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ABSTRACT

Analyzing Equity-Indexed Annuities

Using the Lee-Carter Stochastic Mortality Model

Huan Yi Li

Equity-indexed annuity (EIA) insurance products have become increasingly sought af-
ter since their introduction in 1995. Some of the most important characteristics of these

products are that they allow the policyholders to benefit from the equity market's po-

tential growth and ensure that the principals can grow with a minimum guaranteed

interest rate.

In this thesis, we show how to derive the closed-form pricing formula of a point-to-point

financial guarantee, using the Black-Scholes framework. Moreover, under the complete-

market assumption, we construct a replicating portfolio that can hedge a point-to-point

financial guarantee.

However, in real financial markets, some of the assumptions required by a complete-

market cannot be respected, particularly the continuous-time trading assumption. The

replicating portfolio generates hedging errors because companies can only trade dis-

cretely. We will show the distribution of the present values of hedging errors for the

financial guarantee.
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We also introduce the Lee-Carter stochastic mortality model. After presenting how to

price a point-to-point equity-indexed annuity with fixed mortality rates, we then take

the stochastic mortality rates into consideration to re-evaluate the point-to-point. In

both cases, the pricing work for the point-to-point product is done under the assump-

tion of independence between the equity market and the policyholder's time of death.

Furthermore, the replicating portfolio of a point-to-point equity-indexed annuity can be

derived based on the replicating portfolio of a point-to-point financial guarantee with

the corresponding mortality rates. The distributions of the present values of hedging

errors under both fixed and stochastic mortality rates will be presented. Indeed, the

replicating portfolio can help companies reduce the risks of issuing EIA products, since

it can hedge the EIA very well. The impact of stochastic mortality model is examined

at the end of the thesis.

IV



Contents

List of Tables vii

List of Figure ix

Introduction 1

1 Financial Model and Actuarial Notation 3

1.1 Financial Model 3

1.2 Stock Price Dynamic 4

1.3 Arbitrage-Free Valuation 8

1.4 Actuarial Notation 12

1.5 Stochastic Mortality Model 14

1.5.1 Approximation Method 21

1.5.2 Generating Stochastic Mortality Rates 22

2 Financial Guarantee 24

2.1 Introduction 24

2.2 The Point-to-Point Financial Guarantee 25

2.3 Pricing 26

2.4 Hedging Strategy 30

?



2.4.1 Hedging Errors 31

3 Equity-Indexed Annuity 38

3.1 Introduction 38

3.2 Pricing a Point-to-Point EIA 39

3.3 Hedging Strategy 41

3.3.1 Hedging Errors 43

3.3.2 Policyholder's Time of Death 45

3.4 Valuation Under Stochastic Mortality 52

Conclusion 58

References 61

Vl



List of Tables

1.1 Estimated parameters values 19

1.2 Forecasted mortality rates , 22

vn



List of Figures

1.1 Wiener process 7

1.2 Geometric Brownian motion, µ = 0.1, 0.12, s = 0,0.25,0.4 7

1.3 Simulated qXtS 's and the forecasted q^'s 23

2.1 Present values of tracking errors for one 10-year financial guarantee. . . 34

2.2 Present values of tracking errors for 100 contracts with a 10-year financial

guarantee 34

2.3 Present values of tracking errors for one 5-year financial guarantee. . . 36

2.4 Present values of tracking errors for 100 contracts with a 5-year financial

guarantee 36

2.5 Present values of tracking errors for one 15-year financial guarantee. . . 37

2.6 Present values of tracking errors for 100 contracts with a 15-year financial

guarantee 37

3.1 Present values of hedging errors for one 10-year PTP contract 48

3.2 Present values of hedging errors for 100 10-year PTP contracts 48

3.3 Present values of hedging errors for one 5-year PTP contract 50

3.4 Present values of hedging errors for 100 5-year PTP contracts 50

3.5 Present values of hedging errors for one 15-year PTP contract 51

viii



3.6 Present values of hedging errors for 100 15-year PTP contracts 51

3.7 Present values of hedging errors for one 10-year PTP contract under

Lee-Carter mortality model 55

3.8 Present values of hedging errors for 100 10-year PTP contracts under

Lee-Carter mortality model 55

3.9 Present values of hedging errors for one 5-year PTP contract under Lee-

Carter mortality model 56

3.10 Present values of hedging errors for 100 5-year PTP contracts under Lee-

Carter mortality model 56

3.11 Present values of hedging errors for one 15-year PTP contract under

Lee-Carter mortality model 57

3.12 Present values of hedging errors for 100 15-year PTP contracts under

Lee-Carter mortality model 57

ix



Introduction

Since their introduction to the U.S market in 1995, the equity-indexed annuities (EIAs)

have become increasingly popular. The sales of these products increased over 50% from

2003 to 2004. Moreover, despite the downturn of financial markets in recent years, over

125 billions of EIAs were sold in 2008, see http://www.indexannuity.org.

In addition to the traditional tax deferred advantage offered by most fixed annuities, the

EIAs provide the policyholders the opportunity to enjoy the equity market's potential

growth while protecting most of their initial premiums.

EIAs have been a popular topic of research since their invention. Brennan and Schwartz

(1976), Boyle and Schwartz (1977) were the first to extend the Black-Scholes framework

(Black & Scholes, 1973, and Merton, 1973) to equity-linked insurance products. Since
then, a lot of research have been done on the subject of EIAs. Hardy (2003) discusses

the properties and pricing scheme for EIA life insurance products. Tiong (2000) and

Lee (2003) have obtained closed-form formulas for several EIAs. Lin and Tan (2003)
consider a more general model for EIAs.
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Furthermore, Gaillardetz and Lin (2006) evaluate EIAs in a discrete time framework

and relax the mortality diversification assumption under constant interest rates. Gail-

lardetz (2007) illustrates the EIAs valuation using a stochastic interest rate model.

In this thesis, we focus on the point-to-point (PTP) equity-indexed annuity product.

Furthermore, under the complete-market assumption, we can construct a replicating

portfolio containing both risky assets and riskless assets to hedge the underlying PTP
contracts. Because we can not meet the requirement of trading continuously, we assume

that companies will rebalance the replicating portfolio m times per year, and hedging

errors will occur at the rebalancing times. We will show the distribution of the present

values of hedging errors, obtained through a large number of simulations. Moreover,

although most papers assume fixed mortality rates while pricing EIAs, we will explain

how a stochastic mortality model effects the hedging errors.

In Chapter 1, we introduce the Black-Scholes financial model and commonly used ac-

tuarial notation. We also present how to obtain the Lee-Carter (LC) model parameter

estimators, how to forecast and how to generate the stochastic mortality rates with this

LC model. We then explain the pricing scheme and the hedging strategy for financial

guarantees in Chapter 2, particularly for the point-to-point design. In Chapter 3, we

show how to evaluate a PTP equity-indexed annuity product, in the case with both

non-stochastic and stochastic mortality rates. The corresponding new hedging strategy

and the hedging errors are also discussed. Furthermore, the distributions of the present

values of hedging errors for the PTP product are shown in Chapter 4. Finally, we

explain the results and make some conclusions.
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Chapter 1

Financial Model and Actuarial No-

tation

1.1 Financial Model

The Black-Scholes (BS) framework has been widely used in mathematical finance since

its publication in 1973, Black and Scholes (1973). It provides a fundamental technique to

price and hedge financial derivatives. Financial derivatives include financial instruments

such as options, stock indices, futures, and swaps. There are numerous references that

explain the BS model in depth (Björk, 2004). The BS model contains the following

assumptions:

• The borrowing and lending rates are the same, and there is no restriction on short

selling;

• There are no transaction or tax costs involved;

• Stocks do not pay dividends and are perfectly divisible;
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• Trades can be done continuously;

• The stock prices follow a geometric Brownian motion (GBM) with a constant

drift and volatility;

• There are no arbitrage opportunities in the market.

An arbitrage opportunity is a financial design which traders could use to make profits,

with probability greater than 0, while investing nothing in the financial market. Note

that if the above assumptions are true, the financial market is "complete." A complete

market is a market where all the financial instruments can be replicated perfectly by

their replicating portfolios.

1.2 Stock Price Dynamic

In the BS model, stock prices are assumed to follow a geometric Brownian motion

(GBM) under a continuous-time framework. It is supposed that the stock price process

{S(t) ; t > 0} satisfies the stochastic differential equation given by

dS(t) = ßS{t)dt + aS(t)dW(t), t > 0,

S(O) = S ,

where µ is a constant drift parameter and can be interpreted as the underlying stock

average return; s is the diffusion coefficient and can be considered as the stock volatility.

Suppose we set 5(0) = s as the artificial starting value of the stock. Moreover, dW(t)

is the derivative of a Wiener process. It represents the randomness of the stock prices

in the trading market. A Wiener process {W(t); t > 0} has the following properties:

• W(O) = 0;
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• W(t) ~ N(O, t), which means that W(t) follows a normal distribution with mean

0 and variance t;

• W(t) has independent increments on non-overlapping time intervals. Suppose

s < t < u < v, then W(t) — W(s) and W(v) — W(u) are independent random

variables. Moreover, W(t) - W(s) ~ N(O, t- s).

