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ABSTRACT

Reliable Pattern Recognition System with Novel Semi-Supervised
Learning Approach

Chun Lei He, Ph.D.
Concordia University, 2010

Over the past decade, there has been considerable progress in the design of

statistical machine learning strategies, including Semi-Supervised Learning (SSL)

approaches. However, researchers still have difficulties in applying most of these

learning strategies when two or more classes overlap, and/or when each class has a

bimodal/multimodal distribution.

In this thesis, an efficient, robust, and reliable recognition system with a novel

SSL scheme has been developed to overcome overlapping problems between two

classes and bimodal distribution within each class. This system was based on the

nature of category learning and recognition to enhance the system's performance in

relevant applications. In the training procedure, besides the supervised learning

strategy, the unsupervised learning approach was applied to retrieve the "extra

information" that could not be obtained from the images themselves. This approach

was very helpful for the classification between two confusing classes. In this SSL

scheme, both the training data and the test data were utilized in the final classification.

In this thesis, the design of a promising supervised learning model with advanced

state-of-the-art technologies is firstly presented, and a novel rejection measurement

for verification of rejected samples, namely Linear Discriminant Analysis
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Measurement (LDAM), is defined. Experiments on CENPARMTs Hindu-Arabic

Handwritten Numeral Database, CENPARMI's Numerals Database, and NISTs

Numerals Database were conducted in order to evaluate the efficiency of LDAM.

Moreover, multiple verification modules, including a Writing Style Verification

(WSV) module, have been developed according to four newly defined error

categories. The error categorization was based on the different costs of

misclassification. The WSV module has been developed by the unsupervised learning

approach to automatically retrieve the person's writing styles so that the rejected

samples can be classified and verified accordingly.

As a result, errors on CENPARMTs Hindu-Arabic Handwritten Numeral

Database (24,784 training samples, 6,199 testing samples) were reduced drastically

from 397 to 59, and the final recognition rate of this HAHNR reached 99.05%, a

significantly higher rate compared to other experiments on the same database. When

the rejection option was applied on this database, the recognition rate, error rate, and

reliability were 97.89%, 0.63%), and 99.28%, respectively.
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Chapter 1
Introduction

In this chapter, the motivation, objectives, and structure of this thesis are introduced.

Section 1.1 includes the motivation, which is based on the concepts of human

category learning, human cognition and recognition, and challenges in computer

applications. In Section 1.2, the objectives are discussed, and the outline is described

in Section 1.3.

1.1 Motivation

Pattern recognition, which is "the act of taking in raw data and taking an action

based on the category of the data" [35], is an innate ability of animals. It has been

studied in many fields, including Psychology [62] and Ethology [97].

While Artificial Intelligence (AI) achieved its greatest successes in the 1990's

and early 21st century, pattern recognition/machine learning in Computer Science [35,

12, 20, 53] arose as a field of interest to researchers. These researchers endeavored to

design and develop the algorithms that allow computers to simulate human beings by
?



recognizing (classifying) patterns based either on a priori knowledge or on statistical

information extracted from the patterns.

Due to the successes of these researchers, many applications of pattern

recognition systems and techniques are available, and they cover a broad scope of

fields, such as Engineering, Agriculture, Biology, Economics, Medicine, and so forth.

It is even applied back to studies in Psychology/Cognitive Science and Ethology.

Even within one field of study, many applications can be used to various

subjects. For example, in Computer Science & Engineering, applications can include

the following topics: handwriting recognition, speech recognition, face recognition,

computer vision, natural language processing, syntactic pattern recognition,

classification of text into several categories (e.g. spam/non-spam email messages),

search engines, object recognition in computer vision, etc.

In the. last decade, researchers have aimed to train machines to automatically

learn complex patterns and to make intelligent decisions by themselves. They have

attempted to understand human learning that may lead to new machine learning

algorithms. However, the algorithms built so far have not been able to match (or in

certain cases even get close to) human performance because our machines cannot

completely simulate human learning and human recognition. Thus, studies in pattern

recognition, machine learning, and data mining are still very challenging in the

following aspects:

• It is difficult to collect representative data;

• It is difficult to find information and knowledge regarding the

2



relationships among data;

• It is difficult to represent data, information, and knowledge;

• It is difficult to design models with perfect classification and

discrimination. Because training sets are finite and the future is uncertain,

learning theory usually does not yield absolute guarantees of the

performance of algorithms.

Therefore, exploration on the concepts of human category learning and human

recognition is vital and necessary since simulating human learning may improve

machine learning and recognition. Thus, in our research, we will discuss human

learning and human recognition in the following sub-sections.

1.1.1 Human Category Learning

Learning is defined as acquiring new knowledge, behaviors, skills, values,

preferences or understanding, and may involve synthesizing different types of

information. The ability to learn is possessed by humans, animals and some machines

[49].

Since machine learning is somehow similar to infants* learning, we start our

study from the concept of their category learning. Infants display complex

categorization abilities. Performance in any given task might reflect prior learning or

within-task learning, or both. The extent to which either form of learning is deployed

can be determined by the task context [65].
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Accordingly, matching to the research in Machine Learning, learning from prior

knowledge is called supervised learning, while within-task learning is called

unsupervised learning, and learning from both is called semi-supervised learning

(SSL). In Machine Learning, supervised learning generates a function that maps

inputs to the desired outputs. For example, in a classification problem, the learner

approximates a function by mapping a vector into classes and by looking at the

input-output examples of the function. Unsupervised learning models a set of inputs

such as clustering [30]. Since the 1960s, SSL was introduced with the concept of

"self-learning" [84]. SSL combines both labeled and unlabeled samples to generate an

appropriate function or classifier.

It is not difficult to understand supervised learning and unsupervised learning in

human category learning, so we describe only one human experiment called infant

word-object fast mapping, such that infants perform semi-supervised learning in some

situations.

In cognitive psychology, fast mapping is a mental process whereby a new

concept can be learned (or a new hypothesis formed) based on only a single exposure

to a given unit of information. Fast mapping is particularly important during language

acquisition in young children, and serves (at least in part) to explain the prodigious

rate at which children gain vocabulary. The phenomenon was first formally observed,

and the term fast mapping coined, by Harvard researchers Susan Carey and Elsa

Bartlett in 1978. They found that when children hear a new word only once, they have

already developed some hypotheses about what that new word means [16].

4



The process of fast-mapping is described as follows:

Subject: baby, 20 months old

A baby is presented with 4 objects, consisting of three familiar objects, and one

novel object

Familiar objects: a ball, a cup, a watch

Unfamiliar object: a pair of scissors

The baby can indicate the ball when the experimenter asks for a ball. When the

experimenter asks for a "zib" (a makeup word), the baby is capable of pointing to the

pair of scissors (Figure 1).

<

Figure 1. Four objects in a fast mapping experiment

The result indicates that infants can recognize that different words refer to

different kinds of things, and objects only have a single label. Therefore, new words

can be used to label the unlabeled objects. Infants assume that a new word cannot be a

synonym for any of the words they already know. This is similar to the learning

method of cluster-then-label. Infants cluster known and unknown objects, and then

match the unheard-of label to the unknown object. Thus, humans perform

semi-supervised learning in some situations.

It is difficult to know which of the three methods is most suitable for Machine

Learning (Supervised Learning, Unsupervised Learning, or Semi-Supervised
5



Learning). Learning should be task-orientated, as mentioned in [65]. Once supervised

learning or unsupervised learning cannot perform with satisfactory results,

semi-supervised learning should be taken into consideration. However, problems such

as which part of the data should be applied with supervised learning or unsupervised

learning, and how to combine these two methods in the learning procedure are major

issues in machine learning.

1.1.2 Human Cognition and Recognition

A simple personal story may reveal or reflect how humans recognize patterns. I

once opened Google's website together with my son, a two-year old boy. He started to

read the "Google" logo as: "9, 1, 8, 0, 0, ..." and stopped. When he read these letters,

he had no prior knowledge about alphabets, and he only knew ten numerals from 0 to

9. It seems that he read the logo from right to left (easy-to-difficult), and he refused to

read the Capital "G" because the Capital "G" did not look similar to any numerals.

Obviously, he matched the letters to similar numerals and rejected the one without

enough confidence (Figure 2).

Goode ?o Q9
^8J Canada ^J

(a) Google's logo (b) Simulation of Google's logo with numerals

Figure 2. An example of word-numeral mapping with rejection
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There is no doubt that rejection should be part of problem-solving strategies. In

addition, object information itself sometimes may not be enough for human

recognition, and task constraints should be considered at the same time. These

arguments have been proven in the field of psychology [2].

In psychology, some researchers have classified human problem-solving

strategies as error-preventing (no response is chosen until one can be selected with a

relatively high confidence) and error-correcting (a tentative solution is formulated

immediately, subject to revision in the light of the subsequent evidence) [76]. These

strategies match the definitions of high reliability and high recognition rate in the

fields of Pattern Recognition and Machine Learning. These definitions will be

provided later in this chapter.

On the other hand, in cognitive psychology, P. G. Schyns found that the

recognition performance can be formulated as an interaction of task constraints and

object information [83]. K. J. Malmberg [64] also mentioned that strong constraints

are valuable because they expose the limitations of the models and inspire researchers

to organize the models themselves.

In summary, we should find a good error-correcting "behavior" in order to

facilitate our Machine Learning procedure, which includes rejection and

error-correction strategies in the training procedure in order to prevent and correct

errors.



1.1.3 Challenges in Computer Applications

By understanding the learning behaviors discussed in the previous sections, we

can design related applications. Optical Character Recognition (OCR) is one of the

most successful applications in pattern recognition, and it has been under

investigation since the mid- 1 950' s. In handwriting recognition, the OCR systems deal

with digital images as inputs. Offline handwritten character recognition in languages

such as English, Chinese, and Japanese has been researched extensively for over thirty

years. However, Arabic handwriting recognition is a relatively new area of research,

even though Arabic is one of the most widely used languages in the world [78].

Hindu-Arabic numerals have difficulties for recognition, even for human beings.

In Figure 3, we show five samples from each of the 10 classes of Hindu-Arabic

numerals from the Centre for Pattern Recognition and Machine Intelligence

(CENPARMI) database [4]. For this figure, the class of the numeral is shown in the

first column; its Hindu-Arabic printed form is shown in the second, followed by five

examples of its handwritten form in the third column. These written samples are

shown in the same vertical positions as they appear in the text lines of the database.
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Labels Print Samples Labels Print Samples

e o o
o

1 1 \ x ! I 1 ? ? ?

C CVY V
N/ N VJ

vj

< < < r t ? A .\ K
K

?

<L l_ V ^ ^ "? °? °\ '?.

Figure 3. Samples from CENPARMI Hindu-Arabic Isolated Numerals Database

In the current study, machines have most statistical learning difficulties or

standard SSL difficulties when two or more classes have overlapping problems. In

addition, most statistical machine learning or standard SSLs rely on another

assumption that there is only one cluster in each class. However, in Hindu-Arabic

Handwritten Numeral Recognition (HAHNR), the numerals two and three can look

similar when written in almost the same form, as shown by some real samples in

Figure 4. This similarity may account for the confusion of numerals and the lower

performances when compared with handwritten numeral recognition in general [4].

Thus, we choose HAHNR as our focus for this thesis.

Handwritten Arabic Digits C^ N^
Printed Arabic Digits ¥ V
Equivalent Digits 2 2

? r
3 3

(a) (b) (c) (d)

Figure 4. Samples of Handwritten Hindu-Arabic numerals "2" and "3"

In fact, although people from different cultures may share the same language,



they may have different habits in writing or different writing styles. For example,

Palestinians may write the numeral 2 in Hindu-Arabic as (b) in Figure 4, but they

never write the numeral 3 in Hindu-Arabic as (c) in Figure 4. On the contrary,

Saudi-Arabians may write the numeral 3 as (c) in Figure 4, which is almost the same

shape as (b).

Thus, this spatial factor is reflected in some databases, such as CENPARMI' s

HAHWR database. Actually, researchers have studied spatial data mining since the

1990's [48]. It is the process of discovering interesting and previously unknown, but

potentially useful patterns from large spatial dataseis. It is difficult to extract

interesting and useful patterns from spatial dataseis due to the complexity of spatial

data types, spatial relationships, and spatial autocorrelation [88].

Therefore, writing styles that share the same spatial properties should be

co-occurrence patterns, and they should belong to one cluster. Based on

co-occurrence patterns, information can be retrieved. If two writers have the same

writing style, their writings of numeral 2 and 3 should be linked by a path of high

density (or a function), and then their outputs are likely to be close to each other and

can be classified to the same class [25].

Hence, in addition to object information itself, the context information or writer's

spatial information should be helpful for recognition. Accordingly, context

information retrieval should be considered to disambiguate the confusing shapes

between two overlapping classes. Accordingly, we should design an effective learning

procedure to solve the problems in classification, such as overlapping in two or more

10



classes and/or the distribution within a class is not unimodal [100]. In statistics, a

unimodal probability distribution (or when referring to the distribution, a unimodal

distribution) is a probability distribution which has a single mode.. In this study, we

apply the unsupervised learning method to solve overlapping problems and retrieve

the information that cannot be done with supervised learning, and to classify samples

in the rejection class.

1.2 Objective

In document recognition applications, it is very important to achieve high levels

of accuracy as well as high reliability because even a low percentage of recognition

errors can have serious consequences. For example, while OCR algorithms have

resulted in recognition rates in excess of 99% on the numeral databases of MNIST

[57, 108] and CENPARMI [60], the resulting low error rates can be extremely costly

in applications such as the processing of financial documents. For these applications,

errors should be reduced as much as possible, and it is preferable to reject some

classification results in order to achieve a very high reliability while maintaining a

high recognition rate as defined by:

Number of correctly classified samplesRecognition rate = - — ? 100%1 otal number of test samples

Number of rejected samplesRejection rate - — ? 100%
/ otal number of test samples



„ ,. , .,. Recognition rateReliability = —— , — ? 100%100% - Rejection rate

Our objectives are to design an efficient and robust recognition system to help us

better understand the nature of learning and to solve these real-life/industrial

problems.

Firstly, a rejection process needs to be designed such that it can be adapted to

different recognition algorithms as well as dataseis. As mentioned before, in human

cognition, rejection is apart of problem-solving strategies. Similarly, rejection during

recognition should be considered in machine learning. The reject option can be very

useful in preventing excessive misclassifications in applications that require high

classification reliability [37]. Rejected patterns must be manually handled or fed to a

more accurate and more costly classifier. It is thus necessary to find a trade-off

between rejection and misclassification rates. Moreover, before discussing the

development of a system to reduce errors and achieve a high reliability, we should

also study misclassified data and find ways of preventing their occurrences.

Therefore, we will analyze and categorize errors in the training procedure so that we

can understand the reasons for the errors and so that we can design target-oriented

verifiers in testing.

The research goals of this thesis are twofold: theory and application. The

theoretical part is focused on the following aspects: research on a novel

semi-supervised learning scheme, a promising supervised learning system with

advanced state-of-the-art technologies, an effective rejection measurement, and

verifications based on error categorization and writing style retrieval. The applications
12



use algorithms that are based on the proposed theories, to be implemented in the OCR

system. The details of these goals are described below.

• Theoretical issues:

1. Propose a novel Semi-Supervised Support Vector Machine (S3VM) with a

rejection option to improve the global performance.

2. Discover a promising supervised learning system with advanced

state-of-the-art technologies.

3. Research an effective rejection measurement.

4. Analyze the rejections and categorize the errors.

5. Verify the rejected patterns based on error categorization and based on

writing style retrieval by unsupervised learning.

