
:al-time scheduling algorithms

WIRELESS SENSOR NETWORKS

A THESIS

IN

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science

Concordia University

Montréal, Québec, Canada

August 2010

© Yi Hm Chen, 2010

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliothèque et
Archives Canada

Direction du
Patrimoine de l'édition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre référence
ISBN: 978-0-494-71028-9
Our file Notre référence
ISBN: 978-0-494-71028-9

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

AVIS:

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans le
monde, à des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse. Ni
la thèse ni des extraits substantiels de celle-ci
ne doivent être imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformément à la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thèse.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

Abstract

Real-Time Scheduling Algorithms in Wireless Sensor
Networks

Yi Hui Chen

Wireless sensor networks have recently attracted research and industry interest. Wire-

less sensor networks have great potential to be used in many applications because of their

unique characteristics. In many applications, such as military battlefield surveillance and

medical health care, the data packets need to be delivered to their destinations with real-

time constraints. Traditional real-time algorithms cannot be directly used in wireless sensor

networks. Therefore, a new challenge in wireless sensor networks arises.

In this thesis, -e proposed several new real-time scheduling algorithms for 'wireless

sensor networks. Unlike other existing real-time scheduling algorithms, we design real-

time scheduling algorithms that not only consider the current situations of packets but also

take the travelling history of packets into consideration. We evaluated these algorithms

both in terms of the packet delivery rate and fairness to different flows. Finally we extended

IEEE 802.1 1 to be able to prioritize the packets. We implemented these algorithms in NS-2

and extensively evaluated the experimental results. The results demonstrate that our new

algorithms efficiently increase the system real-time performance and fairness.

iii

Acknowledgments

I would like to express my sincere thanks to all those who supported and helped me during

my studies and during the critical stages of completing this thesis. It would not have been

possible for me to be here without their help.

First of all, I express my deep gratitude and respect to my supervisor Dr. L. Narayanan,

whose wisdom, knowledge and experiences shaped numerous insightful conversations,

without which many ideas in this research would not have been well developed. Her sup-

port, guidance and patience helped me to make this thesis possible.

I owe my sincere gratitude to my colleagues Kun Xu. Hossein Kassaei, and Mona

Mehrandish for providing a stimulating and fun working environment.

Finally, I would like to give my special thanks to my beautiful wife Ning Ru whose

persistent love enabled me ?? complete this thesis.

IV

Contents

List of Figures vii"

List of Tables ix

1 Introduction 1
1.1 Applications in Wireless Sensor Networks 2
1.2 Challenges in Wireless Sensor Networks 4
1.3 Motivation and Contribution 5
1.4 Outline of the Thesis 7

2 Background and Related Work 8
2. 1 Wireless Sensor Network Hardware 9
2.2 Scheduling Algorithms ,.,... W

2.2.1 Traditional Real-time Scheduling Algorithms ?
2.2.2 Real-time Scheduling Algorithm for Wired Networks 13
2.2.3 Real-time Scheduling Algorithm for Wireless Sensor Networks . . 15

2.3 Media Access Control Protocol in Wireless Sensor Networks 20

2.4 Routing Algorithm for Wireless Sensor Networks 22
2.4.1 AODV Protocol . 23

2.5 Summary · ¦ · 26

3 Proposed Real-Time Scheduling Algorithms 27
3.1 Baseline Algorithms 28

3.1.1 Single-Queue Algorithms 28
3.1.2 Multiple-Queue Algorithms 30

3.2 Most Punctual First 34

?

3.3 Earliest Deadline First and Variations 36

3.3.1 Earliest Deadline among Punctual Packets 40
3.3.2 Earliest Deadline among Degraded Flows 42

3.4 Highest Velocity First and Variations 43
3.4.1 Highest Velocity First 45
3.4.2 Highest Velocity among Punctual Packets 45
3.4.3 Highest Velocity among Degraded Flows 47

3.5 Summary , 47

4 Design and Implementation 51
4.1 Simulators for Wireless Sensor Networks 51

4.1.1 NS-2 Simulator : 52

4.2 Real-time Algorithm Implementation . " 53
4.3 MAC-layer Prioritization Design and Implementation 55
4.4 Summary 57

5 Experiments and Evaluation 58
5.1 Baseline Algorithms 61
5.2 Pure Heuristics 65

5.3 Variations of Earliest Deadline First ·. ¦ 67

5.4 Variations of Highest Velocity First . . 72
5.5 Comparison of Best Algorithms , , 78
5.6 Using IEEE 802.11 with prioritizing extension 80
5.7 Summary 83

6 Conclusions and Future Work 84

Bibliography 86

Vl

List of Figures

1 The front and back of Tmote Sky module [4] 10
2 The RREQ packet [47] 23
3 The RREP packet [47] 24
4 The RREQ broadcast in AODV [31] 25
5 The RREP forward in AODV [31] .'.:." 25
6 The single-queue scheduling model 29
7 The multiple-queue scheduling model 32
8 The relationship between packet sending priority and measure of punctuality 35
9 The fairness in multiple-flow wireless sensor network . . . 42
10 The schema of mobile node [52] 53
11 The architecture of NS-2 MAC layer , 5 A
12 The overall packet drop ratio for baseline algorithms £2
13 The missed deadline drop ratio for baseline algorithms 64
14 The overall packet drop ratio for Single-Queue Deadline-Aware, Earliest

Deadline First, Most Punctual First and Highest Velocity First 65
15 The overall packet drop ratio for Single-Queue Deadline-Aware, Earliest

Deadline First, Most Punctuality First and Highest Velocity First with 50
traffic flows · 66

16 The overall drop ratio for Earliest Deadline among Punctual Packets with
different punctuality thresholds 67

17 The unpunctual drop ratio for Earliest Deadline among Punctual Packets
with different punctuality thresholds 68

1 8 The overall packet drop ratio for Earliest Deadline among Degraded Flows
with different thresholds 70

vu

19 The overall packet drop ratio for Earliest Deadline First, Most Punctual
First, Earliest Deadline among Punctual Packets with threshold 0.45, and
Earliest Deadline among Degraded Flows with threshold 0.25 71

20 The overall packet drop ratio for Highest Velocity among Punctual Packets
with different thresholds 73

21 The unpunctual drop ratio for Highest Velocity among Punctual Packets
with different thresholds 74

22 The overall packet drop ratio for Highest Velocity among Degraded Flows
with different thresholds 76

23 The overall packet drop ratio for Highest Velocity First, Highest Velocity
among Punctual Packets, and Highest Velocity among Degraded Flows ... 77

24 The overall packet drop ratio for variations of Earliest Deadline First and
variations of Highest Velocity First 79

25 The overall packet drop ratio for EDF, Earliest Deadline among Punctual
Packets and Earliest Deadline among Punctual Packets with MAC priori-
tizing extension 81

26 The overall packet drop ratio for Highest Velocity First, Highest Veloc-
ity among Punctual Packets and Highest Velocity among Punctual Packets
with MAC prioritizing extension 82

Vili

List of Tables

1 Berkeley sensor nodes [5] 9
2 Packet information 17
3 Packet schedules 17

4 Priority ranges (m/s) of SVM and DVM [34] . 19
5 Two packets information 36
6 Performance of two data structures, ? is the number of packets in the queue,

k is the number of queues 38
7 The mapping between packet sending priority and MAC priority 56
8 The percentage of all drops for the Single-Queue Deadline-Unaware algo-

rithm 59

9 The percentage of all drops for Earliest Deadline First 59
iO Simulation parameters . . , 61
1 1 Fairness for four baseline algorithms 63
12 Fairness for Earliest Deadline among Punctual Packet with different punc-

tuality threshold 69
1 3 Fairness for Earliest Deadline among Degraded Flows 69
14 Fairness for four algorithms 72
1 5 Fairness for Most Velocity among Punctual Packet with different punctual-

ity threshold . . . 74
1 6 Fairness for Highest Velocity among Degraded Flows with difference thresh-

olds 75

17 Fairness for three algorithms 78
18 Fairness for seven algorithms 79

IX

Chapter 1

Introduction

Wireless sensor networks have recently been studied as a premier research topic. Such net-

works consist of spatially distributed autonomous sensors communicating with each other

via wireless media channels [2]. These sensors cooperatively work together to accomplish

some tasks, such as remote environmental monitoring and target tracking. With micro-

electronic technology improvements, sensor nodes have become smaller and smaller, at

the same time as becoming efficient in terms of power consumption [55]. As the cost of

sensor nodes continues to fall, wireless sensor networks will be more and more widely

used in many applications such as military, intelligent agriculture and environment moni-

toring. Many researchers are currently engaged in wireless sensor networks from a variety

of perspectives, such as hardware design, deployment mobility, coverage and connectiv-

ity, lifetime and QoS [23]. Guaranteeing Real-time QoS is an important research area in

wireless sensor networks.

In this chapter, we will discuss some wireless sensor network applications. Then we

1

will introduce some research challenges in wireless sensor networks. Finally, we will de-

scribe the motivation and contribution of this thesis.

1.1 Applications in Wireless Sensor Networks

Wireless sensor networks can be used in various applications such as intelligent agricul-

ture, medical health care, environment monitoring and protection, and military battlefield

surveillance [49]. In addition, wireless sensor networks can be divided into two types,

homogeneous and heterogeneous. In homogeneous networks, each node has an identical

function and performs the same task. However, there are different types of sensors in het-

erogeneous networks. Therefore, this kind of network can perform multiple operations

simultaneously [45].

Intelligent agriculture is one of the important wireless sensor network applications.

Sensors can detect the temperature, soil moisture and humidity. In addition, wireless sensor

networks can also monitor agricultural pests. The project to create regional weather and on-

farm sensor networks in Washington State is one typical example of this kind of application.

This wireless sensor network upgraded the local public agricultural weather system. In

addition, this application provided an affordable real-time mobile system for local fruit

producers to protect their fruit from frost [43].

Medical health care is another application area. In [17], researchers established a reli-

able medical body sensor network in a hospital. In this project, wireless sensors are used

to monitor patients and transmit medical data to observation units via a wireless sensor

2

network. In this application many kinds of sensors are applied to do different operations.

Environment monitoring and protection is one of the primary applications of wireless

sensor networks. Sensor networks can be used to monitor the weather, wild animals and

environments such as ocean water, active volcanoes and glaciers. The project of bird ob-

servation on Great Duck Island is one typical example. In this project, a wireless sensor

network was used to observe the behavior of a bird called Leach's Storm Petrel on Great

Duck Island, Maine, the United States. This kind of bird is easily disturbed, so a wireless

sensor network became an appropriate way to observe them. Within one year, over one

million readings had been logged from 32 sensors [35]. Volcano monitoring is also an ex-

ample in this area [33]. In 2005, researchers deployed sensors equipped with microphones

and seismometers to collect data of volcano activity. There were nearly 107M bytes data

collected, and 230 eruptions were successfully detected during a 19-day deployment pe-

riod. In addition, glacier monitoring is another example in this field [37]. In August 2003.

researchers deployed sensors in drill holes at different depths in the glacier ice to mon-

itor a sub-glacier environment at Briksdalsbreen, Norway. This wireless sensor network

collected lots of data that can enhance our understanding of the earth's climate. These ex-

amples show how important wireless sensor networks are in environment monitoring and

protection. Wireless sensors can be deployed in harsh environments that are not easily

accessible to human beings.

Military applications are another important application area for wireless sensor net-

works. In the 1960s, the U.S. army deployed thousands of sensors in Vietnam war to detect

enemy troop movement [6]. The project "tracking vehicle with a UAV-delivered sensor

3

network" detected and tracked vehicles passing through the network [25]. The sensor is

unnoticeable and reliable. All information transferred in this network has time constraints.

In this project, sensors were deployed from an unmanned aerial vehicle (UAV). Each sen-

sor node could configure itself into a multi-hop wireless network and synchronized internal

clock. A magnetometer sensor was used to detect deviations in the magnetic field caused

by metal contained in the vehicles. Tracking results are transmitted to the UAV. In addi-

tion, wireless sensor networks were used in the design of anti-lank landmines [39]. These

landmines could communicate with each other to ensure all areas are covered.

1.2 Challenges in Wireless Sensor Networks

Unlike wired infrastructure networks such as the Internet, wireless sensor networks have

some unique features. Therefore, the solutions developed for wired network cannot be

simply applied to wireless sensor networks. In this section, we will present some challenges

for the design and implementation of wireless sensor networks.

1. Resource Constraints: A smart sensor has multiple functions such as sensing, com-

puting and communication. In addition, ihere are challenges such as how to consume

extremely low power; how to efficiently use limited transmission media and how to

keep the size of sensors smaller. Even through hardware technology has dramatically

improved recently, these constraints are still tight [14].

2. Environment : Many sensors operate in inaccessible locations such as hostile areas,

volcanoes, and oceans [14].

4

3. Scability and High Density: Sensors may be deployed from a moving platform. As a

result, the density of the sensors could vary from hundreds to thousands in a certain

area. Protocols should be able to adapt to this situation [14].

4. Sensor Network Topology: The network topology for wireless sensor networks can

be frequently changed due to sensors' mobilities. Therefore, how to self-organize

and collaborate to provide an acceptable performance has to be considered [48].

