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ABSTRACT

Characterization of the Function of the AtST4 Subfamily Members in
Cytokinin-Dependent Growth Control in Arabidopsis thaliana

Effat Khodashenas

The main objective of our laboratory is to characterize the function of the 18

sulfotransferase-coding genes of Arabidopsis thaliana. In this study, we describe the

biochemical and biological characterization of the three members of the AtST4 subfamily

(AtST4a, b and c). The analysis of published microarray data as well as transcript

expression studies show that the three members of the AtST4 subfamily are expressed in

roots and regulated by cytokinins. AtST4b is among the group of genes exhibiting the

highest level of induction following treatment with the cytokinin iram'-zeatin. In contrast,

AtST4c is repressed under the same experimental conditions.

To elucidate their biological function, we isolated AtST4a, AtST4b, and AtST4c loss of

function mutants. Using metabolite profiling of the knockout mutant and mass

spectrometry, we demonstrate that AtST4b encodes a cadabicine (cyclic

dihydroxycinnamoyl spermidine) sulfotransferase. Even though cadabicine has

previously been reported to occur naturally in plants, this is the first report of its

occurrence in A. thaliana and the first report of the accumulation of its sulfonated

conjugate. Phenotypic analysis of the AtST4b-knockou\ mutant showed alternations in

root, shoot and reproductive development as compared to wild type plants and a partial

loss of sensitivity to cytokinins. Our results seem to indicate that AtST4b plays an

important role in the cytokinin-mediated effects on growth.
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Unfortunately, we could not find the endogenous substrate of AtST4a and AtST4c, and

the results of our biochemical and metabolic profiling experiments suggest that they

might sulfonate the same substrate or substrates with very similar properties. However,

the AtST4a and AtST4c loss of function mutants show differences in their growth

behavior suggesting that they have different functionalities in A. thaliana.
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Chapter 1- Review of Literature

1.1) Introduction

This chapter reviews the main topics related to the characterization of the three members

of the AtST4 sulfotransferase (SULT) subfamily from Arabidopsis thaliana. At first, we

present a brief introduction to SULTs, their structure and functions, with emphasis on

plant soluble SULTs. Next, we introduce cytokinins, a class of phytohormones that

regulate many physiological processes including the expression of the AtST4 gene

subfamily in A. thaliana.

Since the substrate of AtST4b is a polyamine conjugate, we conclude this chapter by

reviewing the biological significance of the accumulation of polyamines in plants.

1.2) Sulfotransferases

1.2.1) Introduction

SULTs catalyze the transfer of a sulfuryl group (SO3) from the ubiquitous donor 3'-

phosphoadenosine 5'-phosphosulfate (PAPS), which is the active form of inorganic

sulfate, to an appropriate hydroxyl group of different substrates in a process called the

sulfonation reaction (Fig. 1). These enzymes have highly conserved domains and are

found across all kingdoms, from bacteria to plantae and ammalia (Varin et al. 1997). The

sulfonation reaction seems to be very important for life, because a defect in sulfate

metabolism or sulfate transport lead to severe skeletal disorders and/or death in human

and mouse (ul Haque et al. 1998; Rossi and Superti-Furga 2001).
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Figure 1. General sulfonation reaction catalyzed by SULTs (Chapman et al. 2004).

There are two classes of SULT proteins based on their cellular localization and function:

membrane-associated SULTs and cytosolic SULTs. The membrane-associated SULTs

are localized in the Golgi apparatus and catalyze the sulfonation of macromolecules such

as proteins, peptides and complex carbohydrates. A large number of these enzymes

catalyze the sulfonation of biological signaling molecules which are essential for life.

Members of this class of enzymes have been characterized only from Mimosa pudica and

Oryza sativa in plants, and are not the interest of this study. The so-called cytosolic

SULTs or soluble SULTs sulfonate small organic molecules such as flavonoids, steroids,

glucosinolates and hydroxy)asmonates (Honke and Taniguchi 2002; Hernàndez-Sebastia

et al. 2008).

The sulfonation reaction has different effects on a metabolite. The sulfated conjugate is

more polar and water soluble than the original molecule, therefore the presence of a

sulfate group might influence their transport and excretion. For example, mammalian
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cytosolic SULTs play an important role in phase II of the biotransformation and excretion

of xenobiotics in the liver (Weinshilboum and Otterness 1994; Yasuda et al. 2005).

Sulfonation also modulates the biological activity of some metabolites such as steroids.

For example, the sulfonation and desulfonation reactions are controlling the level of

active estrogen in the blood of mammals. The sulfated estrogens are stored and

eventually can be converted to the active hormone by sulfatases (Strott 1996). In contrast,

the sulfonation can increase the biological activity of some metabolites. For example, the

sulfonation of tyrosine residues on the chemokine receptor CCR5 (a principal HIV-I co-

receptor) is a modification that is required for its biological activity and indirectly

facilitates entry of HIV-I (Farzan et al. 1999).

In plants, SULTs are involved in the regulation of plant growth, defense and stress

responses by the modulation of the biological activity of signal molecules and hormones.

For example, it has been shown that the sulfonation of desulfoglucosinolates is required

for the activation of their antimicrobial properties (Piotrowski et al. 2004; Klein et al.

2006). Moreover, the choline sulfate that accumulates under saline conditions is involved

in salt or drought stress-tolerance in Limonium species and other plants of the

Plumbaginaceae family (Klein and Papenbrock 2004). So far, the characterized plant

cytosolic sulfotransferases are as follows:

The flavonol SULTs from Flaveria species (Varin et al. 1992; Varin et al. 1997), the

choline SULT from Limonium sativum (Rivoal and Hanson 1994) and the brassinosteroid

SULTs from Brassica napus (Rouleau et al. 1999; Marsolais et al. 2004). The cytosolic

SULTs from A. thaliana are discussed in detail later in the text.
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1.2.2) Sulfotransferase structure

The X-ray crystal structures of four mammalian cytosolic SULTs and one membrane-

associated SULT show a globular structure composed of a single a/ß domain with five-

stranded parallel ß sheet surrounded by a-helices (Negishi et al. 2001). The amino acid

sequence alignment of plant and animal cytosolic SULTs revealed four conserved regions

named region I to region IV. Using various approaches, the most important structural and

functional features of SULTs have been identified:

• The PAPS-binding region: All SULTs contain conserved domains involved in

PAPS binding (region I and region IV). The consensus amino acid sequence of

the PAPS-binding regions of plant SULTs are PKxGTTWLKAL for region I and

FRKGxVGDWK for region IV. The glycine-rich domain followed by the

conserved lysine of region IV is a motif (GXXGXXK) that is found to be

essential in some nucleotide binding proteins (Weinshilboum et al. 1997; Klein

and Papenbrock 2004; Hernàndez-Sebastia et al. 2008). The lysine residue from

region I is required for the formation of the 5'-phosphosulfate loop (PSB loop).

Also, the three amino acids RKG from region IV are involved in the formation of

the 3 '-phosphate binding loop (PB loop).

• The catalytic binding region: The crystal structure and site-directed mutagenesis

studies have revealed the importance of conserved histidine, serine and arginine

residues from region II and of a lysine residue from region I in the formation of an

unstable ternary enzyme-PAPS-substrate complex and for the transfer of the

sulfonate group to the substrate (Hernàndez-Sebastia et al. 2008).
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• The substrate binding region: The study of human and Flaveria fiavonol SULTs

have indicated two domains, in close proximity to region II, with high amino acid

divergence. These domains are responsible for the substrate specificity of SULTs

(Hernàndez-Sebastia et al. 2008).

1.2.3) Arabidopsis thaliana Sulfotransferases

A. thaliana is a small flowering plant that is widely used as a model organism in plant

biology. The genome of A. thaliana was completely sequenced in 2001 and provided

useful information for biochemical and genetics studies of its over 26, 500 genes.

There are 18 SULT coding genes in A. thaliana based on sequence similarity to

previously characterized SULTs. Of these, one (At3g51210) is a pseudogene that codes

for a truncated protein, and seven have been fully characterized: Flavonoid SULT

(At3g45070) (Gidda and Varin 2006), desulfoglucosinolate SULTs (Atlg74100,

Atlg74090, AtI gl 8590) (Piotrowski et al. 2004), hydroxyjasmonate SULTs

(At5g07010) (Gidda et al. 2003) and brassinosteroid SULTs (At2g03760 and

At2gl4920) (Marsolais et al. 2004). The phylogenic tree of A. thaliana SULTs is shown

in Figure 2.
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----------------------------------------------- At2g03760-AtST 1
-------------------------------------------------- At2gO3770-AtST8
____________________________, At5g07010-AtST2a

> At5g07000-AtST2b
I At1g74100-AtST5a-----------------------------------[__¦ At 1g74090-AtST5b

' At1g18590-AtST5c
-At2g03750-AtST6

----------------------- At2g14920-AtST4a
------------------ At1 g13430-AtST4c
---------- At1g13420-AtST4b
---------- At1g28170-AtSTW
At3g45070-AtST3a

------ At3g45080 AtST3b
------ At2g27570-AtST3c
--------------- At4g26280-AtST9
At5g43690-AtST7 At3g51210 AtSTH

Figure 2. Phylogenic tree of A. thaliana SULTs. The respective amino acids sequences of 18 SULTs
were grouped using the Clustal W program (http://www.ebi.ac.uk/Tools/clustalw2). The colored box
indicates the AtST4 subfamily and its members.

1.2.4) The AtST4 subfamily

The AtST4 subfamily is part of a family of plant SULTs designated as SULT203

(formerly SULT5), based on the recently proposed guidelines for sulfotransferase

nomenclature (Blanchard et al. 2004). The AtST4 subfamily contains three members:

AtST4a (At2gl4920), AtST4b (Atlgl3420) and AtST4c (Atlgl3430).

Molecular studies of the AtST4 subfamily have shown that the three genes are expressed

mainly in roots and are regulated by cytokinins (Marsolais et al. 2007). The AtST4a gene

or SUL203A1 is located on chromosome 2 and is more related to AtST4c (80% amino

acid sequence identity) than AtST4b (71% amino acid sequence identity). AtST4a has

been characterized recently and was shown to code for a brassinosteroid SULT in in vitro

studies (Marsolais et al. 2007). However, the presence of brassinosteroid sulfate has

never been demonstrated in vivo. AtST4b and AtST4c are in tandem on chromosome 1.

H
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Despite their high amino acid sequence identity with AtST4a, neither AtST4b nor AtST4c

exhibited any activity with brassinosteroids (Marsolais et al. 2007).

1.3) Cytokinins

1.3.1) Introduction

Cytokinins (CKs) are a class of phytohormones that play critical roles at different stages

of growth and development. The name cytokinin refers to the ability of these molecules

to promote cell division and cytokinesis. Miller et al. identified the first CK, kinetin, from

the autoclaved product of herring sperm DNA as a metabolite that had the ability to

promote cell division (Miller et al. 1995).

CKs are adenine derivatives and classified based on the substitution on their N -side-

chain as aromatic or isoprenoid CKs. Both aromatic and isoprenoid CKs are naturally

occurring, but the latter is by far the most abundant in plants. The common isoprenoid

CKs are; trans-hydroxylated N6-side chain or trans-zeatin (i-zeatin), N6-(A2-isopentenyl)
adenine (iP), dihydrozeatin (DZ) and cw-zeatin (c-zeatin) (Fig. 3A).

The relative abundance of different CKs depends on the plant species, tissue and

developmental stages. For example i-zeatin is the most abundant CK in A. thaliana,

whereas c-zeatin and its derivatives are the predominant CKs in chickpea seeds and male

flower buds ofMercurtalis (Mok and Mok 2001 ; Sakakibara 2006).

The aromatic CKs that occur naturally in plants are benzyladenine (BA), ortho-topolin

and /weta-topolin. They are not widely distributed and are found in a limited number of

plant species (Fig. 3B). All natural CKs may also be present in the corresponding

nucleoside, nucleotide and glycoside counterparts in the plant metabolome. There are
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also some synthetic metabolites that possess cytokinin activity such as diphenylurea

(DPU) but have not been found naturally in plants.

A) Isoprenoid CKs

HN

J€

H

Af5- (a^-isopentenyl)adenine
(iP)

frans-zeatin
(tZ)

HN

OH

HN

LUH
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(cZ)

B) Aromatic CKs
OH

N

W1 »

dihydrozeatin
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Figure 3. Structure of naturally occurring cytokinins. (A) Isoprenoid CKs, (B) Aromatic CKs
(Sakakibara 2006).
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1.3.2) Cytokinin perception and signal transduction

Since their discovery 50 years ago, scientists have tried to understand the mechanism by

which CKs are sensed and perceived in the cell. Early after their discovery, scientists

found that the sites of biosynthesis and action of CKs are spatially separated. Isolation of

cytokinin-binding-proteins (CBPs) as CK receptors was not successful since none were

shown to be a true receptor. With the advent of molecular biology, the mechanism of CK

signaling became well understood. The discovery of histidine kinase receptors and

downstream components indicated that plants use the two-component signaling system

(TCS), initially discovered in bacteria, in the CK signal transduction pathway.

In the next section, the mode of action of TCS in prokaryotes and higher eukaryotes like

plants is discussed, and then the components of this system in CK signaling in A. thaliana

are explained.

1.3.3) Two-component system

Plants like bacteria utilize the two-component system (TCS) to sense and respond to their

environment. Basically, TCS consists of two main components: the sensor kinase and the

cognate response regulator (RR). The sensor histidine kinase is usually a membrane-

bound protein that senses environmental stimuli. It consists of two domains: the "input

domain" and the "transmitter domain". The input domain dimerizes upon binding of

ligands and autophosphorylates the transmitter domain at a histidine residue (H) (Fig.

4A). This phosphate group is then transferred to the RR. Thus, the sensor histidine kinase

directly modulates the activity of RRs in response to stimuli by phosphorylation (Chang

and Stewart 1998).

9



The RR, which propagates the signal through the cytoplasm, consists of two domains: the

"receiver domain" that receives the phosphate group on its conserved aspartate (D)

residue, and the "output" domain that is not present in all response regulators and has

DNA binding activity. Phosphorylation of the receiver domain results in a conformational

change in the output domain that will eventually lead to transcription of special sets of

genes (Fig. 4A).

The TCS is very well studied in prokaryotes. There are more than 40 different TCSs that

have been identified in Escherichia coli. Compared to bacteria, plants use a relatively

complicated system. They use a hybrid sensor kinase and a multistep phosphorelay

cascade in which the phosphoryl group alternates between sequential histidine and

aspartate residues of different substrates (Fig. 4B). This allows for longer-lasting

signaling in cells in which different pathways can be involved in response to extracellular

signals. The output of such complex responses probably leads to a better adaptation to

environmental changes.