• Algorithm issues:

1. To implement a supervised learning system with advanced state-of-the-art

technologies.

2. To implement a rejection measurement with Linear Discriminant Analysis

principles.

3. To implement different pair-wise verifiers based on different error categories.

4. To implement unsupervised learning on the test set in order to retrieve the

writers' writing styles.

5. To implement a Semi-Supervised Support Vector Machine with a rejection

class in order to pursue the highest recognition rate with a lowest error rate.

In S3VM, we propose to apply unsupervised learning to retrieve some extra

13



information as a form of to compensation to the classification result from the

supervised learning procedure. Traditionally, researchers have applied the

unsupervised learning method on the test data to help re-locate the boundary between

a pair of classes. However, in this thesis, we apply the unsupervised learning method

to retrieve the writers' Writing Styles, so that the rejected data in the test set can be

re-classified according to their writing styles. This method of retrieval cannot be

achieved with supervised learning in the training procedure. This approach can also

be adapted for other pattern recognition contexts to distinguish between classes of

highly similar patterns.

1.3 Outline of the Thesis

In this thesis, we focus on a domain-specific problem by designing

semi-supervised learning algorithms with a rejection option using large data sets. We

apply the supervised learning method to classify the samples with a rejection option.

We verify the results with the unsupervised learning method and other strategies in

order to retrieve the information that cannot be done with supervised learning. This

thesis is organized into eight chapters, described below.

• In Chapter 2, we review the studies on different related topics, including

general Semi-Supervised Learning modules, handwritten Hindu-Arabic

numeral recognition systems, rejection measurements, error

categorization, handwritten numeral verification, and recognition with

writing Adaptation/writing style adaptive information. In addition, we
14



point out the difficulty of applying the existing Semi-Supervised Learning

methodologies for handwritten Hindu-Arabic numeral recognition

systems.

• In Chapter 3, we introduce the theory of the standard Support Vector

Machine (SVM), SVM with a rejection option (RO-SVM), and

Semi-supervised SVM with a rejection option (R0-S3VM). Moreover,

the framework of this thesis is illustrated.

• In Chapter 4, we propose a standard recognition system with supervised

learning. We apply some state-of-the-art technologies for the recognition.

Although the key technologies such as pre-processing, feature extraction,

and the design of classifiers are all existing methods, satisfactory

recognition results were achieved when we used this standard recognition

system in this thesis. Moreover, the state-of-the-art performances on

several databases are described.

• In Chapter 5, we define a novel rejection measurement called LDA

Measurement (LDAM). This LDAM is designed to take into

consideration the confidence values of the classifier outputs and the

relations between those values. We compare LDAM to the rejection

measurements of First Rank Measurement (FRM) and First Two Ranks

Measurement (FTRM), and then we describe the experiments and

compare the results obtained from using these three measurements, with

outputs that can represent distances or probabilities from different
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classifiers. The results show that the use of LDAM is more optimal than

FRM and FTRM in producing reliable recognition results.

• In Chapter 6, we categorize errors and design target-oriented strategies

for verification. We firstly analyze errors from the Training Set and

divide those errors into four categories and figure out the corresponding

strategies for verification. The experiments and error analysis after

verification are described as well.

• In Chapter 7, we propose the Writing Style Verification (WSV) method

based on applying the unsupervised learning method on the test set. We

define a Confusing Pair (CP) of clusters and a Writing Style (WS), and

devise a methodology to automatically detect a CP and WS with

unsupervised learning. The experiments and error analysis based on

writing style verification are also described.

• Finally, we summarize this thesis in Chapter 8 with some concluding

remarks.
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Chapter 2
Literature Review

In this chapter, we review the general Semi-Supervised Learning modules,

handwritten Hindu-Arabic numeral recognition systems, rejection measurements,

error categorization, handwritten numeral verification, and recognition with writer

adaptive/writing style adaptive information, respectively. In addition, we describe the

problems encountered by the existing Semi-Supervised Learning methodologies in

handwritten Hindu-Arabic numeral recognition systems.

2.1 Semi-Supervised Learning (SSL)
In the literature, a number of learning strategies have been proposed for various

underlying classifiers and applications. In this section, we review SSL strategies and

analyze the difficulties in recognizing Hindu-Arabic numerals with the existing SSL

models. Finally, we redefine SSL in a more general and broader way.

Semi-supervised learning is a learning method that falls between unsupervised

learning (without any labeled training data) and supervised learning (with completely

labeled training data). It is a machine learning technique that makes use of both
17



labeled and unlabeled data for making predictions. Semi-supervised learning attempts

to take advantage of this state by using the available labeled data as known examples

of mappings while still looking at the unlabeled data to learn even more. In general,

unlabeled data can help to adjust (optimize) the boundary determined by both labeled

and unlabeled data.

Mostly, researchers have used unlabeled data in conjunction with a small amount

of labeled data to produce considerable improvements in learning accuracy. Since the

cost associated with the labeling process is too high, and the acquisition of unlabeled

data is relatively inexpensive, semi-supervised learning has a great practical value.

Here is an example of how unlabeled data can help classification: assuming each class

is a coherent group (e.g. Gaussian), the decision boundary will shift to a solid line

(Figure 5) [1 1 1] once the unlabeled data involve in classification.

f0 labeled dati
------- decision boundary (labeled)

O unlabeled data
decision boundary (labeled and unlabeled!

O©^

?

\.J^iMM>AJJ OO O (S)^GQOBO O
-? t? 1 ?

Figure 5. Different decision boundaries with and without unlabeled data

Since the 1960s, Semi-Supervised Learning (SSL) started with the concept of

"self-learning" [84]. Self-training has been applied to several natural language

processing tasks. Yarowsky uses self-training for word sense disambiguation, e.g.



deciding whether the word 'plant' means a living organism or a factory in a given

context [107]. Riloff et al. uses self-training to identify subjective nouns [77].

Maeireizo et al. classify dialogues as 'emotional' or 'non-emotional' with a procedure

involving two classifiers [63].

The model assumption plays an important role in semi-supervised learning. It

makes up for the lack of labeled data, and can determine the quality of the predictor.

In general, there are several existing SSL models involving to different assumptions.

For instance, there is a generative model which is a probabilistic model with two

Gaussian distributions learned with Expectation Maximization (EM) [17]; a

semi-supervised support vector machine which assumes that the decision boundary

should not pass through dense unlabeled data regions [103]; and a graph-based model,

with a typical way to generate the graph, such that any two instances in the labeled

and unlabeled data are connected by an edge [51]. The model assumption is that

instances connected with large-weight edges tend to have the same label.

We provide an example with different assumptions on an overlapping problem

[111]: consider a classification task where there are two classes, each with a Gaussian

distribution. The two Gaussian distributions heavily overlap (top panel of Figure 6).

The true decision boundary lies in the middle of the two distributions, shown as a

dotted line. Samples (instances) in five Training sets (Training set 1 to Training set 5)

in Figure 6 are randomly drawn from the two overlapping classes.
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Figure 6. Decision boundaries learned by several algorithms for two overlapping
classes [111]

For supervised learning, the learned decision boundary is in the middle of the two

labeled instances, and the unlabeled instances are ignored. In Figure 6, the thick solid

line in Training set 1 is the decision boundary with supervised learning, which is

located away from the true decision boundary because the two labeled instances are

randomly sampled. If we were to draw two other labeled instances, the learned

decision boundary would change, but most likely would still be located incorrectly

(see Training set 2 to Training set 5 of Figure 6). On average, the expected learned

decision boundary will coincide with the true boundary, but for any given drawing of
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labeled data, it will be off quite a bit. We can say that the learned boundary has a high

variance.

To evaluate supervised learning, and the semi-supervised learning methods

introduced before, we examined 100 training samples, each with one labeled and 99

unlabeled instances per class. Now without presenting the details, we show the

learned decision boundaries of three semi-supervised learning models for the training

data.

The first one is a probabilistic generative model, shown in Figure 6 as dashed

lines. In this case, the boundaries tend to be closer to the true boundary and similar to

one another, i.e., this algorithm has a low variance. The second model is an S3VM,

which assumes that the decision boundary should not pass through dense unlabeled

data regions. However, since the two classes strongly overlap, the true decision

boundary actually passes through the densest region. The learned decision boundaries

are shown in Figure 6 as dash-dotted lines. The third approach is a graph-based

model, with a typical way to generate the graph such that any two instances in the

labeled and unlabeled data are connected by an edge. The edge weight is large if the

two instances are close to each other and small if they are far apart. However, in this

particular example, where the two classes overlap, instances from different classes

can be quite close and connected by large-weight edges. The results produced by this

model are shown in Figure 6 as thin solid lines.

In this example, although the generative model and S3VM are more accurate and

more stable than the supervised model, the error rates on the 100-trial average test
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samples for these algorithms is still around 30%. Thus, on overlapping problems,

neither the standard supervised algorithms nor SSLs can yield optimal solutions in

classification. If and only if we retrieve extra information rather than focusing only on

object image information, overlapping problems may be solved, and confusing

samples can be distinguished. However, overlapping problems often occur in

challenging applications, such as handwriting. Incorporating the diversity of writing

styles into a single model leads to over-generalization, therefore it is useful to study a

new model to retrieve the writers' writing styles.

In addition, there is another assumption in SSL that there is only one cluster in

each class. However, in handwriting, writers may write with different writing styles,

and it is possible to have more than one cluster in each class. When algorithms are

presented with samples of writing by a single writer to be analyzed (for example, for

recognition), the model is not as efficient in terms of accuracy as a model trained

specifically to that writer's style. If training is not performed according to the writer's

style, the performance will not be ideal [8]. Since the learning takes place

concurrently with the ultimate desired task (e.g. recognition), modifications to the

standard approaches need to be made.

Fortunately, we can apply supervised learning to modeling and then use

unsupervised learning for the retrieval of the extra information, such as writing styles,

etc., and to verify the results of supervised learning. We should make the right

assumptions in semi-supervised learning rather than directly applying any existing

models.
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Therefore, we redefine SSL with a more general definition. Unlabeled data

should not only be used for modeling but also for retrieving extra information that

cannot be obtained from the labeled data. This learning procedure with both modeling

of the labeled data and extra information obtained/retrieved from the unlabeled data is

called Semi-supervised Learning.

2.2 Hindu-Arabic Handwritten Numeral Recognition
(HAHNR) & Verification

In this section, we review the Arabic Databases in the literature. Offline

handwritten character recognition in languages such as English, Chinese, and

Japanese has been researched extensively for over thirty years. However, Arabic

handwriting recognition is a relatively new area of research, even though Arabic is

one of the most widely used languages in the world [78]. There are a few databases

consisting of Arabic handwriting. For instance, the IFN/ENIT databases [73],

developed in 2002, consist of 26,549 images of Tunisian town/village names written

by 41 1 writers. Another database is the AHDB database [6], which contains words

frequently used in legal amounts on Arabic checks, together with some other

frequently used Arabic words. At the Centre for Pattern Recognition and Machine

Intelligence (CENPARMI), a number of Arabic Script databases have been

developed. Al-Ohali et al. developed an Arabic check database for research on the

recognition of Arabic handwritten checks in 2000 [3]. The data includes Arabic legal

amounts and Arabic sub-words presented in checks. Solimanpour et al. designed a
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Farsi database consisting of Farsi isolateci digits, numeral strings, letters, legal

amounts, and dates [89]. Recently, Alamri et al. developed the CENPARMI Arabic

database, which contains isolated Hindu-Arabic numerals, numeral strings, Arabic

isolated letters, and Arabic words [4]. This database was compiled by including the

samples from many writers of different genders, ages, educational levels and

nationalities, with both left-handed and right-handed writers. The experiments

reported in this thesis were conducted on the isolated numerals from this database.

In order to achieve a high level of accuracy, researchers have explored different

methodologies in different stages of pattern recognition. For example, in the

pre-processing stage, normalization, filtering, segmentation, and thinning, etc., are

commonly adopted so that image qualities are enhanced. In feature extraction,

multi-features, such as those based on zones, directions, and structures, etc., are

commonly used, combined or selected in order to reduce the dimension of the data

while extracting or maintaining the relevant information. For the purpose of satisfying

the requirement of high reliability, the classifiers must perform with minimal errors,

or eventually be free from errors. In classification, the methods of supervised

learning, unsupervised learning, and even semi-supervised learning have been

commonly applied.

The verification of confusing handwritten numeral pairs is a challenging task

because the confusing character pairs look quite alike in terms of the features used in

classification or in terms of their shapes. There are four types of verifiers according to

the number of classes. Let O. denote the working space of a verifier, and let |O|
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denote the dimension of the space. The four verifiers are:

• |O| = n: General verifier, working on all classes in the problem.

• 0 < |O| < n: Cluster verifier, with verification of clustered categories,

e.g. (Is it a "2", "3", or "4"?).

• |O| = 2: Pair-wise verifier, with verification between two categories, e.g.

(Is it a "2" or "3"?).

• |O| = 1: Class-specific verifier, working on one candidate class, e.g. (Is it

a "2"?).

Due to the error analysis in the training set for HAHNR, we found that most

errors occurred between a pair of classes. Thus, we designed verifiers between pairs

of classes, for example, classes "2" v.s. "3" and classes "0" v.s. "1".

2.3 Rejection Measurement

In the literature, a number of rejection strategies have been proposed for various

underlying classifiers and applications. In this section, we review the state-of-the-art

rejection strategies that have been implemented by various offline handwriting

recognition systems, including strategies that make use of different levels of classifier

outputs.

2.3.1 Outputs from Classifiers

Generally speaking, classification algorithms supply outputs at three levels [40]:

1) The abstract level: a classifier e outputs a likely unique label/classy; or in
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some extensions, e outputs a subset J c ? , where ? is the set of all classes.

2) The rank level: e ranks all the labels in ? (or a subset/ cA) according to

the likelihoods that the input sample ? has those labels.

3) The measurement level: e attributes to each label in ? a measurement value.

This measurement can be a probability that ? has that label, or the distance of ?

from the class having that label.

Among the three levels, the measurement level provides the most information,

and the abstract level provides the least amount of information since both ranks and

measurements are provided in measurement level. From the measurement attributed

to each label, we could rank all the labels in ? ^ in ascending or descending order. By

choosing the label at the top rank, or by directly choosing the label with the maximal

or minimal value at the measurement level, we can assign a unique label to x. In other

words, from the measurement level to the abstract level, there is an information

reduction or abstraction process. On the other hand, when classification provides only

abstract level outputs, it is difficult to design a rejection strategy.

In this thesis, both support vector classifiers, HeroSVM [28] and LibSVM [18],

provide the measurement level outputs.

In HeroSVM, the outputs represent the distances between the input vector and

the margins of each class. HeroSVM1 is a fast and high-performance SVM software

package that introduces a parallel optimization step to quickly remove most of the

nonsupport vectors, and that applies an effective integration of kernel caching and

1 Available at: http:/Avww.cenpanni.concordia.ca/~idonR/HeroSvm.html.
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kernel matrix computation for classification. The strategy applied in multi-class

problems is to consider one class against all the others [HO]. Taking the training

samples with one label as one class and all others as the other class, the procedure is

reduced to a two-class problem. For k classes of data (k>2), k SVM classifiers are

formed and denoted by SVM,, /=7,2, ...k. For the test sample x,

dj{x) = W1. -x + b. can be obtained by using SVM,, where d¡ is the decision

function for class i, W1 is a normal vector, perpendicular to the hyperplane that

separates class i from all the other classes, and the parameter O1 is the distance from

the origin to the hyperplane along the normal vector W1. The test sample ? is

considered to belong to theyth class wheredy(x) = max¿=lj2 k d¿(x)-

Unlike HeroSVM, the classification outputs of LibSVM represent probabilities.