5. Real Time Constraints: Time constraints are very important in wireless sensor net-

work design because many applications have implicit time requirements. However,

wireless sensor networks have many nondeterministic characteristics such as sen-

sor failure, noise and dynamic network topology. In addition, the majority of real-

time solutions cannot be directly applied in distributed systems. Therefore, how to

guarantee real-time requirements becomes a huge challenge in wireless sensor net-

works [48].

Ic3 Motivation and Contribution

As we discussed, there are many challenges in wireless sensor network research. How to

efficiently deliver packets to their destinations within their deadlines using scarce resources

is a primary challenge in wireless sensor network applications.

The delivery of a packet before its deadline can be affected by many network protocols,

for example the routing protocol, the scheduling or queue management protocol, and the

5

media access protocol. In this thesis, we focus primarily on scheduling or queue manage-

ment: at each intermediate node, when the MAC layer is ready to send a packet, which

packet out of the queue should be forwarded first?

The problem we attempt to solve in this thesis can therefore be stated as follows: Given

a wireless sensor network with ? nodes, and a set of k flows (source-destination pairs), such

that each packet in every flow has an associated deadline, find a scheduling algorithm to

be used at intermediate nodes that maximizes the total number of packets that reach their

destinations before their specified deadlines. The algorithm should also try to maximize

some measure of fairness between flows.

To this end, we propose several new scheduling algorithms in this thesis. Our algo-

rithms are based on the following four main criteria to choose the next packet to schedule:

the deadline of a packet, the ratio of remaining distance to remaining time, the punctuality

of the racket, and the packet drop ratio of the flow. Of these, to our knowledge, using

the punctuality of the packet as a criterion is a completely novel idea. We explore several

combinations and variations of these criteria to obtain the best possible performance. We

consider both the percentage of packets that reach their destinations before their deadlines,

and the fairness between flows to evaluate performance.

Extensive simulations show that our algorithms obtain improved performance over the

previously known algorithms in terms of both packet drop ratio and fairness. Finally, we

demonstrate that adding a prioritizing extension to the IEEE 802.11 MAC protocol can

further enhance the performance of our algorithms.

6

1 ? Outline of the Thesis

In Chapter 2, we provide some background of wireless sensor network scheduling algo-

rithms and routing protocols. First we present a popular hardware platform motes and its

software platform TinyOS. Then, we describe several real-time scheduling algorithms. In.

addition, we briefly describe IEEE 802. 1 1 DCF protocol. Finally, we introduce the routing

protocol AODV. In Chapter 3, we propose four baseline algorithms and six new real-time

scheduling algorithms. We describe the details of each proposed real-time algorithm. In

Chapter 4, we briefly describe the network simulator NS-2 that we used in this thesis. Then

we present how to implement our proposed algorithms in NS-2. In addition, we describe the

details of MAC-layer Prioritization Design and Implementation. In Chapter 5, we present

the experimental results and evaluation. Finally, in Chapter 6, the conclusions of this thesis

and future work are described.

7

Chapter 2

Background and Related Work

Many routing and scheduling algorithms have been developed for wireless sensor networks.

Some of them are adapted from early algorithms for the Internet and traditional ad hoc

networks. In this chapter, we survey the important scheduling algorithms that lead to our

proposed algorithms.

In this chapter, firstly, we introduce some background on wireless sensor network plat-

forms including hardware, software and development software. The purpose of this intro-

duction is to provide a concept of a state-of-the-art sensor network. Secondly, we describe

the traditional real-time scheduling, real-time scheduling in wired networks and in wireless

networks, and present some specific real-time scheduling algorithms in each field. Finally,

we describe two typical MAC layer and routing layer protocols used in wireless sensor

networks.

8

2.1 Wireless Sensor Network Hardware

Unlike other wireless devices such as laptops and PDAs, wireless sensors have many lim-

itations. As stated in chapter 1, size and cost are two major concerns for wireless sensors.

Fortunately, over the past decade, many types of wireless sensor nodes have been designed

by the University of California at Berkeley. These nodes are widely used in many wireless

sensor network applications. A sensor node consists of several components including a

transducer, micro processor, Flash ROM, RAM and EEPROM, a radio, an antenna and a

programming interface. This sensor node is equipped with a battery, and it consumes very

low power. Table 1 lists the types of sensor node available when this thesis was started:

Mote

Year

CPU

ROM(KB)
RAM(KB)
Nonvolatile
Storage(KB)
Radio

Dot

2000

ATmegal63
16

32

TRlOOO

Mica

2001

ATmegal03
Î28

512

CC 1000

Telos

2004

MSP430

48

10

1024

CC2420

Tmote Sky
2009

MSP430

48

10

1024

CC2420

Table 1 : Berkeley sensor nodes [5]

Based on Table 1, the newest model of Berkeley sensor node is called Tmote Sky.

According to [3], Tmote Sky is the next-generation sensor node consuming extremely low

power. It also has the feature of high data-rate, fault tolerance and development ease. It

provides various integrated peripherals such as, I2C, SPI and UART bus protocols. In

addition, Tmote Sky offers a large external flash and a USB interface for programming,

debugging and data collection. Figure 1 shows the front and back of the Tmote Sky mote.

Humidity
Photosyntftetscally Temperature
Active Radiation Sensor

Sensor (optional)
User Resei (optional) Total Solar

Button

6-ph expansion 10-p|n expansion
connector connector

Button Radiation
Sensor

(optional·)
USB Transmit LED

Cora1 e ci

1MLaS

CC2420
USB Receive LED

LEDs Microcontroller

JTAG Digital switch
connector isolating USB from

microcontroller

SMA
Aecersna

Connector

(apisona·}

Internal
Antenna

2-0 .? SVS
Connector

G-sxss lEistrumsíics
MSP430F1611
macrocontroller

48-bit Si][COR
sena

m

fgumàm,

mksmmm

mmtt¥

SBŒO

USB
Flash (2KB)

32kHz
osciliator

ST ¿ode
Flash (1MB)

Figure 1 : The front and back of Tmote Sky module [4]

Operating systems provide a famework to manage hardware and to provide program-

ming interfaces. Traditional embedded real-time operating systems such as VxWorks,

UC'/OS and pSOS, require more memory than sensor nodes can provide. Therefore, sensor

nodes need particular embedded real-time operating systems. Currently, there are some

operating systems available for sensor nodes such as TinyOS and Contiki. TinyOS and

Contiki are open source software, and they are specifically designed for running applica-

tions in the small size memory of sensor nodes. The development language for TinyOS is

Networked Embedded Systems C (NesC) [I]. The development language for Contiki is the

C language [9].

2.2 Scheduling Algorithms

Th s main purpose of a scheduling algorithm is to dispatch a task or a data packet to sys-

tem resources such as processor time and communications bandwidth. In this section, we

discuss traditional real-time scheduling algorithms and real-time scheduling algorithms on

both wired networks and wireless networks.

2.2.1 Traditional Real-time Scheduling Algorithms

Traditional real-time scheduling algorithms are designed for centralized systems. They

are used to assign a processor's time to multiple tasks to ensure that each task meets its

deadline. It can either statically or dynamically prioritize tasks. Rate monotonie schedul-

ing and deadline monotonie scheduling are typical static algorithms [27]. Both of these

11

algorithms statically set the priority for each task. Therefore, they require complete knowl-

edge of the task set and its constraints in advance. In order to improve system flexibility,

some schedulers were proposed that can dynamically schedule tasks such as the earliest

deadline first algorithm [32], spring scheduling algorithm [44] and robust earliest deadline

scheduling [19]. Next, we present rate monotonie scheduling and the earliest deadline first

scheduling.

Rate Monotonie Scheduling

In many real-time control applications, periodic tasks represent the major computation de-

mand such as control loops, system monitoring and sensory data acquisition [21].

As a classical periodic real-time scheduling, Rate Monotonie Scheduling (RMS) [32]

enjoys widespread use in CPU scheduling. RMS is a periodic fixed-priority scheduler

,which assigns the priority based on the period of each task. The shortest period task will

get the highest priority.

A major limitation of periodic fixed-priority scheduling is that it does not always fully

utilize the CPU. Therefore, we introduce a processor utilization factor to measure the CPU

workload. The definition of processor utilization factor U is the fraction of processor time

spent in the execution of the task set [21]. We denote G, as the period of task i, and C, as

the worst case execution time of task i. The expression for U is given below:

" r

"-S.?. <»
i=0 '

12

According ?? [21], the utilization U in RMS is bounded by ? ? (2« — 1), where ? is the

number of tasks in the system. From the above expression, we find that the value of U

decreases as the number of tasks increases. The worst case upper bound finally converges

to In 2 («; 0.69). Therefore, RMS guarantees that an arbitrary set of periodic tasks is

schedulable if the total processor utilization does not exceed a value of 0.69.

Earliest Deadline First

Earliest Deadline First (EDF) is a classic dynamic scheduling algorithm used in real-time

operating systems. It selects tasks based on their deadlines. At any given time, the task

with the earliest deadline will be assigned the highest priority.

We denote p'k as the k,h packet in the traffic flow Q1, G(p'k) as the generating time of

packet p\ and D{p\) as the deadline of packet p'k. At time T, a packet p\ is scheduled if

G{p\) <T< D{p\.) and D{p'k is the minimum among all the packets.

Earliest Deadline First guarantees that an arbitrary set of periodic tasks is schedulable

when the utilization is not more than 1 , in contrast to Rate-Monotonic Scheduling which

can only provide the guarantee for a utilization of 0.69.

2.2.2 Real-time Scheduling Algorithm for Wired Networks

Compared with traditional real-time scheduling algorithms, real-time scheduling algorithms

in wired networks focus on communication scheduling. The two main reasons the packet

could be dropped are overflow and missed deadline. Real-time scheduling algorithms in

13

wired networks have been well-studied owing to the rise in popularity of multimedia ap-

plications. Many of these algorithms use individual packet deadlines to schedule packet

transmissions over the outgoing link in order to minimize the number of packets that miss

their deadlines.

High-quality audio can tolerate the loss of 5 to 10 percent [40]. The tolerable losses for

video are relatively low, up to one percent [46]. On the Internet, different kinds of traffic

flows pass through the same routers. Some of them are real-time data flows, which are

sensitive to delay. Others are non-real-time data flows, which are sensitive to loss. The

simplest priority scheduling is a static priority scheduling [16]. In this scheme, priority is

always given to the real-time traffic. As a result, high loss rates are experienced by the non-

real-time data flows. We describe two dynamic scheduling methods proposed for real-time

and non-real-time flows: Minimum Laxity Threshold (MLT) and Queue Length Threshold

(QLT) [201.

MLT gives sending priority to real-time traffic when the minimum laxity among the

queued real-time packets is less than or equal to a threshold L. The definition of laxity is

the remaining time to the deadline. Otherwise, priority is given to the non-real-time data

flow. The value of L is appropriately chosen to achieve a tradeoff between these two types

of traffic. Packets in the same type of traffic are served in an FCFS manner.

QLT gives sending priority to non-real-time traffic when the length of the queue for

non-real-time traffic exceeds threshold value T. Otherwise, priority is given to real-time

traffic. The value of T is appropriately chosen to achieve a tradeoff between these two

types of traffic. Packets in the same type of traffic are served in an FCFS manner.

14

In [15], a scheduling algorithm called LDOLL was provided. In this algorithm, the

oldest packet is replaced when the buffer fills. Real-time traffic is given priority when the

number of non-real-time traffic packets is below a given threshold. In [29], a scheduling

algorithm was proposed in ATM networks. It discards audio traffic cell first, then non-real-

time data and finally video traffic.

2„2o3 Real-time Scheduling Algorithm for Wireless Sensor Networks

Recall that wireless networks have many challenges that wired networks do not have to

suffer. For example, wireless sensor networks' channel may have bursty error. In addition,

the network topology of wireless sensor networks can change frequently causing the data

transmission path to be changed frequently as well.

Real-time scheduling for wireless sensor networks can be classified as location-based

algorithms and location-free algorithms. Location-!: ¿sed algorithms require the location

of node, which can be obtained from a Global Positioning System (GPS). For example,

in paper [13], the scheduling algorithm requires the location of the gateway nodes. In

addition, the Probing Environment and collaborating Adaptive Sleeping algorithm requires

location information to probe the neighborhood [24].

Location-free algorithms do not need location information. Recall that Earliest Dead-

line First guarantees an arbitrary set of periodic tasks is schedulable when the utilization is

not more than 1. In [12], Earliest Deadline First was adapted for real-time wireless sensor

networks to provide the maximum overall system throughput with an assumption that there

is not too much channel error. This algorithm is a location-free algorithm. In addition,

15

there are other location-free real-time scheduling algorithms proposed in [53] and [50].

We present one location-free algorithm and one location-based algorithm as follows.

Lagging Flow First Algorithm

Lagging Flow First(LFF) is a location-free algorithm proposed in [12]. In this paper, the

authors considered not only how to deliver the packets to arrive at their destinations within

their deadlines but also how to minimize the maximum degradation. The degradation value

is defined as e

6 = 1--^--*,· (2)
M¡

Mf is the number of packets that flow ? actually successfully delivered; M, is.the number of

packets that flow i was supposed to deliver; e, is acceptable packet loss rate [12].

