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ABSTRACT

REHABILITATION OF DETERIORATED STEEL BRIDGE
GIRDERS IN FLEXURE USING CFRP COMPOSITES

HANY MOHAMED SEIF ELDIN

Structural deficiencies in Railway steel bridges are usually the result of
deterioration caused by ageing, corrosion, fatigue, and higher load demands. In this
context, steel bridge girders are the structural members prone to corrosion which implies
a substantially reduction of their flexural capacities. As a result, a large number of steel
railway bridges are in need for strengthening or retrofit. In this thesis, experimental and
analytical investigations are conducted to predict the reduction in the flexural capacity of
existing deteriorated steel girders under static loading and several retrofitting schemes are
developed in the light of strengthening the girder cross-section. The experimental study
covers the use of two Carbon Fibre-Reinforced Polymer (CFRP) composite types,
namely, normal modulus sheets (NM-CFRP) and high modulus strips (HM-CFRP). A
total of thirteen medium-scale W-shape steel beams with a span of 1.6m were tested
under four-point bending setup. The thirteen beams were divided in four groups such as:
i) Group G1 consisted of four beams with different percentages of cross-sectional area
reduction without any strengthening; ii) Group G2 consisted of four notched beams
strengthened with bonded NM-CFRP sheets. Herein, two out of the four strengthened
beams, were bonded using saturant epoxy, while the other two were strengthened using
high performance adhesive; iii) Group G3 consisted of two notched beams strengthened

with bonded HM-CFRP strip with and without a wrapping system; iv) Group G4
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consisted of three notched beams strengthened with unbonding NM-CFRP sheets and a
ductile anchoring system. The results of the experimental study underline the
effectiveness of the proposed retrofitting schemes in terms of flexural capacity increase
and deflection control of the existing corroded steel girders. In addition to the
experimental program, an analytical model was developed to set up a numerical method
that is capable of predicting the elastic and post-yield behaviour of the unstrengthened
and strengthened deteriorated steel girders. This numerical method can be used by
designers to calculate the losses in the moment capacity of the deteriorated steel girders
to an acceptable level of accuracy. The analytical model was validated using the

experimental results that were presented in the experimental program.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND AND PROBLEM DEFINITION

Due to increasing traffic loads and deterioration of steel bridges, a large number
of existing steel bridges require strengthening or even replacement. If strengthening
appears to be an attractive option, the replacement alternative may involve costs and
closure of traffic for long periods or, at least, substantial interference with the normal
traffic flows. A traditional retrofit method for repairing structurally deficient steel
members consists of attaching cover plates to these members through bolts or welding
such that their flexural capacity to be increased. There are many disadvantages associated
with these methods, such as: (1) the procedure is labour intensive and time consuming;
(2) it requires drilling and extensive lap splice detailing; (3) traffic may have to be
interrupted for a period of time; (4) a potential development for weld fatigue cracking at
the cover plate ends and a region of high stress concentrations near the bolts; and (5)
increase in the weight of the members. Consequently, in the last few years, extensive
research was focused on strengthening steel bridges with fibre reinforced polymer (FRP)
composite materials. The advantages of using this composite material are mainly due to
their high strength to weight ratio, high fatigue resistance, and easiness and speed in the
strengthening work intervention. While most of the previous research was focused on
applications of adhesive-bonded FRP sheets or strips, it was found that there are many
variables controlling the bond performance between FRP and steel, such as: bond length,

adhesive type, adhesive thickness, surface preparation, and FRP type. Also, due to its



recent development, the long-term performance of the epoxy-bonded FRP strengthening

method is not fully comprehended.

1.2 OBJECTIVES AND SCOPE OF WORK

The main objectives of this research are: to investigate the behaviour of steel
bridge girders with locally and uniformly distributed corrosion over the tensile flange
area and to analyze the influence of the location and area of corrosion; to explore
different techniques which are able to increase the flexural capacity of deteriorated
girders in elastic and post-yield ranges versus their original capacity by using bonded and
unbonded Carbon Fibre Reinforcement Polymer composites material CFRP; and to
evaluate the efficiency of the proposed retrofitted techniques. In order to achieve these
main objectives, experimental and analytical studies are conducted. The scope of the

research program is as follows:

EXPERIMENTAL PROGRAM

Through the experimental phase, a series of thirteen medium-scale deteriorated steel
beams were tested to examine the behaviour of the unstrengthened and strengthened
corroded steel girders. The tested beams were divided into four groups such as:

1. First group, G1 consisted of four beams with different percentages of simulated
corrosion in order to investigate the influence of the area and location of corrosion
on the flexural capacity of the deteriorated beam.

2. Second group, G2 consisted of four retrofitted beams strengthened with CFRP

sheets bonded to the tension flange. The purpose of this studied group is to



emphasize the bond behaviour between the CFRP and steel including the effect of
the CFRP and adhesive type.

3. Third group, G3 consisted of two strengthened beams with high-modulus CFRP
laminate strips externally bonded to the bottom flange of the tested beam with the
aim to characterize the influence of wrapping on the behaviour of retrofitted steel
girders. The wrapping system was applied at one beam only.

4. Fourth group, G4 consisted of three simulated corroded beams strengthened with
unbonded CFRP sheets by using ductile anchorage system. The main objective of
this proposed scheme is two-fold: to reach the full capacity of the CFRP sheets

and to increase the ductility of the strengthened steel bridge girders.

ANALYTICAL PROGRAM

In addition to the experimental work, an analytical procedure was developed and
a numerical method was set up with the aim of predicting the elastic and post-yield
behaviour of the unstrengthened and strengthened deteriorated steel girders. This
numerical method can be used by designers to calculate the losses in the moment capacity
of the deteriorated steel girders for an acceptable level of accuracy. As a result, the
required amount of CFRP can be calculated based on the demanded level of safety. The
carried out analysis is based on a moment-curvature method which satisfies equilibrium
and compatibility. The analytical model was validated using the experimental results that

were presented in the experimental work.



1.3 THESISLAYOUT

The research work in this project is reported in six chapters. In chapter 1,
background information related to strengthening of steel bridge girders using FRP
composites is discussed in addition to the objectives and scope of the research program.
Chapter 2 provides a literature review of the previous research topics which focused on
the behaviour of corroded steel girders, traditional rehabilitation or/and strengthen
techniques for existing corroded steel girders, and different techniques for the
rehabilitation or/and strengthening of corroded steel girders by using FRP in different
schemes. Chapter 3 discusses details related to the experimental program and includes:
design, construction, test setup, and instrumentation of the tested beams. In Chapter 4,
the results of each group of the experimental program are presented and discussed
separately. Additionally, comparison between the different proposed strengthening
schemes, as used in chapter 3, are conducted in this chapter. Chapter 5 contains the
analytical model that was developed to predict the flexural behaviour of the strengthened
and unstrengthened deteriorated steel bridge girders. This model is validated using the
results of the experimental program which are presented in chapter 4. Chapter 6 contains
the conclusions drawn from both experimental and analytical studies of this research
program, as well as proposed recommendation for further research work. In addition,
Appendix A presents a design example of the ductile anchorage system while, Appendix

B provides additional results from the experimental program.



CHAPTER 2

LITERATURE SURVEY

2.1 INTRODUCTION

Large number of existing highway bridges in North America was designed and
built in mid- 1900s for a design life of 75 years. As a result, in the coming decades, a
high percentage of the existing bridge infrastructure will be in need to either strengthen
their structurally deficient members or to upgrade their structural system. The Federal
Highway Administration of the United States of America (FHWA), a part of the U.S.
Department of Transportation, has developed a program to rate the deteriorated bridges
through biannual inspection. According to the report which was carried out, the FHWA
has a total of 603,168 bridges as of August 2009. 11.8% of these bridges were classified
as structurally deficient while 13.0% were classified as functionally obsolete. More than
40% of the bridges that were classified as being deficient are steel structures. Similar
bridge inventory data could not be found in Canada. However, the state of the bridges in
Canada is expected to be more severe due to the harsh weather conditions. Based on the
data from the FHWA, Figure 2.1 indicates the ratio of bridges with deficiencies among

the highway bridges network in USA.
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2.1.1 TRADITIONAL STRENGTHENING METHODS FOR STEEL MEMBERS

Many steel bridges in use today are in need of rehabilitation due to the loss of
material in order to carry larger loads as demanded by an increased traffic. One of the
most common strengthening methods in order to increase the load carrying capacity of
deteriorated steel girders is to attach steel cover plates by welding, bolting, or adhering
with or without additional use of bolts.

The addition of steel plates increases the section modulus and hence the flexural
and the shear capacities of the deteriorated girder. Welding steel plates does not result in
loss in the cross-section and is more economical compared to bolting or adhering steel
plates. However, this method also holds some disadvantages, such as; high tensile
residual stresses in the location of the weld which will reduce the fatigue life of the
member. Several requirements are needed to be followed in order to ensure the quality of
weld, such as: filler material, the surface of the base material, the treatment way, and the
welder. However, using bolted steel plates does not have the same problems as was found
in the welding processes, even if bolting steel plates reduces the cross-section area of the
member and in consequence its capacity. The surface condition at the interface of the
connected members is a very important parameter and any interfered materials will
prevent the required friction to have good connection between these members. Albrecht
and Sahli (1988) have concluded that the use of adhesively bonded steel plates with bolts
increases the fatigue life by 20% over that of using conventionally welded plates.

All of the traditional retrofit methods applied to steel members add a significant
weight to the structure, and it reduces their strengthening effectiveness. The added steel

plates are also susceptible to corrosion, which leads to an increase in the future



maintenance costs. Also, these methods are labor and cost-intensive coupled with the
need for on-site welding or drilling operations. The need for adopting durable material
and cost-effective retrofit techniques is evident. In this case, one of the possible solutions
is to use high performance, nonmetallic materials such as CFRP. The durability issues as
well as the higher strength and stiffness required for the retrofit of the steel members
make the using of the CFRP quite promising for rehabilitation and strengthening of the

steel bridge structures.

2.1.2 EFFECT OF CORROSION ON STEEL BRIDGES

One significant cause of deterioration in steel bridges is the corrosion due to
extensive use of deicing salts during the winter weather. Corrosion is one of the main
contributors to the deficiency of steel bridge structures. The first step in the evaluation
process is to identify the mechanism of the corrosion. Knowledge of the corrosion type
can provide an indication of the degree and propagation of damage. Pitting and uniform
corrosion are the most common shapes of corrosion observed in the steel bridges. Pitting
corrosion occurs due to chemical or physical changes in the metal and it creates localized
damage. Localized corrosion often occurs along the bottom flange of stringers and
girders or in web of bridge columns. Uniform corrosion causes a relatively equally
distributed reduction of the metal and it is usually found on flat surface such as girder
webs, gusset plates, and flanges. The progression rate of the corrosion depends on the
type of steel, the member consider and its location, the surface protection, and the
presence of the pollutants as described by Albrecht (1984). The rate of corrosion is hard

to be predicted and any change in the aforementioned factors could affect the level of



corrosion and its rate. The most common effect of corrosion is loss of material from the
surface which leads to thinner sections, loss of material strength and rust on the surface.
As a result, the section properties of the member would be reduced, therefore causing a
reduction in their carrying capacity. Also, the class of the section may be changed due to
the loss of compression flange and web thickness due to corrosion.

Kayser and Nowak (1989) developed a corrosion damage model for a simple-span

steel girder bridges. The corrosion loss follows a power function
_ b
C=axn 2.1)
where C is the average corrosion penetration in microns, n is the number of years and a

and b are the parameters determined from deterioration analysis of the experimental data.

2.1.2.1 GALVANIC CORROSION

Galvanic corrosion results when two metals with different electrochemical
potential are in contact with an electrolyte (e.g. water). Electrons exchanged occur due to
the difference in the conductivity. The larger the potential difference is, the greater the
probability of galvanic corrosion occurs. The metal with lower electrode potential
becomes the anodic corrosion site while the higher electrode potential becomes the
cathode. As a result of a high difference of conductivities between steel and carbon (the
standard electrode potential of mild steel is -0.44 and for carbon +0.34) and due to the
low electrode potential of steel, the steel surface becomes the anodic corrosion site, it

oxidizes and corrosion occurs at a higher rate.



In order to prevent the galvanic corrosion, therefore to isolate the CFRP from the
steel, precautions can be taken by using a non-conductive layer, such as an epoxy film or
GFRP sheet. West (2001) concluded that isolating the CFRP from the steel surface by
using an adhesive layer is sufficient to prevent the galvanic corrosion. On the other hand,
Dawood (2006) found that mixing a small amount of glass beads into 1 mm adhesive

thickness between the steel and the CFRP it slowed significantly the galvanic corrosion.

2.2 REMAINING CAPACITY OF CORRODED STEEL BEAMS

Kulicki et al. (1990) outlined a report about the guidelines for field inspection - of
existing bridges. In this report is given the evaluation process of the load carrying
capacity of bridges and methods for evaluating corroded members capacities. The
guidelines includes: e: selection of the evaluation methods, evaluating the strength of the
bridge members, defining the type of loads to be used loads calculation, and the required
safety levels. The corrosion effect consists of thinning web or/and flange sections and as
a results decreasing the load carrying capacity in shear, bearing, and bending.