LibSVM is an implementation of SVM which applies a one-against-one (or

pairwise) strategy in multi-class problems. With the pairwise approach, k1 support

vector machines are trained for a &-class problem. Given k classes of data and any test

sample x, the goal is to estimate p¡ (the probability that ? belongs to class i), which is

obtained from r(j (i, j=l,2, ...k). rtj is a one-against-one class probability obtained

from the known training data by solving the following optimization problem:
k

m™ tS S ('>/>/ -'^)2
k (i)

subject to ^ Pi = 1, Pi ^ 0,V/,
1 = 1

where p¡ = p(y = i | x), for class label y of ?, and r¡f ~ p(y = i\y = i orj,x) .

Available at: http://www.csie.ntu.edu.tw/~cilin/libsvm
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2.3.2 Rejection Strategies for Offline Handwriting Recognition

A recognition rule can be considered optimum if for a given recognition rate, it

minimizes the error rate (error probability) and places the testing candidates into a

reject category when their identities cannot be established with a high confidence

[22]. When a feature vector has the highest conditional probability for the correct

class and low conditional probabilities in all other classes, it should be accepted;

otherwise it should be rejected. Rejections can be applied in single classifiers as well

as Multiple Classifier Systems (MCSs) [43] in order to increase the reliability of the

recognition results. Various researchers who developed handwriting recognition

systems for offline handwritten numerals [19, 108], characters [74], words [54], and

text lines [11], as well as check processing [39] and address reading systems [14]

have explored rejection methodologies in their implementations.

Achieving both high recognition and high reliability requires methods capable of

assigning generally higher confidences to correct recognition results rather than to

incorrect ones. This confidence scoring method may consist of implementing a simple

function with appropriate parameters drawn directly from the recognition process, or

it may be a learning task in which a classifier is trained to use an array of parameters

to distinguish correct recognitions from misclassifications [74].

In general, the recognizer estimates posterior probabilities for the various classes,

so it is possible to make optimal (Bayesian) decisions by comparing the probabilities

of samples to a threshold (so that probabilities below the threshold will result in
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rejections). Generally, rejection strategies can be divided into two categories: absolute

and relative rejections.

In absolute rejections, only the top choice among the outputs (called FRM in this

thesis) is used as a criterion for rejection. This strategy has been implemented in

handwritten numeral recognition [19] and in character recognition [74]. In the latter

work, a variety of scoring functions were evaluated and explored, including the "raw"

recognition score, and a sample was assigned to the class with the highest score,

provided that this score was large enough.

In relative rejections, the relationship between various confidence measurements

is taken into consideration. Examples of such relationships include the likelihood ratio

(ratio of the highest and second-highest confidence values) and the estimated

posterior probability (ratio of the highest confidence value to the sum of all

confidence values) [74]. Other examples include class-dependent and

hypothesis-dependent thresholds, since they consider the average of certain

confidence measurements or the difference between the top two confidence values, as

applied to word recognition in [54]. The distance between the first and second

choices is used as a rejection criterion in handwritten numeral recognition [19] and in

a German address reading system [14]. This is called First Two Ranks Measurement

or FTRM in this thesis.

Rejections have been applied to recognition systems with a single classifier or

multiple classifiers. In [19], a rejection strategy for convolutional neural network

models is proposed. In [39, 74], all confidence measures are used as inputs to a
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Multi-Layer Perceptron to finalize the result of recognition. Hidden Markov Models

(HMMs) have been used in error-rejection of a word recognition system [11, 14, 54].

In Dong et al., rejection with the FRM is used for a Support Vector Machine (SVM)

[28].

In MCSs, cooperation is placed in a sequential (as opposed to a parallel)

architecture [40]. With this topology, classifiers can be applied in succession, with

each classifier producing a reduced set of possible classes for each pattern, so that the

individual classifiers or experts can become increasingly the main focus [56]. In

handwritten numeral recognition, Zhang et al. implemented the rejection in a cascade

ensemble classifier system, which is a sequential combination of multiple classifier

ensembles [108]. Rejections from one layer of classification are applied as input to the

next layer's classifier. The relationship of the error, rejection, and recognition rates of

each Multi-Layer Perceptron classifier is analyzed with the use of Bayesian

probability theory. In [36], after linearly combining four types of classifiers with a

posteriori probabilities estimation, the absolute rejection strategy with FRM is

applied.

In this thesis, we design and implement a method that applies Linear

Discriminant Analysis (LDA) [32] to the measurement level outputs of a classifier, in

order to determine an optimal threshold for the rejection option. LDA is a supervised

classification method, widely used to find an optimal linear combination of features

for separating two or more classes. The main idea of LDA is to project

high-dimensional data onto a line and perform classification in this one-dimensional
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space. LDA provides a linear projection of the data with the outcome of maximum

between-class variance and minimum within-class variance. Since this discriminative

method can find the feature space that can best discriminate an object from others,

LDA has been successfully used in pattern classification applications including

Chinese character recognition [38], face recognition [10, 96], image retrieval [95],

tracking [59], and marketing [ 26].

2.4 Error Categorization

In Plato's Timaeus [7], Plato stated the principle of causality in 1888: "everything

that becomes or changes must do so owing to some cause; for nothing can come to be

without a cause." Accordingly, errors should happen with certain causes that may help

to prevent the errors from happening in the future. Thus, error analysis in the training

procedure should help in avoiding or reducing errors in testing.

In fact, errors should not be treated equally, but conditionally. In standard

learning algorithms [37], most researchers assume a constant error cost for all errors,

and only the accuracy and error rates are considered. Accordingly, the classifiers

usually try to minimize the number of errors they will make in dealing with new data.

Such a setting is valid only when the costs of different errors are equal. Unfortunately,

in many real-world applications, the costs of different errors are often unequal. For

example, in a medical diagnosis, the cost of erroneously diagnosing a patient to be

healthy may be much higher than that of mistakenly diagnosing a healthy person as

being sick, because the former kind of error is more likely to result in the loss of a
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life. Accordingly, most costs of errors are conditional. Thus, errors should be

categorized, and we must be able to deal with some missing information in

classification.

Although some researchers have given the definitions of error categories [99],

they may have had some difficulties to obviously match all misclassification errors

into a certain error category based on this categorization. For example, Turney

defined taxonomy of the costs in Inductive Concept Learning (ICL) [31, 98] and

defined four error categories due to the different costs of misclassification errors:

I) Error cost conditional on time of classification,

II) Error cost conditional on individual case,

III) Error cost conditional on feature value,

IV) Error cost conditional on classification of other cases.

However, in offline handwriting recognition, since the time property of samples

is not recorded, the Error category I should be re-defined or its correlation to the

application should be found.

In addition, even if errors can be categorized correctly, strategies to reduce these

errors based on their categories should be studied and designed. For instance, in

offline handwriting numeral recognition, Suen et al. summarized misclassification

errors into three categories [94]: errors with confusing natures, errors that humans

have difficulty in identifying, and errors that are easily recognized by humans.

However, it is difficult to identify the errors which cannot be recognized by human

beings. Strategies regarding different error categories should be designed and should
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have the ability to be transplanted into different applications so that the cost of

instability in a learning system can be reduced.

In this thesis, we categorize all the errors from a standard recognition system

based on different costs of misclassification errors, and verify the recognition results

with different strategies for different error categories. Because most samples can be

classified correctly, it is redundant to verify all the recognition results. Instead,

rejection based on classification should be applied, and verification should be done

only on the rejected samples. Since there are difficulties in Hindu-Arabic Handwritten

Numeral Recognition (HAHNR) of some samples, even for human beings, we

propose to categorize errors in an HAHNR system, and design corresponding

strategies to reduce errors in different categories.

2.5 Recognition with Writing Adaptation/Writing Style
Adaptation Information

Ambiguous shapes that result in confusing pairs of handwritten characters often

cause irreducible errors in the recognition process. In handwriting recognition, some

researchers have applied different strategies to distinguish between confusing pairs.

For example, Zhang et al. designed a method based on multi-modal discriminant

analysis in order to reduce the feature dimensionality and to verify the recognition

result of handwritten numerals within confusing pairs [108], while Rahman et al. [75]

applied combinations of multiple experts to the confusing pairs. However, these

methodologies could not solve the problems in HAHNR effectively due to the
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overlapping of shapes between classes 2 and 3. More information (besides shapes)
should have been extracted so that samples in these two classes could be classified

correctly.

In fact, some researchers have applied the writer's personal information/writing

information in handwriting recognition both in the context of online recognition [23,
50, 92] and offline recognition [29, 67, 104].

Online handwriting recognition can use writer adaptation to create personalized

systems by implementing supervised learning. Researchers were able to use a small

amount of personalized training data to reduce the error rate in their systems.

Hand-held devices, for example, can go through a training process to better recognize

a writer's handwriting. As mentioned in [93], "for the users who will make extended

use of such a system the gain in productivity due to increased accuracy will offset the

initial inconvenience of training." Senior and Nathan [85] were able to use a much

smaller set of training words (as few as five) in order to reduce the error rate. Connell

and Jain identified character styles (lexemes) of individual writers, and specialized the

lexeme model to match the writer's training data in order to deal with limited training
data [23]. More recently, Huang et al. utilized a writer-dependent system in online

handwriting recognition with Incremental Linear Discriminant Analysis (ILDA) in

[50], while Vuori clustered writing styles in an online model for over 700 objects with

a self-organizing map [105].

On the other hand, offline handwriting recognition models can also be adapted as

their independent models with relatively few words. For example, Vinciarelli and
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Bengio noted that they were able to adapt a writer-independent system with 30 words

[104]. Nosary et al. used the recognition output from their system as training data,

using batch adaptation as the recognition progressed [67]. In batch adaptation, the

system's recognition output is stored and used at a later stage. In [29], a writer

adaptive training method is proposed with a character-dependent Hidden Markov

Model (HMM) in offline Arabic word recognition, so that writers' writings can be

learned in training and utilized in testing.

Therefore, if we can retrieve writers' writing styles in our offline handwriting

recognition system, then the system's performance should be enhanced, and the

writing styles should be helpful to disambiguate the confusing shapes between two

overlapping classes.
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Chapter 3

Theory & Framework

In this chapter, we introduce the theories of standard Support Vector Machine (SVM),

SVM with Rejection Option (RO-SVM), and Semi-Supervised SVM with Rejection

Option (RO-S3VM). Moreover, the framework of this thesis is illustrated.

In Section 3.1.1, we try to keep the presentation of SVM in a self-contained way

to ensure that this information can be easily understood for the interested readers who

may not work directly in the machine learning and pattern recognition domain.

Concepts for SVM such as margin and dual representation are introduced first,

followed by the explanation of a soft margin classifier to handle non-separable cases

in the original space. Afterwards, nonlinear SVM is introduced, which applies a

kernel to enhance the separable capability while keeping the computational efficiency.

Then, we explain the generation theory of SVM. After that, theories of SVM with

Rejection Option (RO-SVM) and Semi-Supervised SVM with Rejection Option

(R0-S3VM) are introduced as extensions of SVM's theory (in Section 3.1.2). In this

R0-S3VM, the margins for the generative models are the same as the ones in

RO-SVM, and the unsupervised learning detects only the extra information for final
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classification results. Thus, it was not necessary to introduce RO-S3VM in theory

again. Finally, the framework of this thesis including in both training and testing

procedures is described in Section 3.2.

3.1 Theory of Semi-Supervised SVM with Rejection Option
(S3VM-RO)

This section gives a brief introduction to Support Vector Machines (SVMs) and

provides readers with a basic background for SVM with Rejection Option (RO-SVM)

and Semi-Supervised SVM with Rejection Option (RO- S3VM), which are both

described in Sections 3.1.2 and 3.1.3, respectively. Readers who have a good

background in SVM can skip Section 3.1.2 and go to the next one.

3.1.1 Support Vector Machines (SVMs)

Suppose we are given a dot product space K, and a set of pattern vectors

X1, ... ,Xi EK. Any hyperplane in JC can be represented as:

{xG W\{w,x) + b = 0},w €H,b e Rd.

where w is a vector orthogonal to the hyperplane. The hyperplane splits the input

space IR into two half spaces which correspond to the inputs of two classes. Figure 7

illustrates a hyperplane for separating the data set into two classes.
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Figure 7. A hyperplane for separating the data set into two classes

Accordingly, we provide the definitions of a linearly separable data set and a

canonical hyperplane:

Definition 3.1. (Linearly separable data set) [9] Given that training samples

{(xt,yt)}eX X Y, where XQRd, Y = {-1, 1} and i = 1 1. The data is linearly

separable if a hyperplane exists such that y¿((w,x) + b) > 0.

Definition 3.2. (Canonical hyperplane) [82] The pair (w, b) is called a canonical

form of the hyperplane with respect to X1, X2, ... , X1, if it is scaled such that:

mint=1 i\(w,xt) + b\ = \, (2)

which indicates that the points closest to the hyperplane have a distance of l/||w||.

Now, we need to find the optimal hyperplane with the maximal margin. The

problem can be formulated as a linearly constrained quadratic programming problem
as follows:

minw>fc ||| w\\2 subject to yt((w, X1) + b) > 1, i = 1, ... , I. (3)

This is a convex quadratic programming problem since the objective function is

convex and these points which satisfy the linear constraints define a convex set. By
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introducing positive Lagrange multipliers aui = 1, ...,I, one for each of the

inequality constraints, we define the Lagrangian function as follows:

LP(w, b, a) = \ IMI2 - IU afoidw, X1) + b) - 1] (4)
In linear programming, the primary problem and the dual problem are

complementary. A solution to either one determines a solution to both, so we can

solve the equivalent dual problem [33] with the following formula: Maximize LP

subject to the constraints such that the gradients of LP with respect to w and b

vanish, and subject to the constraints such that a¡ > 0:

If = »· TO
Ci1 > 0. (7)

From Eqs.(4) and (5), we have

w = Z¿=iy¿a¿x¿, (8)

S|=? «¿y¿ = 0. (9)
We substitute the equality constraints in Eqs. (5) and (6) into Eq. (4), to give the dual

formulation together with the constraints of a¿:

maximize LD( a) = £,· at - ^Zij a^ yiyj{xitXj) (10)
subject to a¡ > 0,

?

2j Wi = °-
1 = 1

After solving a¿ in the dual problem, the decision function can be written as:

fix) = sgn((w, x) + b)

= sgn(Zli=o a¿y¡ (??> ?) + b), (11)
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where

sgn(u) = {\ ÌfthU>° . (12)l— 1 otherwise

It can be observed in the dual problem (10) and in the decision function (11) that

training vectors X1 only occur in the form of a dot product.

When data cannot be perfectly separated due to noises and outliers, slack

variables are introduced to allow the margin inequality constraints [24] in the primal
problem (4) to be violated:

subject to YiHw1Xi) + b) >1 - ?0 i = I1 ...,/, (13)
^ > (U = I /.

When an error occurs, fc is greater than 1. Then, S? ?? can be regarded as the

upper bound of training errors. It is expected to maximize the margin and minimize

the training errors. The primal problem (4) can be re-defined as:

minwMi||w||2+ ?S??? (14)
subject to yt({w, X1) + b) > 1 - ?0 i = 1, ...,/,

fc>0,i = l,...,Z.

This is still a convex quadratic programming problem and the positive parameter

C is chosen by the user. A large C represents a higher penalty to the training errors.