This algorithm maintains two queues. One is a reservation list to hold the packets

that will be delivered. The other is a buffer to hcid packets that dc not have spots in the

reservation list. This algorithm is composed of two phases. To begin with, whenever a

packet is available to be scheduled, a time slot could be reserved based on its deadline.

Then this packet could be inserted into a reservation list if it is possible. Otherwise, this

packet will be inserted into the second queue. In the second phase, this algorithm schedules

a packet in the reservation list. Therefore, we can observe that the packets in the reservation

list have higher priorities.

In the reservation list, a time slot denoted as TS is reserved for a new packet Pj such

that no time slot between TS and the deadline of Pj is reserved for another packet p™ such
that the traffic flow Qm has a lower degradation than the traffic flow Q¡.

16

In order to maintain this reservation list, this algorithm first performs a search process

from the deadline of packet /?j to the current time to look for an empty time slot or a time

slot which is occupied by a packet p™. If there is an empty time slot available, it will be

reserved for packet Pj. If there is a time slot associated with a low degradation traffic flow

Q1n, this time slot will be reserved for new packet pj. If no time slot is available for packet

Pj, packet p'} will not be in the reservation list. If any packet p™ yield its time slot to other
packets, a new searching process will be performed for this packet/?™.

We present an example to illustrate the difference in scheduling performed by EDF and

LFF algorithms. Assume there are six packets. Their deadlines and the degradation values

are listed in Table 2. The schedule generated by the algorithms are shown in Table 3.

Packet

PÌ
Pl
µ ?

PÌ

Deadline

t+2

t+2

t+2

t+3

t+3

t+3

Degradation Value
0.02

0.06
0.04

0.02

0.04

0.06

Table 2: Packet information

Algorithm
LFF

EDF

t+1

pi
p\ or p\ or p\

t+2

Pl
p\ orp\ orp\

t+3

P\
p\orp\orp\

Table 3: Packet schedules

According to EDF, at time slot t+1, p\, pi and p\ have the earliest deadline f + 2.

Therefore, any of them will be scheduled at time slot t+1. Similarly, at time slot t + 2

one of remaining two packets will be scheduled. Finally, at time slot t + 3, p\, pi and p\

17

are already past their deadlines and therefore one of p\, p\ and p\ will be scheduled.

However, if using LFF, at time slot t+ 1, p\, p\ and p\ have the earliest deadline and there

are two time slots available. Therefore, t + 1 is reserved in the reservation list forp\ and

t + 2 is reserved in the reservation list for p\. p\ will compare its degradation value with

the packets that occupy the time slot t + 1 and t + 2. Then p\ has to yield its time slot to

p\. Next, we look at the packets with the next earliest deadline. They have only one slot in

the reservation list available to be scheduled, and p\ has the highest degradation value, so

it is scheduled.

From the above discussion, we may find that this algorithm takes into consideration

both the deadline and the degradation of the traffic flow.

Velocity Monotonie Scheduling Algorithm

Velocity Monotonie Scheduling (VMS) is a location-based algorithm proposed by Chenyang

Lu [34]. The basic idea of this algorithm is to prioritize packets based on their velocities.

The definition of packet's velocity is the ratio of the distance that it needs to travel to the

time before its deadline. There are two versions of velocity monotonie scheduling: static

VMS (SVM) and dynamic VMS (DVM).

Static VMS fixes the priority of packet when the packet is generated. The definition of

velocity is given below:

Distance between source and destination(p'¡)Velocity^') = , , , „ , |? ^ (3)jyF]J Available Timety)

18

The distance measure used in this algorithm is Euclidean distance. The routing algorithm

used is GPSR, which uses geographic forwarding to the node progressively closer to the

destination [28]. Packets' priorities are determined based on the velocities of these packets.

A higher velocity packet will get a higher priority, and it will be placed in the appropriate

queue. All intermediate nodes have a separate queue for each priority level and packets

of higher priority are always forwarded before packets of lower priority. Since the priority

is fixed at the beginning, an intermediate node cannot change it even if any unpredictable

delay occurs.

On the other hand, dynamic VMS recalculates the velocity and resulting priority at each

intermediate node. The definition of velocity used in dynamic VMS is:

Velocityip'j) = Distance between current node and destination^)
Remaining time(pj) (4)

The advantage of dynamic VMS is that an intermediate node has an ability to adjust the

priority based on the specific situation.

Detailed information on the assignment of priority levels based on velocities for both

static and dynamic VMS is shown in Table 4.

Priority
1

SVM

(10, oo)
(5, 10]
(0, 5

DVM

(40, oo)
(io, 40 ;
(o, io;

Table 4: Priority ranges (m/s) of SVM and DVM [34]

19

23 Media Access Control Protocol in Wireless Sensor Net-

works

Media Access Control protocols have been extensively studied in traditional wireless net-

works. Time division multiple access (TDMA), frequency division multiple access (FDMA)

and code division multiple access (CDMA) are widely used in the wireless cellular com-

munication systems. The commonality in these protocols is to avoid collision by assigning

wireless nodes onto different sub channels, which are divided by time, frequency or orthog-

onal codes [54].

IEEE 802.1 1 is often used in wireless sensor networks. It is known that IEEE 802.1 1

supports both infrastructure networks and ad hoc networks [41]. Therefore, IEEE 802.1 1

MAC layer specifies two kinds of access methodologies as follows.

i . Distributed Coordination Function(DCF): This is a contention-based protocol which

is used in ad hoc networks.

2. Point Coordination Function(PCF): This is a contention-free protocol, which is used

in infrastructure networks.

In this thesis, we used the IEEE 802.11 DCF in our implementation. Therefore, we

describe this function in detail below.

Prior to sending a data packet, the sender will send a small control packet called Request

to Send (RTS). The function of RTS is to inform the neighbors of the sender of a coming

transmission. Before sending RTS, the node will sense the channel for a time interval called

20

DCF Inter Frame Space (DIFS). Upon receiving RTS, the receiver will send a Clear to Send

(CTS) packet back to the sender if the channel is idle. The purpose of CTS is to prevent

the neighbor around the destination from transmitting at the same time. After the sender

receives CTS, it will sense the channel a time interval called Short Inter Frame Space (SIFS)

before sending DATA packets. Whenever the receiver gets a DATA packet from the sender,

it will respond with an Acknowledgment (ACK) packet indicating a correct reception of

the DATA packet.

Tn addition, each wireless node maintains a table called Network Allocation Vector

(NAV). RTS and CTS contain a duration field in their frame headers, which indicates the

duration of the RTS-CTS-DATA-ACK procedure. Nodes that hear either RTS or CTS will

update their NAV tables, and they will be silent during this period.

When the node is about to send packets and the channel is occupied, it will keep

sileht for a random number of time slots chosen between 0 to ContentionWindow(CW) .

This period of time is called backofftime. If the node bears any transmission within this

backofftime, this timer will be frozen until the channel becomes idle again. If any collision

happens, backofftime will be doubled until it reaches the maximum value (cw_max). When

a node fails to get an acknowledgement, it will retransmit this packet unless a maximum

number of retries has been reached.

21

2.4 Routing Algorithm for Wireless Sensor Networks

Dynamic routing algorithms are prevalent in wired networks. Distance Vector Routing and

Link State Routing are two of the most popular dynamic routing algorithms [31]. However,

these routing algorithms cannot be directly adapted to ad hoc or sensor networks because of

the frequently changing network topology in ad hoc networks. Fortunately, many routing

algorithms have been designed for ad hoc networks. They can be divided into proactive

routing, reactive routing and hybrid routing based on the manner in which routing informa-

tion is acquired.

A proactive routing algorithm builds routing paths before any packet is about to be

sent, and it periodically exchanges topology information to maintain them. Destination-

Sequenced Distance-Vector (DSDV) is a typical example of a proactive routing algorithm.

in contrast, a reactive routing algorithm finds e routing path only if it is necessary. There-

fore, it will perform a process to find a routing path to the destination just before send-

ing packets. Ad Hoc On-Demand Distance Vector (AODV) and Dynamic Source Routing

(DSR) are typical examples of reactive routing algorithms. Based on these algorithms' fea-

tures, we can conclude that a proactive routing algorithm has a low packet delivery latency

compared with a reactive routing algorithm. However, routing path maintenance overhead

in proactive routing algorithms will be much higher than the overhead in reactive routing

algorithms [38]. Therefore, reactive routing protocols are more suitable for the networks in

which network topology changes frequently, or where resources are scarce.

22

Being a general purpose algorithm, AODV can be used in all ad Hoc networks. Ac-

cording to paper [51], AODV has the best performance among DSDV, DSR and AODV It

can handle mobility and scalability pretty well with an acceptable latency. Therefore, in

this thesis, we decided to use AODV as the routing protocol.

2,4.1 AODV Protocol

AODV was proposed by C. Perkins [42]. Being a reactive routing algorithm, AODV only

maintains the routing paths that are used in packet transit. Compared with DSR, AODV

maintains the routing table in each node rather than in each data packet header. There are

three kinds of control packets used in AODV.

1. Route Request (RREQ): This packet is used in a route discovery operation when the

destination is not available. It includes the addresses of the source and the destination.

In addition, it has request ID5 hop count and the sequence number of the source and

the destination. Figure 2 shows the fields contained in a RREQ packet.

source,

address

request
ID

source

sequence No.

destinati« m

address

destinili ¡on

sequence No.
hop

count

Figure 2: The RREQ packet [47]

2. Route Replies (RREP): If the intermediate node knows the route to the destination or

the destination receives a RREQ packets, they will send a RREP packet back to the

source. Figure 3 shows the fields contained in a RREP packet.

23

S(JlIKC

address

destination

address

destination

sequence No.
hop

count

life-

time

Figure 3: The RREP packet [47]

3. Route Error (RERR): This packet is to report a broken routing path.

One difference between DSR and AODV is that each node in the AODV algorithm has

a routing table. Each routing entry in the routing table contains the following informa-

tion: destination, next hop, number of hops, sequence number of the destination, active

neighbours for this route, and expiration time for this route entry.

When the source node initiates a route discovery process to the destination, a RREQ

packet will be broadcast to the network. When its neighbours receive this packet, they will

check the source address and request id, which can uniquely identify this packet. If it is

the first time they receive this packet and they do not have the routing information to the

destination, they will rebroadcast it and the hop count of RREQ will be increased by one.

Otherwise, they will discard it. in addition, they will set up a backward entry that points

to the source in their routing table. Eventually, the destination or any intermediate node

that has routing information to the destination receives this RREQs packet. Then a RREP

packet will be sent back to the source. Figure 4 illustrates the process of route discovery.

The RREP packet will travel back to the source in the reverse direction. In addition,

all intermediate nodes will set up a forward entry in their routing table to the destination.

When the RREPs packet arrives at the source, the route discovery process is completed.

24

/?

* r~

Í5i . >->
/'s**-—' "¦-¦-,.; ,-'pístinatisp.

/^

Figure 4: The RREQ broadcast in AODV [31]

Figure 5 illustrates the process of RREPs forwarding.

oy v:"<\
/"¦\ 9 '

^V..> ""---... [>é=t!n3t¡D'Déstii

Figure 5: The RREP forward in AODV [31]

When the route is set up successfully, the source can start sending data packets to the

destination. Each routing entry has an expiration period. If this routing entry is idle for a

while, this route will be considered broken and a RERR packet will be generated and sent

back to the source indicating that the destination is unreachable.

Each node can get to know its one-hop neighborhood by using HELLO packets. The

purpose of HELLO packets is to inform its neighborhood that is is still alive. Hello packets

25

will not be forwarded. When a node receives a HELLO packet, it updates the correspond-

ing lifetime of the neighbor information in its routing table. This local connectivity man-

agement should be distinguished from general topology management to optimize response

time to local changes in the network [47].

In addition, AODV uses sequence numbers to solve the loop problem. Each node main-

tain its own sequence number. When it sends a RREQ, its sequence number will be incre-

mented. In addition, when it sends a RREP, its own sequence number will be the maximum

of the current sequence number and the sequence number in the RREQ.

In summary, AODV is quite efficient as an ad hoc routing algorithm. It has the minimum

control traffic overhead regarding the cost of increased latency to find new routes. It can

also react rapidly to network topology changes.

23 Summary

In this chapter, first we provide the state-of-the-art background of wireless sensor network

hardware. Then, we surveyed several algorithms that are related to our research in partic-

ular scheduling algorithms, including algorithms specifically designed for wireless sensor

networks, MAC-layer contention resolution algorithms and routing algorithms. In each

case, we gave a detailed description of the algorithms either used in this thesis or closely

related to the algorithms proposed in this thesis.

26

Chapter 3

Proposed Real-Time Scheduling

Algorithms

In this chapter, we define the multiple-hop real-time scheduling problem in wireless net-

works and propose various solutions to address this problem. The purpose of ail real-time

scheduling algorithms is to fulfill timeliness constraints. Traditional real-time schedul-

ing algorithms assign processors' time to tasks in a centralized manner. However, the

scheduling algorithm in a wireless sensor network has to work in a distributed manner.

The scheduling algorithm in each node must make scheduling decisions without any global

knowledge. In addition, the problem of how to independently schedule packets at each node

to achieve the minimum overall packet missing ratio is proved as an NP-hard problem [30].

Therefore, heuristic algorithms are needed.

We assume that all nodes can work as a wireless data source, a router or a destination.