Lindt et al. (2005) presented the results of experimental and analytical study of
deteriorated steel beams with simulated percentages of material damage at the level of
member cross-sections. In this respect, damaged area of various sizes and shapes was
simulated. They developed a model that can provide a simplified approach for computing
the reduced capacity of typical bridge girders. Four W18x%106 beams, 36" in length with a
bearing length of 5" and different damage depths and heights were tested at Michigan
Technological University. A 0.25 inch steel plate was welded to the top flange of the

girder in order to represent the deck effect and to simulate the rotational restraint of the



upper flange. Out of the four specimens they tested, two specimens experienced damage
at the level of the web only, while the others two specimens experienced damage at the
level of the web and flange with fillet included. In addition, for determining the
remaining beam capacity, a numerical analysis was performed and a finite element
method was used. . Based on the experimental and analytical results, design charts were
developed for practical applications in order to allow designers to directly read the
deterioration factor W4, and the ratio of the reduced beam capacity for given damage
areas Two ensembles of design charts were developed:, one for asymmetric damage (one-
side damage) and the other - for symmetric damage (two-side damage) as shown in
Figure 2.2

Rahgozar (2009) carried out an analysis of two deteriorated I-beam samples with
the purpose to obtain minimum curves for reliable estimation of the remaining shear,
moment, and bearing capacity. Corrosion was simulated by a reduction in the thickness
of the web and the flange as shown in Figure 2.3. Alongside the analytical work, four
existing corroded beam, designed and erected 30 years ago were tested to evaluate their
remained capacity. The results showed that a uniform thickness losses equal to 50%
implies a 30% reduction of the remaining ultimate load capacity. Besides the effect of
corrosion on the carrying capacity of the studied member, the class of the element section
can also be changed (e.g. class two to class three). In consequence, the failure mechanism

which depends on the relative thickness loss at various locations can be modified.
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2.3 REVIEW ON THE RETROFIT OF STEEL STRUCTURES USING FRP

While extensive studies have been conducted on the use of externally bonded FRP
for increasing the bending and shear capacity of concrete structures (where it has proved
to be a suitable), little research has been completed on the feasibility and efficiency of
using FRP to retrofit steel and composite structures.

Hollaway and Cadei (2002) published a review on upgrading metallic structures
using advanced polymer composites. As mentioned in their review, the Civil Engineering
Research Federation (2001) issued a report addressing the durability of FRP Composites
in civil infrastructure. Their report identified seven areas into the long-term durability are
needed for more research: alkaline environment, thermal effects, ultraviolet effects, creep
and relaxation effects environment, fatigue performance, and fire performance. These
areas were addressed in detail in their state-of-the-art as well as prestressing FRP plates
before bonding and field application.

Shaat et al. (2004) presented a review on the use of FRP material in retrofitting
steel structures. They addressed several issues including retrofit of steel girders,
improving the fatigue life of steel girders using FRP, surface preparation, durability of
steel members retrofitted with FRP and other factors to avoid debonding between the
steel surface and FRP. As mentioned in their review, FRP sheets or strips can be used for
strengthening steel structures to resist higher loads as well as a rehabilitated material for
restoring the lost capacity of deteriorated sections. On the other hand, previous researches
showed that bonding the FRP reinforcement to the compression side is not effective as

bonding it to the tension side due to its low resistance of buckling.
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Zhao and Zhang (2007) carried out an excellent review on strengthening steel
structures using FRP. Four different bond testing methods were reported; applying direct
load to FRP plate, applying direct load to steel element without or with a gap, and
applying indirect load to the FRP and steel plate in a beam (see Figure 2.4).
Strengthening of steel hollow section members, fatigue crack propagation in FRP-steel

system, and bond between FRP and steel were discussed briefly in their report.

2.4 CHARACTERIZATION OF THE BONDING BETWEEN FRP AND STEEL

Bond between FRP and steel members has been considered as one of the main
variables able to control the behaviour of FRP-strengthened steel members. There are
many factors that characterizing the bond performance between the FRP and the steel
such as; adhesive type, adhesive thickness, surface preparation, bond length, and the FRP
type.

Miller (2000) carried out an experimental study to calculate the force transfer of
reinforced tensile steel members using adhesively bonded CFRP strips. Six 914 mm long
steel plates were strengthened using double side CFRP strips. All the specimens were
loaded in tension until failure. Out of the six specimens, three specimens were bonded
with Ciba-Geigy AV8113/HV8113 epoxy, while the other three were bonded using ITW
Plexus MAS555 structural adhesive. A glass fabric layer was placed between the steel
plate and the CFRP laminates to prevent any galvanic corrosion. In terms of peel stresses,
the ends of the CFRP strips were beveled to a 45% angle to reduce adhesive shear and
peel stresses. An analytical model of the bonded joint was also conducted to investigate

the adhesive shear stress and the CFRP strain distribution.
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Frauenberger et al. (2003) published a detailed report on the bond behaviour of
steel structures strengthened using FRP laminates. Seven different series of specimens
were tested under static load. Six series consisted of discontinuous and one series of
continuous specimens. All the specimens were designed such that the failure mode was
controlled only by rupture or debonding of the FRP laminates. Their report addressed in
detail the effects of the many factors that characterize the bond performance such as:
specimen type, bonded length, horizontal wrapping of the specimens with CFRP sheets,
FRP laminate type, adhesive type and thickness, surface preparation and curing time. An
experimental work was done at University of Missouri-Rolla in United States, where a
total of 56 specimens were tested to investigate the effect of the previous variables.
Although the mode of failure of all specimens was observed to be debonding, two
different strain distributions were observed. The first one was characterized as a brittle
failure because the strain values dropped significantly while the second one was
considered as ductile failure as it led to a load transfer over the bond length (see Figure
2.5)

The average bond stress between two locations was defined as:

A
=t. E. —%& 2.2

where |l is the average bond stress, tgy is the FRP thickness, Eg;, is the E-Modulus of the

FRP, Ac is the strain difference between two points, and Ay is the distance between two

strain gages.



The effective bond length of the FRP to steel member can be defined as the
shortest bond length engaging the largest possible strength of the FRP (Nozaka. 2001).A

simplified equation for the development length was suggested by Frauenberger:

f t
r,- ® fp (2.3)

&K nax
where L4 is the effective development length, fﬁp is the limit stress of the FRP, tg, is the

FRP thickness, Lmax is the debonding stress, and o, is a factor of safety.

Based on the experimental results, they concluded that wrapping the specimens
with CFRP-sheets did not impact the failure load and the peak strain significantly. The
FRP laminate and adhesive properties had minor effect on the failure load and the peak
strains.

El Damatty and Abushagur (2003) discussed the results of an experimental and
analytical program which has been conducted to evaluate the shear and peel behaviour of
strengthened steel connections using bonded FRP. A total of twenty hollow steel sections
(HSS) bonded with GFRP plates were tested using MTS machine. The load was applied
to the specimen through a thick plate attached to the top of the GFRP strips. Three types
of failure modes were characterized in their experimental program; cohesive failure
between the adhesive and the GFRP plates, cohesive failure between the adhesive and the
steel section, and combination of the failure mode one and two. The in-plane and out-of-
plane behaviour of the tested CFRP plates were described by a closed-form analytical

solution.
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Colombi and Poggi (2006) conducted an experimental program at the University
of Milan to study the performance of strengthened tensile steel members using bonded
CFRP pultruded plates. A total of eight specimens were tested under axial tensile static
load, displacement control with a constant rate equal to 0.008 mm/s. In the first group,
CFRP strips were used as double side strengthened for continuous steel plates to
investigate the mode of failure of the adhesive joint and the load transfer mechanism.
Double lap joints were tested in the second group. While in the last group, the bolted
joints were reinforced with CFRP to study the local stress near the edge of the CFRP
plates or near the discontinuities. In addition to the experimental program, an analytical
model was carried out using the commercial finite element code ABAQUS to evaluate
the static performance of the strengthened steel plates in the linear elastic zone.

Several other researchers conducted an experimental and/or analytical study that
focused on the bond behaviour between the FRP and Steel plates or beams. Buyukoztrurk
et al. (2004) reported a review of the progress achieved in the area of strengthening
reinforced concrete and steel members using FRP composites. Stratford and Cadei (2005)
described a method for designing the adhesive joint between a strengthening FRP plate
and a beam. On another application of FRP in strengthening steel, Fawzia et al. (2006)
carried out an experimental study to identify the behaviour of strengthened steel plates
using CFRP plates under axial load. In addition to the experimental program, a nonlinear
finite element analysis was conducted to predict the modes of failure and the load
capacity. Al-Emrani and Kliger (2006) summarized the results of an analytical study
conducted to study the interfacial shear stress in beams strengthened with bonded

prestressed laminates.
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2.5 STRENGTHENING OF STEEL GIRDERS WITH FRP

Gillespie et al. (1996) conducted an experimental study at the University of
Delaware. Four deteriorated girders were taken from a 55 years old highway bridge. The
bridge was constructed in 1940 in Vally View, Pennsylvania in western Schuylkill
County. The girders had varied corrosion losses and it was noticed that the corrosion was
mostly concentrated on the tension flange. To measure the loss in the elastic stiffness, the
four girders were tested under three-point loading test at Lehigh University (1995). After
that, they were delivered to the University of Delaware. Two of the deteriorated four
girders were rehabilitated using FRP and tested until failure occurred. Although one of
the girders had 32% stiffness loss while the other girder had 20%, the same percentage of
the composite material was used to retrofit the both girders. Each girder was elastically
cycled up to 222 kN and back. After two cycles, the girders were loaded until failure.
Based on the test results, an average of 25% increase in stiffness and 100% increase in
the ultimate load-carrying capacity were achieved. In addition to the full scale steel
girders, a total of eight 1.50 m long W 8x10 steel beams using five different retrofitting
schemes were tested until failure such as; composite plated, sandwich-reinforced,
composite-wrapped, channel pultrusion-reinforced, and strip pultrusion-reinforced (see
Figure 2.6). The specimens were tested under (1) service load, (2) and up to failure. The
test results showed that increasing in the strength from 37% to 71% was achieved. The
most effective retrofitted system under the service load and up to the ultimate strength

was observed to be the sandwich-reinforced system.
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Liu et al. (2001) investigated the behaviour of steel bridge members reinforced
with FRP composite materials. Four W12x14 girders with clear span of 96 inch were
tested under three point bending configuration. The first beam was tested as a control
beam while the second beam had a 4  wide notch in the mid-span tension flange to
simulate the severe loss of section due to corrosion. The third and fourth beams were
strengthened with 3.94" wide CFRP laminates that covered the full length of the beam
and one quarter of the beam length, respectively. Based on the experimental and the
analytical results, increasing in stiffness and load capacity of deteriorated steel girders
can be achieved by using bonded CFRP laminates.

Colombi and Carlo (2006-B) discussed the results of an experimental and
analytical program which have been conducted to identify the static behaviour of
reinforced steel beams using CFRP strips. Four steel beams were tested under three-point
bending test. The clear span of these beams was 2.50 m. Out of the four beams; one beam
was tested without strengthening as a reference case while the others were strengthened
with bonded CFRP strips. Different analytical and numerical analysis were conducted in
their paper to validate the experimental results. A finite element model was developed
using the commercial code ABAQUS to evaluate the stresses in the reinforced beams and
in the adhesive (see Figure 2.7).

An experimental and analytical study was conducted by Lenwari et al. (2006) to
investigate the bonding strength of steel beams strengthened with CFRP strips. A total of
seven W100x17.2 steel beams were tested using four-point bending test after reinforced
with CFRP plates. Three different lengths of CFRP plates were used in this investigation.

A unidirectional CFRP plate, Sika CarboDure H514, with a two-part epoxy adhesive,
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Sikadur 30, was used to strengthen the tested beams. A steel plate was welded to the
compression flange to prevent any compression failure. Increasing in the ultimate flexural
capacity was achieved for all tested beams with different ratio of CFRP.

Patnaik et al. (2008) conducted an experimental study in order to describe the
behaviour of steel beams strengthened with CFRP. To investigate the increasing in the
flexural capacity, three beams were strengthened using boded CFRP to the tension flange.
While to enhance the shear capacity, three others beams were retrofitted using bonded
CFRP to the web. A unidirectional laminate strip was used in this investigation (Tyfo UC
Composite Laminate Strip system) with a manufacturer tensile modulus of 155Gpa and a
tensile strength of 2790MPa. Built up steel section was used for all beams. The first type
of beams was strengthened to fail in flexural with a flange width and thickness of 152.5
mm and 9.5 mm, respectively and web height and thickness of 305 mm and 9.5 mm,
respectively. The second type was designed to fail in shear with a flange width and
thickness of 254 mm and 12.7 mm, respectively and web height and thickness of 330 mm
and 3.2 mm, respectively. Four point bend tests were performed with a clear span of 3.15
m and 610 mm constant moment zone. Based on the experimental results, the CFRP
laminates could significantly improve the ultimate flexural and shear capacity to 30% and
26%, respectively. A typical shear failure mode is shown in Figure 2.8.

Deng et al. (2004) presented an analytical model to calculate the stresses in
reinforced beam under thermal and mechanical loads. Hollaway et al. (2006) discussed
the advantages and limitations of bonding FRP composites to steel structural members.
An ultra high and high stiffness CFRP were used in this study and two test techniques

namely, double shear and flexural test. The composite material was used for reinforced
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the artificially degraded structural member. A similar experimental study was conducted
by Photiou et al. (2006) who strengthened an artificially degraded rectangular cross-
section and testing them under four-point loading. Ezzeldin (2006) developed a numerical
investigation to investigate the effect of bonding CFRP strips to the webs of I-Section

steel beams in order to increase the flexural capacity.

2.6 STRENGTHENING OF STEEL-CONCRETE COMPOSITE GIRDERS USING

FRP

Sen and Liby (1994) conducted the first study to investigate the applications of
using CFRP to steel-concrete composite girders. An experimental and analytical study
was carried out on wide flange steel beams reinforced with CFRP. A total of six 20" long
beams consisted of composite W24x24 steel section assembly with a 28"wide and 4.5"
thick reinforced concrete slab were tested in this investigation. CFRP laminates 6" wide,
12' long and two different thicknesses of 0.08" and 0.22" were bonded to the tension
flange using the FR-1272 two-part epoxy adhesive. Based on the test results, the authors
concluded that the high percentage of the load transferred to the CFRP laminate occurred
after the tension flange had been yielded. This study indicated that the CFRP laminates
can increase the ultimate flexural capacity from 11 to 15%, depending on the tensile
strength of the steel member and the CFRP laminate.

