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ABSTRACT

Stochastic Flow and FBSDE Approaches to Quadratic Term Structure

Xinghua Zhou

We study the stochastic flow method and Forward-backward Stochastic Differen-

tial Equation (FBSDE) approach to the Quadratic Term Structure Models (QTSMs).

Applying the stochastic flow approach, we get a closed form solution for the zero-

coupon bond price under a one-dimensional QTSM. However, in the higher dimensional

cases, the stochastic flow approach is difficult to implement. Therefore, we solve the

?-dimensional QTSMs by implementing the FBSDE approach, which shows that the

zero-coupon bond price under QTSM provided some Riccati type equations have global

solutions.
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Chapter 1

Introduction

Modeling the term structure of interest rates is an important topic in mathematical

finance. Because of the tractability in pricing, affine term structure models (ATSMs)

have been widely used in financial modeling. In ATSMs, the price of a zero-coupon

bond, which pays $ 1 at time T, is an exponential-affine function of the factor process

Xt

P(Xt,t, T) = exp \b(T, t)'Xt + C(T, t)

at time 0 < t < T where B(T, t) is an ? ? 1 vector and C(T, t) is a scalar. The study

of the ATSMs includes Vasicek and Smith (1977), Cox et al. (1985) and Duffie and

Kan (1996). However, ATSMs have some drawbacks. Dai and Singleton (2000) show
that ATSMs fail to capture some aspects of swap yield distribution, which suggest that

there may be some omitted nonlinearlity in ATSMs. Ahn and Gao (1999) empirically

show that non-affine term structure models outperform one-factor affine models.

Recently quadratic term structure models (QTSMs) have been studied by several

authors. In QTSMs, the zero-coupon bond prices are exponential-quadratic functions
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of the factor process Xt

P(Xt, t, T) = exp \x[A(T, t)Xt + B(T, t)'Xt + C(T, t)

at time 0 < t < T where A(T, t) is a non-singular nxn matrix, B(T, t) ia an ? ? 1 vector,

and C(T, t) is a scalar. Ahn et al. (2002) introduce the comprehensive QTSMs and study

the characteristic of the models. The pricing problems of QTSMs have been studied

by Chen et al. (2004) and Leippold and Wu. Other research on the topic of QTSMs

includes Levendorskii (2005) and Boyarchenko and Levendorskii (2007). Compared

to ATSMs, QTSMs can capture nonlinearities between economic factors and provide

more flexibility when constructing models. Moreover, as shown by Chen et al. (2004),

Leippold and Wu, and Leippold and Wu (2002) QTSMs are analytically tractable in

that the zero-coupon bond price has an exponential-quadratic form in the state variables

and the the prices of European style options can be calculated by Fourier transform

methods.

In this thesis, we study QTSMs using two approaches, a stochastic flow approach

and a forward-backward stochastic differential equation (FBSDE). The stochastic flows

approach to ATSMs has been studied by Elliott and van der Hoek (2001), Grasselli

and Tebaldi (2007), Hyndman (2007a) and Hyndman (2009). This method gives a

closed-form solution to the pricing problems for certain ATSMs. The FBSDE approach

was first introduced by Hyndman (2007b). In Hyndman (2007b), the author adapted a

technique from Ma and Yong (1999) to prove existence and uniqueness of a nonlinear

FBSDE which is generated from the pricing problem for the Cox, Ingersoll and Ross

(CIR) model of Cox et al. (1985). The results in Hyndman (2007b) have been extended
to the ?-dimensional case by Hyndman (2009). Geman and Yor (1993) have shown that



the CIR process is a Bessel process under certain restrictions, which means that the

CIR process and the comprehensive QTSMs are equivalent in certain cases. Motivated

by this fact, we extend the techniques of the stochastic flows approach and the FBSDE

approach to the comprehensive QTSMs.

The thesis is organized as follows. Chapter 2 introduces the models we study. Model

A in Chapter 2 is consistent with the QTSMs introduced by Ahn et al. (2002). In

Chapter 2, we also study the stochastic flows approach to QTSMs. We give a close-

form solution for zero-coupon bond price to our model in one-dimensional case. We

also discuss the parametric restrictions required when implementing the flows method

to two-dimensional QTSMs. In Chapter 3, we demonstrate the FBSDE approach for

the zero-coupon bond price for the class of the comprehensive QTSMs. Chapter 4

concludes and discusses future research directions.
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Chapter 2

Stochastic Flows Method

In this thesis, we study two different models for the short interest rate process. Both

are formulated on the risk neutral probability space (O, J, {3t, t > 0}, Q) for 0 < t < T*

where T* is the investment horizon, {Jt} is a right-continuous and complete filtration,

and Q is the risk-neutral measure. As in Shreve (2004) (p 411), the price of the zero-

coupon bond at time t for maturity T < T* is given by

P(t,T) = EQ exp / rudu ?t (2.1)

On the risk neutral probability space (O,3", {3t,t > 0},Q), suppose the factor process

X E R" is given by

dXt = {AXt + B}dt + adWt, (2.2)

where

a?,?

A =

Ql,? h s?.?

B = s —

Cin

^n, 1 ' ' " ^"?,? \? s?.? s?
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and

Wt(i)

Wt

w¡(?)

is any rc-dimensional Brownian motion with respect to (O,?G, {3"¡,í > 0},<2). From

Friedman (1975), the unique solution of SDE (2.2) satisfies the strong Markov property.

We assume that the riskless interest rate rt is given by a function r(Xt). In this

thesis, we would like to consider two different models of r(Xt). Model A is defined as

follows,

r(Xt) = X[TX1 + RX1 + k, (2.3)

where

G

7i,i ¦ · · ??,«

, R rl , ' ' ' 7 rn

??? ' ' ' Ifn.n

and k is a scalar. G is required to be positive semidefinite.

Remark 2.1. Since G is positive semidefinite. The lower bound of r [X1) from (2.3) is

k — \RT~iR' when X1 = -^T-1R'. So this model can guarantee the positive sign of the
short rate process by setting k - iRT^R' > 0. To find the minimum of (2.3) we just

need to take the partial derivative ofr(x), for ? = (X1 , · · · . xn) with respect to .X1, ¦ · ·

Xn. Then we know that if Xt satisfies equation

(r + T')xt + R' = onxl, (2.4)

'•{Xt) can reach its minimum. Since G is positive semidefinite, it is a symmetric matrix.

Simplifying equation (2.4) to get Xt = — |G 1R .



Model B is defined as follows,

r{Xt) = CX1X[C + RX1 + k, (2.5)

where

Ci , · · · -Cn , R = n,··· ,r„

and k is a scalar.

