
A Platform-independent
Aspect-oriented Model and
Patterns to Support Model

Transformations

Zohreh Sharafi Tafreshi Moghaddam

A Thesis
in

The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Applied Science in Software Engineering

Concordia University
Montreal, Quebec, Canada

August 2010

© Zohreh Sharafi Tafreshi Moghaddam, 2010

?F? Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliothèque et
Archives Canada

Direction du
Patrimoine de l'édition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre référence
ISBN: 978-0-494-71052-4
Our file Notre référence

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans le
monde, à des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse. Ni
la thèse ni des extraits substantiels de celle-ci
ne doivent être imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformément à la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thèse.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

¦+¦

Canada

Abstract

A Platform-independent Aspect-oriented Model and Patterns to

Support Model Transformations

Zohreh Sharafi Tafreshi Moghaddam

Model Driven Architecture (MDA) separates application logic from specific im-

plementation technology to improve the reusability, portability and maintainability

of the software system. However, current software system also needs to deal with

other important concerns that are called crosscutting concerns that explicitly ad-

dressed by Aspect-oriented Programming (AOP). In this dissertation, we propose a

model-driven approach to assess the benefits of AOP for MDA in order to provide

increased modularity and to support related quality attributes. Even though research

has been conducted toward modeling crosscutting concerns, these approaches found

to be either language dependent or provide no support for aspectual behavior. This

work has two contributions. First, we complement current works by proposing a

language-independent extension to the UML metamodel to explicitly capture cross-

cutting concerns. The second contribution is to provide well-defined and automated

model transformations to work with different models at various levels of abstraction

and preserve their consistency.

iii

Acknowledgments

This thesis would not have been possible without the help, support and patience of

my supervisor, Dr. Constantinos Constantinides whose advice, encouragement and

unsurpassed knowledge contributes to my graduate work and experience. I would

have been lost without him.

I would like to express my deep gratitude to Dr. Abdelwahab Hamou-lhadj whose

good advice and support has been invaluable on this research. I warmly thank my

best friend and- my best colleague, Parisa Mirshams- fe-r all the emotional support,

camaraderie and encouragements. I also would like to thank the members of Software

maintenance and Evolution Research Group, Michel Parisien and Saeed Bohlooli for

providing valuable comments and their friendly help for my research work. I also

wish to thank my dear friend, Pouya Jabbari for proof reading this dissertation.

Lastly, and most importantly, I owe my loving and sincere thanks to the most

influential people in my life: my parents, Mahnaz Jafaripour and Aliakbar Sharafi

for unconditional support and encouragement to pursue my interest. My twin sister,

Azadeh, for being always beside me, listening to me and believing in me.

iv

Contents

List of Figures ix

1 Introduction 1

1.1 Objectives 2

1.2 Organization of the dissertation 3

2 Background 4

2.1 Aspect-oriented programming 4

2.2 UML and profiling 6

2.3 Model-driven architecture 9

2.4 Model transformations 12

2.4.1 Characteristics of a model transformation 13

2.4.2 Query-View-Transformation(QVT) language 14

3 Problem and motivation 17

4 Proposal 19

?

4.1 Expected contributions and benefits 22

5 Modeling crosscutting concerns 23

5.1 Introduction 23

5.2 The CoreAOP UML profile 24

5.2.1 Defining a domain mode! 26

5.2.2 Mapping the domain model to the UML metamodel 28

5.2.3 Providing a graphical representation 32

5.2.4 The proposed profile using a model interchange format 36

5.3 Discussion 40

6 A UML profile for the AspectC++ programming language 43

6.1 The AspectC++ UML profile 43

7 Model transformations 48

7.1 Introduction 48

7.2 Metamodels 49

7.2.1 AspectJ metamodel 49

7.3 Provide transformation patterns 50

7.3.1 Generic AOP node mapping pattern 52

7.3.2 CoreAOP model - AOP mapping pattern 55

7.4 Provide PIM to PSM model transformations 58

7.4.1 CoreAOP model to AspectJ 58

vi

7.4.2 CoreAOP model to AspectC++ 60

7.5 Provide PSM to PIM model transformations 61

7.6 Discussion 64

7.6.1 The applicability of model transformations 64

7.6.2 Preserve consistensy betweem models 68

8 Case studies 70

8.1 Modeling crosscutting concerns 70

8.1.1 Graphical representation 70

8.1.2 The XMI representation 71

8.2 Applying model transformations 72

8.3 Case study 1: Telecom 73

8.3.1 Provide a PIM model of the Telecom system 76

8.3.2 Apply a model transformation to provide PSM models 78

8.4 Case study 2: Spacewar 80

8.4.1 Provide a PIM model of the Spacewar game 81

8.4.2 Apply a model transformation to provide PSM models 84

8.5 Case study 3: Counter aspect in AspectC++ 89

8.5.1 Provide a PIM model of the Counter aspect 90

8.5.2 Apply a model transformation to provide PSM models 90

9 Related work 95

9.1 Modeling crosscutting concerns 95

vii

9.2 Model transformation 97

9.3 Discussion 99

10 Conclusion and recommendations for further work 101

Bibliography 104

vin

List of Figures

1 The meta object facility (MOF) 4-layered architecture 6

2 The PIM model 10

3 The PSM model 11

4 The MDA process starts with building the PIM model that is subse-

quently transformed into the PSM and finally to an executable code. 12

5 Transformation concepts in MDA 12

6 - The QVT Operational -Context 15

7 The proposed methodolgy to support aspect-oriented programming in

model-driven architecture 21

8 The CoreAOP Stereotypes Specification 25

9 The methodology for creating a UML profile for crosscutting concerns. 25

10 The CoreAOP domain model for crosscutting concerns 28

11 The proposed UML profile to support crosscutting concerns 33

12 The OCL constraint to enforce the name property of the Advice in the

Aspect Context 34

IX

13 The OCL constraint to enforce the name property of the Advice in the

Advice Context 34

14 A graphical representation for modeling crosscutting concerns 35

15 The complete class hierarchy of the Ecore model 38

16 The CoreAOP profile in XMI format 41

17 The proposed UML profile to support crosscutting concerns in As-

pectC++ 46

18 The mapping pattern 51

19 The Enforce part of the GenericAOPNodeMapping pattern 53

20 The Generic AOP node mapping pattern 54

21 The Core to AOP transformation pattern 57

22 The Core to AOP transformation pattern - join point part 58

23 The relation between Generic AOP node mapping pattern and Core

Model - AOP Model and the proposed AOP model transformations . 59

24 The Core to AspectJ mapping schema 61

25 The Core to AspectJ model transformation - part 1 62

26 The Core to AspectJ model transformation - part 2 63

27 The Core to AspectC++ mapping schema 64

28 The Core to AspectC++ model transformation - part 1 65

29 The Core to AspectC++ model transformation - part 2 66

30 How to use the CoreAOP profile for modeling an AOP project in

Eclipse EMF 71

?

31 The Telecom case study class diagram 75

32 Modeling the Telecom case study 77

33 The language-independent model of Timing aspect 79

34 The AspectJ model of Timing aspect after executing transformation. 80

35 Modeling the Spacewar case study - Display aspect 83

36 Modeling the Spacewar case study - Coordinator aspect 84

37 Modeling the Spacewar case study - Debug aspect 85

38 Modeling the Spacewar case study - RegisterationProtection, SpaceOb-

jectPainting, EndureShipIsAlive aspects 86

39 The PIM model of Debug aspect 87

40 The PSAi model of Debug aspect after executing transformation. ... 88

41 The PIM model of Counter aspect 93

42 The AspectC++ model of Counter aspect after executing transformation. 93

43 The AspectJ model of Counter aspect after executing transformation. 94

Xl

Chapter 1

Introduction

In 1974, Edsger W. Dijkstra in his paper "On the role of scientific thought" [10]

talked about the Separation of Concerns (SoC) principle in computer society. At

this time, SoC is one of the key principles in software engineering. The principle

states that each system involves different kinds of concerns that should be identified

and treated separately in order to deal with the complexity of a system, and in order

to obtain the required engineering quality factors such as robustness, maintainability,

and reusability.

Aspect-oriented programming (AOP) works on capturing and implementing cross-

cutting concerns while Model-driven architecture (MDA) provides standards to ex-

plicitly separate platform independent concerns from platform-specific ones. There-

fore, the SoC principle is both applied to MDA and AOP, and these two techniques

seem to be complementary to each other.

To support AOP in MDA, crosscutting concerns should be captured and modeled

1

at the different level at various level of abstraction while some model transformation

is required to work with these models and to preserve their consistency.

Aspect-oriented languages and frameworks have been demonstrated in the litera-

ture together with an increasing number of tools in order to provide increased modu-

larity and to support related quality attributes. Ideally, programming languages and

modeling languages should be mutually supportive. However, crosscutting concerns

cannot be completely captured and illustrated in modeling artifacts. Additionally,

working with different models at different levels of abstraction and preserving their

consistency requires well-defined and automated model transformations. These trans-

formations help developers to reduce the effort of software maintenance activities such

as reverse engineering and refactoring.

1.1 Objectives

Our first objective is to explicitly capture crosscutting concerns at the modeling level.

The second objective is to provide a set of model transformations to map different

models to each other and manipulate them. To meet these objectives, we set a number

of goals: 1) To provide an extension to the UML metamodel to propose a model that

is independent from any programming language and abstracted away from platform

specific details. 2) To propose transformation patterns. 3) To illustrate how these

patterns can be deployed to provide specifications of complex transformations.

2

1.2 Organization of the dissertation

The remainder of this dissertation is organized as follows: In Chapter 2 we provide

the necessary background for this thesis. In Chapter 3, we discuss the problem

and motivation behind this research and in Chapter 4 we discuss our proposal. We

? -i ii Jl „ G _] „V _- .it: :._ /~il -t r J ?
ucSCnuê our meuiiuuuiugy iui muueimg, uiuöscuLiiiig cuiiceniö m «^iiapteia ? axiu ?.

While the first discusses how to extend UML metamodel to support crosscutting

concerns, the second describes a UML extension to model AspectC++ constructs

by adding language-specific concepts to the language-independent UML extension.

In Chapter 7, we introduce a set of model transformation patterns and describe

how they can be deployed to provide model transformations to map different aspect

models to each other. In Chapter 8, we describe three case studies to demonstrate

how the proposed UML profile can be applied and how it can be used for modeling

of complete AOP system. Furthermore, we demonstrate applying transformation to

language-independent model to produce the languageOspecific one. In Chapter 9, we

discuss related works and evaluate our approach. Finally, we list our conclusion and

provide recommendations for further works in Chapter 10.

3

Chapter 2

Background

In this Chapter, we discuss the necessary background to this research, starting with

aspect-oriented programming in Section 2.1, followed by UML and its extension tech-

niques in Section 2.2. In Section 2.3, we describe model-driven architecture. Finally,

model transformations is discussed in Section 2.4.

2.1 Aspect-oriented programming

Despite the success of object-orientation in the effort to achieve separation of con-

cerns, certain properties in object-oriented systems cannot be directly mapped in a

one-to-one fashion from the problem domain to the solution space, and thus can-

not be localized in single modular units [H]. Their implementation ends up cutting

across the decomposition of the system. Aspect-orientation is a term used to describe

approaches that explicitly capture, model and implement crosscutting concerns (or

4

aspects).

Examples of crosscutting concerns (or aspects) include persistence, authentication,

synchronization and contract checking. Aspect-oriented Programming (AOP) [21] ex-

plicitly addresses those concerns by introducing the notion of an aspect, which is a

modular unit of decomposition. Currently there exist many approaches and tech-

nologies to support AOP. One notable technology is AspectJ [20], a general-purpose

aspect-oriented language, which has influenced the design dimensions of several other

general-purpose aspect-oriented languages, and has provided the community with a

common vocabulary based on its own linguistic constructs. In the AspectJ model,

an aspect definition is a new unit of modularity providing behavior to be inserted

over functional components1. This behavior is defined in method-like blocks called

advice. However, unlike a method, an advice block is never explicitly called. Instead,

it is only implicitly invoked by an associated construct called a pointent expression.

A pointent expression is a predicate over well-defined points in the execution of the

program called join points. Even though the specification and the level of granularity

of the join point model differ from one language to another, common join points in

current language specifications include calls to and execution of methods and con-

structors. When the program execution reaches a join point captured by a pointcut

expression, the associated advice block is executed. Most aspect-oriented languages

provide a level of granularity which specifies exactly when an advice block should be
1Th]S is not all that the AspectJ model provides. We focus on what is common among the

AspectJ family of languages is a group of languages \vhose design dimensions have heavily influenced
by AspectJ. This group includes AspectC++ and AspectC# among many others..

5

?" "¦ S
r

MO Userobjert
«f'Ml MOiJiïl
4 * -

«¡¿ : , 1^Ur U ML Proft
J?l/{2 MetamoJeí(UMLMet.imúde!) .. .
M3 Meta -meta mode! (MOI)

Figure 1: The meta object facility (MOF) 4-layered architecture.

executed, such as executing before, after, or instead of the code defined at the associ-

ated join point. Furthermore, several advice blocks may apply to the same pointcut.

The order of execution can be specified by rules of advice precedence specified by the
underlying language [22].

2.2 UML and profiling

The Unified Modeling Language (UML) [45] is a de facto standardized modeling

language maintained by the Object Management Group (OMG) that can be deployed
(though not being confined) to represent object-oriented systems.

The UML is described by OMG as a 4-layered architecture shown in Figure 1.

• M3 is the meta-metamodel layer which is defined by the UML Meta Object

Facility (MOF) [37]. The metamodel is a model that defines the structure,
semantics, and constraints for a family of models [30]. MOF is a representa-

tion of the UML metamodel and it describes a small set of concepts (such as
classes and packages) that allow one to define and manipulate models of the

metamodel. It enables metamodeling of UML-level metamodels, thus allowing

new metamodels, and consequently new modeling languages, to be defined.

• M2 is the UML metamodel and it defines modeling languages such as UML.

The UML metamodel is a representation of UML elements together with their

interrelationships.

• Ml describes a user-defined UML model. All static or dynamic diagrams pro-

duced during software development or maintenance lie on this layer.

• MO is the last layer or data layer and the real objects are describes in this layer.

The advantage of UML is categorized as follows:

• UML supports different degrees of precision, therefore it can be used at various

level of abstraction for providing a lightweight, simple or very complex model.

• It provides different views of the same model that are mutually consistent.

• It proposes graphical representation that is easy to understand.

In the context of software maintenance, the UML supports reverse engineering

of an object-oriented program through its transformation and representation at a

higher level of abstraction. With the introduction of aspects to represent crosscutting

concerns, there have been in the literature a number of approaches to support aspect

modeling. These approaches are classified into two different main categories [3]:

1. Deploying standard UML in a way where existing elements (e.g. classes in a

class diagram) can represent aspects.

7

2. Extending the current UML semantics and elements to provide explicit sup-

port for crosscutting concerns. For the latter approach, there are two ways for

extending UML:

(a) Manipulating the MOF: This is a heavyweight extension mechanism, and

AU ICIlUO UU UC CU11C11U1V llllpl CbC UiCCbI UUO UC IClClY Ul uuui öupuui U.

(b) Building a UML profile [33]: The UML profile is an extension mechanism

for building UML models that can be used to define domain-specific mod-

eling languages (DSML). Using UML profiling mechanism, the produced

DSML conforms to syntax and semantics of the UML; hence it can not

violate any rules of UML.

The UML profile is a subset of a UML metamodel that is defined using

stereotypes, tagged values, and constraints for adapting UML meta ele-

ments to the constructs (in our case aspect-oriented constructs) of the new

domain. As the UML profile does not define new elements for the UML

metamodel, it can be considered as a lightweight extension mechanism.