Miller et al (2001) investigated the flexural behaviour of reinforced steel
composite girders using CFRP laminates through experimental and numerical studies to
evaluate the potential benefit of using the CFRP laminates. A brief review of several
laboratory studies carried out at the University of Delaware were presented in their paper

which confirmed that CFRP plates has significant impact in increasing the flexural
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capacity of steel bridge girders. Four full scale strengthened bridge girders were tested to
evaluate the performance of the retrofitted system in terms of stiffness and strength. The
four girders were 21-ft American standard steel beams S24x80 taken from an existing
bridge. The corrosion was observed to be uniform along the length of the tested girders.
First, the deteriorated girders were tested under static three-point bending test without
rehabilitation. Afterward, the four girders were strengthened with a single layer of full-
length bonded CFRP plates. The experimental results showed that the CFRP composite
material increased the elastic stiffness from 10% to 37%, while the ultimate capacity
increased from 17% to 25%.

Tavakkolizadeh and Saadatmanesh (2003) investigated the effect of CFRP sheets
on the behaviour of deteriorated composite steel-concrete beams under static loading.
Three large-scale composite girders were tested in this study. The steel girders were
W355x13.6 A36 structural steel. A composite concrete slab 910 mm wide by 75 mm
thick was used in all girders. In order to evaluate this technique, three different damage
levels of 25, 50, and 100% loss of the bottom flange were considered. Different number
of CFRP sheet layers of 1, 3, and 5 were used to retrofit the different levels of damage.
Four point bending tests were performed with a clear span of 4.78 m to test the girders
until failure occurs. Based on the analytical and experimental results, the retrofitted
system showed an increasing in the ultimate load-carrying capacities of the girders
significantly increased by 44, 51, and 76% for 25, 50, and 100% damaged, respectively.
In addition, the yield load of the girders increased as a result of retrofitting. The authors
reported that the efficiency of members strengthened with the CFRP sheet was decreased

as the number of the CFRP layers was increased.
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El-Saidy et al (2004) carried out an experimental and analytical study in order to
describe the behaviour of steel concrete composite beams strengthened using bonded
CFRP plates. Removing part of the tension flange was used to simulate the damage of the
beam, which was varied between no damage and loss of 75% of the bottom flange. A
total of six 3.05 m long beams comprised of W8x15, grade A572 structural steel,
attached to 812 mm wide by 76 mm thick concrete slabs, with an average compressive
strength 33 MPa, were tested. The experimental study consisted of two controls
undamaged beams, and four damaged beams which strengthened using bonded CFRP
strips to reach to their original strength. All beams were tested in four-point bending
static loading to failure to observe their behaviour in the elastic, inelastic, and ultimate
states. The analytical study developed in their paper was based on some assumptions such
as; small deformations, plane sections before bending remain plane after bending, tensile
strength of concrete is neglected and full bond between the CFRP and steel was
considered. Based on the analytical and experimental results, the elastic flexural stiffness
of deteriorated beams can be increased by 50%, while the strength of the damaged beams
can reach to its original strength.

The behaviour of steel-concrete composite girders reinforced using High Modulus
(HM) CFRP was investigated by Dawood et al. (2006). Two types of CFRP laminates
were used in this program, DC-1 with a tensile strength and a tensile modulus equal to
1224 MPa and 229 GPa, respectively, and THM-450 with a tensile strength and a tensile
modulus equal to 1224 MPa and 229 GPa, respectively. Two-part epoxy adhesive,
Spabond 345, was used to bond the CFRP plates to the tension flange of the steel girder.

A total of nine steel girders were tested in this investigation. The beams were
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strengthened with different levels of CFRP plates and tested in a four point bending test.
The first phase simulate the behaviour of the strengthened girder under static load while
in the second phase, the behaviour of the beams under overloading conditions was
investigated. The fatigue behaviour of the strengthened girder was considered in the third
phase. Three beams were tested in each phase. Based on the experimental results and the
analytical model of the tested girders, the following equation was proposed by the authors
for design the strengthened girder:

JrrPu = CE U FRP,W 739) @4)

Where frrpy is the design strength of the FRP materials, Cr is the environmental

degradation factor (typically taken as 0.85 for CFRP), f rrp, u is the mean strength of the

FRP reported by the manufacturer and ¢ is the reported standard deviation of the FRP
strength.

Another study was conducted by AL-Saidy et al. (2007). The paper presented an
analytical parametric study on the behaviour of steel-concrete composite beam that has
been strengthened with CFRP Strips. The parametric study had in-depth coverage on the
effect of the concrete compressive strength, the yield strength of the steel, the stiffness of
the CFRP strip, the thickness of the CFRP strip and the ultimate strain of the CFRP strip.
The composite section which is used in this investigation consisted of a W18x46 steel
section with a 190 mm thick reinforced concrete slab and an effective slab width of a
1900 mm. The yield strength of the steel beam was 250 MPa and the compressive
strength of the slab concrete was 21MPa. The authors reported that when the damage in
the bottom flange was 75% the reduction in the ultimate moment capacity reached 32%.

Based on the analytical results, using a thin strip CFRP with high stiffness has impact
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efficient than using a thick strip with low stiffness. In addition to, the concrete
compressive strength has a slight effect on the ultimate moment capacity of the
strengthened or unstrengthened composite sections. Also it was mentioned that reinforced
steel member by using CFRP reduces the ductility of the girder element. Moreover, using
CFRP to strengthen steel section with low yield stress is more efficient than using it to

retrofit steel members with high yield stress steel.

2.7 FATIGUE PERFORMANCE OF STEEL MEMBERS RETROFITTED WITH

FRP

Recently, few researchers have conducted experimental and analytical studies to
investigate the fatigue performance of steel plates or beams strengthened with a bonded
FRP. Farahani et al. (2007) developed an energy-based fatigue damage parameter to
assess the fatigue damage of unidirectional GRP and CFRP composites while Nozaka et
al. (2005) reported a fundamental study on the use of CFRP strips for repairing fatigue
damaged tension flanges of steel girders. Deng et al (2005) carried out a fatigue test
program of a series of small scale beams strengthened using CFRP plate to evaluate the
change in the stiffness of the retrofitted beams with crack development and to develop
curves to estimate the design fatigue lives.

To prevent fatigue cracking or to extend fatigue life, Jones and Civjan (2003)
summarized the results of an experimental and analytical study to investigate the
efficiency of strengthening steel fatigue tension coupons using bonded CFRP. Cold rolled
A36 steel bars with a measured yield and ultimate stresses of 345 MPa and 490 MPa,

respectively, were tested in this investigation under axial tension. Out of 29 specimens
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that were tested, eight specimens had a center hole while the others were notched at the
ends. The finite element model program ANSYS 5.7 was used in this study to develop
Static linearly elastic models to determine the stress concentration based on geometry of
the specimens. Based on the experimental and analytical results, an increase in the fatigue
life for all specimens tested was achieved.

An experimental program was conducted by Tavakkolizadeh and Saadatmanesh
(2003) to investigate the impact of bonded CFRP strip to steel beams in order to extend
the fatigue life. A total of fifteen unretrofitted beams and six retrofitted beams were
tested under different stress range cycles. All specimens were S127x4.5 A36 with clear
span of 1.22 m. the experimental results showed that retrofitted beams experienced longer
fatigue lives in range of 2.6 to 3.4 times the unretrofitted beams for stress ranges of 345,
207 MPa, respectively. In addition, the retrofitted beams were able to carry a few extra
cycles even after the tension flange had completely cracked. The average total number of
cycles until failure occurred for retrofitted beams was 3.5 times the one for unretrofitted

beams.

2.8 METALLIC BRIDGES STRENGTHENED WITH KRP

The National Research Council Canada (NRC) published a technical document
(2007) that mentioned several examples of strengthened bridges with FRP and other
metallic structures throughout Europe as well as in the USA. Summary of the structural
strengthening of metallic bridges is shown in Table 2.1. The Hythe Bridge, built in 1874
over the river Thames, is a two spans bridge with a clear span of 7.8 m. The main girders

were prestressed by CFRP laminates and sheets (Luke 2001). The Tickford Bridge made
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up of six girders with a span equal to 18.29m and was built in 1810 near Newport Pagnell
(UK). To increase the traffic volume (Lane and Waed 2000), a total of 14 layers of FRP
were laminated on the substrate to strengthen the bridge. A single span bridge, Slattocks
Canal Bridge that was built in 1936 over the Rochdale canal (UK), was strengthened with
two CFRP laminates. The CFRP laminates were applied to the existing girders (Luke
2001). A timber deck with steel girders bridge, Acton Bridge, was strengthened by
applying Pultruded CFRP laminates to the tension flange of the girders in order to
increase the fatigue resistance (Moy et al. 2000). The King Street Bridge is a railway
bridge built in England in 1870. It has six metallic girders that maintain masonry arches.
Two CFRP laminates were applied longitudinally to tension flange of the girder while
other GFRP laminates were applies transversally to prevent galvanic corrosion.

The Corona Bridge was built in 1850 and is characterized by three cast iron
arches. In 2002, the arches and their decorative openings were strengthened with aramid
tri-axial sheets and mono-directional strips to increase the resistance due to any impact
load and to stop any further damages. Christina Creek, Ashland, and 7838.55092 bridges

in USA were strengthened using bonded CFRP laminates to increase the fatigue lifetime.

2.9 SUMMARY

A review of previous research on FRP strengthened steel structures was presented
in this chapter. Based on the findings of several experimental investigations, it is shown
that externally bonded CFRP can be used to effectively strengthen and repair steel bridge
members, especially cast ironing section. As mentioned earlier, there is not much

experimental work associated to the remaining capacity of corroded Beams. Also, more
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research is still needed to investigate the behaviour of strengthened deteriorated steel
beams using CFRP sheets as most of the previous research have focused on CFRP
laminates. Also, it was shown that there are many factors that characterize the bond
performance between the FRP and the steel. However, extensive research is needed in the
field of strengthening deteriorated steel beams using new methods, e.g. mechanically

anchored CFRP sheets.
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Figure 2.3 Models of corroded sections simulation by reducing the thickness of the
element (Rahgozar 2009)
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Figure 2.6 Different rehabilitation geometries for steel beams (Mertz and Gillespie 1996)
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Figure 2.7 Modeling of the bonded reinforcement and required constrains of the steel
beam using the commercial code ABAQUS. (Colombi and Carlo 2006-B)

Figure 2.8 Typical shear failure of steel girders strengthened with CFRP (Patnaik et al.
2008)
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CHAPTER 3

EXPERIMENTAL WORK

3.1 GENERAL

The main objectives of this research work were to predict the reduction in the
flexural capacity of existing deteriorated steel beams under static loading and to develop
retrofitting schemes capable of increasing their flexural capacity to the original design
level. In order to achieve these objectives, an experimental research program was carried
out at the Engineering Structural Research Laboratory of Concordia University. A total of
thirteen W 150x30 steel beams with a clear span of 1.6 m and different level of
deterioration due to corrosion were tested under four-point bending test. Out of the
thirteen beams, four beams were prepared to emphasize different level of corrosion and
were tested without retrofitting to investigate their behaviour and the other nine beams
were strengthened using CFRP sheets and strips to evaluate the effectiveness of the
proposed retrofitting schemes in term of stiffness and strength. All the tested beams were
designed by controlling the failure mechanism such that the out-of-plane buckling to be
avoided. In this respect, the unstrengthened beams were controlled only by in-plane
buckling mechanism, while the strengthened beams by rupture or debonding of the CFRP
materials. This chapter describes in details the experimental protocol including: specimen
designation, construction of the specimens, material properties, instrumentation,

experimental setup and experimental procedure.



3.1.1 PROPERTIES OF THE TESTED STEEL BEAMS

A uniaxial tension test was performed on three dog-bone specimens according to
ASTM E 8M-1 (2007). Out of the three specimens, one specimen was cut from the web,
while the others were cut from the top and bottom flange, respectively. All the specimens
had a gauge length of 50 mm, a gauge width of 12.7 mm, and a thickness of 9.3 mm and
6.6 mm from the flange and the web, respectively. Average yield strength (Fy) of 310
MPa and modulus of elasticity (E) of 198.7 GPa were obtained from the specimens. A
typical stress-strain relationship for the three dog-bone specimens is shown in Figure 3.1.
The test setup and the typical failure mode for the tested specimens are shown in Figure

3.2

3.1.2 MATERIALS USED

The steel plates used in this investigation are characterized by 6.35 mm and 12.7
mm thickness, a modulus of elasticity of 200 GPa and yielding strength of 300 MPa. Two
types of CFRP composite material were used in this study, Tyfo SCH-11UP and Tyfo
UC. Tyfo SCH-11UP is a unidirectional carbon fibre sheet with a tensile modulus of 102
GPa and a thickness of 0.27 mm, while Tyfo UC composite is a unidirectional carbon
fibre laminate strip system with a high tensile modulus of 155 GPa and a thickness of 1.4
mm. To prevent any galvanic reaction between the steel surface and the carbon fibre, as
discussed before in Chapter 2, one layer of Tyfo EP-DB was used between the carbon
fibre reinforced polymers and the bottom flange of the tested steel beams. Tyfo EB-DB
system is an open weave glass fibre was used as a dielectric barrier between the CFRP

composite material and steel. In addition to Tyfo EP-DB was used to prevent any



galvanic reaction, it also allows adhesive to pass through the opens weave and fully
develop the required bond strength. The mechanical properties of the steel plates and the
CFRP composite materials are shown in Table 3.1.

Two types of adhesive were used in this experimental program: Tyfo S and Tyfo
MB-3. Tyfo S is a two-component saturant epoxy which is combined with Tyfo SCH-
11UP sheets to provide a wet-layup composite system. Tyfo MB-3 is a two-component
viscous epoxy adhesive which is specially designed to bond the CFRP laminates to the
steel surface. Tyfo MB-3 provides excellent peel and impact strength for bonding fibre
reinforced polymers to steel surface. Table 3.2 shows the mechanical properties of the

adhesive material which were used in this investigation.