Remark 2.2. Model B can be seen as a special case of Model A by setting G = CC.

In one-dimensional case, these two models coincide.

In this chapter we study the stochastic flows approach for quadratic term structure

models. In the following discussion we find that the stochastic flows method can solve

the one-dimensional model. However, this approach becomes complicated in the higher

dimensional cases and it is not clear if the method works unless we add some restrictions

on the parameters of our models.

2.1 Introduction to Stochastic Flows

We introduce the definition and some important properties of stochastic flows in this

section.

In the general case, consider the stochastic differential equations, (SDE)

dXt = b(t, Xt)dt + a(t, Xt)dWt (2.6)

taking values in R". Suppose

b : [0, oo) x R" -> Rn

s: [?,??) xRn ->R"xm



are Borel-measurable functions.

We are interested in solutions of (2.6) started from an initial condition ? at time s.

Definition 2.1. Fix some ? G [0, oo). A solution of the SDE (2.6) for the pair (b, s),

starting at s, is a triple

{(n,?,%,Q),(Xt,t>s),(wt1t>o)}

with the following properties:

(i)(a) and (b) hold:

(a) [Vi, J, Q) is a complete probability space;

(b) Ji is a filtration with {N G S]Q(N) = 0} G "J0.

(ii){Wt,3t) is a R™ -valued Wiener process on (O,3", Q);

(Hi) {Xt} is a continuous R" -valued process on (O, 3~, Q) such that

(a) ? —> Xt(u) is 7t-measurable for each t > s;

(b)
t t

Í 16'(It, Xt)\du + Í \aij(u,Xt)\2du < oo
SS

Q-a.s. for each t G ¡s,oo);

(c)
t t

Xt = Xs+ i b(u, Xu)du + / a(u, Xu)dWu
s S

Q-a.s. for each t G [s, oo).

We shall require solutions of (2.6) to have the property of path-wise uniqueness as

in the following definition.

Définition 2.2. Fix an arbitrary ? G R". The SDE (2.6) for the pair (b,a), starting

at s, has the property of path-wise uniqueness from ? G R" if for any two solutions

{(O, J, Tt, Q), (X¡ ? > s),{Wut> 0)}, i = 1,2
7



such that

X] = Xl = Xj Q-a.s

it follows that

Q({Xi=Xf,te[s,oo)}) = l.

In the most general case our analysis requires the following assumption.

Assumption 2.1. Assume that the Borel-measurable functions b : [0, oo) x Rn —> Rn

and s : [0, oo) xR"-> Rnxm satisfy the following conditions (a) and (b) for s G [0, oo):

(a) for ? G R", there exists some solution

{(n,3,%,Q),(Xt,t>s),(Wt,t>0)}

of the stochastic differential equation (SDE) for the pair (?, s) starting at s, such thai

Xs = x, Q a.s.:

(b)for ? € R", the SDE for the pair (b, s) starting at s, has the property of path-wise

uniqueness from x.

Remark 2.3. The motivation for Assumption 2.1 is so that we can apply the results

of Kallenberg (1996). This result is rather technical and is stated in Theorem ?.2.? of

Appendix of Hyndman (2005)

On a probability space (O, J, Q) consider the stochastic differential equation (2.6)

taking values in R" with b and s satisfying conditions (a) and (b) of Assumption 2.1.

For each ? G R" and for t < u write X\f for the solution to
U U

Xfux=x+ fb{s,Xt*)ds+ fa{s,Xl'x )dWs. (2.7)
The following result allows us to formally differentiate (2.7) with respect to ? and

shall be used throughout the thesis.
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Theorem 2.1 (Diffeomorphism Theorem). Suppose b : [0, oo) x Rn —* R" and s :

[?,??) x R" —> R"xm are such that equation (2.7) has a solution that is path-wise

unique and there is an open set D C Rn such that ? —> b(t,x) and ? —> a(t,x) are

smooth functions of ? (up to order two) for all ? e D. Then ? —» ?£? is differentiable

and the result of differentiating equation (2. 7) formally with respect to ? is valid. That

is, ^f- satisfies

^El = I+ ¡db(S,X¡ndX^dc | jda(stXl>*)dXl>*dx J dt dx J dt dx
t t

for all ? G D.

Proof. This result has its roots in the work of Blagovescenskiï and Freïdlin (1961). The

proof, which is a consequence of the Kolmogorov-Centsov continuity theorem (Karatzas

and Shreve (1991), Theorem 2.2.8), can be found in Kunita (1981). D

A key property of stochastic flows which we shall employ is the semi-group or flow

property.

Lemma 2.1 (Flow Property). If' X^x is the solution of (2.7) and X^x is the solution

of (2. 7) starting at time s with s < t < u then

in the sense that one is a modification of the other.

In our models, b(t,x) = [Ax + B) and s(?,?) = s satisfy Assumption 2.1. There-

fore, the stochastic flow associated with the factor process Xt given in (2.2) has the

diffeomorphism and flow properties.

9



2.2 One Dimensional Case

We use the following notation in this section. The factor process is given by

dXt = ß(a - Xt)dt + adWt. (2.8)

On the risk-neutral probability space (O, 5", {iFt, t > 0}, Q), the riskless interest rate rt

is given by the function

r{Xt) = cXl + bXt + a. (2.9)

Define X¡>x as the solution of (2.8) started from ? e R at time t > 0. So that Xlf
satisfies

s S

X¡·* = ? + J ß(a - Xl¡x)du + s ? dWu, s e [t, T]. (2.10)
t t

The zero coupon bond price with maturity T at time t is

P{t, T) = E

By the Markov property of Xt ,

exp

1

- I r(Xu)du (2.11)

P{t,T) = P(t,T,Xt), (2.12)

where

P(t, T, x) = E expi - / r{X?)du

Taking the derivative of (2.13) with respect to x,

dP{t, T, x)
dx

t

E

E

- |r'(^)^-^exp( - j r{X?)d-
t ?

T

L{t,T.x)w(^- J r{X?)d

(2.13)

(2.14)

10



where
t

/ßXtx
???-Q^-du. (2.15)

?

We may exchange the order of expectation and differentiation since b(x, t) = ß{a - x)

and s(?, t) = s satisfy the linear growth condition in ? and global Lipschitz condition,

the partial derivatives of b(x,t) and a(x,t) are continuous and satisfy a polynomial
. t

growth condition and the function exp{— J r(x)du] has two continuous derivatives sat-
t

isfying a polynomial growth condition (see Friedman (1975) ? 117-123).