The components of such a pathway in the model plant A. thaliana comprise the Histidine

Kinase receptors (AHKs), the Histidine Phosphotransmitter proteins (AHPs) and the

Response Regulators (ARRs).

10
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Figure 4. Schematics of two-component system in bacteria and plants (D'Agostino and Kieber 1999).
(A) Basic prokaryotic two-component system. The input domain (red) is responsible for perceiving external
stimuli and modulates the histidine kinase activity of the attached transmitter domain (green). Active
sensor kinases act as dimmers. For the sake of simplicity, only a monomer of the sensor kinase is depicted.
The phosphate is then transferred to a conserved aspartate residue (D) in the receiver domain (blue) of a
cognate response regulator, which activates or inactivates the output domain (yellow). (B) The
phosphorelay system in plants. The input domain of a hybrid kinase, regulates the activity of the transmitter
domain by phosphorylation of its histidine residue. The phosphate is then transferred to an aspartate residue
on the fused receiver domain and then to a histidine on an AHP protein (purple) and, finally, to an aspartate
residue on an ARR protein. Abbreviations: AHP, Arabidopsis histidine phosphotransfer (HPt) proteins;
ARR, Arabidopsis response regulator.

Arabidopsis Histidine Kinase Receptors (AHKs)

Kakimoto identified an Arabidopsis gene, CKIl that produces a cytokinin-independent

phenotype in calli when overexpressed by transfer DNA (T-DNA) activation tagging.

The CKIl protein contains a sensor histidine kinase domain, a receiver domain, and two

potential transmembrane domains in its structure. These characteristics together with the

11



phenotype of the mutant suggested that CKI lisa cytokinin receptor (Kakimoto 1 996).

However, the binding of this protein to CKs has not been demonstrated yet.

The CRElI WOLl/ AHK4 gene was later identified independently in different research

studies as a cytokinin receptor coding gene from mutants that exhibited reduced

sensitivity to cytokinins. Using forward genetics, Inoue et al. found that mutations in the

CREI (Cytokinin Response 1) gene produce a cytokinin-insensitive phenotype in

Arabidopsis. The crei mutants were complemented by introduction of a functional CREI

gene. Moreover, expression of CREI conferred a cytokinin-dependent phenotype when

introduced in a yeast strain deficient in the endogenous SLNl histidine kinase gene

(Inoue et al. 2001). Molecular and genetic evidences revealed that CREI is allelic to

WOLl {WOODEN LEG 1) and to AHK4 genes. The WOLl gene was initially found to be

required for proper formation of root vascular tissue (Mahonen et al. 2000).

Almost at the same time, Ueguchi et al. found the homologs of CREI as a novel family

of sensor histidine kinase genes based on amino acid sequence similarity to the

transmitter domain of several sensor histidine kinases in A. thaliana. The members of the

so-called AHK family (AHK2, AHK3 and AHK4) were over 60% identical in the amino

acid sequence of their transmitter and receiver domains, and they all encoded plasma

membrane associated proteins. Among them, AHK3 and AHK4 were shown to bind

directly to cytokinins using a yeast suppression assay (Ueguchi et al. 2001; Ueguchi et al.

2001). Binding of AHK4 to different types of cytokinins was further demonstrated using

heterologous yeast and E. coli phosphohorelay systems (Suzuki et al. 2001; Yamada et

al. 2001). Using protoplast transient expression analysis in the presence of cytokinins, all
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three putative receptors were able to induce the expression of the ARR6 promoter which

is a cytokinin primary response gene (Hwang and Sheen 2001).

Furthermore, study of AHKs expression patterns and AHKs single, double and triple

mutants revealed distinct, yet overlapping functions of the three receptors in regulating

root and shoot growth (Higuchi et al. 2004; Nishimura et al. 2004; Riefler et al. 2006).

AHKl and AHK5 (CKI2) are also coding for transmembrane histidine kinases in

Arabidopsis. However, their potential role in cytokinin signaling has not been

demonstrated yet (Kakimoto 1996; Urao et al. 1999).

Arabidopsis Histidine Phosphotransmitter Proteins (AHPs)

Identification of sensor histidine kinases as cytokinin receptors suggested the presence of

other components of the His-to-Asp phosphorelay system in A. thaliana including

Histidine Phosphotransmitter proteins (AHPs) and Response Regulators (ARRs). There

are at least five putative histidine phosphotransmitter coding genes in the A. thaliana

genome (Miyata et al. 1998; Suzuki et al. 2000). AHPs act as cytoplasmic-nuclear

shuttles and transfer the signals from AHK, which are mainly localized in the plasma

membrane, to ARRs, which are mostly localized in the nucleus (Fig. 5). It was shown

that some AHPs (AHPl and AHP2) transiently translocate from cytoplasm to nucleus

upon induction by cytokinins (Hwang and Sheen 2001). Additionally, the binding of

AHPs to AHKs and type-B ARRs have been demonstrated using the E. coli phosphorelay

system and the yeast two-hybrid system, respectively (Suzuki et al. 2001; Suzuki et al.

2001). Analysis of AHPs loss-of-function mutations indicates the positive and redundant

function of these elements in cytokinin signaling (Hutchison et al. 2006).
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Figure 5. A model for cytokinin signal transduction through His-to-Asp phosphorelay (Heyl and
Schmulling 2003). Ligand binding induces receptor dimerization and autophosphorylation. Transfer of the
phosphoryl group by activated receptors activates AHPs which transport the signal from the cytoplasm to
type-B ARRs in the nucleus. Type-B response regulators transcribe target genes, among them type-? ARR
genes. Type-? response regulators may down-regulate the primary cytokinin signal response via a negative
feedback loop. Abbreviations: D, aspartate residue, H, histidine residue, P, phosphoryl group.

Arabidopsis Response Regulators (ARRs)

The Response Regulators (ARRs) are the final components of the phosphorelay circuitry

in plants. There are at least 22 ARR-coding genes in the Arabidopsis genome that contain

14



invariant DDK residues in their receiver domain, a hallmark that is also present in

response regulators of prokaryotes and yeasts. Based on amino acid sequence similarity

and protein structure, ARRs fall into two distinct classes: type-? and type-B. Most of

type-? ARRs lack the output domain at their C-terminal ends and show rapid induction

upon treatment with cytokinins. In contrast, type-B ARRs contain an extended C-terminal

domain having the characteristics of transcriptional activators and their expression is not

influenced by cytokinins.

Type-? ARRs: (ARR3-ARR9, ARRI5-ARR1 7 and ARR22): The 11 members of typé-A

ARRs are mainly composed of a receiver domain with a short extension at their C-

terminus (less than 100 amino acids). Their receiver domains are more closely related to

each other (60-93% identical in amino acid sequence) than the receiver domain of type-A

and type-B ARRs (which are less than 30% identical in amino acid sequence). Type-A

ARRs are known as "primary response genes" since their transcript level is rapidly and

transiently induced by cytokinins (within 10 minutes). This induction is insensitive to

protein synthesis inhibitors (such as cycloheximide) and is specific for cytokinins

(D'Agostino et al. 2000). Type-? ARRs are located either in the cytoplasm or the nucleus

and their transcripts are present in all parts of the plant (Heyl and Schmulling 2003).

Most of the type-? ARRs are negative regulators of the cytokinin signaling pathway

(Hwang and Sheen 2001 ; To et al. 2004; Lee et al. 2007).

Type-B ARRs: (ARRI, ARR2, ARR10-ARR14, and ARR18-ARR21): Type-B ARRs
have a receiver domain and a large carborxy-terminal output domain (250-260 amino

acids). The presence of a nuclear localization signal domain (NLS), a GARP DNA-

binding domain (or B-motif) and a proline/glutamine-rich domain in the C-terminal
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region of all type-B ARRs indicates that they act as transcriptional activators (D'Agostino

and Kieber 1999). Recently, a core DNA sequence motif (G/A)GAT(TVC) was identified

to be bound by type-B ARRs and be present in the upstream region of most of type-A

ARR promoters and putative cytokinin-induced genes (Sakai et al. 2000; Rashotte et al.

2003).

Studies of several type-B ARR mutant lines suggest distinct but also redundant functions

among type-B ARRs (Imamura et al. 2003; Tajima et al. 2004). The exogenous

application of cytokinins does not alter the transcription of type-B ARRs (Imamura et al.

1999;-Kibae/fl/. 1999).

The expression pattern of different components of the TCS in A. thaliana is illustrated in

Fig. 6.
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Figure 6. General expression pattern of Arabidopsis cytokinin two-component signaling components
(Ferreira and Kieber 2005).

1.3.4) Physiological responses to cytokinins

Cytokinins are involved in many plant growth and developmental processes. In the

following section, we first discuss the main downstream target genes which are regulated

through the cytokinin signaling pathway. Then, we review the available microarray data

showing the cytokinin regulation of the members ofAtST4 subfamily in A thaliana.

Cytokinins and cell division

The cytokinin role in cell division and proliferation was first documented in the 1950s

(Miller et al. 1995). In 1999, CycD3 (a member of a D-type cyclin gene family involved
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in the Gl to S transition of the cell cycle) was found to be up-regulated in Arabidopsis

mutants with high levels of endogenous cytokinins and to be rapidly induced by the

exogenous application of cytokinins (Riou-Khamlichi et al. 1 999). This induction was

cycloheximide independent. Moreover, transgenic cells overexpressing the CycD3 gene

were cytokinin independent when grown in vitro. Altogether, these results suggest that

cytokinins regulate cell cycle progression at the Gl-S transition through the positive

regulation of CycD3 expression.

Cytokinins and shoot development

The exogenous application of cytokinins induces shoot formation from calli grown in

vitro. The analysis of Arabidopsis loss-of-function and gain-of-function mutants with

altered cytokinin levels has confirmed the positive role of cytokinins on shoot

development. Reduced cytokinin content in the cytokinin-receptor triple mutant

(ahk2,3,4) and cytokinin-oxidase overexpressor lines (35s::CKXs) resulted in reduced

size of shoot apical meristem (SAM), retarded leaf formation and reduced cell production

in leaves (Werner et al. 2001; Werner et al. 2003; Higuchi et al. 2004; Nishimura et al.

2004). Furthermore, increased levels of cytokinins in transgenic plants overexpressing the

bacterial cytokinin biosynthesis gene, isopentyl transferase (IPT), led to ectopic shoot

formation, reduced apical dominance and increased mesophyll cell layers in leaves. The

gene expression studies showed induction of KNOTTED! and STM homeobox genes in

these plants, as well. The KNOTTEDl-like homeobox genes are expressed exclusively in

the SAM and are involved in its development and maintenance (Rupp et al. 1999).

Moreover, the defect of a recently identified cytokinin biosynthesis enzyme in rice

resulted in pre-mature termination of shoot meristem (Kurakawa et al. 2007).
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Cytokinins and senescence

Leaf senescence is defined as an aging process that is accompanied with the degradation

of chlorophyll and photosynthesis proteins. It is a complex mechanism that occurs at final

stages of leaf growth and is controlled by many factors. It was shown that cytokinins

delay leaf etiolation and senescence (Wingler et al. 1998). Overexpression of the

cytokinin biosynthesis gene, IPT, under the control of a senescence-specific gene

promoter delayed senescence in transgenic tobacco (Gan and Amasino 1995). How

cytokinins regulate senescence at the molecular level is not known yet, but mutational

studies of cytokinin signaling components indicate a primary role for AHK3 and ARR2 (a

type-B ARR) in this process (To and Kieber 2008).

Cytokinins and root development

In contrast to their promotional role in shoot development, cytokinins reduce root

meristem size and inhibit primary root elongation and lateral root formation. Mutants

with reduced cytokinin sensitivity (ahk3 and arri, 12) develop an enlarged root meristem

and a longer primary root (Dello Ioio et al. 2007). Furthermore, cytokinin-deficient

mutants that overexpress cytokinin oxidase exhibited an overall enhanced root system

(Werner et al. 2001; Werner et al. 2003). However, reduced cytokinin perception in the

receptor triple mutant (ahk2,3,4) and in the phosphotransmitter quintuple mutant (ahp

1,2,3,4,5) resulted in reduced root development. This implies that although cytokinins

have a negative regulatory effect in root development, a certain level of cytokinins is

needed for proper root formation. Support for this hypothesis comes from molecular and

genetic analysis of the WOODEN LEG (WOL, an allele of AHK4/CRE1) mutant. It was

shown that the wol mutant develops short roots with fewer embryonic vascular tissues

19



that give rise only to protoxylem tissue. Interestingly, the defect in root vasculature was

complemented by exogenous cytokinin application, indicating a cytokinin requirement

for root vascular tissue formation and development (Mahonen et al. 2000; Mahonen et al.

2006).

Cytokinins and the AtS T4 subfamily

As we have seen, cytokinins play an important role in many physiological and

developmental processes in plants. Regulation of these processes requires changes in the

expression of cytokinin responsive genes. Many genome-wide microarray analyses have

been performed in order to discover the genes downstream of the cytokinin signaling

pathway. A review of these studies reveals that members of AtST4 subfamily are

regulated by cytokinins in A. thaliana.

Study of genome-wide gene expression of transgenic A. thaliana seedlings that carry the

bacterial cytokinin-biosynthesis gene (IPT) under the control of a chemically inducible

promoter showed up-regulation of AtST4b (Atlgl3420) transcript 6 hours and 24 hours

after IPT induction (Hoth et al 2003).

In the combinational microarray analysis performed by Kiba et al., the AtST4b transcript

was increased up to 7.3-fold in 21 -day old wild type Columbia (Col) seedlings treated for

3 hours with the cytokinin /-zeatin. In this study, the AtST4b transcript was also up-

regulated 11.3-fold in the absence of cytokinin treatment in a transgenic line

overexpressing ARR21 (a type-B ARR) as compared to wild type plants. These results are

interesting because based on the kinetics and level of induction, the authors have

categorized AtST4b as one of the genes that is up-regulated rapidly and specifically by
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cytokinins in a manner similar to that of the type-? ARR genes, which are hallmarks of

the two-component phosphorelay system (Kiba et al. 2005).

Microarray analysis performed on roots of two-week old seedlings of Columbia 0 (CoI-O)

and arrlO/arri2 double mutant (type-B ARRs) shows that even though AtST4b is

induced in both cytokinin-treated wild type and mutant line, the level oîAtST4b induction

is attenuated in the mutant line as compared to the wild type plants. These results suggest

that ARRIO and ARRIl act as positive regulators of the downstream AtST4b gene

(Yokoyama et al. 2007).

Using genome-wide expression profiling, Brenner et al. classified immediate-early (15

min) and delayed (120 min) cytokinin response genes in A. thaliana. They also analyzed

gene expression in cytokinin deficient transgenic line (35S:AtCKXl). Surprisingly,

AtST4b is not among the genes whose transcripts have been changed by the exogenous

application of cytokinins in wild type and the 35S:AtCKX transgenic line. However, the

available data indicates the repression of AtST4b transcript in cytokinin oxidase

overexpression line compared to wild type plants (Brenner et al. 2005).