All the traffic flows are assumed to be unidirectional. In addition, there are no mobile

27

nodes in the wireless sensor network. The clocks on all nodes are synchronized. In the first

section we give some baseline algorithms. In Section 3.2 we propose the Most Punctual

First algorithm. In Section 3.3 two variation of earliest deadline first algorithms. In the last

section we propose Highest Velocity First and two variation algorithms.

3.1 Baseline Algorithms

The main purpose of baseline algorithms is to introduce some basic concepts and define

some basic standards to compare with the subsequently proposed algorithms. The follow-

ing lists four candidates.

3.1.1 Single-Queue Algorithms

In mis section, we will introduce two single-queue algorithms: the Single-Queue Deadline-

Unaware algorithm and Single-Queue Deadline-Aware algorithm. Figure 6 shows the

scheduling queue architecture of a node where Fl , F2 and F3 represent the different traffic

flows that share a common queue in a node. A packet in the scheduling queue is scheduled

based on a First-In-First-Out (FIFO) policy.

The Single-Queue Deadline-Unaware algorithm does not check the deadlines of packets

until packets arrive at their destinations. This algorithm is described in Algorithm 1 .

The main purpose of the Single-Queue Deadline-Unaware algorithm is to measure the

difference between a real-time system and a non real-time system. The major concern of a

28

F2

Scheduii'sQueue

Figure 6: The single-queue scheduling model

1 The Single-Queue Deadline-Unaware Algorithm
I : Upon receiving a packet P¡
2: If'notfull{scheduling queue) then
3: enqueue(Pj, scheduling queue)
4: else

5: drop(Pj)
6: end if
7: Upon receiving a call back from MAC layer
8: if not empty(scheduling queue) then
9: pkt <— dequeue{scheduling queue)

10: Send pkt to MAC layer
1 1 : end if

29

non real-time system is to successfully deliver a packet to its destination. However, a real-

time algorithm must consider both the delivery rate and the time constraint of each packet.

Therefore, we propose the second baseline algorithm: Single-queue with Deadline-aware

algorithm.

The main purpose of the Single-Queue Deadline-Aware algorithm is to take into consid-,

eration the time constraint of packets in a real-time system. The Single-Queue Deadline-

Aware algorithm at a node checks the deadline of packets when it receives or forwards

packets to the MAC layer and drops them if the deadline has been missed. The pseudocode

of this algorithm is listed in Algorithm 2.

In the previous algorithm, packets whose deadlines have been missed in transit are

still forwarded along to the destination and are only dropped at the destination. Since the

scheduling algorithm is FIFO, these packets would potentially hold up other packets that

have not yet missed their deadlines

3X2 Multiple-Queise Algorithms

The single queue algorithms in the previous section place packets belonging to different

flows in the same queue. In order to assure fairness between the different flows, we in-

troduce two algorithms that maintain a different queue for each flow. The first algorithm

is the Multiple-Queue Deadline-Unaware algorithm, and the second is the Multiple-Queue

Deadline-Aware algorithm. The scheduling model of these two algorithms in each node

is shown in Figure 7. The solution is to use different queues for each flow and to serve

30

Algorithm 2 The Single-Queue Deadline-Aware Algorithm
Upon receiving a packet Pj
if not full(scheduling queue) then

if deadline (Pj) > Current Time then
enqueue(Pj, scheduling queue)

else

drop{Pj)
end if

else

drop(Pj)
end if
Upon receiving a call back from MAC layer
found <— false
while not empty(scheduling queue) and not(found) âx

pkt <— dequeue(scheduling queue) '
Iff deadline [pkt) > Current Time 'diea

found «— true
else

drop [pkt)

if found is true then
Send pkt to MAC layer

end if

31

these flows in a Round-robin fashion. Therefore, the packets will be selected from differ-

ent queues and be sent to MAC layer. The packet in each scheduling queue is scheduled

based on a First in First out (FIFO) policy.

¡Scheduling Queue \

Figure 7: The multiple-queue scheduling model

In the Multiple-Queue Deadline-Unaware algorithm, intermediate nodes do not check

deadlines of packets. The pseudocode of this algorithm is given in Algorithm 3.

Algorithm 3 Multiple-Queue Deadline-Unaware Algorithm

¿

3
4

5

6

7

8
9

10
11

12
13

14
15
16
17

Assume that there is a queue corresponding to every flow
Upon receiving a packet Pj withfiovv id i
If notfull(Qi) them

enqueue(Pj, queueij))
i> insert P¡ into a queue with flow id i

else

drop(Pj)

Upon receiving a call back from MAC layer
while not found do

Qi <— next queue using Round-robin policy
while not ernpty(o¿) and not(found) do

pkt <— dequeue(Qi)
Send pkt to MAC layer
found <— true

end while
end while

32

In the Multiple-Queue Deadline-Aware algorithm, intermediate nodes check the dead-

lines of packets when they receive and send packets. Compared with the previous one, this

algorithm promptly removes a packet whose deadline has already been missed to prevent

the packets that have not missed their deadlines from being held up. The pseudocode of

this algorithm is listed in Algorithm 4.

Algorithm 4 The Multiple-Queue Deadline-Aware Algorithm
1: Assume that there is a queue corresponding to every flow
2: Upon receiving a packet p¡ with flow id i
3: if notfull(Qi) then
4: if deadline (pj) > Current Time then
5: enqueue(pj, queue(i))
6: o insert pj into a queue with flow id i
7: else

drop{pj)
end if

else

drop{pj)

9
10

11

12

13

14

15

16
17

18
19
20
21

22

23
24

25

26

Upon receiving a call back from MAC layer
found <— false
while not found do

Qi «— next queue using Round-robin policy
while not empty(ß,-) and not(found) do

pkt <— dequeue(Qj)
if deadline(pkt) > Current Time

found «— true
else

drop (pkt)
end if

end while
Send pkt to MAC layer

end while

33

3.2 Most Punctual First

In this section, we introduce a new criterion to schedule packets, which takes both the spent

time and the covered distance of the packet into consideration. First, we will introduce a

new parameter called the Measure ofPunctuality (MP).

The Measure of Punctuality of a packet is defined as the difference between the ratio

of the time already spent in transit to the total available time for transit and the ratio of the

number of hops the packet has already traveled to the number of hops from the source to

the destination. We denote p\ as the k!h packet in the traffic flow Q¡, and available time

for transit is denoted by ?. For packet/?^, the ratio of the time already spent in transit to

the total available time for transit is denoted by Tlk, and the ratio of the number of hops the

packet has already traveled to the number of hops between the source and the destination

as H'k. The expressions of Tj. and H), are denoted as follows:

nf _ Time Spent {p\)
A

¦ _ ? ut te uycniyykj

Number of hops covered(p'k)
Total number of hops(p'k)

• _ ¿vn/ftc/c/ uj ,ivyj ^uvc,CLtyFkj

Then the Measure ofPunctuality of packet/?), is given by

MP(p\) = n-Hk (7)

It is not hard to observe that 7]G [0, 1] and H[C. [0, 1]. Referring to the above equation,

34

we can easily find that MP(pk)e [-1,1]. When -1 < MP[p[) < O, the packet p[can

be considered ahead of schedule. When MP(p'k) - 0, packet^ can be considered on time.

Otherwise, MP(p'k) indicates that packet/^ is behind schedule.

We denote SP(plk) as the packet sending priority, which is defined as

SP(p'k) = 1- \ MP(pk) \ (8)

The relationship between SP(p'k) and MP[p'k) is shown in Figure 8.

' Sending Priority

1

/ \
\

\Measure of Punctuality

Figure 8: The relationship between packet sending priority and measure of punctuality

SP(pk) increases in direct proportion to MP(p'k) when — 1 < MP(p'k) < 0. In contrast,

the SP(p'k) decreases in inverse proportion to MP(p'k) when 0 < MP(p\) < 1.

At the decision time T, the head packet within each queue is iteratively inspected. If a

packet p\ has already missed its deadline, it is dropped and MP{p\) will not be calculated

either. The next packet is checked until a packet that has not missed its deadline is found.

After all queues are inspected, the packet with the maximum sending priority among all

queues will be dequeued and sent to the MAC layer. The intuition behind the heuristic is

35

as follows, If a packet is very much ahead of schedule, it can afford to wait and need not be

prioritized. On the other hand, if a packet is very much behind schedule, it will likely be

dropped later, and therefore, should not be prioritized now.

We present a scheduling example of two algorithms, Earliest Deadline First and Most

Punctual First, to compare them. Table 5 illustrates the deadline, hops number, MP, and

Packet D) Hops Ii HJ MP{p)) SP(Pl)
PÌ 0

p\ 0.25 3.25 0

Table 5: Two packets information

SP of two packets ?\ anàp\ from two separate traffic flows ßi and Q2. We assume at time

1 second, both of them have finished one hop and arrived at the same node. The deadline

of p\ is at 3 second, and the deadline of p\ is at 3.25 second. Obviously based on the

Earliest Deadline First algorithm, p\ has a higher priority. However, according to the Most

Punctual First algorithm, SP(p\) is | and SP(pf) is 1. Therefore, p\ has a higher priority.
The pseudocode of Most Punctual First Algorithm is listed in Algorithm 5,

3o3 Earliest Deadline First and Variations

In this section, first we briefly introduce Earliest Deadline First. The scheduling model of

Earliest Deadline First in each node is the same as the Multiple-Queue Deadline-Aware

Algorithm shown in Figure 7. Each traffic flow has a separate queue. We assume each

packet has exactly the same time ? available for transit. That is, for every packet p[, its

deadline D{p\) - ?{?[) + ?. Therefore, a packet generated earlier also has an earlier

36

Algorithm 5 The Most Punctual First Algorithm
Assume that there are k flows . and there is a queue corresponding to every flow
Upon receiving a packet ?¡ with flow id i
Sf notfull(Qi) then

if deadline{p'j) > Current Time then
enqueue{p'j, queue{i))
t> insert p'j into a queue with the same flow id

else

dropipfi
end if

else

drop{plj)
end if
Upon receiving a call back from MAC layer
max ±- 0
for i = Qi to Qk do

found <— false
while not empty(Q¡) and notifound) do

look up the front packet pkt in Q¡
if deadline{pkt) < Current Time then

dropipkt)
else

if max < SP(pkt) then
max <— SP(pkt)
> SP(pkt) is the sending priority of pkt
flowld <r- i

end if
found -f- true

end if
end while

end for
iffound then

pkt <— dequeue(flowid)
Send pkt to MAC layer

end if

37

deadline. The Earliest Deadline First policy can be implemented by using a FIFO queue.

At the decision time T, the head packet within each queue is iteratively inspected. If

the head packet has missed its deadline, it is dropped. The next packet is inspected until a

packet that has not missed its deadline is found. After all queues are inspected, the packet

with the earliest deadline among all queues will be dequeued and sent to the MAC layer.

The pseudocode for Earliest Deadline First is listed in Algorithm 6.

In addition, we can replace multiple FIFO queues with a single priority queue that is

operated based on the deadlines of packets. Table 6 shows the running time performance

of these two data structures. We can observe that it may be more efficient by using multiple

FIFO queues structure.

Data Structure enqueue dequeue
Single Priority Queue 0(log n) O(logn)
multiple FIFO Queues 0(1) O(k)

Table 6: Performance of two data structures, ? is the number of packets in the queue, k is
the number of queues

In [12], Earliest Deadline First was used in a one-hop wireless network, in this thesis,

we apply Earliest Deadline First for a multiple hop wireless sensor network. In the Earli-

est Deadline First algorithm, a packet could be dropped or not depending on its deadline.

However, in a multiple-hop network traveling, a packet could be very close to its deadline,

but still has a long journey to go. Therefore, the overall system could waste its valuable

resources to transit such kind of packets that would be dropped in future. We propose an

algorithm, Earliest Deadline among Punctual Packets, to try to improve real-time perfor-

mance.

38

Algorithm 6 The Earliest Deadline First Algorithm
Assume that there are k flows , and there is a queue corresponding to every flow
Upon receiving a packet ?¡ with flow id i
if not full[Q,) then

?? deadline (pj) > Current Time then
enqueue[p). queue[i))

else

drop[p))
end if

else

drop[p))
end if
Upon receiving a call back from MAC layer
min -f- oc

for i = Qi to Qk do
found «— false
while not empty [Qi) and not(found) do

look up the front packet pkt in Q¡
iî deadline [pkt) < Current Time then

drop [pkt)

if deadline [pkt) <min then
min <— deadline [pkt)
flowld <— i

found ^r- true

end while
end for
itfound then

pkt <r- dequeue[flowid)
Send pkt to MAC layer

end if

39

33.1 Earliest Deadline among Punctual Packets

The main function of the scheduling algorithm is to forward incoming packets. Earliest

Deadline among Punctual Packets is based on the ideas of Earliest Deadline First and Most

Punctual First. In order to avoid wasting limited resources to send a packet that would be

dropped later, Earliest Deadline among Punctual Packets will study the packets" traveling

history by calculating Measure of Punctuality of packet. We define a packet pj to be punc-

tual if I MP(Pj) \< a where a represents a punctuality threshold and will be determined
later. Therefore, this algorithm considers both the packets' deadlines and packets' traveling

history.

