better C language, supports data abstraction, supports object-oriented programming,

and supports generic programming (Stroustrup, 1997). The amount of heavy

computations required in the proposed system makes C++ stands in terms of execution
speed in addition to program footprint and memory usage. C++ efficiency has been a
major design goal from the beginning where it adapts the principle of "zero overhead" for
any feature that is not used in a program. It has been a guiding principle from the earliest
days of C++ that "you don't pay for what you don't use" (Abrahams et al., 2003).

For debugging the motion planning algorithms and visualizing the effect of their
parameters on the way the C-space is sampled, algorithms were prototyped first using a
special development environment in Softimage called the Interactive Creative
Environment (ICE). It is a visual programming system for procedurally controlling
simulations and deformations (Softimage, 2009). Using Softimage ICE, the tree structure

of the RRT can be visualized in a 3D view, where the RRT nodes are represented as 3D

particles in space as shown in Figure 4.2. Appendix A shows the full programming tree
developed for visualizing RRTs.
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Figure 4.2: RRT visualized in 3D space developed by Softimage ICE

Having a visual representation of the tree structure is essential to understand how the
algorithm is behaving based on the proposed enhancements and the defined parameters.
Results from the visual experience are then utilized in the actual system that is

implemented in C++.

4.4 WORKFLOW

In this section the general workflow of the system is explained. It is divided into
subsections based on the general steps required to define, solve and visualize a hydraulic

crane motion planning problem as our main case study. The subsections are organized as
the following: Subsection 4.4.1 covers the essential tasks for defining the crane.
Subsection 4.4.2 explains the workflow for defining engineering constraints for the

hydraulic crane. Subsections 4.4.3 and 4.4.4 clarify the difference between static and
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dynamic obstacles by explaining what type of objects in the construction site should be
considered static or dynamic in the cases of single and multi-equipment planning.

Subsection 4.4.5 explains how to define the initial and goal configurations to setup a

planning query for the crane. Subsection 4.4.6 explains how to execute the solver and
specify its parameters to compute and visualize the results properly. Subsection 4.4.7

discusses the re-planning phase and the level of interactivity provided by the system.

4.4.1 Crane Definition

The workflow of the system starts by defining the motion planning problem. This

includes defining the geometric and kinematic model of the crane in addition to defining

both the dynamic and static obstacles. As stated before, computer graphics and animation
tools in the 3D software are utilized and customized to define different aspects of the

motion planning problem as discussed in the following.

For the crane, basically it is defined through three main steps; the first step is to build the

geometry that represents the crane's shape used in visualization and generate the
bounding boxes used for collision detection; the second step is to define the kinematic

properties and relationships between its components. The final step is to specify points on
the crane that will be used to construct critical volumes.

The crane's geometry should meet a list of requirements in order to be defined correctly

for the solver. These requirements are: (1) All controllable components of the 3D model

should be extracted into separate objects. For the hydraulic crane, there should be at least

4 separate objects: truck, cabin, boom and cable; (2) Transformation axis for each part
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should be positioned and oriented based on the DH-notation explained in Section 3.3; and
(3) Visualization geometry should be composed of a polygonal mesh with clean topology
and composed of the minimum amount of triangles in order to optimize real-time
rendering.

In this system, constructing the crane geometry that fulfills the previous requirements is
done with polygonal modeling tools available in the 3D software. This enables great
flexibility for defining the shape of the crane with a high level of detail. Of course
building highly detailed model of the crane is better visually but it causes higher
geometry complexity that can slow the calculations, especially when performing collision
detection queries on the mesh. To overcome this problem, the proposed technique in
Section 3.7 of having bounding boxes is applied here.

Additional simplification method can be done for reducing the DoF as proposed in
Section 3.3.1. Using this method, the results that are computed on the simplified version
of the crane should be transferred to the high-resolution version in order to visualize the

results on it. This can be achieved in a better way by establishing connections between

the crane parts in the two versions. These connections are created in the 3D software
using either mathematical expressions or motion constraints. Figure 4.3 shows the
connection between the two versions, Exp indicates a mathematical expression relation

between the two objects while other connections are motion constraints.
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Figure 4.3: Relationships between the computational and the visualization version

In this case the results are visualized instantaneously on the detailed version while the

solver is applying the results on the simplified one.

To apply this method on a hydraulic crane, it requires defining linear control equations
between the four prismatic joints in the detailed representation and the single prismatic
joint in the simplified representation. This can be done in the 3D software using the "link
with" function. This function creates a direct relationship between two parameters where

one parameter depends on the state of another parameter (Softimage, 2009). For the two
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versions of the crane model, the translation of the four prismatic joints in the detailed

model are linked to the translation of the boom in the simplified model as shown in

Figure 4.4. The vertical axis represents the extension values from the simplified model,
while the horizontal value is the extension value for the visualization model. The linking

equations are defined based on the equation presented in Section 3.3.1 to provide the
correct sequence for extending boom parts. As an example if the extension in the

simplified model is 20m then based on the plotted equations, the extensions for the joints
in the detailed model are: Om, Om and 6m starting from the tip joint respectively.
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Figure 4.4: Plot of the function curves defined to drive the boom extension based on the
computation results applied on the approximated model

Each part of the modeled mesh is separated into logical parts as mentioned in the
requirements. Transformation axis are then assigned to them and arranged in a hierarchy
that reflects the relationship between these parts. Figure 4.5 shows a schematic view from

Softimage where the parts of the hydraulic crane are arranged logically. At the root is the
cabin, it should be named: "robot" in order for the plug-in to detect it as the solvable
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construction equipment. The first child of the cabin is the boom base, next is the boom
extension part, while the last two nodes are for the cable.
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Figure 4.5: Schematic view for the hierarchy of a hydraulic crane

As noticed in Figure 4.5, the schematic view shows two nodes in the hierarchy of the
hydraulic crane for the cable. The first node is a dummy object introduced to provide a
world-oriented axis parent for the cable, which is represented with the last node. In order
to make the dummy node provide a world-oriented axis to the cable, it should
compensate the rotation of its parent node (Boom Extension). This can be done in the 3D
software using motion constraints and expression functions available in the software. The
idea is to add a new null object outside the hierarchy and make it follow the X-Z plane

projection of the fixAxis node. This can be done by writing mathematical expressions that
connects the X and Z parameters of the null to the X and Z of thefixAxis. After the null is
attached to the projection of the fixAxis, the direction of the fixAxis can be constrained to
the null using the AddConstraint("Direction ") function in Softimage. Since the null is
positioned at the projection offixAxis, this constraint will make the fixAxis always have
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matching orientation to the world axis regardless of its parent axis; thus the cable is then
transformed relative to a world oriented parent.

This workflow of fixing the orientation of the cable's parent can be extended for

implementing the physical behavior of the cable and considering it in the solver. As the
boom is moving, the cable reacts correctly based on the movement of the boom and the
physical properties of the cable. The differential equations for the cable dynamics can be
implemented directly with this workflow as mathematical expressions on the projected
null which drives the direction of cable based on the boom's movement. This feature is

out of the scope of this research and it will be discussed in detail in future work Section
5.3.

For completing the equipment definition, the DoF types and their ranges should be
defined in the kinematic properties for each component of the model. This is done by

checking the correspondent axis under the DoF type (rotational or translational) and
specifying its limits using the minimum and maximum parameters. Figure 4.6 shows the
property page for one part of the crane's boom where it has a revolute DoF around its
local Y axis with the limits of 0° to 90° degrees.
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Figure 4.6: Local kinematics property page used to define the DoF and its limits

For the case study, joint limits are applied to each DoF of the hydraulic crane. First, the

cabin has joint limits on the rotational Y-axis between -180° to 180°, this allows full 360°
yaw for the crane boom. For the boom root, it has joint limits on the rotational X-axis.
The joint limits for this DoF are computed dynamically while generating the path based
on the load charts and the current crane configuration as will be explained in Section

4.5.2. For the boom extension, it has joint limits on its translational X-axis. Again the

joint limits for this DoF are computed with respect to the load charts and current crane
configuration.

In order to construct 3D surfaces that represent critical volumes, several points on the

crane should be specified to encompass its critical volumes. For the hydraulic crane case,

a critical volume bounded by its boom and the cable is defined by at least three points.

These points are attached as shown in Section 3.5.2.
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4.4.2 Engineering Constrains

In this prototyped system, engineering constraints are applied for hydraulic cranes based
on the proposed approach in Section 3.4. For a hydraulic crane, engineering constraints
are mainly derived from its load charts. The load chart that is used for the hydraulic crane
(TMS870) is shown in Figure 4.7.