Figure 1.1 shows a sample path of a standard Wiener process. The Wiener process is a

continuous process tha is not differentiable anywhere. Furthermore, it moves randomly

and does not have any particular trend.

So far, everything we have discussed is under the continuous-time frame. In order to

simulate the stock prices, we need to relax the assumption of continuous-time. Consider

the interval [t, t + — ], where m is the number of times we want to capture stock prices

within a year. Then according to Euler's approximation, we can approximate the stock

prices from (1.1) as the following

AS(t) = µ5(?)?? + aS(t)AW(t), t > 0, (1.2)

where ? represents the change . Furthermore, (1.2) is equivalent to

s(t + ^\- S(t) = S(t) µ- + s (w (t + - ) - W(t) (1.3)

and it leads to

f ±? = S(t) L- + s (w (t + -) - W(t)) + l] . (1.4)mj I m \ \ m J J J

Suppose that we start from time 0 and assume 5(0) = 1, then the following formula is

used to simulate stock prices

5(G)=5(?^?? + ^+^(?)), (!.5)lm/ V m I V m \m ' '



where i takes values of 1, 2, ¦ · · .

Figure 1.2 shows four simulated stock price processes with different parameter values

over 2 years, where m = 50. We assume that the stock process starts from an initial

value of 1. In Figure 1.2, the solid line is obtained when setting the stock volatility

parameter to s = 0. In fact, its shape matches with an exponential function: eµ?. We

can also observe that the stock with larger s value has bigger movements than other

stocks. And the stock with higher return rate µ generally leads to higher values of S(t).

We define a new process {Z(t); t > 0} by Z(t) = ln(5(t)), and according to Itô's

formula, we can obtain the following

dZ{t) = W)dS{t) + 5 i'sffi) {dS{t))2, * > °' (1'6)
with Z(O) = ln(s). Apply Itô's formula assumptions, we can further derive (1.6) as

dZ{t) = ^^S{t)dt^aS{t)dW{t))^\^-^ja2S{tfdt
= µ?? + adW(t) - -a2dt

= {µ-\s2)?? + s??(?), t > 0. (1.7)
The starting point of the process Z is Z(O) = ln(s). Integrating (1.7) on both sides

leads to

?(?) = \?(3) + (µ-\s2)? + s\?{?), t > 0. (1.8)Là

Recall that we defined Z(t) = ln(5(i)), so we can derive S(t) by taking the exponential

function to (1.8)

S(t) = 5e("-è^)*+^W. (1.9)
6



Figure 1.1: Wiener process

?(µ = 0.1,? = 0)
?(µ = 0.1, O = OJ)

?(µ = 0.1, 0 = 0.25)
?(µ = 0.12,? = 0.25)

? , «·' ·* ' ! :?

: : ¦ ,(. ¦?1

Figure 1.2: Geometric Brownian motion, µ = 0.1, 0.12, s = 0, 0.25, 0.4

7



Therefore, S(t) has a lognormal distribution with mean (µ — \a2)t and variance s?.

Moreover, s{§f> itself follows a lognormal distribution: 5^"^ ~ LNfau,a2u), where
LN will be used as the abbreviation for lognormal distribution from hereafter. A

lognormal distribution X with mean µ? and variance s? has the following density-
function

1 (In(S)-Mt)2f(x) = 7=e ¿*t , x > 0, (1.10)?s?2p?

and its cumulative distribution function is

F(x) = <ï(Hx) rßt), x>0. (LU)ay/l

1.3 Arbitrage-Free Valuation

In this section, we briefly discuss the concept of arbitrage-free valuation. Harrison

and Pliska (1981) showed that the price of a financial derivative could be calculated as

the expected value of a series of future payoffs under a risk-neutral probability measure.

Suppose we have a financial derivative with a maturity of T, and its future payoff at T

is G(T), then the price of this financial claim at time t < T is

G(T)P(t, T) = EQ m (1.12)gr(T-í)

where EQ[ ] is the expected value under the risk-neutral probability measure Q, J(t)

stands for the information given up to time t, and r is the market risk-free interest

rate. The risk-free interest rate is the guaranteed rate of return investors receive when



investing in a risk-free asset. Furthermore, under the risk-neutral measure, the stock

value dynamic equation is given by
(

dS(t) = rS(t)dt + aS(t)dW(t), t > 0,
(1.13)

5(0) = s,

where W(t) is a standard Wiener process under probability measure Q.

Black and Scholes (1973) not only provides the European options pricing formula, but

also introduces the replicating portfolio concept, which was later identified by Merton

(1973). It says that in a complete market, a financial derivative can be hedged by

its corresponding replicating portfolio, whose payoff at T is the same as the financial

derivative payoff. Denote V(T, T) as value of the replicating portfolio at T, then

V(T,T) = G(T), (1.14)

where G(T) is the payoff of the financial derivative at T.

Furthermore, Harrison and Kreps (1979) explain more on the trading strategies in the

securities market. They point out that under the arbitrage-free market assumption,

a replicating portfolio is self-financing. This means that the hedging portfolio does

not need extra investments or withdrawals to adjust itself. Generally, the replicating

portfolio is split in two assets: the risky asset, generally is a stock and the risk-free

asset, a money-market account M(t). Moreover, Baxter and Rennie (1996) showed

that according to the general result of Black and Scholes, the proportion invested in

the risky asset, denoted as b(t,T), is calculated through the following formula

6(í'T) = 5(í)^s|p 0<?<t· (L15)
9



The risk-free asset proportion a(t,T) is obtained as a(t,T) — P(t,T) — b(t,T). In the

absence of arbitrage, the replicating portfolio and the financial derivative should have

the same price at all times. We denote a hedging portfolio value at t as V(t,T), then

P{t,T) = V(t,T) = a(t,T)+b(t,T), 0<t<T. (1.16)

Suppose there are two portfolios with the same payoffs at time T that are sold at dif-

ferent prices, then a trader can buy the cheaper one and short sell the more expensive

one. The profit of the trader is the difference between the two prices.

In this thesis, we will need the price formula of a European call option. The European

call option gives option holders the right to buy a financial instrument at a predeter-

mined strike price R, at maturity time T. Note that option holders do not have to

exercise the option unless the option is "in the money," which means that the underling

financial instrument's price at time T is above R. Suppose a European call option is

associated with a stock S(t), and S(t) is defined as in (1.1). Let G(T) denote the option

payoff at time T, and it is given by

G(T) = max(5(T) - Ä, 0)

0 if S(T) < R,

S(T) - R S(T) > R.

Using (1.12), the price of the call option at time t < T is

G(T)

= < (1.17)

Pc(t,T) = EQ m (1.18)er(T-í)

Recall that we have assumed that the dynamic stock price S(t) is given by (1.13), then

using (1.9), we have

S(T) = 5(?)^-?)(G-?)+s(^(t)-^(?)), (1.19)
10



where S(t) is given. We can further develop (1.18) as
/¦oo

Pc(t,T) = e-^-*)/ G(z)fz(z)dz, (1.20)

where Z(T - i) ~ iV((r - |s2)(G - ?), s2(? - ?)) throughout this thesis. Therefore,
/¦ln(^) r°°/ 0-fz(z)dz + (S(z) - R) ¦ fz{z)dzJO ??(^)

/•OO /"OO

/ S(2)/z(z)dz - e-r<T-'>Ä / /z(z)d*. (1.21)
Pc(i,T) = e-CT-i)

-r(T-t)= e

The lower limit In(^y) is obtained by solving

S(T) - R > 0 =? S(i)e* > R => 2 > ln(-¿r). (1-22)b(t)

We derive the second integral part in (1.21) to be

f°° 1 f°° (*-A)2/ /z(z)dz = ,—= / e-H^dz, (1.23)

where µ = (r- §s2)(?-?) and s2 = a2(T-t). Let ^ = u, then (¿2 = adu. Therefore,
(1.23) is further developed as

1 G _«» 1 f°° _s»—?= /, /^s_Î - e 2 sa? = .— /,„,·«. , ,-, e 2 du
s p-

= PrQ < U > 1?(^))-?'
s

_ f (-ÏUâb£) . (1.24)
The first integral in (1.21) is obtained via similar derivations, as is shown in detail in

the next chapter. Therefore, using the change of variable method to rearrange (1.21),

it can be rewritten in terms of two standard normal distribution functions. That is

Pc(t, T) = 5(?)F(^) - Re-r<?-H{<k), (1.25)

11



where

and

_ In(M) + (r- g)(T -t)
d2 - ^7^

= di-s??^?. (1-27)

1.4 Actuarial Notation

We use the standard actuarial notation, presented in Bowers (1997) for a life table.