In order to factor out the bond price P(t, T) from the expectation in (2.14), we want

to work on the forward measure QT . Recall that the forward measure is defined as

follows:

Definition 2.3. Let T be the maturity date. The T-forward measure QT is defined by

QT(A) := Eq[AtIa] VieJr

where

Ar dQ
T

.Tl

dQ Ty'expi- J:=P{0,T)~ exp[ - \ r{Xu)du). (2.16)
3V

Let

exp{-/r(Xu)du|p(i,r)?,. = E[AT\St] l ° P(0,T) · (2·17)
Then for any 9"T-measurable random variable f with ?t\?\ < cxd, the Bayes' Theorem,

Karatzas and Shreve (1991) (pl93, Lemma 5.3), we have

?t[?\^] = A;1 E^AtIJ1]. (2.18)

So

ET[ip\5t]P{t,T) = ?^?[??t\??^,?). (2.19)
11



Substitute (2.17) and Definition 2.3 into (2.19),

?t[f\%)?{?,?) =
P(O, T)

exp{ -fr(Xu)du\P(t,T)
¦E

expí - Jr(Xu)du j
P(O, T) % P(t,T)

E

= E

f
expí - Jr(Xu)du J
expí - Jr(Xu)du

f ¦ exp

%

St¦ fr(Xu)du
t

t

= E f-expí- friX^du} (2.20)

So

dP{t,T,x)
dx

x=Xt
= P(t,T)ET

= P(t,T)ET

L(t,T,Xt)
1

/< dX.t.x

VcX? + b){-£-) du
x—Xt

7t (2.21)

Now we want to find a Brownian Motion under the forward measure QT. Let f{Xt) =

A1. By Itô's formula, we have
t t

f(Xt) = /(X0) + J f'(Xu)dXu + IJ f"(Xu)d{X)u
0 0

Í <_

= /(X0) + J f'(Xu){ß(a - Xu)du + adWu} + -J f"(Xu)a2du
¦ 0 0

t t

= /(X0) + J {f'(XuMa - Xu)) + \r(Xu)a2}du + J f'(Xn)adWu.
o o

By Definition 2.3, At is a martingale in the probability space (O. J, {^,t > 0},Q).

Then we have
t

J {f'(Xu)[3(a - X11)) + l-f"{Xu)a2}du = 0. (2.22)

12



So

where

t

f(Xt) = f(Xo) + Jf'(XufrdWu,

exp

/W =
¡r(Xu)du)o J dP{t,T,x)

P(O, T)

exp<^ - Jr(Xu)duI o

ax ix=xt

P(O, T)

f(Xt)ET L(t,T,Xt)

P(t,T)ET

%

L(t,T,Xt) ?t

(2.23)

(2.24)

Define

Then

?„ = -s?? L(u,T,Xu)

By Girsanov's Theorem,

A, = A0 - / 0uAudWu.
o

t

W? = Wt+ I Qudu

(2.25)

(2.26)

(2.27)

is a Brownian Motion with respect to the forward measure QT . The dynamics of X

under the forward measure becomes

t,x
S

Xf = ?
s s

?{ß(a - Xf) - s??}?? + s J dWf. (2.28)
Consider this expectation ET IK*t.xdXy

dx
du

?—Xt
% . We want to construct an

ODE of it in the following discussion. Define

D (x) .... dX*X^s(X)- dx (2.29)

13



Since our factor process Xt is Gaussian, differentiating equation (2.28) with respect to

? gives that Dts(x) satisfies, by Protter (2005) (Theorem 39, ? 250),
S

Dis(x) = 1 - ß [ Div(x)di (2.30)

which can be solved independent of x. The solution to (2.30) is

Dis(x) = e-^-O.

Applying Itô's product rule using the dynamics of Dts(x) given by (2.30) and X,

given by (2.28), since Dts(x) is of finite variation, we have
s S

X^DUx) = ? + / Dtv(x)dXlvx + Í Xl'xdDtv(x)
t t

s S S

aß I Dtv{x)dv -2ß Í XlvxDtv{x)dv + s í Dtv(x)dWj

t.x
S

= X +

dv\
X — X.X)

1JU 7) dv. (2.31)-s2 ÍDtv(x)ET J(2cXvvf + b)DVVl(x)
t ?

Take the expectation of equation (2.31) under the forward measure QT,
s S

Er[Xl^DUXt)Pt] = Xt + aß J Er[DUXt)^tIdV - 2ß J ET[Xl'Xt Dtv(Xt)\%]dv
t t

s T

-a2 í í ET[DUXt)ET[(2cX:¡x^ +b)Dvvl(Xv)dv1\%}pt]dv
t ?

(2.32)

By the tower property of conditional expectation, since t < ? < s < T, in equation

(2.32), the conditional expectation becomes

ET[DUXt)ET[(2cXvv;x" + b)DVVl (Xv)\2v]\?t]

=ET[DUXt){2cX:^' + b)Dvvl(Xv)m

=2cET[DUXt)X::X'-DVVl(Xv)Pt} + bET[DUXt)DVVl(Xv)m (2-33)

14



By the flow property we have, for t < ? < ?? < T,

Xv,Xv vv.Xy * ??,??V1 - ??? - ??? ¦ (2.34)

Then applying the chain rule we find

Dtv(Xt)DVVl(Xv) — DtV1(Xt)- (2.35)

Then, substitute (2.33) and (2.35) into (2.32) we find
s S

Er[Xl^Dt8(Xt)Pt]= Xt + aß J ET[Dtv(Xt)\?t}dv-2ß J' ET[X1VX> Dtv(Xt)Pt]dv
t t

s T

- a2b í Í Er[Dtvl (Xt)PtIdV1(Iv
t V

s T

- 2a2cf [ET[XIfDtV1(Xt)PtIdV^dV. (2.36)
t V

Define

g(s) = Er[Xl^Dt3(Xt)Pt]- (2.37)

Substituting (2.30) in (2.36), we have an ODE
s s

g(s) =Xt + aß Í e-ß(v-l)dv - 2/3 Í g(v)dv
t t

s T s T

- a2b f ?' e-ß(?'-?)??f - 2o2c í Í g(v,)dv,dv. (2.38)
tv tv

Differentiating equation (2.38) with respect to s, we obtain the following ODE with

boundary conditions

g"(s) = -aß2e-ß{s-l) - 2ßg'(s) + öaV^^ + 2ca2g(s)

9(t) = xt (2.39)
t t

g'(t) =aß- 2ßXt - a2b I e^1"'^ - 2ca2 g(v,)dVl.
15



Equation (2.39) has general solution

g(s) = c^hh^/»5^)- + ^(-¿-?//»5^)· + ^ _°f2 ¦ -ß(s-t)
ß2 - 2œ2 (2.40)

Applying the boundary conditions allows us to show that

Cl = |q/J + „v-ay -«.,? . (e_^-„ _ 1} + ?_ß + ?)?
}/¦

?-ß-???-t)

+ {bo2 - aß2)ß + (bo2 - aß2)(-ß + ?) _ e{_ß_v)(T_t) ^ j ^ &{-ß+?)t
? ß + V+{-ß + v)e2il{t-T)

2j™2 _ ?. 2/1^2
C2

+

X

(ba2 - a/?2)/3 , (?s2-a/?2)(-/3-?7) _ ,^„^l /?(-?t+
?? ?