More specifically, UML profiles include the following:

• Stereotypes to create new model elements for a specific domain.

• Tagged values to define additional properties to model elements.

• Constraints that add rules to restrict the way the model elements

operate in the context of the new domain.

An advantage of adopting a UML profile is that it allows modeling with

8

generic UML tools. Furthermore, developers can work with well-known

UML notations and concepts, reducing the need to learn new modeling

languages. Additionally, it is possible to combine stereotyped and non-

stereotyped elements together for proposing a complete model of a software

system.

2.3 Model-driven architecture

Models provide an abstraction of a software system by putting away irrelevant de-

tails while focusing on important concepts. Models help developers to deal with the

complexity of a software system and understand it. Through models, developers, de-

signers and stakeholders can talk about a system and reason about it. When talking

about models in software engineering, we generally consider artifacts like class dia-

grams, collaboration diagrams, state diagrams and so on. Model-driven Architecture

(MDA) [40, 30] is a model-centric approach proposed by the Object Management

Group (OMG)2. In MDA, using well-defined notations, different models are proposed

which capture different aspects of software systems. Furthermore, the OMG provides

a conceptual framework for MDA, which contains a set of standards for expressing

models, their relationships and model transformations [7]. MDA involves defining

two different models at various levels of abstraction: the platform independent model

(PIM) and the platform specific model (PSM). The PIM is a set of models of system
2http://www.omg.org/

9

League
-feagoeNarre
-nUìmOfTeams

-participate in

-belongs to -has
1 1..*

Match

-level
-date

-play in
1..*

-has
Team

-name

-nationality
-has

Figure 2: The PIM model.

functionalities that abstracts away technical details. It can be used to model concepts

at the analysis level that represents the core business logic of the system as defined

in methodologies like the Rational Unified Process (RUP) [25]. Figure 2 illustrates a

class diagram that can be considered as a PIM. There is no constraint about specific

platform in this diagram, hence it can be implemented by different programming

languages.

In a MDA context, each constraint which is implied by the choice of program-

ming language, hardware, operating system, communication networks and protocols

is considered a platform. The PSM is a specification of the system that extends PIM

by adding design constructs that are related to the specific platform. The PSMs

might include several models, starting with high-level architectural models, followed

by lower-level design models, all the way down to the executable code. Figure 3 is

10

League
-feagueDiPK
-leagueName
-nynxiTeams

Leagae Membership
-merrt>ershipD : FK
-teagueD; FK
-teatrC : FK

Match

-matchDiFK
-level
-date
-hostTearrD¦: FK
-guesOearrtD; FK
-feagueD : FK

Team

-teamD:PK
-teanName
-nationality

Figure 3: The PSM model

a relational database schema which is considered as a PSM model of the Figure 2.

In this schema, some relational database elements such as primary keys are added to

the PIM model for mapping the PIM model to relational database elements.

A typical MDA process is shown in Figure 4. First, a set of PIM models are

proposed, after that a set of transformation is provided to obtain a PSM model by

adding language-specific details to customize the PIM model. Finally, another set of

transformations is applied to the PSM to obtain the final executable code.

11

PIM OH PSM Code

Modello ModelTransformattori Modello Code Transformation

Figure 4: The MDA process starts with building the PIM model that is subsequently
transformed into the PSM and finally to an executable code.

Source
metamodei

Source
rootle!

1..* 0..

Transformation
definition o..% 1..·

Target
metamodei

A

1..* 0..
Transformation

o,.· 1. model

Figure 5: Transformation concepts in MDA.

2.4 Model transformations

A model transformation in MDA is an automated process that takes as input a model

conforming to a given metamodei and generates as output another model conforming

to a given metamodei. A model transformation generates a target model according

to a set of rules that together describe how a model in the source language can be

transformed into a model in the target language [23]. In Figure 5, we illustrate the

transformation definition and its relation with the source and target metamodels.

For writing model transformations, it is necessary for a developer to have a clear

12

understanding of the abstract syntax and semantics of both the source and the tar-

get models. While metamodeling is the common approach for defining the abstract

syntax of the models, its elements and their relationships, a model transformation

language is required to provide automated, well-defined transformations.

2.4.1 Characteristics of a model transformation

In the following, we discuss characteristics of a desirable model transformation. Ac-

cording to [47], the desirable characteristics for a model transformation are:

1. Precondition: It should be possible to describe conditions under which a trans-

formation can be applied.

2. Composition: It should be possible to combine different existing transforma-

tions to build a new composite one.

3. Form: The acceptance of a language transformation depends on the form that

it used for defining a transformation.

4. Usability: It depends on the language and the developer's background.

These characteristics provide a measure to check the quality of model transfor-

mation languages and technologies. Czarnecki et al. [9] classify the existing model to

model transformation approaches into:

• Direct manipulation approaches: it is the developers' responsibility to imple-

ment transformation rules from scratch using a programming language such as

13

Java. Therefore, this approach seems to be impractical.

• Relational approaches: it seems to provide the balance between flexibility and

declarative expression. Relations in this approach don't have side-effects and

this approach often supports backtracking.

• Graph-transformation-based approaches: this approach is based on heavily the-

oretical work in graph transformations. This approach is powerful and declar-

ative but it is complex.

» Structure-driven approaches: it can be used in the context of certain kinds of

applications such as generating Enterprise JavaBean (EJB) 3 implementations

and database schémas from UML models.

• Hybrid approaches: the hybrid approaches combine different techniques from

other approaches.

Czarnecki et al. [9] also discuss the applicability of these different approaches.

2.4.2 Query-View-Transformation(QVT) language

In this thesis, we use Query-View-Transformation(QVT) [34] that is proposed by the

OMG as a hybrid approach to implement specifications of the model transformations

for manipulating models of crosscutting concerns.
3http : / /www. oracle . com/technetwork/j ava/index-j sp- 140203 . html

14

M3

M2

conformsTo

conformsTo,

conformsTo

Ml

MMb

conformsTo

conformsTo!

output

conformsTo

Figure 6: The QVT Operational Context.

The Query-View-Transformation language (QVT) is the OMG standard for defin-

ing model transformations that can be used not only for PIM-to-PSM transforma-

tions, but also for defining views on models and synchronization between models [26].

Query is a extended version of OCL 2.0 that is used to provide expressions evaluated

over a model. View is a projection on a model that is completely derived from an-

other model. Finally, Transformation is a process of automatic generation of a target

model from a source model, according to a transformation definition [23, 38].

In Figure 6, the QVT operational context is presented. Ma and Mb models con-

form to MMa and MMb metamodel respectively. Ma is a source metamodel and Mb is

a target metamodel. Furthermore, transformation Tab conforms to MMt metamodel

and it is applied to map Ma to Mb. In addition, all metamodels(MMa, MMb and

MMt) are based on MOF.

The QVT metamodel defines three sublanguages: Relations, Core and Operational

15

Mapping for transforming models based on the Object Constraint Language (OCL).

Relations is a declarative transformation language that specifies relations over model

elements. Core is a declarative transformation language that simplifies the Relation

language. Operational Mapping is an imperative transformation language that ex-

tends Relations with imperative constructs. In QVT, a transformation is specified in

the form of mappings or relations. We choose QVT because:

• It is a standardized language that enjoys wide acceptance.

• There are some tools that support this language and it is possible to write, edit

and execute QVT transformations easily.

• It is powerful enough to provide complete model transformations whilst its

expressions are not complex.

In the next Chapter, we discuss the problem that has motivated this research.

16

Chapter 3

Problem and motivation

In this chapter, we discuss the problem and the motivation behind the research that

constitutes the scope of this dissertation. The primary motivation behind this thesis is

that combining MDA and AOP can increase the maintainability of the system because

of a better separation of concerns. The MDA separates application logic from specific

implementation technology and AOP modularizes crosscutting concerns into aspects;

therefore, these two approaches can complement each other. Our objective is to raise

the level of abstraction and provide a model for AOP system that can be adapted to

any platform, either aspect-oriented platform or not. Wampler [54] discusses the main

challenge that MDA deals with. The majority of applications are still developed by

writing code using programming languages without any modeling. He also proposes

several issues that MDA must address to fill the gap between the vision of MDA and

the reality of the current software system development process. He concludes that

modeling approaches should specify the software system completely and precisely.

17

Additionally, the model to model mapping must be suitable for automation and the

PSMs models, including implementations, should be generated with minimal manual

effort.

In this dissertation, we aim to:

1. Provide an extension to support modeling of crosscutting concerns at the PIM

level completely leading to modularizing main concepts and aspects separately.

2. Provide model to model transformation to map a PIM model to a PSM model

deploying QVT as a standardized transformation language.

Some of the existing approaches deal with modeling crosscutting concerns that

deploy models that are language-specific. We are not discarding the language-specific

approaches, but we use the best practices to provide a languages-independent model

by abstracting away any language-specific parts. Additionally, language-specific mod-

eling approaches can be used to provide language-specific models.

The motivation of this dissertation is to facilitate separation of pervasive features

that are tangled with other system features and to support their transformation

across different levels of abstraction by providing reusable model transformations in

a standard format. We discuss our proposal to the above problem in the next chapter.

18

Chapter 4

Proposal

In this chapter, we discuss our research proposal. To provide support for crosscutting

concerns in MDA, we propose to implement the following:

1. Modeling crosscutting concerns at the PIM level.

2. Modeling crosscutting concerns at the PSM level.

3. Providing transformation patterns as a general template for specifying model

transformations.

4. Providing model to model transformation to map PIM to PSM.

5. Providing model to model transformation to map PSM to PIM.

In the literature, several UML extensions are proposed for modeling crosscut-

ting concerns. Most of them rely on specific programming languages, specially As-

pectJ [12, 19, 39]. In some other works, the precise, well-defined notation and a
19

graphical representation that is supported by current case tools are either missing

or incomplete. We propose an extension to the UML metamodel in order to model

aspects. This extension is completely independent from any specific programming

language and thus can be used to support generic aspect-oriented modeling. In Fig-

ure 7, the proposed methodology to support AOP in MDA is illustrated. In modeling

part, we plan to define a domain model that constitutes the most important concepts

that define a system as AOP. After that, we map these concepts to their correspond-

ings in the UML metamodel to provide a UML extension. Finally, we propose this

extension in different formats such as XMI that can be used by different CASE tools.

To provide the language-specific model, we add language specific constructs to

the proposed generic model. In this dissertation, we provide a UML extension for the

AspectC++ AOP language to illustrate how PSM modeling can be done.

Previous works either do not propose a transformation specifications using an

standard language or they propose model transformation that are dependent on spe-

cific applications [41, 48]. Consequently, it is not possibel to use their transforation

for manipulating crosscutting concerns' models. In this project, as illustrated in Fig-

ure 7, the model transformations are proposed to be used in forward engineering and

backward engineering of the system. For providing model transformations, first, we

propose a set of transformation patterns that can be used as a generic solution for

writing specific model transformations. We use these patterns to propose well-defined

transformations in a standardized language (QVT) to map the PIM model of aspects

to the language-specific one for forward engineering. In this activity, the input of the

20

Modeling crosscutting concerns Defining model transformations

Jl
Provide

ianguage-independe nt
UMi. extension

CoreAOP UML profile

.£_
Provide

language-specific UML. extension
by adding constructs to

the CoreAOP

AspectCM- UML profile

Define
transformation patterns

A collection of Transormation patterns

r^~" ' ¦—~~~ ~~~~\
Define

PSM to PiM
mode! transformations

Define
PiM to PSM .

model transformations

A collection of
PSM to PIM

QVT transformation
specification

A collection of
PIM to PSM

QVT transformation
specification

é

Figure 7: The proposed methodolgy to support aspect-oriented programming in
model-driven architecture.

model transformation is a model based on a language-independent UML extension.

It is also possible to use the proposed pattern to define reversible transformations to

map a PSM model to a PIM model for reverse engineering of the system. Finally, we

will demonstrate how to use a current CASE tool, namely Eclipse EMF [8], to auto-

mate the process of modeling and writing transformations. In order to demonstrate

our approach in a practical situation, three different case studies are deployed.

21

4.1 Expected contributions and benefits

The expected contributions of our proposal are to provide support during the model-

ing and design phase of the software life cycle. Potential beneficiaries of this approach

include system developers who can provide consistent, reusable and maintainable ar-

tifacts of the software system. Modularization oi crosscuttmg concerns at earry stages

of the software development process leads to enhanced separation of concerns. In the

following chapters, we discuss our methodology to provide a complete, precise UML

extension to model crosscutting concerns. Additionally, we explain how we propose

a language-specific UML extension by extending the generic model to support As-

PeCtC++. Finally, we define model transformation patterns and illustrate how they

can be used as a template for providing PIM to PSM and reversible transformations.

22

Chapter 5

Modeling crosscutting concerns

5.1 Introduction

Approaches in the literature to model crosscutting concerns tend to be language-

specific. At the modeling level, the reception of AOP has long been focused on the

modeling of AspectJ programs, and there exists no model that is generic enough to

capture non-AspectJ aspects either as a source language during forward engineering

or as a target language during reverse engineering. Our objective is to provide such

modeling in a language-independent manner. To achieve this objective, we need to

specify a core model for aspectual representations. In particular, we present our

proposal for a UML profile that models crosscutting concerns independently from

any technology such as a specific programming language.

The remainder of this chapter is organized as follows: In Section 5.2 we present

our methodology by introducing a UML profile for modeling crosscutting concerns.

23

Finally, possible applications for aspect-oriented language-independent profile are

proposed in Section 5.3.

5.2 The CoreAOP UML profile

In this thesis, we propose a UML-based profile that is built on Level 2 of the 4-layered

architecture shown in Figure 1 . We call this profile CoreA OP because it can be used

to model crosscutting concerns completely independent from any platform. In the

following the CoreAOP profile specification is presented and the description of the

stereotypes are illustrated in Figure 8.

Profile Name: CoreAOP

Version: 1.0

Reference Meta-model: UML meta-model

Description: The CoreAOP profile extends the UML metamodel to explicitly cap-

ture crosscutting concerns.

Based on Selic [46] that describes a systematic method for defining UML pro-

files, our methodology for proposing a UML profile to support crosscutting concerns

includes the four steps shown in Figure 9.

24

Name Base
Meta-Class

Semantic Related constraints

« Aspect » Class An aspect encapsulates
static and dynamic
features of a crosscutting
concern.

« Advice » Behavioral
Feature

An advice block

encapsulates behavior.
Whenever the specific
pint of the program
execution is reached, an
advice is activated by an
aspect.

1. Only classes that are stereotyped
as aspects can have behavioral
features that are stereotyped as
advice.

2. The name of the advice is similar
to the name of the attached
pointcut.

« Pointcut » Operation Pointcut specifies a set of
join points by determining
on which condition an

aspect shall take effect.

Only classes that are stereotyped
as aspects can have behavioral
features that are stereotyped as
pointcut.
It is possible to have unnamed
pointcut.

« Joinpoint » UML
collaboration

diagram

Join point is a specific
point in the control flow
of a program.

Figure 8: The CoreAOP Stereotypes Specification.

Selecta
language independent

subset of
Aspect-oriented

Constrcuts {CoreAOP)

CoreAOP
Domain Model

Map CoreAOP
constrcuts to
UML profile
components

UML profile for
CoreAOP

Provide
a graphical

respresentation

A crosscutting concern
graphical schema

Propose UML profile
using

model Interchange
form at

".ecore"iile
in XMI format

Figure 9: The methodology for creating a UML profile for crosscutting concerns.