Define (x) as a person alive at age of ? and define T(x, s) as the continuous future

lifetime of (x) who is current living in year s. Moreover, define K(x, s) as the discrete
curtate-future-lifetime, that is

U-(X1S)=LT(S1S)JeN1 (1.28)

where l· j is a floor function. In fact, K(x, s) is the smallest integer that is close to the

actual death time.

Let hQx,s be the probability that (x) living in year s, dies within h years:

MZx,. = Pr[T(X, s)< h}. (1.29)

Denote hpx>a as the probability that (x) in year s survives for h years

hpX!S = Pr[T(x, s)>h] = l-h qx,a. (1-30)

12



Furthermore, the probability that (x) in year s survives exactly h years is defined as

h\<h,a = Pr[K(x,s) = h]

= Pr[h < T(x, s) < h + 1] = Pr[T(x) < h + 1] - Pr[T(x) < h\. (1.31)

The probability that (x) survives h years but will die within the following u years is

denoted by

h\uqx,s = Pr[h < T(x, s)<h + u]. (1.32)

For convenience, we define qx>s as the probability that (x) living in year s dies in the

following year.

For a non-deterministic survivorship group (cohort), we denote £IiS as the random

number of population living at the beginning of age interval ? in year s, and T>x>a

represents the random number of deaths occurred between age ? and x+1. Furthermore,

let lx¡s = E[Lx^ be the expected number of the survivors, and let dx>s = E[Dx^].
Therefore, for a deterministic cohort, we have the following

^x1S = ¿x,s — ??+1,3+1· (1.33)

Let mXjS denote the central death rate over the interval from ? in year s to ? + 1 in

year s + 1 , and it is defined as the following ratio

mx<s = — , (1-34)

where Nx¡s is the total expected number of years lived by survivors of the initial new-
borns between ? and x + 1

Nx,s = f lx+t,.dt. (1.35)
13



Finally, fx is defined as the separation factor. It represents the average number of years

lived between ? and ? + 1 by people who die within the interval of ? to ? + 1. It is

given by

Jx = ^>(f)<ft, (1.36)J0 fT{x,s){t)dt

where /t(x,s)(í) is the density function of the future lifetime of (x). If we assume that
death occurs uniformly on a 1-year interval, then /r(x,s)(i) = Qx,s, where 0 < t < 1.

Therefore, fx — J0 sds = |.

1.5 Stochastic Mortality Model

The pricing of life insurance products is based on financial models and mortality rates.

In this thesis, we use the Lee-Carter (LC) model to forecast future mortality rates. The

LC model has been recognized as the leading statistical model, famous for its simplicity

and the accuracy of its empirical results. The results generated by the LC model have

been used as benchmarks in several countries where historical statistical data are suffi-

cient and complete. The model needs to use data such as the population, the number

of deaths per year, the number of new-boms per year, etc., to estimate the parameters.

Therefore, the more information we have, the more likely we will make an accurate

analysis about mortality rates. Moreover, the LC model allows death rates to decrease

without limit and the life expectancy to increase without any additional conditions.

To make our analysis as up-to-date as possible, we have chosen the data for the Canadian

population given by the Human Mortality Database from 1921 to 2005. Prior to the
14



year 1921, World War 1 and an epidemic influenza led to high mortality rates. However,

those special events only reflect the rare extreme cases, and we do not consider those

situation in this thesis. Therefore, our data begins from year 1921. We want to estimate

the central death rates mXtS using the following model

\n(mXtS) = ax + ßxka + e?>3, (1-37)

where ax and ßx are age-parameters that change with age, ks is the mortality index

and changes with time, and eXyS represents the error term that is not captured by the

model. The error term is assumed to follow a normal distribution with mean 0 and

variance ?.

Because in (1.37) only the mx/s are given from the population distribution, the usual

linear regression will not provide the estimated parameter values. In addition, (1.37)

does not have a set of unique estimated parameters values. For example, suppose that

äx, ßx, and ks are a set of estimated parameters, then for any constant number c, äx — c,

ßx, ks + c and ax, ßxc, ks/c are both possible sets of estimated values. Fortunately, Lee

and Carter (1992) pointed out in the paper that the multi-solutions of (1.37) do not

affect the uniqueness of the future forecast values. In fact, the likelihood corresponding

to the model has a finite number of equivalent maxima, and each set of parameters

provides exactly the same forecasts.

Among all the possible estimates, we want to find a set of parameters that is consis-

tent, representative, and easy to calculate. Therefore, the following assumptions were

introduced by Lee and Carter (1992):

15



The sum of /3x's for all ages ? is 1;

The sum of fa's is 0.

Furthermore, we only consider the ages up to 99-year old. Mortality rates above 99-

year old are obtained through another method. In this thesis, we consider individuals

aged between 40 to 50 years old holding life insurance products for 5 to 15 years.

Therefore, we focus on estimating mortality rates on the age interval of [0,99]. The

matrix containing the logarithm of the central death rates is given by
/ \

In(M) (ioo,85) =

ln(m0,i92i) ln(m0,i922) · · · ln(mo,2005)

ln(mU92i) In(TnI1I922) ··· ln(mi,2oo5)
(1.38)

Vln(m99ii92i) ln(m99ii922) · · · ln(m99i2oo5)

For each age group (the row in this matrix), we have a total of H = 85 equations for

s =1921 to 2005, which are in the form of (1.37). If we sum up the 85 equations and

ignore the error terms for now, we then get the following equation
2005 2005

S ln(mx,e) = Hax + ß? J] k„, ? = 0, 1, · · · ,99, (1.39)
s=1921 s=1921

^2005where H is the year range 85. Using Sß"1921 &« = °> we obtain the estimated à values

for each age group

1 2005
(1.40)

s=1921

The next step is to subtract the obtained &x from the corresponding age row, and a

16



new matrix is formed as the following

In(M) (10o,85) -QLx =

ln(m0,i92i) — &o ln(ra0,i922) — ¿*? ¦ · · ln(m0>2005) - ^0

ln(mi,i92i) - &i !11(7711,1922) - &i ··· hi(mi,2oo5) - &i

1 ln(m99,i92i) - &9Q !11(777,99,1922) - â99 · · · ln(m99,2005) ~ ^99 I
(1.41)

In order to solve for ßx and ks, we use the Singular Value Decomposition (SVD).

The SVD provides two sets of left and right eigenvectors for the matrices AAT and

A7? respectively. This method is pre-programmed in many statistical and computer

packages, such as R, matlab, and C++. In this thesis, we use the SVD function in R

to decompose (1.41), and we get two vectors containing /c*'s and /3*'s values. Using the

SVD method, the sum of fc*'s is 0. However, the sum of /?*'s is not 1, and therefore, we

normalize the obtained /?*'s to get the estimated ¡3X values

Z-(X=O Vx

So far, the estimated values of &x and ß? have been determined. The original fc*'s

obtained from the SVD method are not our final estimated values yet. The Lee-Carter

model requires that (1.37) matches with the actual historical data, so one more step is

needed to find the estimated ks. Keeping <5x's in (1.40), ßxs in (1.42), and A;*'s obtained

with the SVD unchanged, we plug them into (1.37) to get the corresponding forecast

central death rates rhXtS

rhx,s = e&x+~ß*K, s = 1921, · · · , 2005. (1.43)

Let D(s) denote the total number of death actually observed within year s, then
99

D(s) = ^2(NXtSmXtS), (1.44)
x=0
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where Nx,a is defined in (1.35) and given in the population data. Moreover, from the

population distribution, we can calculate the total number of deaths occurred during

a year s, for all people from age 0-99. Therefore, using (1.43) to substitute mXtS and

forcing (1.44) to equal the observed total number of deaths in year s, we can solve (1.44)
iteratively to obtain ks. By applying this procedure to different years from 1921-2005,

we obtain all the estimated fcs's. In this thesis, we use the SOLVER function in Excel

to solve for ka.

With all the estimated parameter values at hand, we can obtain the forecasted central

death rates. Although the obtained values are very close to the actual data, there

are still small differences between them, and these differences are the errors. As we

mentioned before, we assumed that ex<s is a normally distributed variable with mean 0

and variance ?. The estimated variance is given by

,_S9,1?S^5921(^-^,)2 ?145)? NH-I '

where N is the age range 100 for x=0 to 99.

In order to forecast future mortality rates, we need to first forecast the future mortality

index ks. Lee and Carter (1992) tested several different ARIMA models, and decided

to use a simple random walk with drift (RWD) model to fit the fcs's. That is

ka = ka-1+9 + ea, s = 1922,··· ,2005, (1.46)

where ? is the average drift parameter on a time interval [1, SS], where SS is an integer

number bigger than 1. Moreover, the maximum likelihood estimated ? value is given
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by

? kss - h
SS-I' (1.47)

Note that the fcs's generally have a decreasing trend, which means people tend to live

longer in more recent years s. In addition, the error term es in (1.46) is also assumed
to follow a normal distribution, with mean 0 and variance v. The estimated variance

of es is given by

E8S=Ah+I - ~ks- ?)2
V —

SS-I (1.48)

Both error terms in (1.37) and (1.46) play an important role when generating random

mortality rates.