As mentioned earlier, type-? ARRs are generally negative regulators in the cytokinin

signaling circuitry. In order to investigate the downstream components of type-? ARRs,

Lee et al. produced a transgenic line overexpressing ARR7 (type-? ARR). Analysis of

microarray data showed that ARR7 overexpression has a distinctively repressive impact

on various groups of cytokinin-regulated genes. In particular, the expression of all type-A

ARRs (except for ARR22), AHKl and AHK4, most of the cell expansion genes and the

cytokinin oxidase genes were repressed in the ARR7 overexpression line. Surprisingly,

regulation oí AtST4b gene was positively affected by ARR7. These results showed that
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expression of AtST4b is not only up-regulated by cytokinins after 30 min and 2 hours

treatment in wild type plants, it is also induced in ARR 7 overexpression line by cytokinin

treatments. The high levels of induction in the overexpressor line indicate the great

impact OÎARR7 on AtST4b regulation.

In the Affymetrix full genome array, the same probe set represents both the AtST4a and

AtST4c genes making it impossible to differentiate these two genes. Based on the

GeneChip analysis performed by Lee et al. (as opposed to AtST4b), the expression of

AtST4c (and/or AtST4d) was repressed by the exogenous application of cytokinins in both

wild type and ARR7 overexpressor line (Lee et al. 2007).

1.4) PoIyamines

Polyamines (PAs) are low molecular weight, nitrogen-containing cationic compounds

that are found in almost all organisms. Due to their positive charge, PAs can bind directly

to RNA, DNA, nucleotide triophosphates and proteins, and in some cases can modulate

their function. PAs play important roles in the regulation of gene expression, modulation

of certain ion channels, cell proliferation, programmed cell death or apoptosis, ribosome

biogenesis, protein synthesis, membrane rigidity and embryonic development (Igarashi

and Kashiwagi 2000; Thomas and Thomas 2001; Kusano et al. 2008). The major

polyamines in plants are putrescine, spermidine and spermine. The biosynthesis of

polyamines in plants is initiated by decarboxylation of the amino acid arginine to form

the diamine putrescine. Putrescine is then converted to the triamine spermidine and the

tetraamine spermine through the sequential addition of aminopropyl residues (Kusano et

al. 2007) (Fig. 7). Intracellular PA content is modulated through a complex circuitry of

biosynthesis, degradation, cellular uptake and efflux. These mechanisms are controlled
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by different enzymes and are tightly regulated to maintain PA homeostasis. The study of

loss-of-function and gain-of-function mutation of these genes has confirmed the

importance of PAs in plant growth and development. Studies by Imai et al. showed that

even though spermine is not essential for the survival of Arabidopsis, suppression of the

genes coding for the enzymes involved in spermidine biosynthesis (SPDSl and SPDS2)

either by T-DNA insertion or PvNA interference is lethal in Arabidopsis and results in

embryonic arrest in double mutant seeds (Imai et al. 2004; Imai et al. 2004). A double

mutation of the two putrescine biosynthesis genes (ADCl and ADC2) leads to a similar

developmental defect in the embryo of Arabidopsis (Urano et al. 2005). Moreover,

overexpression of oat ADC in tobacco resulted in increasing endogenous putrescine

levels and toxic phenotypes such as necrosis and dwarfism (Panicot et al. 2002).

Altogether, these data indicate that putrescine and spermidine are essential for plant

growth and embryogenesis, while spermine is not essential for normal growth in

Arabidopsis. Furthermore, based on the spermidine biosynthesis pathway and

requirement of putrescine for spermidine biosynthesis, it is probably the lack of

spermidine that leads to embryonic defects in putrescine biosynthesis mutants.

PAs can be conjugated with a variety of compounds by formation of an amide linkage. In

animals, acetylation by spermidine/spermine aceylteransferase (SSAT) reduces the

positive charges of PAs and their biological activity (Pegg 2008). In plants, however, the

acylated conjugates of PAs play an important role in growth and development. A group

of these polyamine-based alkaloids are referred as hydroxycinnamic acid amides

(HCAAs) and formed by the addition of an acyl moiety (hydroxycinnamic acid in this

case) to the acceptor molecules (polyamines) in presence of BAHD acyl transferase
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(named after the first letters of the first characterized members of the family; BEAT,

AHCT, HCBT and DAT) (D'Auria 2006). The hydroxycinnamoyl component can be

replaced with coumaroyl, caffeoyl, hydroxyferuloyl or sinapoyl acyl groups. HCAAs are

widely distributed in plants and implicated in several growth and developmental

processes such as germination, cell division, flower formation, cell wall formation, as

well as stress and defense responses (Facchini et al. 2002). For example, Luo et al. have

characterized two sinapoyl spermidine derivatives that accumulate largely in seeds of

Arabidopsis and seem to act as polyamine reserve during germination (Luo et al. 2009).

Such a storage role for polyamine conjugates have previously been reported in rice seeds,

as well (Bonneau et al. 1994). Luo et al. have also identified a gene coding for

spermidine dicoumaroyl transferase (SCT) that is specifically expressed in the root tip

and induced by cytokinins (Luo et al. 2009). Based on its site of expression and induction

by cytokinins, the authors have assigned a role in cell division for the SCT in roots.

Furthermore, spermidine conjugates in the pollen coat of Arabidopsis are responsible for

its shape and autofluorescence (Grienenberger et al. 2009). Interestingly, a DNA-UV

protective function have been suggested for cinnamoyl-derivatized spermidines that

accumulate in the pollen (Bienz et al. 2005).

In addition to their roles in plants, HCAAs are representing an important class of

antioxidant and chemotherapeutic agents that have the potential to be used in the

treatment of human diseases and as insecticides (Klose et al. 2002; Park and Schoene

2006; Russo et al. 2007).
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Figure 7. Polyamine biosynthesis pathway in plants (Imai et al. 2004). Enzymes shown in numbers are
(1) ODC (ornithine decarboxylase) (2) ADC (arginine decarboxylase) (3) agmatine iminohydrolase (4) N-
carbamoylputrescine amidohydrolase and (5) SAMDC (S-adenosylmethionine decarboxylase).

1.5) Purpose of the present study

Based on previous genetic studies and microarray analyses, three SULT-coding genes

(AtST4a, AtST4b and AtST4c) were found to be expressed exclusively in roots and

regulated by cytokinins in A. thaliana. AtST4a has been previously partially characterized

and was shown to encode a brassinosteroid SULT in in vitro studies. The purpose of the

present study was to characterize the biochemical and biological function of the other

members of the AtST4 subfamily. To further investigate the role of cytokinins on the
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regulation of AtST4a, -4b and -4c expression, we analyzed their expression in roots of

wild type Arabidopsis at different time points following treatments with /-zeatin.

The best way to study the function of a gene is to study the phenotype of plants that are

lacking it. Therefore, homozygous AtST4a, AtST4b and AtST4c T-DNA insertion mutants

were isolated and subjected to a number of metabolic and phenotypic analyses. To

identify the biochemical function oí AtST4a, -4b and -4c in vitro, their coding sequence

was expressed in E. coli and their enzyme activity was tested using radioactive PAPS and

purified plant metabolites. Using High Performance Liquid Chromatography (HPLC),

neutral loss mass spectrometry and liquid chromatography-tandem mass spectrometry

(LC-MS/MS) analyses, we were able to characterize the substrate of AtST4b. Finally, the

consequence of changing the sulfated metabolome of AtST4a, AtST4b and AtST4c single

mutants was analyzed by monitoring a number of growth parameters known to be under

the control of cytokinins. The results of these investigations are presented in the next

chapters.
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Chapter 2- Materials and Methods

2.1) Materials

Seeds of wild type A. thaliana, ecotype Columbia 0 (CoI-O) were obtained from Lehle

seeds (USA). The Arabidopsis lines carrying a T-DNA insertion allele for AtST4a

(GABI_177E08) and AtST4b (GABI_231G06) were obtained from Gabi-Kat

(http://www.gabi-kat.de/), and AtST4c (FLAG_334F06) from INRA (http://www.inra.fr/).

All the mutant lines were generated in a CoI-O background.

2.2) Methods

2.2.1) Plant growth conditions

The Arabidopsis plants were grown either in soil or on vertical petri dishes containing

full-strength Murashige and Skoog (MS) medium (1% sucrose, 0.4% Gelrite, 0.05%

MES, PH 5.7) under long day conditions (16 hours light/8 hours dark) at a light intensity

of -130 µ???? m'V1. The temperature was kept at 20 0C during night-time and gradually
increased to 22 0C during day-time.

2.2.2) Seed sterilization

The Arabidopsis seeds were sterilized by a 30 seconds immersion in 70% ethanol, 5

minutes shaking in a mixture of 10% bleach and 0.02% SDS solution and several times

rinsing with sterile distilled water. The seeds were then vernalized by keeping them 2-4

days at 4°C in dl^O before planting.
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2.3) Regulation studies of the AtST4 subfamily

2.3.1) Transcript expression study of the AtST4 subfamily in response to

cytokinins

For transcript expression analysis, 16-day-old plants were sprayed with 20 µ? í-zeatin

dissolved in 50% dimethylsulfoxide (DMSO) for 30 minutes, 2 hours, 4 hours and 6

hours. RNA samples were extracted from root tissue using the RNeasy Plant Mini Kit

(Qiagen). For reverse transcription polymerase chain reaction (RT-PCR) experiments, 2

µg of total RNA was treated with 2 µ? Expand Reverse Transcriptase Buffer 5x (Roche)

and 0.2 µ? DNase I 40 U/µ? (Roche). The volume was adjusted to 20 µ? using DEPC-

treated water. The reaction was incubated 1 5 minutes at room temperature, followed by

the addition of 2 µ? of 30 mM EDTA. DNase I was heat-inactivated at 65 0C for 10

minutes and tubes were put on ice for 2 minutes and centrifuged for a short time.

Following DNase I treatment, 8 µ? of 50 µ? Oligo dT (15 mers) was added to each

reaction. Then, the tubes were incubated 10 minutes at 65°C, put on ice for 2 minutes and

centrifuged for a short time. A mix of 10 µ? Expand RT Buffer 5x (Roche), 5 µ? dTT (100

mM), 2 µ? dNTP (25 mM), 2 µ? Expand Reverse Transcriptase 50 U/µ? (Roche) was

added to each reaction, followed by 60 minutes incubation at 43 °C. The synthesized

cDNAs were then used in PCR reactions.

The absence of genomic DNA contamination was verified by PCR using the Actin primers which

span introns of 8 Actin genes. Furthermore, the Actin genes were used as internal control for

RNA calibration. The volumes of cDNA, used as template for PCR, were adjusted after a

preliminary calibration based on the levels of Actin PCR products. The following thermocycling

program was used: initial denaturation at 94°C for 2 minutes, followed by the specified number
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of cycles at 94°C for 30 seconds, 55°C for 45 seconds (except for Actin at 600C), and 720C for 1

minute, and a final extension at 72°C for 5 minutes.

The following primers were used:

Actin-F(5'-GCTGATGGTGAAGACATTCA-3')

Actin-R(5'-CATAGCAGGGGCATTGAAAG-3')

AtST4a-F (5'-CGGGATCCATGGATGAAAAAGATAGACCAA-3')

AtST4a-R (5'-GGGGTACCTTAGAATTTCAA-3')

AtST4b-F(5'-TGCCATGGGTGAGAAAGATATTCCA-3')

AtST4b-R(5'-CGGGATCCCTACAATTTCAAACCAGAGCC-3')

AtST4c-F (5'- CGCTTAAACTACCCTTGAAG-3')

AtST4c-R(5'-AGAACAAAAACCACACATCA-3')

The primers were used at a concentration of 0.4 µ?.

2.4) Molecular characterization of T-DNA insertion mutants

2.4.1) Genomic DNA extraction

The genomic DNA was extracted from leaf tissue of at least 20 individual plants

according to the Extract-N-Amp plant PCR kit (Sigma-Aldrich).

2.4.2) Screening for T-DNA insertion mutants

The wild type AtST4a, AtST4b and AtST4c, and their knockout alleles were identified by

means of polymerase chain reaction (PCR) using the following primers.

- The wild type AtST4a allele was identified using the following primers in PCR:

AtST4a-F(5'-GGACCCGCTTCAAGTACC-3')

AtST4a-R(5'-TCAATTTTGTCTACCATTTCAGG-3')
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The AtST4a-R in combination with Gabi-Kat LB (5'-

ATATTGACCATCATACTCATTGC-3') was used for detection ofAtST4a-KO

allele.

- The wild type AtST4b allele was identified using the following primers in PCR:

AtST4b-F(5'-CTCTTATGCCACCAAATACAAG-3')

AtST4b-R (5'- CGGGATCCCTACAATTTCAAACCAGAGCC-3')

The AtST4b-R in combination with Gabi-Kat LB (5'-

ATATTGACCATCATACTCATTGC-3') was used for detection of the AtST4b-

KO allele.

The wild type AtST4c allele was identified using the following primers in PCR:

AtST4c-F (5'-CGCTTAAACTACCCTTGAAG-3')

AtST4c-R (5'- AGAACAAAAACCACACATCA-3')

The AtST4c-F in combination with INRA LB (5'-

CTACAAATTGCCTTTTCTTATCGAC-3') was used for detection of the

AtST4c-KO allele.

10-15 ng of genomic DNA was used as a template in all PCR reactions. In all cases, the

actin gene was used as a positive internal control. The thermocycling program was as

follows: initial denaturation at 940C for 2 minutes, followed by 37 cycles at 94°C for 45

seconds, 550C for 1 minute (except for AtST4a at 580C), and 72°C for 1 minute, and a

final extension at 72°C for 7 minutes. The PCR was performed using Ex Taq DNA

polymerase (Takara Biomedicals).
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2.4.3) RT-PCR analysis of T-DNA insertion mutants

The two-week old wild type and mutant plants were either treated with 20 µ? í-zeatin for

2 hours or mock treated. The RNA was extracted from root tissue using the RNeasy Plant

Mini Kit (Qiagen) and cDNA was generated as explained in section 2.3.1. The resulting

cDNAs were used as template for knockout confirmation analysis. The following gene

specific primers were used in PCR:

AtST4a-F(5'-GGACCCGCTTCAAGTACC-3')

AtST4a-R(5'-TCAATTTTGTCTACCATTTCAGG-3')

AtST4b-F (5'-ATGGGTGAGAAAGATATTCCA-3')

AtST4b-R (5'- CTACAATTTCAAACCAGAGCC-3')

AtST4c-F(5'-CGCTTAAACTACCCTTGAAG-3')

AtST4c-R(5'-AGAACAAAAACCACACATCA-3')

Actin-F (5'- GCTGATGGTGAAGACATTCA-3')

Actin-R (5'-CATAGCAGGGGCATTGAAAG-30

The PCR program was as follows: initial denaturation at 94°C for 2 minutes, followed by

specific number of cycles at 94°C for 45 seconds, 550C for 1 minute (except for AtST4a

at 58°C and Actin at 600C ), and 720C for 1 minute, and a final extension at 72°C for 7

minutes.