,¦«* L. O
36 -110 ft

(10.9- 33.6 m)

5$T
86% Domestic (Pounds)

+140,000(6B)
110.500

(64)
96^00 .
(68.6)
78,750

(47)
69,800
(32,5)

70

76

109.600

78.850104.500

73,90091,400

75,300 59,600
74.5

43,80050,000 4830069,760

3&3O047.300
62.5

36.960 36,40038.660

30.30029.70028.450 28.450

26,55024,66023.400

21,60020.70019.450

18,46017.600

15.85014.900

11.650

Mtihium boom ano» (deg.) forlnalcated tone* (no load)
Maxknum boom length (ft) at 0 degree boom angle (no load)

NOTE: ( ) Boom angles are In degrees.

-60 ft. boom length Is with Inner-mid extended and outer-mid & fly retracted.
"This capacityb basad on maximum boom angle.
+ 12 parte line required to lift this capacity (using aux. boom nose).

Boom
Angle

27,600
(88.3)

16,200
(42.8)

11,360
(63.1)

9,160
(62.8)

7,410
(72.8)

NOTE: ( ) Reference radii are In feet.

-60 ft. boom length Is with inner-mid extended and outer-mid & fly retracted.

-47,850
(80)

41,0»
(77)

35360
(73.6)
31,050
(70.6)
27,850
(67)

24350
(63)

22450 ¦
. (69.6) .

20,050
(56.6)
18,350

(511
16,650
(46.6)
14,360
(41.5)
12,600
(36.6)
10,900

(29)
9,490
119)

6,040
(82.8)

40,350
(79)

34,760
(76)

30.460
(73)

27,000
(70)

24,250
(67)

. 21,900
(63.6)
19,950
(60)

18,300
(66.5) .
16360

(63)
14,900

(49)
13,050
(44.6)
11,450(39.5)
10,000
(34.6)
8,790
(28)

7,690
118.5)

4,950
(92.8)

"27.350
(80)

27360
(78.6)
27350
(76.5)
25300
(72.6)
22.900
(70)

20360(67)
19,100
(64)

17,660
(61)

16,200
(57.6)
15,050
(54.5)
13,600
(50.6)
11,900

(47)
10,500

(43)
'. 9,260

(38.6)
8,150
(33)

7,170
(27)

6,280

4,060
(102.8)

Figure 4.7: Load chart of a hydraulic crane (Groove Crane, 2006)
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Based on the lifting task requirements and crane configuration, queries for the allowable
boom extension and angle are searched from a database of the load chart. This problem is

solved by a simplified searching algorithm that is presented in Section 3.4. Figure 4.8
shows the Graphical User Interface (GUI) for specifying the task and configuration
parameters for a hydraulic crane:
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Figure 4.8: Hydraulic crane engineering constraints GUI in Softimage

The flowing explains the parameters in this dialog that are required to define the
engineering constraints for a hydraulic crane:

DatanbaseJFiIe: this parameter specifies the MS Excel file that contains the load chart
data for the hydraulic crane.

Load: a float value that represents the object's weight that is required to be lifted by the
crane. For the case study this load is expressed in (lbs).
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Capacity_Reduction: a percentage used to reduce the load chart capacities caused by
improper crane setup; Appendix J demonstrates several reasons for capacity reduction of
a hydraulic crane.

Repositioning: this option toggles the positioning mode which means that the current task
is just about posing the crane without lifting any objects.

Outrigger: this option represent outriggers state, if they are extended for the current task
or not.

Counterweight: specifies the value of the equivalent counterbalancing weight that
balances a load.

4.4.3 Static Obstacles

Static obstacles are those obstacles that represent the initial information about static

objects in the construction site that are known in advanced by the planner so they are
considered during the planning phase. Examples of these obstacles include available
buildings, electrical poles, etc that are already known from the Building Information
Model (?G?) (Kumi et al., 1997). 3D models for these obstacles can be imported using
capturing hardware (e.g. 3D laser scanners) or modeled directly based on engineering and
architectural designs. In most cases these models may require extra processing to

generate clean 3D models that can be used efficiency by the planning solver. 3D
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polygonal modeling tools available in Softimage can be used in constructing new 3D
models that represent static obstacles or cleaning imported data from capturing hardware.

In the proposed workflow, defining a 3D model as a static obstacle in Softimage is done
by simply parenting them under a specific model with the name obstacles. The solver
then considers all objects under this model as static obstacles and performs collision

checking during the planning phase. Any type of geometry can be used to model a static
obstacle object. However, if any motion information is attached to 3D objects that are
specified as static obstacles, it will be ignored, and only a snapshot of the geometry from
the first simulation step is taken into consideration by the solver.

Although static obstacles are not allowed to update during the planning phase, they are
still adequate for representing the updates of the construction process. This is because the
update rate needed for the construction processes is much less than the update rate of
equipments tasks execution. Thus, updated 3D models of the building can be still
considered as static obstacles by satisfying this assumption and updating the building

models between successful equipment tasks. In case where some building components

are updating while the equipment is executing its tasks, these obstacles should be defined
as dynamic obstacles in order to be considered by the solver.

4.4.4 Dynamic Obstacles

Dynamic obstacles are those obstacles that their representation is updated or detected
completely while executing the initial plan. In the case of multi-equipment motion
planning, the high priority equipment is considered a dynamic obstacle for the less
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priority one. With this definition, objects defined as dynamic obstacles have changes in
their geometry because of their movement or simply because they have changes in their
shape.

Dynamic obstacles in the construction site (e.g. workers and construction equipment) are
represented using 3D objects with motion applied to them. This motion can be generated
either: (1) interactively by allowing direct control of the obstacles through Softimage
animation tools Scaling, Rotation, and Translation (SRT) for transforming objects

separately or relatively in hierarchies; (2) Using the sensor capabilities of the equipment
or real-time capturing hardware; or (3) Using the solver to generate motions

computationally in the case of multi-equipment planning.

3D objects with dynamic shapes are used to represent critical volumes that are
constructed to block the solver from generating paths into unsafe volumes in addition to

generating components that are defined based on real-time capturing hardware. Such
obstacles have initial representation and are their shape is updated using 3D capturing

hardware. For the implementation part in the 3D software, critical volumes are defined

using the concept of shape animation. Shape animation (sometimes called morphing,
blend shapes, or endomorph), is the process of deforming an object over time.
Deformation is done by animating geometrical points based on the captured poses

(snapshots) of the object.

For cases of updating obstacles representation, real-time data about obstacles updates
using sensors can be accessed inside Softimage using the device drivers. Device drivers
are connections between a device plug-in (e.g. motion capture system or UWB sensors)
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and Softimage that get and set the values or execute commands or events. These devices
can be used to animate the objects based on captured information. For this research,

dynamic obstacles are simulated by providing interactive control over their movement
concurrently while the crane is moving inside the 3D environment.

4.4.5 Defining Initial and Goal Configurations

The next main step for defining the motion planning problem for a hydraulic crane is to
define the initial and goal configurations of its task. The solver will try then to find a
feasible path between these two configurations while considering environment obstacles
and constraints.

Currently, the process for specifying these configurations is done by first posing the crane
using the transformation tools in the 3D software, then marking all parameters on each
joint that correspond to a controllable DoF, and finally adding key frames to the marked
parameters. The solver searches on each part of the equipment for these key frames. It is
assumed that the first key frames have the values of the DoFs at the initial configuration
and the last key frames have these values for the goal configuration. Thus, for each DoF
of the equipment, there should be at least two key frames to be able to specify the motion
planning query. To make this process easier (especially for cases where it is possible to
have multiple queries of the crane), it is preferable to create a marking set for the crane.
This way all parameters are grouped into a set for easy key framing.
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4.4.6 Planning and Visualization

The planning solver is executed once the MotionPlanRealTimeDRRT command is
called. This command is part of the implemented motion planning plug-in for Softimage

and it requires specifying a list ofparameters in its GUI as shown in Figure 4.9.

Actually, these parameters are all related to the RRT algorithm that is used for
performing the planning and re-growing tasks. The following is a brief overview for these
parameters:
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Figure 4.9: MotionPlanJtealTimeDRRT'GUI
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Solver^Algorithm: Specifies the RRT extension that will be used to search for the
feasible path. Only extensions that depend on growing single tree are available. This is
required because the data structure in the planning phase will be used in the re-planning
phase and the proposed re-planning algorithm is restricted to single tree in order be able
to re-grow it again.

Random_Seed: An integer seed number for generating the uniform random distributed
values when sampling new random configuration in the RRT. Changing this value affects
the detailed structure of the tree while the general structure of exploring the C-space

uniformly will not be affected. Thus, this value should not be changed in order to be able
to generate the same tree structure when solving the same problem again.

Max_Nodes: The maximum allowed number of nodes that the RRT can generate while
solving the problem. If this number is reached before finding a solution, then the solver
will return failure.

Error Tolerance: The solver considers that the crane has reached the goal if the distance

in the C-space between the crane configuration and the goal configuration is less than a
threshold value. This threshold value is computed in the workspace for each DoF by

multiplying the ErrorJTolerance with the speed factor for each DoF that is calculated in
the metric (Section 3.6.1).
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CSpaceJDilation: This is a float value that specifies the amount of uniform expansion of
the obstacles in order to avoid semi-free paths.