Table 1.1 shows the forecasted a, ß, and k values of a 50-year old person, from 2005 to

2014, based on the historical data from 1921 to 2005.

Pars. (50,2005)

-5.14107

0.00822

-96.2744

0.00265

(51,2006)

-5.12035

0.00624

-98.1501

0.00324

(52,2007)

-4.96482

0.00787

-100.0257

0.00318

(53,2008)

-4.90707

0.00702

-101.9013

0.00362

(54,2009)

-4.81074

0.00679

-103.7769

0.00402

(55,2010)

-4.73673

0.00678

-105.6525

0.00428

(56,2011)

-4.63783

0.00648

-107.5281

0.00482

(57,2012)

-4.55553

0.00615

-109.4037

0.00536

(58,2013)

-4.44326

0.00683

-111.2794

0.00550

(59,2014)

-4.37223

0.00617

-113.1550

0.00628

Table 1.1: Estimated parameters values

Recall that àx is just the average of ln(mx,s) and ß? is obtained using the SVD method.

Furthermore, k2oo5 is obtained using the SOLVER in Excel, and the rest ks's are ob-
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tained using the RWD method. For instance, we now show how to get ?;2??6·

iti92i = 61.2772, and ¿2005 = -96.2744, both obtained using SOLVER,

? = kw05 " ^1921 = -1.8756, and therefore,84

¿2006 = ¿2005 + ? = -98.1501. (1.49)

Furthermore, the mXiS's are obtained using (1.43), and therefore

™ „«50+/350&2005"^50,2005 — e

_ -5.14107+0.00822X (-96.2744)

= 0.00265.

From Table 1.1, we can see that the âx's are increasing with x. This is because central

death rates increase as ages increase, and this leads äx, which is the average of the

ln(mx,s) to increase as well. Not surprisingly, the ¿'s decrease linearly as we described
previously in the RWD model. Indeed, the decreasing trend of the mortality index

indicates that mortality rates are decreasing year by year. It seems that mortality rates

should decrease as time passes. However, ¡3X which represents the rate that ln(mx,s)
declines at, controls how fast ks can decrease at certain ages. Note that

dln(mx¡3) _ dksa
ds ds

Hence, the total impact of a?, ßx, and ks determines mXyS. Furthermore, the ßx 's do not

follow any particular trend. Note that at age 50, 51, and 52, the ßx's are more volatile.

It shows that at age 50, mortality declines much more rapidly than at age 51, and that

at 51, mortality declines at a much slower rate. It then declines at a relatively stable

rate after age 52.
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1.5.1 Approximation Method

We need to use an approximation method to convert the forecasted central death rates

to annual mortality rates. The following method is generally used by many authors and

organizations, such as in Renshaw and Haberman (2003), by the United States Social

Security, and Human Mortality Database. This method is recognized for its simplicity

and accuracy. Suppose that Xk < 85, then the following approximation applies

qx,s = . /^ , (1-50)
for all ? and s. Moreover, recall fx is the separation factor and is \ in the case that
death occurs uniformly on the time interval [0,1]. Mortality rates of people whose ages

are greater than 85 are converted through another approximation method. In this the-

sis, we consider individuals who were 50 years old in 2005 and held insurance contracts

for up to 5-15 years.

With all the estimated values of âx's, ßx 's, and k's available, we can first get mXiS's,

and q^s's can be obtained via (1.50). For instance,

950,2005 = , /Tl2005 = 0.002646493. (1.51)1 + /x"^50,2005

Table 1.2 shows the future forecasted 10-year mortality rates of a 50-year old living

in year 2005. We see that mortality rates increase as age increases, except between

ages of 51 and 52, where the mortality rates increase rapidly at age 51 compare with

that at age 50. The death rates decrease slightly at age 52 and then keep increasing at

a smooth rate. Recall the explanations on this matter in the end of the previous section.
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950,2005 951,2006 952,2007 953,2008 954,2009 955,2010 956,2011 957,2012 958,2013 959,2014

0.00265 0.00323 0.00317 0.00361 0.00402 0.00427 0.00481 0.00535 0.00548 0.00626

Table 1.2: Forecasted mortality rates

1.5.2 Generating Stochastic Mortality Rates

We can simulate the stochastic mortalities by first simulating the ks using the RWD

model in (1.46). Recall that fc2oos = -96.2744,0 = -1.87561, and ? = 9.94385 were

obtained by using (1.48). Hence,

&2006 = &2005 + ? + 62005

= -96.274437 + (-1.875614817) + e20o5,

where e2oo5 represents a random variable that follows a normal distribution with mean

0 and variance v. Therefore, k2oo7 is obtained using the same procedures,

&2007 = &2006 + ? + e2006

= &2005 + ? + ? + e2o05 + e2006

= -96.274437 + 2(- 1.875614817) + e2005 + e2006,

where e2005 and e2006 are assumed to be independent and identically distributed.

After generating a series of fcs's, we can then simulate stochastic ln(mI)S)'s by using

(1.37), where äx, ßx were obtained above, and e?,8 ~ N(O, ?), where ? = 0.01997.

Therefore,

\n(mXtS) = &x + ßxks + e?)8. (1.52)
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Taking the exponents of these ln(mx,s)'s, we can get the stochastic fhx¿s. Using the

approximation method, we then obtain the stochastic qx¿s based on the simulated mX)S.

The forecasted qx¿s are calculated using the procedure in (1.51), where the errors term

are ignored.

Figure 1.3 shows 4 simulated future 10 years qx¿s and the forecasted <?x,.s's, starting

from year 2005 and age 50. We can see that the stochastic death rates are around the

forecasted death rates. In this figure particularly, we only performed 4 simulations, and

the stochastic rates are higher than the forecasted ones most of time. However, if we

do enough number of simulations, the averages of the stochastic rates in each year will

be very close to the forecasted ones.

S

I ?

! ?
i
i

* I
i

2 4 6 8 10

0(1 :T)

Figure 1.3: Simulated qx¿s and the forecasted çx,s's
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Chapter 2

Financial Guarantee

2.1 Introduction

Insurance companies offer various equity-indexed annuities (EIAs) that provide differ-

ent financial guarantees. Commonly seen financial guarantees are the high-water mark

guarantee, the annual reset guarantee, and the point-to-point guarantee. These finan-

cial guarantees mainly differ in their payoff designs; however, one thing they have in

common is that their payoffs are linked with the performances of certain equity indexes.

These financial guarantee products allow policyholders to enjoy the potential growth

from the equity market. Meanwhile, insurance companies offer minimum guaranteed

payments to protect policyholders from experiencing a bear market. However, the caps,

participation rates, and other limitations prevent policyholders from having full growth

from the index performance. In short, at the maturity date, the policyholder can have

the higher of the two, the minimum guarantee or the regular payoff which is linked to

the index market.
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2.2 The Point-to-Point Financial Guarantee

In this thesis, we focus on the point-to-point (PTP) design. The PTP financial guar-

antee is linked with an underling index stock S whose dynamic equations are given in

(1.1). Furthermore, the PTP payoff G(T) is given by

G(T) = P(O, T) max (l + ? [^ - l) , p(l + sf) , (2.1)
where P(O, T) is the initial price charged to one policyholder, and ? is denoted as

the participation rate, which takes a value between 0 and 1. The participation rate

indicates the percentage policyholders expose to the stock index growth. Moreover,

F(O, T)p(\ + g)T is the minimum guaranteed amount paid at T, where ? is the per-

centage that the insurance company guarantees its policyholders they will get from

their initial investments, and g is the guaranteed annual rate of return. For example,

suppose that ? = 80%, and g — 3%, then in year T, the minimum guaranteed amount

is 0.8(1 + 3%)T. Furthermore, |^ - 1 in (2.1) is the growth rate of the index stock.

From (2.1), we can see that only the starting and ending stock prices are taken into
account. In other words, the PTP financial guarantee ignores all the stock index move-

ments throughout the term, except at times 0 and T. In general, investors can enjoy

high profit returns if the market experiences an uninterrupted bull market.

Let Z(T) = (µ- \s2)? + s\¥(?) be a Brownian motion with drift, then from (1.9), we
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have

S(T)
S(O)

= eZ(T) (2.2)

Moreover, recall the geometric Brownian motion in (1.19), given S(t) for 0 < t < T, we

can rewrite (2.2) as

S(T) _ S(t)ez^s(o) s(o) ' v ¦ ;
Therefore, substituting (2.3) into (2.1) for a given 0 < t < T, we can rewrite G(T) as

G(T) = P(0,T)maX^l-u + u^ez^-t\p(l + g)Ty (2.4)
For simplicity, we use K to replace p(l + g)T hereafter.