ß-? + {-ß-?)ß2??{?-?)

/

where

?= y/ß2 + 2co2.

Therefore ?t[??'????3(??)\3?} is a deterministic function of Xt. Hence, by the Fubini's

Theorem, we have

L(t,T,Xt) %

-IE-t (2cX^Xt + b)Dtu(Xt)du ?t

1 1

t t

Ci{-P-V) . ,6(-ß+?)t _ e(-ß+n)t\ + c2(-ß + V) . ^(-ß-?)? _ e{-ß-v)tj
-,2

+ brf - 2fs2 - aß2) ß(T-t) _ nßv2 ' [ h (2.41)

16



Define

?(t) = 2c(e2?'T - 1)
ß-? + (-ß-?)ß2t't' (2.42)

-{?{t) = { laß + (ba2 - aß2)ß (-ß-?)(ß2^-1)-2?

+
.2 ?.„2?„2 _ „2\ 6s2/?2-2?s2(?s2-a/32)(frx2-^)(/?2-r/2) _ ^ _

772 /V

*{'[(/? + 7?)(e2,'T-l) + 2r/ }·
where

t = ? -t.

(2.43)

Substitute (2.41) in (2.21).

dP(t,T,x)
dx x=Xt

P(t,T){A(r)Xt + B(T)]. (2.44)

Let

P(t,T,Xt) = exp{^ · A(r)X? + B(r)Xt + C(T, t)}, (2.45)
where C(T, t) is a differentiable function from R2 to R. By Feynman-Kac Theorem

Karatzas and Shreve (1991), P(t,T,x) defined in (2.13) satisfies the Cauchy problem

dP(t,T,x) dP(t,T,x)¦+ß(a - ?) ¦dt

+ r'

dx
d2P(t,T,x) - (ex2 + bx + a)P(t, T, x) = 0, (2.46)

and the boundary condition

P(T, T, x) = 1.

Substituting (2.45) in ODE (2.46) and dividing the whole equation by P(t,T,Xt), we
have

1^+ X1 Ä + ^P + iß« - ßX,)[A(r)X, + B(T)]dt dt dt

1 2 (A(T)X1 + B(t))2 + A(t) = cX2 + bXt + a (2.47)
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Comparing the coefficients on both sides of equation (2.47), we get an ODE of C(T,t)

(2.48)^gVO + ßa?{t) + \?2?(t)2 + \s2?(t) - a = 0
C(T, T) = 0.

Solving this ODE, we find that C(T, t) is a function of r. We denote C(r) = C(T, t).

C(r) = b2a2 - 2aß2b - 2a2ß2c
2?2

t + - ??e 2?e{?+ß)t

2 ° {(ß + ?)e2^ + ?- ß
+ 2c(ba2 - aß2)2 + 2/3(0 + 2ca)(bo2 - aß2)(ß + J])e^r - ß2a2(b + 2caf

?3(ß + ?)\(ß + v)e2r>T + ?- ß
ß2a2(b + 2caf - 2c(ba2 - aß2)2 - 2ß(b + 2ca)(ba2 - aß2)(ß + ?)

2?4(ß + ?)
(2.49)

Summai-izing the material of this section we have the following Theorem.

Theorem 2.2. For t G [0,T] and for all ? G R;

P(t,T,x) = exp{y ?(t)?2 + B(r)x + C(T, t)},
where ?(t), ?(t) and C(t) is given by (2.42), (2.43) and (2.49), respectively.

Corollary 2.1. If the factor process is given by (2.8) and the short rate is represented

by the function (2.9), the zero-coupon bond price is

P(t,T) = ezp{i · ?(t)?2 + B(T)X1 + C(Tt)],
where ?(t), ?(t) and C(t) is given by (2.42), (2.43) and (2.49). respectively.

This agrees with the results in Nawalkha et al. (2007) (? 487-488).

2.3 Two Dimensional Case

Next, we discuss the application of the stochastic flows approach to the two-dimensional

quadratic term structure models. Consider the Model B of two dimension. The factor
18



process is given by

dXt =
dxP
dX\(2)

«11 Ö12

0-21 Ö22

Xi(1)

x,(2)
+ ? di +

Cu Ci2

C21 C22

dwf>
dH/t(2)

. (2.50)

The short rate process is

r{Xt) = CX1X[C + BXt + k,

where

C = Cl, C2 ,A = n, ^2

and k E R. Recall that P(t,T,x) is defined in (2.13). In the two-dimensional case

? = Xl, X2

dP{t, T, x)
dx x=Xt

dP(t,T,x) I
dxi Ix=Xi

dP(t,T,x) I
ÔX2 I X=Xt

P{t,T)ET '.[-
P{UT)ET -r\*

t.Xt
(1),«

í.X¡

\rt ,Xt

X,

X,

X,t,Xt
(2),u

CC + R

CC + R

ax
t.x

(1).-"

dX

dx\
t.x

(2),

OX,

9xi
t.x

(I),"
9X2

9X
(2),"

9x2

dw,

d«

(2.51)

Following similar steps to the one-dimensional case, we prefer to work under the forward

measure QT. The Brownian motion under the forward measure is given by

W¡
W¡2)T -I«

??11}
du + Wt (2.52)

\T\1(2)
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where

?,™ =??
X,

X

U, Xu
(I)."

u,Xu
(2),»

CC + i?
9X

9X

ll.X-fi.

9x]
u.Xu
(2), ?

el2> =#T

??,?-a

?u,Xu
(2),«

CC + R
ax

dxi

¦u. Xi

dv *J li

O)/
dx-2

u,X„9X(2),'
0X2

dv

Then under the forward measure, the dynamics of X¿ are

Xl* = ? + / I AX\f + ?-ss'
(i)?