Space^Resolution: Is an integer number that determines the number of subdivisions along
any dimension of the hypercube that is used to calculate the metric coefficients. These
coefficients are used also to control the movement speed for each DoF in the simulation,

thus the Space^Resolution parameter affect the overall speed of the simulation.

BiasingJProbability: Is the probability value for biasing the random node generation
towards the goal configuration instead of uniform random generation. High probability
values direct the tree generation towards the goal configuration instead of uniformly
capturing the C-space.

Replan_Max_Nodes: The same for the Max_Nodes parameter but this is for the re-
planning phase instead.

Replan_Biasing_Probability: The same for the Biasingprobability parameter but this is
for the re-planning phase instead.

Dual_Phase_Plan: Activating this parameter allows the solver to do re-planning in case
the solver failed to find a solution in the planning phase. This feature is more efficient

when solving complex problems, because it utilizes the previously generated tree which
can be re-grown using a different biasing probability to find the solution.
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EvalJCSl^Constraints: This is a key parameter that affects updating the equipment
configuration after each simulation step. It allows the solver to either consider all
constraints, mathematical expressions and simulation equations applied on the equipment

in Softimage or just to depend on internal transformation calculations presented in the
DH-notation to determine the equipment configuration. Internal computations are much

faster and efficient; this is because all computations are made directly on available

transformation matrices. Evaluating Softimage constraints enables the solver to consider

them while generating the plan which allows solving complex problems with any
physical simulation constraints applied to it (e.g. swinging simulation of the crane's cable
based on the weight inertia and wind effect).

VisualizeJree: This option allows visualizing the generated RRT in a separate window
for further analysis and debugging.

Verbose: This is another debugging option for logging computational details to the script

editor. Appendix H shows sample of the verbose logging for the solving process.

PlotOnFaih In case the planner returns failure, this option plots all successful nodes in
the tree as keyframes on each DoF. Figure 4.10 shows the plotted points for the first DoF
of the hydraulic crane (swing angle). Points start spreading from the initial value of the
DoF (55°) all over the specified range of the DoF (-170°,170°) as the tree expands in the
C-space. The shaded area represents the C-Space occupied by obstacles. As can be noted,
valid nodes do not exist in this area.
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Figure 4.10: Plot of the RRT for the first DoF of the hydraulic crane

After executing the command and successfully finding a feasible path, the path is stored
along with the full tree information in memory. For visualization, the 3D software reads
the path information from memory to move the crane over the feasible path that was
found by the specified algorithm. Of course, the feasible path at this level is only based
on static obstacles. Dynamic obstacles are considered later in the re-planning phase.

In case the planning phase fails (the allowed number of nodes is reached before finding a
solution), the last updated RRT is cached and a new planning query is then treated as a
re-planning problem where the existing tree is trimmed and re-grown (this is only if the
dual_phase_plan parameter is activated).

In case the re-planning phase fails also, the command outputs all random configurations
that are added to the tree until it failed on the 3D model. This can help in fine tuning the

parameters (e.g. biasing probability) based on the visual feedback of how the solver was
progressing from the recorded tree.
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4.4.7 Re-Planning and Interactivity

When the planning phase succeeds, the implemented plug-in executes collision detection

for each simulation step while the crane is moving over the initial path. Based on the

specified amount of the simulation step, a collision detection query is computed for the

next equipment step. If a collision is detected, event-based command is invoked to

perform re-planning task in order to fix the initial path based on the newly detected
obstacles.

This event system enables a high level of interactivity where it is possible to add any type
of motion to the obstacles while the crane is executing the initial path. For example, it is

possible to simulate a truck moving around while the crane is moving and see its

response directly. Figure 4.11 shows snapshots for the example where an excavator
model is moved near the crane while it is moving along the planned path. The excavator

is detected as dynamic obstacle at simulation step 25 where the re-planning phase is

executed to update the path and avoid the detected obstacle.
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Figure 4.11: Excavator model moved near the crane and detected as dynamic obstacle

while the crane is executing the path

4.5 IMPLEMENTATION DETAILS

To simplify the development process and reduce the complexity of the ICE-Planner, it is

divided into several components that interact together in certain logic to provide a fully

integrated system to model, solve and visualize construction equipments motion planning

in real time. Figure 4.12 summarizes the main components of the ICE-Planner and shows

the relationships between them.
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Figure 4.12: Main components of the ICE-Planner

The "uses" relationship calls directly onto the member object and uses its services, while

the "implement" relationship is a specialization of its parent type. The Problem
component is the container for the different aspects of the motion planning problem. The
¡Planner is an abstract interface that is implemented by several classes each representing

a specific algorithm. This interface unifies the usage of different algorithms supported by
the system. The IPIannerActivityRecorder is the interface that implements the two classes
(RawRecorder and VisualizerRecorder). RawRecorder class plots the nodes from the
generated RRT on the equipment 3D model as key frames for each DoF of the path in
case of success or as tested configurations in case of failure. The VisualizerRecorder
class renders the RRT nodes in the C-space for the first three DoF of the equipment. The

Model implements the class that has the metric and other functions related to defining
and accessing the kinematic structure of the equipment. The IConstraintsEvaluator
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implements classes for validating sampled configurations against engineering constraints
using the proposed LVA in Section 3.4. The !Geometry implements class for performing
collision detection calculations using the PQP library.

Figure 4.13 shows the lifetime of various objects involved in the operation of planning
phase. The blocks laid horizontally list the main objects in the system while the vertical
axis represent the lifetime of each of these objects.

XSI::MotionPlan Problem Planner Geometry CnnstraintsEvaluator ActivitvRecorder

(user event) Read Robot Model Structure

Setup Constraints Eval System

Read Robot/Obstacles Geometry

Setup Planner

I]

Build Problem Description

Setup PCurve/Visualtzer Activity Recorders

Expand Tree
Towards Çoal

RandomValidStep ,

3

Get Valid Path

"5 Plot Path to FCurves

H

Record Valid State

li

Figure 4.13: Sequence diagram of the ICE-Planner
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4.5.1 Problem Modeling

The major implementation effort for the problem modeling task is to be able to read the
problem data directly from the 3D software. Problem data that needs to be retrieved
consists of: (1) geometry that represents the crane and the obstacles shapes, (2) kinematic
properties for all crane parts, and (3) initial and goal configurations.

To read the geometry from Softimage, the geometry first needs to be tessellated in order
to perform collision detection calculation using the PQP library. Fortunately, Softimage
provides a method for accessing tessellated meshes directly without the need to
implement this separately.

Before using the tessellated geometry data in the collision detection library, it is first
passed to another class for further processing. This class is responsible for extending the
obstacles uniformly with a specific value to avoid semi-free paths around the original
obstacles. Since dilation is done as a uniform extension around obstacles, it is possible to

utilize a simplified approach for dilation. This approach depends on extending the
obstacles geometry based on its vertices normals. This is done by first accessing the
normal vectors on each point of the obstacle, and then each point is translated along its
normal vector based on the specified value. Figure 4.14 shows the previous process for an
I-beam.
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Figure 4.14: I-beam dilated along its points normals

In addition to accessing geometry defined in the scene, geometry for critical volumes
needs to be generated and defined as dynamic obstacles for the solver. In the case of a
hydraulic crane, the points that are attached to the crane are only changing their positions
based on the configuration of the crane, while their number is always the same. This fact
can be taken into account to enhance the performance of generating and updating the 3D

surface. Thus, instead of regenerating the geometry from the points at each simulation
step to reflect the updates on the 3D surface, the geometry generation can be done only in
the first simulation step, then as the configuration of the crane updates, points positions of
the constructed 3D surface are moved to update the 3D surface shape. This simplification
can enhance the calculation time for cases with complex shapes.

The way the kinematic properties of the equipment are defined in the implemented
system is different from how it was defined in MSL. In MSL' s hierarchical equipment
model, DoFs are defined based on the DH-notation. While in our implementation it is
defined using the local affine transformation matrix that is formed from six parameters.
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This modification is made in order to make it compatible with the kinematic properties

defined in Softimage. As a result, accessing the kinematic properties is straightforward.

Softimage provides direct access to these properties through the object model in the SDK.

Having a compatible matrix representation with Softimage is important to boost the
performance when evaluating dynamic constraints and mathematical expressions applied
to the equipment. This is because the solver has to apply these transformation matrices to
the equipment model before each simulation step in order to evaluate any applied
constraints based on the computed configurations.

Also in order to increase the flexibility for defining equipment hierarchies, a modified

structure is implemented that is able to support articulated equipments with branching
hierarchies without any limits on the number of links. This generalized structure should
be capable to model most type of equipment easily without the need to readopt the
system for it specifically. Thus, it is straightforward to solve other types of equipment
that have different number, ranges and types of DoFs. In this research, in addition to

solving hydraulic cranes, the developed prototype system is used to solve tower cranes
that have totally different kinematic structure from hydraulic cranes. By following the
same workflow that is explained in Chapter 3 for hydraulic cranes, another case study for
tower cranes is solved and presented in Section 4.6.