2.3 Pricing

Using (1.12), the price of a PTP financial guarantee at time t < T is given by

P(t,T) = e-r{-T-t)EQ \g(T) 7(t)
= P(0,T)e-r{T-t)EQ max O-^^^N , (2.5)

The second line is true because 3(t) represents the information given up to t, and it is

actually just the stock price at time t. Therefore, the price is given by

P(O, T)P(t,T) = er(T-t)
P(Q1T)
er{T-t)
PM
er(T-t)

s(t) ? fz\s(t)(z)dz + / Kfz\Sit)(z)dz

(1 - ?) f fz(z)dz + u,JH jf e*fz(z)dz + K J^ fz(z)dz
(1 - ufa + u,JH J e*fz(z)dz + K(I - Pl) (2.6)

where A is defined as the event [1 - ? + ?e?(-t) > K], and Ac as the event [1 -

+ ?ß?^ < K]. Furthermore, px = Pr®{l -? + u^e2^-^ > ?} and p2 =
26
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PrQ{l - ? + a;|^ez(T_í) < ?} = 1 - p\, where PrQ indicates the probability under
the risk-neutral measure. We can solve pi through the following

= PrQ{z(r-í)>ln(^±^)-ln(||)}. (2.7)
For simplicity, the following notation is introduced

ß = {r-l^){T-t) and s = ay/T^t, (2.8)

Therefore, P1 represents the probability of a standard normal distribution

Pi = F (^J^) ¦ (2.10)
We need to compute the integral fAezfz(z)dz in (2.6). For a normal distribution:
Y ~ ?(µ,s2), we can derive the following

f°° v 1 -Ht=Jg-. G l
Ja s\/2p Ja s\/2p

,¿ _{v-(»+f2))2ßµ+ 2 e 2a2 (¿y
2p

ß^F(µ + s2-a). (2.11)
s

Therefore,

/ ¿>f2(z)dz = ß^F{ß + &\~?*). (2.12)Ja s

In fact, the first integral in (1.21), where we derived Black-Scholes formula, is obtained

using the same steps in (2.11):

¿2 (µ + s2 — ln(-Jrr)-r{T-t) I n/..\r /.Aj.. --r(T-t) _û+%- -T. I ^ VSWy
/"OO .2

/ S(z)fz(z)dz = e-'?^tf-^) V
= 5(?)F(^),
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where (I1 is defined in (1.26).

Therefore, we conclude that the pricing formula at time t < T for a PTP financial

guarantee as

P(t,T) = P(O, G) (1-U)P1 +K(I -P1) S(t) (µ + s*-?·er(T-t) + 5(0) V ° ,(2.13)

where P1 is given in (2.10), and t G [0,T). Similar derivations are shown by other

authors too, for instance, see Hardy (2003), Chapter 13. Furthermore, note that at

time T, P(T, T) = G(T), since G(T) will be the amount insurance company needs to

pay out at the maturity date.

The PTP financial guarantee can be viewed as a combination of a fixed amount invest-

ment and a call option. We can rearrange G(T) and write it as followings

G(T) = P(0,T)max(l+W(!^-l),i^
= P(O, T) (? + ta??(?+?(
= ?(?,?)

S(T)
5(0) 1)-K,0

K+W)ma* (5(T) " 5(0)(1 + ^}' ° (2.14)

We see that the max term in (2.14) matches the European call option's payoff expres-

sion in (1.17). Therefore, we can treat the max term as a European call option with

strike price 5(0) (l + 1^)- Let GC(T) denote the payoff of a European call option at
maturity T, then (2.14) can be written as

?

K+W)Gc(T\G(T) = P(O, T)

Therefore, the PTP financial guarantee's price at time 0 is

(2.15)

P(O1T) = P(O, G)
?Ke~rT + ^-rPc(0,T)5(0)" (2.16)
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where Pc(O, T) represents the price of a European call option at time 0, and it is given

by Black-Scholes formula in (1.25). Note that P(O, T) can be canceled from both sides,

and we are left with 1 = Ke~rT + ^yPc(O, T).

We can use the price formula in (2.16) to obtain the participation rate ?. Suppose that

T = 10, s = 0.25, r = 0.06, ? = 0.9, g = 0.03, and for simplicity, we set 5(0) = 1 and

P(0, 10) = 1. Using the non-linear minimization function in R to solve ? iteratively, we

obtain ? = 0.7698524. In fact, the assumption of S(O) = 1, P(0, 10) = 1 does not affect

the pricing scheme in any way, since ont only P(O, T) can be factored out in (2.16),

S(O) can be eliminated by the formula of Pc(O, T). Hence, even if we assign different

values for S(O) and P(0, 10), we will still obtain the same result for ?. Therefore, for

simplicity, we will use the assumption of P(O, T) = $1 and omit P(O, T) throughout

this section.

Furthermore, using the same procedures as described for a 10-year term financial design

and keeping the same parameter values for s, r, ? and g, we can get the participation

rates of the 5-year and 15-year contracts, which are 0.7076605 and 0.8117203, respec-

tively. Note that as the contract term extends, the participation rate increases. This

is because a contract with a longer term is more likely to be exposed to an up-going

market, and hence, a higher participation rate results.
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2.4 Hedging Strategy

Using arbitrage-free pricing theory, insurers can reduce risks by creating a hedging

portfolio. They need to reinvest the initial premium into other assets, such as stocks

and money market accounts. A hedging portfolio can replicate the payoff of a financial

derivative with payoff at the end of term T of G(T), which means that

V(T,T) = G(T). (2.17)

In an arbitrage-free market, the value of the hedging portfolio should be equal to the

price of the financial derivative at all times, V(t, T) = P(t, T). The replicating portfolio

is called a hedging portfolio for the financial derivative, and the financial derivative is

called hedgeable, reachable or replicable.

In a complete market, the hedging portfolio can help the issuer company fulfil its future

liabilities without risks. The general way of building a hedging portfolio is to invest in

both risky and risk-free assets. Recall (1.15), the amounts invested in risky and risk-free

assets are determined as

6^ = ^W' 0<i<T'
a(t,T) = P(t,T)-b(t,T).

Furthermore, d^u? is the number of shares of the stock that the issuer should hold in
the replicating portfolio at time t. For a PTP financial guarantee, P(t, T) is given in
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(2.13), and therefore

S(t)[(l-u,)Ëfc + K^b(^T) = -^Fl) +

? W+»:-*>« ^+*-gS(O)

where F' represents the derivative of a normal distribution cumulative distribution

function, and

where f is the probability density function of a standard normal random variable.

Therefore,

^ = a-^-*«o + ^(.fa+,) + ^), (,20)
where ? is given by

?=µ__?^ (221)

2.4.1 Hedging Errors

Theoretically speaking, a dynamic hedging portfolio is self-financing under the arbitrage-

free and continuous-time framework. It means that the hedging portfolio can rebalance

itself continuously, and the changes in risky assets should offset the changes in risk-free

assets. However, it is impossible to re-adjust the portfolio continuously, since contin-

uous trading cannot be performed on financial markets. Moreover, transaction costs

deter investors from trading too often. Therefore, most insurance companies choose a

specific time interval, upon which to rebalance the portfolio. The trading periods could
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be chosen such as to optimize the wealth of the company.

Now assume that the issuers rebalance their portfolios m times in a year. We also

suppose that every year is equally divided into m steps of ^, and at t = ^, where
i = 0, 1, · · · , mT — 1, the portfolio value is given by

? (Kt) = ? (Kt\m J \m

= ^?,^+a^,t). (2·22)
Denote the moment immediately before t as i~, then the accumulated value carried by

the replicating portfolio from time ^ to 1^ is

For instance, suppose i = 0, then at t = ^,

Therefore, the hedging errors occur at times t = ^, which are the times when the
hedging portfolio is rebalanced. The hedging error is determined as the difference

between the contract price and the accumulated value at t

where i = 0, 1, · ¦ · , mT - 1. The random present value of the total hedging errors is

mT-l / · ? 1 \
PVf(HE) = S e-rl^HE (^), (2-26)

where PVi indicates the present value for a financial guarantee.
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In addition, if the hedging error is positive, extra funds need to be invested, since the

value of the financial derivative is more than the replicating portfolio accumulated value.

In contrast, if the error is negative, the hedging error can be considered as a source of

profit, since the actual accumulated value is more than what is needed to rebalance the

portfolio. In this case, the company can take away the difference and may use it for

other investing purposes. Note that the hedging errors for a financial guarantee are also

referred as the financial or tracking errors, since they are caused purely by the random

behavior of the risky assets.