The punctuality threshold a may be either a fixed value between 0 and 1 or can be

a random value between 0 and 1. It remains to decide what to do with the packets not

deemed punctual. Observe that packets with a < MP < 1 are behind schedule and are

perhaps unlikely to make it to the destination on time. We simply drop such packets. On

the other hand, packets with -1 < MP < -a are ahead of schedule. This is why we did

not choose them to be forwarded in the current step, but there is no need to drop them.

Such packets simply remain in the queue.

From the definition of MP, we can find that the head packet in each traffic queue has

the highest value of MP in its queue. The reason is the value of Tj of head packet pj is

maximum, and the values of Hj are the same as the subsequent packets in the queue. As

a result, if MP(pj) > Threshold, packet pj will be dropped until a packet with MP(pj) <
Threshold is found. The pseudocode of Earliest Deadline among Punctual Packets is listed

in Algorithm 7.

• 40

Algorithm 7 The Earliest Deadline among Punctual Packets Algorithm
Assume that there are k flows , and there is a queue corresponding to every flow
Upon receiving a packet ?j with flow id i
if notfull(Qj) then

if deadline (pj) > Current Time then
enqueue(p'j, queue(i))

else

drop{p'})
end if

else

drop{p'j)
end if
Upon receiving a call back from MAC layer
min -f- co

for i = Q1 to Qk do
found <— false
while not empty[Q¡) and notifound) do

look up thefront packet pkt in Q¡
if deadline(pkt) < Current Time then

drop (pkt)
else

calculate MP{pkt)
if I MP(pkt) \> a) then

If MP[pkt) > 0 then
drop [pkt)

else
hoid[pkt)

end if
else

if deadlineipkt) <min then
min <— deadlineipkt)
flowld <r- i

found <r- true
end if

end if
end while

end for
iffound then

pkt <— dequeue(flowid)
Send pkt to MAC layer

end if

41

33.2 Earliest Deadline among Degraded Flows

From the viewpoint of the system, it would be desirable to successfully transmit as many

packets as possible over all traffic flows. In Earliest Deadline First, the traffic flow with the

most urgent deadline will obtain the highest priority. As a result, some traffic flows will

have high delivery rate. On the other hand, some traffic flows with lower priorities could

have a large proportion of packets that miss their deadlines or even experience starvation.

This phenomenon will impact on the quality of service of the whole wireless sensor net-

work. Therefore, it is very important to improve the fairness of the whole wireless sensor

network.

For example, in Figure 9 there are three flows going through the node A. We assume

traffic flow F1 has the shortest deadline among these three flows; flow F2 has the interme-

diate deadline, and fiow F3 has the longest deadline. Based on the Earliest Deadline First

criteria, flow F1 will obtain the highest priority to be forwarded. The burst of now F1 will

cause flow F1 to significantly occupy the communication channel so that the packets in

flow F2 and flow F3 have less chance to be transferred.

/ pi

Figure 9: The fairness in multiple-flow wireless sensor network

42

First of all, we introduce a parameter called drop ratio to measure the fairness of the

whole network. We denote the drop ratio of traffic flow Q, as MR[Qi). The expression of

MR[Qi) is defined below:

_ Number of dropped packets[Qj)
Total number of packets[Q¡)

Then, we introduce a threshold value called DropRatioThreshold whose purpose is

to adjust priorities among traffic flows. That is, when the drop ratio of Q¡ exceeds the

dropRatioThreshold, the node will prioritize traffic flows g, based on the drop ratio of Q¡.

Under this circumstance, some traffic flows could temporarily obtain higher priorities even

though they are not urgent. In this algorithm, we create two queues to classify the drop

ratio of different queues. If the MR[Qi) is more than DropRatioThreshold, we will put its

earliest deadline and its flow id into a queue called OverThresholdQueue which contains

all queues whose drop ratios are over threshold. On the other hand, its earliest deadline and

its flow id will be put into a queue called NormalQueue, which contains all queues whose

drop ratios are less than threshold. The queue in OverThresholdQueue has a higher priority

than the queue in NormalQueue. The pseudocode of Earliest Deadline among Degraded

Flows is listed in Algorithm 8.

3.4 Highest Velocity First and Variations

In this section, we discuss our three proposed algorithms: Highest Velocity First, Highest

Velocity among Punctual Packets and Highest Velocity among Degraded Flows.

43

Algorithm 8 Earliest Deadline among Degraded Flows
Assume that there are k flows , and there is a queue corresponding to every flow
Upon receiving a packet ?j with flow id i
if notfiill(Qi) then

if deadline (pj) > Current Time then
enqueue(pi¡, queue(i)) , numOfPkt(Q¡) «— numOfPkt(Q¡) + 1

else
dropip'), numOfPkt(Qi) <- numOfPkt(Qi) + 1
numOfDropped(Qi) <— numOfDropped(Qj) + 1

end if
else

drop(p)),numOfPkt(Qi) <- numOfPkt(Qi) + 1
numOfDropped(Qi) <— numOfDropped(Q¡) + 1

end if
t/pon receiving a call back from MAC layer
mini 4— oo,min2 <— oo
for ? = Qi to Qk do

found ¦<— /a/se
while no? empty(Qj) and not(found) do

/oo& Mp the front packet pkt in Q¡
if deadline{pkt) < Current Time then

drop(pkt), numOfDropped(Qi) -s— numOfDropped(Qj) + 1
else

calculate MR(Q1)
If M/? (ß;) > missingRatioThreshold then

ïîminl > deadline(pkt) then
mini <— deadline(pkt) . flowldl <— ¿

else
iîmin2 > deadline(pkt) then

m¿n2 ¦«— deadline(pkt) , flowId2 <— i

found <r- true
end if

end while
end for
iffound then

if mini! = oo then
pfo <— dequeue (flowldl), Send pkt to MAC layer

else
p&i -f- dequeue(flowId2), Send pkt to MAC layer

end if
end if

44

3.4.1 Highest Velocity First

Recall that Velocity Monotonie Scheduling prioritizes these packets into three levels [34].

Each level has a specific velocity range. We observe that since a queue for a given priority

level is FIFO, packets with a higher velocity in the queue may get stuck behind packets

with lower velocities in the same level. Secondly, the definition of velocity is based on

distance, which is not an accurate measure even if geographic routing is used. Finally, the

definition of velocity range for a priority assumes a certain network area and it is therefore

not flexible.

Based on the above discussion, we propose our new algorithm called Highest Velocity

First. In our algorithm, each traffic flow has a FIFO queue at each intermediate node. Sim-

ilar to dynamic VMS, we define the velocity of packet to be the number of hops remaining

over the remaining time. It is easy to see that the head packet within each queue has the

"largest value of velocity. The algorithm iteratively inspects the head packet for each queue.

If the head packet in the queue has missed its deadline, it will be dropped, and the next

one is checked until a packet whose deadline has not been missed is found. Finally, the

packet with the highest velocity among all the flows will be sent to the MAC layer. The

pseudocode of Highest Velocity First is listed in Algorithm 9.

3.4.2 Highest Velocity among Punctual Packets

This algorithm combines the idea of Highest Velocity First and Most Punctual First. It is

known that Highest Velocity First considers both the remaining time of the packet and the

remaining distance to the destination. Most Punctual First traces back the packet traveling

45

Algorithm 9 Highest Velocity First
Assume that there are k flows , and there is a queue corresponding to every flow
Upon receiving a packet pj with flow id i
if notfiill(Qj) then

if deadlineip'j) > Current Time then
enqueue(p'j,queue{i))
> insert /?j into <2,

else

dropip))
end if

else

dropip))
end if
Upon receiving a call back from MAC layer
max 4- 0
for i = Qx to Qk do

found <— false
while not empty(Qj) and not{found) do

look up the front -¡jacket pkt in ß,-
If deadline (pkt) < Current Time then

drop(pkt)
else

If velocityipkt) > max theo
max 4- velocity{pki)
flowld <- i

found 4- true

end for
iffound then

/7Ä:i 4- dequeueiflowid)
Send pkt to MAC layer

end if

46

history. Therefore, Highest Velocity among Punctual Packets considers both the past and

the future of packet when it is scheduling packets.

This algorithm is similar with Earliest Deadline among Punctual Packets. To begin

with, the algorithm will iteratively inspect each queue. If the packet has missed its dead-

line, it will be dropped and the next packet will be checked until a packet whose deadline

has not been missed is found. Then, the MP value of the packet will be calculated. If

I MPip'j) |< punctuality threshold, packet p) will be scheduled later. The pseudocode of
Highest Velocity among Punctual Packets is listed in Algorithm 10.

3A3 Highest Velocity among Degraded Flows

As with Earliest Deadline First, Highest Velocity First could have a fairness problem as

well. The problem is thai some traffic flows with high priorities have higher successful

delivery rate compared with other traffic flows with low priorities. Therefore, we pro-

pose Highest Velocity among Degraded Flows to improve the fairness. The pseudocode of

Highest Velocity among Degraded Flows is listed in Algorithm 11.

3.5 Summary

In this chapter, we proposed several algorithms for scheduling in multiple-hop wireless

networks. First, we proposed two baseline algorithms, two of which do not take deadlines

of packets into consideration at all, and the other two simply drop packets that have already

missed their deadlines. We introduced the notion of punctuality of a packet and proposed

47

Algorithm 10 Highest Velocity among Punctual Packets
Assume that there are k flows . and there is a queue corresponding to every flow
Upon receiving a packet ?, with flow id i
If not full(Q¡) then

if deadline (pj.) > Current Time then
enqueue(plj, queue(i))
t> insert/?' into a queue with the same flow id

else

dropip))
end if

else

drop(pj)
end if
Upon receiving a call back from MAC layer
max <— 0
for i = Q1 to Qk do

found <- false
while not empty{Qi) and notifound) do

look up the front packet pkt in Q¡
if deadline(pkt) < Current Time then

drop [pkt)

calculate MP(pkt)
K \ MP (pkt) |> « then.

M MP (pkt) > 0 then
drop (pkt)

else

hold(pkt)

if velocityipkt) >max then
max -f- velocityipkt)
flowld <— i

end if
found <r- true

end if
end if

end while
end for
iffound then

pkt <— dequeueiflowid)
Send pkt to MAC layer

end if

48

Algorithm 11 Highest Velocity among Degraded Flows
Assume that there are k flows , and there is a queue corresponding to every flow
Upon receiving a packet p¡ with flow id i
if notfull (Q,·) then

if deadline (pj) > Current Time then
enqueue(p'j, queue(i)) , numOfPkt(Qi) <— numOfPkt(Qi) + 1

else

drop(p)),numOfPkt(Qi) <- numOfPkt(Qi) + 1
numOJDropped(Qi) <— numOfDropped(Qi) + 1

end if
else

drop(p'j), numOfPkt(Qj) «- numOfPkt(Q¡) + 1
numOJDwpped(Qi) <- numOfDropped(Qi) + 1

end if
Upon receiving a call back from MAC layer
maxi <— 0, max2 <— 0
for i = Q\ to Qk do

found «— /a/se
while noi empty(Qi) and not(found) do

/o0& Mp thefront packet pkt in Q¡
if deadline{pkt) < Current Time then

drop(pkt), numOfDropped(Qi) <— numOfDropped(Q¡) + 1
eise

calculate MR(Qi)
WMR(Qi) > missingRatioThreshcld tfoert

If maxi < velocity[pkt) then
maxi <— velocity(pkt) y flovi Idi <— í

if 7H<zx2 < velocityipkt) then
max2 <— velocity(pkt) , flowId2 <— ?

found <— true
end if

end while
end for
iffound then

if maxi! = 0 then
p&i <— dequeue(flowIdl) ,Send pkt to MAC layer

else

P&? <— dequeue (flowId2) ,Send pkt to MAC layer
end if

end if

49

an algorithm that schedules the most punctual packet first. We proposed two variations of

the well-known Earliest Deadline First, one that considers the punctuality of the packet in

addition to its deadline, and another that considers the drop ratio of the packet's flow in

addition to its deadline. We proposed a variation of Velocity Monotonie Scheduling called

Highest Velocity First, and two further variations, one that considers the punctuality of the

packet in addition to its velocity, and another that considers the drop ratio of the packet's

flow in addition to its velocity. We implemented all these eleven algorithms in the NS-2

simulator and compared their performance experimentally. The results of the experiments

are described in Chapter 5.

50

Chapter 4

Design and Implementation

In this chapter, we describe our implementation of the algorithms proposed in Chapter

3. First we will introduce a popular generic network simulator NS-2 (Network Simulator

Version2) [8]. Then, we describe our implementation of algorithms in NS-2. Finally, we

will propose a prioritized IEEE 802.1 ! MAC layer design.

4.1 Simulators for Wireless Sensor Networks

it is well known that simulators are very useful tools to support research in networking.

First, they provide a practical environment that enables a researcher to verify algorithms or

protocols before they are deployed and run on real hardware. In addition, since simulators

provide an ideal experiment environment and many useful analyzing tools, implementing

and analyzing an algorithm or a protocol in simulators are more efficient than in the real

hardware. Another advantage of simulators is that researchers are able to verify algorithms

51

or protocols in a very large number of units, which may not be available in real deployment.