2.5) Phenotype analysis of mutant plants

2.5.1) Root growth analysis

Seedlings of wild type and Arabidopsis mutants were grown vertically on MS media. The

length of the primary root was marked on the petri dishes at around the same time every
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day within the 10 days after germination (DAG) and measured by a ruler. The emerging

lateral-roots were counted using a Nikon dissecting microscope (Nikon SMZl 500). The

plants were photographed 7 DAG with a Nikon D70 camera.

2.5.2) Determination of rosette diameter, seed size, seed and silique number

Rosette diameter and number of leaves of soil-grown plants were determined 14, 21 and

26 days after germination (DAG). For each plant, two measurements of rosette diameter

were taken with a ruler, and the average of the two values was used for data analysis.

Seed size of wild-type, AtST4b and AtST4c mutant lines were determined measuring the

length and width of 40 seeds. The volume was estimated based on formula of volume =

4/3 X p X length X width X depth (Riefler et al. 2006). The number of seeds per silique

was counted for 30 mature siliques of each genotype. The number of siliques was

measured 36 and 46 DAG.

2.5.3) Statistical analysis

Data analysis was performed using the PASW Statistics 18 (formerly known as SPSS)

software. Since the data were not generally suitable for parametric statistics, comparisons

of means from multiple groups were analyzed by the Kruskal-Wallis test. If this test

found a significant effect, the differences between each of independent mutant groups

and wild type group were analyzed by the Mann-Whitney U. When the data were suitable

for parametric analysis, we compared two groups using two-independent-sample test (t-

test). A P value of 0.05 or less was considered significant in all cases.
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2.6) Enzymology

2.6.1) Expression and purification of recombinant enzymes in E. coli.

The coding sequences of AtST4a, AtST4b and AtST4c were previously cloned in a

bacterial expression system (pQE-30, Qiagen) and transformed in E.coli strain XLl-blue.

A culture of E. coli harboring AtST4a, -4b and -4c (O.Döoo = 0.7) was induced with ImM

isopropylthio-ß-D-galactopyranoside (IPDG) for 10 hours at 220C. Bacterial cells were
collected by centrifugation and resuspended in lysis buffer (5OmM sodium phosphate,

0.3M NaCl, 1OmM imidazole and 14 mM ß-mercaptoethanol, pH 8.0). The cells were

lysed by sonication, and the recombinant proteins were recovered in the soluble fraction

by centrifugation at 13,000 rpm for 20 minutes at 40C. The soluble recombinant proteins
were purified by affinity chromatography onto a nickel-nitrolotriacetic acid agarose

matrix (Qiagen) under native condition. Protein concentration was estimated using the

Bradford Reagent (Bio Rad) and bovine serum albumin as a reference protein. To verify

the solubility and evaluate the level of purity of the recombinant proteins after

chromatography, aliquots were subjected to 12% Polyacrylamide gel electrophoresis

according to the method of Laemmli. The proteins were visualized by 15 minutes staining

in 0.1% Coomassie Blue. The gel was later destained with several changes of 40%

methanol and 10% of acetic acid for removal of the background coloration.

2.6.2) Sulfotransferase assays

The reaction mixture (50 µ?) contained 50 pmol [35S] PAPS (NEN Life science products,
Boston, MA), 5µ1 of hydrolyzed metabolite extract (dissolved in 50% methanol) and

approximately 2 ^ig of the recombinant enzyme preparation (extracted in 50 mM Tris-Cl,
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pH 7.5). The reactions were allowed to proceed for 10 minutes at 220C and then stopped

by the addition of 1 0 µ? 2.5% acetic acid. The sulfated enzymatic product was extracted

in ice-cold n-butanol and an aliquot was counted for radioactivity using a liquid

scintillation counter. The remaining fraction was lyophilized for product identification by

high performance liquid chromatography (HPLC), thin layer chromatography (TLC) and

mass spectrometry.

2.6.3) Preparation of Arabidopsis thaliana extracts for the detection of the

endogenous substrate

Roots of 16 day-old A. thaliana plants grown vertically on MS media were ground to a

fine powder in liquid nitrogen, and the powder was homogenized in 50% methanol

(approximately 3 ml/g of plant tissue) for 1 hour. Methanol was evaporated and the

aqueous phase extracted with 1:1 volume of n-butanol. The butanol extract was

lyophilized and resuspended in 50% aqueous methanol. To release the endogenous

substrate, the extract was hydrolyzed in 0.1N HCl by boiling at 98°C for 10 minutes and

subsequently neutralized in 0.1 N NaOH. This fraction was tested directly as substrate for

enzymatic assays or purified on a Novapak Ci g reverse phase column equilibrated with

solvent A (0.05% acetic acid in water) using a Waters 625 LC HPLC system. The column

was washed for 5 minutes in 100% solvent A. Metabolites were eluted with a linear

gradient of solvent A into solvent B (100% methanol, 0.05% acetic acid) in 50 minutes,

followed by 10 minutes in 100% solvent B at a flow rate of 0.5 ml/min. Fractions of 0.5

ml were collected and assayed for activity with the recombinant enzymes. The fractions

exhibiting the highest activity were selected and assayed to get enough purified products

for HPLC, TLC and mass spectrometry.
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2.6.4) Preparation of Arabidopsis thaliana extracts for the detection of the

endogenous enzymatic products

Approximately 100,000 dpm of 35S-labeled sulfate product (dissolved in 100 µ? of 50%
methanol) produced according to the protocol described in section 2.6.3, was fractionated

on a Novapack Ci 8 reverse phase column equilibrated with solvent A (0.05% acetic acid

and 5 mM ammonium acetate in water) using a Waters 625 LC HPLC system. The

column was washed for 5 minutes in 1 00% solvent A. Plant metabolites were eluted with

a linear gradient of solvent A into solvent B (100% methanol, 0.05% acetic acid and 5

mM ammonium acetate) in 50 minutes, followed by 10 minutes in 100% solvent B at a

flow rate of 0.5 ml/min. Fractions of 0.5 ml were collected and counted for radioactivity

using a liquid scintillation counter. Using the same conditions, 1 gram of non-hydrolyzed,

non-radiolabeled root extract from wild type and mutant plants were purified on the

HPLC system. The fractions corresponding to the elution time of the radioactive product

were lyophilized and redissolved in 100 µ? 50% methanol for mass spectrometry analysis.

2.6.5) Mass spectrometry

Electrospray ionization tandem mass spectrometry (ESI-MS/MS) was used for analysis of

the HPLC-purified product of wild type and T-DNA insertion mutant lines. Data

acquisition and evaluation was performed using the Masslynx software. The catalyzed

reaction products were analyzed using neutral loss scan in the negative and positive mode

in search of a parent ion which gives a neutral loss of 80 mass unit (mass of sulfuryl

group). The analyses were preformed on a Quattro triple quadrupole from Micromass

using a cone voltage of 20 eV and collision induced dissociation (CID) energy of 35 eV

(2.5 mTorr argon). To get structural information and accurate mass of the AtST4b-
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sulfated product, the corresponding peak was further analyzed on a Q-TOF2 mass

spectrometer (Micromass, UK).

2.6.6) Thin Layer Chromatography

Approximately 15,000 dpm of purified assay products were spotted on cellulose TLC

plates (Analtech, 1 00 microns) and migrated in a mobile phase consisting of butanol,

water, and acetic acid (6:2:2, V/V/V). The dried plates were later exposed to Kodak

BioMax film for 7 days and then the autoradiograms were developed and scanned.
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Chapter 3- Results

3.1) Regulation study of the AtST4 subfamily

3.1.1) Introduction

Genome-wide microarray analysis revealed that members of the AtST4 subfamily are

regulated by cytokinins (Hoth et al. 2003; Brenner et al. 2005; Kiba et al. 2005; Lee et al.

2007; Yokoyama et al. 2007). An examination of the available microarray data showed

that AtST4b is strongly induced by cytokinins in seedlings ofA. thaliana (Genevestigator:

-4.92 fold induction after 1 hour and 3 hours treatment with ?µ? zeatin). In contrast,

AtST4a and/or AtST4c are slightly repressed by cytokinins on the same data set

(Genevestigator: -0.8 fold repression after 1 hour and 3 hours treatment with ?µ? zeatin

in seedlings). Furthermore, results from Gene Atlas and the electronic Fluorescent

Pictograph (eFP) browser engine showed that the members of the AtST4 subfamily are

expressed mainly in the elongation zone of seedling roots (Zimmermann et al. 2004;

Winter et al. 2007). Based on these results, a reverse transcription polymerase chain

reaction (RT-PCR) experiment was performed to evaluate the effect of cytokinins on

transcript expression of the members of the AtST4 subfamily in root tissue.

In addition, since the members of the AtST4 subfamily are regulated by cytokinins, we

searched for putative cytokinin response cis-elements upstream of the coding region of

AtST4a, AtST4b and AtST4c. The results of these analyses are discussed in the following

sections.
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3.1.2) Transcript expression study of the AtST4 subfamily in response to

cytokinins

Transcript expression analysis using gene specific primers on 16-days-old Arabidopsis

confirmed the regulation of the AtST4 subfamily members by the cytokinin trans-zeatin

(Y-zeatin) in roots. As shown in Fig. 8, 30 minutes after treatment with i-zeatin, AtST4b

transcript level was low, but gradually increased with time. In contrast to AtST4b, the

expression oí AtST4c was repressed by i-zeatin in roots. While AtST4c expression was

high in the absence of cytokinins, it decreased gradually following i-zeatin treatment,

until there was no detectable level of transcript 6 hours after treatment. The AtST4a

expression level was too low to be detected under the conditions of our experiment.

Size (bp) No. Cycles

Actin

AtST4a

AtST4b

AtST4c

653
557

1038

996

715
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Figure 8. Transcript expression profile of the members of the AtST4 subfamily in response to
cytokinins. Total RNA was extracted from roots of 16-day-old Arabidopsis (Col-0) vertically grown on
MS media treated or non-treated with 20µ? /-zeatin for various time. The Actin was used to quantify the
amounts of cDNAs and to test for genomic DNA contamination. Lane 1: 0 hour, lane 2: 30 minutes, lane 3:
2 hours, lane 4: 4 hours, lane 5: 6 hours and lane 6: genomic DNA.
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3.1.3) Study of the presence of cytokinin-responsive elements in the upstream

region of the AtST4 genes

As mentioned earlier in Chapter 1 , type-B ARRs are classified as transcriptional factors

in the multi-step phosphorelay signal transduction of the cytokinin pathway in

Arabidopsis. Analysis of the structure of type-B ARRs has revealed that, in addition to

the acidic domain, nuclear localization domain and glutamine-rich domain, they contain a

DNA binding domain in the C-terminal extension. This domain is called the B motif or

GARP motif and is composed of 60 amino acids. The GARP motif is representative of

the plant Myb-related transcription factors. The plant Myb proteins are distinctly related

to the well-known mammalian Myb-repeat transcription factors, which bind DNA in a

sequence-specific manner (Sakai et al. 1998; Imamura et al. 1999; Riechmann et al.

2000). In an attempt to characterize the DNA target of the plant Myb factors, Hosoda et

al. found that the B motif derived from ARR 10, a representative of type-B ARR binds

specifically to the optimal DNA sequence 5'-AGATT-3' in in vitro assays (Hosoda et al.

2002). In a different research study, the B motif of ARRI and ARR2 was shown to have

the highest binding affinity to the same core sequence (5'-AGATT-3') through gel

retardation assays (Sakai et al. 2000). The core sequences 5'-GGATC-3' and 5'-GGATT-

3' were found to be bound by the B motif of ARRI and ARR2 with less affinity.

Moreover, Sakai et al. showed that transgenic plants expressing a reporter gene under the

control of multiple copies of the sequence 5'-GGATT-3' are significantly activated by

ARRI and ARR2. Following the same procedure, Imamura et al. found that a truncated

version of ARRI 1 , encompassing the receiver domain and GARP motif, binds more

preferably to the sequence motif 5'-GGATT-3', rather than 5'-AGATT-3' in in vitro
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assays (Imamura et al. 2003). In addition, Rashotte et al. performed a genome-wide

microarray analysis to study the genes that are regulated by cytokinins. They found that

genes that are consistently induced by cytokinins (for example, type-? ARRs), contain a

significantly high proportion of the core sequence motif 5'-AAGATC-3' within the 1 kbp

upstream of their translation start site. Interestingly, they found that the frequency of this

motif in the upstream region of type-? ARRs is positively correlated with the induction

level (Rashotte et al. 2003). For example, while the sequence motif 5'-AAGATC-3'

should randomly occur approximately 0.38 times per kilobase pair, cytokinin up-

regulated and down-regulated genes contained on average 14 and 6 times this motif

within their upstream region, respectively. Overall, the optimal binding core sequence for

the type-B ARRs seems to be 5'-(A/G)GAT(T/C)-3' with a specific requirement for the

central GAT. However, since this short motif occurs frequently in the Arabidopsis

genome, the existence of additional factors has been proposed in order to increase the

specificity of the response (Sakai et al. 2000).

Since the members of the AtST4 subfamily are regulated by cytokinins, we searched for

the putative cis-acting motifs, mentioned above, in the 1,000 bp upstream of the predicted

translation start site of AtST4a, AtST4b and AtST4c. The upstream coding region of ARR

5 (At3g48100) and ARRI 5 (AtI g 19050) (representatives of type-A ARRs) were used as

references for genes that are up-regulated by cytokinins (Genevestigator: -5.63 and 4.05

fold induction for ARR5 and ARRI 5, respectively, after 1 hour and 3 hours treatment of

seedlings with ?µ? zeatin). The upstream coding region of a peroxidase (At5g 19890)

and auxin-responsive gene (At5g50760) were used as references for genes that are down-

regulated by cytokinins (Rashotte et al 2003; Lee et al. 2007) (Genevestigator: -0.67 and
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0.53 fold repression, respectively, after 1 hour and 3 hours treatment of seedlings with

?µ? zeatin). The promoter regions of Actin8 (Atlg49240) and a-tubulin (Atlg04820)

were used as references for genes that are not regulated by cytokinins (Genevestigator:

-0.92 and 1.06 fold changes for Actin8 and a-tubulin, respectively, after 1 hour and 3

hours treatment of seedlings with 1 µ? zeatin).