??2)

s

adWi

We also know that dX*'x
dx

is deterministic

ax;?,?

dx All(x) = e^-"=/ + ¿
fc=l

And the dynamics of —gj— are

Ae(ar) =
OX(I)5 ax.

dxi

ax'

O)*
9X2

(2)s
OX

(2)6
9xi 9x2

A1^) A1S2W

A21W A22W
S

= I + / ????)«*«

1 0

0 1

S

I
22
ÍUanAüía:) + ai2A2« «ii A12W + «12A

a21 A1J(X) + U22Al1 a2i Au(^) + a22A2u
du

Now consider the expectations

E1

E1

I
t

A(l)u
Xt,x

(2)u

CC

X

X

t,x
(l)u

t.x

(2)u

CC

AlV)

A1U2W

A22 (^)

d« S1

dw

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)
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We want to show that (2.57) and (2.58), are deterministic functions of Xt. From (2.55),

we have, evaluated at ? = Xt,
U

C1X1^11 + C2X1^n = C1X1 + C2X2 + / {(cían + C2O21)X^ + (C1U12 + CZa22)XfJ1, + C1I1
t

U U

+ C2I2] dv + / (C1 011 + C2O21 )dW£)T + / (C1CTj2 + C2O22)OW]?)T
t t

u

- / ([Cl(^11 + ?\2) + C2(O11O21 + O12O22)Je^
t

+ [C1(O11O21 + O12O22) + C2(OJ1 + o%2)}G{V}dv, (2.59)
Similarly, we could get the dynamics of C1D]Kx) + c^ìl, and C1D]Kx) + C2DfK

U

C1D]Kx) + C2A2,' = C1 + A(C1O11 + c2a21)D]l(x) + (C1U12 + C2Ci22)DlKx)) dv (2-60)
t
u

C1D]Kx) + C2DZ = C1 + A(C1O11 + c2a21)D]Kx) + (^a12 + c2a22)D%(x)}dv (2.61)
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So by Itô's product rule, we have

Xt.x

(l)u

yt,X
CC

Dl](X)

=(ci*m« + <*X¡ZL)(ciD£(x) + C2D
U

=?\?? + C1C2X2 + / (C1D]Hx) + C2D42J(X)) [(ci ap + c2a21)X^)v + (C1O12 + c2a22)X^)v
t

u

+ C1I1 + c2b2]dv + [(C1DlHx) + C2DfHx))(C1G11 + c2a21)dWJi1)T
t

u

+ J(C1D]Hx) + C2D^x))(C1O12 + c2a22)dWPT
t

U

- J(C1D]Hx) + c2D?v(x))(k^] + k29^)dv
t

U

f(C1X^ + c2X^)v) [(C1U11 + c2a21)D]Hx) + (C1U12 + C2O22)Al1M] *>, (2-62)+

where

k\ = C1(CTn + CTj2) + C2(O11O21 + CTi2CT22)

&2 = C1(CTnCT21 + CT12CT22) + C2(CT21 + CT22).

Consider (C1 A" (*t) + c2Dfv(Xt))(kM] + k2e{v2)). From (2.53) and (2.54). we have

(CiA1JM + C2A2JM)(A"^ + fc2e<2>)

--E7 Jt-
X

X

V.Xv
(I)V1

v.Xv
(2)vi

CC + i?}

X
(^A11I (Xv) + k2Dll(Xv))(ClD]HXt) + C2DS(X1))
(Ic1DlI1 (Xv) + k2DZ, (Xv))(C1D]HXt) + C2DS(Xt))

By the flow property, we have

dv\ (2.63)

??.Xt ??.?t yt.Xt yv.Xv
?(1)?? - ?(1)?? ?(2)?, - ?(2)«?'
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and

Aï (Xt) =Dll (X17) ¦ D\l (X1) + DU (Xv) ¦ Dfv [XtI

DfVl(Xt) =£>£(*,) · D\l{Xt) + DH1[Xn) ¦ Dl(XtI

D\l (Xt) =Dl\ [Xv) ¦ D]I[Xt) + DH1 (Xv) ¦ D^(X1),

Dil (X^) =¿C (Xv) ¦ D]I(Xt) + DH1 (Xv) ¦ Dfv[Xt).

(2.64)

(2.65)

(2.66)

(2.67)

But in (2.63), we have

(hD?vi[Xv) + It2DlI1 (Xn)) [C1D]I (Xt) + C2D^(Xt))

^k1C1DlI1(Xv) ¦ D]I(Xt) + Ic1C2DlI1(Xv) ¦ DiI(Xt) + U2C1D]I1(Xv) ¦ D]l(Xt)

+ k2c2Dll(Xv)- D^(Xt), (2.68)

and

(R1DlI1(Xv) + k2DfVi(Xv))(ClD]l(Xt) + C2DH(Xt))

=klCltì^ (Xv) ¦ D]](Xt) + R1C2DH1 (Xv) ¦ Dll(Xt) + ^CiDlI1 (Xv) ¦ D]¡(Xt)

+ U2C2DIt1(Xv)-D^(Xt). (2.69)

In order to apply the flow property to (2.68) and (2.69), we need to add the following

restrictions

U1C1 = k2c2 = k.

U1C2 = U2C1 — 0,

(2.70)

(2.71)'

where k G R is any constant. So

(C1D]I(Xt) + C2DH(XMk1Q^ + U2QW)

D]UXt)
=E7 fk{,

•yt.Xt

Xt.Xt
(2)??

CC + /?} tvi

DiI1(Xt)
dv-i 3 (2.72)
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Moreover, we have to put some restrictions on the coefficients in the equation (2.62),

which is

m
C1On + C2Cl2I CiO12 + c2a22

Cl C2

With the restrictions (2.70), (2.71) and (2.73), we can get an ODE for

E1

from equation (2.62). That is

yt.Xt

yt.Xt?(2)?\

CC

DiI1(Xt)

E7
X,

X

t.Xt
(l)ti

t.Xt
(2)u

CC

U

I+ 2m / ET
t

X,

X,

t,Xt
(l)v

t.Xt
(2)v

DH(Xt)

DiI(Xt)

CC

Jt = C1X1 +CiC2X2

D™ (Xt)
DiI(Xt)

% dv

U

i [CiDlI(Xt) + C2Dl(X1)] (C1O1 + c2b2)dv
t

u T

2k JJ Er
t V

X

X

t.Xt
(I)V1

t,Xt
(2)«i

CC D^ (Xt)
DZ(Xt)

%

u T

dv-t dv — k Il R
t V
II

(2.73)

(2.74)

Dl]1(Xt)
dv\dv.

(2.75)

24



\rt,XA(i)«

?(2)?