3.1.3 RETROFIT SCHEMES

Figure 3.3 indicates the strengthened cross-section and the designation of the
variables used. In this context, A,, Acor and Acrrp are the original cross section area, the
lost area of the tension flange which simulated the corrosion and the area of the CFRP
used in the strengthening process. The design approach was based on balancing the loss
of the load carrying capacity (Eq. 3.1) by an increased load due to the retrofit scheme
(Eq. 3.2).

TL:AcorFy (3-1)
where Tr, Acor and Fy are the loss of the load carrying capacity, the reduction area of the
tension flange and the yield strength of the tested steel beam, respectively.

Tcrre = Acrrp Frup (3.2)
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where, Tcrrp, Acrrp and Fyy, are the increasing of the load due to the retrofit scheme, the
area of the CFRP used in the retrofitting and the ultimate tensile strength in the primary
fibre direction, respectively.

According to the loss in thé load carrying capacity balance, the following equation can be

used to determine the required CFRP cross sectional area:

Acor F
A L 4 (3.3)
CFRP Py
Where,
Acor (max) = 50% from the tension flange area = 711.45 mm?
Fy = 310 MPa
Frup = 1062 MPa Tyfo SCH-11UP
= 2790 MPa Tyfo UC
As a result,

For all strengthened beams using Tyfo SCH-11UP

711.45% 310 2
A = — = 207.7 mm
CrRe 1062
= 5 layers (150 X 0.27) mm® = 202.5 mm?’
For all strengthened beams using Tyfo UC
711.45 x 310 2
A = _ = 76.5 mm
TR 2790
= 1strip (50.8 X 1.4) mm*> = 71.1 mm?
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For ductile anchorage system, this system was divided into three parts as shown in Figure
3.4. The material properties of the steel plates which were used for the ductile anchorage
system are shown in Table 3.1.

As shown in Figure 3.4, part 1 was designed to transfer the load from the CFRP to
two ductile coupons (part 2). These two ductile coupons were used to control the ductility
of the anchorage system as will be shown after and to transfer the load to part 3. Part 3
was designed to transfer the load to the tension flange near to the supports, as minimum
stress in the tension flange, using four high tensile bolts. The force in the ductile coupons
was controlled to be axial tension force by allowing parts 1 and 2 to rotate around axis
AA’ of part 3 as shown before in Figure 3.4. Appendix A presents a design example of

the ductile anchorage system.

3.1.4 SPECIMEN LABELING CONVENTION
To facilitate the reference of each beam tested under different conditions the specimen

labeling convention is as follows:

Bl
0 59)
X F1(1)
HO.33 B2w
(BF) - - |F1(3)| -
N0.33 AID1
F2(1)
N0.50 A2D1
A2D2

Where:
e The first variable in the beam notation refers to the flexural capacity of the beam.
e The second variable in the beam notation describes the shape and the area of the

reduction in the beam cross-section. The designations H and N refer to locally and



uniformly deterioration, respectively, while 0.33 and 0.50 are used to refer to the
percentage of the area reduction of the tension flange.

e The third variable refers to the CFRP material type used to increase the flexural
capacity and the number of layers. The designation F1 and F2 are stand for Tyfo®
SCH-11UP and Tyfo® UC, respectively.

e The fourth variable depicts the techniques used to attach the CFRP composite
material to the bottom flange of the tested beam. The designations B1, B2, B2w,
A1,A2,D1 and D2 are used to refer to;

a. (B1) Bonded by using saturant epoxy Tyfo® S.

b. (B2) Bonded by using high performance adhesive Tyfo® MB-3.

c. (B2w) Bonded by using high performance adhesive Tyfo® MB-3
with Tyfo® CH-11UP wraps.

d. (A1) anchored by using Couponl.

e. (A2) anchored by using Coupon?2.

f. (D1) anchored by using detail 1.

(D2) anchored by using detail 2.

]

The following example illustrates the used beam notation. When a beam is referred to as:

BF-H0.33-F1(5)-B2 BlorE ,
i i 1 or B2 or B2w or
BFO or BF — f A1D1 or A2D1 or A2D2
HorN lors
0.33 or 0.50 ——FlorF2

This means that:
We are investigating the flexural capacity of a deteriorated steel beam with 8-6.35
mm holes in the bottom flange at the mid-span cross section strengthened with 5 layers of

Tyfo® SCH-11UP bonded to the bottom flange using Tyfo® MB-3.
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3.2 TESTLAYOUT

In this experimental program, a series of thirteen small-scale deteriorated steel
beams were tested to examine the behaviour of the unstrengthened and strengthened
deteriorated steel girders. Each specimen was cut to a length of 2.0 m and was tested with
a clear span of 1.6 m. The clear span selected to have a (b/L) ratio equal to 0.1, where
(b/L) is the ratio of the total depth to the clear span of the tested beam. The tested beams
were divided into four group: group one (G1) consisted of four beams with different
percentage of deterioration to investigate the behaviour of the deteriorated beam and to
determine the remaining capacity, while the other three groups were designed to evaluate
the effectiveness of the proposed retrofit schemes. Four beams were strengthened with
CFRP sheets bonded to the tension flange and were tested in group two (G2) to
characterize the static behaviour of steel beams strengthened with CFRP sheets. Group
three (G3) consisted of two beams strengthened with high-modulus CFRP laminate strips,
which were externally bonded to the bottom flange of the tested beam. Unbonded CFRP
sheets were used to strengthen three deteriorated steel beams in group four (G4) by using
ductile anchorage system.

Based on the previous discussion in Chapter 2 (Literature review), the corrosion
was mostly concentrated on the bottom flange. As a result, the corrosion in all tested
beams was simulated by a reduction area in the tension flange. Two different damage
levels of 33% and 50% area reduction of the tension flange were considered in this study.
100 mm depth transverse stiffeners were provide on either side of the web of the all

tested beams at the location of the applied loads and supports to prevent local web

40



yielding and web crippling as specified by the CAN/CSA S16-09 Limit States Design of

Steel Structures (2009). The test setup is shown schematically in Figure 3.5.

3.2.1 DESIGN OF GROUP 1 BEAMS

Three beams out of four in this group (group 1) were designed to investigate the
behaviour of locally and uniformly deteriorated steel beams. The relation between the
deterioration ratio and the remaining moment capacity was one of the major objectives in
this group. Out of the four beams, one beam, BFO, was designed to demonstrate the
behaviour of a non-deteriorated steel beam. The flexural capacity of this beam was used
as a control beam or to define the capacity of the initial beam. Figure 3.6 presents a
typical cross-section of non-deteriorated beam. In order to observe the effectiveness of
the locally and uniformly deterioration on the remaining capacity, three steel beams were
designed with two different level of deterioration. Beams BF-H0.33 and BF-N0.33 had a
33% area reduction of the tension flange, while beam BF-NO0.50 had a 50% area
reduction. This area reduction was constructed by using mailing machine as shown in
Figure 3.7. Figures 3.8, 3.9, and 3.10 show test setup, plan view of the bottom flange, and
section at the mid-span for beams BF-H0.33, BF-N0.33, and BF-NO.50, respectively. As
shown in these Figures, the area reduction in beams BF-N0.33 and BF-N0.50 was
notches with a length of 450 mm in the mid-span to simulate the uniformly deterioration,
while in beam BF-HO0.33, it was a concentrated reduction in the mid-span to simulate the
locally deterioration. The cross-section area properties of the different sections are shown

in table 3.4
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3.2.2 DESIGN OF GROUP 2 BEAMS

The proposed retrofitting scheme for the corroded beams in this group was
bonding CFRP sheets to the bottom flange of the deteriorated beams. In order to observe
the effectiveness of this scheme, four deteriorated beams strengthened with 5 layers of
Tyfo SCH-11UP were tested. Two out of the four beams, have simulated local
deterioration as beam BF-H0.33, while the other two beams have simulated uniform
deterioration as beam BF-N0.50. To investigate the influence of the epoxy type on the
bonding behaviour and in consequence the increased flexural capacity of the retrofitted
beam, two types of epoxy were used in this group A two-component saturated epoxy
Tyfo S was used for bonding the CFRP sheets to the BF-H0.33-F1(5)-B1 and BF-N0.50-
F1(5)-B1 beams as shown in Figures 3.11 and 3.12. On the other hand, a two-component
viscous epoxy was used to bond Tyfo SCH-11UP sheets to the tension flange of beams
BF-H0.33-F1(5)-B2 and BF-N0.50-F1(5)-B2. It is very important to mention that, for the
four beams, Tyfo S was combined with Tyfo SCH-11UP sheets to provide a wet-layup
composite system before bonding it to the tested beams. Figures 3.13 and 3.14 show the

test setup, the plane of the tension flange of the beam and a cross-section at its mid-span.

3.2.3 DESIGN OF GROUP 3 BEAMS

In order to investigate the influence of the CFRP type on the strengthening
scheme, two strengthened deteriorated beams were tested in this group. Beams BF-
HO0.33-F2(1)-B2 and BF-H0.33-F2(1)-B2 with local deterioration effect simulated by 8
holes of 6.35 mm diameter and located in the tension flanges at the beam mid-span

(similar to BF-HO0.33) were strengthened by epoxy bonding of one layer of Tyfo UC to
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their tension flange. Tyfo MB-3 was used to bond the CFRP laminate strip to the tested
beams, while one layer of Tyfo EB-DB system was used as a dielectric barrier between
the Tyfo UC and the tension flange to prevent any galvanic reaction. Test setup, the plan
of the bottom flange of the beam, and cross-section of the beam at its mid-span can be
seen in Figure 3.15. To characterize the influence of wrapping on the behaviour of
strengthening steel beam, one layer of Tyfo SCH-11UP with a width of 200 mm was used
to wrap the CFRP laminate strip at the both ends of the beam BF-H0.33-F2(1)-B2w as

shown in Figure 3.16.

3.2.4 DESIGN OF GROUP 4 BEAMS

Based on the previous discussion of the characterization of the bonding between
FRP and steel (Chapter 2), there are several parameters which affect the bonding
behaviour such as: the adhesive type, adhesive thickness, surface preparation, and the
bond length. Debonding of the CFRP materials is a one of the most common failure
modes. Therefore, the stress in the CFRP composite material will not reach their tensile
strength. The proposed retrofitting scheme, used in this group, is an unbonded CFRP
sheets added through a ductile anchorage system as can be seen in Figure 3.17. The main
objective of this proposed scheme is to reach the full capacity of the CFRP sheets using a
ductile anchorage system instead of letting the CFRP material to have a brittle behaviour
The failure mode for t all beams in this group was controlled by CFRP sheets rupture.
The proposed scheme is composed of an unbonded CFRP sheet(s) which were wrapped
around two steel plates at its ends (Part 1). In order to do not have stress concentration

and rupture of the FRP sheets, part 1 had rounded corners. Duct tape was used to cover
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the contact area between part 1 and the CFRP sheets to do not have any bond stress
between them as shown in Figure 3.18. Part 1 was then linked to steel plate (part 3)
which is anchored to the tension flange of the tested beam using four high tensile steel
bolts, through two steel link members part 3. The steel link members were designed as a
conventional tensile test dog-bone specimen. Based on this setup, the forces in the steel
link member will be always tensile axial force with any moment in them. More details
about the dimensions of the ductile anchorage system were discussed before in part 3.1.1.
Figure 3.19 shows the full dimensions of Parts 1 and 3. Three beams were tested in group
4; BF-H0.33-F1(1)-A1D1, BF-H0.33-F1(1)-A2D1, and BF-H0.33-F1(1)-A2D2. All the
tested deteriorated beams were prepared with a local deterioration identical to beam BF-

HO0.33.

3.2.4.1 BEAM BF-H0.33-F2(1)-A1D1

One layer of Tyfo SCH-11UP was used to strengthen the deteriorated steel beam
BF-H0.33-F2(1)-A1D1 by wrapping it around the anchorage system (part one) with an
overlap of 350 mm (end detail 1) as can be seen in Figure3.20. This overlap was used to
avoid debonding between the CFRP sheets. The steel link member (A1) was designed to

have rupture in the CFRP sheet before yielding occurred as shown below.
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3.2.42 BEAM BF-H0.33-F2(1)-A2D1

Similar to the strengthening process of the beam BF-H0.33-F(1)-A1D1, one layer
of unbonded anchorage Tyfo SCH-11UP was used to strengthen the beam BF-HO0.33-
F(1)-A2D1 with the same end detail. The steel link member which was used in this beam
was design to have a yield stress lesser than the ultimate strength of the CFRP sheet as

can be seen below.

63.50 LBW Q

3810 381 6350 381 38.10
—F
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7

3.2.43 BEAM BF-H0.33-F2(5)-A2D2

Five layers of Tyfo SCH-11UP were used to strengthen the deteriorated steel
beam BF-H0.33-F(5)-A2D2 by wrapping it around the anchorage system (part one).
Three rounds of CFRP sheets were used in the end detail, first two rounds were wet while
the last one was dry, (end detail 1) as shown in Figure 3.22. The steel link member (Al)

was designed to yield before having rupture in the CFRP sheets.
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3.3 SURFACE PREPARATION

To achieve a maximum bonding effectiveness, all the tension/bottom flange of the
beams which were strengthened using bonded CFRP sheets or laminate strip were
grinded using sandpaper in order to remove rust and mill scale. Grinding of the surface
was accomplished until a near white rough surface of the steel flange was observed. After
grinding, the surface was wiped with solvent (acetone) for removing any oil residue on
the surface. This clean surface was maintained until CFRP composite materials were
placed in a dry and clean environment.

Several steps were taken to prepare the retrofit materials. The CFRP sheets and
laminate were cut to the proper length using a band saw. Then, the adhesive was applied
to the underside of the tension flange along the required length. One layer of GFRP was
applied before the CFRP sheets or laminates were carefully adhered along the length of
the beam. Then, a wooden clamping system was used to clamp the CFRP sheets or
laminates to the beam for 24 hours and to ensure that the adhesive had set sufficiently
prior to removal the clamps. The adhesive was allowed to cure at ambient room

temperature for one week before testing.