4.1.1 NS-2 Simulator

NS-2 is a popular generic open-source simulator that runs on Linux. It is a discrete event

simulator aimed at networking research [8]. Currently, it is widely used in all kinds of net-

work research areas such as, LAN, Internet and wireless sensor network. It provides many

useful tools such as NAM, trace file and TCL. In addition, many protocols have already

been implemented in this simulator for example, TCP, UDP, many routing algorithms, mul-

ticast protocols and IEEE 802.1 1 DCF. Therefore, we can concentrate on implementing and

studying our scheduling algorithms.

NS-2 is an object-oriented simulator, which is written in C++. In addition, it uses an

object TCL (OTCL) interpreter as a front end [52]. Therefore, there are two languages used

in NS-2, C--+ is used to build all kinds of algorithms and protocols. The TCL script lan-

guage is used to build network scenarios, configure all kinds of parameters of the simulator

and interact with the C++ implemented modules, implemented protocols by researchers

are built into NS-2 and become one of NS-2's modules.

The resulting simulator in a network scenario is an OTCL interpreter which is used to

execute a user-provided TCL script. The simulation results are recorded into a trace file so

that the researchers can use this file to analyze their protocol's performance. Also users can

use NAM which is a Tcl/TK based animation tool to observe network simulation. It pro-

vides network topology layout, packet transmission animation, and various data inspection

tools [I].

52

4.2 Real-time Algorithm Implementation

Before discuss the algorithm implementation, we show Figure 10 that illustrates a mobile

node model in NS-2.

deanx/

jrjrseï

propj.pai:

Figure 10: The schema of mobile node [52]

As illustrated in Figure 10, when a mobile node receives a packet from a physical com-

munication channel, the packet will be sent from MAC module to LL module. In the LL

module, the ARP protocol checks the MAC address of this packet to find its corresponding

IP address. Then this packet is transferred to the upper layer.

When a forwarded packet or a generated packet comes down to LL module from the

upper module, firstly the LL module transfers the packet to the IFq module. The main

53

function of IFq is to schedule packets. In addition, it also provides a buffer for packets.

This buffer in NS-2 is a priority queue, which gives a higher priority to routing packets to

find routing path. After IFq module, a selected packet enters the MAC module, which was

implemented based on 802.1 1 DCF protocol.

In this thesis, we focus on the implementation of IFq module and prioritized MAC mod-

ule. In this section, we mainly discuss the implementation of IFq module. The prioritized

MAC implementation will be discussed in the next section. It is known that IFq module

provides a buffer and a scheduling algorithm. Therefore, one of our main tasks is to im-

plement our proposed algorithms to replace the original IFq algorithm. The architecture of

the NS-2 MAC layer has been changed as shown in Figure 1 1 . In this chart, the real-time

algorithm module is between the LL module and the MAC module. It accepts packets from

the LL module and selects a packet in terms of its scheduling algorithm. Then it transmits

packets to the MAC module. The real-time scheduling module contains the implementa-

tion.

LL Module

co'.vn:arge:_

_______5
Real-time

Scheduling

dowmarfe:_ up:arge:_

I MAC Module I

Figure 1 1 : The architecture of NS-2 MAC layer

54

43 MAC-layer Prioritization Design and Implementation

Prioritizing each packet only in the real-time scheduling module is not sufficient in a wire-

less sensor network. The reason is that packets with different deadlines from different nodes

will share a contention physical radio communication channel. Priorities determined in the

scheduling module can be completely reordered due to contention for the wireless channel.

In order to enhance real-time performance, it is therefore important to retain the priority in

the MAC module. That is, a packet with higher priority should have a higher probability

to grasp the communication channel. A new scheme IEEE 802.1 Ie which defines a new

MAC protocol for quality of service in wireless network had been proposed [36]. Another

scheme AMPA (Adaptive MAC Parameters) dynamically changed IEEE 802.11 MACs

parameters to improve a contention based channel access performance [10].

First of all, we will introduce a priority for each packet in the MAC module. In [34],

a packet is prioritized in three pre-defined ranges. However, one shortcoming of this pri-

oritizing method, is that its scalability is so limited that it only can be used in certain cir-

cumstances. Therefore, we propose a new packet prioritizing method. In our proposal, first

we will calculate each packet's sending priority MP{p\), which we mentioned in chapter 3.

Then we will prioritize packets based on their sending priorities. In Figure 8 the packet

will get higher priority if its sending priority is higher. Plus we observe that the sending

priority SP{p[) is between 0 and 1 . Therefore, it is easier to dynamically adjust the packet's

priority than in RAP [34].

55

Secondly, we implement two extensions which were proposed by Ada and Castelluc-

cia [H]. One is the initial wait time after the channel becomes idle. The other is the

back-off window increase function. Due to both extension, a packet with higher prior-

ity will get a higher chance to access the communication channel. The mapping between

packet sending priority and MAC priority is listed in table 7:

MAC Priority ¡ Sending Priority
1 0.5-1

0.25-0.5

0-0.25

Table 7: The mapping between packet sending priority and MAC priority

The initial wait time (DIFS) is a time interval between the time channel becomes idle

and the time to send a RTS. Therefore, we may adjust packets' priorities by appropriately

setting the DIFS value. The new equation of DIFS is as follows:

DIFS = DIFS ? MAC Priority (10)

The packet with higher priority will have a low value in this equation. Therefore, it will be

sent after a smaller waiting time.

The original back-off window increase function in NS-2 is that

CW = 2 ? CW +1 (H)

CW: contention window size.

From the above equation, the contention window will be doubled when a transmission

56

collision occurs. Our new equation will be changed as:

CW = MAC Priority ? CW + 1 (12)

In this equation, the contention window size of a packet with higher priority (corresponding

to a lower priority in the equation) increases slower than a node with a lower priority.

In summary, in order to improve the real-time performance, we design some modifi-

cations to the original IEEE 802.1 1 DCF. These implementations make a higher priority

packet to have more opportunity to catch a communication channel in a contention based

channel access environment.

4? Seminary

In this chapter, first we indicate why we choose NS-2 as our experiment simulator. Then.

we explain how to implement our proposed algorithms using NS-2. Finally, we develop a

prioritized IEEE 802.1 1 DCF protocol to enhance the real-time performance.

57

Chapter 5

Experiments and Evaluation

In this chapter, we describe our experiments with the eleven algorithms described in Chap-

ter 3. We implemented these algorithms using Network Simulator (NS2 Version 2.33 [8]).

We use two main performance metrics to evaluate the algorithms: the packet drop ratio

and the fairness of the scheduling. A brief discussion of these two metrics follows.

The overall packet drop ratio is the ratio between the total number of packets dropped

and the total number of packets sent. Packets can be dropped due to a variety of reasons.

One main reason for dropping a packet is that it missed its deadline either when it reaches

the destination or at an intermediate node. As shown in Algorithms 6, 5, 8, 9, 11; packets

can be dropped by the scheduling algorithm if they are past their deadline either when they

are enqueued, or when they are dequeued to be sent to the MAC layer. In Earliest Deadline

among Punctual Packets and Highest Velocity among Punctual Packets algorithms, packets

can also be dropped because they are not considered punctual enough, even though they

may not yet have missed their deadline. Secondly, packets may be dropped because of

58

buffer overflow. Finally, packets can be dropped for a variety of reasons at other modules

of NS-2 not implemented by us, such as at the MAC layer and at the Routing layer. Table 8

shows the percentage of drops due to various causes as experienced by the Single-Queue

Deadline-Unaware Algorithm.

Scheduling Algorithm NS-2

Drops Overflow Missed Deadline MAC Drops Routing Drops Unknown

Percentage 9.95% 32 7.Í 0.4% 0.6%

Table 8: The percentage of all drops for the Single-Queue Deadline-Unaware algorithm

Table 9 shows the percentage of drops due to various causes as experienced by Earliest

Deadline First.

Scheduling Algorithm NS-2

Drops Overflow Missed Deadline MAC Drops Routing Drops Unknown

Percentage 0.17% 34.8% 7.2% 0.4% 0.42%

Tabi e 9: The percentage of all drops for Earliest Deadline First

Since we are concerned with the scheduling algorithm in this thesis, apart from the

overall drop ratio, we also evaluate algorithms based on the ratio between packets dropped

by the scheduling algorithms given in Chapter 3 due to their missed deadlines and the

total number of packets sent. We call this ratio the Missed Deadline Drop ratio. For

Earliest-Deadline among Punctual Packets and Highest Velocity among Punctual Packets

we separately count the packets dropped due to their not being punctual; we call this ratio

the Unpunctual Drop ratio.

In addition, we are also interested in the fairness of the algorithms to different flows.

59

We assume all flows have the same priority and produce packets at the same rate. There-

fore, they should have similar drop ratios. We use the well-known Jain's Fairness Index

to evaluate the fairness of each algorithm [26]. We denote the ratio of received packets of

each flow as x¡, and the number of flows as n. The expression of Jain's Fairness Index is

given below:

Fairness— PSr~—0 (^)" x S,=? xi

It is easy to see that the value of the index was between 0 and 1, and a higher value

corresponds to a fairness algorithm. To summarize, we measure the real-time performance

in terms of the following criteria:

1. Overall Packet Drop Ratio: the ratio between the total number of packets that do not

reach their destinations before their deadlines and the total number of packets sent

2. Missed Deadline Drop Ratio: the ratio between the total number of packets dropped

due to a missed deadline at intermediate nodes or at the destinations and the total

number of packets sent

3. Unpunctual Drop Ratio: the ratio between the total number of packets dropped due

to their not being punctual enough either at intermediate nodes or at the destinations

and the total number of packets sent (if relevant)

4. Jain's Fairness Index

In Section 5.1, we focus on the simulation results of the four baseline algorithms to find

the one with the best performance. Then, in Section 5.2, Section 5.3 and Section 5.4, we

60

compare the best baseline algorithm with our real-time algorithms proposed in Chapter 3,

and study these algorithms' real-time performance. All these experiments use the original

IEEE 802.1 1 DCF. Finally, in Section 5.6 we evaluate real-time scheduling algorithms with

the prioritizing IEEE 802.1 1 protocol.

Table 10 shows the simulation parameters we used in this thesis. We randomly deploy

a number of sensor nodes in a rectangle area in different experimental scenarios to simulate

our algorithms. The source and destination of traffic flows (CBR) are randomly selected

as well. We calculate the performance criteria for each scenario. The results described

for overall packet drop ratio are averaged over one hundred scenarios, and the results for

fairness are averaged over ten scenarios.

Transmission Radio Range
Packet Size

Data Rate

Simulation Area

Number of Sensor Nodes

Number of Flows

Simulation Time

Mac Layer Protocol
Routing Layer Protocol

25Om

I28B

1 1 packet/sec
LOOO ? 1000 m™2

60.80.100,120.140
15

500s
/££•£802.11 DCF

AODV

Table 10: Simulation parameters

5.1 Baseline Algorithms

In this section, we describe our experiments on our baseline algorithms to see which algo-

rithm has the best real-time performance. The simulation results are presented in Figure 12

61

and Figure 13.

Figure 12 shows the overall packet drop ratio of the four baseline algorithms for dif-

ferent node densities. In this figure, we can find that the Single-Queue Deadline-Aware

algorithm has the lowest overall packet drop ratio among baseline algorithms, and the

Multiple-Queue Deadline-Unaware algorithm obtains the highest overall packet drop ra-

tio among baseline algorithms.

Single-Queue Oeadline-Huare —S—
Single-Queue Deadline-Unaware —M-
Hultiple-Queue Deadline-Hware —B-

Multiple-Queue Deadline-Unaware —B-
-B-

-2?*

?TT

Munber of Modes
128 146

Figure 12: The overall packet drop ratio for baseline algorithms

Figure 13 shows the missed deadline drop ratio of four baseline algorithms for different

node densities. In this figure, we can see that the Single-Queue Deadline-Aware algorithm

has the lowest missed deadline drop ratio among these four baseline algorithms, and the

62

Multiple-Queue Deadline-Unaware algorithm obtains the highest missed deadline drop ra-

tio. In the Multiple-Queue Deadline-Unaware algorithm and the Single-Queue Deadline-

Unaware algorithm, all incoming packets will be forwarded regardless of whether their

deadlines have already been missed at intermediate nodes. As expected, their Deadline-

Aware counterparts have a lower overall packet drop ratio as well as missed deadline drop

ratio. In addition, we may observe that Single-Queue algorithms have better performance

than Multiple-Queue algorithms. Recall that the Round-robin policy is implemented in

Multiple-Queue algorithms. With the Round-Robin scheduling, a node forwards packets

based on the order instead of the deadline of the packet. Therefore, many urgent packets

can't be sent on time resulting in a high drop ratio. The initial motivation to use Round-

Robin policy is to improve the fairness. However, we can discover that the real-time per-

formance impacts the fairness. Table 1 1 illustrates the fairness of four baseline algorithms.

Clearly, the Single-Queue Deadline-Aware algorithm improves the system performance

compared with other baseline algorithms in terms of both drop ratio and fairness.

Algorithms Single-Queue
Deadline
Aware

Single-Queue
Deadline
Unaware

Multiple-
Queue
Deadline-
Aware

Multiple-
Queue
Deadline-
Unaware

Fairness 0.765 0.625 0.732 0.53

Table 1 1 : Fairness for four baseline algorithms

63

ß„9 -

8.8

.3 ?·7
«?