25

5.2.1 Defining a domain model

The domain model is the conceptual model of the system that specifies all constructs

that need to be represented. It describes the system scope and can be used as the

domain vocabulary of the system. To describe the elements of the domain model for

an AOP system, we need to go back to the first principles and discuss what char-

acteristics make a system AOP. Are there core concepts which are necessary and

sufficient to qualify a system as AOP? In an article that gained high popularity, au-

thors Filman and Friedman [11] describe two properties that are essential for AOP:

Quantification and obliviousness. Quantification implies that one should be able to

execute statements of the form "In program P, whenever condition C occurs, execute

action A." Obliviousness implies that components should not necessarily be built un-

der the consideration that some aspectual behavior will be applied on them, i.e. they

should maintain no visibility over aspects. As the Aspect J programming language has

influenced the design dimensions of other general-purpose aspect-oriented languages,

it has, in essence, dictated a collection of implementation concepts to support AOP.

Along the lines of the AspectJ model, we define a domain model with the following

elements: (See Figure 10)

• A set of language constructs that are core concepts in our domain. We choose

aspect, join point, pointcut and advice as a subset of aspect-oriented constructs

which we refer to as CoreAOP model. The CoreAOP model contains the con-

structs that conceptually introduce AOP [11, 14, 50].

26

• A set of valid relationships between the CoreAOP concepts.

- Has a precedence of: The precedence relationship defines a relationship

between two aspects, which is used to determine the execution order of

advice block if more than one aspect affects the same join point.

- Has between Aspect and Advice: The aspect contains zero or more advice.

- Has between Aspect and Pointcut: The aspect contains zero or more point-

cuts.

- Association between Pointcut and Advice: Each advice is applied to one

specific pointcut. Whenever the specific points in the execution of the

program are reached, the advice is triggered and is executed before, after

or instead of it. Different advice can be triggered based on one pointcut,

therefore the multiplicity for the association end of advice is one or more.

- Aggregation between Pointcut and Joinpoint: Pointcut is a predicate that

matches join points and one joinpoint can be used in different pointcuts,

therefore aggregation is used to illustrate the relationship between pointcut

and joinpoint.

- Self aggregation for pointcut: It is possible for a pointcut to be composed

of other pointcuts.

• A set of constraints.

• A concrete syntax or graphical representation of the domain model.

27

has precedence of

tes

O..1
Poïntcut

-IsAbstrací : boolean

1..*

Joinpoínt

-JoinpointExpression

_____________i Q..1
Aspect

-name

-isAbstract : boolean

* has

Advice

-advlceType : AdvieeType

«enumeration:*

AdviceType
AFTER
BEFORE
AROUND

Figure 10: The CoreAOP domain model for crosscutting concerns.

• Semantics of the domain model representation.

5.2.2 Mapping the domain model to the UML metamodel

To map the domain model to the UML metamodel, we need to identify the most

suitable UML metamodel base concepts for each element in the domain model. Each

element of the domain model of Figure 10 must be individually mapped. The mapping

is discussed subsequently:

1. Aspect:

Semantics: An aspect definition encapsulates static and dynamic features.

28

Additionally, much like a class, a concrete aspect can support inheritance

whereas an abstract aspect can enforce inheritance1. Therefore, the UML

metamodel Class is a good candidate for representing an aspect. This is

because the Class metaclass is a classifier and subsequently a generalizable

model element in the UML metamodel. Being a classifier, it enforces the

extended element to have a name and if it is inherited from a generalizable

element it can be abstract or can be used as a base class for extension.

Attributes: Aspect contains the following attributes:

• name:EString: Aspect inherits the features and relationships of

Class, therefore it has a name attribute.

• isAbstract:EBoolean.

2. Advice:

Semantics: An advice block encapsulates behavior. It indicates what hap-

pens whenever the program reaches specific points during its execution.

In the proposed profile, we model advice as a stereotyped Behavioral

feature. In the UML class diagram metamodel, the Behavioral feature

can be either a Method or an Operation. An advice is never invoked ex-

plicitly and it does not have any parameters. Therefore, it cannot be

modeled as a method. In addition, as discussed in [27], "a UML oper-

ation is a declaration with name and parameters" and as such it is an
1MuCh like in OOP, in AOP we can also have different forms of inheritance, such as for extension,

or for specification.

29

abstract definition without implementation. Therefore, semantically, an

advice is not an Operation because it is not only the declaration but

it also contains the implementation. In Figure 11 we show how to ex-

tend the metaclass Behavioral feature for modeling advice. Therefore,

an advice is a stereotyped Behavioral feature. In the UML behavioral

package, collaboration and state-chart diagrams are included in meta-class

Behavioral feature. Therefore, they can be attached to advice as a

Behavioral feature class and used to specify advice implementation.

Attributes: An advice contains the following attributes:

• name:EString: An advice is a model element in the UML metamodel

therefore it has a name.

• adviceType:AdviceType: An advice has different types, and it can

be executed after, before or instead of specific events defined in point-

cut expressions. Consequently we can add an enumeration type that

contains different types of advice, and call it adviceType.

3. Join point:

Semantics: Each join point specifies a well-defined place during the execution

of the program where the aspect interacts with the core functionality.

Along the lines of the work described in Fuentes et al. [15], we deploy

sequence diagrams for modeling join points where messages are stereotyped

as join points. Sequence diagrams provide a graphical representation for

30

displaying join points that is simple to understand. Wildcards can be

used for addressing classes and methods names. Here we have a star (*)

representing any sequence of characters and a double-dot (..) representing

any sequence of arguments.

Attributes: A join point contains the following attributes:

• expr:EString contains join point expression in String format.

4. Pointcut:

Semantics: A pointcut is a predicate of join points. A pointcut can include a

name and as a result it can be easily reused (for example, to be attached to

various advice blocks which provide different behavior for it) . We therefore

modeled a pointcut as a stereotyped operation. An operation has no body

and it can be abstract. Semantically and conceptually it can be a good

choice for modeling pointcuts. Moreover, there is an advantage to modeling

pointcuts and join points with definitions that are independent from advice

as this decoupling can promote reuse of the former.

Attributes: A pointcut contains the following attributes:

• isAbstract:EBoolean illustrates whether the pointcut is abstract or

not.

• name:EString: If the pointcut is unnamed, we call it unnamed in

this work.

31

In the UML metamodel, BehavioralFeature is owned by Class. Due to the fact

that Aspect is an extension of the Class meta-class, and Advice and Pointcut are

extensions of the BehavioralFeature meta-class, Aspect already contains Advice

and Pointcut because of the association that exists between the metaclasses Class

and BehavioralFeature in the UML metamodel. In other words, semantically, there

is no need to explicitly create an association that relates an aspect to its advice and

pointcuts. We impose two constraints during the definition of Advice and Pointcut.

Additionally, only classes that are stereotyped as aspects can have behavioral

features that are stereotyped as advice or pointcuts. With appropriate constraints

defined in the Object Constraint Language (OCL) [36] , we confine advice and point-

cuts to aspects.

In Figure 11, we illustrate the UML profile for modeling crosscutting concerns.

Highlighted items are added to the UML class diagram metamodel for proposing a

UML profile for modeling crosscutting concerns.

5.2.3 Providing a graphical representation

• Aspect notation: Like class, aspect is illustrated in folded or unfolded form

that contains one additional compartment for pointcuts and advices. Using

stereotyping, a new model element, Aspect, is added to the UML class diagram

to represent aspect.

• Advice notation: Aspect has a behavioral feature that is stereotyped as

32

Mode !Bernent

Feature

visibility

GeneralizabaBernent

¦isRaot
¦isLeaf
-isAbstract

I StructuraiFeature

-mjltipfeíty

Attribute

-hitialValue

<<énurrBràt!ç»i>>
AäyiceType

Around

tìeforè;

BehaviouralFeature Classifier

Operation
-isAbstract

specificato™

Method

-borjv

«stereotype»
Adïicé

PehavioraíFeaíure]

-advicetype : AdviceType

Cîass

«stereotype»
Potatoli

federation]

«stereotype»
Aspect
[öass]

•isAbstract

Joinpoint
rComponént Ì

1:f<^inppjnt>>

t\
jÄ^r^defmitieri is;
i YijfRen';üs5ítj} i»tìcàrefe

Figure 11: The proposed UML profile to support crosscutting concerns.

33

Context Aspect
inv: self .advices -> forali (a: Advice: I self .pointcuts -> select (name = a. name))

Figure 12: The OCL constraint to enforce the name property of the Advice in the
Aspect Context.

Context Advice

inv: self .advices. pointcuts -> select (name = self ,name)

Figure 13: The OCL constraint to enforce the name property of the Advice in the
Advice Context.

Advice. An advice is defined by its name and its AdviceType that can be After,

Before or Around. As advice is declared without name and every element

in class diagram notation should have a name; we use the name of attached

pointcut. An OCL invariant constraint is defined for the name of the advice

to enforce this property. This constraint can be written in two different forms

that are semantically equal. The first one as illustrated in Figure 12 is defined

over aspect.

This constraint indicates that for every advice that is stored in a list called

advices in the body of an Aspect, there is a pointcut whose name is similar to

the name of that advice. The second form is defined over Advice and illustrated

in Figure 13.

• Pointcut notation: Every pointcut is an instance of the meta-class Pointcut.

Aspect has an operation feature that is stereotyped as Pointcut and shows the

parameter list that contains the related join points name.

34

<<Aspect»

AspectName

-*-<<pointciit» pointcúiName(join poinll, join point 2, }
+«advice» adviceName<> {AdviceType = adviceType}()

:Ciass name

« join point » method name
- ¦¦ - - ^r-

Figure 14: A graphical representation for modeling crosscutting concerns.

Join point notation: A join point is defined in a sequence diagram that has a

name and a specific message that is stereotyped as a join point. One or more

sequence diagrams displaying join points are attached to a specific pointcut.

Figure 14 illustrates how to model crosscutting concerns in UML tools that sup-

ports our UML profile.This representation hides unnecessary details and represents

crosscutting concerns in a manner where there is no need for any additional (e.g.

textual) specification. Thus the produced model can be manipulated or verified au-

tomatically by any tool that works on UML diagrams. Using this model, crosscutting

concerns and their relationships with other model elements can be displayed.

35

5.2.4 The proposed profile using a model interchange format

To deploy the profile in available CASE tools such as Eclipse Modeling Framework

(EMF) [8], it is necessary to provide a persistent interchange format. St-Denis

et al. [49] define a list of requirements for model interchange formats (RSF [55],

RDF [28], XMI [35], etc.) and discuss their advantages and disadvantages. We have

decided to adopt XMI (XML Metadata Interchange). First of all it has wide industry

and tool support. Furthermore, XMI is a metamodel to describe model elements and

therefore it is completely compatible with UML. Additionally, XMI uses XML syntax

and therefore has all the advantages of XML.

The XMI format allows one to capture our metamodel in a specific, formal, per-

sistent form that is required for defining model to model transformations [47]. In

the EMF framework that is a Java framework and code generation tool to work with

standard models, each metamodel is represented as an . ecore file in XMI format. We

have created the CoreAspect . ecore file that contains all the CoreAOP constructs,

so it can be used as a metamodel for any aspect-oriented model.

There are several ways of getting a UML model into XMI form:

1. Using an XML or text editor to create the XMI document directly. This is the

most direct one to illustrate a model in XMI format.

2. Using XML schema definition (XSD) [13].

3. Using EMF

36

(a) Export the XMI document from a modeling tool such as IBM Rational
Rose 2 in EMF.

(b) Using Java annotation 3 to annotate Java interfaces to produce a XMI file.

We are going to show how a XMI model of CoreAOP profile is generated from

Figure 11 using EMF. For modeling the CoreAOP profile, its elements are mapped

to the EMF classes. The complete class hierarchy of the Ecore model is illustrated

in Figure 15. The CoreAOP profile in XMI format is illustrated in Figure 16 in the

tree-based display model.

• Create an EMF project.

• Create an Ecore model that is called CoreAspect .ecore. The first element in

this model is EPackage that is called CoreAspect. The following steps illustrate

how to add other model elements to this package.

• Add a new child to the package that can be:

— EAnnotation

— EConstraint

— EClass: It is used to illustrate the constructs in metamodel and it has

an attribute called name. It also can have zero or more attributes of the

following type:
2http://www-01. ibm.com/software/awdtools/developer/rose/
3JDK 5.0 Developer's Guide: Annotations. Sun Microsystems. 2007-12-18.

http://java.sun.eom/j2se/l.5.0/docs/guide/language/annotations.html. (Retrieved 2008-03-05)

37

tObject

EMoclëiEietr>ent

EFactory ENaftiextËtemeot EAnnotation

EPackage Ì ECIassifier EEnumLiteral ETypedElement

ECIass EDataType I : EStruduràlFeaiiìre EOperation tParameter

EEnum EAttribute EReference

Figure 15: The complete class hierarchy of the Ecore model.

38

1. EAnnotation.

2. EOperation.

3. EAttribute: It is used to provide Class attributes. For example,

EClass UML model element has EAttribute name of a type of EString.

4. EReferences: These references can be used to illustrate the association

between two classes. The list of these references are described as

follows.

* owner:Aspect in Advice ECLass is a reference to an aspect to

illustrate the association between aspect and advice.

* joipoints:Joinpoints in Pointcut EClass is a set of join points

that a pointcut predicate over them.

* owner:Aspect in Pointcut EClass specifies the aspect that con-

tains this pointcut.

* advices:Advices in Aspect EClass is a set of advice in specific

aspect.

* pointcuts:Pointcuts in Aspect EClass. An aspect may contain

a set of pointcuts.

* ownerPackage:Package in Aspect EClass. Each aspect belongs

to a specific package that encapsulate the crosscutting concepts.

In this profile, we have the following classes: UMLModelElement, GeneralizableElement,

Classifier, Class, BehavioralFeature, Operation, Aspect, CorePointcut,

39

CoreAdvice and Joinpoint.

- EDateType: It represents the type of an attribute for example int, float

or java. util. Date.

- EEnum: AdviceType is the enumeration type that specifies the type of

Advice that can be before after and around.

- EPackage

5.3 Discussion

Several applications can be proposed for an aspect-oriented language-independent

profile. First, the CoreAOP UML profile is used to provide language-independent

models of crosscutting concerns. Therefore, it is possible to model one crosscutting

concern and present it in two different format: a graphical representation using UML

and an XMI representation.

Second, due to the fact that we selected only the essential aspect-oriented language

constructs, the most important characteristic of our UML extension is the language

independence property, which can be used to provide a language-specific profile. By

adding language-specific constrcuts, we extend the CoreAOP profile to provide model

for specific AOP platform. In the following chapter, we describe how an AspectC+-I-

profile is proposed for modeling AspectC++ systems.

Third, the language-independency makes it suitable for providing proper model

40

B- F CoreAspect
S If AdviceType
Ei- jü Aspect -> Class

ir ?ß£ coreAdvices : CoreAdvice
: S corePointcuts : CorePointcut

=* package : Package
T § CoreAdvice -> BehavioralFeature

ft :-- = adviceType : EString
I · ^s* owner : Aspect
l. ¦ £2* pointcut : CorePointcut c
I B EJ CorePointcut -> Operation '¦
I ' c8* advices : CoreAdvice Jj
I " 'if* pinpoints : Joinpoint
·(¦ =* owner : Aspect
i! BB Joinpoint ·;¦
t = joinpointExpr : EString
j; : s» pointcut : CorePointcut
!? T Ei UMLModelElement
I '¦·" ¡=> name : EString
6 T- Uj GeneralizableElement -> UMLModelElement
? : o isRoot : EBoolean

I i ; ¦ - a isLeaf : EBoolean
¦ :· ¦ ¦ a ¡sAbstract : EBoolean

¡ y Classifier -> GeneralizableElement
;¦ ¦ y Class -> Classifier

I Gl È! Feature -> UMLModelElement
I a visibility : EBoolean

:-§ BehavioralFeature -> Feature
|i Ei- y Operation -> BehavioralFeature
| - =' isAbstract ; EBoolean
I B EJ Package -> UMLModelElement
II ¿3 aspects : Aspect

Figure 16: The CoreAOP profile in XMI format.