The corresponding Lagrangian of (14) is:

LP(w,b^,a,ß) = -IMI2 + c£fc
i

-ZUiailytdw.Xi) + b)- 1 + ??\-S\=?ß??? (15)
with «i > 0 and /?,·>(). The Karush-Kuhn-Tucker (KKT) optimality conditions
[55] are given by:
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dLp ?-,; _
— = w-E¿=i ViViXi = O, (16)
dLp
Wi = C-ai-ßi = 0,Vi (17)

ff = -lU«¿y¡ = o, (is)
y¿«w,xí> + o)-l + ^>o,Ví (19)

a¿[y¿((w,x¿) + o)-l + ^] = 0,Vt (20)

ß??? = 0,?? (21)

«¿>0,Vi (22)

ßi>0,Vi (23)

&>0.Vi (24)

where Eqs. (20) and (21) are called KKT "complementary" conditions. Substitute

Eqs. (16), (17), and (18) into Eq. (15) and obtain the dual objective function:

LD(a) = S? CCi - \S?,} aw ytyjiXi.Xj) (25)
which is the same as that in the maximal margin case. The difference is that from the

constraint (17), we obtain a£· < C since /?¿ > 0. Therefore, the dual formulation in

the soft margin case is given by:

maximize LD(a) =Ziai-\lijaiajyiyj(xi,Xj), (26)
subject to 0 < ai < C, i = 1, ...,I,

?

Sa???
i=i

The decision function in Eq. (11) is a linear function of the data. Its limitation

motivates researchers to generalize to the nonlinear case. It can be observed that the

data is the gaining problem in Eq. (26) and the decision function in Eq. (1 1) is in the

form of a dot product. A nonlinear function F is introduced to map the data to a high
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dimensional inner product space ? by [13]:

F: Rd -» ?.

The mapping F is implemented by a kernel function K that satisfies Mercer's

conditions [66], such that K{xì,Xj) = F(?;) · F(?/·). The kernel trick is that we

never need to explicitly represent the nonlinear mapping F and then just replace

(X1, Xj) by K{xit Xj) in the training algorithm.

In the design of an SVM training algorithm, we expect to find a hyperplane with

a large margin to separate the data. Intuitively, the hyperplane with a large margin has

a good generalization performance. It is necessary to know why the margin plays a

crucial role in SVM from a technical viewpoint. Let us start to explain it by means of

Vapnik's statistical learning theory [103].

The Structural Risk Minimization (SRM) principle was derived from a result of

statistical learning theory, consisting in the definition of an upper bound for the

expected risk of a given classifier. For a &-class problem, decision functions

fix, a) take on exactly c values, corresponding to the k class labels.

Let data Oi,yi), ...,(x¡,y¡) EXxY, be generated and i.i.d. (independently

drawn and identically distributed) from a cumulative probability distribution P(x,y),

where XER^ and Y= {I, -1}. The learning function is to find one function from a

set of functions f(x,a):X -> {1,-1} such that the expected misclassification error

on the test set, also drawn from P(x, y), is minimal:

«(a) = ?\\??.a)- y\dP{x,y) (27)
We use the 0/1 (indicator) loss function [102]:
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, r \ (°, if fix, a) = y,L(x, y, a) = ) ! ') ' ÍJ' (28)(.1, if f{x, a) F y, K J
Then

Ria) = l\l(x,y,a)dP(x,y) (29)
Eq. (27) is called the expected risk (or actual risk). But since P(x,y) is usually

unknown, the corresponding empirical risk, /U„(a), is an approximation of R (a ),

constructed on the basis of the given training samples (? ? , y ? ), ... , ( ? (, y ? ), defined

by:

Rempia) = 7ZÍ=i£(x¿.yt,a). (30)
The Remp(a) is called "empirical risk". The empirical risk can be connected

with the expected risk by a probability bound [102]. That is, for any f(x,a) and

/ > h, with a probability of at least 1—?,

^n , . \h(log^+ l)-log (^)?(a) < flemp(a) + I l 9h / g^ (31)
holds, where h is a non-negative integer called the Vapnik Chervonenkis (VC)

dimension, and / is a measure of the capacity of the function class fix, a). The

second term in Eq. (31) is called the "confidence (capacity) term", which is an

increasing function of h for the fixed ?.

In summary, an SVM constructs a hyperplane or a set of hyperplanes, which

have the largest distance and lowest generation error to the nearest training data points

of any class, in a high or infinite dimensional space. SVM can be used for

classification, regression or other tasks. The linear SVM can be extended with a soft

margin to tolerate a certain error rate in the training procedure. In addition, by

applying the kernel trick to maximum-margin hyperplanes, the SVMs become
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nonlinear classifiers.

3.1.2 S3VM with Rejection Option (RO-S3VM)

In this study, we propose a Semi-Supervised SVM with Rejection Option

(RO-S3VM), that minimizes both the misclassification error and the function

capacity based on all the available data and information.

Since we do not change the generative model in SVM with a Rejection Option

(RO-SVM), LP and LD in R0-S3VM are identical to as the ones in RO-SVM. Thus,

let us start to introduce RO-S3VM from the theory of RO-SVM. The reject option is

very useful to safeguard against excessive misclassifications in pattern recognition

applications that require high classification reliability. In the framework of the

minimum risk theory, Chow defined the optimal classification rule with a reject

option [21]. In the simplest case where the classification costs do not depend on the

classes, Chow's rule consists of rejecting a pattern if its maximum a posteriori

probability is lower than a given threshold [22]. The optimality of this rule relies on

the exact knowledge of the a posteriori probabilities. However, in practical

applications, the a posteriori probabilities are usually unknown [37]. In Chapter 5,

details about rejection measurement are discussed, and a new rejection measurement,

so-called Linear Discriminant Analysis Measurement (LDAM), is defined and applied

in this case.

Moreover, as pointed out by Fumera et al. in [37], the rejection region must be

determined during the training phase in order to obey the Structural Risk
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Minimization (SRM) principle, in which SVMs are based. Thus, we will discuss

classification with a rejection class in the framework of the SRM principle as an

extension of the SVM classifier in this section.

Consider now the problem of classification with a rejection option. For a yt-class

problem, decision functions f(x,a) now take on k +1 values such that c of them

correspond to the c class labels, while the (£+l)st one corresponds to the rejected

class. Moreover, loss functions take on at least three values: correct classification,

misclassification, and rejection.

The SVM classification technique was originally derived by applying the SRM

principle to a two-class problem as mentioned earlier. The technique uses a classifier

that implements linear decision functions in Eq. (11) and the 0/1 (indicator) loss

function in Eq. (28). The simplest generalization of linear decision functions in Eq.

(1 1) to classification with a rejection option is that functions are defined by means of

pairs of parallel hyperplanes, so that the rejection region is the space delimited by

such hyperplanes. Formally, let us denote a pair of parallel hyperplanes as:

w-x + b±e = 0,e>0 . (32)

The corresponding decision function is then defined as follows:

/1C^a) = +1, ifw-x + b>e, (33)

/a(?,a) = -1, if w- ? + b< -e,

/1Cx, a) = 0, if-s<w-x + b<E,

where a denotes the parameters w,b, e , while the class labels are denoted by

y = +1 and y — -1, and the rejection decision by y = 0 . The distance between
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the hyperplanes, that is, the width of the rejection region, is equal to

2e I H w Il . Analogously, the simplest extension of the indicator loss function [Eq.

(28)] to classification with a rejection option is the following loss function:
(0, if f\x,a) = y,

L1Cx, y,a) = \w„, if /1O, a) = O, (34)
(l, if fx(x, a) F y, and fx(x, a) F 0,

where Wr denotes the cost of a rejection. Obviously 0 < w r < 1 . The

corresponding expected risk is:

R1 (a) = Wr P (rejection) + P (error), (35)

where P(error) and P(rejection) denote respectively the misclassification and

rejection probabilities achieved when using the function f1(x,a). Accordingly, the

expression of the empirical risk [Eq. (30)], for a given decision function and a given

training set is:

Rlmp(a) = WrR + M, (36)

where R and M represent the rejection and misclassification rates achieved by

f1 (x, a) on training samples, respectively. According to the SRM principle, training

this classifier consists of finding the pair of parallel hyperplanes [Eq. (32)], which

provide the best trade-off between the VC dimension and the empirical risk. We call

such a pair the Generalized Optimal Plane with Rejection Option (RO-GOP).

By analogy, we assume that the RO-GOP can be defined as a pair of parallel

hyperplanes [Eq. (32)] which minimize the empirical risk [Eq. (36)], and we separate

the samples that have been correctly classified and accepted with a maximum margin.

It is important to remember that a pattern x,is accepted if |?? · ?¦ + b\ > e . For a

pair of parallel hyperplanes [Eq. (32)], we define the margin of an accepted pattern as
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its distance from the hyperplane w ¦ ? + b = 0.

In multi-class SVM, the rejection class is denoted by y = -1. For k classes of

data (k>2),k SVM classifiers are formed and denoted by SVM1, /=7,2, ...k. For the

test sample x, di(x) = wi-x + bcan be obtained by using SVM,, where d¡ is the

decision function for class i, w¿ is a normal vector perpendicular to the hyperplane

that separates class i from all the other classes, and the parameter b¡ is the distance

from the origin to the hyperplane along the normal vector w,. The test sample ? is

considered to belong to the jth class, where dy(x) = max¿=12 kdt(x). Thus, the

rejection decision in this &-class problem should be determined on E1, ...,ek, which

are thresholds to each of the corresponding margins. One optimal way is to find a

global rejection measurement to define the rejection class in the training procedure.

The measurement is based on all the confidence values of the classifier outputs and

the relations between them so that we do not need to determine the E1, ...,ek one by

one. Hence, once one rejection class can be determined in the training procedure, the

classifier can be re-trained with (k+1) classes. Details can be found in Chapter 5.

In this RO-S3VM, the margins for the generative models are the same as the ones

in RO-SVM. Only the extra information detected from the testing procedure may

change the classification results on certain patterns. This extra information may rely

on the evaluation results from the rejection measurements. Thus, we did not need to

introduce the RO-S3VM in theory in this Section.



3.2 Framework for Training and Testing RO-S3VM

In this section, we will describe all the procedures in both training and testing of

the RO-S3VM applied in this thesis. Firstly, all the operations in the training process

are introduced. Besides training in the standard supervised learning method, two

verifiers should be trained as well. In the testing procedure, we classify samples with

supervised learning, reject ones with low rejection measurements, and verify them

with the extra information retrieved from the unlabeled data. Three flowcharts for the

training, verification, and testing procedures will be described in this section.

Initially, we trained an SVM classifier on the training set. In the recognition

process, the standard procedures of image pre-processing, feature extraction, and

classification were implemented. In image pre-processing, we performed noise

removal, grayscale normalization, and sizes were normalized to 32 by 32 pixels.

Gradient features were extracted from the gray-scale images, and the Support Vector

Machine (SVM) was chosen as a classifier with a Radial Basis Function (RBF)

kernel. Then, we applied a rejection measurement (LDAM) to reject the unreliable

samples and to find the rejection classes (Figure 8).
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Image Pre-processing

______ J
Gradient Feature
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±
Training the Classifier(SVM)

Calculation of LDAM

N^--CDAMV--
"-\Threshold.

. t .Defined as Rejection j Classified with
Class Predicted Labels

? Re-train the classifier
1 with SVM "*

Figure 8. Flowchart for the training procedure

Due to the error categorization, two verifiers had to be built in the training

procedure as well. One was a verifier between Classes "0" and "1", and we called it

Verifier I. For the two confusing classes of CFs and l's, we re-trained a pair-wise

classifier with only two dimensional features (height and width) among all the

samples in classes 0 and 1 in the Training Set. Since size normalization causes

Classes "0" and "1" in Hindu-Arabic to become similar, global features, such as

height and width in the original images, needed to be considered and re-trained. Thus,

we trained Verifier I with a new feature set of samples between Classes "0" and "1".

On the other hand, we built another Verifier II between Classes "2" and "3".

Since even human beings may have problems to distinguish some samples in Classes

"2" and "3" in Hindu-Arabic, due to their confusing shapes, extra information rather

than shapes need to be detected and applied to the verifier. We designed a procedure
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to detect the writer's writing styles with the semi-supervised learning method.

Accordingly, we applied the clustering process to group all the samples in each class

into two clusters. We assigned the sub-class number to each pattern in the two

confusing classes and re-trained a sub-class classifier with all the samples in the two

confusing classes. Each writing style was determined as described in Chapter 7. The

flowcharts for Verifiers I & II are shown in Figure 9.

Verifier I

Training Data
in Classes
"0"and"1"

Verifier Il

Training Data
in Classes "2"

/ and "3"
...... .. i.

Image Pre-processing

Image Pre-processing
__ t

Global Feature
Extraction

Gradient Feature
Extraction

Training the Verifier I

; Clustering within Each
Class

_____ t
I Redefining Subclasses
"21", "22", "31" and "32"

Training Verifier I

Figure 9. Flowchart for Verifier I & Verifier II

In the testing procedure, recognition and rejection were applied (Figure 10). Only

samples rejected by LDAM need to be verified with two sub-classifiers. The samples

classified to one of the two confusing classes (2's and 3rs) and rejected by the

previous step should go through verification by the sub-class classifier, which

returned one of the sub-classes. Combined with the writers writing style, the final

recognition results could be improved. If this sub-class was Subclass (SC) 22 or
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Subclass 31, the sample had an ambiguous shape and could have been a sample of

either 2 or 3. See Chapter 7 for details. In this case, the writer's Combined Writing

Style (CWS) could be applied to arrive at a classification. Whereas if the sub-class

was SC21 (SC32), the sample would be assigned to class 2 (3), respectively. The

samples classified to one of the two confusing classes (O' s and Ts) and rejected by

the previous step went through verification by the sub-class classifier. Moreover,

errors with high confidence values in LDAM have to be verified with the original

documents to correct the mislabeling.
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Figure 10. Flowchart for the testing procedure
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Chapter 4

Supervised Learning

In this chapter, we propose a standard recognition system with supervised learning.

We apply some state-of-the-art technologies for the recognition. A recognition

algorithm consists of three main tasks that are discussed in this chapter:
pre-processing, feature extraction, and classification. In Section 4.1, we discuss the

performance of noise removal, grayscale normalization, and size normalization in

image pre-processing. Gradient features are introduced in Section 4.2, which are

extracted from the gray-scale images, and Support Vector Machines (SVMs) are

applied as a classifier with a Radial Basis Function (RBF) kernel, briefly described in

Section 4.3. Gradient features and downsampling are image processing techniques

commonly used in the recognition of handwritten characters from various languages,

including Arabic numerals [90], Devangari characters [70], etc. In each pattern, a

feature vector with a size of 400 (5 horizontal, 5 vertical, 16 directions) is produced.

Satisfying recognition results in this thesis have been achieved where the results

are compared with Alarmi [4]. Details can be found in Section 4.4. Therefore, this

SVM classifier is designed as a supervised learning classifier. Finally, a summary of
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this chapter is presented in Section 4.5.

This proposed (novel) system has been successfully used with different

applications, such as Numeral Recognitions in Urdu [79], Farsi [41], Pashto [87], and

Dari [86], Word Recognition in Urdu [80] and Word Spotting in Urdu [81], and

touching pair numeral recognition in Arabic and date recognition in Arabic [5].

4.1 Image Pre-processing

In image pre-processing, researchers normally perform noise filtering,

binarization, thinning [109], skew correction [52], slant normalization [15], size

normalization, etc., to enhance the quality of images and to correct distortion. All of

these factors influence the performance of a character recognition system.