§¦ ß.6
L·
a
?

.= 8.5
¦?

ra ß.4
¦?
«
w
W

e.2

Single-Queue Deadline-Huare —f—
Single-Queue Deadline-Unaware —H-
Hultiple-Queue Deadline-fluare —E-

Hultiple-Queue Deadline-Unaware —B-

8B 188

Number of Nodes
128

Figure 13: The missed deadline drop ratio for baseline algorithms

64

5.2 Pure Heuristics

In this section, we compare the overall packet drop ratio of the Single-Queue Deadline-

Aware algorithm with Earliest Deadline First, Most Punctual First and Highest Velocity

First. As shown in Figure 14, we can find that Highest Velocity First has the lowest overall

packet drop ratio among these four algorithms. Earliest Deadline First algorithm has a drop

ratio similar to the baseline algorithm. Our two proposed algorithms have lower overall

packet drop ratio than the other two algorithms.

O

no

03
LL

Q.)

Ó

0.5

0.4

0.1
60

Single-Queue De adi ¡ne-Aware —t-
Earliest Deadline First —«-

Most F'unctual First —»-
Highest Velocity First —b-

30 100

Number of Nodes

120 140

Figure 14: The overall packet drop ratio for Single-Queue Deadline-Aware, Earliest Dead-
line First, Most Punctual First and Highest Velocity First

65

In Figure 14, we find that Earliest Deadline First has a drop ratio similar to Single-

Queue Deadline-Aware algorithm. We may observe that as the node density increases, the

number of traffic flows going through one node could decrease. In addition, the packets in

each traffic flow is scheduled in the Single-Queue Deadline-Aware algorithm following the

earliest-deadline-first policy. Therefore, we investigate the performance of these algorithms

for a higher traffic flow density. Figure 15 shows the overall packet drop ratio of Earliest

Deadline First, the Single-Queue Deadline-Aware algorithm, Most Punctuality First and

Highest Velocity First, for scenarios with 50 traffic flows.

8.9

0.8

1

Single-Queue Deadline-Huare i
Earliest Deadline First —H-

Most Punctual First —S-
Highest Velocity First —E-

"B 1P

0.6

0.5
80 108

Kunber of Kodes

128 148

Figure 15: The overall packet drop ratio for Single-Queue Deadline-Aware, Earliest Dead-
line First, Most Punctuality First and Highest Velocity First with 50 traffic flows

66

53 Variations of Earliest Deadline First

In this section, we present the real-time performance of Earliest Deadline First, Most Punc-

tual First, Earliest Deadline among Punctual Packets and Earliest Deadline among degraded

Flows. The last two algorithms use certain thresholds as parameters. We experimentally

determine the best value of these thresholds.

First, we compare the overall packet drop ratio and the unpunctual drop ratio of Earliest

Deadline among Punctual Packets with different punctuality thresholds for different node

density scenarios. Figure 16 shows the experimental results of the overall packet drop ratio

8.5

T. 4

P. B. 3

8.1
68

threshold 8.25 —!—
threshold 8.45 —M—
threshold 8.5 —K—

threshold 8.55
threshold 8.618

randoR

^SífcESS^--«

188

Nunber of Nodes

128 148

Figure 16: The overall drop ratio for Earliest Deadline among Punctual Packets with dif-
ferent punctuality thresholds

67

of this algorithm with different punctuality thresholds. We can observe that the overall

packet drop ratio becomes the lowest when the threshold is 0.45.

O

G6

f

LL

3
Cl

0.4

0.3

u.¿

0.1

threshold 0
threshold 0.45

threshold 0.5 —»
threshold 0.55 -

threshold 0.618
random —<

100

'-!umber of Nodes

140

Figure 17: The unpunctual drop ratio for Earliest Deadline among Punctual Packets with
different punctuality thresholds

Figure 17 indicates the unpunctual drop ratio of Earliest Deadline among Punctual

Packets with different punctuality thresholds in different node density scenarios. Combin-

ing Figure 16 and Figure 17, we -can find that dropping appropriate amount of unpunctual

packets could decrease the overall packet drop ratio. Then, we study the fairness of this

algorithm with different punctuality thresholds. The fairness of each value of threshold is

given in Table 12. We see that using a threshold value of 0.45 also gives a high value of
fairness.

68

Threshold 0.25 0.45 0.5 0.55 0.618 random

Fairness 0.752 0.773 0.781 0.734 0.7338 0.767

Table 12: Fairness for Earliest Deadline among Punctual Packet with different punctuality
threshold

Next, we find the best value of threshold for Earliest Deadline among Degraded Flows.

Recall that we introduce a value called drop ratio Threshold to dynamically adjust the

priority of each traffic flow within intermediate node to prevent the low priority traffic

flow from starvation. Table 13 presents Jain's Fairness Index with different drop ratio

Thresholds of Earliest Deadline among Degraded Flows. In Table 13, when drop ratio

Threshold is set as 0.25 in the algorithm, the system has the best fairness. In addition, we

study the overall packet drop ratio for this algorithm with different drop ratio Thresholds

which is illustrated in Figure 18. It can be observed that the value of threshold does not

significantly affect the overall drop ratio.

I hresholá

Fairness

ij.áCo

0.869 0.876 ! 0.849
0. no threshold

0.778 0.765

Table 13: Fairness for Earliest Deadline among Degraded Flows

Finally, we compare the performance of Earliest Deadline First, Most Punctual First,

Earliest Deadline among Punctual Packets with threshold 0.45 and Earliest Deadline among

Degraded Rows with threshold 0.25. The last two algorithms are using the best values for

their thresholds for overall packet drop ratio. Figure 19 shows the results for different node

densities. We can find that Earliest Deadline among Punctual Packets has the best overall

drop ratio among these four algorithms.

Then, we present the fairness of these four algorithms in Table 14. We can find out that

69

threshold 8.2
threshold 0.25

threshold 8.375
threshold 8.5

ISE

fïURber of iföodes

Figure 18: The overall packet drop ratio for Earliest Deadline among Degraded Flows with
different thresholds

70

8.5
Earliest Deadline First

Most Punctual First
Earliest Deadline anong Degraded Flous with threshold ß.25

Earliest Deadline anong Punctual Packets with threshold 8.45 —B

iae

Niufther of Nodes

Figure 19: The overall packet drop ratio for Earliest Deadline First, Most Punctual First,
Earliest Deadline among Punctual Packets with threshold 0.45, and Earliest Deadline
among Degraded Flows with threshold 0.25

71

Earliest Deadline among Degraded Flows has the best fairness. On the contrary, Earliest

Deadline First has the worst fairness.

Algorithms Earliest Deadline
First

Earliest Deadline
among Degraded
Flows with
threshold 0.25

Most
First

Punctual Earliest Deadline
among Punctual
Packets with
threshold 0.45

Fairness 0.765 0.876 0.772 0.773

Table 14: Fairness for four algorithms

In summary, from the above experimental results, we find that our proposed algorithms

did improve the system real-time performance compared with the original Earliest Deadline

First algorithm. In addition, we find that there is a tradeoff between fairness and overall

packet drop ratio.

5.4 ^%rlatl©ns of Highest Velocity First

in this section, we study the real-time performance of Highest Velocity First, Highest Ve-

locity among Punctual Packets and Highest Velocity among Degraded Flows. The last two

algorithms use certain thresholds as parameters. We experimentally determine the best

values of these thresholds.

First, we compare the overall packet drop ratio and the unpunctual drop ratio of Highest

Velocity among Punctual Packets with different punctuality thresholds for different node

density scenarios. Compared with Highest Velocity First, which only considers the remain-

ing time and remaining distance of packets, Highest Velocity among Punctual Packets con-

siders not only the remaining time and remaining distance of packets but also the packet's

72

travelling history.

g ß. 2

threshold ß.25
threshold ß. 375 —S*—

threshold ß.5 —«
threshold ?. 618

threshold randon

fóuììber of Kodes

148

Figure 20: The overall packet drop ratio for Highest Velocity among Punctual Packets with
different thresholds

Figure 20 illustrates the overall packet drop ratio of this algorithm with different punc-

tuality thresholds. From this figure, we can observe that overall packet drop ratio becomes

the lowest when punctuality threshold is 0.5. Figure 21 indicates the unpunctual drop ratio

of Highest Velocity among Punctual Packets with different punctuality thresholds for dif-

ferent node density scenarios. Then, we study the fairness of this algorithm with different

punctuality thresholds. In Table 15, we find out all values of threshold result in similar

value of fairness. Although a threshold value of 0.5 does not have the best fairness in the

observed set, it is still not too far from the best in terms of fairness.

73

ß„2
threshold B.25

threshold ß. 375 —i
threshold ?. 5 —SK

threshold ?. 618
threshold randon

8.1 h

f'Sysífaer of ^odes

Figure 21: The unpunctual drop ratio for Highest Velocity among Punctual Packets with
different thresholds

Threshold

Fairness

0.25

0.776

0.375

0.788

0.5

0.768

0.618

0.75

random

0.783

Table 15: Fairness for Most Velocity among Punctual Packet with different punctuality
threshold

74

Next, we find the best value of threshold for the Highest Velocity among Degraded

Flows. Table 16 presents Jain's Fairness Index with different drop ratio Thresholds of

Highest Velocity among Degraded Flows. In Table 16, we observe that when the threshold

Threshold 0.05 0.1 0.15 0.2 0.Í no threshold

Fairness 0.836 0.844 0.839 0.821 0.77 0.759

Table 16: Fairness for Highest Velocity among Degraded Flows with difference thresholds

is set as 0.1, this algorithm shows the best fairness. In addition, we study the overall packet

drop ratio for this algorithm with different drop ratio Thresholds, which is illustrated in

Figure 22. We observe that while the overall packet drop ratios are not too different for

different values of threshold, there may be a tradeoff between fairness and overall packet

drop ratio, as the threshold value of 0.1 has the worst overall packet drop ratio. We chose

a threshold value of 0.15 since it has almost the best performance in terms of both overall

packet drop ratio and fairness and therefore provides the best balance.

Next, we compare the overall packet drop ratio of Highest Velocity First, Highest Ve-

locity among Punctual Packets with threshold 0.5 and Highest Velocity among Degraded

Flows with threshold 0.15. We use the best thresholds for the last two algorithms. Fig-

ure 23 shows the results for different node densities. We can see that Highest Velocity

among Punctual Packets has the best overall packet drop ratio among these three algo-

rithms. We also find that Highest Velocity First has the highest overall packet drop ratio.

Then, we present the fairness of these three algorithms in Table 17. We can find that

Highest Velocity among Degraded Flows has the best fairness. On the contrary, Highest

75

e„3

threshold ß. 85 -
threshold B.l

threshold T.15 —¡a—
threshold T.2 —ß
threshold 8.5

108
fSusìber ef Erodes

Figure 22: The overall packet drop ratio for Highest Velocity among Degraded Flows with
different thresholds

76

0.4

8.3

Highest Velocity First -—!—··¦
Highest Velocity anong Punctual Packets uith threshold 0.5 —X—
Highest Velocity anong Degraded Flous uith threshold T.15 —SS—

8T 188

timber of Modes

Figure 23: The overall packet drop ratio for Highest Velocity First. Highest Velocity amom
Punctual Packets, and Highest Velocity among Degraded Flows

77

Velocity First has the worst fairness.

Algorithms

Fairness

Highest Velocity
First

0.759

Highest Velocity
among Punctual
Packets with
threshold 0.5

0.768

Highest Velocity
among Degraded
Flows with
threshold 0. 15

0.839

Table 17: Fairness for three algorithms

5.5 Comparison of Best Algorithms

In the previous section, we demonstrated the performance of the variations of Earliest

Deadline First and variations of Highest Velocity First. In this section, we compare the

overall packet drop ratio of these two sets of algorithms.

Figure 24 presents the overall packet drop ratio of these two sets of algorithms. We may

observe thai Highest Velocity among Punctual Packets First has the lowest overall packet

drop ratio.

Next, we study the fairness of these algorithms. In Table 18, we may observe that

Earliest Deadline among Degraded Flows with threshold 0.25 has the best fairness.

From the above figures and table, we can find that the algorithms based on Highest

Velocity First have lower overall packet drop ratios than these based on Earliest Dead-

line First. The reason is that the latter only consider one dimension, the time. However,

Highest Velocity First consider two dimensions, the time and the distance. We conclude

than Highest Velocity among Punctual Packets achieve the lowest overall packet drop ratio,

while Earliest Deadline among Degraded Flows achieve the best fairness. The best balance

78

8.5

?. A

8.2

Most Punctual First
Earliest Deadline First
Highest Velocity First

Earliest Deadline anong Punctual Packets uith threshold 8.45
Highest Velocity anong Punctual Packets uith threshold 8.5
Earliest Deadline anong Degraded Flous uith threshold 8.25
Highest Velocity anong Degraded Flous uith threshold 8.15

88 108

Nunber of Nodes

148

Figure 24: The overall packet drop ratio for variations of Earliest Deadline First and varia-
tions of Highest Velocity First

Algorithms Highest
Velocity
First

Earliest
Dead-
line
First

Most
Punc-
tual
First

Highest
Velocity
among
Punc-
tual
Packets
with
thresh-
old
0.5

Highest
Velocity
among
De-

graded
Flows
with
thresh-
old
0.15

Earliest
Dead-
line

among
De-
graded
Flows
with
thresh-
old
0.25

Earliest
Dead-
line

among
Punc-
tual
Packets
with
thresh-
old
0.45

Fairness 0.759 0.765 0.772 0.768 0.839 0.876 0.773

Table 18: Fairness for seven algorithms

79

between overall packet drop ratio and fairness is achieved by Highest Velocity among De-

graded Flows.