As shown in Table 1, the core sequence motif 5 '-(A/G)GAT(T/C)-3 Occurs more

frequently in the upstream promoter region of the putative cytokinin up-regulated genes

(ARR5, ARR15) than the cytokinin down-regulated and the cytokinin non-regulated

reference genes. The occurrence of this motif in the upstream region of the members of

the AtST4 subfamily is less than ARR5 and ARRI5, but is more than that of the cytokinin

non-regulated genes and close to that of the cytokinin down-regulated genes.

Altogether, the results show that the members of the AtST4 subfamily, especially AtST4b

and AtST4c, contain a higher number of the potential cytokinin-response elements

compared to their random occurrence in the Arabidopsis genome. Their occurrence in the

AtST4 promoters is similar to what is observed for the putative cytokinin-regulated genes.

Therefore, they have the potential to be regulated by cytokinin transcriptional activators

such as type-B ARRs and subsequently be part of the cytokinin response.
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Sequence
motif

Gene (AGI)

5'-
AAGATC
-3'
(Rashotte
et al., 2003)

5'-
AGATT-
3'
(Hosoda et
al, 2003;
Sakai et al. ,
2000)

5'-
GGATC-
3'
(Sakai et
al, 2000)

5'-
GGATT-
3'
(Imamura
eia/., 2003;
Sakai et al.,
2000)

AGATC-
3'
(Rashotte
eia/., 2003)

(A/G)GA
T(C/T)-3'
(Sakai et
al, 2000)

AtST4a
(At2gl4920)
AtST4b
(Atlgl3420)

11

AtST4c
(Atlgl3430)

10

ARR15
(AtI Rl 9050)

20

ARR5
(At3g48100)
Peroxidase
(Al5gl9890)

19

Auxin-
rcsponsivc
gene
(At5ü50760)

IO

Act8
(Atlg49240)
a-tubuline
(Atlg04820)

Table 1. Putative cytokinin cis-acting motifs in promoters of the AtST4 genes. The 1,000 bp upstream
of the predicted translation start site of the genes were retrieved from ATTEDII (http://atted.jp/) and
analyzed for the presence of cis-acting sequence motifs. The ARR5 and ARRI 5, peroxidase and auxin-
responsive gene and, Actin8 and a-tubulin were used as references for the putative cytokinin up-regulated
genes (pink), down-regulated genes (blue) and non-regulated genes (yellow), respectively. The numbers
show the frequency of the respective motifs in forward and complementary strands.
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3.2) Molecular characterization of T-DNA insertion mutants

3.2.1) Introduction

The primary aim of this study was to determine the role of the AtST4 genes in plant

growth and development. Using a reverse genetic approach, we identified loss of function

mutants for AtST4a, AtST4b and AtST4c. Subsequently, we conducted a number of

metabolic and phenotypic analyses to determine the biochemical and biological function

of the AtST4 genes in Arabidopsis.

3.2.2) Isolation of T-DNA insertion homozygous mutants

Arabidopsis lines carrying a T-DNA insertion in the AtST4a (GABI177E08), AtST4b

(GABI231G06) and AtST4c (FLAGJ34F06) loci were identified from the publicly

available T-DNA insertion libraries. In all these Columbia 0 mutant lines, the T-DNA

insertion is located within the intronless coding region. The site of T-DNA insertion was

estimated by nucleotide blast using the sequencing information of the T-DNA borders

retrieved from the TAIR web site (Fig. 9A). The AtST4a and AtST4c mutants carry an

insertion near the end of their coding sequence (737 bp and 870 bp downstream of their

translation start sites, respectively), which separates the regions encoding for the

sulfotransferase catalytic domain (region I) and PAPS binding domain (region I and

region IV). In the AtST4b mutant, the T-DNA insertion is located 74 bp downstream of

the translational start site, which is adjacent to the region I involved in catalytic and

PAPS binding activity. PCR analysis using gene-specific primers flanking the insertion

site and the T-DNA left border (LB) primer showed that the AtST4a, AtST4b and AtST4c

mutants are homozygous for the T-DNA insertion. As shown in Fig. 9B, while the intact
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gene amplification product was not detected, the PCR-amplified T-DNA insertion

product was identified in the mutant lines. In contrast, wild type Arabidopsis showed the

presence of only the intact gene amplification product.

3.2.3) Transcript expression analysis of the T-DNA insertion homozygous

mutants

To determine if the T-DNA insertion has affected the transcript level of the genes, RT-

PCR analysis was performed on RNA samples of the homozygous AtST4a, AtST4b and

AtST4c mutant plants. The presence of the respective gene-specific transcripts in wild

type plants and their absence in the mutant plants confirmed that AtST4a, AtST4b and

AtST4c homozygous mutant lines are null alleles (Fig. 9C). Therefore, the resultant T-

DNA insertion mutants were designated as ^/STVa-knockout (AtST4a-KO), AtST4b-

knockout (AtST4b-KO) and ,4rôT4c-knockout (AtST4c-KO) lines. It is important to note

that in contrast with Fig. 8, we could detect amplification of the AtST4a transcript. This

was obtained using a different primer pair generating a shorter PCR product. In the

future, studies ofAtST4a expression will have to be conducted using this primer set.
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Figure 9. Identification of T-DNA insertion homozygous lines of the AtST4 genes. (A) Schematic
representation of the chromosomal region encompassing the AtST4 genes and their T-DNA insertion site.
The black boxes represent: exons, white boxes: 5' and 3'UTRs, triangles: T-DNA insertion sites, arrows:
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gene-specific primers, LB: T-DNA left border. The consensus sequence from region I (PKxGTTWLKAL)
and region IV (FRKGxVGDWK) were used to identify the regions involving in catalytic and PAPS binding
activity. (B) PCR screening of the T-DNA insertion lines. Genomic DNA was extracted from leaves of
three-week old AtST4a (GABIJ 77E08), AtST4b (GABI_231G06) and AtST4c (FLAG_334F06) T-DNA
insertion lines and used as a template for PCR screening. The Actin gene was used as a positive control. (C)
RT-PCR analysis of the AtST4 T-DNA insertion homozygous lines and wild type plants. The two-week old
mutant and wild type plants were treated (+) or non-treated (-) two hours with 20µ? /-zeatin. Total RNA
was extracted from roots and subjected to RT-PCR analysis using gene specific primers. 4a, 4b, 4c and Act
are abbreviations for AtST4a, AtST4b, AtST4c and Actin genes, respectively.

3.3) Biochemical characterization of AtST4b

3.3.1) Introduction

To identify the substrate of the AtST4b sulfotransferase, plant metabolites were extracted

and purified from roots of 14-day-old Arabidopsis. Subsequently, we used radiolabeled

PAPS as sulfonate donor to assay the activity of the recombinant enzyme with the plant

extract. To confirm the identity of the product of the reaction and to demonstrate its

accumulation in vivo, the metabolite profile of the AtST4b T-DNA insertion homozygous

line was compared with that of wild type plants using neutral loss mass spectrometry and

liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses.

3.3.2) Expression of AtST4b recombinant sulfotransferase

To determine the biochemical function of AtST4b, the coding sequence was cloned in an

E.coli expression plasmid as a fusion protein with 6 histidine residues at the N-terminus.

The His-tag was used for affinity purification of the enzyme on Ni-agarose column. The

partially purified recombinant enzyme corresponded to the expected size of the protein

(-37.71 KDa) on SDS-PAGE (Fig. 10).
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KDa M US IS P4b

Figure 10. SDS-PAGE of partially purified AtST4b recombinant sulfotransferase. Cultures of bacteria
expressing the recombinant enzyme were grown 14 hours at room temperature, induced or non-induced by
IPTG and subjected to SDS-PAGE analysis. An aliquot of the induced culture was used for purification by
affinity chromatography on Ni-NTA agarose. M: protein molecular marker, US: non-induced soluble
proteins, IS: induced soluble proteins and P4b: purified AtST4b.

3.3.3) HPLC purification of AtST4b substrate and product

HPLC purification of AtST4b substrate

To determine the substrate of AtST4b, enzyme assays were performed on a library of

chemicals including the previously reported sulfotransferase substrates, but none of them

were accepted by the recombinant enzyme.

Based on the available microarray data on Genevestigator, the enzyme is expressed

almost exclusively in roots of A. thaliana, therefore, root extracts were used to purify the

potential substrate of AtST4b (Zimmermann et al. 2004). In order to remove the

sulfonate group of the extracted metabolites, mild acid hydrolysis was performed prior to

the assay and purification. The total root extracts were later fractionated using reverse
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phase High Performance Liquid Chromatography (HPLC) and the individual fractions

were assayed with the AtST4b recombinant enzyme. The results show that fraction 34, 37

and 42 have the highest enzymatic activity (Fig. 11). The presence of multiple peaks can

be explained in part by the nature of the substrate of the enzyme which might contain

chiral carbons giving rise to stereoisomers that could be resolved on the HPLC column.
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Figure 11. HPLC profile of an acid hydrolyzed root extract. Fraction 34, 37 and 42 showed the highest
enzyme activity.

HPLC purification of AtST4b enzymatic reaction product

To identify the product of the reaction, enzyme assays were performed on fraction 37 that

exhibited the highest enzyme activity. Following the enzyme assay, the AtST4b

radiolabeled-sulfated product was purified by reverse phase HPLC. The results show that

the product elutes at 27 min (Fig. 12).
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Figure 12. HPLC purification of the AtST4b radiolabeled enzymatic product. The highest
radioactivity was recovered in fraction 27.

3.3.4) Neutral loss mass spectrometry of AtST4b purified product

Because of their fragility, sulfonated compounds can easily be detected using neutral loss

mass spectrometry. By increasing the collision energy, the sulfuryl group (SO3") is easily

removed from the parent molecule. This chemical feature can be used to identify

sulfonated compounds in a complex mixture by looking for parent ions losing a mass of

80 daltons (S(V) following the increase in collision energy. We used this diagnostic tool

to identify the sulfonated compound(s) present in fraction 27 of a purified root extract

from wild type plants. Figure 13 (upper graph) shows that several putative sulfonated

metabolites are present in this fraction with a major one (more than 98% of ion count)

having a mass-to-charge ratio (m/z) of 514 daltons in negative mode ([M-H]"). To

identify the AtST4b enzymatic product in the fraction, we compared the wild type neutral

loss metabolite profile with the one obtained with an AtST4b-KO root extract under the

same condition. The root extract of the AtST4b T-DNA insertion homozygous line
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showed almost the same profile as the wild type extract, except for the absence of the 514

[M-H]" peak (Fig. 13 lower graph). These results indicate that the reaction product

synthesized in vitro by the recombinant AtST4b enzyme accumulate in vivo and has a

mass of m/z 514 daltons [M-H]".
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Figure 13. Mass spectrometry analysis of AtST4b-reaction product. Neutral loss profiles of a root
extract from wild type (upper graph) and AtST4b-KO mutant (lower graph) plants in negative mode. The
major peak at m/z 514 is missing in the AtST4b-KO scan.

3.3.5) LC-MS/MS analysis of AtST4b purified product

To elucidate the chemical structure of the compound having a mass of 514 [M-H]"

daltons, a cytokinin-treated root extract was subjected to reverse phase liquid

chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Initially, the

fragmentation pattern was obtained using a nano liquid Chromatograph coupled with a

tandem quadrupole time-of-flight (Q-TOF) mass spectrometer at the Centre for
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Biological Applications of Mass Spectrometry (CBAMS, Concordia University). Fig.

14A shows the fragmentation pattern of the AtST4b enzymatic product. In the positive

ion electrospray mass spectrum, the AtST4b sulfonated product produced a protonated

molecular ion at m/z 516 ([M+H]+). The MS/MS fragmentation of this compound gave

major fragment ions at m/z 348 and 291, which correspond to the loss of spermidine or a

fragment of it (Fig. 14A and B). The molecular ion at m/z 436 is due to the cleavage of

the sulfonate moiety from the parent ion (m/z 516). Further fragmentation of the 436

[M+H]+ ion, produced the ions at m/z 419 (due to loss OfNH3), 362, 348, 320, 291, 265,

263 and 203 which have been previously reported in the MS/MS fragmentation of

cadabicine from Capparis spinosa (Khanfar et al. 2003). The structure and accurate mass

of cadabicine and cadabicine-sulfate was further determined by Dr. Jürgen Schmidt from

the Institute of Plant Biochemistry (Halle, Germany) using Fourier Transform Ion

Mobility Spectrometry (FT-IMS) (Fig. 14B). Even though cadabicine has been reported

to occur in nature in the root bark of Capparaceae {Capparis spinosa and Capparis

decidua) and in seeds of Brassicaceae {Brassica napus), it is the first time that it is

identified from A. thaliana (Khanfar et al. 2003; Baumert et al. 2005). Furthermore, it is

the first report of the natural occurrence of its sulfonated derivative.
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Figure 14. Identification of AtST4b-sulfated product. (A) LC-MS/MS spectrum of the AtST4b sulfated
product in positive mode. The possible structure of some major fragments is shown. (B) Structure of
cadabicine and cadabicine sulfate with exact mass determination using FT-IMS. Cadabicine contains an
amide conjugate (spermidine, shown in red) and two acyl conjugates (hydroxycinnamic acid, shown in
black and blue).
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3.4) Characterization oiAtST4b biological function

3.4.1) Introduction

Having identified the structure of the AtST4b enzymatic product, we attempted to

determine its function in planta by comparing the growth behavior of the AtST4b T-DNA

insertion homozygous mutant (AtST4b-KO) with wild type plants.

3.4.2) Primary root length analysis

Cytokinins inhibit root elongation. Furthermore, cytokinin receptor double mutants

exhibit longer roots and increased number of lateral roots (Higuchi et al. 2004; Riefler et

al. 2006). Moreover, as it was shown earlier, AtST4b expression is regulated by

cytokinins and its expression is restricted to root tissue (Marsolais et al. 2007).

Consequently, we analyzed the root growth behavior in the AtST4b-KO mutant in

presence and absence of cytokinins.

Observation of primary root growth 10 days after germination (DAG) under in vitro

conditions demonstrated that the root length of AtST4b-KO had increased 6.5 to 16.5%

more than that of wild type seedlings (Fig. 15A and B). Interestingly, the AtST4b-KO

plants had a greater growth rate in the beginning and mid (between 2 to 7 DAG with the

highest increase at 4 DAG) than at the end of our analysis. To determine the role of

AtST4b in the cytokinin response pathway, we examined root elongation in response to

the exogenous application of the cytokinin i-zeatin. We compared primary root

elongation of wild type and the AtST4b-KO line in presence of 1 and 5µ? í-zeatin at

different stages of development. Fig. 15C shows that 5 DAG, roots oí AtST4b mutant

plants are less sensitive to different concentrations of cytokinins. Similar differences were
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also obtained 7, 12, and 14 DAG (data not shown). Such an effect has been reported for

cytokinin receptor mutants and cytokinin deficient plants (Werner et al. 2001; Higuchi et

al. 2004; Nishimura et al. 2004). Altogether, our results suggested that AtST4b participate

in the root growth inhibition mediated by cytokinins.