Since image normalization can be used as a preprocessing stage to assist

computer or human object perception, various normalization methods have been

adopted [60] with different functions, such as dimension-based normalization and

moment-based normalization. Normally, the image is linearly mapped onto a standard

plane by interpolation/extrapolation. The size and position of a character is controlled

such that the x/y dimensions of a normalized plane are filled. The implementation of

interpolation/extrapolation can influence to the recognition performance [68, 91].

Historically, when a database was constructed or before features were extracted,

most researchers normalized the spatial resolution. The spatial resolution of an image

is related to its height (rows) and width (columns) per dimension. For example, in the

MNIST database [58], each image was normalized to 20 * 20 and filled in a 28 * 28
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pad; Liu et al. in [60] normalized images to 35 * 35 when they investigated

normalization and feature extraction techniques; and Perez et al. in [72] normalized

images to 15 * 23 before creating prototypes. In [27], digits were normalized to 16 *

16 before feature extraction. It seems obvious that, with too small images, the

recognition rate of a handwritten digit database will be reduced. But how many pixels

as a height and a width for an image can be considered as too small? What is the

effect of size normalization on handwritten numeral recognition? From many

observations and experiments, we concluded that [42] when normalizing images to

the size of 32 by 32, the performance of a handwritten digit recognition system is

optimal because, on the one hand, the recognition rate is high; and on the other hand,

space on the hard disk is not wasted.

In image pre-processing, besides size normalization we also performed noise

removal and grayscale normalization. There are seven steps in image pre-processing.

Firstly, we load the original grayscale images. By thresholding the original grayscale

image, we obtain a background-eliminated grayscale image to remove some noises.

Then, we bound the image with a rectangle to remove the blank boundaries.

Afterwards, we normalize the image's grayscale to eliminate the dependence of

feature values on gray levels. We rescale images' grayscale to a standard mean of 210

and standard deviation of 10. For size normalization, we use Moment Normalization

(MN) to convert images to a size of 32 * 32, which aligns the centroid (center of

gravity) to the geometric center of a normalized plane, and re-bounds the image based

on second-order moments [61]. Finally, we binarize the images based on the threshold
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calculated with the Otsu Method [69]. The procedure with an example in image

pre-processing is shown in Figure 1 1 .

Centroid
Geometric Geometric Center &
Center

Region R
Centroid

?.
C=^C

Input pattern
Shift & Realignment Reframing Resizing

Figure 11. Demonstration of moment-based normalization procedure

4.2 Feature Extraction

Since many classifiers cannot efficiently process the raw images or data, feature

extraction is necessarily applied, which aims to reduce the dimensions of the data

while extracting useful information [57]. The performance of a classifier relies very

much on the quality of the features. A good set of features should represent common

characteristics that are particular to one class but also represent the obvious difference

in characteristics between two classes. As the features are extracted from the original

data, these features should maintain the distinguishable information as much as

possible.
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In this thesis, supervised learning will be performed on gradient features [89],

which are extracted from the binary images. Gradient features maintain both the

position and direction information in the images. These features were applied and

achieved a high recognition rate by Dong et al. [27].

Gradient features are extracted from gray-scale images, so we should first

convert binary images to gray-scale images. The gray-scale normalized image is

standardized such that its mean and maximum values are 0 and 1.0, respectively.

After centering a normalized image (e.g. 28 * 28) into a 32 * 32 box, as mentioned in

Section 4.1, the Robert filter [24] is applied to calculate its gradient strengths and

directions. In pattern recognition, edge detection is traditionally implemented by

convolving the signal with some form of linear filter, and usually it is a filter that

approximates a first or second derivative operator. The simplest gradient operator is

the Robert's Cross operator and it uses the masks
0 1

-1 0
and

1 0

0 -1
Thus, the

Robert's Cross operator uses the diagonal directions to calculate the gradient vector.

For example, the gradient magnitude and direction of pixel g(m, n) are calculated as

follows:

di
— = Au = g(m,ri)- g(m + \,n + l),
ox (43)
di
-—=Av = g(m,n + l)-g(m + \,ri), (44)dy

Direction: ? (m, ri) = arctan( ), (45)Au

Strength : 5 (m, ?) = ?/? if + ? ?2 , (46)
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where ? (m, ?) and s {m, ?) specify the direction and gradient magnitude of pixel

g (m, ?) , respectively.

We calculate the strength of the gradient as a feature vector. The direction of the

gradient is quantized to 32 levels with an interval of p/ 16. The normalized character

image is divided into 81 (9 horizontal * 9 vertical) blocks. The strength of the gradient

in each of the 32 directions is accumulated in each block to produce 81 local joint

spectra of directions and curvatures. In Figure 12, we show an example with a

normalized grayscale image in (a), its gradient strength in (b), and gradient direction
in (c).

(a) (b) (e)

Figure 12. Gradient features on a sample image:
(a) Greyscale image of size 32x32, (b) Gradient Strength, and (c) Gradient Direction

After extracting the strength and directions in each image, the spatial resolution

is reduced from 9*9 to 5*5 by down sampling every two horizontal and every two

vertical blocks with a 5*5 Gaussian filter. Similarly, the directional resolution is

reduced from 32 to 16 levels by down sampling with a weight vector of ? 4641J ,to
produce a feature vector of size 400 (5 horizontal, 5 vertical, and 16 directions).

_ 0.4

Moreover, variable transformation (-» ~x ) is applied to make the distribution of the

feature Gaussian-like. The feature size is reduced to 400 by principal component
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analysis (KL transform). Finally, we scale the feature vectors by a constant factor

such that the values of feature components range from 0 to 1 .0.

4.3 Classification

Support Vector Machines [101] were chosen as a classifier. Details of the

principles of SVMs can be found in Section 3. 1 of Chapter 3. In this thesis, Radial

Basis Function (RBF) was chosen with a kernel k (x„ xj) = exp (^y ||x,- x¡\\2) in the

SVM of this supervised learning method. Two parameters (c, ?) need to be

determined when using RBF kernels, with c > 0 being the penalty parameter of the

error term and ? the kernel parameter. These parameters were optimally chosen by

cross-validation via a parallel grid search on the training set [106]. These optimal

parameter values were then applied on the test set.

4.4 Databases and Experimental Results

Our recognition system was applied to the CENPARMI Hindu-Arabic Isolated

Numerals database [4]. This database contains 18,585, 6,199, and 6,199 samples in

the Training, Validation, and Test sets, respectively, with the distribution shown in

Table 1. Since validation was not implemented in this experiment, the Training and

Validation sets were combined to form the Training set.

Table 1. Distribution of samples in CENPARMI Hindu-Arabic Numerals
Database

Label | 0 | 1 ¡2 | 3 | 4 |5 IT | 7 | 8 [9 [ Total
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Training
Test

2,647
662

2,456
612

2,542
637

2,503
627

2,447
613

2,253
564

2,477
618

2,338
585

2,321
581

2,800
700

24,784
6,199

The recognition rate on the test set was 98.47%, which is significantly higher

than the performance (93.60%) of [4] on the same database (Table 2). The confusion

matrix is also shown below (Table 3).

Table 2. Performances on the test set with LDAM compared with [4]

Classifier

Recognition Rate (%'
Error Rate (%)

LibSVM
98.47
1.53

[4]
93.60
6.40

Table 3. Confusion matrix on the Test set

Output

657
Cor.
657

Inc. Total
662

Pet.
(%)
99.2

611
602 34
39 587

609
560

.c
a
-I

618
585

611
602

1
35

612 99.8
637 94.5

587 40 627 93.6
609
560
61Í
585

612 99.5
564 99.3
619 99.8
585 100.0

580 580 581 99.8
695

Cor. 657 611 602 587 609 560 61 S 585 580 695
695
6104 95

Inc. 43 34
Total 661 614 645 621 611 561 623 586 581 696
Pet.
(%) 99.4 99.5 93.3 94.5 99.7 99.Í 99.2 99.1 99.9

700 99.3
6199 98.5

Each parameter in SVM was chosen and calculated by cross-validation. The

result of cross-validation via a parallel grid is shown in Figure 13. When lg(c) = 1 and

lg(y) = -7, the performance on the training set achieved the highest recognition rate of

98.05%). Thus, we set c = 2 and ? = 0.0078125, and then tested it on the testing set.

As a result, the recognition rate was 98.47%> for the testing set.
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Figure 13. Cross-validation via a parallel grid

Out of the 6199 samples in the test set, the number of misclassifications was 95

(1.53%), and most of these errors happened between classes 2 and 3, and they cannot

be correctly identified, even by human beings. All of the recognition errors (73

samples) that arose between Classes 2 and 3 in the supervised learning method are

shown in Figures 14 and 15. Aside from the confusion between classes 2 and 3, there

were 22 mistakes that happened among other classes. They are shown in Figure 16.

? Y

i

X
y

Figure 14. Recognition errors: samples in Class 2 were recognized as 3 in the
supervised learning
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Figure 15. Recognition errors: samples in Class 3 were recognized as 2 in the
supervised learning
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Images

Truth Label —> Output 5—»-O 6->4 8->2 9->6 9->6 9—>6 9—>6
Images #

Truth Label —? Output 9-*8

Figure 16. Errors in supervised learning method

4.5 Conclusion

In summary, we designed a recognition system with some state-of-the-art

technologies. We performed noise removal, grayscale normalization, and size

normalization in image pre-processing. Gradient features were extracted from the

processed images, and we applied SVM to do the classification. As a result, the

recognition rate on the test set was 98.47%, which is significantly higher than the

previous research on the same database.
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Chapter 5

Rejection Measurement

In this chapter, we define a novel rejection measurement that is called the Linear

Discriminant Analysis Measurement (LDAM). This rejection measurement will be

implemented to reject the data with unreliable classification results produced by the

supervised learning method. To implement the rejection, which can be considered as a

two-class problem of accepting the classification result or otherwise, an LDA-based

measurement is used to determine a new rejection threshold. This measurement

(LDAM) is designed to take into consideration the confidence values of the classifier

outputs and the relations between them, and it represents a more comprehensive

measurement than traditional rejection measurements such as First Rank

Measurement (FRM) and First Two Ranks Measurement (FTRM).

Since the problem in current rejection measurement has motivated us to develop

a new rejection measurement, we firstly point out the problem in Section 5.1. In

Section 5.2, FRM and FTRM are defined and described so that we can define and

compare the LDAM in Section 5.3. Moreover, the experiments conducted on rejection

measurement on different databases and with different classifiers are described in
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Section 5.4, and the conclusion of this chapter is given in Section 5.5.

5.1 Problem in Rejection Measurement

In document recognition, it is important to obtain a high accuracy or reliability

and to reject patterns that cannot be classified with high confidences. This is the case

for applications such as a system that processes financial documents without rejection,

in which errors can be very costly and therefore can yield far less tolerable results

compared to systems that have a reject option. When the cost of misclassifications is

very high, it is useful to allow a pattern classification system to withhold the

automatic classification of an input pattern, if it is considered unreliable. This is

known as the reject option. In this research, we applied a rejection criterion on the

results from the supervised learning method, which allowed us to design some

verifiers for the final recognition.

In considering the outputs of classifiers for the rejection option as a two-class

problem (accepted or rejected classification), the outputs at the measurement level can

be considered as features for the rejection option. An output vector's components may

represent distances or probabilities, and we expect the confidence value (measure) of

the first rank (most likely class) to be far distant from the confidence values or

measures of the other classes. In other words, good outputs should be easily separated

into two classes: the confidence value of the first rank and the others. In the following

discussion, we assume that the classifier outputs the probabilities of the patterns for

each class, and the considerations would be analogous in the case when the classifier

outputs the distances.
64



It seems that the Bayes' decision rule embodies a rejection rule; namely, the

decision can be based on the maximum confidence value (called First Rank

Measurement (FRM) in this thesis), provided that this maximum exceeds a certain

threshold value. However, this approach did not perform satisfactorily when

experiments were performed on the CENPARMI Hindu-Arabic Isolated Numerals

Database with any SVM software package, such as LibSVM [18, 24] and HeroSVM

[28]. LibSVM maps the outputs from a Support Vector Machine (SVM) [24] to

posterior probabilities for all classes; and HeroSVM provides distances from an input

pattern to the Optimal Separating Hyperplane (OSH) of each class. The results on the

training set are shown in Figure 17. In LibSVM, the distribution [Figure 17(a)] of

incorrectly classified samples is not Gaussian in shape, but remains flat throughout a

range of confidence values. This is the case while only the correctly classified

samples follow a Gaussian distribution. In HeroSVM, although the distributions

[Figure 1 7(b)] of correctly and incorrectly classified samples are Gaussian in shape,

their measurements do overlap for almost half of the range. Therefore, it is difficult to

design a rejection strategy based on the measurement of maximum confidence value.

x io4 FRM of the Output on Training Set in LibSVM

Q.
E 1.6
CO

CO
*- 1
O

° 0.5

-Errors

"Correct Data

10 ?\^??
0.6 0.8 1

0.2 0.4 0.6

Measurement

(a)
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FRM of the Oulput on Training Set in HeroSVM

?. «00 Correct Data
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*- 2000O
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Measurement

(b)
Figure 17. Distribution of the output on the Training set in: (a) LibSVM and in
(b) HeroSVM

5.2 First Rank Measurement (FRM) & First Two Ranks
Measurement (FTRM)

Generally, rejection strategies can be directly applied to the classifier's outputs

with probability estimations. In an M-class problem, suppose P(x) =

{Pi(x),p2(x), - ,Pm(x)} is the classification output vector of the given pattern x,

with probabilities p¿(x) in descending order. The decision can be based on

SgU(Q1(X)-T1), where T1 is a threshold derived from the training data,

and O1Cx) = P1Cx).

If O1Cx) < T1, the classifier rejects the pattern and does not assign it to a class

(it might instead be passed to a human operator). This has the consequence that on the

remaining patterns, a lower error rate can be achieved. This method uses the First

Rank Measurement (FRM) [28].

Using this method, the frequency distribution according to confidence values of

samples in the training set is considered and the threshold T1 is determined
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accordingly.

However, FRM cannot distinguish between reliable and unreliable patterns with

the probability distribution of erroneous samples shown in Figure 17.

To overcome this deficiency of FRM, we have designed First Two Ranks

Measurement (FTRM) [93], which uses the difference between the probabilities

P1 (?) and p2 O) of the first two ranks as a condition of rejection. In FTRM, the

measurement function is F20) = Hp1O) - P2WII, where ||.|| can be any distance

measurement, and the decision function is based on sgn (O2OO - T2), where T2 is

a threshold derived from the training set.

However, FTRM cannot solve the problem in some cases. For example, if

IIPi(x) - P2OOII is relatively large compared to T2, but the distance Hp2O) -

P3O)II is much larger, this pattern may still be accepted, when this pattern should

really have been rejected since the top two classes are closer together in terms of

relative distance.

5.3 Linear Discriminant Analysis Measurement (LDAM)
To consider the relative difference between the measurements in the first two

ranks and all the other measurements, LDAM is defined and then applied. Since

rejection in classification can be considered as a two-class problem (acceptance or

rejection), we apply LDA to implement rejection.