CC

Similarly, we have

=(c1XJ5„ + C2XgJ(C1^(X) + C2Dfn)
u

^c1C2X1 + c\x2 + / (,C1D]Hx) + C2DÎÎ(X)) [Mn + c2a21)X^)v + [C1U12 + c2a22)X^)v
t

u

+ C1I1 + c2b2]dv + ([C1D]Hx) + C2D^x))[C1O11 + c2o21)dW^)T
t

u

+ J[C1D]I[X) + C2D^[X))[C1O12 + c2a22)dW^T
t

u

- J[C1D]Hx) + c2D?v[x))[k^] + k2e^)dv
t

U

+ [(C1XlZv + C2X(2p [(Ciai1 + C2O21)A1^) + (CiO12 + c2a22)D%[x)]dv, (2.76)
and

[C1D]HXt) + C2D2HXt))[^ + ?*?<2>)

=E7 ? X,V.Xv
(I)V1

?(2)??
CC + i?}

?
(^DU11(Xv) + ^DlI1[XMCiD]HXt) + C2D2HXt))
[hD?Vi[Xv) + k2Dfvi[Xv))[ciD]HXt) + C2DfHXt))

We need the following restriction to implement the flows method

dv\ (2.77)

k\C-[ = k2c2 = A;

U1C2 = Zc2C1 = O,

(2.78)

(2.79)

25



where k € R is any constant. The ODEs is

E1
?-tfXt? (2)«

CC
DIl[Xt)

Dfn(Xt)
% = CiC2Xl + C2X2

+ 2m / ET
t

X(I)V
Xt,Xt

(2)v

CC
Di2\Xt)
Df(Xt)

% dv

+

U

J [C1D]I(Xt) + C2Df(Xt)] (CiI1 + c2b2)dv
U 1

¦If:2k I I ET
tv'

t,Xt
(I)V1

t,Xt
(2)«i

CC
Di? (Xt)
DZ(Xt)

u T

dvidv — k I J R
t V

D]I(Xt)
Df1(Xt)

dvidv.

(2.80)

Hence, we can get two ODEs only if we put the following restrictions on our model.

ki Ci = k2c2

kic2 = k2Ci = 0

CiOn + C2a2i C1Oi2 + C2Cl22

(2.81)

m
Cl C2

(2.82)

Simplifying (2.81), we have

c\(o\i + s\2) = c\(o\ + s\2)

C\(v\i + CTi2) + C2(^IiCT21 + CTi2CT22) = O

Cl(CTnCT21 +CTi2CT22) + C2(CT21 +CT22) = O
CiOn + C2U2I C1O]2 + C2Cl22

m = =
Cl C2

That is, with the restriction (2.82) we obtain the ODEs given by (2.75) and (2.80)

which allow us to show the zero-coupon bond price is of the form

dP(t,T,x)
dx x=Xt

P(t,T)h(t)

P(t,T)i2(t)
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where Z1 (i) and l2(t) satisfy ODEs (2.75) and (2.80) respectively. The Feynman-Kac

formula can then be applied. However, the restrictions (2.82) are quite strong and

as such we turn our attention to the FBSDE method where such restrictions are not

needed.
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Chapter 3

FBSDEs Method

From the previous chapter we see that the stochastic flows approach is relatively

straightforward in the one dimensional case. However, in higher dimensional cases,

the stochastic flows method requires the addition of some parametric restrictions to our

models. In this chapter, we implement the forward-backward SDEs approach to Model

A. The result shows that the FBSDE approach, first introduced by Hyndman (2007b),

can solve our quadratic term structure model A without restrictions. We first derive

the FBSDE satisfied by the factors process and zero coupon bond price.

3.1 Connections between QTSMs and FBSDEs

In this section we discuss the connection between our problem and solving a FBSDE.

As we introduced in Chapter 2, the factor process is given by equation (2.2)

dXt = {AXt + B}dt + adWti. (3.1)

and the short rate process is given by equation (2.3)

r(Xt) = X[TX1 + RX1 + k. (3.2)
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Define

H3 — exp

s

[r(Xu)di\u Ì and

Vx = E,Q exp

1

- ir(Xu)du 13,

(3.3)

(3.4)

where s G [O, T] and 3\¡ is the right-continuous and complete filtration discussed in

Chapter 2. Using Itô's formula we can show that H3 satisfies the dynamics

dHs = -r (X3)H8ds. (3.5)

and is of finite variation. By the definition of V8 in equation (3.4), we know that V3- is

a martingale with respect to the risk neutral probability space (O,3", {3"t,i > 0},Q).

By the Martingale Representation Theorem (see Shreve (2004) Theorem 5.4.2), there

exists a 3"s-adapted process J3 = [ Ja ¦ ¦ ¦ J&I ] such that
S

V3 = V0 + J[JV-- -J{sn)]dWu. (3-6).

With Y3 = V3/H3 we have from equations (3.3) and (3.4)

E1Q
Ys = V3/ H3

expi - fr(Xu)du J]J3
expl — Jr(Xu)du

"Q exp
/ T

r„ du 1 3", = P(s,T). (3.7)

So ys is the price of zero-coupon bond with maturity T at time s. To get the dynamics

of Y3, consider the function f(x,y) = |. Apply Itô's formula to f{x,y) by using the
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dynamics of Hs in (3.5) and Vs in equation (3.6),
SS S

Ys =Y0 + J H-1ClV11 + J(-VuH-2)dHs + ì J 2VuH~3d(H),
0 0 0

S

+ J(-H-2)d(V,H)u
0

s s

=YQ + J VuH-2r(Xu)Hudu + J H-1Jn
o o

s s

=Y0+ ÍYur(Xu)du+ Í ZudWu,

>udWu

(3.8)

where

t t(1) t(«)
^7 Ju r "U Ju -,u ~ TT ~~ ^ 77 t?~\ (3.9)

Subtracting the dynamics of Yt from (3.8) we have
t

Ys = Yt- f yur{Xu)du - J ZudWu. (3.10)

Since YT is the zero-coupon bond price with maturity T at time T, we have from (2.13)

YT = 1. Therefore, in the risk neutral probability space (O, 3", {3~?;? > 0}, Q), Xs and

Y5 satisfy the system
s S

Xs =X0 + J(AXn + B)du + / CTdIy11
0 0

T T

y. =yr - / Y.r(xu)du - Í zudwu .
(3.11)

for s G [0,T]. Equations (3.11) constitute a forward-backward stochastic differential

equation (FBSDE) with adapted solution (XS.YS,ZS), s G [0,T] as defined in Ma and

Yong (1999), E.Pardoux and S.Peng (1992) and Karoui et al. (1997).

In order to simplify things, as in Hyndman (2009), we choose to solve FBSDE under

the forward measure. Recall that the forward measure is defined as in Definition 2.3.
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Let

A4 = dQT
dQ = Eq[AtIJ1].

I Si

We have

A4 =EQ[AT\%

=E,Q

t

expf- i r(Xu)dv\p{Q,TYl 3t

--EQ -Iexpl — / r(Xu)du H0
V0 ft

^V0-1Eq exp

?