Figure 2.1 shows the distribution of the present value of the hedging errors, obtained

by performing 50,000 stochastic simulations for one 10-year PTP financial guarantee

contract. Figure 2.2 represents the distribution of the hedging errors' present values

for 100 contracts. From Figure 2.1, we see that the mean of these present values is 0,

and the overall shape is symmetrical, and looks like a normal distribution. The value-

at-risk VaRg5% indicates that 95% of the errors are less than 1.02%. The conditional-

tail-expectation CTE95^0 shows that the expected value of the errors which are bigger

than VaRg5% is 1.45%. Although the numerical numbers give us the impression that

errors are small, it is important to pay attention to these errors, since if a large amount

of contracts are sold, the losses or gains caused by errors are significant. Note that

tracking errors are impossible to avoid, and they are also referred as systematic errors.

The VaR and CTE in Figure 2.2 are roughly 100 times larger than in Figure 2.1.
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Figure 2.1: Present values of tracking errors for one 10-year financial guarantee.
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Figure 2.2: Present values of tracking errors for 100 contracts with a 10-year financial

guarantee.
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Figures 2.3 to 2.6 represent the distributions of the present values of hedging errors

for 5-year and 15-year contracts. Their shapes are similar to the 10-year contract. It

is important to specify that the hedging portfolio replicates most of the payoffs of the

financial derivative, which means that the company is able to reduce the risks using the

hedging portfolio. Furthermore, note that as the contract term lengthens, the present

values of the hedging errors decrease. This is because that with a longer term, the

hedging errors will be discounted back over longer periods. As a result, the present

values of hedging errors for longer term contracts are smaller than those with a shorter

contract term.
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Figure 2.3: Present values of tracking errors for one 5-year financial guarantee.
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Figure 2.4: Present values of tracking errors for 100 contracts with a 5-year financial

guarantee.
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Figure 2.5: Present values of tracking errors for one 15-year financial guarantee.
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Figure 2.6: Present values of tracking errors for 100 contracts with a 15-year financial

guarantee.
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Chapter 3

Equity-Indexed Annuity

3.1 Introduction

Since 1995, equity-indexed annuities (EIAs) have been commonly sold by insurance

companies, selling over 20 billion annually. The popularity of EIAs has been increas-

ing world-wide. Unlike other traditional annuity products which generally pay fixed

amounts to the insureds, the EIAs link the annuity amounts with the performance of

the equity market. By offering a limited participation rate, a guaranteed rate of return,

and guaranteed minimum payments, an EIA product allows the insured to benefit from

the attractive profits occurred in a long-term bull market and protect them from suf-

fering a bear market.

Different EIA products offer different financial guarantees which have different payoff

designs. In general, a policyholder can receive an amount of G(T) at the end of the

maturity date T, if he survives throughout the contract term. We also consider a

mortality option that provides the policyholder the right to receive a certain amount
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at the end of his year of death. Suppose a policyholder dies at t < T, then he is eligible

to receive an amount of G(K (x, s) + 1) at the end of year líj + 1, where we recall that

K(x, s) is the curtate lifetime lT(x, s) j, and ?_· j is the floor function.

3.2 Pricing a Point-to-Point EIA

In this thesis, we focus on the point-to-point equity-indexed annuity (PTP). The PTP

product usually charges clients a single premium in year s, at time 0. We denote this

premium as PXjS(0, T), where (x, s) indicates that the EIA product is issued to a person

age ? in year s. Furthermore, the payoff of the PTP is given by

G(K(x, s) + l), K(x,s) = 0,1,- ¦¦ ,T-2

^ G(T), K(x,s)=T-l,T,---
that is

PXtS(0, T) max (l + o;(5(*gg)+1> - 1), R(K(x, s) + I)) , K(x, s) = 0, 1,
PXi,(0, T) max (l + o,(gg - 1), R(T)) , K(x, s)=T-l,T,---

Using (2.5), we can obtain the price at time 0

(3.1)

• ,T-2
(3.2)

PXiS(0,T) = EQ G(K(X, a) + 1) , r G(T)
lK{x,s)<T-l er(K(Xta)+1) + lK(x,S)>T-l—¿r- J(O) (3.3)

where Ib equals 1, if B is true, and 0 otherwise. Conditioning on (3.3) at the time of
death leads to

T-2

Px,s(0,T) = Y1PrQ[K(X1S) = H]EQ
PrQ[K(x,s)>T-l] EQ

G(K(x, s) + l)
er{K{x,s)+l)

G(T)

3(tí),K(x,s) = h +

?t? 7(0), K(x, s)=T-l (3.4)

Moreover, we suppose that the policyholder (x) and the stock index are independent,
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therefore

Px,s(0, G) = çx,sP(0, 1) + !,&,, P(0, 2) + · · · + t_2|9??ß P(O, G - 1) + T_l35x,s P(O, T),

(3

where ?(, ) is given in (2.16), PrQ[K(x, s) = h] and PrQ[K(x, s) > T - 1] are replaced
by qx,s and t-iPx,s respectively. Note that qx¡s is the forecasted mortality rate obtained
under the LC model in Chapter 1, Section 1.5.1.

In this thesis, we suppose that mortality probabilities are the same under both the P

and Q measures, that is q = q for all ? and s. Equation (3.5) shows that PXiS(0, T)

is a weighted average price, where the mortality rates are the weights. For simplicity,

we assume Px,s(0, T) = 1 throughout this thesis. Furthermore, we will use the same

parameters as in Chapter 2, Section 2.3, where s = 0.25, µ = 10%, r = 6%, g = 3%,

and ? = 90%, and we will apply the mortality rates obtained in Table 1.2 to our future

analysis for the PTP product. Therefore, using the same numerical method-non-linear

minimization method as in Chapter 2, we obtain the participation rate ? for a 10-year

PTP, which is 0.7687158. Note that this value is very close to the ? obtained for the

pure financial guarantee - 0.7698524. This is because most of the weight in (3.5) is

from the probability of t-iPx,s, which means that most people will survive until the

end of the contract term. However, the fc|<?x,s's still give some probabilities to shorten

the PTP's termination date. Moreover, the participation rates for a 5-year and 15-year

PTP are 0.7073852 and 0.8092105. In general, the equity-indexed annuity participation

rate increases as the maturity term extends for similar reasons as explained in Chapter

2, Section 2.3.
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Denote Px,s(í,T) as the price of a PTP at t < T, and for te [0,T- 1), Px,s(t,T) is
given by

Px,a(t,T) = Efl
T-líj-2

G(K(x, s) + l) , , G(T) ^i)1Uf(X1S) >LÍJ

= S h\ <?x+líj.e+iij P(í, /i + LÍJ + 1) + r-Ltj-lPx+iÍj,<+iÍj ^(í, T)· (3-6)
/i=0

There is no mortality involved in the last year, and then the PTP price is given by

PXtS(t,T) = P(t,T), (3.7)

where T - 1 < t < T. For instance, if T = 10 and t = 7.7, then the price is given by

10-l7.7_i-2

???ß(?,10) = S /1|?x+l7.7_,,S+l7.7jP(Í,/í + l7.7_1+1)+ T-L7.7j-lPx+L.7.7j,e+i.7.7j-P(t,r)
/?=0

= çI+7,s+7P(i,8)+ ?|?t?+7,ß+7^(?, 9) + 2px+7)S+7P(í, 10).

3.3 Hedging Strategy

In this section, we will present how to extract the dynamic hedging strategy for the

PTP product underlying the previous valuation methodology. Recall that V(t, T) - the

value of the replicating portfolio for a financial guarantee is given by

V(t, T) = b(t, T) + a(t, T) = P(i, T), (3.8)

where a and b are the proportions invested in the money market and the equity market.

Let VXtS(t, T) denote the value of a PTP hedging portfolio at time 0 < t < T, underlying

the pricing formula given in (3.6). Recall that, under the complete-market assumption,

VXis(t,T) = PXig(t,T). Furthermore, the hedging portfolio is a composition of aXtS(t,T)
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and bx,s(t,T), where aXjS and bx>s are the amounts invested in the risk-free and risky

assets. Using (3.6) and (3.8), we can extract the following
T-L.t-i-2

Vx,a(t, T) = S h\qx+a^s+uj P(t, h + líj + 1) + T-Lij-iPx+iij.e+Ltj P(t, T)
/i=0

T-líj-2

= J] fc|9x+Ltj,-+>-tJ [K*. ? + LÍJ + !) + a(*>? + LÍJ + ?)] +
/?=0

t-líj-iPx+líj,s+líj [&(*> T) + a(?, T)]
T-líj-2

= X ?i|9x+Ltj,s+Líj à(t, h + lìj + 1) + r-Líj-iPx+Lij.s+Ltj &(*> T) +
h=0

T-Lt-I- 2

y^ ftlCl+LÍJ.S+LÍJ ?(?, /l + LÍJ + 1) + T-LÍJ-lPx+LÍJ.S+LÍJ «(í, T).
fc=0

Therefore, the formulas for 6I)S and aXjS are given by
T-líj-2

&*,ß(?, T) = ^ ft|9x+LíJlS+Ltj&(í, /l + LÍJ + 1) +T-LtJ-I Px+líj.s+líjK^ T),
/i=0

T-líj-2

Ox,s(í, T) = ^2 h\qx+L.tj,s+ajO>(t, h + líj + 1) +T-Ltj-i Px+Ltj,s+Ltja(í, T).
/i=0

(3.9)

From the above equations, we can see that bx¡s and a?>ß are weighted average of 6's and

a's. Because there is no mortality involved in the last year of the contract, we have

bx¡s(t,T) = b(t,T), and ax,s(i,T) = a(t,T), (3.10)

fori G [T- 1,T).