3.4.3) Number of lateral roots

Formation of lateral roots is also inhibited by cytokinins (Werner et al. 2001; Werner et

al. 2003). To assess the effect of AtST4b on lateral root formation, we counted the

number of lateral roots in 12- and 14-day-old wild type and AtST4b-KO plants. As shown

in Fig. 1 5D, even though the number of lateral roots had been increased 24% to 25% in

the AtST4b-KO plants, there is no statistically significant difference between the wild

type and AtST4b-KO lines 12 and 14 DAG with a P-value of 0.06 at 14 DAG. Even

though the trend for increased lateral root is evident, the small sample size used for the

analyses probably did not allow assessing the differences between the mutant line and

control plants. A larger sample size will be required to evaluate the role of AtST4b in the

growth of secondary roots.
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Figure 15. Root phenotype of the AtST4b-KO mutants. (A) Kinetic of root elongation in wild type (CoI-
0) and AtST4b-KO plants. Plants were grown vertically on MS agar plates under long day conditions and
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root length was measured every day. Label for each day shows the corresponding significant .P-value. Error
bars represent standard deviation (SD) (27<n<44). (B) Root system of in vitro grown wild type (left) and
AtST4b-KO (right) plants 7 DAG. (C) Relative changes of primary roots length in wild type (CoI-O) and
AtST4b-KO plants 5 DAG in presence of increasing concentration of ?-zeatin. Root length of wild type
plants in the absence of cytokinins was set at 100%. Length of roots in the absence of /-zeatin was: WT:
0.81 ± 0.1 1 (mean ± SD), AtST4b-KO: 0.93 ±0.18. (n=19). (D) Number of lateral roots 12 and 14 DAG in
plants grown vertically on MS agar plates. Error bars represent SD (9<n<12). Analysis of the significance
level between wild type and the AtST4b-KO plants was performed by either Kruskal-Wallis test followed
by Mann-Whitney U test or by two-independent-sample test (t-test). Only P-values with a significant level
less than 0.05 are shown. See Annex 1 for details of statistical values.

3.4.4) Rosette diameter

Study of cytokinin-deficient plants and cytokinin receptor mutants indicate that shoot

growth is impaired in these plants (Werner et al. 2001; Higuchi et al. 2004; Nishimura et

al. 2004; Riefler et al. 2006). Analysis of the rosette structure of the AtST4b-KO showed

that even though there is a statistical increase in size at 21 DAG (P-VaIUe=O.028), the

significance level is relatively high and there is no general pattern of significant increase

at 14 and 26 DAG (Fig. 16A). It is important to mention that this experiment was

repeated earlier, in which there was a statistically significant increase in rosette size of

the AtST4b-KO plants (17% to 30% increase) compare to wild type plants (P-value was

equal to 2.53E"5, 4.96E"4 and 2.82E"5 at 14, 21 and 26 DAG, respectively) (see the rosette

structure in Fig. 1 6C). The changes in the significance level could arise from a number of

parameters such as sample size, variance or changes of experimental conditions such as

light, soil, seeds, etc. On the other hand, based on the general trend of increase in the

AtST4b-KO plants in both analyses, it can be said that AtST4b might negatively control

rosette size.
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3.4.5) Number of leaves

Further analysis of shoot development showed that the rate of leaf formation is affected

during the vegetative growth in the AtST4b-KO mutants. As shown in Fig. 16B the

AtST4b-KO plants developed approximately 6% to 9 % more leaves than wild type plants

of the same age (14, 21 DAG) (P-value is equal to 0.013 and 4.2 IE"4 at 14 and 21 DAG,
respectively). The increase in number of leaves of AtST4b-KO plants was reproducible

and observed in a separate experiment.
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Figure 16. Shoot phenotype of the AtST4b-KO plants. (A) Rosette diameter of in-soil grown plants 14,
21 and 26 DAG. Error bars represent SD (21<n< 32). (B) Number of leaves of in-soil grown plants 14, 21
DAG. Error bars represent SD (21<n<39). (C) Rosette of wild type (left) and AtST4b-KO (right) plants 21
DAG. Analysis of the significance level between wild type and the AtST4b-KO plants was performed by a
Kxuskal-Wallis test followed by a Mann-Whitney U test. Only P-values with a significant level less than
0.05 are shown. See Annex 2 for details of statistical values.
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3.4.6) Flowering time

To assess the role of AtST4b during reproductive development, a number of phenotype

analyses were conducted. Based on these analyses, there are no apparent changes in

flowering time and flower structure between wild type Arabidopsis and the AtST4b-KO

mutants.

3.4.7) Seed production

Increased grain production has been linked to the reduced level of cytokinin oxidase

activity and the subsequent accumulation of cytokinins in the inflorescence of rice

(Ashikari et al. 2005). In Arabidopsis, the reduced cytokinin content of cytokinin oxidase

overexpression lines reduced the number of flowers and seeds in siliques, but increased

the size of the seeds (Werner et al. 2003). Under long day conditions, the AtST4b-KO

plants produced on average -33% more siliques than wild type plants during reproductive

development (36 and 46 DAG) (Fig. 17A and C). These results were reproducible and

seen in a separate experiment (data not shown). Moreover, no significant changes were

found in the number of seeds in mature siliques (P-value=0.06) (Fig. 17B).
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Figure 17. Reproductive development is improved in the AtST4b-KO line. (A) Number of siliques per
plant 36 and 46 DAG. Error bars represent SD (21<n<24). (B) Number of seeds per mature siliques 57
DAG. Error bars represent SD (n=30). (C) Photograph of wild type (left) and AtST4b-KO (right) plants 5
weeks after germination. Analysis of the significance level between wild type and the AtST4b-KO plants
was performed by a Kruskal-Wallis test followed by a Mann-Whitney U test. Only P-values with a
significant level less than 0.05 are shown. See Annex 3 for details of statistical values.

3.4.8) Seed size and volume

As mentioned earlier, plants with impaired cytokinin signaling (cytokinin receptor

mutants) and plants with reduced cytokinin content (cytokinin oxidase overexpressor

lines) produce bigger seeds (Werner et al. 2003; Riefler et al. 2006). To investigate the

role of AtST4b in seed development, the size of wild type and mutant seeds were

measured under a dissecting microscope. As shown in Fig. 18A and B, the average length

and width of the mutant seeds are about 7.4% and 4.5% greater than that of wild type
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seeds, respectively. These changes increased the seed volume up to -17% in the AtST4b-

KO plants (Fig. 18C).
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C

Figure 18. Seed size of the AtST4b-KO plants. (A) The length and width of seeds from wild type and the
AtST4b-KO plants. Error bars represent SD (n=40). (B) Calculated volume of wild type and the AtST4b-KO
seeds based on the formula: volume = 4/3 ? p ? length ? width ? depth (Riefler et al. 2006). Error bars
represent SD (n=40). (C) Wild type (top) compared to the AtST4b-KO seeds (bottom). Analysis of the
significance level between wild type and the AtST4b-KO seeds was performed by a Kruskal-Wallis test
followed by a Mann-Whitney U test. Only P-values with a significant level less than 0.05 are shown. See
Annex 3 for details of statistical values.

3.5) Biochemical characterization of AtST4a and AtST4c

3.5.1) Introduction

In a previous study, Marsolais et al. showed that AtST4a has brassinosteroid

sulfotransferase activity in vitro while AtST4b and AtST4c were inactive with the same

substrate (Marsolais et al. 2007). This study was limited since it was conducted with a

small number of pure compounds from our laboratory library collection. In order to

elucidate the biochemical function of AtST4a and AtST4c in vivo, sulfated metabolite

profiles of wild type and knockout plants were analyzed using a combination of HPLC
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and mass spectrometry. Metabolites were also purified form A. thaliana and assayed in

vitro with recombinant AtST4b and AtST4c.

3.5.2) Expression of AtST4a and AtST4c recombinant sulfotransferases

The coding sequences of AtST4a and AtST4c were previously cloned in the bacterial

expression plasmid pQE 30 (Qiagen) containing a 6x His-tag at the N-terminus.

Expression of the enzymes produced proteins with the expected size of 38.8 and 37.7 kDa

for AtST4a and AtST4c, respectively (Fig. 19).
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Figure 19. SDS-PAGE of AtST4a and AtST4c recombinant sulfotransferases. IPTG-induced or control
cultures of bacteria expressing the recombinant enzymes were grown 14 hours at room temperature and
their protein extracts were subjected to SDS-PAGE analysis. Aliquots of the induced culture were used for
purification by affinity chromatography on Ni-NTA agarose. M: protein molecular marker, CtI: PQE30
empty vector, CE: bacterial crude extract (25pg), US: non-induced soluble proteins (25µg), IS: induced
soluble proteins (25 \ig) and P4a and P4c: purified AtST4a and AtST4c (1(^g).
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3.5.3) HPLC purification of the substrate and product

HPLC purification of AtST4a and AtST4c substrate

Gene regulation studies showed that AtST4a and AtST4c are expressed only in the root

system of Arabidopsis (Marsolais et al. 2007). Accordingly, root extracts were used to

purify the endogenous substrate and product of AtST4a and AtST4c. Following mild acid

hydrolysis (to release the potential substrate from its conjugated form), the extract was

fractionated by reverse phase HPLC. Each fraction was assayed with recombinant

AtST4a and AtST4c to detect the presence of the substrate. The results show that the

substrate of both enzymes elute in fraction 32 (Fig. 20).
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Figure 20. HPLC purification of AtST4a and AtST4c endogenous substrate. Individual fractions were
assayed for activity with recombinant AtST4a and AtST4c.
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HPLC purification of AtST4a and AtST4c reaction products

To identify the elution time of the reaction products of AtST4a and AtST4c, enzymatic

assays were performed on the purified fraction containing the potential substrate (fraction

32) in order to produce the radiolabeled-sulfated products. Subsequently, the reaction

products were purified on a reverse phase HPLC column and the individual fractions

counted for radioactivity. The results show that the reaction product of both enzymes

elute in fraction 24 (Fig. 21).
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Figure 21. HPLC purification of AtST4a and AtST4c radiolabeled product. The highest activity was
recovered in fraction 24.

3.5.4) Neutral loss mass spectrometry of AtST4a and AtST4c reaction

products

Having determined the elution time of AtST4a and AtST4c enzymatic reaction products,

root metabolites of wild type and AtST4a- or AtST4c-KO plants were purified under the
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same conditions and their respective HPLC fractions (fraction 24) were analyzed by

neutral loss mass spectrometry. We did not find any difference in the sulfated metabolite

profile of the two knockout plants when compared with the wild type purified fraction 24.

This result is not totally unexpected when we consider that the substrate and the product

of both enzymes co-elute on HPLC suggesting a redundant function for AtST4a and

AtST4c. It is also possible that the abundance of the in vivo products is too low for

detection under our experimental conditions. Transgenic lines overexpressing AtST4a or

AtST4c will have to be produced and analyzed to help in the detection of the endogenous

sulfated product.

3.5.5) Thin layer chromatography of AtST4a and AtST4c reaction products

We further examined the purified AtST4a and AtST4c radiolabeled enzymatic products

on TLC plates. As shown in Fig. 22, the reaction products are exhibiting the same

chromatographic behavior, suggesting that the two enzymes sulfonate the same substrate

from the purified fraction 32.
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AtST4a AtST4c

Figure 22. Thin layer chromatography of AtST4a and AtST4c sulfated products. 15,000 DPM of
purified AtST4a and AtST4c products were spotted on a cellulose TLC plate.

3.6) Characterization ofAtST4a and AtST4c biological function

3.6.1) Introduction

In order to determine their biological function, the consequence of changing the sulfated

metabolome of A tST4a and AtST4c single mutant was analyzed by monitoring a number

of growth parameters known to be under the control of cytokinins.

3.6.2) Primary root length analysis

As mentioned earlier, the three members of the AtST4 subfamily are expressed in the root

system which is also the site of synthesis of cytokinins (Marsolais et al. 2007). To
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determine the role of these genes in root growth and development, AtST4a-KO and

AtST4c-KO plants were grown vertically on MS agar plates, and their primary root length

was measured for 10 days under long day growth conditions. The results show that the

roots of AtST4c-KO plants were statistically shorter than those of the wild type plants (9

to 37% shorter) for the first eight days after germination (Fig. 23A). The decrease in the

root growth rate of AtST4c-KO was greater at the beginning of their lifespan (28%

between 2 to 6 DAG as opposed to 9% between 6 to 8 DAG). In contrast, AtST4a-KO

plants showed a significant decrease in root lenght only after 8 days of growth. Moreover,

the decrease in primary root growth rate was not as great as the one observed for the

AtST4c-KO plants (6.5 to 14% decrease between 8 DAG and 10 DAG).

3.6.3) Number of lateral roots

A loss of function mutation in AtST4a did not cause a strong effect on the number of

lateral roots at 1 0 and 13 DAG. In contrast, AtST4c-KO plants produced 17% to 28% less

lateral roots than wild type plants (P-value is 4.49E"4 and 0.069 at 10 DAG and 13 DAG,
respectively) (Fig. 23B).
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Figure 23. Root development of AiST4a-KO and AtST4c-KO. (A) Kinetic of root growth in wild type,
AtST4a-KO and AtST4c-KO plants. Plants were grown vertically on MS agar plates and the root length was
measured daily. Labels for each day show the corresponding P-value for AtST4a (green) and AtST4c (blue).
Error bars represent standard deviation (SD) ( 1 7<n<44). (B) Number of lateral roots of plants grown on MS
agar plates 10 and 13 DAG. Error bars represent SD (12<n<21). Statistical analysis was performed by a
Kruskal-Wallis test followed by a Mann-Whitney U test. Only /'-values less than 0.05 are shown. See
Annex 1 for detailed statistical values.

3.6.4) Rosette diameter

It is well known that cytokinins promote cell division and shoot development in plants

(Mok and Mok 2001; Werner et al. 2003). Analysis of the Genevestigator (web-browser

data mining interface for Affymetrix Gene Chip data) showed that cytokinins slightly

repress AtST4a and/or AtST4c expression in seedlings (-0.8 fold repression after Ih and
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3h treatment with ?µ? í-zeatin). Analysis of long day grown AtST4a-KO plants showed

a slight increase in rosette diameter 21 DAG compared to wild type plants (P-

value=0.035). However, the change is very small and the significance of the result is

weak. By contrast, AtST4c-KO showed a slight decrease in rosette diameter 26 DAG

compared to wild type plants (P-value=0.014) (Fig. 24A). This experiment was repeated

for AtST4c-KO plants and we observed a significant decrease of 13% (P-value=0.017) to

30% (P-value =1.03E"7) in rosette size compared to wild type plants 21 and 26 DAG,
respectively (data not shown). The consistent reduction in rosette size observed in both

experiments suggests that AtST4c might play a positive role in the growth of the aerial

tissue in Arabidopsis.