An LDA approach to the problem assumes that the conditional probability

density functions of the two classes are both normally distributed. There are
67



? = ?, + m, observations with d features in the training set, where t -^i / J /=l

arise from class COx and \X2i)i=\ arise from class CO 2 . Gaussian-based

discrimination assumes two normal distributions: (x\ Ct)x) ~ ?(µ? ,S,) and

(?\?2)~ ?(µ2,S2) . In LDA, the projection axis (discriminant vector) w for

discriminating between two classes is estimated to maximize the Fisher criterion:

J{w) = tr{{wTSww)-\wTSBw)) (47)
where tr(·) denotes the trace of a matrix, SB and Sw denote the between-class scatter

matrix and within-class scatter matrix respectively, and w is the optimal discriminant

vector. For the two classes COx and CO2 , with a priori probabilities px and p2

(it is often assumed that p] = p2 = 0.5 ), the within-class and between-class scatter

matrices can be written as:

Sw = ?,S, + ?2S2= Z12, (48)
Sß =(µ?~ M2)(M] - M2)1 , (49)

where E12 is the average variance of the two classes. The maximum separation
occurs when:

w = <CC"i -M2) = (??+?2^2)~\µ?-µ2)
= S;2\µ?-µ2). m

To apply this principle to the outputs for the rejection option as a

one-dimensional application, we define the two sets G(l)(x) = {p,(x)} , and

Gi2)(x ) = {p2 (x), p3(x),..., pM (x)} . Then,

Mi=P1(X), (51)
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? M

^=^~?S?.(?? (52)
S?=(??(?)-??)2=0, (53)

? M

S2 =JfZJS (^W- /O', (54)
and S12 =^S2. (55)

Thus, in LDA,
M

Y4Wp1(X)-PAx)W
(M-I)-I12 l ;

Then, the decision function would be based on sgn (F3(?) - T3), where T3 is

a threshold derived from the training set, and all values are scaled to [O, I].

In summary, when compared to FRM and FTRM, LDAM should be more

reliable and informative since it compares the relative difference of the measures in

the first two ranks with all the other measures.

5.4. Experiments

The experiments on rejection measurements were conducted on different

databases and with different classifiers, such as LibSVM and HeroSVM. Firstly, we

used the same classifier (LibSVM) on three databases to compare the experiments:

CENPARMI Hindu-Arabic Isolated Numerals Database, CENPARMI numerals

database, and Isolated Numerals Database in NIST Special Database 19. Details are

described in Section 5.4. 1 . Moreover, in order to evaluate this LDAM*s efficiency, we

compared the experiments with two classifiers (LibSVM and HeroSVM) on the same
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database: CENPARMI Hindu-Arabic Isolated Numerals Database. Section 5.4.2 will

provide a description of these experiments in detail.

5.4.1 Experiment I

In this section, we firstly describe the distribution of samples in each database,

and then we illustrate the results of the experiments on each database.

The distributions of samples in each of the three databases are given below:

The CENPARMI Hindu-Arabic Isolated Numerals database contains 18,585,

6,199, and 6,199 samples in the Training, Validation, and Test sets, respectively, with

the distribution shown in Table 1 of Section 4.4.

The CENPARMI and NIST numeral databases are well-known and have been

tested by researchers for over twenty years; the former consists of the handwritten ZIP

codes that were extracted from USPS mailed items in the early 1980's, while the latter

consists of Latin numerals that were collected in the early 1990's from 3,699 forms,

on which the writers were instructed to print specific numerals in designated boxes.

The CENPARMI numeral database contains 4,000 and 2,000 samples in the

Training and Test sets respectively, with equal numbers of samples per class in each

set. NIST Special Database 19 consists of 344,307 samples of isolated numerals in the

Training set and 58,645 samples in the test set, with the distribution shown in Table 4.

Table 4. Distribution of samples in NIST SD 19

Label

Training
Test

0

34,803
5,560

1

38,049
6,655

34,
5,81

35,293
5,819

33,432
5,721

31,067
5,539

34,079
5,858

35,796
6,097

33,884
5,695

33,720
5,813

Total

344,307
58,645
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For each database, the SVM classifier was trained on the training set, tested on

the test set, and LDAM was applied as a rejection criterion with a threshold of T =

0.05. The results are shown in Table 5.

Table 5. Results of Classification and Rejection with LDAM on Test Sets

Database CENPARMI CENPARMI NIST Numerals
Hindu-Arabic Numerals Numerals

# Training samples 24,784 4,000 344,307
# Test samples 6,199 2,000 58,645
Results
without

Rejection

Results
with

Rejection
(T=0.05)

# Correct 6,104 1,962 57,740
Rate(%) 98.47% 98.10% 98.46%
# Errors 95 38 905
Rate(%) 1.52% 1.90% 1.54%
# Correct 5735 1819 55,664
Rate(%) 92.51% 90.95% 94.92%
# Errors 17 6 174
Rate(%) 0.27% 0.30% 0.30%
# Reject 447 175 2,807
Rate(%) 7.21% 8.75% 4.79%
Reliability 99.70% 99.67% 99.69%

It is worth noting that for these three databases, the LibSVM classifier achieved

very similar recognition rates without the rejection option, varying from 98.10% to

98.47%. This shows the consistent behavior of the SVM classifier even when

trained on sets of sizes with different orders of magnitude.

Then, when the LDAM was applied for rejection, the method was most effective

on the NIST database, given that out of 2807 rejected samples, 732 of them (26.08%)

would have been recognition errors. For the CENPARMI Hindu-Arabic and

CENPARMI numeral databases, the ratios are 17.22% and 18.29%, respectively.

Furthermore, it is remarkable that on the three very different databases, the
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reliabilities achieved with the same SVM classifier and LDA rejection measurement

are uniformly high, at around 99.7%. The level and consistency of these results

provide solid support for the validity of the method presented in this work.

The distributions of samples according to each of the three measurement values

from the experiments conducted on the three test sets in different databases are shown

in Figure 18. In each graph, the horizontal axis indicates the values of each

measurement (FRM, FTRM and LDAM), while the vertical axis shows the number of

samples. The solid lines represent the distributions of errors, and the dotted lines

represent the distributions of correctly recognized samples.

The distributions based on FRM are shown in Figure 18(a), Figure 18(d), and

Figure 18(g). Although the correctly classified samples display a Gaussian

distribution, the errors are distributed more evenly over ranges of confidence values

(measurements), so the graphs are too flat to separate correctly and incorrectly

classified samples according to FRM. When compared to FRM, FTRM [Figure 18(b),

Figure 18(e), and Figure 18(h)] is more discriminating, as the range of measurements

here is wider than in FRM. However, the distribution of errors in FTRM is flat as

well.

LDAM is more discriminating than FRM and FTRM. This is because the errors

plus correctly classified samples with low confidence values are assigned small

measurements. This can be seen for all three databases in Figure 18, in which the

number of errors can also drop sharply for small values of LDAM [Figure 1 8(c),

Figure 18(f), and Figure 18(i)]. For another example, with the CENPARMI
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Hindu-Arabic numerals, out of the 95 samples initially wrongly classified without

rejection, 78 of them were assigned LDA measurements of less than 0.05, and would

therefore be rejected with this threshold. Thus, LDAM enables a more effective

reduction of potential errors with the thresholds obtained from the training set.

CENPARMI Hindu-Arabic Numerals Database
'Emm

• Gotmci Osta

(a) FRM fb) FTRM (c) LDAM

CENPARMI Numerals Database

\??
(d)FRM (e) FTRM (I)LDAM

NIST Numerals Database

(g)FRM (h) FTRM

500

0
0.5

(i) LDAM

Figure 18. Distributions of samples in the test sets according to the three
measurements for CENPARMI Hindu-Arabic, CENPARMI, and NIST Numeral
Databases

As indicated in Table 5, after processing the three dataseis by the LibSVM

classifier and applying LDAM for rejection, there were 17, 6 and 174

misclassifications in the test sets of the CENPARMI Hindu-Arabic, CENPARMI, and

73



NIST numeral databases, respectively. All of these images are shown in Figure 19.

In Figure 19, for the Hindu-Arabic numerals, most of the misclassifications (12

out of 1 7) were due to the confusing styles that could be used in writing the numerals

'2' and '3', that would be indistinguishable even to human beings. This could be due

to the fact that writers in different regions/countries can write the numerals '2' and '3'

in identical styles, and this problem appears to be more severe in this data set than the

one reported in [1], where there were confusions between '2' and '3' in only 5

samples out of 10,000.

For the other numeral databases, some of the misclassifications are very

understandable as they may have been the results of incorrect labeling during the

process of data collection and preparation by humans. However, the causes of other

misclassifications are far from obvious to the human eye, and are probably the result

of falling on the wrong side of certain threshold(s) in the automatic recognition

process. Some of the errors in the NIST database may have been caused by the

mislabeling of certain samples (or by writers' mistakes in printing the numerals

indicated) in the test and training sets. Due to the immense size of the latter (344,307

samples), the effort required to verify and ensure the correct labeling of all data might

have been too immense to be practical.
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Figure 19. Incorrectly classified samples from the three databases
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5.4.2 Experiment II

In the previous section, we conducted experiments on different databases with

the same type of classifier. However, as mentioned before, outputs from classifiers

may be different, with either posterior probabilities (LibSVM) or distances

(HeroSVM). Therefore, we conducted more experiments on the same database but

with different classifiers (LibSVM and HeroSVM) to compare the effectiveness of

LDAM. AU of the experiments in this section were designed on the CENPARMI

Hindu-Arabic Isolated Numerals Database, which was described in Section 5.4.1.

In Figures 20 and 21, we show the distributions of samples for the three

measurements (FRM, FTRM, and LDAM) obtained from the test sets for outputs of

LibSVM and HeroSVM, respectively. The solid lines represent the distributions of

errors, and the dotted lines represent the distributions of correctly recognized samples.

With LibSVM, the distributions of the training and test data are similar for FRM

(the distributions of training data were also shown in Chapter 5, Figure 17(a)).

Although the correctly classified samples display a Gaussian distribution, the errors

are distributed almost evenly for confidence values (measurements) ranging from 0.4

to 1, which means that correctly and incorrectly classified samples cannot be

distinguished based on FRM. When compared to FRM, FTRM is more

discriminating, as the range of measurements in FTRM is wider than in FRM (the

range is (0, 1) for FTRM). However, the distribution of errors in FTRM is rather even

as well. LDAM is the most discriminating of the three measurements, because the

errors together with correctly classified samples with low confidence values are
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assigned small measurements. In LDAM, most incorrectly classified samples (78/95)

retain very low measurements (less than 0.05), which results in a high reliability

(99.7%) when the threshold is set at this value.
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Correct Dala
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Figure 20. Distributions of the three measurements on the Test Set with LibSVM
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Figure 21. Distributions of the three measurements on the Test Set with
HeroSVM

In Figure 21 (which shows the results for HeroSVM), it can be observed that for

FRM, both the correctly and incorrectly classified samples display Gaussian

distributions but with overlapping ranges of measurement values, which means that

correctly and incorrectly classified samples cannot be adequately distinguished. When
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compared to FRM, FTRM is more discriminating, as the peaks of the distributions are

located farther apart (at 2.35 and 0.08, respectively). However, the distribution of

errors in FTRM is even as well. LDAM is more discriminating than FRM and FTRM

because, similar to the distributions in LibSVM, most errors are assigned small

measurements, and the distribution of errors decreases sharply from the peak. With

LDAM, most incorrectly classified samples (111/139) have very low measurements,

from 0 to 10 out of a total range from 0 to 351, and this yields a high reliability of

99.51%.

These experimental results show that LDAM enables the rejection of samples

classified with low reliability when the thresholds are obtained from the training set

for both LibSVM and HeroSVM.

The performances using different thresholds with the various measurements on

the CENPARMI's Hindu-Arabic Numeral test set are shown in Figure 22. As

illustrated, when the threshold T3 is set to 0.05 in LibSVM, the reliability increases

to 99.69% with LDAM, while the reliabilities with FRM and FTRM are 98.48% and

98.52%, respectively. Similarly, when the threshold T3 is set to 0.01 with HeroSVM,

the reliability increases to 98.05% with LDAM, while the reliabilities with FRM and

FTRM are 97.76% and 97.87%, respectively. These results show that LDAM is the

most effective measurement for obtaining reliable results from both LibSVM and

HeroSVM when applied to the CENPARMI's Hindu-Arabic Numeral Database.
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Figure 22. Reliability with different thresholds used on the three measurements
in: (a) LibSVM (b) HeroSVM

When the reliabilities of LDAM on LibSVM and HeroSVM are 99.70% and

99.51%, respectively, there are 17 and 28 errors (out of 6199 samples) respectively,

which are shown in Figure 23. Both LibSVM and HeroSVM yielded some common

errors in recognition. As can be seen, these errors are reasonable since even human

beings would have difficulty in recognizing them, or to distinguish between samples

of "2" and "3" written in the same styles for Hindu-Arabic numerals.
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Errors in both LibSVM and HeroSVM
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Figure 23. Incorrectly classified images in LibSVM and HeroSVM with LDAM

5.5 Conclusion

The rejection option is very useful for preventing misclassifications, which is

important in applications which require high reliabilities. We designed a novel

rejection criterion using the LDA Measurement (LDAM), which relies on the

principle of Linear Discriminant Analysis and considers relationships among the

probabilities in each output vector. It was implemented to reject the data with

unreliable classification results which were produced by the supervised learning

method.

The design of this LDAM incorporates information about the relationships



among the probabilities or distances in the output vector of each pattern. This

measurement was applied to process the training and test sets of three databases of

very different sizes and on different classifiers. The recognition results indicate that a

very consistent and high level of reliability can be achieved. At the same time, we

compared LDAM with other measurements such as First Rank Measurement (FRM)

and First Two Ranks Measurement (FTRM). The results indicate that LDAM

achieved a higher reliability than the other measurements when a small threshold was

set [45]. Finally, we conducted more experiments on the same database

(CENPARMFs Hindu-Arabic Numeral Database) but with different classifiers

(LibSVM and HeroSVM). The results show that LDAM is the most effective

measurement for obtaining a high reliability with these classifiers.
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Chapter 6

Error Categorization

In this chapter, we categorize errors and design target-oriented strategies for

verification, which is applied to the patterns rejected by the supervised learning

method. In general, a verifier can precisely evaluate the results produced by the

classification stage to compensate for its weakness. We thereby analyze errors in the

Training Set in Section 6. 1, divide these errors into four categories, and figure out the

corresponding strategies in Section 6.2. The experiments and error analyses after

verification are also described based on different strategies in Section 6.3, and the

conclusion is presented in Section 6.4.

In Pattern Recognition and Machine Learning, error analysis is vital to enhance

the recognition system's performance. In fact, error analysis is not a new term in the

manufacturing industry, such as in the manufacturing of electronics. It is an important

discipline used in the development of new products and for the improvement of

existing products. In the manufacturing industry, error analysis is the process of

collecting and analyzing data to determine the cause of a failure. Similarly, we

analyze errors in Pattern Recognition and Machine Learning, and accordingly define
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the strategies to correct errors belonging to different categories. These strategies

should have the capability of being transferred to different applications so that the

cost of instability in a learning system can be reduced.

6.1 Error Analysis in the Training Procedure

We analyzed the data in the Training Set in order to define the error categories

and determine the strategies in verification. Rather than reviewing a database with 2D

images, we can apply error analysis to any pattern recognition system. Thus, instead

of visually reviewing the images, we first analyzed the data based on their statistical

distributions.

Firstly, we analyzed the data based on their performance with Principal

Component Analysis (PCA) [71]. PCA is used in each class to investigate and

understand the distributions of the data in the feature space. PCA involves a

mathematical procedure that transforms a number of possibly correlated variables into

a smaller number of uncorrelated variables named principal components. Its operation

can be thought of as revealing the internal structure of the data in a way which best

explains the variance in the data. If a multivariate dataset is visualized as a set of

coordinates in a high-dimensional data space (e.g., 1 axis per variable), then PCA

supplies the user with a lower-dimensional picture, which is a "shadow" of this object

when viewed from its (arguably) most informative viewpoint. The first principal

component accounts for as much of the variability in the data as possible, and each

succeeding component accounts for as much of the remaining variability as possible.
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PCA in each class of the supervised learning method is shown in Figure 24. In each

graph, the horizontal axis indicates the first principal component, while the vertical

axis shows the second principal component.