3.4 INSTRUMENTATION

All beams were monotonically loaded using a 3000 kN hydraulic actuator with
maximum stroke 152.4 mm, reacting against a rigid loading frame. The beams were
loaded beyond the elastic strength and failure occurred where the load — carrying capacity
of the member was largely decreased. The strains were measured with strain gages

incorporated into quarter Wheatstone bridge configuration with the data acquisition
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system with gage length 5 mm. Strains were measured at various location along the
length of the beam to determine the maximum strain. The strain gages were installed at
five separate locations along the beam such as (1) at mid-span, (2) under the two points
load, and (3) at 27.5 cm from each support. At each of these locations, strain gages were
installed in different places. The vertical deflections of the beam were measured using
eight potentiometers that were located at different points in order to obtain the
longitudinal profile of the beam at various load levels. A load cell with maximum
capacity of 200 ton was used to measure the applied load from the actuator. Figure 3.23
shows the locations of strain gages and potentiometers for typical sections without and

with CFRP Composite materials.
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Figure 3.1 Measured steel tensile stress-strain relationship

(2) Steel tension Coupon test setup

Tension failure

(b) Steel tension Coupon typical failure

Figure 3.2 Steel tension coupon test
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Figure 3.3 Original and strengthened sections
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Figure 3.4 Ductile anchorage system
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Figure 3.6 Typical steel beam cross-sections

Figure 3.7 Notches preparation
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Figure 3.8 Beam 2 BF-H0.33; (a) Elevation of the test setup, (b) Plan view of the

bottom flange, and (c) Section at mid-span
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Figure 3.9 Beam 3 BF-N0.33; (a) Elevation of the test setup, (b) Plan view of the

© Section at mid span

bottom flange, and (c) Section at mid-span
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(a) Elevation of the test setup
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(b) Plan view of the bottom flange
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(c) Section at mid span

Figure 3.10 Beam 4 BF-NO0.50; (a) Elevation of the test setup, (b) Plan view of the
bottom flange, and (¢) Section at mid-span
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(a) Elevation of the test setup
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(©) Section at mid span

Figure 3.11 Beam 5 BF-H0.33-F1(5)-B1; (a) Elevation of the test setup, (b) Plan
view of the bottom flange, and (c) Section at mid-span
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Figure 3.12 Beam 6 BF-N050-F1(5)-B1; (a) Elevation of the test setup, (b) Plan
view of the bottom flange, and (c) Section at mid-span
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(b) Plan view of the bottom flange
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Figure 3.13 Beam 7 BF-H0.33-F1(5)-B2; (a) Elevation of the test setup, (b) Plan
view of the bottom flange, (c) Section at mid-span, and (d) Section near to Roller
Support
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(a) Elevation of the test setup
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Figure 3.14 Beam 8 BF-N050-F1(5)-B2 ; (a) Elevation of the test setup, (b) Plan
view of the bottom flange, and (c) Section at the constant moment zone
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Figure 3.15 Beam 9 BF-H0.33-F2(1)-B2 ; (a) Elevation of the test setup, (b) Plan
view of the bottom flange, and (c) Section at mid-span
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(a) Elevation of the test setup
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(c) Section near to the roller support

Figure 3.16 Beam10 BF-H0.33-F2(1)-B2w; (a) Elevation of the test setup, (b)
Plan view of the bottom flange, and (c) Section near to Roller Support
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Figure 3.18 3D-Ductile anchorage system schema
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Figure 3.19 Ductile anchorage system dimensions; (a) Part 1, (b) Part 3
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(b) Section near to Roller Support

1 layer Tyfo Bonded by Tyfo S

y 350 ,

(c) Longitudinal profile of the CFRP sheet (for Detail 1)

Figure 3.20 Beam 11 BF-H0.33-F1(1)-A1DI; (a) Elevation of the test setup, (b) Section
near to the roller support, and (c) Longitudinal profile of the CFRP sheet
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(©) Section near to Roller Support

Figure 3.21 Beam 12 BF-H0.33-F1(1)-A2D1; (a) Elevation of the test setup, (b) Section
at mid-span, and (c) Section near the roller support
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(c) Longitudinal profile of the CFRP sheet (for Detail 2)

Figure 3.22 Beam 13 BF-H0.33-F1(5)-A2D2; (a) Elevation of the test setup, (b) Section
near the pinned support, and (c) Longitudinal profile of the CFRP sheet
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Figure 3.23 Locations of strain gages and potentiometers; (a) Beam elevation, (b)
Typical sections without CFRP, and (c) Typical sections with CFRP
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CHAPTER 4

TEST RESULTS AND DISCUSSION

4.1 GENERAL

In this chapter, the experimental results for all beam tested are presented. The
tested beams are divided into four groups as discussed in Chapter 3. First Group
consisted of four beams with different levels of area reduction without strengthening. The
Second tested Group consisted of four notched beams strengthened with bonded CFRP
sheets. Qut of the four strengthened beams, two beams were bonded using saturated
epoxy (Tyfo S), while the other two were strengthened using high performance adhesive
(Tyfo MB-3). Two notched beams were tested in the Third Group. These beams were
strengthened using bonded CFRP strip, one without and one with wrapping system. The
fourth Group consisted of three notched beams that were strengthened using ductile
anchoring CFRP sheets. A summary of the test results including the yielding, ultimate
strength with their associated deflections, and the failure modes are shown in Table 4.1.
The table also includes the maximum strain at yield. The results and observations of each
group are described individually including the load-deflection, load-strain, and the mode
of failure. Table 4.2 presents a summary of the comparison results between all the tested
beams. Figure 4.1 (a and b) shows yielding Py and ultimate load P, with their
corresponding deflections for the unstrengthened and strengthened beams. The stress-
strain curve for the beams coupons and the CFRP composite materials, used in the

experimental program are shown in Figures 4.2 and 4.3. For each of the studied beams,
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Figure (a) was allocated to the mode of failure and Figures (b) and (c) were allocated to

the Load-deflections and Load-strains curves of the tested beam at different locations.

4.2 RESULTS OF GROUP 1 BEAMS

Four beams in group 1 were prepared to investigate the behaviour of steel beams
with locally and uniformly corroded tensile flange area. Out of the four beams, the BFO
beam was designed to perform as a non-deteriorated beam, labelled the control beam,
whereas the other three steel beams were designed with two different levels of
deterioration. Beams BF-H0.33 and BF-N0.33 has a 33% tension flange area reduction,
while beam BF-NOQ.50 has a 50%. The tension flange area reduction of the beam BF-
NO0.33 was in form of notches with a length of 450 mm located in the mid-span for
simulating the effect of uniformly distributed corrosion. Meanwhile, the tension flange
area reduction of beam BF-H0.33 was concentrated in the mid-span to simulate the

behaviour of the beam with a local deteriorated cross-sectional area.

4.2.1 Beam BFO

The control beam BFO started to yield at a load of 245 kN and the corresponding
maximum deflection and strain of the tension flange for this yield load were equal to 7.70
mm and 1568 pe, respectively. The failure mode was in-plane plastic buckling of the
compression flange as shown in Figure 4.4 (a). The beam reached the 331 kN ultimate
load (failure load) which was 1.35 times the yielding load. At failure, the mid-span
deflection of the top and bottom flanges was found to be 81.75 mm and 73.60 mm,

respectively. It is worth mentioning that the plastic buckling of the compression flange
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started approximately at a load of 315 kN. The corresponding load-deflections and load-

strains curves at different locations are shown in Figures 4.4 (b and ¢).

4.2.2 BEam BF-HO0.33

The BF-H0.33 beam was designed to simulate the behaviour of a deteriorated
steel girder due to the local corrosion effect. It was observed that the mid-span cross-
section started to yield at a load of 180 kN, while the overall behaviour of the beam was
still in the elastic stage. Under this load, the strain and the deflection at the mid-span were
measured to be 1530 pe and 5.8 mm, respectively. Beam BF-HO0.33 started yielding at
almost the same yielding load as beam BFO (242 kN) with a mid-span deflection of the
bottom flange equal to 8.00 mm and a maximum strain of 7000 pe at the deteriorated
section. As can be seen in Figure 4.5 (a), the failure mode was observed to be in-plane
plastic buckling. The ultimate load capacity of 330 kN represents 1.36 times the applied
load at yield. The mid-span deflections of the top and bottom flanges were recorded as
being 69.80 mm and 76.93 mm, respectively. The applied load versus the deformations
and the strains at different locations are illustrated in Figures 4.5 (b and c). Similar to
beam BFO, the plastic buckling of the compression flange started approximately at a load

of 312 kN.

4.2.3 BEaM BF-N0.33
This beam, prepared to simulate the uniformly distributed corrosion in the
constant moment zone started to yield at a load of 175kN, while the deflection and the

maximum strain of the tension flange were equal to 5.90 mm and 1550 pe, respectively.
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From the load-deflection relationship, beam BF-N0.33 started yielding at load 190 kN. At
this load, the mid-span-deflection and the maximum strain of the tension flange were
measured to be 6.40 mm and 1640 ue, respectively. Figure 4.6 (a) shows the beam failure
mode which was observed to be in-plane plastic buckling of the compression flange. The
plastic buckling started at an approximate load of 285 kN. The beam reached an ultimate
load of 311 kN which is 1.64 times the load at yield. The mid-span deflections of the top
and bottom flanges were measured as 74.30 mm and 81.00 mm, respectively. The Load-
deflections and Load-strains curves of the beam at different locations are shown in

Figures 4.6 (b and c).

4.2.4 BEaM BF-N0.50

In a similar manner with the BF-N0.33 beam, the BF-N0.50 beam was propose to
simulate the behaviour of a uniformly corroded tension flange area of steel bridge girder
with a different percentage of cross-sectional area loss. As the other deteriorated beams,
the mid-span section started yielding at a load equal to 140 kN, while the corresponding
maximum deflection and the strain were 5.50 mm and 1540 pe, respectively. At a load of
155 kN, the beam started to yield with a corresponding maximum deflection and strain of
the tension flange equal to 5.80 mm and 1660 pe, respectively, as shown in Figures 4.7 (b
and c¢). After the plastic buckling started developing at an approximate load of 270 kN,
failure in the compression flange occurred, as shown in Figure 4.7 (a). The maximum
recorded load of 290 kN was 1.87 times the applied load at yield. The mid-span
deflection of the top and bottom flanges was measured as 95.40 mm and 103.50 mm,

respectively.
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4.2.5 THE EFFECT OF THE AREA LOSS IN TENSION FLANGE ON THE BEHAVIOUR OF THE
DETERIORATED STEEL BEAM

As shown in the Table 4.2, the remaining yielding load capacity can be reduced to
63% of the original capacity for a member with a 50% reduction at the bottom flange as
simulated to emphasise the uniform corrosion effect. The ratio of the ultimate load to the
yielding load (P,/Py) was increased with the increasing of the corrosion ratio (from 1.35
for beam BFO to 1.87 for beam BF-N0.50). The same observation can be seen from the
displacement ductility (A, / Ay) which increased from 9.56 for beam BFO to 16.53 for
beam BF-NO.50.

By analysing the behaviour of beam BF-H0.33, another interesting observation is
shown. As can be seen in Figure 4.8 (a), there is a slight difference in the load-
deformation behaviour of the locally deteriorated beam and the control beam. For the two
beams, almost the same yield and ultimate load has been recorded in the test results at the
same corresponding deflections. The main difference in their behaviour is the strain at the
mid-span (the deteriorated section) as shown in Figure 4.8 (b). This implies that the local
corrosion effect materialised in one section only have a local influence on the strains of
the corroded section only and a negligible effect on the load-deformation behaviour of

the whole beam. Figure 4.8 (c) shows the moment rotation curve for Group 1 beams.

4.3 RESULTS OF GROUP 2 BEAMS

The proposed retrofitting scheme in this group of beams was through bonding
CFRP sheets to the bottom flange of the deteriorated beams. In order to observe the

effectiveness of this scheme, four deteriorated beams were tested after strengthening with
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5 layers of Tyfo SCH-11UP. Two out of the four beams had local deterioration similar to
beam BF-H0.33, while the other two beams had uniform deterioration as per beam BF-
NO0.50. Two types of epoxy were used for this group of beams in order to investigate the
influence of the epoxy type on the bonding behaviour with the aim to increase its flexural
capacity. Tyfo S was used for bonding the CFRP sheets to beams BF-H0.33-F1(5)-B1
and BF-N0.50-F1(5)-B1, while Tyfo MB-3 was used for beams BF-H0.33-F1(5)-B2 and
BF-NO0.50-F1(5)-B2. It is important to mention that, for the four beams, Tyfo S was
combined with Tyfo SCH-11UP sheets to provide a wet-layup composite system before

bonding it to the tested beams.

4.3.1 Beam BF-Fi1(5)-B1

The strengthened beam BF-F1(5)-B1 started to yield at a load of 245 kN and the
corresponding maximum deflection of the tension flange was equal to 7.90 mm. Figure
4.9 (a) illustrates the failure mode which was observed as sudden failure by peeling off of
the CFRP sheets. The failure load was reported as 307 KN with a maximum strain in the
CFRP sheets of 4882 pe. The maximum deflection of 18.10 mm at failure was 2.30 times
the equivalent deflection at yield. The load-deflection and load-strains performances of
the beam at different locations can be seen in Figures 4.9 (b and c). It is important to
mention that by continuing the process of loading after debonding occurred the behaviour

of the studied beam was similar to that of the control beam BFO.
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4.3.2 BEam BF-N0.50-F1(5)-B1

This beam was used to simulate the behaviour of a CFRP strengthened steel
bridge girder that has uniform deterioration in its middle third span. Beam BF-N0.50-
F1(5)-B1 started to yield at a load of 181 kN. The corresponding maximum deflection
and strain of the bottom flange at yield was 5.70 mm and 1548 pe, respectively. At the
ultimate load of 262 kN and its corresponding deflection at the mid-span of the tension
flange equal to 12.10 mm, the failure mode was characterized by the peeling off of the
CFRP sheets as shown in Figure 4.10 (a). The maximum strain of the CFRP was reported
as 4363 pe. The corresponding Load-deflections and Load-strains diagrams at different

locations are shown in Figure 4.10 (b and c).