Reading the initial and goal configurations is done by looping over all equipment parts
and retrieving the parameter values at the first and last key frames applied to these parts.
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Any key frames in-between these two key frames are ignored and will be overwritten by
the solver's results.

4.5.2 Engineering constraints

As presented in Section 3.4, engineering constraints are considered by developing a
separate engineering agent that collaborates with the solver to generate safe paths. In

order for the engineering agent to make decisions, it requires two main inputs:

1 . Task parameters defined by the user that include in the case of a hydraulic crane:

lifted load, capacity reduction percentage, outriggers state, and counterweight.

2. Current configuration which is the current pose of the equipment that is computed

by the solver in the last simulation step. From this configuration, the solver states
a query about the current values of all DoFs that affect the allowable ranges of the
DoF that is going to be solved in the next simulation step.

For implementation, engineering constraints data (i.e. load charts) are organized in tables
and stored as a MS Excel file. Data stored in the file should follow specific organization

in order to be referred correctly by the system. In Softimage, another separate plug-in is

developed that is responsible of: (1) retrieving user inputs regarding the task parameters,
(2) accessing the data in the MS Excel file based on the task parameters, and finally (3)
generating the logic and dataseis that are customized based on the task parameters as an
engineering agent and attaching it to the crane model.
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Accessing the data in the MS Excel file is done based on the specified parameters of the
crane task. These parameters define the data cluster that satisfies crane task. To simplify

this process, data is organized in a logical way to make it easy to define data clusters as
partial tables of the spreadsheet.

The logic that is included in the engineering agent is based on the search algorithm that is
presented in Section 3.4. This logic in addition to the dataseis from the load charts are all
generated based on the task parameters (i.e. counterweights, load, state of the outriggers)
and integrated into an abstract customized agent that is attached to the 3D model of the
crane. Attaching the engineering agent is done by adding the programming code that
includes the searching algorithm and the dataseis to the equipment model as a string
property. The content of this property is then executed internally by the solver on demand
where the solver is able to interpret/compile the code that is attached to the equipment
model and execute it as an attached library. This technique was first presented by

(Bahnassi, 2009) for creating new scripting structure for 3D models where they have their
own logic and algorithms attached to them. The original concept supports attaching code
for scripting languages (e.g. Jscript and VBScript). Unfortunately, using scripting
languages to implement the algorithm for searching the engineering constraints is not
acceptable in terms of performance for real-time planning. This is because the evaluation
time of a script is so much longer compared to compiled code. To overcome this
performance issue, an extension is developed to support C# (or C++) that is compiled and
called by the solver when planning. The performance of this extension is enhanced in the
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ratio of 250 times from using scripting languages. Appendix G lists the auto-generated
C# code for the engineering agent for a hydraulic crane.

4.5.3 Planning/Re-Planning Solver

As mentioned before, the implementation for the planning solver is derived from the
MSL API. To be able to integrate it with Softimage, the library was modified and

compiled with MS Visual Studio 2008. Algorithm extensions proposed in Section 3.6.2
are implemented as new classes in MSL. First, the proposed metric that is introduced in
Section 3.6.1 is implemented in a separate class where it has members defined
dynamically based on the problem definition. These members include DoF ranges, speed
and weight coefficients for each dimension in the C-space. This class includes several
key functions. These are: (1) the distance function for calculating the distance between
two states in the C-space, (2) interpolation function for extending incrementally towards
sampled node, (3) and a difference function for subtracting two states in the C-space. The
difference function is used to compare if the difference between the current node and the

goal node is less than the allowed error tolerance in which case the goal will be
considered reached and the tree returns a successful path. Appendix D lists the C++ code

for the main part of the implemented class.

Enhancements and modifications related to the random node generation and to the tree

extension are implemented in a new RRT class. In this new RRT class, the random node
generation supports goal biasing based on predefined probability as discussed in Section
3.6.2. For the tree extension, an additional class is implemented for the modified Connect
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heuristic proposed in Section 3.6.2. It supports the engineering rules of actions and it has
limited greedy behavior that enhances the optimality of the path. Appendix E lists the
source code in C++ for the implemented algorithm.

For the re-planning, a framework is implemented from scratch to support the concepts
introduced in the DRRT algorithm. This framework depends on the RRTJBiasedLimCon

algorithm to generate the initial path and to re-grow the tree when fixing the path. This
algorithm is modified further to support re-growing from an existing tree instead of
completely replacing the old one. Thus, the re-planner can use the same function when
fixing the path. Appendix F lists the C++ code for the implemented re-planning
algorithm.

The framework is implemented as an event based command. Where for each simulation

step the commend calls a PQP collision query for the next step. When a collision occurs,
we mark all the parts of the tree that are invalidated by this collision. Then, the tree is
trimmed to remove all these invalid parts. At this point, all the nodes and edges

remaining in the tree are guaranteed to be valid, but the tree may no longer reach the
goal. Finally, the tree is grown out until the goal is reached once more.

4.5.4 Visualization

As mentioned in Section 4.5, two main classes are implemented for taking care of

visualizing the results on the crane directly in addition to its C-space. For visualizing the
results on the crane, the RawRecorder class plots computed path as key frames on each
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DoF of the crane. The 3D software is used then to run a simulation based on the applied
key frames and render the scene in real-time.

Real-time rendering is done using the OpenGL Tenderer supported by the 3D software.
Lighting and shading of the scene elements are done by developing OpengGL real-time
shaders using the Render Tree in Softimage. For implementing standard lighting and
shading models (e.g. Phong, Blinn, Lambert) a library of shaders is available. In case of
requiring custom shaders that are not available in the shaders library, Softimage supports
programmable vertex and pixel shaders for developing any custom shader.

4.6 VALIDATION AND EVALUATION

4.6.1 Description of the Case Studies

In this section the implemented algorithms are evaluated using a case of hydraulic crane
with four DoFs. In addition, following the same procedure discussed on hydraulic cranes,
another test is done for the case of a tower crane with 3 DoFs. Appendix B shows part of
the procedure for calculating the tower crane homogenous transformation matrix based
on DH-notation. The environment setting contains a steel frame structure that is
composed of 536 members that are constructed as 3D polygonal meshes with 6360
triangles. These members are considered static as obstacles and are all parented under the
Obstacles model.

138



For the dynamic obstacles, another working crane is added into the environment as a

dynamic obstacle in the virtual construction site near the original crane so it is conflicting
spatially with it. For the hydraulic crane case, each crane model consists of 20 objects
and 15226 triangles. Thus, for the two cranes there will be 30452 triangles that need to be

considered during collision detection calculations at each simulation step. For the case of

tower cranes, each crane is composed of two objects and 86 triangles.

4.6.2 Validating the Results of the Case Studies

Figure 4.15 shows the environment in addition to the simulated hydraulic crane along
with the initial and goal configurations. Crane with red material (left sided) is considered

as a dynamic obstacle that can be pre-planned as a high priority crane or manipulated
interactively while the simulation is running, while blue obstacles (steel frame structure)
are static. In the captured snapshots, the simulated crane starts executing the path in order
to move from its initial configuration to its goal configuration, both of which are shown

in simulation step 1. At simulation step 120, the crane detects another crane as a dynamic
obstacle and a re-planning phase is directly executed. The re-planning updates the
original path of the crane to avoid the detected obstacle and continue executing the path
until it reaches the goal at simulation step 240.

Figure 4.16 shows the same environment applied to the tower crane case study where the
left sided crane is the dynamic obstacle for the right simulated one. At simulation step 1,

the crane starts executing the path towards the goal shown at this step. As the crane

advances towards the goal, it detects a collision with the other crane at simulation step
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150. The re-planning phase is then executed and the path is updated directly. The new

path drives the crane to go through the other direction in order to reach the goal as shown

in simulation steps (150-400).

Simulation Step: ) I ^^-fioal configuration Si ? m ? l:it ion Step: 30

initiai coiinguiatiQii

Simulation Step: 90Simulation Step: 60 Simulation Step: 1 20

Simulation Step: 1 ?0 Simulation Step: ISO Simulation Step: 210

Simulation Step: 240 Simulation Step: 270 Smnuation Step: 310

Figure 4.15: Simulation snapshots for the hydraulic crane case study
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Figure 4.16: Simulation snapshots for the tower crane case study
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4.6.3 Evaluating the Results of the Case Studies

The previous simulation tests were executed using the following parameter settings for

the algorithms as shown in Table 4.1. Each test was repeated 50 times with different
random seeds to evaluate the results with different random trees. Table 4.2 and Table 4.3

show the results summery for both planning and re-planning for the two crane cases.