Accordingly, although the distributions of each class are not uniform, they more

or less are Gaussian in shape except for Classes 1 and 2. The distribution of Class 1

has a shape like a crescent moon due to size normalization, but it has one centre.

Moreover, the distribution of Class 2 has more than one centre, and it seems that the

data in Class 2 may have multi-variation (more than one sub-class) within the class.

We should apply unsupervised learning in Class 2 to cluster the samples into

sub-classes. This analysis can be proven by visually analyzing the data in the

database. This theory exactly matches the 2D patterns in the database. As mentioned

before (in Figure 4 in Chapter 1), the data in Class 2 have different shapes. Details

will be illustrated in Chapter 7.
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Figure 24. PCA in each class of the supervised learning method
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Since the amount of training data is huge, it is impossible to analyze all the data

one by one. Hence, let us analyze all the errors in the Training Set so that we can

analyze/categorize them. In this system, a total of 195 errors occurred in the Training
Set. The confusion matrix is shown in Table 6.

Table 6. Error confusion matrix in the Training Set
Output

0

JS
CS
J
J3

3
¦—
H

2,647

2,456
2,542

64

111

2,503

2,447
2,253

2,477

2,338

2,321
2,800

There were 175 (89.74%) errors between classes consisting of numerals 2 and 3,

13(6.67%) errors between Class 0 and Class 1, and 7(3.59%) errors among the

remaining classes. Therefore, the errors in this HAHNR could be divided into three

main Groups: 1) errors between Class "2" and Class "3"; 2) errors between Class "0"

and Class "1"; and 3) errors not belonging to Groups I and II. Since the errors in 3)

could be mislabeled by human operators or could be misclassified as shapes that are

similar to the predicted classes, we accordingly divided this category into two. The

first category has errors mislabeled by human operators, and the second category has

errors misclassified due to similar shapes to the predicted classes. These errors were

matched to the error categories in [98].

In [98], misclassification errors are categorized into four types based on the
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costs: (I) Error cost conditional on time of classification, (II) Error cost conditional on

individual case, (III) Error cost conditional on feature value, and (IV) Error cost

conditional on classification of other cases. The adaptation of these categories to the

HAHNR database will be described in the following section.

6.2 Error Categories Based on the Cost of Misclassification

It is obvious from our research (in Section 6.1) that a certain type of error may be

conditional on the circumstances, and thereby we should not assume that the errors

have a fixed cost. In the following subsections, we will describe errors in our adapted

categories due to different costs and figure out strategies for different categories.

6.2.1 Error Cost Conditional on Time of Classification

In a time-series application, the cost of a classification error is dependent on the

timing [98]. Without proper timing, some confusing shapes may appear such that even

a human being could have difficulties to tell them apart [94]. These errors can be

corrected if the training/testing could be given a sufficient amount of time.

In handwriting recognition, if we can learn about a writer or about his/her writing

style with a sufficient amount of time before or during the recognition process, some

confusing shapes could be classified correctly. In general, most writers may keep a

consistency in their writings, while the confusing shapes may be written by other

writers. Some samples in Classes 2 and 3 in the HAHNR database could be

distinguished with writers who had consistent writing styles. Since we will describe
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the entire procedure of verification between Classes 2 and 3 in Chapter 7, which

matches this error category, the verification procedure will only be briefly
summarized in this subsection.

In the HAHNR database used in our study, many errors occurred among classes

"2" and "3" in the training procedure, and they may originally have had confusing
shapes. Samples from the first six writers in the database were chosen for numerals 2

and 3, which are illustrated in Figure 25. Samples in the same column are written by

the same writer. This figure shows that samples with bounding boxes have shapes that
can be confused between the two classes.

Ground
Truth

Printed Hindu-Arabic
numerals

Six Writers

#1 #2 #3 #4 #5 #6

<- ? c C

il V T r t

Figure 25. Some samples of handwritten Hindu-Arabic numerals "2" and "3"

When collecting enough samples in a certain class by a writer over a period of

time, this person's writing style in this class can be learned and applied to the

predicted class in the testing procedure. However, since this HAHNR is based on an

off-line handwriting database, and tracking and learning each writer's writing style is

difficult, strategies to retrieve the timing property in this database need to be found

and examined.

Some writer information was recorded during the data collection for the Isolated

Hindu-Arabic Numeral Database at CENPARMI [4]. An ID was assigned to each



writer, and this enabled us to design an unsupervised learning (clustering) process that

makes use of the writing style information to validate the recognition results. As a

result, two writing styles in each class (either Class 2 or 3) were identified. All writers

with the combination of their writing styles in Classes 2 and 3 could be divided into

four groups. These four Combined Writing Styles (CWS) are shown in Table 7. Once

a person's writing style was unknown (or "too-difficult-to-detect"), this style was

assigned to a Case of Rejection. Therefore, the persons' writing styles could be

automatically learned or detected before the recognition process, and a pair-wise

verification between Classes 2 and 3 could be effectively implemented on the samples

in these two classes. For example, if the sample ' ^ ' originated from a writer with

CWS I, then it would belong to Class 3, whereas if the writer has CWS II, then it

would belong to Class 2. Details can be found in Chapter 7.

Table 7. Combined Writing Styles (CWS) for Classes 2 and 3

Class 2 Class 3

CWS I C <

CWS p V t

CWS III c T
Case of Rejection Unknown Unknown

In conclusion, errors costs conditional on time of classification are

misclassifications due to lack of data in the instance level. Hence, if we are able to

trace the data based on timing or retrieve the timing property in applications, error

costs conditional on time of classification could be corrected. We allotted more time
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in the collection of CWS and recorded the writer's information in this case, thereby

reducing the error costs.

6.2.2 Error Cost Conditional on Individual Case

The cost of a classification error may depend on the nature of the particular case

[98]. These errors may have confusing natures [94], and due to the nature of these

individual cases, the classification results are predictable and can be compared against

the ground truth in the database.

In handwriting recognition, quite possibly the source of these errors comes from

the mistakes made by human operators. When the human operators label the ground

truth on a huge amount of data, they may make mistakes.

In this HAHNR, since it is a time-consuming process to match and verify all the

labels to the ground truth in the original collected documents, only errors with high

confidence values in the rejection measurement were verified by human operators.

With regards to this verification, some mislabeled samples are shown in Figure 26.

Samples \ ^ ^. YV ^ ^ >(
Mislabel —? Ground Truth 2->l 2->3 3-+2 3^23 3-^7 4->9 9-^3

Figure 26. Some Mislabeled Samples in the Database

In conclusion, error costs conditional on individual case are due to

misclassifications by human operators. It is possible to tolerate these errors in the

training procedure with SVM. When we train the system, we set a suitable penalty
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parameter of the error term in SVM that can tolerate these errors. However, if the

classifier cannot tolerate a certain percentage of errors, then the errors in this category

should be detected and removed/corrected from the training set in the database.

6.2.3 Error Cost Conditional on Feature Value

The cost of making a classification error with a particular case may depend on

the value of one or more features in the case [98]. Although some samples can be

easily recognized by human beings, quite a few errors may occur in machine

recognition [94]. These errors should be corrected when we extract or combine

different feature sets.

In handwriting recognition, a large number of errors may occur between two

classes in the training procedure, but they may not necessarily have confusing shapes.

In this HAHNR, errors between numerals 0 and 1 were due to size normalization

in pre-processing. Errors between these two classes in the training procedure are

shown in Figure 27.

Ground Truth
Printed Hindu-Arabic

numerals Errors in the Training Set

/ i ' \ % S x

? \ \ \ \

Figure 27. Errors between numerals "0" and "1" in the Training Set

In conclusion, error costs conditional on feature value are misclassifications due

to data in the feature level. Size normalization may cause some samples in these two
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classes (Figure 27) to become confusing in shape, so extracting different feature sets

without size normalization should be implemented to improve the recognition rate.

Accordingly, we trained and tested the samples of numerals in Classes 0 and 1 with

their heights and widths. Once samples were recognized as 0 or 1 in the rejection

process during testing, we verified the recognition results with these new feature sets

(global features) on the original samples without size normalization.

6.2.4 Error Cost Conditional on Classification of Other Cases

The cost of making a classification error with one case may depend on whether

errors have been made with other cases [98]. Some errors in this category occur

because of the poor quality of images, and the recognizer cannot classify them

accurately. Other errors occur in a few particular cases due to their similarities to

other classes, but these errors only occur sparingly.

In handwriting recognition, errors that occur outside of the first three error cost

categories can be grouped to this category.

In this HAHNR database, most images have a good quality. Only mislabeling

and errors that occur outside of the errors between numerals 0 and 1, and between

numerals 2 and 3 should belong to this category. All of the errors found in this

category of the training procedure are shown in Figure 28. All of the printed

Hindu-Arabic numerals can be seen in Figure 3 of Chapter 1.



Samples
Mislabel -> Ground Truth 4->2 5^0 6^1 9->6

Figure 28. Errors in Classification of other cases in the Training Set

In conclusion, error costs conditional on classification of other cases are

misclassifications due to random factors. These errors had very similar shapes to the

samples belonging to other classes. These errors only occurred rarely and could not be

categorized. Every recognition system may produce some errors in this category.

Since these errors may not mislead the classifier significantly, the penalty parameter

of the error term in SVM can tolerate these errors. Thus, we can keep them in the

training procedure.

6.3 Experiments and Results

All of the experiments in this Chapter are still based on the supervised learning

method with an SVM. Two parameters (c, ?) were determined in supervised learning,

where c is the penalty parameter of the error term and ? is the kernel parameter. Since

the error costs conditional on individual case and the error costs conditional on

classification of other cases could be tolerated with a certain value of c, it had to be

greater than zero in this study. These parameters were optimally chosen by

cross-validation via a parallel grid search in the training set, and these optimal

parameter values were then applied on the test set.

As mentioned before, the recognition rate achieved in supervised learning was

98.47% on the test set without verification, and there were 95 errors out of 6199
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samples. When we applied LDAM in Chapter 5 [44] with an optimal threshold (T =

0.05), the recognition rate, error rate, and reliability were 92.40%, 0.27%, and

99.70%, respectively, and 17 errors could not be rejected due to the high confidence

values in LDAM. Although the reliability is very high (99.70%), the recognition rate

(92.40%) is quite low compared with 98.47%. Thus, verification on rejected patterns

should be applied so that the recognition rate can be improved while maintaining high

reliability. In a total of 447 rejected samples, 342 were recognized as class 2 or 3, and

40 were recognized as class 0 or 1. We kept the recognition results of the other

rejected samples.

After verification with sub-classifiers and comparing the ground truth data of the

original documents (details of this procedure can be found in Chapter 7), the

recognition rate increased to 99.05%, and the number of errors decreased from 95 to

59, and almost 38% of previously misclassified samples could now be correctly

recognized with this verification procedure (Table 8). It was difficult to have such an

improvement when the number of errors was relatively small. Moreover, this database

involved writers from different countries/regions, so they may have written "2" and

"3" with identical shapes. When the writer's information was undetected due to the

small number of samples, errors may have occurred. The errors were more severe in

this data set than those reported in [1] collected from writers in the same country,

where there were confusions between '2' and '3? in only 5 samples out of 10,000.



Table 8. Comparison of the performances without rejection

[4] Chapter 5 [44] New Method
Rate (%)
# Correct

93.60
5802

98.47
6104

99.05
6140

Rate (%)
# Errors

6.40
397

1.53
95

0.95
59

For some people whose combined writing styles in classes 2 and 3 were difficult

to be determined or were unknown, we could reject them. In this case, the recognition

rate, error rate, rejection rate, and reliability became 97.89%, 0.63%, 1.48%, and

99.28%o, respectively, as shown in Table 9. While applying the rejection measurement

based on LDAM alone, when the error rate was kept at 0.63%>, the recognition rate,

rejection rate, and reliability were 96.98%, 2.11%, and 99.08%, respectively, as

shown in Table 9.

Table 9. Comparison of the performances with rejection

Chapter 5 [44] New Method

Rate (%)
# Correct

96.98
6012

97.89
6068

Rate (%)
# Errors

0.63
39

0.63
39

Rate (%)
# Reject.

2.11
131

1.48
92

Reliability % 99.08 99.28

All errors between classes 0 and 1 with rejection were corrected after the

verification with the new feature set and its sub-classifier. However, there were still

36 errors between classes 2 and 3 after verification. These two main sources of errors

arose due to the fact that some writers used contradictory styles that resulted in 2's

and 3's being indistinguishable (Table 10), and there was difficulty in clustering the
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data accurately into sub-classes.

Table 10. Errors due to inconsistencies in the writer's writing styles

Writer's ID Writing in Class 2 Writing in Class 3
63 v <T K

176 t ? S ?
106 r s x

¦< ?

v V K \y
V K V *

Ten samples were mislabeled in the test set, and they are shown Figure 29. There

were 13 errors with high confidence values in LDAM, and they could not be verified

as shown in Figure 30.

Samples Ï i r i <
Mislabel —> Ground Truth 3^2 3-*2 3^2 3->2 3^2

Samples t ? y
Mislabel —> Ground Truth 3^2 3-+2 3->2 6^4 8-+2

Figure 29. Samples Mislabeled in the Test Set

Samples

Ground Truth —* Output

Samples

Ground Truth —> Output

T x; \ V
0->l l-»0 2^3 2^3 2^3 3-+2 3-^2

\ Y V H ^
3->2 3-+2 3-*2 3^2 4^2 5->0

Figure 30. Incorrectly classified images with high confidence values in LDAM
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6.4 Conclusion

In pattern recognition, error minimization should be the target of most

applications. Errors should be categorized based on their features and categorization

strategies should be implemented. Therefore, verification based on error categories

should be designed and applied after recognition.

We have summarized errors based on Turney's research and adapted them by

dividing errors in HAHNR into four categories, based on the different costs of

misclassification errors. Accordingly, we studied their characteristics and analyzed

the reasons for the errors in each category. Moreover, the methodologies for the

detection of each error category and their corresponding categorization strategies were

proposed. In order to validate this study, we matched these error categories to a

recognition application, and designed a verification procedure after recognition, based

on each error category.

As a result of our verification procedure, the recognition results improved

significantly. Without rejections, the final recognition rate improved to 99.05%, and

almost 38% of the classification errors were eliminated by using verification. When

the rejection measurement was applied, the recognition rate, error rate and reliability

were 96.98%, 0.63%, and 99.08%, respectively. We also assessed the verification

process by holding the error rate constant at 0.63% and found that the recognition rate

and reliability increased to 97.89% and 99.28%, respectively.



Chapter 7

Verification Based on Unsupervised
Learning

In this chapter, we propose the Writing Style Verification (WSV) module based on

unsupervised learning on the test set. This verification module matches the error cost

conditional on time of classification, mentioned in Chapter 6. This work stems from

the idea of context-based disambiguation of classification results for pairs of classes

which partially overlap. The specific problem faced in this chapter is the

disambiguation of classification results for Hindu-Arabic handwritten numerals which

are classified as "2" or "3". The contextual information used in this case is the writing

style. We define a Confusing Pair (CP) of clusters and a Writing Style (WS) and

devise a methodology to automatically detect a CP and WS with unsupervised

learning in Section 7.2. The experiments and error analysis based on writing style

verification are described in Section 7.3.