4.3.3 Beam BF-H0.33-F1(5)-B2

The behaviour of a CFRP strengthened steel girder with an initial locally corroded
effect at beam mid-span was analyzed by using MB-3, adhesive material, on the beam
BF-H0.33-F1(5)-B2. Similarly to beam BF-H0.33, the mid-span section started to yield at
a load of 200 kN, while the behaviour of the beam was still in the elastic zone. When the
maximum deflection of the bottom flange at yield was 8.20 mm, beam BF-H0.33-F1(5)-
B2 started to yield under a load of 253 kN. As can be seen in Figure 4.11 (a), the failure
mode was observed to be rupture in the CFRP sheets. The failure load was recorded as
375 kN with a maximum strain in the CFRP sheets of 10032 pe. At failure, the maximum
deflection of 51.00 mm was 6.25 times the equivalent deflection at yield (as shown in

Figures 4.11 (b and c).
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4.3.4 Beam BF-N0.50-F1(5)-B2

Similar to beam BF-N0.50-F1(5)-Bl, beam BF-N0.50-F1(5)-B2 simulated the
behaviour of a strengthened uniform deteriorated steel girder. This beam started to yield
at a load of 195 kN and the corresponding maximum deflection and strain of the tension
flange was equal to 6.5 mm and 1630 pe, respectively. The failure mode was observed to
be rupture in the CFRP sheets as shown in Figure 4.12(a). The failure load was measured
as 307 kN with a maximum strain in the CFRP equal to 10518 pe. The corresponding
deflection at failure was 24.00 mm which represents 3.70 times the deflection at yield.
The applied load versus the deformations and strains at different locations are shown in

Figure 4.12 (b and c).

4.3.5 THE EFFECT OF THE ADHESIVE TYPE ON THE EFFECTIVENESS OF THE
RETROFITTING SCHEME

Figure 4.13(a) presents the load-deflection performance of Group 2 beams at their
mid-span. From the chart, it can be seen that the load—deflection behaviour of all beams
was linear until yielding of the steel occurred. After yielding, the behaviour of the beam
was observed to be non-linear until the CFRP sheets failed by rupture or debonding. As
expected, after the CFRP failure, the behaviour of the beam followed a similar behaviour
to that of an unstrengthened beam. As can be seen in Figure 4.13(a), the type of the
adhesive has no influence on the elastic or the inelastic stiffness, while it has a major
effect on the mode of failure, as well as in the ultimate flexural capacity. The
corresponding load-strain performance of Group 2 beams at the member mid-span is

shown in Figure 4.13(b). Figure 4.13(c) shows that beams BF-H0.33-F1(5)-B2 and BF-
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NO.50-F1(5)-B2 exhibited significantly larger rotation in comparison to beams BF-

H0.33-F1(5)-B1 and BF-N0.50-F1(5)-B2, respectively.

4.4 RESULTS OF GROUP 3 BEAMS

Two locally deteriorated beams such as: Beams BF-HO0.33-F2(1)-B2 and BF-
HO0.33-F2(1)-B2 were strengthened by using epoxy bonding of one layer of Tyfo UC to
their tension flanges. Tyfo MB-3 was used to bond the CFRP laminate strip to the tested
beams, while one layer of Tyfo EB-DB system was used as a dielectric barrier between
the Tyfo UC and the tension flange to prevent any galvanic corrosion reaction. To
characterize the influence of wrapping on the behaviour of strengthening steel beam, one
layer of Tyfo SCH-11UP with a width of 200 mm was used to wrap the CFRP laminate

strip at the both ends of the BF-H0.33-F2(1)-B2w beam.

4.4.1 Beam BF-H0.33-F2(1)-B2

Beam BF-H0.33-F2(1)-B2 is similar to beam BF-H0.33-F1(5)-B2 except that it
has 1 longitudinal CFEP strip instead of 5 CFRP sheets. This beam started to yield at a
load of 250 kN with a maximum deflection of the tension flange equal to 8.40mm. As
shown in Figure 4.14(a), the failure mode was observed as sudden failure by the peeling
off of the CFRP strip. The maximum applied load of 344 kN at failure was found to be
1.38 times the applied load at yield. The maximum deflection of 46.10 mm at failure is
5.50 times the equivalent deflection at yield (see Figure 4.14(b)). The maximum strain in

the CFRP strip was recorded as 10032 pe. The corresponding Load-strains diagram at
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different locations is shown in Figure 4.14 (c). It is important to mention that at a

deflection of 6.20 mm and a load of 190 KN, the mid-span cross-section started to yield.

4.4.2 BEaM BF-H0.33-F2(1)-B2w

Beam BF-H0.33-F2(1)-B2w was strengthened with 1 CFRP strip, transversally
wrapped at its ends by 1 layer of CFRP sheets in an attempt to eliminate the peel-off
failure of the previous studied BF-H0.33-F2(1)-B beam. Similar to the other locally
deteriorated beams, the mid-span cross-section started to yield at a load of 230 kN which
imposed a deflection equal to 7.30 mm and a measured strain of 1520 pe. At a load equal
to 260 kN, the beam started yielding with a maximum deflection of the bottom flange
equal to 8.6 mm. As can be seen in Figure 4.15 (a), the failure mode was observed to be
sudden failure by rupture in the wrapping sheets following by peeling-off of the CFRP
strips. The failure applied load of 347 kN was 1.33times the applied load at yield and the
mid-span deflection of 48.70 mm was 5.66 times the equivalent deflection at yield. The
load-deflection and load-strains performances of the beam at different locations can be

seen in Figure 4.15 (b and ¢).

4.4.3 THE EFFICIENCY OF THE WRAPPING SYSTEM

As discussed before, two deteriorated steel beams of Group 3 were strengthened
by using one layer of CFRP strip with and without wrapping system. As shown in Figure
4.16(a), the using of wrapping system for bonded CFRP is not an efficient technique to
increase the ultimate load capacity, while it has a minor effect on increasing the yielding

load capacity from 250 to 260 kN. Therefore, using wrapping sheets in the end will not
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decrease the required development length needed to reach the maximum strength of the
CFRP strip. The corresponding load-strain and moment-rotation performance of the

Group 3 beams can be seen in Figure 4.16 (b and c).

4.5 RESULTS OF GROUP 4 BEAMS

The proposed retrofitting scheme used in this group is an unbonded CFRP sheets
with a ductile anchorage system. As discussed before in Chapter 3, the main objective of
this proposed scheme is to strengthen the beam such that to reach the full capacity of the
CFRP sheets by using a tensile stress transfer system to two ductile anchorages, located
at the beam ends. The ductile anchorage system is designed to yield before the rupture of
the CFRP sheets occurs. In this particular study, the failure mode for all beams in this
group was controlled by CFRP sheets rupture. As shown before in Figure 3.18, the
proposed scheme is composed of an unbonded CFRP sheet(s) which were wrapped
around two steel plates at its ends (Part 1). In order to avoid stress concentration and
rupture of the FRP sheets, part 1 of the system had rounded corners (see Fig. 3.18). Duct
tape was used to cover the contact area between part 1 and the CFRP sheets such that any
possible bond stress between them to be inexistent. Part 1 was then linked to the steel
plate (part 3) which is anchored to the tension flange of the tested beam by using four
high stress tensile steel bolts through two steel link members (part 2). The steel link
members were designed as a conventional tensile test dog-bone specimen. Based on this
setup, the forces in the steel link member are tensile axial forces only without any

moments on them. Three beams were tested in group 4 such as: BF-H0.33-F1(1)-AlDI,
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BF-H0.33-F1(1)-A2D1, and BF-H0.33-F1(1)-A2D2. All these tested beams had a locally

deterioration simulated at beam mid-span cross-section as for beam BF-H0.33.

4.5.1 BeaM BF-H0.33-F1(1)-A1D1

One layer of Tyfo SCH-11UP was used to strengthen the deteriorated steel beam
BF-HO0.33-F1(1)-A1D1 by wrapping it around the anchorage system (part one) with an
overlap of 350 mm. This overlap zone was used to avoid debonding between the CFRP
sheets. The steel link member (A1) was designed to have rupture in the CFRP sheet
before yielding. Beam BF-H0.33-F1(1)-A1D1 started to yield at a load of 240 kN, while
the deflection was recorded as 7.30 mm. At a load of 323 kN with a corresponding
deflection at the mid-span of the tension flange equal to 43.90 mm which means 6.00
times the maximum deflection at yield, the failure mode was characterized by rupture in
the CFRP sheet and is shown in Figure 4.17 (a). The average strain in the CFRP sheet
and the coupons at failure was reported as 10600 pe and 350 pe, respectively. The
applied load versus the deformations and strains at different locations are shown in

Figure 4.17 (b and ¢).

4.5.2 BeEaM BF-H0.33-F1(1)-A2D1

Similar to beam BF-H0.33-F(1)-A1D1, one layer of unbonded anchorage Tyfo
SCH-11UP was used to strengthen the beam BF-H0.33-F(1)-A2D1. The steel link
member (A2), used in this beam was designed to have a lower yield stress than the
ultimate strength of the CFRP sheet. At a load of 246 kN and a mid-span deflection of

7.80 mm, this beam started to yield, while the average strain in the steel link member was

82



measured as being 370 pe. The steel link member started to yield at a load of 310 kN.
The failure mode was observed to be rupture in the CFRP sheet, as can be seen in Figure
4.18 (a). The failure load was recorded as 320 kN, 1.3 times the applied load at yield, and
the corresponding deflection at failure was measured as 43.95 mm, 5.58 times the
measured deflection at yield. The average strain in the coupons at failure was reported as
1900 pe. The corresponding Load-deflections and Load-strains diagrams at different

locations are shown in Figure 4.18 (b and c).

4.5.3 Beam BF-H0.33-F1 (5)-A1D2

Five layer of Tyfo SCH-11UP were used to strengthen the deteriorated steel beam
BF-H0.33-F(5)-A2D2 by wrapping them around the anchorage system (part one). Among
the three rounds of CFRP sheets, the first two round were wet while the last one was dry.
The steel link member (A1) was designed to yield before the rupture in the CFRP sheets
occurs. At a deflection of 7.70 mm the beam started to yield, while the applied load was
recorded to be 250 kN. At the mustered yielding load, the average strain in the coupons
was measured as 270 ue which means that the steel link member was in the elastic zone.
When the applied load was 304 kN which means 1.22 times the applied load at yield,
rupture in the CFRP sheets at the anchorage was observed (see Figure 4.19 (a)). The
average strain in the steel link members at failure was recorded as 1150 pe, while the
measured deflection 32.00 mm was 4.19 times the measured deflection at yield. The load-
deflection and load-strains performances of the beam at different locations can be seen in

Figure 4.19 (b and ¢).
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4.5.4 THE EFFICIENCY OF THE PROPOSED DUCTILE ANCHORAGE SYSTEM

Based on the results of Group 4 beams, the proposed ductile anchorage system
shows a high ability to transfer the load from the unbonded CFRP sheets to the tension
flange at their zero moment zones using ductile steel link members. The failure mode of
all the tested beams was observed to be rupture of the CFRP sheets since this ductile
anchorage system prevents early peel off of the CFRP sheet. The failure mode of beam
BF-H0.33-F1(1)-A2D2 shows that the end anchorage detail has a great effect on the
failure mode, and as a result, on the ultimate capacity. If well detailed, the ductile
guarantees a ductile behaviour of the composite steel beams until failure occurs. Figure

4.20 shows the performance of this proposed retrofitting scheme.

4.6 GENERAL DISCUSSION

An experimental investigation was carried out on the behaviour of corroded steel
beams before and after retrofitting. Based on the experimental results, the local corrosion
showes a slight effect on the load-deformation behaviour of deteriorated steel beam,
whereas this effect increases with the increase of length of corroded area along the beam,
as can be seen in Figure 4.21. In addition, by using the high performance adhesive MB-3
which is a viscous epoxy adhesive with saturated CFRP sheets, it was observed a better
efficiency in the behaviour than by using the common adhesive Tyfo S. This Figure also
shows that the type of the adhesive doesn’t have any influence on the beam stiffness and
this last parameter depends only on the type of CFRP composite material. Figure 4.22
shows the behaviour of beams BF-H0.33 and BF-N0.50 before and after strengthening

with bonded CFRP sheets. By analysing the results given in the aforementioned Figure
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4.22. it can be conducted that bonded CFRP has a minor effect on the elastic behaviour of
the strengthened beam, while it has a major effect on the inelastic behaviour. In addition,
by using bonded CFRP as a retrofiting scheme doesn’t means that we have an effective
system, since the effeciancy of this technique is based on the type of the CFRP material

and the type of the adhesive used in this scheme.
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Figure 4.10 Test results of beam BF-N0.50-F1(5)-B1; (a) Mode of failure, (b) Load-
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Figure 4.12 Test results of beam BF-N0.50-F1(5)-B2; (a) Mode of failure, (b) Load-
deflection, (c) Load-strain
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Figure 4.18 Test results of beam BF-HO0.33-F1(1)-A2D1; (a) Mode of failure, (b) Load-
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CHAPTER S

NUMERICAL MODEL

5.1 INTRODUCTION

The main objective of this chapter is to set up a numerical method that is capable
of predicting the elastic and the post-yield behaviour of unstrengthened and strengthened
deteriorated steel girders. This proposed method can be used by designers to calculate the
reduction in the moment capacity of the deteriorated steel girders within a reasonable
level of accuracy. The analysis approach is based on a moment-curvature analysis which
satisfies equilibrium and compatibility. The following assumptions were considered in
this analysis: 1) plane sections remain plane after deformation; ii) deformations are small;
ii1) a simplified material characteristic was used for the steel wide flange beam; iv) linear
elastic behaviour of CFRP; v) bilinear relation between the bond length and the ultimate
tensile strength in the bonded CFRP; vi) linear relation between the total number of
CFRP layers and the minimum bonded development length; and vii) the stress in all
CFRP layers is the same for the same tensile strain in the steel flanges (i.e. perfect bond
until peel off of FRP). The results of the tested beams which presented in Chapter 4 were
used to validate this numerical method.