We also observed that the rosette of AtST4c-KO plants is bending towards the ground. A

careful observation of the seedlings showed an increase in hypocotyl length in the

AtST4c-KO plants (Fig. 24C).

3.6.5) Number of leaves

We also examined leaf formation in AtST4a-KO and AtST4c-KO plants. The number of

leaves of AtST4a-KO plants was slightly increased when compared to wild type plants

(-6.8% more at 21 DAG, P-value=0.010) (Fig. 24B). However, the contribution of

AtST4a on growth is marginal when we consider the very small increase in leaf number

and the relatively high P-value observed in this experiment. In contrast, leaf number was

significantly reduced in AtST4c-KO plants with -43% less leaves 21 DAG (P-

value=9.03E-12).
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3.6.6) Flowering time

Under long day conditions, AtST4c-KO plants flowered earlier than wild type plants,

while AtST4a-KO showed no apparent changes in the time of flowering. Approximately

25 DAG, wild type plants have 12 to 14 leaves and start to flower. In contrast, AtST4c-

KO plants initiated flowering 21 DAG and have 6 to 7 leaves (Fig. 24D). The

morphology of the flowers in AtST4a-KO and AtST4c-K0 was found to be similar to wild

type plants.
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Figure 24. Shoot phenotype ofAtST4a-Ko and AtST4c-KO. (A) Rosette diameter of in-soil grown plants
14, 21 and 26 DAG. Error bars represent SD (21<n<27). (B) Number of leaves of in-soil grown plants 14,
21 DAG. Error bars represent SD (21<n<39). (C) Comparison of hypocotyl region in wild type (top) and
AtST4c-KO (bottom). (D) Early flowering phenotype of AtST4c-KO (right) was compared to wild type
(left) plants at 22 DAG. Analysis of significance between wild type and mutant lines was performed using
a Kruskal-Wallis test followed by a Mann-Whitney U test. Only P-values with a significance level less than
0.05 are shown. See Annex 2 for detailed statistical values.

3.6.7) Seed production

The number of siliques was higher in AtST4a- and AtST4c-KO plants than wild type

plants. AtST4a-KO plants produced on average 62% more siliques 36 and 46 DAG as

compared to wild type plants. Silique number was even higher in the AtST4c-KO line

(-360% and 76% more siliques 36 and 46 DAG, respectively) than that of AtST4a (Fig.

25A and C). Analysis of mature siliques showed that the number of seeds per silique was

not changed significantly in AtST4a-KO. However, there was a -17% reduction in seed

number in the siliques of AtST4c-KO plants compared to the wild type counterparts (P-

value=4.94E"7) (Fig. 25B).
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Figure 25. Reproductive developments ofAtST4a- and AtST4c-KO. (A) Number of siliques per plant 36
and 46 DAG. Error bars represent SD (n > 23). (B) Number of seeds per mature siliques 57 DAG. Error
bars represent SD (n=30). (C) Photograph of wild type (left) and AtST4c-KO (right) plants 5 weeks after
germination. Analysis of significance between wild type and mutant lines was performed using a Kruskal-
Wallis test followed by a Mann-Whitney U test. Only P-values with a significant level less than 0.05 are
shown. See Annex 3 for detailed statistical values.

3.6.8) Seed size and volume of the AtST4c-KO plants

Analysis of seed size was only performed on the AtST4c-K.O plants. The results presented

in Fig. 26A and 26C show that mutant seeds are smaller than wild type seeds. AtST4c-KO

seeds are approximately 6.2% (length) and 8.6% (width) smaller when compared to wild

type seeds. As a consequence of the reduction in seed length and width, the AtST4c-KO

seed volume is decreased by 21 .5% compared to wild type seed volume (Fig. 26B).
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Figure 26. Seed size of AtST4c-KO plants. (A) Width and length of seeds in wild type and AtST4c-KO
plants. Error bars represent SD (n=40). (B) Calculated volume of wild type and AtST4c-KO seeds based on
the formula 4/3 p ? length ? width ? depth (Riefler et al. 2006). Error bars represent SD (n=40). (C) Wild
type seeds (right) compared to AtST4c-KO seeds (left). Analysis of significance between wild type and
mutant lines was performed using a Kruskal-Wallis test followed by a Mann-Whitney U test. Only P-
values less than 0.05 are shown. See Annex 3 for detailed statistical values.
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Chapter 4- Discussion and Future work

Soluble sulfotransferases are a superfamily of enzymes that are widely distributed in

plants, bacteria and mammals. Our knowledge about their function in plants is suffering

from the lack of systematic investigations of plant sulfated metabolomes. Out of the 1 8

sulfotransferase-coding genes in A. thaliana, seven have been fully characterized. Herein,

we describe the results of our studies on the biochemical and biological characterization

of the three members of the AtST4 subfamily (AtST4a, AtST4b, and AtST4c) in A.

thaliana.

4.1) Biochemical and biological characterization of AtST4b

AtST4b shares 72% amino acid sequence identity with AtST4a and 77% amino acid

sequence identity with AtST4c (for the phylogenic tree, refer to Fig. 2). Analysis of the

publicly available microarray data showed that AtST4b is specifically expressed in roots

of young seedlings and up-regulated by cytokinins (Zimmermann et al. 2004). Such an

up-regulation of AtST4b by cytokinins has been reported in several genome-wide

microarray studies of A. thaliana (Hoth et al. 2003; Kiba et al. 2005; Lee et al. 2007;

Yokoyama et al. 2007) (for a summary refer to Chapter 1). These results were confirmed

by transcript expression analysis of the roots of Arabidopsis where AtST4b showed

gradual up-regulation by the exogenous application of the cytokinin i-zeatin (Fig. 8). The

detailed analyses of the microarray data showed that in transgenic plants that over-

express ARR22 (a type-B ARR), AtST4b is up-regulated 1 1 .3 fold compared to wild-type

plants (Kiba et al. 2005). A change in expression of AtST4b is also reported in the

microarray analysis of the ARRIO and ARRI 2 double mutant (two type-B ARRs)
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(Yokoyama et al. 2007). These results are consistent with the presence of a relatively

high number of cytokinin response elements recognized by type-B ARRs in the promoter

region of the AtST4b gene (Table 1). Taken together, these results support the hypothesis

that the function of the AtST4b gene might be related to the cytokinin plant response.

Metabolite analysis of AtST4b-KO plants revealed that cadabicine (a dicoumaroyl

spermidine conjugate) is the substrate of AtST4b in A. thaliana and that the formation of

cadabicine sulfate is dependent on AtST4b sulfotransferase activity (Fig. 13). Metabolite

profiling of the wild type and mutant plants showed that although cadabicine sulfate is

missing in the AtST4b-KO plants, the substrate (cadabicine, m/z 436) is present in the

root extract of both AtST4b-KO and wild type plants (data not shown).

Cadabicine has only been reported to occur in members of the Capparaceae and

Brassicaceae family which belong to the Brassicales order (Khanfar et al. 2003; Baumert

et al. 2005). In this study, we demonstrate for the first time that cadabicine sulfate occurs

naturally in roots and leaves (data not shown) of A. thaliana. To date, there is no

information available on the function of spermidine conjugates such as cadabicine on

growth and development. Our results suggest that the sulfonation of cadabicine might be

related to the effects mediated by cytokinins on root and shoot development.

The results of several experiments revealed the important role of the polyamine

spermidine during growth and development in various organisms. For example, the study

of the spermidine synthesis coding gene mutant (Aspe2), showed that spermidine and/or

spermine are absolutely required for the growth and cell division of Saccharomyces

cerevisiae cells (Chattopadhyay et al. 2002). Other studies have shown that it is the

presence of spermidine and not spermine, which is absolutely necessary for the growth of
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yeast cells (Hamasaki-Katagiri et al. 1997; Hamasaki-Katagiri et al. 1998). Similar

results were obtained in higher plants. Imai et al. showed that even though spermine is

not essential for survival, suppression of the two genes involved in spermidine

biosynthesis (SPDSl and SPDS2) is lethal in Arabidopsis, and results in embryonic arrest

in the double mutant seeds (Imai et al. 2004; Imai et al. 2004).

Acylated polyamines are synthesized by members of the BAHD acyltransferase family.

These enzymes are widely distributed in plants and play regulatory roles during plant

growth and development (for a review refer to (Facchini et al. 2002; Bienz et al. 2005).

The accumulation of hydroxycinnamic acid spermidine conjugates has only recently been

reported in A. thaliana (Grienenberger et al. 2009; Luo et al. 2009). Using functional

genomics and metabolic profiling, Luo et al. determined that sinapoyl and disinapoyl

spermidine are the major polyamine conjugates that accumulate in Arabidopsis seeds.

Furthermore, they characterized At2g25150 encoding for a spermidine dicoumaroyl

transferase (SCT) that transfers two coumaric acids to its spermidine acyl acceptor

molecule. Interestingly, SCT is predominantly expressed in root tips and up-regulated by

i-zeatin. Its co-regulation and co-expression with AtST4b suggests that the Nl, N8-

di(couamaroyl)-spermidine produced by SCT is a precursor for the synthesis of

cadabicine, the substrate of AtST4b. In support of this hypothesis, metabolite analysis of

SCT-knockout Arabidopsis plants conducted in our laboratory showed the absence of

cadabicine and cadabicine sulfate in root tissue (data not shown).

It has been shown previously that the exogenous application of cytokinins increase the

accumulation of free polyamines and of their conjugates in plants (Altman 1988; Sergive

et al. 1995). More recently, the up-regulation of spermidine synthesis coding genes was
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reported in response to the application of cytokinins on Arabidopsis seedlings (Hanzawa

et al. 2002). In addition, several recent studies show that there is an interaction between

the cytokinins and polyamines signaling pathways. Different polyamines, especially

spermine, prevent cytokinin-induced expression of ARR5, a type-? response regulator

gene, in Arabidopsis and Amaranthus (Rakova and Romanov 2005). The antagonistic

function of cytokinins and of the polyamines spermine and spermidine has been reported

in other older studies as well (Naika et al. 1980; Feray et al. 1992). Considering the

similarity of their physiological activity, and based on the above information, it has been

proposed that cytokinins mediate their function partially through the regulation of

polyamines homeostasis.

The negative role of cytokinins on root growth and development has been known for a

long time (Cary et al. 1995). Analysis of the AtST4b loss-of-function mutant revealed a

negative regulatory role of this gene on root growth in Arabidopsis (Fig. 15).

Furthermore, AtST4b homozygous mutants showed reduced sensitivity to different

concentrations of cytokinins (Fig. 15A and 15C). The reduced sensitivity to cytokinin

inhibition of root growth is also reported in plants with impaired-cytokinin signaling such

as the Arabidopsis cytokinin receptor mutants (Higuchi et al. 2004; Nishimura et al.

2004), the Arabidopsis histidine phosphotransfer (AHPs) mutants (Hutchison et al.

2006), the Arabidopsis type-B ARR mutants (Mason et al. 2005) and the cytokinin-

deficient tobacco plants that overexpress different cytokinin oxidases (CKXs) (Werner et

al. 2001). However, the role oí AtST4b in shoot and reproductive development is not

consistent with the known cytokinin function. The AtST4b-KO plants produce more

leaves, slightly bigger rosette, more siliques and bigger seeds than wild type plants. In
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contrast, cytokinin ahk2l3l4 triple receptor mutants and cytokinin-deficient plants

produce stunted shoots (with decreased leaf size and number), less seeds per siliques or

infertile but bigger seeds (Werner et al. 2001; Werner et al. 2003; Higuchi et al. 2004;

Nishimura et al. 2004; Riefler et al. 2006).

Several hypotheses can be proposed to explain the overall improved root and shoot

growth of AtST4b-KO plants. In the first hypothesis, we can consider that cadabicine is a

positive growth regulator and is inactivated by sulfonation. A similar inactivation

function has been previously proposed for AtST2a in controlling the biological activity of

12-hydroxyjasmonic acid in A. thaliana (Gidda et al 2003). Accumulation of polyamine

conjugates has been shown to promote cell division, flower formation, organogenesis and

tuber induction in plants (Facchini et al. 2002). In this scenario, it is the accumulation of

cadabicine in AtST4b mutant plants that induces plant growth. The results of mass

spectrometry analyses support this hypothesis, and show that endogenous levels of free

cadabicine is much higher in roots of AtST4b-KO plants compared to wild type plants

(data not shown). Alternatively, cadabicine sulfate might be a general growth inhibitor

and its absence would explain the improved growth observed for the AtST4b-KO plants.

In order to find out which of the two possibilities is right, a careful examination of the

growth parameters of the set mutant which can not synthesize cadabicine and cadabicine

sulfate will be required. AtST4b can also be part of a pathway that copes with excess

polyamines or polyamine conjugates in plants. Interestingly, the increase in the

intracellular polyamines induces the spermidine/spermine N 1-acety!transferase (SSAT)

gene which in turn inactivates the excess spermine and spermidine in humans (Moinard

et al. 2005). To our knowledge, there is no SSAT in the genome of Arabidopsis.
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However, a similar inactivation mechanism can be proposed in Arabidopsis in which

spermidine dicoumaroyl transferase (SCT) and AtST4b control excessive spermidine

accumulation in cells. Other conjugating enzymes might partly complement the missing

SCT or AtST4b to prevent the toxic accumulation of spermidine but allowing an increase

in spermidine accumulation sufficient to explain the improved growth phenotype.

In order to better understand the function of cadabicine and cadabicine sulfate in plants,

several experiments will have to be conducted in the future.

Comparison of the levels of spermidine and of its derivatives in AtST4b-KO, sct-

KO and wild type plants. The results of these studies would allow to characterize

other molecules that could affect growth in Arabidopsis and to have a better

understanding of the dynamic of the accumulation of these important molecules.

Study the tissue distribution of spermidine and its derivatives in Arabidopsis. SCT

and AtST4b are only expressed in the root system. However, we could detect

accumulation of cadabicine in the aerial parts suggesting a transport mechanism.

The cytokinin-dependent sulfonation reaction taking place in the roots might

block the transport of active cadabicine in the aerial parts. This would explain the

increased growth of the shoot and root system of the AtST4b mutant plants.

Careful examination of the growth behavior of the set mutant. This mutant cannot

synthesize cadabicine and cadabicine sulfate. A reduced growth phenotype would

support a positive role for cadabicine. In contrast, an improved growth phenotype

would support an inhibitory role of the final product, cadabicine sulfate.