41

transformations for maintenance activities such as reverse engineering, forward en-

gineering, language migration and reengineering. More discussion is provided in

Chapter 7 and Chapter 8.

Additionally, if we have a model that is based on a specific aspect-oriented pro-

gramming language (e.g., the AspectJ profile discussed in [12]), we can abstract away

the details that are specific to the language and preserve the main concepts to ac-

complish reverse engineering.

Fourth, the EMF generator can create a corresponding set of Java implementation

classes automatically from the model and the developer can edit these generated

classes to add methods and instance variables.

42

Chapter 6

A UML profile for the AspectC++

programming language

6.1 The AspectC++ UML profile

The main important characterisitc of the proposed UML profile, CoreAOP, is the

language independence property, which can be used to provide metamodels for other

aspect-oriented programming language. Due to wide-popularity and tool support,

there are several UML profiles for AspectJ but there is no UML extension to sup-

port modeling AspectC++ concepts. In this chapter, we explain how we propose a

UA4L profile for modeling aspects based on the AspectC++ specification presented in

[53]. To extend the CoreAOP metamodel to propose a new metamodel for a specific

programming language, we need to identify the most suitable CoreAOP metamodel

elements and individually map each element in the AspectC++ to their corresponding

43

element.

Profile Name: AspectC++

Version: 1.0

Reference Meta-model: CoreAOP UML Profile

Description: The AspectC++ profile extends the CoreAOP UML extension to ex-

plicitly capture crosscutting concerns in AspectC++.

AspectC++ is an aspect-oriented extension to the C++ language. The follow-

ing paragraphs describe the elements in AspectC++ profile and how they map into

CoreAOP constructs.

• Pointent is the most important element of AspectC++ which contains a set of

pinpoints. There are two types of pointcut:

1. Code pointcut: that can be either Execution or Call.

2. Name pointcut: it contains a set of entities such as Type, Attribute, func-

tion, variable and namespace.

Pointcut in AspectC++ profile is the subclass of the pointcut in the CoreA-

spect Profile.

• Joinpoint declares a condition in which the aspect comes into effect. There are

different types of joinpoints: Code join points are used to form code pointcuts

44

and name join points are used to form name pointcuts. Joinpoint is modeled

in the way that we model joinpoint in CoreAOP profile.

• Slice is a piece of a C++ language code element that defines a scope and can

be used by advice to extend the static structure of the programm. Due to this

fact that there is no construct as slice in CoreAOP product, it is modeled as

StructuralFeature.

• Advice in AspectC++ profile is the subclass of the advice in the CoreAspect

Profile. There are 2 different types of advice in the AspectC++ specification:

1. Advice Code it is bound to Code joinpoint and it is an action that is

activated whenever the corresponding joinpoint is reached. This Advice

Code shall be activated before, after or instead of a specific part of the

program.

2. Introduction is the second type of advice supported by AspectC++ that

is used to extend program code and data structures.

• Aspect is the element of AspectC++ to collect advice, pointcut and joinpoints

for implementing a common crosscutting concern in a modular way. We model

aspect as a subclass for aspect in CoreAOP profile.

In Figure 17, we illustrate the UML profile for modeling crosscutting concerns in

AspectC++. Highlighted items are added to the UML class diagram of the CoreAOP

metamodel for proposing a UML profile for modeling AspectC++ constructs.

45

Aspe CtC++
ModelBement

-visibility

StrucîuralFeature

- multiplicity

?© havioraiFe atu re

«sterootype»
Slice

[StructuralFe ature)
Operation

-isAb-stract

«stereotype»
Poìntcut

[Operation]

-expression

AC-*~*Pointcut

GodöPoi h}tçût;> Name Ppïntcui ::

Bcecutiphpöiiltcüt C^liPöintcut

«s te re otype»
Advice

[Be havloralFeature]

-adviceType

-7M>»H^A<avîçél

introduction

Generalîzable Bernent

-isRoot
¦isLeaf
-fsAbstract

Classifier

«s te reotype »-
Aspect
[Class]

AdvíCeCo.cíe.
AC+>As;p^^ct·;

Figure 17: The proposed UML profile to support crosscutting concerns in As-
pectC++.

46

We extend the language-independent CoreAOP profile to provide a language-

specific profile for AspectC+-(-. The graphical respresentation that is proposed for

illustrating aspects and its constructs in CoreAOP, 5.2.3 can be used to display

AspectC++ aspects as well. The AspectC++ UML profile is an exemplification to

show that the CoreAOP metamodel is pragmatic and enables implementation of the

metamodel for aspect-oriented programming languages.

47

Chapter 7

Model transformations

7.1 Introduction

Dealing with different models and applying changes to all of them while preserving

their consistency requires model transformations. In this Chapter, we explain how

to specify QVT model transformations to manipulate aspect models.

Because writing transformations is tedious and time-consuming, there is a reusable

solution to a general model transformation problem that is called transformation

pattern [17]. In this work, we propose a set of transformation patterns that can

be used as a template for specifying reusable model transformations to manipulate

models in MDA.

The remainder of this chapter is organized as follows: In Section 7.2, we describe

metamodels that are used as target or source metamodels for executing transfor-

mations. Transformation patterns are proposed in Section 7.3. In Section 7.4, we

48

present PIM to PSM transformation. Moreover, PSM to PIM model transformations

are presented in Section 7.5. Finally, the applicability of our work is explained in

Section 7.6.

7.2 Metamodels

We aim to provide model to model transformation to transform the PIM model of

crosscutting concerns into PSM models and vice versa. Metamodeling is the best

approach for providing source and target models. We use the CoreAOP UML pro-

file to model crosscutting concerns in a language-independent form. This profile is

completely described in Chapter 5. At the PSM level, we use the AspectC-l·+ profile

proposed in Chapter 6. In the following, we discuss a language-specific profile for

AspectJ.

7.2.1 AspectJ metamodel

The AspectJ metamodel that we used in this project is proposed by [12]. This profile

is a UML profile for modeling all AspectJ concepts. The following paragraphs present

the UML metamodel for each AspectJ constructs.

1. CrosscuttingConcern meta-class relates aspects together and extends the

meta-class Package.

2. Aspect's characteristics are close to the features of the UML class therefore,

Aspect extends meta-class Class.

49

3. Advice is the dynamic feature of aspect that is modeled as the meta-class

BehavioralFeature. AdviceExecution is an attribute of the Advice meta-

class and modeled by the enumeration AdviceExecutionType.

4. Pointcut extends the UML metaclass StructuralFeature. The Point cut is

an abstract meta-class in this profile and several different classes implement it.

It is also possible to have combinations of pointcuts using CompositePointcut.

In CompositePointcut, two or more pointcuts are combined using logical op-

erators defined in PointcutCompositionType. This apsectJ profile does not

have join points and there are several non-abstract subclasses for modeling

pointcuts and join points together. It's a programmer's choice to select what

kind of pointcut is needed. The different types of pointcut in AspectJ profile

are illustrated in Figure 24.

7.3 Provide transformation patterns

Since the publication of Design Patterns by Gamma et al. [16], patterns are well

known in software engineering. Patterns describe which problems software engineers

can encounter, the context in which such problems may appear, and a general solution

to them. In this thesis, we extend the notion of pattern and provide two transfor-

mation patterns as a reusable solution for specifying model to model transfomrations

for models of crosscutting concerns.

For the provision of transformations for crosscutting concerns modeled using a

50

XYMapping {
nm: String;
enforce domain left ?: X {

context = cl : XContext {},
name = nm } ;

enforce domain right y: Y {
context = c2 : YContext { } ,
name = nm } ;

when {
ContextMapping (cl, c2) ;

}
1

Figure 18: The mapping pattern.

generic metamodel to AOP language-specific model, we deploy two patterns that

are proposed in [17]. The first one is the mapping pattern used to establish one to

one relations between elements from the source metamodel to the target metamodel.

The second one is the node refinement pattern for obtaining a more detailed model

from the abstract one. The mapping pattern is illustrated in Figure 18 while the

specification of the node refinement pattern is presented in [17].

These transformation patterns are written using QVT Relations language. In

order to underestand these patterns and how we use them to provide new transfor-

mations for crosscutting concerns, we briefly discuss the QVT Relations language

below.

A Transformation written in the QVT Relations language consists of several re-

lations that should hold between elements of the source and the target metamodels.

The when and where clauses are used to constrain the transformations rules. The

51

when specifies the preconditions. For establishing the relation between the source

and the target metamodel, all conditions specified in this clause should be evaluated

to true. The postconditions are represented in the where clause. Once the relation

is established, the condition in the where part should be satisfied and evaluated to

true.

In the Relations language, domains are marked as enforce or checkonly. The

checkonly indicates that the domain elements are read-only and cannot be changed

after executing the transformation. While enforce indicates that after executing the

transformation, the transformation engine should change the elements of the domain

to satisfy the constraints that are proposed in the where clause.

In this dissertation, we provide two transformation patterns:

1. Generic AOP node mapping pattern: this pattern illustrates how one model

element in one AOP metamodel can be mapped to another elements in another

AOP metamodel at the same or various level of abstraction.

2. CoreAOP model - AOP mapping pattern: this pattern is a specialized verion

of the previous pattern and it illustrate how it is possible to transform models

that are provided using CoreAOP profile to another AOP models and vice versa.

7.3.1 Generic AOP node mapping pattern

• Name: The GenericAOPNodeMapping pattern.

• Goal: Provide relations between elements in the source metamodel to elements

52

enforce domain aOPLangMM node 1 1 : Node i arget 1
{nodeTIAttrl = attrl, nodeT2Attr2 = attr2};

Figure 19: The Enforce part of the GenericAOPNodeMapping pattern,

in the target metamodel.

• Motivation: This pattern provides a simple node mapping for the software

systems. It is a combination of the mapping pattern and the node refinement

pattern. It also discusses how one node in the source metamodel can be mapped

to its corresponding element in the target metamodel.

• Specification:

As illustrated in Figure 20, this transformation has four important parts. The

checkonly part specifies that the coreMM metamodel is the source metamodel

and its elements are read-only. This node of type Node can have one or more

attributes (here, two of them are shown) that should be mapped into their

corresponding elements in the target metamodel.

The enforce indicates that AOPLangMM is the target metamodel and the node

of type Node is transformed into two nodes in the target metamodel that are

called nodeTl and nodeT2. It is left to the programmer to decide how one node

in the source model can be mapped to how many nodes in the target model and

how to map its attributes. This enforce part can also be written in another

way as shown in Figure 19.

In this case, the node of type Node in the coreMM is transformed into the nodeTl

53

transformation GenericAOPNcdeMapping (coreMM: CoreMM, aOPLangMM: AOPLangMM) {

top relation NodsMapping {
attrl : AttributeType;
attr2 : AttrihyeType;

checkonly domain coreMM node : Node {nodeAttrl = attrl, ncdeAttr2=attr2 } ;

enforce domain aOPLangMM nodeTl :NodeTargetl {nodeTlAttrl = attrl};

enforce domain aOPLangMM nodeT2 : NodeTarcret2 { nodeT2Attr2 = attr2};

when {
F;cotMapping (node . parent, -nodeTl .parent } ;
RootMapping (node . parent, nodeT2. parent) ;

}

where {
ElementMapping (node, nodeTl } ;
ElementMapping (node, nodeT2) ;

}
}}

Figure 20: The Generic AOP node mapping pattern.

of type NodeTargetl in the AOPLangMM. The nodeTl also has two attributes,

nodeTlAttrl and nodeT2Attr2 that are created and are similar to attrl and

attr2 respectively.

The when clause checks the precondition. The node from one ecore can be

mapped to another node in another ecore if their respective parents in node

hierarchy are mapped to each other. This when clause checks and maps all the

respective parents of the nodel that are transformed into nodeTl and nodeT2.

In the where part, two other relations are invoked to map other elements in the

source metamodel to the target metamodel.

54

7.3.2 CoreAOP model - AOP mapping pattern

The second pattern is dedicated to explain how to transform the crosscutting concerns

that are modeled using CoreAOP to the crosscutting concerns in another AOP model

that can be either an AOP language-specific model or the language-independent one.

By adding the relations that are used to map the four important concepts in AOP

(aspect, advice, pointcut and join points), this pattern is more specific than the

previous one and it can be used to map the CoreAOP model to any AOP language-

specific model at the lower level of abstraction or even any language-independent

model at the same level of abstraction.

• Goal: To obtain the AOP language-specific or language-dependent model from

the CoreAOP model.

• Motivation: This pattern provides a general solution for writing QVT trans-

formation to transform a high level model that is modeled using the Core-

AOP profile to a more detailed and specific model that is based on a specific

aspect-oriented programming language. It also can be used to map a language-

independent model to another model at the same level of abstraction.

• Specification: As illustrated in Figure 21, this pattern has four mapping

relations for transforming aspect, advice, pointcut and join point to their corre-

sponding constructs in another aspect-oriented language metamodel. The first

relation is dedicated to an aspect and transforms an aspect in CoreAOP to

aspect that is modeled using another AOP metamodel. The postcondition for

55

this relation is used to transform advice, pointcuts and join point to their corre-

sponding constructs. We assume that in all AOP languages an aspect contains

advice, pointcuts and join points.

The second relation is for transforming advice. For writing these transforma-

tions, the names referring to the elements in the checkonly domain part and

the enforce domain part (ex. coreAdvices in checkonly and advices in

enforce) have to be similar to the name used in the metamodel. In other

words, in CoreAOP metamodel, the aspect contains a list of advice that is

called coreAdvices and there is a list of advice in an aspect-oriented language

dependent metamodel that is called advices.

The third and forth relations are for creating pointcuts and join points re-

spectively. By providing a UML profile for an AOP language such as AspectJ

or AspectC++, it is also possible to use the CoreToAOPModel pattern to pro-

vide the transformation for producing a language-specific model from CoreAOP

model. Additionally, using this pattern, the reversible pattern (PSM to PIM)

can be provided for reverse engineering of the system.

In the next Section, we illustrate how we use these patterns to specify model

transformations for manipulating model of crosscutting concerns. In this thesis, the

Core Model - AOP Model is used for writing the following model transformations

for producing language-specific models from CoreAOP:

56

transformation CoreModei2A0PModel ícoreMM:CoreKH, aOPt-H-î : AOPMM)

top relation CoreAspect. ToAOPAspect {
pn : String·;
ch.eck.only domain coreMM a : Aspect S nase = pn } ;
enforce domain aOPMM a j : Aspect { name = pn;·;

where {
CoreAdvice2ÄOPAdvice (a, ài);
CorePoincut2AO?Poiritcut (a, aj);

CoresJoinpoirit2AOPiJoinpoint (a, aj) ;

// map coreAdvice to advice in another AOP model.
relation CoreAdvice2AOPAdvice {

an, en, typeC, t ypeJ: String;

checkonly domain coxeMM a: Aspect {
coreAdvices = adv: CoreAdvice { name = an, adviceType = typeC

};

enforce domain aOPMM aj:Aspsct Í
advices = advJ:Advice (naine = en, adviceExecut icn = typeJ)

};

where {
en = an;

typsJ = typeC;
Core.?oincut2AOF?ointcut (a, aj, adv, advJ) ;
CorsJoinpoint 2AOPuoinpoint (a, aj, adv, advJj ; '

}
}

//map core pointent to AOP 'language pointcut .
relation CorePoincut 2AOPPoint.cut {

an, en : String;
i s Abs : Boolean;

oheckonly domain coreMH adv: CoreAdvice <
pointcut = pcuts : CorePcint cut { name = an, isAbstract = isAfoi

};

enforce domain aOPMM advJ: Advice Í

perPointcut = pcutsJ:PointCut{ name = en}
};

where {
en = a.n;

CcreJoinpoint 2AOP Joinpoint.
adv, advJ, pcuts, peut s J);

Figure 21: The Core to AOP transformation pattern.