It is noted that the discussion in this chapter is limited to the flexural analysis of
unstrengthened and strengthened corroded steel girders using bonded CFRP. A bilinear
relation between the bond length and the ultimate tensile strength for Tyfo SCH-11UP
and Tyfo UC was assumed in this numerical model. Based on the experimental results

and modes of failure, only three modes of failure were considered in this analysis such as:
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in-plane plastic buckling for deteriorated steel beams; unbonded and rupture of CFRP for

the rehabilitated/strengthened steel beams.

5.2 SECTION ANALYSIS IN FLEXURE

The mechanical properties for the steel material of the W-shape beams were
determined by testing three dog-bone coupon specimens which were cut from the web
and the flanges as described in Chapter 3. The measured stress-strain curves for the
coupons were used to generate a best fit stress-strain curve which was used as input for
the analytical model as shown in Figure 5.1. A bilinear relation between the bond length
per layer and the ultimate tensile strength in this layer is shown in Figure 5.2. The bond

length per layer was defined as:

b
Lb/layer “Th (5.1)

where L, is the total bond length and n the total number of layers

Based on this bilinear relation, unbonded failure mode can be expected when
bonding Tyfo SCH-11UP sheets to steel using Tyfo S and the bond length per layer is
less than 205 mm. When MB-3 is used instead of Tyfo S, the minimum bonded length
per layer which is required to have rupture in the CFRP sheets as a failure mode is only
90 mm. while, for Tyfo UC bonded by MB-3 the minimum bond Iength per layer
required to have rapture failure mode.

In this chapter, efforts are made to develop a numerical model that is capable of
predicting the remaining flexural capacity of deteriorated steel girders as well as the
magnitude of the yielding moment. The full moment-curvature relationship of any steel

cross-section is established by increase incrementally the strain at the extreme
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compression fiber (see Figure 5.3). In the first step it is assumed that for a given strain,

& ., the neutral axis depth is Y . The corresponding curvature of this section can be

calculated as:
€ c
¢=——(h e (5.2)

Based on the assumed linear strain through the depth of the section as shown in

Figure 5.3, the strain at any level in the section, €, can be defined as:
Ex— 9 y

(5.3)

The strain is calculated at the inner and outer surfaces of the flanges of the steel
beam, at which the geometric properties have changed. Once the strain at the different

Jayers is known the stress distribution, fy(x), can be determined from the appropriate

stress-strain relationship of the steel material as:

|e E €, < 000155
( 155 < €. < 0.
fo={310 ' 0.00155 < €, <0.004 (5.4)
310 + (€, — 0.004)(E,) 0.004 < €_ <0014
400 + (€, — 0.014)(E,) 0014 < €, < 0.045

where E is the elastic modulus of the steel, E; and E, are the second and third slope

stiffness, respectively.
Once the force contribution of the steel cross-section is calculated, the total force on the

cross-section can be calculated as:

F:F]+F2+F3+F4 (5.5)
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where F| is the force in the compression flange, F2 is the force in the compression part of
the web, Fy is the force in the tension part of the web tension flange, and F4 is the force
in the tension flange.

The depth of the neutral axis is iterated until the total force on the cross-section
which was calculated using Equation 5.5, is equal to zero. Once the force equilibrium is
satisfied, the flexural capacity associated to the considered mode of failure can be easily
computed with the following Equation:

M=ZXF;d; (5.6)

As discussed before in Chapter 4, the failure mode for the control beam was
observed to be in-plane plastic buckling. A sectional analysis was conducted for the
control beam to calculate the corresponding strain at the extreme compression fiber at
failure. The failure was defined when the moment capacity of the section reaches the
experimentally measured maximum moment capacity of the control beam, i.e. 91 kN.m.
The maximum compression strain was calculated as 0.014. Based on all 4 tested beams of
Group 1, the failure mode was defined when the strain in compression reached 0.014 or
the strain in the tension flange was 0.045.

On the other hand, for all strengthened deteriorated tested beams the failure
modes were observed to be unbonding or rupture of the CFRP as discussed before. Based
on the observed failure modes and the bilinear relation between the bond length and the
ultimate tensile strength, the failure mode for steel section strengthened using 5 layers of
bonded Tyfo SCH-11UP sheets with Tyfo S epoxy was defined when the strain in tension
has reached 0.0046. In the case of using MB-3 epoxy instead of Tyfo S, the failure mode

occurred when the strain in tension has reached 0.0105. For a steel cross-section
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strengthened with 1 strip of Tyfo UC with MB-3 epoxy, the failure was defined when the
strain in the tension has reached 0.01. Once the moment-curvature relationship of the
section is known, the load-deflection of the deteriorated steel beams with a given loading
configuration and support conditions can be determined by integration of the curvature.
Any commonly accepted method such as Conjugate Beam method or Moment Area

method can be applied.

5.3 VALIDATION OF THE ASSUMPTIONS USED IN THIS NUMERICAL MODEL

Eighteen sections were used in this numerical model. Out of the eighteen sections,
fifteen sections were used to simulate the behaviour of the tested steel beams and to
validate this numerical model, while the other six sections were used to predict the
remaining yielding moment of full scale deteriorated steel girders. Table 5.1 shows a
summary of the numerical yielding and the ultimate moments of all sections used in this
numerical model.

First, three sections were used to simulate the behaviour of unstrengthened
deteriorated steel sections. Section S1 simulates the same section of the control beam
BFO, section Slsie, simulates the mid-span section of beams BF-H0.33 and BF-N0.33
while section Slsg, presents the mid-span section of beam BF-NO.50. Experimental
results of Group 1 beams were used to validate the moment curvature of sections S1,
S1is3e, and S1sge, as shown in Figure 5.4.

Nine sections were used to present the behaviour of strengthened deteriorated
steel beams using bonded CFRP. Figure 5.5 shows the experimental and the analytical

moment-curvature of non-deteriorated and deteriorated steel section strengthened with
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CFRP sheets bonded using Tyfo S. Sections SIF1B1, S133¢,F1B1, and S1s50,F1B1 were
conducted to simulate the behaviour of beams BF-H0.33-F1(5)-B1 and BF-N0.50-F1(5)-
B1. Sections S1F1B2, S1i:,F1B2, SlseF1B2, and sections S1F2B2, S1:34F2B2,
S1s0,F2B2 were used to simulate the behaviour of beams BF-HO0.33-F1(5)-B2, BF-
N0.33-F1(5)-B2 and beams BF-H0.33-F2(1)-B2, respectively, as shown in Figures 5.6
and 5.7.

As shown in Figure 5.8 for a 33% and 50% loss of the tension flange area, the
yielding moments decreased by 27% and 40%, respectively. While the ultimate moment
capacities reduced by 10% and 18.5 %, respectively. The ultimate moment capacity of
the strengthened cross-section increased by 12.7% in case of using bonded CFRP sheets
with MB-3 while the ultimate moment capacity decreased by 9% when using Tyfo S
instead of MB-3, as shown in Figure 5.9. In addition, from Figure 5.9 it is conducted that
there was no increasing in the yielding moment due to the very small strain in the tension
flange at yield. The ultimate moment capacity of the deteriorated sections with 33% and
50% loss improved by 8.3% and 8% when using MB-3 with Tyfo SCH-11UP while when
using Tyfo S instead of MB-3 it was decreased by 13.6 and 15%, respectively, (see
Figures 5.10, 5.11).

As a conclusion of the previous discussion, the difference between the analytical
and the experimental moment-curvature shows that the previous assumptions which were
considered in this analysis satisfy an acceptable level of accuracy. The effect of
strengthening steel beams by using CFRP is almost negligible for the yielding moment.
In addition to the CERP and epoxy type, bond length is the main parameter which

controls the mode of failure and as a result the ultimate capacity.



5.4 YIELDING LOAD FOR CORRODED STEEL GIRDERS

The yield load of the corroded steel girders can be defined as the load at which the
girder begins to deform plastically. Before reaching its yield load, the girder will deform
elastically and will return to the original shape when the applied load is removed. Beyond
the yield load some plastic deformation will be permanent and non-reversible after
releasing the load (residual deformations). It is often difficult to exactly define the
yielding load of the steel girder from the load-deflection behaviour. As a result, most of
the common definitions of the yielding are based on the stress-strain curve of the material
which defines the yield at a certain level of stress. There is more than one definition for
the yielding from the stress-strain curve for the material. The yielding can be defined as
the first point where the curve starts to deviate from a straight line, the proportional
elastic limit (PEL). The slope of the straight line is Young’s modulus. The elastic limit is
defined as a point on the curve beyond which plastic deformation will occur after release
the load. Figure 5.12 shows the definitions of proportional elastic limit and the elastic
limit for a ductile material. In the case of other ductile materials for which the onset of
yield is not characterized by a horizontal portion in the stress-strain curve, the offset
method is applied. In this case, a straight line is drawn parallel to the initial elastic line
but displaced from it by an arbitrary value of permanent strain. This value depends on
many factors such as; the material and the application and commonly is 0.2% as shown in
Figure 5.13. As shown in this Figure, the stress corresponding to the intersection point
between the 0.2% offset straight line and the stress-strain curve is the yield proof stress.
Based on this short discussion about the yield strength, in the current analytical study the

yield strength is considered to be the yield proof stress. The same concept will be used to
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calculate the yielding load capacity of corroded steel girders as shown in Figure 5.14. As
shown in this Figure, the proof yield load Py, was calculated by drawing a straight line
with the same slope of the elastic stiffness but from a deflection that is equal to 0.054,,
where A, is the elastic deflection of the control beam. The intersection of this straight line
and the load-deflection curve gives the proof yielding load capacity Py,. The proportional
yielding load or the first yielding point is the load corresponding to the first yielding
section. The arbitrary displacement value of 0.05 of the displacement at yield (i.e. 1/20 of
Ay) is seen to be an acceptable value for the plastic residual displacement of a
deteriorated girder that is intended to be strengthened. As shown in Figure 5.14, it seems
that the proportional yielding load for corroded steel girder is not affected by the
simulated length of corroded tension flange area while, the proof yielding load considers
this influence

Using the section analysis which was conducted in section 5.2, the load-deflection
curve for all the tested unstrengthened and strengthened beams using bonded CFRP was
carried out. Figure 5.15 shows the experimental, the proof, and the proportional yielding
load capacity for the tested beams. Table 5.2 presents a comparison of the experimental,
proportional, and proof yielding moment for the tested beams. As shown in this table,
three deteriorated steel beams, as defined in the first group were used to validate this
proposed method.. The comparison between the numerical values and the experimental
values shows that the percentage of error (between measured experimental values and
analytical predictions) when using the proof capacity is within 0.6% while in case of the

proportional limit it can reach up to 26.4% for steel beams with locally deterioration. The
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same comparison was conducted for the strengthened deteriorated beams of Groups 2 and

3.

5.5 DETERIORATION FACTOR (¥y)

In order to provide structural analysts with a simplified method for calculating the
yielding and ultimate moment capacity of deteriorated steel girders, the reduced yielding
moment of the beam (Myye) due to deterioration is calculated by multiplying the original
yielding moment (My,) of the undamaged beam by the deterioration factor (Wg).
Deterioration factor, ¥4, was defined as the ratio of the reduced yielding moment to the

undamaged yielding moment using the following formula:

My
det
=8 5.7
Y4 Myo (5.7)

There are several parameters which affect the behaviour of the unstrengthened
and strengthened deteriorated steel beams such as: the cross-sectional area and the clear
span of the original beam; the simulation of corrosion and its location through defining a
reduced tension flange area along a specific beam length; and the load pattern. In this
section a parametric study is conducted to investigate the influence of these parameters
on the deterioration factor (‘Wq).

Three load patterns are considered in this parametric study: LCI, LC2, and LC3.
The first load pattern LC1 simulates the load of one concentrated force in the beam mid-
span. The pattern LC2 considers two concentrated loads in the ends point of the third
beam span, and LC3 is the distributed load along the entire beam span. Since corrosion

affects mainly the bottom flange of the steel beam, two levels of area reduction of the
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bottom flange 33% and 50% were considered. Figure 5.16 shows that the deterioration
factor (W4) of the unstrengthened deteriorated steel beam decreases by increasing the
length of the corroded area L¢. As is shown in this Figure 5.16, for the same percentage
of area reduction, there is no significant change in the relation between the reduction
factor W4 and the increasing in length of the corroded area L, for the varied load patterns.
On the other hand, this Figure shows that the common method for calculating the
yielding capacity does not consider the length of the corroded area as well as the load
pattern. However, this Figure was validated by using the experimental results of beams,
BF-HO0.33, BF-N0.33, and BF-NO0.50.

To investigate the influence of the original cross-sectional area and the clear span
length (L,), two different undamaged steel cross-sections of the control beam (initial
beam belonging to group 1) were considered in this investigation. The first section S1 has
the same depth (h) of 157 mm as the tested beams in the experimental program, while the
second section S2 has a depth equal to 457mm. Both sections have the same ratio of the
beam depth to the clear span (h/Lo) equal to 0.1 as shown in Figure 5.18. Sections Slj3y,
and Slsge, simulate the deteriorated cross-sections of the original section S1. Sections
S2330, and S2s¢0, simulate the deteriorated cross-section of the section S2. The
deterioration factor and the yielding capacity of each section are shown in Table 5.1. As
shown in Figure 5.17, for the same beam depth to the clear span (h/Lo) ratio and the same
percentage of area reduction at the level of the bottom flange, the reduction in the
yielding moment capacity is not the same. As can be observed in this Figure, the
reduction in the yielding moment capacity of the smaller beam is higher than the

reduction in moment capacity of the beam with a 457 mm depth for the same percentage

117



of corroded tension flange area. Herein, an explanation is that the reduction in the
moment of inertia of S1 cross-section is higher than that in S2 cross-section for the same
level of area reduction. On the other hand, when the same reduction in the moment of
inertia is considered for both cross-sections, the reduction of the yielding capacity is the
same (see Figure 5.18).