Table 4.1 : Values used in the evaluation tests

Parameter Hydraulic Crane Tower Crane
Max Nodes 1000 500
Error Tolerance
CSpace_Dilation (cm)
Space_Resolution (hcubesub)
Biasing_Probability
Replan_Max_Nodes
Replan_Biasing_Probability

15 15
50 150
0.1 0.1

2000 1000
0.15 0.15

Table 4.2: Results summery for planning both case studies

Average for planning time (sec.)
Standard deviation for the planning
time (sec.)
Average number of successful
nodes
Standard deviation for the number
of successful nodes

Hydraulic Crane
5.256
3.963

85.600

74.421

Tower Crane
1.071
1.358

64.980

112.284

Average number of nodes on path
Standard deviation for the number
of nodes on path

8.100
2.685

8.420
4.155
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Table 4.3: Results summery for re-planning both case studies

Hydraulic Crane Tower Crane
Average for re-planning time (sec.) 1.736 0.035
Standard deviation for the re-
planning time (sec.)

3.831 0.819

Average number of successful
nodes

24.238 19.22

Standard deviation for the number
of successful nodes

21.253 33.56

Average number of nodes on path 4.600 4.130
Standard deviation for the number
of nodes on path

1.546 1.966

The reported times for the performance are based on the CPU time for an Intel T5550

Core2Duo processor 1.83 GHz. The planning time is the CPU time required to compute

the initial path from the initial location of the crane to its goal. The re-planning time is the

total CPU time for all re-planning operations needed to move the crane from the initial

location to the goal.

In Table 4.2, the duration for calculating the initial path for the hydraulic crane was

nearly 5 times the duration for the tower crane. Two main factors are responsible for the

difference in planning time between the two cases; the first one is dimensionality, where

in the case of the hydraulic crane the solver has to solve a four-DoF robot while for the

tower crane it is only three. The other factor is the motion constraints evaluation that is

applied in the hydraulic crane case and not applied in the tower crane case. These

constraints include several mathematical expressions for simplifying the boom structure

as explained in Section 4.4.1 in addition to the motion constraint for controlling the
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direction of the cable which is discussed in Section 4.4.1. The number of successful

nodes for the two cases is relatively near, this is because they are both solved in the same

environment, the hydraulic crane uses more nodes to calculate the path because of the
extra dimension it has. In both cases, the number of nodes on the path was in the

minimum extents, and the results were all applicable paths that can be executed by a

crane operator or by an automated robotic system that can control the crane. In Table 4.3,
the re-planning time is the time taken for updating the path to avoid the detect obstacle. It
shows acceptable results that can be improved by using powerful hardware. Since the re-
planning phase is using the same algorithm, the number of nodes on the path to drive the
equipment from its current location (location where the dynamic obstacle is detected) to
the goal is efficient and applicable for cranes. Figure 4.17 shows 20 out the 50 paths that
are generated for the hydraulic crane case. These paths are generated using different
random seeds, and are visualized in the workspace. It is clear that even with different

random seeds, all paths that are shown in the figure follow the same pattern which is the
envelope for the optimal solution of the crane's case. This pattern can be divided into
three main groups of action as shown in the figure. Action group 1 represents mainly the
first part of the path that controls the boom extension. The average path length for this
action group was 12.215m with a standard deviation of 5.069m. Action group 2
represents the major part of the path that controls the swing angle towards the goal. Its
average path length was 31.916m with a standard deviation of 8.855m. The last part of
the path represented in action group 3, looks less regular and has more nodes than the
previous parts. This is because during this part of the path, the crane has to be controlled
along different combinations of boom extension and changes of the angle to the ground to
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avoid the other crane that is detected as a dynamic obstacle while executing the initial

plan. The average path length for this action group was 6.265m with a standard deviation

of 4. 152m.

Action
Group 2

Action
Group 3

G????!Í
Result

Figure 4.17: Different feasible paths generated for the hydraulic crane case study

For analyzing the actual time for each component of the system, the integrated Scene

Debugger (Figure 4. 1 8) is used to calculate the timing for each part of the computations.

The scene debugger is an integrated tool in Softimage that allows analyzing the

performance of scenes. This can tell the processing time and memory consumed by the

elements in the scene, and help finding and correcting major performance bottlenecks.

Based on the Scene Debugger results, the percentage of average time consumed by the

planning algorithm for the hydraulic case was 74.4% while the rest was consumed by
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other tasks such as rendering and evaluating mathematical expressions and constraints.

Based on the average duration for the total planning time, 3.9 seconds are consumed by

the planning algorithm. This leads to understanding that the algorithm performance is

applicable in real-time even with more complex cases and still having reasonable

computation times. Appendix I shows the complete performance results from the Scene

Debugger for one case.
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Figure 4.18: Screen capture for the Scene Debugger showing performance results

4.6.4 Effect of the Biasing Probability

For such randomly based algorithms, biasing the random sampling towards the goal has

direct effect on the both the performance and the quality of the path. To analyze the

relationship between the probability and both the performance and path quality: (1) the

planning time; (2) the number of nodes in the tree; and (3) the number of nodes in the
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path are plotted while the biasing probability is increased gradually from 0 to 1. To
isolate other factors from affecting the tree behavior under different biasing probabilities,

the tests were done using the proposed algorithm and the hydraulic crane case without

obstacles. Figure 4.19 shows the testing results.

It is clearly noticed from the graph how the performance of the algorithm is enhancing as
the value of the biasing probability is increasing. Between probability of 0.05 and 0.45

the performance enhanced with the factor of 5. However it is not recommended to have
high value for the biasing probability because this limits the tree from sampling the C-
space and makes it growing focused towards the goal. This behavior causes the tree to
fall in a local minima in complex environments and fail to return a path as the case with
the potential fields explained in Section 2.6.2.

g~H

-i 1 1 r-

?/?<-???G??/?G???'*?????/>???G^?£?????s??/?<?o d ^ d ™ d m. d "* d ^. d «? o ^ o 2 o 2o o o o o o o o o o

Biasing Probability

—#=Time (milli secs) M Nodes in Tree —?t- Nodes on Path

Figure 4.19: Relationship between the biasing probability and the proposed algorithm
performance and results
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4.6.5 Comparison with the Basic RRT Algorithm

For evaluating the performance of the enhanced algorithms, several comparison tests

were done between the proposed enhanced algorithm RRT Biased Limited Connect and

the standard RRT with goal biasing that is used in the original DRRT algorithm. These

tests were done using the hydraulic crane case study with the same environment setting.

Figure 4.20 shows the planning time for 50 tests with different random seeds. The

average performance of the RRTGoalBiased was 5.1167 seconds while for the
RRTBiasedLimCon was 1.0733 seconds. These results show a significant enhancement in

the performance of the RRTBiasedLimCon over the RRTGoalBiased with the factor of 5.

Figure 4.21 and Figure 4.22 shows the results for the same 50 tests for the number of
nodes in the tree and on the path. The average number of nodes in of the RRTGoalBiased

was 1590.5 and it was 43 times the number of nodes in the RRTBiasedLimCon where its

average was 36.88. Since the proposed algorithm depends on a limited greedy connect
heuristic, the number of nodes on the path was minimal in comparison with standard

RRT algorithm. The average number of nodes on the path for the RRTBiasedLimCon
8.48 was while for the RRTGoalBiased was 187.48 which is around 22 times of the

proposed algorithm.
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4.7 SUMMARY AND CONCLUSIONS

This chapter described the implementation of the proposed approaches and methods

discussed in Chapters 3. A prototype system is developed and two case studies of a

hydraulic crane and a tower crane motion planning were used to demonstrate the

feasibility of these approaches and methods. The software development tools were

selected to integrate several information technologies in the prototype system. The

prototype was integrated into a 3D software package to provide high modeling and

kinematic structuring capabilities that are derived from the 3D software. Several

optimization techniques are proposed to enhance the efficiency of the prototype and
enable real-time visualizing and simulation. The developed prototype system was
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evaluated and validated intensively on both case studies. The results show good

indicators for the applicability of the system in near real-time motion planning for

construction equipment by integration with suitable operating hardware and tracking
sensors that are able to return accurate information in near real-time. The biasing

probability factor was analyzed to show its effect on the overall performance of the
algorithm. Several comparison tests were made between the proposed RRTBiasedLimCon
algorithm and the basic RRT algorithm with goal biasing. The results show that the
proposed algorithm reduces the planning time with an average factor of 5, the number of
nodes in the tree with an average factor 43 and the number of nodes on the path with an

average factor of 22.

In summary, the real-time motion planning system is useful in helping crane engineers
and project managers to plan and validate equipment motion in complex environments
and finding spatial conflicts for specific tasks within a certain period. For equipment
operators, the same system can provide intelligent decision support for re-planning in
real-time while the equipment is executing its plan. Environment updates are assumed to

be retrieved from the environment using any suitable real-time capturing hardware.
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CHAPTER 5 SUMMARY, CONCLUSIONS AND FUTURE WORK

5.1 SUMMARY

This thesis investigated several algorithms and methods from artificial intelligence,

robotics and computer graphics literature to developed a new framework that can plan,
simulate and visualize cranes and other construction equipments in real-time.