57

/ /map coreJoinpoint s .
relation CoreJoinpoint2AOPuoinpoint {
an, en, ex.pr: String;
i GAb s : Boolean;

chmckonly domain coreVM peut s rCorePointcut i
joinpoints = jpoints: Joinpoint { joinpointExpr = expr)

};

enforce domain aOPÎ4M pcutsJ:Pointcut {
perüoiiipoints = IPoints J: Joinpoint { name = en, operation = exprf

};

wh&rm [
en = an;

}
}·

Figure 22: The Core to AOP transformation pattern - join point part.

• CoreAOP model to AspectJ: this transformation is proposed to transform Core-

AOP models to AspectJ models.

• CoreAOP model to AspectC++: this transformation is proposed to transform

CoreAOP models to AspectC++ models.

Figure 23 illustrates the relation between Generic AOP node mapping pattern

and Core Model - AOP Model patterns and proposed model transformations.

7.4 Provide PIM to PSM model transformations

7.4.1 CoreAOP model to AspectJ

• Goal: To obtain AspectJ model from the CoreAOP model.

58

GenericAOPnode mapping |
pattern |

CoreAOP -AOPmapping j
pattern j

PiMto PSM model transformations

CoreAOPto AspectJ

CoreAOPto AspeciCH

PSM to PIM model transformations

AspectJ to CoreAOP [
AspectC-f+ to CoreAOP

1

Figure 23: The relation between Generic AOP node mapping pattern and Core
Model - AOP Model and the proposed AOP model transformations

59

• Motivation: This QVT transformation is used for transforming a high level

model modeled using CoreAOP to an AspectJ model.

• Specification: In this transformation, the source model is the CoreAOP and

the target model is an AspectJ metamodel disscussed in 7.2.1. The Core-

AOP model to AspectJ mapping is shown in Figure 24. The first top relation

is dedicated to create a package that is called CrossCuttingConcern in the

AspectJ metamodel that we used. This package contains all aspects in this

AspectJ profile. The top relation CoreAspectToAspectJAspect is for trans-

forming the aspect in CoreAOP to the aspect in the AspectJ profile. This re-

lation creates a new aspect that is called exactly the same as the aspect in the

CoreAOP and invokes another relation for creating advice and pointcuts. The

CoreAdviceToAspect JAdvice creates a new advice and sets its execution type

that can be after, before or around. The CorePoincutAndJoinpointToAspect JPointcut

relation is responsible for creating pointcuts and join points in AspectJ format.

As illustrated in Figure 24, there are different types of pointcuts in AspectJ

profile. It's developer's responsibility to select the specific type of pointcut to

model the CoreAOP pointcut and its related join points.

7.4.2 CoreAOP model to AspectC++

• Goal: To obtain AspectC++ model from CoreAOP model.

• Motivation: This QVT transformation is used for transforming a high level

60

Aspect

Ait vice Pointent

Aspect
PropertyOperational PointentAim«· L xec uJion

?(Mw .Poi airut Ad

Execution ?;,]] YV tlituiCode C'FouCF ow Bp owFui« ¡in ¡ut

static
ioirializatiou

Exception « HbD

L oreAspect ??
AìpectJAspect

G ni> Pm a ten t fclnmpoiat
tti A*p*riJPointrin

lot-K-AtivifP to

AsneeliAdiaa

Figure 24: The Core to AspectJ mapping schema,

model modeled using the CoreAOP to the AspectC++ model.

Specification: In this transformation, the source model is CoreAOP and the

target model is an AspectC++ metamodel explained in Chapter 6. Figure 27

illustrates how CoreToAspectC++ transformation works. This transforma-

tion has four relations to map aspects, advice, joinpoints and pointcuts. The

CoreAspectToAspectC++Aspect relation is similar to the AspectJ tranforma-

tion, therefore it is not shown here.

7.5 Provide PSM to PIM model transformations

Using the CoreAOP model to AOP mapping pattern, a transformation for reverse en-

gineering the language-specific model to the language-independent model is provided.

61

transformât ion CoreToAspectJ
(core : CoreAspect, aspect.!: Aspect JCore) {

top relation CrosscuttingPackage {
pn : String;
checkonly domain core ? : Package { name = pn } ;
enforce domain aspect J cc : CrosscuttingConcern {name = pn } ;

}

top relation CoreAspectToAspectJAspect {

pn : String;
checkonly domain core a:Aspect {

ownerPackage = ? : Package {},
name = pn } ;

enforce domain aspect. J a j ¡Aspect
fccPackage = cc : CrosscuttingConcern { } , name = pn};

coreAdvices = adv ¡ CoreAdvice {name = an, adviceType = typeC]
where {

EleirtentMapping (a, aj);
}

relation ElementMapping {
checkonly domain core a ¡Aspect {\;
enforce domain aspectJ a j ¡Aspect {};

when {CoreAspectToAspect JAspect (a, aj);}
where {

CorePoincut.2AOPLangPointcut (a, aj) ;
CoreAdvice2A0PLangAdvice (a, aj) ;

}
}

relation CoreAdvice2A0PLangAdvice {
an, en, typeC, t.ypeJ: String;

checkonly domain core a ¡Aspect {
coreAdvices = adv ¡CoreAdvice {name = an, adviceType = typeC)

};

emforce domain aspect J a j ¡Aspect {
advices = advJ ¡Advice {name = en, adviceExecut ion = type J}

};

Figure 25: The Core to AspectJ model transformation - part 1.

62

relation CorePoincut2AOPLangPointcut {
an, en, jExpr : String;
isAbs : Boolean;

checkonly domain core a: Aspect {
pointcuts = pcuts : CorePointcut { name = an, isAbstract
joinpoints = jPoints: Joinpoint { expr = jExpr}}

};

enforce domain aspect·! aj ¡Aspect {
perPointcuts = pcuts J: Pointcut { name = en}
perPointcut = pcuts J: CaIlPC { name = en}
perPointcut = pcutsJ: WithinCodePC { name = en)

perPointcut = pcutsJ: SetPC{ name = en}
perPointcut = pcutsJ: GetPC { name = en}

perPointcut = pcuts J: AdviceExecutionPC { name = en}

perPointcut = pcuts J: WithinPC{ name = en}
perPointcut = pcutsJ: ExceptionPC{ name = en}
perPointcut = pcutsJ: StaticInit.PC{ name = en}
perPointcut = pcutsJ: TargetPC{ name = en}
perPointcut = pcuts J:ArgsPC{ name = en}

perPointcut = pcutsJ: CFlowPC{ name = en}
perPointcut = pcutsJ: CFlowBelowPC{ name = en}

perPointcut = pcutsJ: Compos itePC
{ name = en, Composit ionType = ''}

}
where {

en = an;

}}

Figure 26: The Core to AspectJ model transformation - part 2.

63

Aspect

Adnee Pouitcnt

Introduction
Advice

Name
Poin tcut

Code
Polliteli t

Code
Advice

Core

¡Up«-ftf>-i-
Pomtcut Advice

Join point

Join noiut

Name
Joiu point

Code
(Execution or Cail)

Join point

CoifAspect to Ì / CoieAd^ife fo ^ f Coi ePoiiitcut to ^ f CotfJoilipoillt toA^pmC-H-Aspcct I 1 Asp?e rr-H-Advicf J I Aspecrc:-t-^Poiatcut J I Aspt-cfC '¦<¦*Joinpoint

Figure 27: The Core to AspectC++ mapping schema.

In this transformation, the CoreAOP metamodel is the target and the language-

specific model is the source, and some relations in the QVT language are specified to

transform language-specific constructs to a generic model.

7.6 Discussion

7.6.1 The applicability of model transformations

The proposed transformations can be used to support the following activities during
maintenance:

Forward engineering [6] : transformation of a higher level specification into a

lower level by transforming a set of model elements into a set of corresponding

64

transformation CoreToAspectC++ (cere ¡CcreAspect, aspect J ¡AspectC++) {

relation CoreAdvice2A0PLangAdvice {
an, en, typeC, typeJ: String;

checkonly domain core a ¡Aspect {
coreAdvices = adv:CoreAdvicel name = an, adviceType = typeC}};

enforce domain aspectC aj ¡Aspect {
//codeAdvices = advJ : CodeAdvice { name = en, adviceType = typeJ } }
intrcAdvices = advJ:IntroductionAdvice{ name = en}};

where {
en = an;

//typeJ = typeC;
Ì

?

relation CorePoincut2AOPLangPointcut {
an, en : String;
isAbs : Boolean;

an, isAbstract = isAhsi

{ name = en}

'Execution or Call' }

where {
en = an;

CoreJoinpcintsToAspeetCJoinpoints (pointcuts, codePointcuts);
}

?

Figure 28: The Core to AspectC++ model transformation - part 1.

checkonly domain core a ¡Aspect)
pointcuts = pcuts:CorePointcut { name

};
enforce domain aspectC a j ¡Aspect {

//namePointcuts = pcutsJ:NamePointcut
codePointcuts = pcutsJ¡CodePointcut

f name = en, type =

65

ation Core JoinpointsToAspectCJoinpoints {
an, en, cExpr, cExpres s ion: String;

checkonly domain core pointcuts :Core?ointcut {
joinpoints = jps : Joinpoint { name = an, expr = cExpr}

};

enforce domain aspectC codePointcuts : CodePointcut {
codeJoinpoints = codeJps: Code Joinpoint

{ name = en, expression = cExpression}
i' r

where {
en = an;

cExpr = cExpression;

}
}

Figure 29: The Core to AspectC++ model transformation - part 2.

implementations is forward engineering. textttCoreAOP model to AOP map-

ping pattern is a transformation pattern to support forward engineering and

CoreAOP model to AspectC++ and CoreAOP model to Aspect J are to exem-

plify how forward engineering is dont using the proposed transformations to

produce a PSM model (for example, timingj and debugj) from a PIM model

(timing and debug).

• Reverse engineering [6] : it is the inverse of forward engineering and it creates

a representation of the system at a higher level of abstraction. Reverse engi-

neering of a design model or code is done by abstracting away details related

to specific programming languages and preserving the main concepts defined

in the CoreAOP. The CoreAOP model to AOP mapping pattern also supports

66

reverse engineering by providing the reverse pattern. The coreAOP metamodel

is used as the target model and the PIM model is produced after applying re-

verse transformation on PSM models that are produced using an AspectC++

or AspectJ metamodel.

* Language migration \G¡ : a transiormation oi a program written in one lan-

guage into a program written in another language by preserving the level of

abstraction is language migration. This transformation includes a reverse engi-

neering for obtaining the PIM, and a forward engineering for adding constructs

based on another programming language to provide the PSM model. To demon-

strate the applicability of the proposed transformations in language migration,

first we model a Counter aspect in AspectC++ that is shown in Figure 42.

After that, we do reverse engineering and transform AspectC++ model to PIM

model of the counter class and finally after doing forward engineering by ap-

plying CoreAOP model to AspectJ transformation, the AspectJ model of the

Counter class is provided and displayed in Figure 43.

• Reengineering [6] : reengineering includes a reverse engineering for program

comprehension and after applying changes and restructuring, a forward engi-

neering is done for implementing new functionalities or modifying the system.

All models used in this project, are either built automatically by applying model

transformations or produced using proposed metamodels. Hence, all of these

67

models are in XMI format which enables current CASE tools to read, manipu-

late, apply changes and to visualize the instance models in UML. All activities

involved in reengineering are supported by the proposed model transformations.

7.6.2 Preserve consistensy betweem models

Design by Contract (DbC) is a systematic approach in software engineering that

proposed by [31]. DbC describes how elements of the software system collaborate with

each other to satisfy the client (the user of the software system) and the supplier (the

developer). In object-oriented programming, the client must provide a valid entry for

the methods of the program. Therefore, satisfying the precondition of the methods

is an obligation for client and a benefit for supplier.

Additionally, producing a valid result is an obligation for the supplier and a bene-

fit for clients. In the specification of the model transformation in QVT, we have post

conditions and preconditions. The where clause in the transformation specification

checks the preconditions. Therefore, based on DbC, this is the obligation of the user

of the transformation to select the valid input (source metamodel) for the transforma-

tions. In addition, the when clause in the transformation specification checks the post

conditions. Hence, the developer who produced the transformation, is responsible for

providing a correct result. If we have a valid metamodel as a source model for model

transformations, the transformation produced the desirable models conforming to

specific metamodel; these where and when clause guarantee the consistency between

the source and the target model. If the transformation executed successfully, the

68

produced models are completely compatible with the source models and they provide

another representations of the system at the same or different level of abstraction.

In addition, using QVT relations gives us automatic handling of traceability

links [34]; therefore, it is possible to provide different models in different levels

of abstraction automatically and preserve the consistency between them. When a

rule/relation is executed, the transformation engine creates an internal structure

that keeps the correspondence between the source and target elements. If we need to

obtain the target element derived from a given source element, the QVT engine does

this automatically [34]. Whenever a transformation is executed for the first time,

these links are set, after that the transformation engine uses these links to check the

consistency between different elements of the source and the target model.

69

Chapter 8

Case studies

To demonstrate the applicability of our proposal we have selected three case studies

that are illustrated in this section. We follow the top-down approach and provide a

conceptual model of these projects using the CoreAOP UML profile that can be used

as an analysis model during the analysis and design phase of software development

life cycle. Additionally, we demonstrate how the proposed model transformations can

be applied to produce language-specific models.

8.1 Modeling crosscutting concerns

8.1.1 Graphical representation

It is possible to introduce new UML profile to the UML CASE tools and use that

profile for modeling new concepts. We use MagicDraw and introduce the CoreAOP

profile discussed in 11 as a new profile. Then, it is possible to use MagicDraw for

70

Propose xmi file | J Create j /Generate 3 plugins:] J Run generatedCreate | J Generate 3 plugins:
generator model j '"* "edit-* & "editor™

I - r— ? & "Model code"
.using Eclipse EMF plughi { plugins

aspect-ecore.ecore aspect-ecore.genmodel

Create
new instance of
metamodef to

mode! AOP project

Edit plugin \ Editor plugin Model Code Plugin
AOP-modeLxmí

Figure 30: How to use the CoreAOP profile for modeling an AOP project in Eclipse
EMF.

providing graphical representation for modeling aspects.

8.1.2 The XMI representation

The UML activity diagram shown in Figure 30 outlines the procedure by which

the CoreAOP profile as an ecore file that is proposed by XMI format is used as a

metamodel for modeling AOP constructs.

A genmodel file is created automatically from an ecore file using EMF which

in turn produces three Eclipse plugins: Edit, Editor and Model code. The Edit

plugin provides a flexible layer between the Model code and the EMF editor while

the Editor plugin provides additional model-specific UI contributions to EMF. By

running the generated plugins together, the proposed metamodel is added to the

models that are provided by EMF. By opening a new EMF project, it is possible to

create a new model of CoreAOP type and model crosscutting concerns.