Theoretically, the replicating portfolio can perfectly replicate the financial instrument

under a complete market. However, as we have said previously, companies are unable

to reset the hedging portfolios continuously in the real financial market. Hence, we

suppose that they only rebalance the replicating portfolios m times per year. Further-

more, because the complete-market assumptions are not met, hedging errors will occur.
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Therefore, each year is divided into m times of intervals with length of ^, and hedging

errors occur at the re-adjustment time t = 2^, where i = 0, 1, · · · , m—1, m, · · · , mT—1.

3.3.1 Hedging Errors

Recall that we denote t~ as the moment immediately before reaching time t, then the

replicating portfolio accumulated value at t~ is given by

^(r,T) = ^|pS(i±l)+a„(^,T)^. (3.?)
We split the hedging errors into two parts as ??? and HE2, where HEx represents

the financial tracking errors occurred at rebalancing moments, and HE2 represents

the hedging errors occurring at the end of the year of death, or when the contract is

terminated. Here HEx and HE2 are given by

^)=?^?·((?)~4 (312)
where i = 0, 1, · · · , mK(x, s) - 1, K(x, s) = 0, 1, · · · ,T-I, and

HE2(K(X, s) + 1) = G(AT(x,s) + 1) - Vx,. {(K(x,s) + I)-, T) , (3.13)

where K(x, s) = 0, 1, · · · , T— 2. Suppose the insurance company sells one PTP contract

at year s to a policyholder whose age is x, then the replicating portfolio for this contract

will provide hedging errors at all the adjusting times t = ^, ^, · ¦ · , K(x, s) + 1, until
the year he dies or the end of the contract term T, whichever happens first. If the pol-

icyholder survives throughout the whole contract, then we will only have HE1 hedging

errors, and the random present value of the hedging errors in this case is denoted as

PVS is given by

FV(HE) = "ff e^HE, (Í±±\ , (3.14)¿=o V m /
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Moreover, if the policyholder dies within year u < T, which implies that K(x, s) = u-1,

then the random present value of hedging errors is denoted as PVd, and is given by
mu-2 / ' _|_ 1 \

PVd(HE) = S e^HE, Í ^ J + e~™??2(?). (3.15)¿=o ^ '

We now consider the case that the insurance company issues the PTP equity-indexed

annuity to a cohort initially contains LXt3 policyholders, where £XiS = lXiS is a known

constant as defined in Chapter 1, Section 1.4. Furthermore, recall that ?)??3 denotes

the number of death occurring between age ? and ? + 1 in year s. Hence, if Dx,s

policyholders die during the first year, it means that K(x, s) = 0, and DX)S contracts
are terminated at time 1. Therefore, the present value of the hedging errors is denoted

as PV0, and is given by

^ HE1(^) HE2(I) ?
=o e m ¿=m-l e m

From the above equation, we see that HE1 errors occur only to policyholders who are

alive, either until one period ^ before they die, or until the contract finishes at T.
Moreover, HE2 occurs to the deceased policyholders at the end of their year of death.

Indeed, the more general way of computing the present value of the hedging errors for

a pool of policyholders is given by

PVHHE^-L V^iSl + D ^iU + £ 1 +1 ? HEimFV [HE) - L,x,s 2_^ Td+T) I" vx,s — r **>x+i,s+i 2Li T(i+i) ¦

T-2

PV°(HE) = S
h=0

^)-I ffEiii) HE2Jh+I)^x+h,s+h ¿Li „^ -Ux+Ks+h r(h+l)
u ?™?=t??

+

&x+t-i,s+t-i 2_^ tt^? (3.16)
i=m(T-l) em

where HE1(O) is set to be 0, since at time 0, the replicating portfolio value is exactly
the same as the initial contact price.
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3.3.2 Policyholder's Time of Death

In the previous section, we have obtained formulas to calculate the present values of

the hedging errors. In this section we will discuss how to simulate the policyholders

time of death, under deterministic mortality rates. We will use the forecasted mortality

rates in Table 1.2 to define the probabilities of a 50-year old person living in 2005, who

dies in year 2006, 2007,· ¦ · , 2015. Furthermore, recall that h\qx>s is the probability that

(x) at year s survives exactly h years and then dies in the following year.

l\Qx,s = Px,s * <?x+l,s+l = (1 — Qx,s)Qx+1,s+1

2\<lx,s = Px,sPx+l,s+lQx+2,s+2 = (1 ~ Qx,s){l ~ <??+1,ß+?)<??+2,?+2

h-l

h\Qx,s = ]__[(1 — Qx+i)Qx+h,s+h (3-17)
i=0

Because a policyholder will either die or survive on the interval of (0, G — 1], the sum

of the death and survival probabilities is 1.
G-2

^2h\Qx,s+ T-iPx,s = 1· (3-18)
h=0

Therefore, an individual policyholder's year of death can be generated using the inverse

transform method to simulate random variables.

Recall that if a discrete variable X takes values xi,x2,··· ,xn with probabilities pi , p2 , · ¦ · ,Pn,

and the sum of p¿'s is 1, then X = x¿ if the random generated number ? E (0, 1), sat-

isfies F(xj-i) < ? < F(xi). In fact, the interval (0,1) is divided into ? times of small

intervals, each with length of pi,p2, · · ¦ ,Pn, and X - z¿ if the generated number falls

in the ¿th interval. Hence, a policyholder's year of death takes values 1,2, · · · ,T and
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has the following distribution function:

P(K(x, s) = 0) = qx<s =pi,

P(K(x, s) = 1) = 1{qXtS =p2,
< : (3.19)

P(K(X, S) = T - 2) = r_!|Çx,s = Pr.!,

P(K(x, s) > T-I)= T-iPx,. = Pr-

The years of death for a cohort are simulated differently, but are somehow related. We

will still use the forecasted mortality rates in Table 1.2 to simulate the year of death.

However, instead of generating one number only, we generate Lx<s random numbers at

once. Hence, we get ,Cx^ numbers u¿, which take values 1,2,··· ,T. These numbers

represent the years at which some contracts are terminated, since the deaths of some

policyholders take place prior to the contract maturity date. Furthermore, payoffs of

G(ui) must be paid at the end of these years - Uj. Note that, if the simulated numbers
take the value T, it means that a policyholder actually has survived until the end of

year T-I, and the contract will end at its natural maturity date.

After generating all the years of death for the cohort, we then count how many times

each number appears, and the total occurrence of that number represents the number

of deaths happened in that year. For instance, let T = 5, LXi8 = 10. Suppose that

one simulation gives us a series numbers (5, 5, 5, 5, 3, 4, 5, 5, 3, 5). Therefore, out

of a total of 10 people, two policyholders die in year 3, which implies T)x+2,a+2 = 2,

one in year 4, implying that Dx+3^+3 = 1, and the remaining 7 people survive until

the end of year 4, ,Cx+4^+4 = 7. In fact, the policyholders will either die or survive

in each year, which is equivalent to saying that the death event - IDeth equals 1, if
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it happens, and equals O otherwise. Therefore, the number of deaths that occurred

in each year follows a binomial distribution, where the size of the samples is &x+h,a+h,

and the probability of one death happening in year h is h\Qx,s, where h = 0, 1, · · ¦ , ? — 2.
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Figure 3.1: Present values of hedging errors for one 10-year PTP contract.

Mean: -1.19 %
Std: 62.84 %
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Figure 3.2: Present values of hedging errors for 100 10-year PTP contracts.
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Figure 3.1 shows the distribution of the random present value of the hedging errors for

a PTP with one policyholder, where the year of death is simulated using the forecasted

mortality rates in Table 1.2. From the graph, we see that both the mean and the vari-

ance are quite small. The VaR95Y0 means that 5% of the PV(HE) are greater than

1.21%, and the CTE95yD shows that the expected value of the PV(HE) that are greater

than 1.21% is 2.37%.

Figure 3.2 shows the present values of the hedging errors for 100 contracts. Both fig-

ures show that the PV(HE) are small, however, Figure 3.1 indicates that the case of

one policyholder only is more risky. Even though the bulk of Figure 3.1 is similar to

the graphs in Chapter 2, and the range of PV(HE) is wider. By contrast, Figure 3.2

appears to be almost the same as Figure 2.2. The reason for this is that adding more

policyholders diversifies the risks caused by mortality, assuming that policyholders are

independent. That is why VaR and CTE values in Figure 3.2 are smaller than 100

times the VaR and CTE in Figure 3.1.