Construction equipments were treated as robots consisting of moving rigid parts and

mathematical expressions were derived for modeling the kinematic structure of these

equipments. The feasibility of the proposed framework was illustrated with two examples

of a hydraulic crane, which is treated as a four-DoFs robot, and a tower crane with three

DoFs. Using the same principles and procedures, kinematical models for other types of

heavy construction equipments can be derived.

Because motion planning algorithms are mainly developed for robotics applications, they

do not consider engineering constraints and the collision-free paths they find may not be

easy to apply in case of construction equipment. A new motion planning solver has been

developed in this research that satisfies construction equipment constraints. The core part

of this solver is a computer algorithm, RRTJBiasedLimCon, which was developed and

implemented to find collision-free paths that can be followed by cranes to transport
construction elements both safely and efficiently. An engineering agent approach is

developed to ensure that the collision-free paths are realistic and safe in terms of
engineering constraints.
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This research also developed and implemented an efficient algorithm for real-time

motion planning that is able to consider the dynamic features found in construction
environments and other equipments in case of multi-equipment planning. In all cases,

motion planning is significantly more complex than the case of static known
environments because of two main reasons: (1) based on the information of new

obstacles detected during executing the paths, the motion planning algorithm must be

able to generate a modified plan in real-time to cope with the new detected obstacles; and
(2) the new obstacles being detected could be moving in the site and their movement is
unknown and unpredictable. The tree data structure generated by the developed algorithm

to capture and avoid the obstacles is modified to allow minimum amount of computation
when new obstacles are detected.

A prototype system, Intelligent Construction Equipment motion Planner (ICE-Planner),
was developed to implement all previously described computational methods and
functions to plan and simulate heavy construction equipments (mainly cranes). The
system was integrated into a 3D software to provide a flexible environment for modeling,
interacting with and visualizing the full simulation. The system includes several
Graphical User Interfaces (GUIs) to set any parameter related to the system in addition to
visualizing the C-space generated while computing the path. Two case studies were
created to demonstrate the applicability of the proposed framework and algorithms using

models of a tower crane and a hydraulic crane. They were also used to validate and

evaluate the performance of each component of the system. The hydraulic crane model of
TMS870 Grove Crane was prepared along with a database for part of its load charts. The
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cranes were simulated in a steel frame construction environment in addition to a second

crane working nearby as a dynamic obstacle. The results of the preliminary testing of the

system showed the ability of generating realistic plans in addition to rapid re-planning.

5.2 CONCLUSIONS

The conclusions of this research are grouped into the following areas:

(1) A motion planning framework for supporting construction equipment to ensure
safety and improve productivity has been proposed. Although this framework was
applied and tested using hydraulic and tower cranes, it is designed to have the
flexibility to work for other types of heavy construction equipments by avoiding

engineering of the system towards the functions of specific equipment type.

(2) Several methods have been introduced to ensure that the generated paths satisfy
safety requirements when applied to heavy construction equipment. These
methods are the integration of engineering constraints and rules of actions into the

motion planning process, and the introduction of critical volumes and obstacles
dilation for avoiding unsafe paths.

(3) An efficient planning/re-planning algorithm has been developed for dynamic
environments which is able to provide information for operators to assist them in

manipulating equipments more efficiently and more safely. Additionally, this
algorithm is applied to consider multiple equipments efficiently by doing
prioritized motion planning for each equipment. This scenario is tested in the case
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studies by taking the high priority crane into consideration in the simulation as a

dynamic obstacle for the low priority crane.

(4) A prototype system was implemented to demonstrate the feasibility of the
proposed framework and algorithms using two case studies. Several optimization
techniques are proposed to enhance the efficiency of the prototype and enable
real-time visualizing and simulation. The prototype was integrated into a 3D

software package to provide high modeling and kinematic structuring capabilities
that are derived from the 3D software. Intensive evaluation and validation tests

were done to demonstrate the applicability of system in real-time motion planning

for construction equipment. The biasing probability factor was analyzed to show

its effect on the overall performance of the algorithm. Several comparison tests
were made to show the enhancements in efficiency and paths results between the

proposed RRTBiasedLimCon algorithm and the basic RRT.

5.3 LIMITATIONS AND FUTURE WORK

While fulfilling the objectives of this research, there are many areas that require further
research including the following:

(1) Since the planning algorithm is based on randomized sampling of the C-space, the
generated path can be enhanced further by doing post processing to optimize it
and remove redundant nodes. The optimized paths should be validated against

engineering constraints to guarantee realistic paths. The results of the
optimization process has a minor effect on the path optimality since the original
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generated path is near optimal, thus results of this optimization step should be also

evaluated in terms of performance in the case of replanning where rapid response

has a higher priority than minor path enhancements.

(2) Although methods and tools developed in this research are engineered to solve

general cases of heavy construction equipments. Currently ICE-Planner is

validated only for hydraulic and tower cranes. In actual construction projects,

other types of equipments can be used and it is important to consider them in the

system. Further testing and evaluation with other types of construction

equipments is required to prove this feature of the system.

(3) Although the proposed framework supports physical based motions (e.g. swing

motion of the cable) applied to any part of the equipment by implementing

differential equations on the kinematic structure, it is not included in the case

study presented in this research. Future research should be done to consider

different types of physical based motions/deformations in cranes (e.g. boom

deflection of hydraulic cranes when lining heavy weights).

(4) Although the proposed framework is able to consider multiple equipments

working separately as dynamic obstacles (prioritized multi-equipment planning),

it is not designed to directly support collaborative multiple equipments, such as

the case of two cranes working together on the same task. This issue requires

more research in the following areas: (a) Creating a kinematic model for the

collaborative equipment case to be solved by the proposed system as a centralized

motion planning, where the solver will treat the collaborative equipments as one
chained, closed robot that has the total number of DoFs equals to the sum of the
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DoFs of both equipments; (b) Developing methods and techniques for simplifying

the high complexity that arises from solving centralized motion planning; and (c)

Evaluating the efficiency of the modified algorithms for solving such complex

cases.

(5) The proposed framework can be extended to provide the basis for developing
solutions to other areas related to construction equipments such as the

optimization of the location of the heavy construction equipment. This can be

approached with the work introduced here by using the parameterization results of

the generated paths as the fitness function in a Genetic Algorithm (GA). GA will
then evolve a solution for the optimized location of the equipment by evaluating

the paths generated by the motion planning algorithm.

(6) Building Information Model (BIM) can be used to automatically update the
construction environment through time and generate incremental path planning

queries for the whole project phases. This can be done by allocating each crane to

its group of construction elements that it will handle sequentially. Further research

is required in this area for arranging the ?G? data and importing it into the

proposed system. Additionally, multi-task planning using ?G? can be considered

to enhance the performance of sequential motion planning queries by caching

previous generated RRTs and updating them based on site updates.

(7) The DRRT requirement of growing the tree reversed makes it hard to utilize other
efficient enhancements developed for the RRT such as simultaneously growing

two trees rooted at the initial and the goal configurations (forward-tree and

backwards-tree). Thus, in cases where new obstacles are discovered while
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traversing through the forward tree (the tree that grows from the initial

configuration), a large part of the entire tree needs to be re-grown. This issue

requires more research to analyze and compare the performance between having
single tree DRRT and dual-tree brute-force RRT.
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APPENDICES

APPENDIX A: Programming-tree for the RRT visualization prototype created using the

visual programming system in Softimage: The prototype was created in this

system by building the algorithm using abstract programming nodes that are

connected together based on the logic of the implemented algorithm.
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APPENDIX B: Calculating tower crane homogenous transformation matrix based on

DH-notation : (a) Schematic; (b) Homogenous transformation matrix; (c) Matlab

code.

Xoj

??,?

X
Yfr..,
$

Ys
Xi

Zi

AZ3

Xs

fri revolute joint
Y prismatic joint

0T-,=
CO1 -5O1 0 -Cl2Se1
SO1 CO1 0 Ci2Ce1

0 0 1 Ci3
0 0 0 1 .

(b)

1. clear all;

2. %Declaring Angles as Matlab Symbolic variables
3 . syms thl d2 d3 ;

4. . %Abriviating cosines and sines
5. cl = cos (thl) ;
6. si = sin (thl) ;

7 . %Declaring transformation matrices for each link
8. tOl = [Cl -Sl 0 0; si cl 0 0; 0 0 10; 000 I];
9. tl2 = [-10 0 0; 0 0 1 d2 ; 0 10 0; 0 0 0 I];

10. t23 = [-10 0 0; 0 0 1 d3 ; 0 10 0; 0 0 0 I];

11. %Computing the t04 symbolically
12. t03 = t01*tl2*t23;
13. t03_s = simple (t03);

(C)
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APPENDIX C: Matlab code for calculating hydraulic crane homogenous transformation

matrix symbolically based on DH-notation.