After generating the plugins, a new model is added to the model wizard in Eclipse.

After adding CoreAOP, the CoreAOP model wizard can now be used to create a new

instance of the aspect model. The newly created CoreAOP model is opened in the

main view in Eclipse and it is possible to add a new child that is a new aspect to this

71

model. Finally, it is possible to add advice and pointcuts to this aspect.

8.2 Applying model transformations

For writing and executing the QVT transformation, version 3.4.1 of the Eclipse SDK

is used. Additionally, Eclipse Modeling Framework (EMF 2.4) and QVT 0.7 are used

for working with transformations.

The procedure by which the QVT transformation is proposed in the Eclipse Mod-

eling Framework is outlined as follows [29]:

1. Choose a Java project, a plug-in project or an EMF project.

2. Add QVT Relations Nature to the project.

3. Add Model registry to the porject. The model registry allows developers to

specify a metamodel and give it a name. In this work, we have three model

registries in XMI format:

(a) CoreA OP. ecore.

(b) AspectJ. ecore.

(c) AspectC++. ecore.

4. Create new ".qvtr" file and write the transformation.

5. Launch the project in Eclipse.

6. Create new specification:

72

(a) Select the wanted transformation.

(b) Select the source model. For PIM to PSM transformation, the source

model is an aspect modeled with CoreAOP profile, such as timing. xmi.

(c) Select the target model.

7. Run the transformation.

8.3 Case study 1: Telecom

We deploy our approach over a small-scale project that is provided in the Eclipse As-

pectJ Development Tools project [I]. Telecom simulates a telecommunication system

and it contains 731 lines of code. The following classes are provided to implement

the Telecommunication system.

• Customer: It is a caller or receiver of the call specified by its name and the

area code. It also has protocols for managing calls like call, pickup and hang

up.

• Connection: It is a circuit between customers that can be either long or local

distance. This connection is held between two customers.

• Call: A call supports the process of a customer trying to connect to others. It

is held between two customers by creating a connection between them. One

call can contain one or more connections.

73

• Abstract Simulation: It is responsible for executing the telecommunication

system, connecting different customers. Moreover, it provides complete reports

of customers' activities. This class has 3 subclasses to create objects and puts

them to work.

1. BasicSimuIation: It implements the AbstractSimulation.run(. .) method

to simulate the execution of the program.

2. BillingSimulation: This subclass implements the AbstractSimulation. report (. .)

method to print a report that contains the connection time and the bill

for a customer.

3. TimingSimulation: This subclass implements the AbstractSimulation. report (. .)

method to print a report of the connection time.

4. Timer: Timer class simulates a simple timer machine for calculating the

elapsed time of each call.

The Telecom UML graphical representation that is produced by MagicDraw is

shown in Figure 31. To log the activities and to provide appropriate billing for each

customer, three different aspects are presented:

• Timing aspect calculates the duration of a connection and the total time for

each call per customer.

• TimerLog aspect provides a complete report of Timer class's activities.

74

AbstractSím ulation

+run{)
+repori()

Tím íng Sírn ulation

+report{)

BastcSîm uiation

report connection time

Ca«

+píckupQ ; void
4-hangupO : void
•+isConneetedQ : t>ooJean

1

cat»

create

«enumerafion»
Connection type
LOCAL.
LONG DfSTANCE

Connection

-state : int
-type : Connection type

+getCalter{)
+getRecieverQ
+getStateQ : int
+complete() : void
+dropQ : void!
+connects { > : boolean

Timer

-starmme ;: Song
-startTtroe : long

+start()
-»-s topo
•+geffimeO

BîilingSim ulation

+reportí)

?.*
provide bill

Customer

-name : String
-area'code : int

+ack*Catl0
+removeCailQ
+cali() : Ca!)
+localToO : boolean
+pJckupQ ; void
+hangupO : vökJ

Figure 31: The Telecom case study class diagram.

75

• Billing aspect is responsible for providing a complete call report that includes

call details, duration and expenses for customers based on the timing and the

type of connection.

8.3.1 Provide a PIM model of the Telecom system

To demonstrate the use of our profile, we show in this case study how it can represent

the three Telecom aspects. As modeled in Figure 32, there are three classes which are

stereotyped as aspects. If we look at the Timing aspect, it has two operations that

are abstract and stereotyped as pointcuts. The name of the corresponding join points

for these pointcuts are shown as operation arguments as illustrated in Figure 14. This

aspect has two methods that are stereotyped as advice and their names are identical

to their pointcuts' name (complete and endTiming). Additionally, the type of each

advice is shown as a method property.

As the collaboration between an aspect and other components of the system is

performed through join points, we attach a UML interaction diagram to each aspect's

definition (See Figure 14) to illustrate this collaboration. In the timing aspect, after

a call to the drop O method of Connection class, the endTiming advice executes.

Furthermore, after a call to method completeO of class Connection, the complete

advice executes.

Additionally, using Eclipse EMF, a XMI representation for each aspect in Telecom

is provided using the CoreAOP profile. As an example, the XMI representation of

the timing aspect is illustrated in 33. Eclipse EMF plughi illustrates XMI file in a

76

nev/ Conn-Jl

:Cnnneçtiftn

1 : «joinpoint> constructorCaB

<Açpect>s

Billino

¦<--'-p.OÍ¡itcut»eiKlT¡ivJng(endTiming-J 1 ì
?«advice;» endTiming 0 ? adviceType-afterJO
?«/;«fi?cu<» newConri reisConn-JI)
+«advice» new Conn (HadvteTypë = after}(>

fridTinrang-J'

2: «joinpoh:» encfTmng»t

tirnerStart-JI

.¦Timer

: «Joinpoint» stari

conplete-J1
!Connection

1: «joinpoint» complete ''

«Aspect»

TimerLog

+':<poin!cut»time/Stop(timerStop-J ! }
+ «advice»tin"erStop(){advtceType=after}()
+<-«pointcut>'XimerStart('timerStart-Ji)
+«advice» BrnerStartO{adviceType=after}0

<Aspect»

Timing

+«poititcut»conp(6te(conplets-J 1)
?«advice» co¡Tptete<){ádv«:eTiípe=after}()

? «poiirtcut»*en!fTiimng(eiìdlim'ing-J 1 } —
-t«adytce»endTtrrtng()íadviceType=atter}{]

aocEitr
¡Timer

T

2: -i^joinpcint» stop

endTirring-J1
¡Connection

^joiiipoint» drop

Figure 32: Modeling the Telecom case study.

77

tree-based format.

8.3.2 Apply a model transformation to provide PSM models

We apply the CoreAOP model to AspectJ transformation into the Telecom language-

independent model. As we discussed in 8.2, for this transformation we use two model

registries.

1. CoreAOP. ecore as a source metamodel. This metamodel is used to provide

PIM model of Telecom aspects such as Timing 33.

2. Aspect J. ecore as a target model.

For this transformation, the PIM models of Telecom such as timing . xmi 33 are the

source models and we produce an AspectJ models after executing the transformation.

After executing the CoreAOP model to AspectJ transformation, the PSM model

of Timing aspect is built. As illustrated in Figure 34, the language-independent

model of the Timing aspect contains 2 advice:

1. The complete advice in timing. xmi is transformed into the complete advice

in AspectJ model of Timing aspect.

2. The endTiming advice in timing . xmi is transformed into the endTiming advice

in AspectJ model of Timing aspect.

Additionally, this transformation map two pointcuts in PIM model of Timing to

the two composite pointcuts in AspectJ:

78

T ? Package package f,
El· · f Aspect Timing]\

; ¦ ¦ f Core Advice complete
¦¦¦¦f Core Advice endTiming |

I ; B f Core Pointcut complete |
¦f· Joinpoint connection. complete |

j I B- ?- Core Pointcut endTiming ¡
'-¦¦¦f· Joinpoint connection. drop j

j OB ß platfOrm:/resource/June22/metamodel/CoreAspect.ecore|

Figure 33: The language-independent model of Timing aspect.

1. The core pointcut complete is transformed into the composite pointcut complete

in AspectJ that has two parts:

(a) Call pointcut that is modeled calling the method complete of the Connection
class.

(b) target pointcut to specify that this pointcut needs the reference to the

object of Connection class.

2. The core pointcut endTiming is transformed into the composite pointcut

endTiming in AspectJ that has two parts:

(a) Call pointcut that modeled calling the method drop of the Connection
class.

(b) target pointcut to specify that this pointcut needs the reference to the

object of Connection class.

79

S -f Crosscutting Concern package
T ¦ -f- Aspect Timing

<> Advice complete
:¦ · <' Advice endTiming
S- -f Composite Pointcut endTiming

V Call Pointcut connection,drop j
; 4- Target Pointcut target(c) %

El --f- Composite Pointcut complete %
--¦f Call Pointcut connection,complete J

y I CJl <_iOl I Uli 111.Ul 4-UI yOÍ-^y

Si "fi platform: /resource/June22/metamodel/AspectJCore.ecore i

Figure 34: The AspectJ model of Timing aspect after executing transformation.

8.4 Case study 2: Spacewar

Spacewar is a medium-scale AOP project provided by the Eclipse AspectJ Develop-

ment Tools project [1] and has been deployed in the literature as a benchmark [5, 44].

At 2300 lines of code, Spacewar simulates an arcade asteroids game and it shows a

variety of interesting uses of aspects. In this game, a spaceship represented by a mov-

able triangle is controlled by a user and tries to eliminate the other spaceships. The

other spaceships have the same triangle form in different colors. Spacewar contains

two packages:

1. coordination contains five classes, three interfaces and one aspect, namely

Coordinator.

2. spacewar contains ten classes and five aspects. Additionally, there are three

aspects that can be considered as AspectJ compilation units as the extension

of their files are ".aj".

80

By instantiating the Game class or calling the main method, the spacewar game

starts. SpaceObject is an abstract class to simulate objects that float around in

space. It has information about the position, the velocity and the size of the objects.

The SpaceObject adds itself to the registry after it is constructed and when it dies,

a SpaceObject removes itself from the Registry. When class Game is created, the

subtypes of this class (Ship, Bullet and EnergyPacket) are created.

8.4.1 Provide a PIM model of the Spacewar game

These aspects are defined in this project to ensure synchronized access to critical

methods of the game in the presence of several threads.

• The Coordinator is an abstract aspect that provides the basic functionality

for synchronizing and coordinating different threads upon entering and exiting

methods [I]. By marking critical section methods in an object as self-exclusive

or mutually exclusive, the threads will be synchronized. It has two subclasses

that implement it: RegistrySynchronication and GameSynchronization.

Figure 36 illustrates the modeling of the Coordinator aspect with its sub-

classes.

— The RegistrySynchronization aspect guarantees synchronized access to

methods of the Registry while threads are running. For each instance of

the Registry class there is one instance of this class.

81

- The GameSynchronization aspect guarantees synchronized access to meth-

ods of the Game while threads are running. For each instance of the Game

class there is one instance of this class.

• The RegistrationProtection is a static inner aspect which is defined inside

Registry class in Registry .aj file. It is responsible for keeping track of all the

SpaceObjects that are floating around by supporting the following operations:

register and unregister.

• The Display aspect draws the space object on the screen and indicates how

much space it occupies. The display provides the look of the Game by displaying

the game as it goes along. This aspect is illustrated in Figure 35. This aspect

contains 5 unnamed pointcuts that are shown as an abstract operation stereo-

typed as pointcut. Join points are illustrated in sequence diagrams and define

the specific events in the execution of the program. For example, whenever an

instance of the Display, Game and Player are created the corresponding advice

is triggered.

• Debug is used for debugging the Spacewar project and displays the tracing

information to the output. The developer can enable or disable this aspect

by weaving or not weaving it. The model of this aspect is depicted in Fig-

urereffig:debug.

• EnsureShipIsAlive checks whether the ship is alive before performing any

console commands.

82

Jl J3

:Ksp!ay
T

I 1: «joinpOTìi» seîSize

Display

f î: «^oaipoant» new

«Aspect»
DisplayAspec!

L +«pom/euf» sííwamedf f Jl)
+«3dV!ce»urarameöl:{A<lviceType=after)i)
+«pointent» unn3met¡2(J2 }
¦K<adv¡ce>>unnamed2{Adv¡ceType=3fíer}()
*«pointcut» urinarne^ J3)
+•r<adväce»unnaned3{A<i¥iceType=after}(j
+«¦pointait» urinameü4(J4)
Tí"*3ÍÍVÍCe»Uníi3ÍM£d4{AuviCtrTypé-uííer}(}
+«¦poiçitcut» unnameäöf J5) —
+«3dvice»unnamed5{AdviceType=after)¡)

1 : «ásnpoánt» cìockTìck

J4.

} 1: «^œnpoint» ne*

J5

1 : «??p???p?» new

Game

Player

Figure 35: Modeling the Spacewar case study - Display aspect.

• SpaceObjectPainting is a static inner aspect which is defined inside Displayl

class in Displayl. aj file. It sets different colors to different objects such as

Ship, Bullet and Energy packets to display them.

The SpaceObjectPainting and the EndureShipIsAlive models are shown in Figures

38. In this case study, the aspects are modeled to show how the profile can be applied

to a large-scale AOP project.

AU aspects in this project are modeled completely using CoreAOP profile that

is introduced as a new profile to MagicDraw. In aspects with no pointcut expres-

sions, such as RegisterationProtection, the join points are directly attached to

the advice.

83

RSJl

: Registry

RSJ2

RSJ3

RSJ4

«joinpoïnt» regsster

GSJl

: Registry

«pinpoint» unregister

: Registry

<<jojnpoinf» geiOb^ects |

«Aspect»
Coordinator

+<*pointout>>sync!ircniZ3tionPcinti)
+«advice>> syncnronizatíonFtoíní {anêr}Q
+«advice» syncrHOnizationfteim {oeiore}f)
+addSèlfex{ String .) : void
taddMutexf Siring } : void
+removeMutexf Suing) : void
+guardedErttryf, Siring) : void
tguardedBitryi String, GocrdítaíÉonAction } : void
+guardedEntryi Siring. Condition, CoordinationAciiion) : void
+guardedBitryvVi8iTeTieouí(String, long } : void
+guardedBitryWitrtTlmeou^ String, Condition, icng) ; void
+guardedBitryWitnfeneout(String, CooroTnalionActicn, tong) : void
+guarded£xii(Siriig > ; vöö
+guardedBcitJ String, CoordnationAct/on) : void
+getOSetrvtetnodi String) Method
+enterMethod*, Method, CoordinaöonAcöön) :voíd

¦.Game
-------[

<<jônçxxr$>> handteCoffisiiti~>G

6SJ2
Gain»

«pnpcsnt» new

«Aspect»
RegistrySynchronsaticn

+<<pQin!cut>>synct!ron!zaüonPo>n!(RSJI, RSJ2? RSJ3, RSJ4)

«Aspect»
Oam« Syn ehron izaíion

+<:<poinìC'jt»'synchronizjtionPoi;ìì{ GSJI, GSJ2)
+gameSy? e hronzatkmO

: Registry

•xjempoint» qetShips \
---------=—Ti

Figure 36: Modeling the Spacewar case study - Coordinator aspect.

Additionally, using Eclipse EMF, a XMI representation of each aspect in Spacewar

is provided using the CoreAOP profile. As an example, the XMI representation of

the debug aspect is illustrated in 39.

8.4.2 Apply a model transformation to provide PSM models

We apply the CoreAOP model to AspectJ transformation into the Spacewar language-

independent model. As we discussed in 8.2, for this transformation we use two model

registries.