I r(Xu)du ft = V0-1V1.

Substitute the result of (3.12) into (3.6) to find
S

V0A3 = VoAo+ f JudWu.
o

Dividing both sides of (3.13) by V0 we have

?, =?0 + / 3^dWx

=1 +

=1 +

S

/Ju *1 U *u J1J7

0
s

ÌY~lZuAudWu.

Then, by Girsanov's Theorem, we have that

WT = W ^dU1 U

(3.12)

(3.13)

(3.14)

(3.15)

is a standard Brownian Motion under the forward measure QT. Therefore, under the
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forward measure QT , the FBSDE in (3.11) becomes
s S

X5 =XQ + J[AXn + B + a^)du + J OdWj1
0 0

T T

Ys =1 - J[YuT[Xu) + ^}du - J ZudWTu
s S

for s G [0,T]. In the QTSM, with r{Xt) given by (2.3), we have

odWlXs =Xo + f(AXu + B + a^)du + J i
0 " 0

T T

Ys =1 - Í [Yn[XnTXn + RXn + k] + ^}du - J ZndWl

(3.16)

(3.17)

for s G [0,T]. In the next section we give a heuristic derivation of an explicit solution

for the FBSDE (3.17).

3.2 Heuristic Derivation of Explicit Solution

Following Hyndman (2007b) and Hyndman (2009), we adapt the technique for linear

FBSDEs from Ma and Yong (1999) to solve our FBSDE (3.17). Consider the dynamics

of log ?,. Apply Itô's formula to the function f(x) = log ? using the dynamics of Ys

from (3.17) to find
s s

\ogYs = log Y0 + ¡{?f + ??** + RXu + k}du + J Y^dWl.
0 0

Similarly, we have
t t

\ogYT = log Y0 + ¡{?f + X'JXu + RXu + k}du + J ?^?-
o o

But YT = P(TS) = 1. So log YT = 0. Subtracting (3.19) from (3.18) we have

Xs =Xo + / [AXn + ? + s
o

adW:

log ? = - J{\^ß + x'jxu + RXu + k}du - J 7^dWi

(3.18)

(3.19)

(3.20)
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for s G [0,T]. It's well known (see Ahn et al. (2002)) that for the quadratic term

structure models, the price of zero-coupon bond has exponential quadratic form of the

factor process X1. So we assume that

log Y5 = X3R2(S)X8 + R1[S)X8 + R0(S) (3.21)

where

R2(S) =

>(n) (In),^'(S) ··· R^' (s)

R^(S) ··· R^(S)

K(s) =

?0)R^(S)

>(«)Rr(s)

and Rq(s) is one dimensional and satisfies the ODE

dRo(s) = a(s)ds.

(3.22)

(3.23)

Moreover, we require that R2(s), Ri(s) and Ro(s) satisfy the boundary condition

R2(T) =0nxn, R1(T) = 0lxn and R0(T) = O, (3.24)

since log Yp = 0.

Using this assumption, we obtain the dynamics of d log Y8. Apply Itô's formula to

function f(t,x) = x'R2(t)x + R-¡(t)x + R0(t) using the dynamics of Xt from (3.17),

where x' = [X1 · · ¦ Xn] E Rn. We have

dlogYt = df(t,Xt)
? -, ? ?

= /t(í, Xt)dt + S ?,-(*, *tW(<) + ? SS W<> *')<*<*» *;>> (3-25)
¿=? ¿=1 J=I
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where

Mt, ?) = ¿SRf\t)^ + S ??)(f* + ^W'
?=1 J=I ¿=1

Ri(Q = dRi/dt.

The simplified result is

d\ogYt ={X'tR2(QXt + R1(I)Xt + R0(Q

+ X't(R'2(t) + R2(Q)AX1 + R1(QAXt + B'(R2(t) + R'2(t))Xt + R1(QB

+ [X't(R'2(Q + R2(Q) + Äi(t)]*f + \ ¿¿(4Jî)W + R¥\t))aW}1 i=\ .j=l

+ [Xt'(i^(i) + A2(O) + i?i WW^/ , (3.26)

where

s =

i-n

s

s? · · · s?.

s?,? s*

Comparing (3.26) with the dynamics of (¿log Y4 in (3.20), we have

[Xi(R2(Q + R2(Q) + R1(Q]G = Yt (3.27)
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and

X'tR2(t)Xt + R1(I)X1 + Mt)

+ X't(R'2(t) + R2(t))AXt + R1(I)AX1 + B'(R2(t) + R'2(t))Xt + Ri(t)B

+ [X't(R'2(t) + A2(E)) + Ri(t)]a% + \ ¿ ÍT(R2Jl\t) + R{2])(t))a^'f ¿=1 j=]

= \^T + X'tTXt + RXt + k. (3.28)
Substitute Ro(t) = a(t) and (3.27) into (3.28).

Xi[Mt) + (R'2(t) + R2(I))A ^ G + l-(R2(t) + R'2(t))aa'(R2(t) + R'2(t))]Xt
+ Mt) + R1(I)A + B'(R2(t)+-R'2(t)) -R + R,(t)aa'(R2(t) + R'2(t))]Xt

+ R1Q)B + a(t) + i ¿ ¿(i$'°(<) + ¿f) WK^' - k
+ ?ßa(?)ss''Mt) = 0- (3·29)

Consider the Riccati type equations
' G

Mt) + (¿^(0 + ^2(OM - G + ^Mt) + Mt)WiMt) + A2(O) = ???„
,R1(O + R1(I)A + B'(R2(t) + Mt)) -R + Ri{t)aa'{R2(t) + R'2(t)) = 01?? (3-30)
R1(T) = O1^n R2(T) = 0nxn.

If the Riccati type equations (3.30) admits a solution ?a(·), ?2(·) over [0, T], then (3.29)

gives
? ? .

a(t) = fc - A1(OB - ± £ £(Ä?'°(0 + R%'\t))aW - -R1(^a'R[(t). (3.31)
Hence the ODE of R0(-) is

di2o(i) = {/c - A1(OB - ^ ¿ ¿(??°(0 + Ä2ij)(0)^ri^' - ^i(0^Äi(0)
??(?) = 0.

2

(3.32)
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The ODE (3.32) admits a solution if R2{·) and i?a(·) are given. Substitute (3.27) into

(3.20) to find,
? ?

X1 = X0+ !{{A + sst (R2(u) + Rl(u))]Xu + B + ooTRT1(u)}du + / adW¿ . (3.33)
? o

The SDE (3.33) has a unique solution if R2(-) and Ri(-) are measurable functions

satisfying the globally Lipschitz condition (see Friedman (1975) Volume I, Theorem 2.2

? 104).