1. clear all;

2. %Declaring Angles as Matlab Symbolic variables
3 . syms thl th2 d3 d4 ;

4. %Abbreviating cosines and sines
5. cl = cos (thl)
6. si = sin (thl)
7. c2 = cos(th2)
8. s2 = sin(th2)

9. %Declaring transformation matrices for each link
10. tOl = [Cl -si 0 0; si cl 0 0 ; 0 0 1 0 ; 0 0 0 I];
11. tl2 = [c2 -s2 0 0; 0 0-10; s2 c2 0 0; 000 I];
12. t23 = [1-000; 0 0 -1 -d3; 0100; 0 0 0 I];
13. t34 = [10 0 0; 0 0 -1 -d4; 0 10 0; 0001];

14. %Computing the t04 symbolically
15. t04 = t01*tl2*t23*t34;
16. t04_s = simple(t04);
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APPENDIX D: C++ code for ModeBDRigidTreeXSI Class that is used to model the

crane kinematicaly and define the metric.

1. bool Model3DRigidTreeXSI: !Satisfied (const MSLVector &x)
2. {
3. // Ensure values are within limits
4. for (int i=0; i<StateDim; i++)
5. {
6. if (m_aDynaState[i] .isAngular ( ) )
7. {
8. double a = AnglelntoLimitsRange (x[i] , i) ; // Always above

LowerState

9. if (a > UpperStatefi]) //In range?
10. return false;
11. }
12. else
13. {
14. if ((x[i] > UpperStatefi]) || (x[i] < LowerState [i] ) )
15. return false;
16. }
17. }
18. if ( !ExtendedSatisfied(x) )
19. {
20. if (m_pOwnerProblem->ActivityRecorder) m_pOwnerProblem-

>ActivityRecorder->Mark(x, 2) ;
21. return false;
22. }
23. return true;
24. }
25.

26. MSLVector Model3DRigidTreeXSI : :StateToConf iguration (const
MSLVector &x)

27. {
28. return m_bEvaluateXFormsThroughXSI ?

StateToConfiguration_XSI (x) : StateToConf iguration_Direct (x) ;
29. }
30.
31. double Model3DRigidTreeXSI :: Metric (const MSLVector &xl, const

MSLVector &x2)
32. {
33. double dMetric = 0.0;
34.
35. for (int i=0; i<StateDim; i++)
36. {
37. double weight;
38. double diff;
39. if (m_aDynaState[i] .isAngular () )
40. {
41. double al = AnglelntoLimitsRange (xl [i] , i) ; // into

[LowerState, UpperState]
42. double a2 = AnglelntoLimitsRange (x2 [i] , i) ; // into

[LowerState, UpperState]
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43. diff = fabs(a2-al) ;
44. if (diff > MATH_PI)
45. diff = MATH_PI*2 - diff; // Shortest angle
46. //weight = diff / MATHJPI; // (UpperStatefi] -

LowerState[i] ) ;
47. //weight = diff / (UpperState[i] -LowerState [i] ) ;
48. }
49. else diff = x2 [i] -xl [i] ;
50.
51. weight = diff / m_aDynaState [i] .Speed;
52. dMetric += weight * weight;
53. }
54.
55. return sqrt (dMetric) ;
56. }
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APPENDIX E: C++ source code for the implemented RRTBiasedConLim variation.

1. 1 1 1 1 1 / 1 1 1 1 1 1 1 1 1 1 1 1 1 RRTBiasedLimCon Class Implementation
///////////////////

2.

3. // This function essentially iterates Extend until it has to stop
4. // The same action is used for every iteration
5. bool RRTBiasedLimCon: :Connect (const MSLVector &x, MSLTree *t,

MSLNode *&nn,bool forward)
6. {
7 . MSLNode *nn_prev = 0 ;
8. MSLVector nx,nx_prev;
9. bool success = false;

10. double d,d_prev, clock;
11.

12. MSLNode *n_best = SelectNode (x, t, forward) ;
13 . MSLVector u_best = Selectlnput (n_best-

>State( ) ,?,??, success, forward) ;
14. if (!success)
15. return false;
16.
17. // if a collision-free input was found
18. // nx gets next state
19.
20. int steps = 0;
21.
22. d = P->Metric(nx,x) ;
23 . d_prev = d;
24. nx_prev = nx; // Initialize
25. nn = n_best;
26. clock = PlannerDeltaT;
27.
28.. double dLast2Goal = P->Metric (n_best->State ( ) , P->GoalState) ;
29. double dCurrent2Goal = P->Metric (nx, P->GoalState) ;
30. bool bTrackGoalDist = dCurrent2Goal < dLast2Goal;
31. if (!bTrackGoalDist)
32. {
33. // Always succeed in this test
34. dLast2Goal = 1.0;
35. dCurrent2Goal = 0.0;
36. }
37.

38. while (P->Satisf ied(nx) && success && (clock <=
ConnectTimeLimit) && (d <= d_prev) && (dCurrent2Goal <
dLast2Goal) )

39. {
40. Satisf iedCount++;
41. steps++; // Number of steps made in connecting
42. nx_prev = nx;
43 . d_prev = d;
44. nn_prev = nn;
45.
46. // Select best action each time
47. //u_best = Selectlnput (nn->State( ) ,?,??, success, forward) ;
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if (Holonomic)
{

nx = P->Integrate (nx_prev,u_best, PlannerDeltaT) ;
}
else
{

/ / Nonho 1 onorni c
if (forward)

nx = P->Integrate (nx_prev,u_best, PlannerDeltaT) ;
else nx = P->Integrate (nx_j?rev,u_best, -PlannerDeltaT) ;

}

d = P->Metric (??,?) ;
clock += PlannerDeltaT;

if (bTrackGoalDist)
{

dLast2Goal = dCurrent2Goal;
dCurrent2Goal = P->Metric (nx, P->GoalState) ;

}

// Uncomment the subsequent two lines to
// make each intermediate node added
//nn = g.new_node (nx_prev) ; // Make a new node
//g.new_edge (nn_prev,nn,u_best) ;

}
nn = t->Extend(n_best, nx_prev, u_best, steps* PlannerDeltaT) ;

return success;
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APPENDIX F: C++ source code for the implemented dynamic RRT algorithm.

1. bool RRTDynamic : :StaticPlan( )
2. {
3. // Create a normal RRT tree. Grow from target to initial.
4. P->InitialState = Goalstate;
5. P->GoalState = Initialstate;
6.

7. Rrt->NumNodes = m_iInitialNumNodes;
8. RRTGoalBias *pGoalBias = dynamic_cast<RRTGoalBias*> (Rrt) ;
9. if (pGoalBias)

10. pGoalBias->GoalProb = m_dInitialGoalProbability;
11.

12. // Initial planning
13. if ( !Rrt->Plan() )
14. return false;
15.
16. // Success
17. MoveFromNode = Rrt->GoalNode;
18. MoveToNode = MoveFromNode->Parent ( ) ;
19. return true;
20. }
21.

22. bool RRTDynamic: : DynamicRep1an ( const MSLVector& lastValidState)
23. {
24. Rrt->NumNodes = m_iReplanNumNodes;
25. RRTGoalBias *pGoalBias = dynamic_cast<RRTGoalBias*> (Rrt) ;
26. if (pGoalBias)
27. pGoalBias->GoalProb = m_dReplanGoalProbability;
28.
29. // Mark other nodes in the tree as invalid if detected in

dynamic obstacles
30. // from DynaGeom
31 . Invai idateNodes (Rrt->T->Root ( ) ) ;
32.

33. // Edge from lastNode to nextNode is in collision. Mark
nextNode as invalid.

34. if (MoveToNode)
35. SetNodeValidity (MoveToNode, false); // I believe this is a

valid assumption
36.
37. // Remove invalid branches
38. int trimmedNodesCount = TrimTree(Rrt->T) ;
39. trimmedNodesCount;
40.

41. //If the tree became empty, then delete it
42. if ( !Rrt->T->Size() )
43. {
44. delete Rrt->T;
45. Rrt->T = NULL;
46. }
47.

48. // Grow RRT again to goal if needed
49. //if (trimmedNodesCount > 0)
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50. {
51. P->GoalState = lastValidState; // Grow to last valid state
52. //P->GoalState = MoveFromNode->State( ) ;
53. Rrt->GoalNode = 0 ; //MoveFromNode;
54. Rrt->CumulativePlanningTime =0; // Reset timer
55.
56. // Notify implementors of this event
57 . OnTreeTrimmed ( ) ;
58.

59. // Replan
60. if ( !Rrt->Plan() )
61. {
62. MoveFromNode = MoveToNode = 0;
63. return false;
64. }
65.

66. // Setup simulation
67. ResetSimulationO ;
68. }
69. return true;
70. }
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APPENDIX G: C# auto-generated source code for the engineering agent.

1. using System;
2.