Construction and analysis of growth parameters of a transgenic line

overexpressing AtST4b. The availability of this overexpressor line would allow a
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cytokinin independent reduction of the pool of cadabicine in the aerial part of the

plant and to study its effect on shoot growth and seed set.

4.2) Biochemical and biological characterization of AtST4a and AtST4c

Based on their amino acid sequence similarity, AtST4a and AtST4c are more closely

related to each other (80% amino acid sequence identity) than to AtST4b. Analysis of the

Genevestigator microarray database and our RT-PCR experimental results show that both

genes are expressed mainly in roots and are down-regulated by cytokinins (Fig. 8 and

Fig. 9C) (Zimmermann et al. 2004; Marsolais et al. 2007). Investigation of their promoter

region also confirmed the presence of cytokinin regulatory motifs (Table 1). However, in

contrast with AtST4b, AtST4a and AtST4c are repressed by cytokinins suggesting that

they might have opposite functionalities.

Unfortunately, we were not able to identify the reaction products of AtST4a and AtST4c

in vivo. The sulfated metabolome of AtST4a- and AtST4c-KO root extracts is almost

identical to the wild type one, suggesting a redundant function for the two enzymes (Fig.

20, Fig. 21, and Fig. 22). However, the loss of function mutation of the two genes gave

different phenotypes suggesting that the two enzymes might have different substrates

with very similar chemical properties. Alternatively, the two genes might sulfonate the

same substrate in different tissues explaining the different phenotypes.

Recently, AtST4a has been characterized in vitro and was shown to exhibit a relatively

broad specificity toward brassinosteroids (Marsolais et al. 2007). However, the natural

occurrence of sulfated brassinosteroids (BRs) has not been reported yet. BRs are widely

distributed in plants, and play several regulatory roles during growth and development.

Analysis of BR-deficient and -insensitive mutants confirmed their essential role for cell
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elongation, male fertility, senescence and vascular differentiation (Clouse et al. 1996;

Altmann 1998).

The crosstalk between cytokinins and BRs regulatory pathways is reported in several

studies. For example, BRs interact with cytokinins and other phytohormones like auxin to

regulate ethylene biosynthesis in plants (Arteca and Arteca 2008; Hansen et al. 2009).

The physiological roles of cytokinins and BRs are similar in some aspects. BRs, like

cytokinins, stimulate cell division through up-regulation of cyclin D3, a member of a

family of proteins that allow progression through the cell cycle, and BRs can even

substitute cytokinins in cell cultures of Arabidopsis. However, it is postulated that the

pathway by which BRs regulate cyclin D3 is different from the one induced by cytokinins

(Hu et al. 2000). The shoot growth promoting activity of BRs is also similar to the one

induced by cytokinins (for a review see (Clouse and Sasse 1998). On the other hand, the

effect of BRs on root growth is intriguing and contradictory results have been explained

by the use of different experimental conditions. For example, even though low

concentrations (<pM) of exogenous BRs stimulate root growth in wild type plants, higher

concentrations were found to be inhibitory (Clouse et al. 1996; Mussig et al. 2003).

Based on the fact that CKs and BRs have inhibitory and stimulatory effects on growth,

cytokinin-mediated repression of a brassinosteroid sulfotransferase can be part of a

pathway in which both CKs and BRs are working together in order to regulate root and

shoot growth in A. thaliana. This hypothesis will be confirmed only when we will be able

to demonstrate that the AtST4a and/or AtST4c enzymes are sulfonating brassinosteroids

in vivo.
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Phenotypic analyses of the loss of function mutants revealed that, unlike A tST4b, AtST4c

seems to play a positive function in root and shoot growth in Arabidopsis. AtST4c-KO

plants produced shorter primary roots, reduced number of lateral roots, slightly smaller

rosettes, reduced number of leaves, less seeds per siliques and finally smaller seeds.

Based on the repression of AtST4c expression by cytokinins and the phenotype of the loss

of function mutant, one can conclude that AtST4c, as opposed to AtST4b, positively

regulates plant growth and that this positive effect is repressed by the cytokinin signaling

pathway. In general, loss of AtST4a did not cause a strong phenotype in root and shoot

growth. This mild effect is consistent with the weak expression of this gene seen in RT-

PCR reactions (Fig. 8 and Fig. 9C).

AtST4c-KO plants flower earlier than wild type Arabidopsis. This phenotype was highly

reproducible and observed in soil and in vitro grown plants. The late-flowering

phenotype has also been reported in some cytokinin-deficient (Werner et al. 2003) and

cytokinin-insensitive Arabidopsis mutants (Nishimura et al. 2004; Riefler et al. 2006)

suggesting a positive role of cytokinins in flower induction. Furthermore, the relationship

between AtST4c expression and flowering is strengthened by the fact that AtST4c (or

AtST4a) is repressed by the LEAFY(LFY) gene (-9.84 and 13.14 fold induction in lfy-12

and 35S::amiR-lfy-l, respectively) (Zimmermann et al. 2004). LEAFY is a floral-

meristem identity gene that regulates transition to flowering and the subsequent

patterning of young floral meristems (Schultz and Haughn 1991; Huala and Sussex

1992). The link between the floral meristem-identity genes and flowering-time genes has

been difficult to assess, but it is presumed that the former regulate onset of flowering in

response to environmental stimuli and action of the genes that induce flowering time.
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Taken together, these results suggest that the general growth reduction of the AtST4c-KO

mutant growth might be the result of a premature switch from vegetative to reproductive

growth, which is accompanied by a general growth arrest. In order to clarify the role of

AtST4c in cytokinin-mediated growth control and its role in flowering, the following

experiments should be performed in the future.

- Identify the endogenous substrate of AtST4c. Two approaches should be used:

Overexpression of AtST4c to allow the identification of the sulfated product and

analysis of the sulfated metabolome of the AtST4a/4c double mutant.

- Localize the site of expression of AtST4a and AtST4c in whole plants by the

construction ofpromoter-GFP fusions.

Study AtST4c expression in other meristem identity mutants of Arabidopsis.

Study the regulation of meristem identity genes in the AtST4c-KO mutant.
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ANNEX 1

Table 1. Statistical data of root length phenotype analysis.

Root length analysis, DAG]=2, Kruskal-Wallis Asymp. Sig. = 0.0
Genotype Mann-Whitney U Asymp. Sig. (2-

tailed)
Number

CtI & A 315 0.455 CtI =42
A=I 7

CtI & B 569.5 0.075 Ctl=42
B=35

CtI & C 268 2.44E"- Ctl=42
C=29

Root length analysis, DAG=3, Kruskal-Wallis Asymp. Sig. = 0.0
Genotype Mann-Whitney U Asymp. Sig. (2-

tailed)
Number

CtI & A 268 0.001 CtI =43
A=25

CtI & B 535 0.028 Ctl=43
B=35

WCtI & C 99 3.41E Ctl=43
C=31

Root length analysis, DAG=4, Kruskal-Wallis Asymp. Sig. = 0.0
Genotype Mann-Whitney U Asymp. Sig. (2-

tailed)
Number

CtI & A 403 0.087 CtI =43
A=25

CtI & B 393 2.88E- Ctl=43
B=35

CtI & C 122 3.91 E- Ctl=43
C=30

DAG= Days after Germination
Asymp. Sig. stands for asymptotic significance

3 CtK A, B and C stand for control, AtST4a-, AtST4b- and AtST4c-KO lines, respectively
4 Number shows the numbers of replicates in each mutant line
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Root length analysis, DAG=6, Kruskal-Wallis Asymp. Sig. = 0.0
Genotype Mann-Whitney U Asymp. Sig. (2-

tailed)
Number

CtI & A 426 0.076 CtI =44
A=26

CtI & B 295 8.69E^- Ctl=44
B=33

^-CtI & C 259 LOIE Ctl=44
C=30

Root length analysis, DAG=7, Kruskal-Wallis Asymp. Sig. = 0.0
Genotype Mann-Whitney U Asymp. Sig. (2-

tailed)
Number

CtI & A 379 0.06 CtI =42
A=25

CtI & B 385 0.001 Ctl=42
B=33

CtI & C 281 6.74E" Ctl=42
C=30

Root length analysis, DAG=8, Kruskal-Wallis Asymp. Sig. = 0.0
Genotype Mann-Whitney U Asymp. Sig. (2-

tailed)
Number

CtI & A 176 0.002 CtI =40
A=I 8

CtI & B 343 0.001 Ctl=40
B=31

CtI & C 336 0.002 Ctl=40
C=30

Root length analysis, DAG=9, Kruskal-Wallis Asymp. Sig. = 0.0
Genotype

CtI & A

CtI & B

CtI & C

Mann-Whitney U

199

349

375

Asymp. Sig. (2-
tailed)
0.016

0.015

0.059

Number

CtI =37
A=I 8

Ctl=37
B=29

Ctl=37
C=28
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Root length analysis, DAG=IO, Kruskal-Wa! lis Asymp. Sig. = 0.002
Genotype Mann-Whitney U Asymp. Sig. (2-

tailed)
Number

CtI & A 215 0.034 CtI =37
A=I 8

CtI & B 341 0.031 Ctl=37
B=27

CtI & C 411 0.62 Ctl=37
C=24

Table 2. Statistical data of hormone treatment analysis of root tissue.

Relative root length, Hormone a?56=0µ?, two-independent-samples test
Genotype Levene's Test for

Equality of
Variances sig.

t-test for Equality of
Means sig.

Number

CtI & B 0.068 0.014 CtI= 19
B=19

Relative root length, Hormone ??56=3µ?, two-independent-samples test
Genotype Levene's Test for

Equality of
Variances sig.

t-test for Equality of
Means sig.

Number

CtI & B 0.631 0.002 Ctl=20
B=I 8

Relative root length, Hormone ??5e=5µ?
Genotype Mann-Whitney U Asymp. Sig. (2-

tailed)
Number

CtI & B 73.00 0.011 CtI= 18
B=I 6

Table 3. Statistical data of number of lateral root phenotype analysis.

Numbers of lateral roots, DAG= 12, two-independent-samples test
Genotype Levene's Test for

Equality of
Variances sig.

t-test for Equality of
Means sig.

Number

CtI & B 0.5 0.149 CtI=IO
B=IO
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Numbers of lateral roots, DAG= 14, two-independent-samples test
Genotype Levene's Test for

Equality of
Variances sig.

t-test for Equality of
Means sig.

Number

CtI & B 0.133 0.062 Ctl=9
B=12

Numbers of lateral roots, DAG=IO, Kruskal-Wallis Asymp. Sig. = 0.001
Genotype Mann-Whitney U Asymp. Sig. (2-

tailed)
Number

CtI & A 120 0.836 CtI =21
A=12

CtI & C 48 4.49E" Ctl=21
C=I 5

Numbers of lateral roots, DAG=13, Kruskal-Wallis Asymp. Sig. = 0.147
Genotype Mann-Whitney U Asymp. Sig. (2-

tailed)
Number

CtI & A

CtI & C

60.500

95.500

0.320

0.069

CtI =20
A=8

Ctl=20
C=15
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ANNEX 2

Table 1. Statistical data of rosette diameter analysis.

Rosette diameter, DAG= 14, Kruskal-Wallis Asymp. Sig. = 0.38
Rosette diameter, DAG=21, Kruskal-Wallis Asymp. Sig. =0.015
Genotype Mann-Whitney U Asymp. Sig. (2-

tailed)
Number

CtI & A 334 0.035 CtI =27
A=36

CtI & B 288 0.028 Ctl=27
B=32

CtI & C 451 0.76 Ctl=27
C=35

Rosette diameter, DAG=26, Kruskal-Wallis Asymp. Sig. = 0.008
Genotype Mann-Whitney U Asymp. Sig. (2-

tailed)
Number

CtI & A 297 0.48 CtI =21
A=32

CtI & B 296 0.867 Ctl=21
B=29

CtI & C 165 0.014 Ctl=21
C=29

Table 2. Statistical data of numbers of leaves phenotype analysis.

Number of leaves, DAG= 14, Kruskal-Wallis Asymp. Sig. = 0.001
Genotype Mann-Whitney U Asymp. Sig. (2-

tailed)
Number

CtI & A 391 0.7 CtI =21
A=39

CtI & B 298 0.013 Ctl=21
B=39

CtI & C 326 0.331 Ctl=21
C=35
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Number of leaves, DAG=21, Kruskal-Wallis Asymp. Sig. = 0.00
Genotype Mann-Whitney U Asymp. Sig. (2-

tailed)
Number

CtI & A

CtI & B

CtI & C

298

253

35

0.010

4.2 IE"

9.03E"12

CtI =29
A=32

Ctl=29
B=34

Ctl=29
C=35
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ANNEX 3

Table 1. Statistical data of number of seeds per siliques analysis.

Number of seeds per silique, DAG=57, Kruskal-Wallis Asymp. Sig. = 0.00
Genotype Mann-Whitney U Asymp. Sig. (2-

tailed)
Number

CtI & A 387 0.355 CtI =30
A=30

CtI & B 321 0.056 Ctl=30
B=30

^rCtI & C 109 4.49E Ctl=30
C=30

Table 2. Statistical data of number of siliques analysis.

Number of siliques per plants, DAG=36, Kruskal-Wallis Asymp. Sig. = 0.00
Genotype Mann-Whitney U Asymp. Sig. (2-

tailed)
Number

CtI & A 84.5 4.47E" CtI =23
A=24

CtI & B 141 0.011 Ctl=23
B=22

3GCtI & C 0.00 1.47E Ctl=23
C=27

Number of siliques per plants, DAG=46, Kruskal-Wallis Asymp. Sig. = 0.00
Genotype

CtI & A

CtI & B

CtI & C

Mann-Whitney U

49

87

20

Asymp. Sig. (2-
tailed)
6.69E"6 ~

1.72E-

5.377Et~

Number

CtI =24
A=20

Ctl=24
B=21

Ctl=24
C=23

109



Table 3. Statistical data of seed size phenotype analysis.

Seed length, Kruskal-Wallis Asymp. Sig. = 0.00
Genotype Mann-Whitney U Asymp. Sig. (2-

tailed)
3"

Number

CtI & B 393 8.57E Ctl=40
B=40

CtI & C 490 0.003 Ctl=40
C=40

Seed width, Kruskal-Wallis Asymp. Sig. = 0.00
Genotype Mann-Whitney U Asymp. Sig. (2-

tailed)
Number

CtI & B 504 0.004

3~

Ctl=40
B=40

CtI & C 341 8.57E Ctl=40
C=40

Seed volume, Kruskal-Wallis Asymp. Sig. = 0.00
Genotype

CtI & B

CtI & C

Mann-Whitney U

416

313

Asymp. Sig. (2-
tailed)
2. 19E-4

2.77E"'

Number

Ctl=40
B=40

01=40
C=40

110