5.6 Using IEEE 802,11 with prioritizing extension

In order to efficiently improve the real-time performance, it may be helpful to prioritize the

packet in IEEE 802.1 1 protocol. In this section, we will demonstrate the simulation results

of our algorithms with IEEE 802.1 1 with prioritizing extension.

In Figure 25, we demonstrate the overall packet drop ratio of Earliest Deadline First,

Earliest Deadline among Punctual Packets and Earliest Deadline among Punctual Packets

with MAC Prioritizing Extension.

From Figure 25 we can observe that the overall packet drop ratio has been efficiently

decreased after MAC Prioritizing Extension is implemented. Therefore, we may realize

that the MAC layer plays a very important role in reel-time system design.

In Figure 26, we demonstrate the overall packet drop ratio of Highest Velocity First.

Highest Velocity among Punctual Packets and Highest Velocity among Punctual Packets

with MAC Prioritizing Extension. We can observe that Highest Velocity among Punctual

Packets with MAC Extension algorithm has the best performance. It is clear that prioritiz-

ing packets at the MAC layer in addition to the scheduling algorithm can further improve

performance.

80

ß.5 Earliest Deadline First
Earliest Deadline anong Punctual Packets

EJarliest Deadline anong Punctual Packets with Hac Prioritizing Extension

8.2

8.1
6T

ffcmber of Kodes
128

Figure 25: The overall packet drop ratio for EDF, Earliest Deadline among Punctual Pack-
ets and Earliest Deadline among Punctual Packets with MAC prioritizing extension

81

Highest Velocity First
Highest Velocity anong Punctual Packets

Highest Velocity anong Punctual Packets nith Mac Prioritizing Extension

S.4

ae 1T8

Number of Nodes

12E

Figure 26: The overall packet drop ratio for Highest Velocity First, Highest Velocity among
Punctual Packets and Highest Velocity among Punctual Packets with MAC prioritizing
extension

82

5,7 Summary

In this chapter we describe a series of experimental results on eleven scheduling algorithms

by using the NS-2 simulator. Our results show that Highest Velocity among Punctual Pack-

ets achieve the lowest overall packet drop ratio, while Earliest Deadline among Degraded

Flows achieve the best fairness. The best balance between overall packet drop ratio and

fairness is achieved by Highest Velocity among Degraded Flows.

We may observe that the overall packet drop ratio is decreased when the algorithm

considers the punctuality of the packet. In addition, dynamically adjusting the priority of

traffic in terms of their drop ratio can improve the fairness, and does not affect their overall

packet drop ratio too much. We also showed that using a prioritizing extension in the

802.1 1 MAC protocol can further decrease the overall packet drop ratio.

83

Chapter 6

Conclusions and Future Work

In this thesis, we proposed and implemented many real-time scheduling algorithms for

wireless sensor networks. Our algorithms take into account the deadline of packets, then

required velocities, then punctuality, the per-flow drop ratio, or some combinations thereof.

The performance of these algorithms have been extensively evaluated. The experimental

results indicate that our proposed real-time scheduling algorithms can efficiently decrease

the overall packet drop ratio and improve fairness. The improvements in these two per-

formance metrics are very desirable in wireless sensor networks. We implemented our

algorithms in NS-2, which is a widely used open source software. Our results show that

Highest Velocity among Punctual Packets achieve the lowest overall packet drop ratio,
while Earliest Deadline among Degraded Flows achieve the best fairness. The best bal-

ance between overall packet drop ratio and fairness is achieved by Highest Velocity among

Degraded Flows.

84

Many challenges still remain in wireless sensor networks. Intensive research is ongo-

ing in the field of hardware, MAC protocols, real-time scheduling and routing algorithms,

among many others. Adapting our algorithms to work with a mixture of real-time and non-

real-time traffic would be the next step in the research described in this thesis. It would also

be interesting to incorporate position information, such as that used by geometric routing al-

gorithms [22] [18] into our work. In addition, we did not measure our proposed algorithms

on real hardware environment because of limitations on the available time. Conducting this

measurement and comparison is a worthwhile future work.

85

Bibliography

[1] http://en.wikipedia.org/wiki/tinyos.

[2] http://en.wikipedia.org/wiki/wireless_sensor_network.

[3] http://sentilla.com/files/pdf/eol/tmote-sky-brochure.pdf.

[4] http://sentilla.com/files/pdf/eol/tmote-sky-datasheet.pdf.

[5] http://www.cse.iitk.ac.in/users/braman/.

[6] http://www.globalsecurity.org/military/systems/ground/rembass.htm.

[7] http://www.isi.edu/nsnam/nam/.

[8] http://www.isi,edu/nsnarn/ns/.

[9] http://www.sics.se/contiki/about-ccnti.ki .html.

[10] Topic 03: Tinyos and telos. http://www.cse.iitk.ac.in/users/braman/.

[11] I. Aad and C. Castelluccia. Differentiation mechanisms for ieee 802. 1 1 , 2001 .

[12] M. Adamou, S. Khanna, I. Lee, I. Shin, and S. Zhou. Fair real-time traffic scheduling
over a wireless Ian. In In RTSS 01: Proceedings of the 22nd IEEE Real-Time Systems
Symposium (RTSSOl, page 279. IEEE Computer Society, 2001.

[13] K. Akkaya, M. Younis, and M. Youssef. Efficient aggregation of delay-constrained
data in wireless sensor networks. In AlCCSA '05: Proceedings of the ACS/IEEE
2005 International Conference on Computer Systems and Applications, pages 904-
909, Washington, DC, USA, 2005. IEEE Computer Society.

86

[14] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor net-
works: a survey. Computer Networks, 3 8(4): 393-422, 2002.

[15] G. A. Awater and F. C. Schoute. Performance improvement of fast packet switching
by Idoli queueing. In IEEE INFOCOM '92: Proceedings of the eleventh annual
joint conference of the IEEE computer and communications societies on One world
through communications (Vol. 2), pages 562-568, Los Alamitos, CA, USA, 1992.
IEEE Computer Society Press.

[16] J.J. Bae and T. Suda. Survey of traffic control schemes and protocols in atm networks.
In Proceedings of the em IEEE, volume 79, pages 170-189, 1991 .

[17] H. Baldus, K. Klabunde, and G. Musch. Reliable set-up of medical body-sensor
networks. In EWSN, pages 353-363, 2004.

[18] P. Bose, P. Morin, I. Stojmenovi, and J. Urrutia. Routing with guaranteed delivery in
ad hoc wireless networks. In Wireless Networks, pages 48-55, 2001 .

[19] G. Buttazzo and J. A. Stankovic. Adding robustness in dynamic preemptive schedul-
ing. In Responsive Computer Systems: Steps Toward Fault-Tolerant Real-Time Sys-
tems. Kluwer Academic Publishers, 1995.

[20] R. Chipalkatti, J. F. Kurose, and D. Towsley. Scheduling policies for real-time and
nonreal-time traffic in a statistical multiplexer. In In Proceeding. IEEE INFOCOM
'89, pages 774-783, 1989..

[21] E. Corrige and G. Buttazzo. Hard real-time computing systems: Predictable schedul-
ing algorithms and applications. 2001 .

[22] G. G. Finn. Routing and addressing problems in large metropolitan-scale internet-
works. In Technical Report ISI/RR-87-180. University of Southern California, 1987.

[23] C. F. Garcla-hernndez, P. H. Ibargengoytia-gonzlez, J. Garcia-hernndez, and J. A.
Prez-diaz. Wireless sensor networks and applications: a survey, 2007.

[24] C. Gui and P. Mohapatra. Power conservation and quality of surveillance in target
tracking sensor networks. In MobiCom '04: Proceedings of the 10th annual interna-
tional conference on Mobile computing and networking, pages 129-143, New York,
NY, USA, 2004. ACM.

87

[25] J.L.Hill. System Architecture for Wireless Sensor Networks. PhD thesis, University
of California, Berkley, Spring 2003.

[26] R. Jain, A. Dürresi, and G. Babic. Throughput fairness index: An explanation, in
ATM Forum/99-0045, 1999.

[27] J.Y.T.Leung and J. Whitehead. Scheduling algorithms for multiprogramming in a
hard-real-time environment, 1973.

[28] B. Karp. Challenges in geographic routing: Sparse networks, obstacles, and traffic
provisioning. In the DlMACS Workshop on Pervasive Networking, 2001 .

[29] K. Kubota, M.Murata, H.Miyahara, and Y. Oie. Congestion control for burstry video
traffic in atm networks. In Electronics and Communications in Japan, volume 75,
pages 13-19, 1992.

[30] H. Li, P. Shenoy, and K. Ramamritham. Scheduling communication in real-time sen-
sor applications. Real-Time and Embedded Technology and Applications Symposium,
IEEE, 0:10, 2004.

[31] C. Liu and J. Kaiser. A survey and mobile ad and hoc routing protocols, 2003.

[32] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard-real-
time environment, 1973.

[33] K. Lorincz, M. Welsh, O. Marcillo, J. Johnson, M. Ruiz, and J. Lees. Deploying a
wireless sensor network on an active volcano. In IEEE Internet Computing, pages
18-25,2006.

[34] C. Lu, B. M. Blum, T. F. Abdelzaher, J. A. Stankovic, and T. He. Rap: A real-time
communication architecture for large-scale wireless sensor networks. 2002.

[35] A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler. Wireless sensor networks
for habitat monitoring, pages 88-97, 2002.

[36] S. Mangold, S. Choi, P. May, O. Klein, G. Hiertz, L. Stibor, C. poll Contention, and
F. Poll. Ieee 802.1 Ie wireless Ian for quality of service, 2002.

[37] K. Martinez and R. Ong. Glacsweb: a sensor network for hostile environments. In
IEEE SECON, pages 81-87, 2004.

88

[38] C. Mbarushimana and A. Shahrabi. Comparative study of reactive and proactive
routing protocols performance in mobile ad hoc networks. Advanced Information
Networking and Applications Workshops, International Conference on, 2:679-684,
2007.

[39] W. M. Meriall, F. Newberg, K. Sohrabi, W. Kaiser, and G. Pottie. Collaborative
networking requirements for unattended ground sensor systems. In In Proc. IEEE
Aerospace Conference, 2003.

[40] H. Nagabuchi, A.Takahashi, and N. Kitawaki. Speech quality degraded by cell loss
in atm networks. In NTT Review, 1992.

[41] B. O'Hara and A. Petrick. 802.11 Handbook - a Designer's Companion. IEEE press,
1999.

[42] C. Perkins and E. Royer. Ad-hoc on-demand distance vector routing. In In Pro-
ceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications,
pages 90-100, 1997.

[43] F. J. Pierce and T. V. Elliott. Regional and on-farm wireless sensor networks for
agricultural systems in eastern Washington. Comput. Electron. Agrie, 6i(l):32-^13,
2008.

[44] K. Ramamritbam and J. A. Stankovic. Dynamic task scheduling in hard real-iime
distributed systems. IEEE Softw., l(3):65-75, 1984.

[45] P. Samundiswary, P. Priyadarshini, and P. Dananjayan. Performance evaluation of
heterogeneous sensor networks. Future Computer and Communication, International
Conference on, 0:264-267, 2009.

[46] S.Kawaguchi, M.Tsujikado, Y.Ueda, and K. Hosoda. Quality controlled variable rate
coding based on constant error criterion. In In Proceedings of Visicom '90: Third
International Workshop on Packet Video, 1990.

[47] G. Sklyarenko. Aodv routing protocol. Technical report, Institute of Informatics,
Freie Universy.

89

[48] J. A. Stankovic, C. Lu, L. Sha, T. Abdelzaher, and J. Hou. Real-time communication
and coordination in embedded sensor networks. In Proceedings of the IEEE, pages,
1002-1022, 2003.

[49] J. Tavares, F. J. Velez, and J. M. Ferro. Application of wireless sensor networks to
automobiles. Measurement Science Review, 2008.

[50] D. Tian and N. D. Georganas. Location and calculation-free node-scheduling schemes
in large wireless sensor networks. In Ad Hoc Networks, pages 65-85, 2004.

[51] N. S. M. Usop, A. Abdullah, and A. F. A. Abidin. Performance evaluation of aodv.
dsdv & dsr routing protocol in grid environment. In IJCSNS International Journal of
Computer Science and Network Security, 2009.

[52] K. Varadhan and K. Fall. The ns manual, 2009.

[53] C. Wang, B. Li, K. Sohraby, M. Daneshmand, and Y. Hu. Upstream congestion
control in wireless sensor networks through cross-layer optimization. IEEE Journal
on Selected Areas in Communications, 25(4):786-795, 2007.

[54] W. Ye and J. Heidemann. Medium access control in wireless sensor networks. Ir
USC/ISI Technical Report ISI-TR-580, 2003 .

[55] J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network survey. Comput.
Netw., 52(12):2292-2330, 2008.

90