3 . namespace MotionPlan
4. {
5. public class ExtSatisfy : ExtendedSatisfy. Interface
6. {
7. doublet] Distances; // Sorted from minimum to maximum
8. doublet] [] LoadsPerDistance;
9. doublet] [] AnglesPerDistance;

10.
11. const double Load = 20000;
12. const int DistanceDOFIndex = 2;
13. const int ThetaDOFIndex = 1 ;
14.
15. public ExtSatisfy ()
16. {
17. Distances = new doublet] {

108,150,180,210,240,27 0,3 00,33 0 } ;
18. LoadsPerDistance = new doublet] []
19. {
2 0 . new double [ ]

{14 00 00, 110500, 69800, 78750, 59800, 27600, -1,-1, -1,-1, -1,-1,-1,-
1,-1,-1,-1,-1,-1,-1,-1,},

21. new doublet]
{10 9500,104500,914 00,7 53 00,597 50,473 00,3855 0,2 8450,16200,-1,-
1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,},

22 . new double [ ]
{842 00,79850,73 900,59600,50000,423 00,3 6950,2 8450,2340 0,1945 0,11
3 50,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1, },

23. new doublet] {-1,-1,-1,-
1,4890 0,419 00,3 6400,2970 0,24650,2 07 00,17500,14900,915 0,-1,-1,-
1,-1,-1,-1,-1,-1, },

24. new doublet] {-1,-1,-
1,5 095 0,43 800,3 83 00,33 900,3 03 00,25550,21600,18450,158 50,13 650,1
165 0,7410,-1,-1,-1,-1,-1,-1, },

25. new doublet] {-1,-1,-
1,41000,3 52 50,3105 0,27650,24350,22 05 0,20050,183 50,165 50,143 50,1
2500,10900,9480,604 0,-1,-1,-1,-1,},

26. new doublet] {-1,-1,-1,-
1,347 50,30450,27 00 0,24250,219 00,19950,183 00,16850,14900,13 05 0,1
1450,1000 0,879 0,769 0,4950,-1,-1, },

27. new doublet] {-1,-1,-1,-1,-1,-
1,25300,22900,20 850,19100,17550,16200,1505 0,13500,11900,10500,9
260, 8150, 7170, 6280, 4060,},

2 8. } ;
29. AnglesPerDistance = new double [][ ]
30. {
31. new doublet] { 22,26,31.5,43,57.5,90,-1,-1,-1,-1,-

1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, } ,
32. new doublet] { 15,17.5,21,28,35,43,52.5,65.5,90,-

1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, },
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3 3 . new double [ ] {
12,14,17,22.5,2 7.5,3 3.5,40,47,55.5,67,9 0,-1,-1,-1,-1, -1,-1,-1, -
1,-1,-1, },

34. new doublet] { -1,-1,-
1,18. 5, 23, 27. 5, 32. 5, 38, 43. 5, 50. 5, 58, 69, 90, -1,-1, -1,-1, -1,-1,-
1,-1, },

35. new doublet] { -1,-
1,11.5,15.5,19,23,27,31.5,36,41,46.5,52.5,60,70,90,-1,-1,-1,-
1,-1,-1, },

36. new doublet] { -1,-
1,10,13,16.5,19.5,23,27,30.5,34.5,39,43.5,48.5,54.5,61,71,90,-
1,-1,-1,-1, },

37. new doublet] { -1,-1,-
1,11,14,17,20,23,26.5,30,33.5,37,41,45.5,50.5,55.5,62,71.5,90,-
1,-1, },

38. new doublet] { -1,-1,-1,-1,-
1,14. 5, 17. 5, 20, 23, 26, 29, 32. 5, 35. 5, 39. 5, 43, 47, 51. 5, 57, 63, 71. 5, 90
, },

3 9. } ;
40. }
41. #region Interface Members
42. public bool Satisfy (double [ ] state)
43. {
44. double distance = state [DistanceDOFIndex] ;
45. double angle = (state [ThetaDOFIndex] / Math. PI) *

18 0.0;
46. int DistanceGroup = -1;
47. for (int i = 0 ; i < Distances . Length; i + +)
48. {
49. if (distance <= Distances [i] )
50. {
51. DistanceGroup = i;
52 . break;
53. }
54. }
55. if (DistanceGroup == -1)
56. return false;
57. doublet] Loads = LoadsPerDistance [DistanceGroup] ;
58. int LoadGroup = -1;
59. int MinLoadGroup = -1;
60. for (int i = Loads. Length - 1; i >= 0; i--)
61. {
62. if (Loadsti] > -1)
63. {
64. if (MinLoadGroup == -1)
65. MinLoadGroup = i ;
66. if (Load <= Loadsti])
67. {
68. LoadGroup = i ;
69. break;
70. }
71. }
72. }
73. if (LoadGroup == -1)
74. {
75. if (Load < Loads [MinLoadGroup] )
76. LoadGroup = MinLoadGroup;
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77. else return false;
78. }
79. double MinAngle = 0.0;
80. double MaxAngle =

AnglesPerDistance [DistanceGroup] [LoadGroup] ;
81. return (angle >= MinAngle) && (angle <= MaxAngle);
82. }
83 . #endregion
84. }
85. }
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APPENDIX H: Verbose logging for the solving process: This log shows the main steps

in the process such as accessing and analyzing different components of the

problem including: the geometry of the crane and the obstacles, kinematic

properties of the crane and the engineering agent code. It also logs the planning

results in summery.

i.
2.

3.

4.

5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.

19.
20.
21.

22.
23.
24.

25.
26.

27.
28.

29.

30.
31.
32.
33.
34.
35.
36.

37.
38.

// VERBOSE : MotionPlan_RealTimeDRRT_OnInit called
// VERBOSE : MotionPlan_RealTimeDRRT_Solve_OnClicked called
// INFO : Ending last dynamic motion plan session before
initiating new one
// INFO : Dynamic motion plan session ended
// INFO : Grabbing robot root at: robot
// INFO : Robot root found: robot
// INFO : Flattenning robot hierarchy
// INFO : Grabbing obstacles root at: obstacles
// INFO : Obstacles root was found
// INFO : Generating internal geometry representation
// INFO : Robot geometry triangulation
// INFO : Robot geometry robot has 12 triangles
// INFO : Robot geometry rev02 has 12 triangles
// INFO : Robot geometry prism03 has 12 triangles
// INFO : Robot geometry fixAxis has 6 triangles
// INFO : Robot geometry prism04 has 12 triangles
// INFO : Obstacles geometry triangulation
// INFO : Total obstacles geometry triangles: 63 60

Generating internal model representation// INFO
// INFO

// INFO
// INFO
// INFO
// INFO

robot . roty
rev02 . rotx
prism03 .posy
prism04 .posx

Dynamic channel (00)
Dynamic channel (01)
Dynamic channel (02)
Dynamic channel (03)
Grabbing extended satisfy C# script at:

robot . ext_constraints_cs . text
// INFO : Extended satisfy C# script was not found
// INFO : Grabbing extended satisfy C++ script at:
robot . ext_constraints_cpp . text
// INFO : Extended satisfy C++ script was not found
// INFO : Will use XSI transform evaluation (XSI
constraints /expressions supported)

INFO
INFO

INFO
INFO
INFO

INFO
INFO
INFO

// INFO
// INFO

//
//
//
//
//
//
//
//

Gathering initial and goal states
Generating problem description
Generating planner: RRTLimGoalBias
Generating high-level XSI dynamic planner
Random seed: 0
Activating visualizer
Visualizer successfully activated
Static Plan phase (phase 1)
Resetting simulation internal parameters
Done Static Plan phase (phase 1)
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39. // INFO : Phase 2 planner was avoided because phase 1 succeeded
40. // INFO : Planner succeeded. Removing robot keyframes for direct

planner control
41. // INFO : Planning Time: 8.95801s
42. // Successful Path Found
43. //
44. // INFO : Path result: 1
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APPENDIX J: Reasons that cause capacity reduction for hydraulic cranes.

1. Failure to block/crib under the outrigger pads when poor ground conditions

cannot support the total weight of the crane and load. Proper and improper

cribbing is shown in Figure J. 1 .

2. Failure to extend the outriggers fully and use them following the manufacturer's

instruction.

3. Failure to note overhead obstructions, such as overpasses and power lines.

4. Failure to level the crane. Leveling the crane cannot be overemphasized. Cranes

must be set up as per manufacturer's instruction with the outriggers fully extended

and the crane leveled. Crane capacity is lost when the crane is out of level by only

a few degrees. Table shows the values of capacity reduction caused by out of

level. Most cranes have levels mounted on them, but the levels are not always

accurate.
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ffi!!!í

Many crane accidents are caused by poor blocking under floats

1! TM

Use solid blocking under all floats

Figure J.l: Proper and improper cribbing of outrigger pads (Integrated Publishing, 2009)

Table J.l: Sample table for capacity reduction caused by crane out of level (Integrated

Publishing, 2009)

Boom Length and Lift
Radius

Chart Capacity Lost When Crane Out of Level By
2°

Short Boom,
Minimum Radius

10% 20% 30%

Short Boom,
Maximum Radius

8% 15% 20%

Long Boom,
Minimum Radius

30% 41% 50%

Long Boom,
Maximum Radius

5% 19% 15%
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