1. CoreAOP. ecore as a source metamodel. This metamodel is used to provide

PIM model of Spacewar aspects such as Debug 39.

84

Jl
: SWFi ame

[1 : «pinpoint» new

J2

;Spacewar

\ 1: <<????a???» new

J3

;înfowin

f 1 : ¿«pinpoint» new

«Aspect»
Debug

-infoWin : JnfoWin
-menu : Msnu

+«pomicia» unnameâf(J? }
+«advîce» unnamed! {aft©r}(}
+«potntctji» aHCohstrcuiasCuit J2, J3 }
+«âdvice» aííQ3nstrcutorsQrt{before}()
+«advice» aiiCönstructorsCüt |afîer}()
+«pottìtCìA» alUniUaìizaiìonOAi J2r J3 }
+«advice» atofelizatianCul (after}{)
+«advice» atlteüiaiza&mCui {before};)
-*«f?«??£?#» 3{&4eìn<xisGi4{ J2, J3)
+«advice» 3tîMeîhods0ut {before}()
+«advice» aüMethodsCut {aiterai
+«pointGut» unnamed2(J4 }
+«pointcüi» ur,n&med3{ J5)
+«advice» unrs3m&d2 {a1ter}Q
+«advice» unnamed3 [aíier}(5
+«pointoÂ» unnamed4{ J6)
+«advice» unramedi {3fter}(}
+«poirttcut» unnamed5{ J7) —
+«advice» unnamedS [aítef}Q
+«pointciÂ» vnnafiiedëf J8}
+«advice» unnamedS [ai ìer^()
+«poïnteut» unnamedlf J9) -

Debug

\ 1; «pinpoint» ctockTicií

J5

rFtegisíer

: «josnpoint» regster

:<ipinpoint» ftre
+«advïce» unnamed/ [before}*)

? î : «pnpoint»f Î: «jc*ipoint» haridieGoiiSäon ? 1 : «)oinpoffi£» bounce

Figure 37: Modeling the Spacewar case study - Debug aspect.

85

Jl

Jl

J2

:Reg¡siry

[1 : «gcànpoint» rester

2: «joinpoint» oEiresgitsr J

:Game

l t: «pnpoirrt» new S

«Aspect»
Regis teratîonProie ction

+«advice» unoan-ed1 {Adv.iceType=after}{}
+«poinicùt» tmmmedt{ Jl }

«Aspect»

Space Objeet Paint ing
-Cobr ship.coior
+«pointait» unmmed1{ Ji)
+«advice» unnamedl {AdviceType=after}()
-sMp.paint{ Graphies } : void
-bulletpairrtf Graphics) ; void
-energyRieit.painîi Graphies) : void
-paintSìatusf Graphics) : void
-pairtfLevefsf Graphics, SNp, ¡rut, rt) : void

1 : <<pnport» heimCönrrnendsCut
«Aspect»

EnsureShipis Alive

+«pointeuî» unnamedl { J2 }
+«advice» unnamedl {Adv¡ceType=around}()

Figure 38: Modeling the Spacewar case study - RegisterationProtection, SpaceOb-
jectPainting, EndureShipIsAlive aspects.

86

3 iáá platfOrm:/resource/June22/model/debug.xmi
T <> Package package

B ¦ -O* Aspect Debug
: · · f Core Advice allConstrcutorsCall

4* Core Advice allInitialízationsCut
• ¦ f Core Advice allIMethodsCut

«>¦ Core Advice unnamed 1
i ¦ ·· f Core Advice unnamed2

<F· Core Advice unnamed3
¦fy- Core Advice unnamed4
%- Core Pointcut aÜConstrcutorCaÜP
¦?> Core Pointcut alllnitializationsCutP
•y- Core Pointcut allIMethodsCutP

«Î- Joinpoint spacewar,*
¦?* Joinpoint debug.*
V Joinpoint infoWin.*
Core Pointcut unnamelP

B f Core Pointcut unname2P
-y- Joinpoint registerQ

; -1C" Joinpoint unregister()
3 4' Core Pointcut unname3P

"^ Joinpoint ship. bounceO
if' v· Core Pointcut unname4P

-V- Joinpoint ship. ¡nflictDamageO
B *j platform:/resource/June22/metamodel/CoreAspect.ecorei

Figure 39: The PIM model of Debug aspect.

2. Aspect J .ecore as a target model.

For this transformation, the PIM models of Spacewar such as debug. xmi 39 are

the source models and we produce an AspectJ models after executing the CoreAOP

model to AspectJ transformation. A language-independent model of Debug aspect

is transformed into AspectJ model automatically using proposed QVT transforma-

tion. The PIM model and the PSM (AspectJ) model are displayed in Figure 39 and

Figure 40 respectively.

87

IJ platform :/resource/3une22/model/debug,xrni
i—i ¦¦· <?¦- Package package

El·· -^- Aspect Debug
¦¦ F* Core Advice alConstreutorsCall

?··- -?" Core Advice allïnitializatîonstut
• ¦ -f- Core Advice aRlMethodbCut
: 4" Core Advice unnamed 1
r f Core Advice unnarmed2

¦f Core Advice unnamedS
f Core Advice unnamed4

® 4- Core Pointcut allConstrcutorCall
Il F- Core Pointcut alllnitiaiizationsCut
E! f Core Pointcut aÜIMethodsCut

y ^r Joinpoint spacewar.*
= i ¦-¦ F Joinpoint debug.*

f Joinpoint infoWin.*
T ¦ -f Core Pointcut unnamel

3 ·? Core Pointcut unname2
: r ¦ - f Joinpoint register()

f Joinpoint unregisterQ
© · #* Core Pointcut unnameS

4* Joinpoint ship, bounceQ
13 ¦¦ f Core Pointcut unname4

f· Joinpoint ship.inflictPamageQ
•? íti platform: /resource/June22/metamodel/CoreAspect ,ecore

Figure 40: The PSM model of Debugggspect after executing transformation.

Whenever there are more than one pointcuts in one aspect, there are two ways

for writing the model transformation:

1. These pointcuts have the same kind of join points: The programmer selects a set

of pointcuts to model all pointcuts toghether. For example, for transforming the

DT1\/T ™~,4,0 ^f +;„,;„„. «„^^^+ +^ ? r,^„„4· 7 ™„ J„l +U„ „„„„„„„~,~.„.. 1·. ~„1 4-„ J-U„
Ji xivji niuuci wi uiiiuug, dojjc^u uu .TIoJJGi^tJ iniziaci, une piugianiiiici <J1H^ OClCl^UO bllC

two types of pointcuts (CaIlPC and TargetPC) to execute the transformation.

2. These pointcuts have different kind of join points: It is necessary to model

each pointcut separately, and after that combine all PSM model together such

as debug aspect. We suggest that in this case, the programmer modeled all

pointcuts as Composite pointcuts and then modify the model using the EMF

editor to add different types of pointcuts to the Composite pointcut. In this

way, all aspects with their advices are executed automatically and it is only

necessary to modify the pointcuts manually using EMF editor.

8.5 Case study 3: Counter aspect in AspectC++

The Counter aspect is an aspect for calculating the number of object instantiations

in a simple C++ program. In this aspect, whenever an object of Polygon or Circle

classes is instantiated, the counter increases by one. When the program terminates,

because of applying the advice code for method main, the final number of object

instantiation is displayed to the programmer.

89

8.5.1 Provide a PIM model of the Counter aspect

We provide a PIM model of a Counter aspect using CoreAOP profile in XMI format,

this model is illustrated in Figure 41. In this aspect, we have 2 advice and 2 pointcuts

that describe as follows:

1. The first advice is called unnamed.

2. The second advice is called counted.

3. The first pointcut is called unnamed and whenever this pointcut is reached the

unnamed advice is triggered. This pointcut contains one joinpoint that monitors

the execution of the main function.

4. The second pointcut is called counted and whenever this pointcut is reached

the counted advice is triggered. This pointcut has two joinpoints that are

responsible for monitoring object instantiation of the Circle and the Polygon

classes respectively.

8.5.2 Apply a model transformation to provide PSM models

We execute CoreAOP model to AspectC++ transformation to do forward engineering.

For this transformation, we use two model registries.

1. CoreAOP. ecore as a source metamodel. This metamodel is used to provide

PIM model of Counter aspects.

2. AspectC++. ecore as a target model.

90

After executing the CoreAOP model to AspectC++ transformation, the PIM

model of the counter aspect (see Figure 41) is transformed to the AspectC++ model

that is illustrated in Figure 42. This transformation maps the unnamed advice to the

Code advice in AspectC++ that is also called unnamed. Because this advice is trig-

gered after the exection of the main function, based on the definition of the Code

Advice in AspectC++, this is modeled as a code advice. This Name advice has two

Name joinpoints that are worked on the Circle and the Polygon classes.

The counted advice in PIM model is modeled as an intorduction advice in PSM

model.

To do reverse engineering of this aspect, we apply CoreAOP model to AspectC++

in the reverse direction. It is only necessary to change the target and the source

metamodels. After applying the reverse engineering, the PIM model of a Counter

aspect is produced.

Finally, we execute CoreAOP model to AspectJ transformation to do forward

engineering for providing PSM model of Counter aspect for AspectJ. For this trans-

formation we use two model registries.

1. CoreAOP. ecore as a source metamodel. This metamodel is used to provide

PIM model of Counter aspects.

2. Aspect J. ecore as a target model.

As illustrated in Figure 43, the AspectJ model of the Counter aspect has two

advice and two composite pointcuts. The pointcut that is called unnamed has two

91

Call pointcuts to capture any constructor's call to Circle and Polygon classes. The

second pointcut is called counted that contains one execution pointcut that captures

execution of the main.

This case study illustrates that how it is possible to do forward engineering and

reverse engineering of an aspect using the proposed model transformations. Addi-

tionally, in this example, we display the language migration; we map the AspectC++

model of the Counter aspect to the AspectJ model using an intermediate PIM model.

First, we provide a PIM model of the Counter aspect using CoreAOP. After that,

by applying CoreAOP model to AspectJ model transformation, the PSM model of

the Counter aspect is provided. We use AspectJ model to CoreAOP as a reverse

transformation to provide a PIM model of Counter aspect and Finally, we apply

CoreAOP model to AspectC++ to the PIM model to produce AspectC++ model of

the Counter aspect.

92

a.

¡êêÊèÈêêmÊëËÉî

HJ

? Package package
El 4* Aspect Counter

r 4- Core Advice unnamed
\ -? Core Advice counted [

B- -f Core Pointcut unnamed [
i :-··-f- Joinpoint main(...)
T- 4- Core Pointcut counted

'i·- -^- Joinpoint Circle j
¦ ·¦ f Joinpoint Polygon I

platform : /resource/June22/metamodel/CoreAspect , ecore |

Figure 41: The PIM model of Counter aspect.

il {¿j platform: /resource/June22/modeI/counterC,xrni
; B- -? CC Package package

T- f Aspect Counter
l· -f- Code Advice unnamed

B -f- Name Pointcut counted
4- Name Joinpoint Circ'ce

B -f* Code Pointcut unnamed
^ Code Joinpoint execution (%main)

<&» Introduction Advice counted
® fcj platform; /resource/June22/metarriodel/AspectC. ecore f

Figure 42: The AspectC++ model of Counter aspect after executing transformation.

93

T f Crosscutting Concern package \
Bi -f* Aspect Counter

F Advice unnamed
¦ # Advice counted *

B *#" Composite Pointcut unnamed
;.;.-¦ 4· Call Pointcut Circle,*

4* Call Pointcut Polygon,* j
B ¦ -f· Composite Pointcut counted

:- 4^ Execution Pointcut main {
S ft platform ; /resource/June22/metamodeî/AspectXore.ecore |

Figure 43: The AspectJ model of Counter aspect after executing transformation.

94

Chapter 9

Related work

The approaches that are relevant to our work can be categorized into two main groups.

The fisrt group focuses on modeling aspects, whereas the second group explores how

to provide transformation patterns and model transformations. These two groups are

presented in Section 9.1 and Section 9.2.

9.1 Modeling crosscutting concerns

In the last few years, UML profiles have been proposed for modeling crosscutting

concerns. Aldawud et al. [4] argue how UML profiling would be a viable approach

for modeling crosscutting concerns. Reina et al. [41] provide a survey of some other

works. These were found to be either language-dependent or provide no support for

aspectual behavior. Other works such as [12, 39, 19, 51] are based on the AspectJ

programming language as a popular general-purpose aspect-oriented programming

95

language.

Albunni et al. [3] propose the use of a UML activity diagram for modeling as-

pects in web applications. However, they do not provide a UML profile for modeling

crosscutting concerns. Zhou et al. [56] model dynamic behavior of crosscutting con-

cerns using sequence diagrams. In contrast with our approach, they do not provide

a model for static behavior of crosscutting concerns. Since the dynamic behavior of

crosscutting concerns affects the execution of core components, they modify existing

sequence diagrams by introducing additional crosscutting bars.

A platform-independent behavioral model is proposed in [32]. In this model, ad-

vice is modeled as a stereotyped operation. Additionally, the authors follow a rather

complex expression-based approach for modeling join points and it contains specific

details about join points that are based on different aspect-oriented technologies.

Fuentes et al. [15] model advice as a common procedure using a UML activity di-

agram without an input object. In this model, an advice is placed in an aspect

definition as a stereotyped method. The authors provide actions for the advice that

are used for retrieving data related to the join point.

Coelho et al. [3] suggest using software visualizations approach to model aspects.

They present dynamic aspect diagrams to display the influence of an aspect on an

existing software system. This approach is completely different from using UML

extension to model crosscutting concerns by providing dynamic aspect diagrams.

There is no tool support for this approach and it is not shown to be expressive or

general enough to support specific modeling.

96

Our work is partially similar to [15, 19] though it differs conceptually regarding

the modeling of crosscutting concerns. Advice cannot be considered as a method

or operation, hence our proposed profile models advice as a stereotyped behavioral

feature. Furthermore, in order to produce an executable model, they ([15, 19])

propose a weaving procedure on the model itself for combining crosscutting concerns

and non-crosscutting concerns.

The idea to define a profile to support crosscutting concerns modeling (CoreAOP

profile 5.2) in UML was inspired by [12] that is an AspectJ profile. However, for

proposing the CoreAOP, we éliminât all constructs specific to the AspectJ program-

ming language and support only the most essential constructs that make a system

AOP. Our approach enables more kinds of reengineering and presumably makes the

profile easier to explain, understand and use. Also, the CoreAOP profile proposed

in this thesis can easily be extended to support any additional features specific to a

particular aspect-oriented language. What's more, in contrast with other proposed

profiles, we dedicate a specific icon for displaying crosscutting concerns.

9.2 Model transformation

An approach to weave Java classes and AspectJ aspects at the modeling level is

proposed in [2]. They propose a set of transformations to weave AspectJ models and

the main functionality of the software system to produce a Java model before the

code generation phase to deal with non aspect-oriented platforms.

97

Tekinerdogan et al. [52] provide systematic analysis to display the impacts of

separation of concerns in MDA. Using a specific case study, they define an abstract

model of transformation by proposing a set of transformation patterns. These trans-

formations explain how model A can be transformed into model B while different

concerns are included in these models. They analyse the impact of applying model

transformation for mapping different models to each other (PIM to PSM, PSM to

code), in the specific case study, the concurrent versioning system (CVS). Finally,

they propose some useful recommendations for coping with concern evolution in the

MDA process.

Koehler et al. [24] investigate model-driven transformations using graph-based

method, to map business view models into IT architectural models. This work like

ours aims at supporting the complete development cycle and deals with different

methods at the various levels of abstraction. However, the focus lies on service-

oriented architectures with Web service that makes this approach specific for IT

services.