To study the influence of strengthening with CFRP, two types of CFRP composite
materials were used to rehabilitate deteriorated steel beams in order to increase their
remaining yielding capacity. Tyfo SCH-11UP sheets were bonded to the bottom flange of
the steel girders once by using Tyfo S epoxy and for another beam by using MB-3 epoxy,
while Tyfo UC strip was bonded using MB-3. Figures 5.19-A and B show the increasing
in the reduction factor (W) for three different rehabilitation methods when a reduction of
the bottom flange area equal to 33% and 50% was considered. The experimental results
of the tested beams: BF-H0.33-F1(5)-B1; BF-H0.33-F1(5)-B2 and; BF-H0.33-F2(1)-B2
were used to validate the proposed method and are illustrated in Figure 5.19-A, while the
experimental results of the tested beams BF-N0.50-F1(5)-B1 and BF-NO0.50-F1(5)-B2
were used to validate the proposed method are depicted in Figure 5.19-B.

Based on this parametric study, the following conclusions are drawn for the
unstrengthened and strengthened deteriorated beams:

° The location and the area of corrosion (deterioration) have a significant effect on
the remaining yielding moment capacity of the deteriorated steel girder especially when
the corrosion is within the middle one-third of the clear span. However, these parameters
(location and area of corrosion) have an insignificant effect when they are outside the

middle one-third of the span.
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o The load pattern does not have a significant effect over the reduction factor as
long as the maximum moment will occur in the middle one-third of the clear span.

e The clear span of the deteriorated steel girder has a minor effect on the remaining
yielding moment capacity while it has a major effect on the failure mode and in
consequence on the remaining ultimate capacity.

° Describing the level of damage of the tension flange by the reduction ratio of the
moment of inertia is more accurate than describing it by the reduction ratio of the tension
flange area.

o Using CFRP to reinforce steel girders has a significant effect on the yielding
moment capacity in case of rehabilitated deteriorated steel girders while it has an

insignificant effect in case of strengthening of non-deteriorated steel girders.
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Table 5.1 Numerical Yielding and Ultimate Moment for different sections

Section Losses % in CFRP Epoxy My Mr
tension flange (kN.m) (kN.m)
= S1 _ _ _ 67.1 91.6
§ S1i30 33% B _ 48.8 81.8
& Slspe 50% _ _ 39.8 74.6
S1FiB1 B SCH-11UP TyfoS 67.7 83.4
S1330, F1B1 33% SCH-11UP TyfoS 53.2 70.7
(o]
£ S1500, F1B1 50% SCH-11UP Tyfo S 44.0 63.3
5 S1FiB2 B SCH-11UP MB-3 67.7 103.3
S1330,F1B2 33% SCH-11UP MB-3 53.1 88.6
Si500, F1B2 50% SCH-11UP MB-3 440 80.6
« S1F2B2 _ Tyfo UC MB-3 67.5 92.7
§ Sl330,F2B2 33% Tyfo UC MB-3 51.0 77.1
O Sls59,F2B2 50% Tyfo UC MB-3 41.6 68.6
S2 B _ _ 445 .8
82339, 33% _ _ 342.0
82500, 50% . _ 290.0
S3 _ _ _ 1812.5
S3339, 33% _ B 1317.2
S3s00, 50% _ _ 1067.4
F1 Tyfo SCH-11UP
F2 Tyfo UC
B1 Tyfo S
B2 MB-3
S2 h=457 mm S3 h=457 mm
] 190 ‘ L s ~
LPY)  e——— 71 27.9I [ 7
N
S1 h=157 mm
153
9l
457 19.8) | 471‘
|
|
‘ AN
sl —— —— ~ 2731 [ ] -
)L——;”——% 459
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Table 5.2 Experimental, Proportional, and Proof yielding moment for tested beams

Beam My (kN.m)
Exp. Prop. Pro. Mypop/ Myerp  Mypro/MYexp

BFO 245 244 244 99.6% 99.6%
o BF-HO033 242 178 241 73.6% 99.6%
5
(59 BF-N0.33 190 178 191 93.7% 100.5%
BF-N0.50 155 145 156 93.6% 100.6%
BF-H0.33-FI(5)-B1 245 194 245 79.2% 100%
‘;_‘ BF-N0.50-F1(5)-B1 181 160 186 88.4% 102.7%
=
(% BF-H0.33-F1(5)-B2 253 194 245 76.7% 96.8%
BF-N0.50-F1(5)-B2 195 160 185 81.6% 95%
o BF-H033-F2(1)-B2 250 185 246 74% 98.4%
=
e
O
Exp. Experimental yielding load
Prop. Proportional yielding load
Pro. Proof yielding load
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Figure 5.3 Assumed linear strain profile and corresponding stress profile applicable for
elastic and post-yield range
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CHAPTERG6

CONCLUSIONS, RECOMMENDATIONS AND FUTURE WORK

6.1 SUMMARY

Large number of existing highway bridges in North America were designed and
built in the mid-1900s for a design life of 75 years. As a result, a high percentage of the
existing steel bridge infrastructures are in need to develop either a cost-effective
upgrading or rehabilitation in coming decades. This research discusses experimental and
analytical investigations that were conducted under monotonically increasing loading to
predict the reduction in the flexural capacity of existing deteriorated steel girders and to
develop retrofitting schemes capable of increasing its flexural capacity. In this
experimental program, a series of thirteen medium-scale deteriorated steel beams were
tested to examine the behaviour of the girder before and after the strengthening procedure
was completed. The tested beams were divided into four groups such that: the first group
(G1) is related to analyse the behaviour of the deteriorated steel girders in order to
determine the remaining capacity and consists of four beams with different percentage of
deterioration; the other three groups (G2, G3, and G4) were designed to evaluate the
effectiveness of the proposed retrofit schemes. Among them, the second group contains
four beams, strengthened with CFRP sheets bonded to the tension flange in the aim to
characterize the static behaviour of steel girders strengthened with CFRP sheets. The
third group consists of two beams strengthened with high-modulus CFRP laminate strips

which were externally bonded to the bottom flange of the tested beam. Furthermore, in
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group four, unbonded CFRP sheets were used to strengthen three deteriorated steel beams
using ductile anchorage system at both ends of the beam. Two types of adhesive were
used in this investigation to examine the influence of the epoxy type on the bonding
behaviour. In addition to the experimental program, an analytical model was developed to
set up a numerical method that is capable of predicting the elastic and post-yield

behaviour of the unstrengthened and strengthened deteriorated steel girders.

6.2 CONCLUSIONS

Based on the results of the experimental and analytical investigations that were
carried out on the behavior of corroded steel beams before and after strengthening, the

following conclusions were drawn:

FOR UNSTRENGTHENED CORRODED STEEL BEAMS

1. The performance of beam BF-H0.33 shows that local corrosion is formed in only
one section (at the tension flange and mid-span of the beam). It has a local effect
on the strains magnitude of the corroded section and a slight effect on its load-
deformation relationship. However, this effect increases with any increase of the
corrosion length along the beam.

2. The load pattern does not have a major effect on the remaining flexural capacity
of the deteriorated steel beam. However, by increasing the area of corrosion, the

elastic stiffness is subjected to a significant reduction.
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3. It is more accurate to describe the level of damage of the tension flange area by
the reduction ratio of the moment of inertia than by the reduction ratio of the

cross-section area.

FOR BONDED CFRP STRENGTHENED STEEL BEAMS

4. Bonded CFRP has a minor effect on the elastic behaviour of the strengthened
beam, while it has a major effect on the inelastic behaviour.

5. Using bonded CFRP as a retrofiting scheme is not always an effective system for
increasing the flexural capacity of the corroded steel girders, since the efficiency
of this technique is based on the type of the CFRP material and the type of
adhesive used in this scheme.

6. A better efficiency in the flexural capacity of CFRP-strengthened beams was
obtained by using high performance adhesive (viscous epoxy adhesive) with
saturated CFRP sheets than by using it with CFRP strips.

7. Using CFRP to reinforce steel girders has a significant effect on the yielding
moment capacity in the case of rehabilitated deteriorated steel girders; however,
it has an insignificant effect in the case of strengthening non-deteriorated steel
girders.

8. Using end wrapping system around the bottom flange for steel beams strengthed
with bonded CFRP sheets is not efficient in eliminating the debonding nor

increasing the ultimate load capacity.



FOR STEEL BEAMS STRENGTHENED WITH UNBONDED CFRP SHEETS WITH END

DUCTILE ANCHORS

9. The presence of the ductile anchorage system prevents the premature failure
through peel off of the CFRP sheet and it increasses the flexural capacity of the
steel beam. The effeciency of this system was sucessufly proved in this thesis.

10. Unbonded CFRP sheets with end ductile anchorage system guarantees a ductile
failure while for a bonded CFRP system it experienced a brittle failure.

11. The end detail of the unbonded CFRP sheets has a significant influence on the
efficiency of this proposed retrofitting scheme.

It should be noted that in all strengthening schemes that uses CFRP material, caution

has to be taken to avoid galvanic corrosion as per recommendations of the design

guidelines for use of FRP materials in strengthening.

6.3 RECOMMENDATIONS AND FUTURE WORK

It is important to emphasize that the aforementioned conclusions were built herein
for the studied beams and the author believes that there are still many other issues that
need to be investigated as follow:

° In order to validate the findings of this research and to confirm their applicability
to full-scale steel bridge girders, further experimental investigation should be
carried out on full-scale deteriorated steel girders before and after strengthening.

° Further experimental studies are needed to investigate the influence of the
corrosion area, corrosion location, and corrosion type on the behaviour of the

corroded steel girders in term of flexural capacity and stiffness losses.
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As the experimental and analytical program of this research was limited to rolled
W-shape cross sections only, additional studies on the plate girders section should
be pursued. Further studies focused on shear behavior of corroded steel girders
strengthened with CFRP composite materials are required.

Tests should be conducted to investigate the impact of the CFRP type, the
adhesive type, chemical environment, and cyclic temperature changes on the
long-term performance of the bond between the steel and the CFRP.

In order to avoid the premature CFRP debonding and to improve the behaviour of
the corroded steel girders in terms of flexural capacity, stiffness and ductile
failure, research efforts need to be conducted in order to develop unbonded
ductile strengthening techniques. This new retrofit method will maximize the
benefits of the superior CFRP properties and increase the flexural capacity of the
strengthened steel girder,

Extensive research is required in the field of existing cast iron beams strengthened
with CFRP composite materials. However, this retrofit technique is seen as being

the most suitable for increasing the flexural capacity of these existing members.
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APPENDIX A

DESIGN EXAMPLE OF THE DUCTILE ANCHORAGE SYSTEM

In this appendix, design example of the ductile anchorage system was done using
latest version of CAN/CSA S16-09 Limit States Design of Steel Structures (2009) to
guaranty transferring the load from the CFRP composite materials to the tension flange of

the tested beams without having failure in the ductile system.

Part one
w = 1.3 kN/mm’
[ i ! | i I | | i [ [ 1
ANNNNN
v/ 165 mm L/
x 7
8
(TcrrP) 5 layers = 5% 150 % 0.27 X 1062 /1000 = 215 KN
TCFRP 215
w = = _— = 1.30 kN/mm
165 165
w12 13x150°
Ma = —_—— = - = 3656.25 kN.mm
8 8
F.O.S = 1.25
M -
M, = 2 = 390 905 kN mm
1.25 1.25
y = Fy Sx
F, = 300 MPa ;t =90.5mm

149



Therefore,

~H —>
breq = 80mm « Dreq 2
b = 160mm > breg Ok
For the rode
Vr = 0.6 pbnmAp Fy
. TcErp
Vr Factored shear resistance = -5 x1.25 = 135 KN
0b Resistance factor = 0.8
n Number of rods = 1
m Number of shear planes = 1
Fu Specified minimum tensile strength = 450 MPa
Therefore,
Apreq = 625mm’
For diameter = 28.575 mm
A, = 641.3 mm* > Apreg Ok

Part three

Part three was designed to transfer the load to the tension flange using four high

tensile bolts A325 with 0.75" diameter as shown in Figure 3.2.
TCFRP 215
Vbreq = TX125 = TXIQ_S = 67 KN

where Vy req 1s the required factored shear resistance for one bolt.



For A325, 0.75" diameter

Vb = 100 KN > Vbreq Ok
where Vy, is the factored shear resistance for one bolt.
All the distances from the center of the bolts holes to any edge were considered as the

minimum distance according to table 6 in the CAN/CSA S16-09 Limit States Design of

Steel Structures (2009).

Part two

Two types of ductile coupons were used in the anchorage system as shown below:

—
($7) o) 63.50 e —
= O e ()

f

38.10 38.1 63.50 38.1 38.10
L L L L L L

}/38.10: 38.1 ‘V 63.50 ‘p38'1 {/38.10 ‘i/ | ! | ) ) |
t, = 12.7 mm t, = 6.35 mm
Fy = 300 MPa Fy = 300 MPa
F, = 450 MPa F, = 450 MPa
T, = AcxFy = 8KN T, = AcxFy = 17KN
T. = AcxF, = I23KN T, = AcxFy = 255KN
(@) Al ®) A2
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MAX. MOMENT-ROTATION AND LONGITUDINAL DEFLECTION PROFILE OF ALL TESTED
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Figure B.1 Test results of beam BFO (a) Moment-Rotation; (b) Deformed shape
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Figure B.2 Test results of beam BF-H0.33 (a) Moment-Rotation; (b) Deformed shape
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Figure B.3 Test results of beam BF-N0.33 (a) Moment-Rotation; (b) Deformed shape
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Figure B.6 Test results of beam BF-N0.50-F1(5)-B1 (a) Moment-Rotation; (b) Deformed
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