Moreover, Figures 3.3 to 3.6 exhibit the distributions of the 5-year and 15-year PTP

contracts present values of hedging errors. Note that as the contract term lengthens,

VaR values are increasing slightly for only one contract, and CTE values increase a bit

faster. However, VaR and CTE values both decrease for 100 contracts.
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Figure 3.3: Present values of hedging errors for one 5-year PTP contract.

Mean: -0.41 %
Std: 65.9 %
VaR: 108.56 %
CTE: 152.14 %
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Figure 3.4: Present values of hedging errors for 100 5-year PTP contracts.
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Figure 3.5: Present values of hedging errors for one 15-year PTP contract.

Mean: -1.07 %
Std: 57.72 %
VaR: 92.98 %
CTE: 131 .01 %

—^-??ptp?? 1 1 ÍThn-m~.

-2 0 2 4

Present Values of Hedging Errors

Figure 3.6: Present values of hedging errors for 100 15-year PTP contracts.
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3.4 Valuation Under Stochastic Mortality

Previously, we simulated the policyholders' years of death using a fixed mortality Table

1.2. We are now interested in analyzing the effects caused by the stochastic mortality

rates. Therefore, we will first simulate a series of stochastic mortality rates, and then

use the new rates to generate the years of death, following the same procedure as in

the previous section. Recall that the steps of generating stochastic mortality rates were

explained in Section 1.6, and in this thesis, we only consider policyholders who are age

50 in year 2005.

Furthermore, recall the pricing formula for 0 < ? < T — 1 in (3.6)

PxÁt,T) = E* [/*(,,)<?-?^^ > ^
where J(i) represents the information from the equity market, as well as the change in

mortality up to time i. Moreover, conditioning on the policyholder's time of death, and

assuming the policyholder's mortality and equity market are independent, the above

equation can be written as
T-LÍJ-2

S PrQ [K(x, s) = LÍJ + h\2(t)> ?(?? s) ^ LÍJ] x
h=0

EQ G(K(x,s) + l) 3(t),K{x,s) = h + ^Uer{K(x,s)+l-t)

PrQ [K(x,s) >T-l\5(t),K(x,s) > líj] Eq G(T)
oHT-t) ^t)1K(X1S) = T-I

where PrQ[K(x,s) = líj + /i|J(i),Ä"(a;,s) > líj] represents the probability that (x)
dies between ? + lìj + h and ? + líj + h + 1, given that he is alive at age ? + líj and

the mortality information up to time i.

52



Furthermore, we still assume that

PrQ[K(x, s) = líj + /?|7(?), K(x, s) > lìj] = h\qx+^+h,s+^u+h, ? = 0, 1, · · · , G - 1.

However, these mortality rates need to be forecasted using the updated information up

to time t. Recall that we can use the approach presented in Section 1.5.2 to forecast

mortality rates /i|Çx+Ltj,s+Ltj· More specifically, if (x) has survived through year 2005
and is alive in 2006, then we need to use the mortality index observed in 2006 to

generate the following stochastic kh+2ooe,s- In other words, the forecasted mortality

rates for s = 2007,2008,··· should be based on the k2ooe hi Table 1.2. Same ideas

and procedures should be applied for the consequent years. Furthermore, the age-

parameters - ???,ß? need to be updated as well, since a 50-year old person in 2005 will

turn 51-years old in 2006. The remaining calculations for PV{HE) are as in (3.15) and

(3.16). Therefore, (3.20) is equivalent to the following
T-líj-2

Px,, (i, T) = ]T Ä|4i+Ltj,*+Lij P(t, h + L.tj + 1)+ r-Ltj-iAt+Lij.e+Ltj P(t, T),
h=0

where q is not assumed to be the same as the forecasted q anymore, and it is the sim-

ulated mortality rate updated annually.

Figure 3.7 shows the distribution of present values of the hedging errors for one 10-year

PTP contract with stochastic mortality rates. The overall shape looks the same as in

Figure 3.1, while VaR95Y0 and CTE95% are almost the same as in Figure 3.1. This

result is somehow surprising, since intuitively, adding extra randomness should make

the PV(HE) more volatile. We suppose it is because that the mortality rates are quite

small - 0.00265, 0.00323, · · · , and therefore, they do not have a big impact on the hedg-

ing errors for one contract.
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Furthermore, Figure 3.8 represents the distribution of PV(HE) for 100 contracts, ob-

tained under the Lee-Carter model. We can see again that the stochastic mortality

rates do not cause significant changes, since Figure 3.8 looks almost the same as Figure

3.2. However, VaR and CTE do increase somewhat compared with Figure 3.2. Note

that for a cohort of policyholders, we do not assume they are independent. Indeed, we

think this is likely to explain why we have larger values for VaR and CTE in Figure

3.8, since policyholders are likely to die or survive at the same time, and adding more

contracts cannot reduce the mortality risks as much as under the fixed mortality rates.

In addition, the differences between simulations may also lead to slight changes in the

simulated results. Nonetheless, both two figures indicate that with a large number of

policyholders, mortality risks are well diversified. The figures of 5-year and 15-year

PTP contracts also follow the same patterns as the 10-year PTP.
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Figure 3.7: Present values of hedging errors for one 10-year PTP contract under Lee-

Carter mortality model.
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Figure 3.8: Present values of hedging errors for 100 10-year PTP contracts under Lee-

Carter mortality model.
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Figure 3.9: Present values of hedging errors for one 5-year PTP contract under Lee-

Carter mortality model.

Mean: 0.05 %
Std: 65.4 %
VaR: 108.27 %
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Figure 3.10: Present values of hedging errors for 100 5-year PTP contracts under Lee-

Carter mortality model.
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Figure 3.11: Present values of hedging errors for one 15-year PTP contract under Lee-

Carter mortality model.
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Figure 3.12: Present values of hedging errors for 100 15-year PTP contracts under

Lee-Carter mortality model.
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Conclusion

From the figures, we can see that for a PTP equity-indexed annuity, the distribution

of hedging errors' present values for 100 contracts is more symmetrical than for one

contract only. Moreover, because VaR and CTE values for 100 contracts are much

less than 100 times the VaR and CTE for one contract only, we can conclude that

selling one contract is more risky than selling a number of contracts. By contrast, for a

pure financial guarantee, the support of the distribution of the present value of hedging

errors for 100 contracts is roughly 100 times larger than the support for one contract

only. This is because the pricing for a pure financial guarantee does not take mortality

rates into consideration.

The mean and variance of the hedging errors are small in all cases, indicating that the

replicating portfolio can effectively reduce the risks of EIA contracts. The figures also

show that with the help of a replicating portfolio, insurance companies can be in a

balanced-off position most of the time. Moreover, as Gaillardetz and Lakhmiri (2009)

points out, insurance companies can charge a security loading to the initial premium,

so that the hedging errors tend to be negative. Note that if the distribution of the

present values of hedging errors can shift to the left of 0, then companies will be ex-

posed to profits, rather than losses in most of the time. Recall that the hedging errors
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are defined as the differences between the value of the EIA contracts and the actual

value of the portfolio at adjustment time t. Hence, a negative hedging error means that

the replicating portfolio is worth more than the actual contract issued by the insurance

company. As a result, the company will have larger assets to fulfil the liabilities of the

contracts.

In general, a contract with a longer maturity term has a higher participation rate. Fur-

thermore, a pool of contracts with longer terms may experience more risks caused by

both the equity market and the changes in mortality rates. However, due to the fact

that the replicating portfolio can greatly reduce the financial market risk and mortal-

ity rates are quite small, the present values of hedging errors decrease as the contract

term increases, particularly because of the larger discount factor (larger T). On the

other hand, when there is only one contract, VaR and CTE values increase as the

term lengthens, since selling one contract is much more risky. The graphs indicate that

if enough contracts can be sold, mortality risks can be diversified greatly, under the

assumption of independence between policyholders.

However, there is not a strong evidence that policyholders are independent. In fact,

we believe that policyholders are dependent, since for a group of people who are at

the same age and exposed to the same environment, they are more likely to either

survive or die during the same time, due to the same causes. Therefore, we introduce

the stochastic Lee-Carter model to simulate stochastic mortality rates, along with the

simulation of stock process. We then compute the price of the EIA and its hedging

errors, with the updated stochastic mortality information. Indeed, we expected to have
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larger VaR and CTE values under the stochastic mortality rates, since theoretically,

adding extra risk to the existing process, the overall risks should increase accordingly.

However, from the figures obtained under the stochastic mortality model, we do not

see significant differences on VaR or CTE values, compared with those obtained with

non-stochastic mortality rates.

Even though the graphs do not seem to support our initial hypothesis, we still believe

that mortality risks are present, and under the stochastic mortality model, mortality

risks can not be diversified as much as under the deterministic mortality rates. Perhaps,

Lee-Carter model's specific design is a possible cause for underestimating the mortality

risks. Further studies on the effects caused by stochastic mortality rates should be

conducted, and one can use another stochastic model to generate the mortality rates

to further test the results.
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