A security aware Model-driven development based tool is proposed by [42] , which

allows them to produce the secure platform independent definition by applying secure

policies.

Transformations proposed in previous works either are not executable [52] or are

dependent on specific applications [24, 41, 48]. Solberg et al. [48] propose a conceptual

model for model driven system and talk about how to transform the PIM model to the

PSM model in a specific CORBA application. They work on the specific case-study

98

and they do not provide any reusable automatic transformation.

Transformation patterns that they propose are concerns transformations and they

talk about how it is possible to compose each concern to model and build a compos-

ite model in a general way [52]. Also, there is no specific guideline for providing

transformation models to work with crosscutting concerns.

Judson et al. [18] propose a pattern-based transformation declaratively at the

metamodel level. They provide an extension to the UML metamodel to support

model transformations. These works do not explicitly provide model transformation

in an executable format and do not give details about transformation rules.

The idea to define transformation patterns using QVT to facilitate writing model

to model transformation was inspired by Iacob et al. [17]. They identify basic trans-

formation patterns and implement them using QVT; additionally they demonstrate

how these transformations can be used for providing more complex model to model

transformations. In our work, we focus on providing transformation patterns that

can be used to map crosscutting concerns specifically.

9.3 Discussion

Approaches to support crosscutting concerns in MDA by means of model transfor-

mations are language-specific [2, 12, 19, 39, 51], or they are proposed for specific

applications such as IT services or web applications [24], or the focus in these works

lies on specific kinds of aspects such as security [43] . Our approach is high-level and

99

completely language-independent.

UML modeling was done using the Eclipse modeling framwork and it supports

full XMI export/import capabilities. MagicDraw2 1 is used to elaborate the graphical

diagrams of this project. One limitation of our approach is a clear lack of effective

and seamless tool support for our approach. We integrate different plugins to support

modeling aspects and provide model transformations. Writing model transformations

is considered to be semi-automatic; it is up to the programmer to change the proposed

pattern and select language-dependent constructs to make sure that the program

performs correct transformations.

'http://www.magicdraw.com/

100

Chapter 10

Conclusion and recommendations

for further work

The primary motivation for this thesis arises from the fact that combining MDA and

AOP increases maintainability of the system because of better separation of concerns.

These two approaches have been proposed in order to improve software adaptability

to changes. MDA enhances the adaptation to different technologies by means of

three different levels of modeling while AOP improves modularization of crosscutting

concerns at early stages of the software development process, which leads to more

consistent, reusable and maintainable artifacts.

In this work, we explicitly address crosscutting concerns at different levels of soft-

ware developement process at various levels of abstraction. We propose a language-

independent UML profile for modeling both core and crosscutting concerns. The

constructs in this profile are independent from any specific programming language

101

and thus can be used to support generic aspect-oriented modeling. Moreover, in this

project a graphical notation schema is proposed to display crosscutting concerns.

Being UML, it is already accessible to a wide users, yet still powerful enough to

model crosscutting concerns precisely. Additionally, this proposal specifies crosscut-

ting concerns without requiring any textual specification. This, in conjunction with

the decision to use the XMI format, means that it is possible to manipulate, visualize

or verify a produced model using an existing UML CASE tools.

Furthermore, a set of well-defined, automated and reusable model transforma-

tion patterns are proposed. We argue that using these patterns will simplify both

the model development task and the task of specifying model transformations. We

provide a set of model to model transformation using the proposed transformation

patterns as templates. These reusable model transformations can be used to map dif-

ferent models to each other while they preserve the consistency between these models.

Due to the fact that performing these model transformations by hand can be quite

a time consuming and error-prone task, these automated model transformations im-

prove developer productivity and reduce human error. Additionally, these executable

transformations help developers to reduce the effort of software maintenance activities

such as reverse engineering and refactoring.

We propose different set of transformations to map the PIM model to the PSM

model. Most existing MDA tools provide only model-to-code transformations, we be-

lieve that providing an intermediate model (PSM) before generating the code makes

the transformations more modular and maintainable. Also, it is possible to transform

102

the PIM to a non-aspect oriented environment to meet the stakeholders' needs. Fur-

thermore, intermediate models can be used for optimization and tuning, or debugging

purposes. We provide automation and tool support through an Eclipse plug-in and

we demonstrate the effectiveness of our approach through the case studies.

The main limitation of this project is that it cannot work with codes that are

written using programming languages while the majority of software systems continue

to be developed by writing code using programming languages without any modeling.

Hence, we need a set of transformations to transform code into the PSM model.

In the future, we plan to use the internal structures provided by the QVT en-

gine [34] to handle change propagation by providing traceability links between dif-

ferent model elements. Once an element is modified, changes have to be made in

dependent components to preserve the correctness of the system. We can traverse

each model elements using these links to identify the affected elements.

Additionally, further works may concentrate on proposing new transformation

patterns and completing the proposed transformation specifications to be more ac-

curate and completely automated.

103

Bibliography

[1] AspectJ Development Tools, http://www.eclipse.org/ajdt/.

[2] J. Torres A. M. Reina. Weaving AspectJ aspects by means of transformations.

In The First Workshop on Models and Aspects- Handling Crosscutting Concerns

in MDSD at the 19th European Conference on Object-Oriented Programming

(ECOOP 2005), 2005.

[3] N. Albunni and M. Petridis. Using UML for modeling crosscutting concerns

in aspect-oriented software engineering. In Proceedings of the 3rd International

Conference on Information and Communication Technologies: From Theory to

Applications (ICTTA), 2008.

[4] Omar Aldawud, Tzilla Elrad, and Atef Bader. UML profile for aspect-oriented

software development. In Proceedings of the 3rd International Workshop on

Aspect- Oriented Modeling (AOM), 2003.

[5] Jonathan Aldrich. Open modules: Reconciling extensibility and information

hiding. In AOSD workshop on Software Engineering Properties of Languages

104

for Aspect Technologies (SPLAT), 2004.

[6] Keith H. Bennett and Vaclav T. Rajlich. Software maintenance and evolution:

a roadmap. In Proceedings of the Conference on The Future of Software Engi-

neering (ICSE), pages 73-87, New York, NY, USA, 2000. ACM.

[7] Alan Brown. An introduction to model driven architecture. Technical report,

IBM, 2004.

[8] Frank Budinsky, Stephen A. Brodsky, and Ed Merks. Eclipse Modeling Frame-

work. Pearson Education, 2003.

[9] Krzysztof Czarnecki and Simon Helsen. Classification of model transformation

approaches. In Workshop on Generative Techniques in the Context of Model-

Driven Architecture (OOPSLA), 2003.

[10] Edsger W. Dijkstra. On the role of scientific thought. In Selected Writings on

Computing: A Personal Perspective, pages 60-66, 1974.

[11] Tzilla Elrad, Robert E. Filman, and Atef Bader. Theme section on aspect-

oriented programming. Communications of ACM, 44:29-32, 2001.

[12] Joerg Evermann. A meta-level specification and profile for AspectJ in UML.

In Proceedings of the 10th International Workshop on A sped- Oriented Modeling

(AOM), 2007.

105

[13] David C. Fallside and Priscilla Walmsley. Xml schema part O: Primer second

edition. W3C Recommendation, October 2004.

[14] Robert E. Filman and Daniel P. Friedman. Aspect-oriented programming is

quantification and obliviousness. In Proceedings of the OOPSLA Workshop on

Advanced Separation of Concerns, 2000.

[15] Lidia Fuentes and Pablo Sánchez. Towards executable aspect-oriented UML

models. In Proceedings of the 10th International Workshop on Aspect- Oriented

Modeling (AOM), 2007.

[16] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design Pat-

terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Read-

ing, MA, 1995.

[17] Maria-Eugenia Iacob, Maarten W. A. Steen, and Lex Heerink. Reusable model

transformation patterns. In Proceedings of the 12th Enterprise Distributed Object

Computing Conference Workshops (EDOCW), pages 1-10, Washington, DC,

USA, 2008. IEEE Computer Society.

[18] Sheena R. Judson. Pattern-based model transformation. In Companion of the

18th annual ACM SIGPLAN conference on Object-oriented Programming, Sys-

tems, Languages, and Applications (OOPSLA), pages 124-125, New York, NY,

USA, 2003. ACM.

106

[19] José Uetanabara Júnior, Valter Vieira Camargo, and Christina Von Flach

Chavez. UML-AOF: A profile for modeling aspect-oriented frameworks. In

Proceedings of the 13th International Workshop on Aspect- Oriented Modeling

(AOM), 2009.

[20] Gregor Kiczales, Erik Hilsdale, Jim Hugunin. Mik Kersten, Jeffrey Palm, and

William G. Griswold. An~ overview of AspectJ. In Proceedings of the 15th Euro-

pean Conference on Object-Oriented Programming (ECOOP), 2001.

[21] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina

Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In

Proceedings of the 11th European Conference on Object-Oriented Programming

(ECOOP), 1997.

[22] Jörg Kienzle, Yang Yu, and Jie Xiong. On composition and reuse of aspects.

In Proceedings of the 2nd AOSD Workshop on Foundations of A.spect- Oriented

Languages (FOAL), 2003.

[23] A. Kleppe, J. Warmer, and W. Bast. MDA Explained: The Model Driven Ar-

chitecture - Practice and Promise. 2003.

[24] Jana Koehler, Rainer Hauser, Shubir Kapoor, Fred Y. Wu, and Santhosh Ku-

maran. A model-driven transformation method. In Proceedings of the 7th In-

ternational Conference on Enterprise Distributed Object Computing (EDOC),

pages 186 - 197, Washington, DC, USA, 2003. IEEE Computer Society.

107

[25] Philippe Kruchten. The Rational Unified Process: An Introduction. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[26] Ivan Kurtev. State of the art of QVT: A model transformation language stan-

dard. In Applications of Graph Transformations with Industrial Relevance: Third

International S^'m^osium (A.GTIVE\

[27] Craig Larman. Applying UML and patterns: An introduction to object-oriented

analysis and design and iterative development (3rd edition). Prentice Hall PTR,

2004.

[28] Ora Lassila and Ralph R. Swick. Resource description framework (RDF) model

and syntax specification. Technical report, http://www.w3.org/TR/PR-rdf-

syntax, 1998, (Retrieved: 09-08-2010).

[29] Eclipse M2M. Declarative QVT quick start. Technical report,

http://www.eclipse.org/m2m/dqvt, (Retrieved: 09-08-2010).

[30] Stephen J. Mellor, Scott Kendall, Axel UhI, and Dirk Weise. MDA Distilled.

Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 2004.

[31] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 1988.

108

[32] Marco Mosconi, Anis Charfi, Jaroslav Svacina, and Jan Wloka. Applying and

evaluating AOM for platform independent behavioral UML models. In Pro-

ceedings of the 7th AOSD International Workshop on Aspect- Oriented Modeling

(AOM), 2008.

G33] OMG. UML 2.0 infrastructure final adopted specifica.tion. Technical re-

port, http://www.omg.org/cgi-bin/doc7ptc/2003-08-02, 2003 (Retrieved: 09-08-

2010).

[34] OMG. MOF QVT final adopted specification. Technical report, OMG,

http://www.iist.unu.edu/ vs/wiki-files/MOFQVTSpec.pdf, 2005, (Retrieved:

09-08-2010).

[35] OMG. XML metadata interchange (XMI). Technical

report, http://www.omg.org/cgi-bin/doc7formal/2007-12-02, 2007, (Retrieved:

09-08-2010).

[36] OMG. Object constraint language (OCL) 2.2. Technical report,

http://www.omg.org/spec/OCL/, 2010, (Retrieved: 09-08-2010).

[37] OMG. MOF core spec-

ification. Technical report, http://www.omg.0rg/spec/MOF/2.O/, (Retrieved:

09-08-2010).

[38] Transformations Rfp Partners. Initial submission for MOF 2.0 Query / Views

/, 2003.

109

[39] Adam Przybylek. Separation of crosscutting concerns at the design level: An
Extension to the UML Metamodel. In Proceedings of the 2nd International

Multiconference on Computer Science and Information Technology (IMCSIT),

2008.

Ï4Q1 Chris Raistrick Paul Francis, and John Wright, Model Driven Architecture with

Executable UML(TM). Cambridge University Press, New York, NY, USA, 2004.

[41] A.M Reina, J. Torres, and M Toro. Towards developing generic solutions with

aspects. In In proceedings of the workshop on Aspect Oriented Modeling (AOM),

Lisbon, Portugal, 2004.

[42] Julia Reznik, Tom Ritter, Rudolf Schreiner, and Ulrich Lang. Model driven

development of security aspects. Electron. Notes Theor. Comput. Sci., 163(2):65-

79, 2007.

[43] Julia Reznik, Tom Ritter, Rudolf Schreiner, and Ulrich Lang. Model driven de-

velopment of security aspects. Electronic Notes in Theoretical Computer Science,

163(2):65-79, 2007.

[44] Martin Rinard, Alexandru Salcianu, and Suhabe Bugrara. A classification sys-

tem and analysis for aspect-oriented programs. SIGSOFT Softw. Eng. Notes,

29(6):147-158, 2004.

[45] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language

Reference Manual, The (2nd Edition). Pearson Higher Education, 2004.

110

[46] Bran Selic. A systematic approach to domain-specific language design using

UML. In Proceedings of the 10th IEEE International Symposium on Object and

Component- Oriented Real-Time Distributed Computing (ISORC), 2007.

[47] Shane Sendall and Wojtek Kozaczynski. Model transformation: The heart and
soul of model-driven software development. IEEE Software 20f5V42—45 2003.

[48] Arnor Solberg, Devon Simmonds, Raghu Reddy, Sudipto Ghosh, and Robert

France. Using aspect oriented techniques to support separation of concerns in

model driven development. In Proceedings of the 29th Annual International

Computer Software and Applications Conference (COMPSAC), pages 121-126,

Washington, DC, USA, 2005. IEEE Computer Society.

[49] Guy St-Denis, Reinhard Schauer, and Rudolf K. Keller. Selecting a model in-

terchange format: The SPOOL case study. In Proceedings of the 33rd Hawaii

International Conference on System Sciences (HICSS), 2000.

[50] Friedrich Steimann. The paradoxical success of aspect-oriented programming. In

Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA), 2006.

[51] Dominik Stein, Stefan Hanenberg, and Rainer Unland. Designing aspect-oriented

crosscutting in UML. In Proceedings of Proceedings of the Aspect- oriented

sofwtare development UML workshop (AOSD-UML), 2002.

Ill

[52] Bedir Tekinerdogan, Mehmet Aksit, and Francis Henninger. Impact of evolution

of concerns in the model-driven architecture design approach. Electron. Notes

Theor. Comput. Sci., 163(2) :45-64, 2007.

[53] Matthias Urban and Olaf Spinczyk. AspectC++ language reference, 2006.

[54] Dean Wampler. The role of aspect-oriented programming in OMG's model-

driven architecture. Aspect Programming, Inc., 2003.

[55] K. Wong and H. Mller. Rigi users manual, version 5.4.4. Technical report,

University of Victoria, Victoria, Canada, ftp://ftp.rigi. esc. uvic.calpub/, 1998,

(Retrieved: 09-08-2010).

[56] Xiao-Cong Zhou, Chang Liu, Yan-Tao Niu, and Tai-Zong Lai. Towards a frame-

work of aspect-oriented modeling with UML. In Proceedings of the 2008 Inter-

national Symposium on Computer Science and Computational Technology (ISC-

SCT), 2008.

112