7.1 Problem in Writing Styles

Unlike the supervised learning method, the unsupervised learning method with
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test data can be used to "teach" some extra information about the predicted sample.

When we trace a writer's writing on a timing axis, the ambiguous shapes can be

classified correctly. For example, in Figure 31 below, when we see all the writing

samples through a timing axis, Numeral 3 in Writer I's writing may be confused with

Numeral 2 in Writer IFs writing. However, when we trace one writer's writing, e.g.

Writer I, and find a lot of the written shape " ^- " which is obviously Numeral 2, we

can correctly classify the other ambiguous shapes in Writer I's writing as Numeral 3.

We assume that a writer would not confuse him/herself by writing samples of two

different classes with the same shape or style. This means that writers could be

grouped based on their writing styles, and this prior knowledge about writers could

result in more accurate recognition performances. Thus, if we can find a way to trace

writers' writings automatically in machine learning, then the ambiguous shapes can be

classified correctly.

Writer I

Writer II

Numeral 2

?| iC: ? ;C:c t
0 ._... ......_.

1 y

^1-

X G Ì i i t

Numeral 3

< f , ; r ; ?

'í i ?
o

Figure 31. Different writers' writings traced on a timing axis
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Most researchers have adapted their systems for each writer during the training

procedure. Had they known that writers can be grouped according to their writing

styles, it is not necessary for their systems to learn the style writer by writer during

testing procedure. Instead, writing styles should have been categorized and this

knowledge should have been applied to correctly classify the ambiguous shapes

encountered.

It was possible to implement this process by recording some writer information

during the data collection process. As mentioned in Chapter 6, this was the case for

the Isolated Hindu-Arabic Numeral Database at CENPARMI, in which an ID was

assigned to each writer. This enabled us to design an unsupervised learning

(clustering) process that makes use of the Writing Styles (WS) Information to validate

the recognition results.

7.2 Writing Styles Design

In this study, we will apply an unsupervised learning (clustering) process within

each of the two confusing classes (2' s and 3's), and the number of clusters will be

determined automatically. Clusters of different classes containing samples with very

similar shapes will form a confusing pair (CP). Accordingly, we can define the

writing styles based on the clusters in each class. All the writers will be assigned to a

group with a known writing style or a group with an unknown writing style. Then,

when we know the writing style of a sample, this sample will be assigned to the
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correct class. The next three subsections include the definitions of Confusing Pairs

(CP) and Writing Styles (WS) (Section 7.2.1), an explanation of how CP and WS are

detected (Section 7.2.2) and the process of finding them in HAHNR (Section 7.2.3).

7.2.1 Definitions of Confusing Pairs & Writing Styles

For a classification problem with the two classes W^i = 1,2), only the samples

close to the decision boundary of their class may be confused with the data from the

other class. We propose to identify these confusing samples through the unsupervised

learning (clustering) process.

Suppose that for i = 1,2, the data from classic is divided into fc¿ clusters

(sub-classes) {W/}, each with centre cj, where j = 1, 2, ..., kt. The distance between
any two clusters is defined as the Euclidean distance between their centres. For

í = 1, 2, we define the smallest intraclass distance between clusters in W; as L4D¿

= min Gi(W^W/1) for all m, ? in (1,2,...,ArJ5In^n.

We then determine the pair of clusters W1" in W1 and wJJ in W2 (with
1 < ii < Zc1 , 1 <jj < k2 ) such that d(W^, W2jj) = min diW^.W?) , for
1 < m < Zc1, 1 < ? < k2.

If this minimum interclass distance d(W¡1, W2jj) is smaller than the minimum

intraclass distance L4D¿ for i = 1, 2, then W1" and W2jj are considered to be a
confusing pair (CP) of clusters. This is reasonable because if the distance between two

clusters from different classes is smaller than the distances between clusters of each

class, then it will be difficult for a classifier to distinguish between the former two
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clusters.

On the other hand, if clusters VK1"1 and W£ do not form a confusing pair, then

they can be considered together as a consistent style of writing a pair of numerals

such as 2's and 3's, and this is denoted by WS. In the following section, we will

describe the procedure for identifying a confusing pair (CP) of clusters.

7.2.2 CP Search and WS Detection with Unsupervised Learning

In order to search for a CP and a WS, we apply the well-known K-means

clustering method to each class iteratively, until a CP is located or a stopping criterion

is satisfied. Initially, each class is divided into two clusters (Zc1 = k2 = 2), and we

search for a CP. As this is based on the minimum interclass distance, the number of

such pairs should be either 0 or 1 . We search until the CP is found or until all clusters

have been considered. If no CP is found in the search, then the search is repeated with

the number of clusters increased by 1 (from 2 to 3, and from 3 to 4, etc.)for one class.

This process can continue until a pre-defined criterion (such as the maximum number

of iterations) is satisfied.

Once the CP is found, the consistent writing styles (WS) can be determined from

the consistent pairs. The statistical results of each writer's writings in each sub-class

(a sub-class is a cluster of a class) are then used to assign the writer to a WS, after

which his/her writings of ambiguous shapes can be assigned to the correct classes.

This process is described below.



7.2.3 The Process of Finding CP and WS in HAHNR

Since most recognition errors in this HAHNR are due to confusions between

samples in the Classes 2 and 3, we search for a CP and determine the WS for these

two classes. Initially, the parameters are Zc1 = k2 = 2 from the two classes, as

described in subsection 7.2.2. If a CP is found in this search, then the number of WS

will become Zc1 X Zc2 - 1 = 3 . With two clusters in each class, the distances

between each pair of centres are shown in Table 10, where Sub-class 21 (SC21)

denotes cluster 1 of class 2, etc.

Table 10. Distances between pairs of centres in Classes 2 and 3

Sub-class (SC)
21
22

31

32

21 22 31 32
0 6.62 6.46 7.56

6.62 0 2.66 3.63
6.46 2.66 0 4.42
7.56 3.63 4.42 0

In this case, the distance d(SC22, SC3Ï) = 2.66 is the minimum interclass

distance and it is also smaller than the two intraclass distances of classes 2 and 3, such

as d(SC21,SC2Z) = 6.62, and d(SC31,SC32) = 4.42. So, in this case, SC22 and

SC31 form a CP, and the search stops.

From our experiments, some randomly selected samples in each sub-class are

shown in Figure 32. It is obvious that the samples in SC22 and SC31 form a CP. In

this case, we can then categorize the writing of 2's and 3's into three valid combined

writing styles (CWS) by eliminating the confusing combination of (SC22, SC31) with

the assumption that a writer would not write 2's and 3's in almost identical shapes.
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Table 7 in Chapter 6 lists examples of all three resulting CWS. The cases for rejection

arise when the writing styles cannot be determined due to insufficient samples from

writers, or when ambiguous styles are used by one writer in two classes. These

patterns are then rejected.

c C e C CC ^C-C Q

C C ^ ¿_ c C : c C^ Cl

(a) Sub-class 2 1(SC21)

Ki t \ ? : ? < ? YX

XK V ? ? V ; \ * < ¦ ^
(b) Sub-class 22(SC22)

X 1 ? X ^ H < ^i i

<<<<<<'.<*{<<

< < K 0C. < H. < < i <

(e) Sub-class 3 1(SC31)

? v f \" r t > t t r

V r ? r r ? r r ? v

e ?- ^V^VVX^V

(d) Sub-class 32(SC32)

Figure 32. Samples from four Sub-classes
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It follows that a major issue in HAHNR would be to distinguish between Class 3

in CWS I and Class 2 in CWS II. This issue could be resolved if the writer's CWS is

known. For example, if the sample ' ^ ' originates from a writer with CWS I, then it

belongs to Class 3, whereas if the writer has CWS II, then it belongs to Class 2. This

means that it is important to determine the CWS of a writer.

7.3 Experiments and Error Analysis

Since the result of this verification module is a part of the experiments in Chapter

6, details can be found in Section 6.3, and in this section, we only summarize the

performance for this Writing Style Verification (WSV).

Experiments with and without WSV were conducted on the same CENPARMI

Hindu-Arabic Isolated Numerals Database. The results of the proposed method are

compared with those of the algorithms presented in [44]. After applying the rejection

measurement based on LDAM, where the error rate was 0.71%, the recognition rate

increased from 96.87% to 97.81% with the implementation of WSV while almost

identical reliabilities were achieved, as shown in Table 11. Without rejections, the

recognition rate increased from 98.61% to 98.97% for the present method, and over

25% of previous wrongly classified samples could now be correctly recognized with

WSV.

The two main sources of errors arose due to the fact that some writers used

contradictory styles that resulted in 2's and 3's being indistinguishable, and there was

difficulty in clustering this data accurately into sub-classes.
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Table 11. Performance comparisons of methodologies with and without WSV

With Rejection
[44] Proposed

Method

Without Rejection
[4] [44] Proposed

Method
#Correct
Rate (%)
# Error

Rate (%)
# Rejection
Rate (%)

6005

(96.87)
44

(0.71)
150
(2.42)

6063

(97.81)
44

(0.71)
92

(1.48)

5802

(93.60)
397 (6.40)

6103 6135
(98.61) (98.97)
86 (1.39) 64

(1.03)

7.4 Conclusion

Since there is a high degree of confusion in shapes between Classes 2 and 3 in

HAHNR, most errors in any recognition system for HAHNR have been found to

occur in these two classes. In this research, we designed a verification system that

could detect and correctly recognize the confusing pairs with the writing style

information based on the rejections from a supervised learning process. In this

verification, an unsupervised learning in the test procedure helped to retrieve the

hidden context information, and it helped to correct the errors with confusing shapes

[46].

While this approach was motivated by and applied to the problem of

Hindu-Arabic numeral recognition, it could also be adapted for other pattern

recognition contexts that require the distinction between classes of highly similar

patterns [47].
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Chapter 8

Conclusions & Future Work

In this chapter, we summarize the contributions of this thesis (Section 8.1) with some

concluding remarks and address some possible future research directions (Section

8.2). In this thesis, many efforts have been devoted to improving the learnability of a

pattern recognition system in the classification/prediction and verification process.

From a practical perspective, this approach was motivated by and applied to the

problem of handwritten Hindu-Arabic numeral recognition.

Our methodologies could be adapted for other pattern recognition or machine

learning contexts that require the distinction between classes of highly similar

patterns.

8.1 Summary

In pattern recognition, error minimization should be the target of most

applications. In order to work toward a task-oriented model of learning, reduce errors,

and improve the management of interactions between the learning process and pattern

recognition, we designed a novel semi-supervised learning model. This model was
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built with the intention of defining the boundaries among classes, including the design

of an effective rejection measurement, and we utilized multiple verification modules

based on different error categories. These modules included a Writing Style

Verification (WSV) process to retrieve the information that could not be retrieved in

supervised learning. These samples which had been rejected by Linear Discriminant

Analysis Measurement (LDAM) in supervised learning, were verified by WSV. In

conclusion, this thesis presents some beneficial solutions to the problem of pattern

recognition and has five main contributions:

1) By simulating a human being's learning and cognition, we designed a novel

Semi-Supervised Learning (SSL) system with a rejection option which

broadens the definition of a standard SSL. Formerly, unlabeled data have only

been used as complementary data to modeling. In this study, unsupervised

learning has been applied with unlabeled data to retrieve extra information

(patterns' spatial properties). Thus, semi-supervised learning should be a

learning procedure that we should apply not only to generate models with the

labeled data but also with extra information obtained/retrieved from the

unlabeled data.

2) In addition to the object information, the context information (task constraints)

should be helpful in handwriting recognition. Accordingly, retrieval of context

information should be considered to disambiguate the confusing shapes

between two overlapping classes. When researchers work on isolated offline

handwriting recognition, a prior knowledge is always ignored or limited in its
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usage. Beyond the importance of context information, knowledge of how to

automatically extract contextual information should be taken into

consideration [34]. Thus, we worked on context knowledge retrieval in this

study so that we could categorize the confusing shapes based on the retrieved

context information, which is a writer's writing style.

3) Error minimization and rejection obligation are two strategies used to achieve

a high reliability while maintaining a high recognition rate. Hence, in

supervised learning, we designed a recognition system with some

state-of-the-art technologies. We performed noise removal, grayscale

normalization, and size normalization in image pre-processing. Gradient

features were extracted from the processed images, and we applied SVM with

a Radial Basis Function (RBF) kernel to do the classification. Moreover, based

on a theoretical analysis of the trade-off in the error, rejection, and recognition

rates of a classifier system, we successfully designed a novel rejection

criterion using the Linear Discriminant Analysis Measurement (LDAM) to

evaluate the results from classification. The LDAM relies on the principle of

LDA and considers the confidence values of the classifier outputs and the

relations between them. The LDAM was implemented to reject the data with

unreliable classification results which were produced by supervised learning

and to potentially reduce the errors. As a result, it represents a more

comprehensive measurement than the traditional rejection measurements.

110



4) Verifications based on categorized errors compensate for the classifier's

weakness. In this real-life application, before discussing the development of a

system to reduce errors and achieve a high reliability, we should also study

misclassified data and find ways of preventing their occurrences. Therefore,

we analyzed and categorized the errors in the training procedure so that we

could understand the reasons for the errors and design target-oriented verifiers

in the testing procedure. In these categories, one effective strategy based on

the writers' writing styles with unsupervised learning on the test set was

successfully designed.

5) The designed OCR engines were applied to Hindu-Arabic handwritten

numerals, and they achieved a high recognition performance. The final

recognition rate was increased to 99.05%, significantly higher than the

performance (93.60%) of [4] on the same database. The number of errors

decreased from 95 (in supervised learning) to 59, and almost 38% of

previously misclassified samples could now be correctly recognized with this

verification. When the rejection option was applied, the recognition rate, error

rate and reliability were 97.89%, 0.63%, and 99.28%, respectively.

8.2 Future Research

While the method presented in this thesis has been implemented for handwritten

numeral recognition, it is really much more general in nature and can be applied to

most pattern recognition contexts (e.g. signature recognition, fingerprint recognition,
in



face recognition, bioinformatics, etc.). Although several models and measurements

have been proposed, the work is far from finished, and future research may include

the following challenging problems:

1) We should keep on conducting research on human learning and cognition so

that we can guide or enlighten the research in machine learning and pattern

recognition.

2) Although the database on which we conducted experiments represents a large

number of samples, the diversity of writings, and even the writers' I.D.'s,

etc., more information should be recorded during the data collection process.

For instance, if the nationality which reflects the spatial factors of writers is

recorded during the data collection process, it could be easier to define the

people's writing styles accordingly.

3) In this thesis, we conducted experiments on gradient features and used an

SVM classifier. In the future, these factors (e.g. choosing different features

and classifiers, applying a multiple classifier system, etc.) can be taken into

consideration to potentially improve the system's performance.

4) We applied the methodology of this thesis to semi-supervised learning so that

we could reject the data with unreliable classification results produced by

supervised learning. In the future, we can apply the LDAM rejection method

to training procedures or to multi-classifier systems in which the

measurement level outputs are generated. In addition, we may design more

effective measurements to evaluate the outputs from classifiers.
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5) Errors in this thesis have been grouped into four categories. In the future, we

could incorporate other error categories or design new strategies based on

these error categories.

6) In this thesis, we automatically retrieve some extra information from the

database (writers' writing styles) by unsupervised learning, which indirectly

reflects the spatial factor of the database. In the future, we should discover

and retrieve more knowledge or information from the databases in order to

classify/predict patterns more accurately.

7) While this approach was motivated by and applied to the problem of

Hindu-Arabic numeral recognition, it could also be adapted for other pattern

recognition contexts that may require the distinction between classes of

highly similar patterns.
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