We have heuristically shown in this section that we could find the dynamics of log Yt

and Xt if the Riccati type equations (3.30) admit solution over [0,T]. In the next

section, we will give the rigorous proof of this result.

3.3 Theorem in One-Dimensional Case

In order to provide an easier way to understand the FBSDEs approach, we first give

the proof of the main existence and uniqueness theorem in the one-dimensional case.

Consider the quadratic term structure model in one dimension. The shot rate process

is given by

r(Xt) = r2X2 + riXt + r0,

where

X1 = X0+ J(AXn + B)du + i adWv
o o

Theorem 3.1. If the Riccati equation

R2(t) + 2AR2(t) + 2o2R2(t)2 - r2 = 0

A1 (i) + AR1[Q + 2BR2(t) + 2a2Rl(t)R2(t) -V1=O

R1(T) = O R2(T)=O.

(3.34)

(3.35)

(3.36)
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admits a unique solution R2(·), Ri{·) over the interval [0,T]. the FBSDE
t t

Yt=I- J{Yu(r2X2u + T1Xn + r0) + ^}du- j ZudWTu
t i

t t

X1 =X0 + i(AXu + B + ay)du + I odWl
O O

fort G [0,T], admits a unique solution (X. Y .Z) given by
t t

X1=X0+ !{[A + 2er2'R2(u)}Xu + B + a2Ri(u)}du + / adWf,

Y1 = exp(R2{t)Xf + Ri(t)Xt + R0(I;)
Z1 = [2XtR2(t) + R1(^aexpÍR2(t)Xf + R1Ct)X1 + Ro(t)

(3.37)

(3.38)

(3.39)

(3.40)

where Ro(-) satisfies

dR0(t) = {r0 - Rt(t)B - -a2R,(t)2 - a2R2(t)}dt
(3.41)

Ao(T) = 0.

Proof. First, we must show that (X, Y, Z) given by (3.38), (3.39) and (3.40) satisfy

the FBSDE (3.37). Diving (3.40) by (3.39), we have

^ = {2XtR2(t) + Rl(t)]o
it

(3.42)

Substituting (3.42) into (3.38), we obtain the dynamics of X1 in (3.37). So Xt given by

(3.38) satisfies the FBSDEs (3.37).

Consider the function f(t,x) = expi R2(t)x2 + Rj(t)x + Ro(t) j. Apply Itô's formula
to f(t, x) using the dynamics of Xt in (3.37). We have

dYt = df(t.Xt)

= ft(t, Xt)dt + fx(t, Xt)dXt + -fxx(t, Xt)d(X.)u (3.43)
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where

/t(í, ?) = [R2(t)x2 + R1(Qx + Ro{t)]f{t, ?),

fx(t, ?) = {2R2(t)x + R1(I))J(Lx),

fxx(t,x) = {2R2(t) + [2R2(t)x + R1(Q]2) f(t,x).

dYt = [R2(QXf + Ri(QXt + Ro{t)]Ytdt
ßt\jj. , _ ju rT-t+ {[2R2(t)Xt + Ri(t)][(AXt + B + a-±)dt + adWtJ]}Yt

+ \{2R2(t) + [2R2(t)Xt + R1(Qf)Y^dI
= [R2(QXf + R1(QX1 + R0(Q + 2R2(I)AXi + 2R2(t)BXt

+ (2R2(t)Xt + Ri(t))a¿ + R1C)AXt + R1(QB + R2(Qa2

+ ^[2R2(QX1 + R1(I)]2O2Wt + [2R2(t)Xt + R1(Q]OYdWj. (3
Substituting (3.42) into (3.44) we have

dYt = [[R2(Q + 2R2(t)A + 2R2(Q2a2]Xf

+ [R1(I) + 2BR2(t) + R1(QA + 2R1(QR2(Qo^X1

+ -^ + R0(Q + R1(I)B + R2(Qo2 + - R1(I)2 o2))Ytdt + ZtdWj . (3

Substitute (3.36) and (3.41) into (3.45) to find

Z2dYt = [Yt(T2Xi + TyXt + r0) + -^}dt + ZtdWj*t

That is, Yt defined by (3.38)-(3.40) satisfies
t t

Y=Yt- J{Yu(r2X2u + T1Xn + r0) + ^)du - J ZudWf .
t t

By the boundary condition in (3.36) we have

YT = exp[R2(T)XT + R1 (T)Xt + R0(T)] = exp{0X|. + 0XT + 0} = 1.
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Therefore,

t t

Y1 = I- J[Yu(T2Xl + nXu + rQ) + ^}du- I ZudWÏ-
t

Hence (X, Y1 Z) given by (3.38), (3.39) and (3.40) satisfy the FBSDE (3.37).

Second, we pro\'e the uniqueness of the solution. Let (X. Y , Z) be any adapted

solution of the FBSDEs (3.37). Define

1OgY4 = R2(t)Xf + Ri(t)Xt + Ro(t), (3.46)

Zt = [2R2(t)Xt + R1(^aYt, (3.47)

then

[2R2(t)Xt + R1(t)}a. (3.48)
Zt

Z1
Yt

Yt

Consider the function

f(t, x) = R2(t)x2 + Ri(t)x + R0(t).

Apply Itô's formula to f(t, x) where Xt is given by (3.37) we have

df(tXt) = dlogYt = {R2(t)X? + Ri(t)Xt + Ro(t) + 2R2(t)AX2t

+ R1(I)AXt + 2BR2(t)Xt + R1(I)B + [2R2{t)Xt + R,(t)}a-,

+ R2(t)a2}dt + [2R2(t)Xt + Rl(i))odW^ . (3.49)

Substituting (3.36), (3.41) and (3.48) into (3.49) we have

d\ogYt = {r2Xl + T1X1 + r0 - 1 II + ||}? + ^dWl (3.50)
and

logïr = 0. (3.51)
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Then Yt satisfies the BSDE
t _ t

log*, = - ]{r,Xl + rA + ro - ^S + |^}du - | ^dU?. (3.52)? u t

Subtract (3.52) from (3.18) to find

T _ T _

= -\ [{Ù - ??}?? - [f - ^)dWl (3.53)
Define

Y1= logy, -log?, (3.54)

Z, =| - |. (3.55)
Then equation (3.53) becomes

t t
1

* 2 J
t t

By the result of Kobylanski (2000), the BSDE (3.56) admits a unique adapted solution

1 1

= -l-j Z2udu - J ZudWTu. (3.56)

(Yt, Z1) = (0, 0ix„). So we have Yt = Yt and Z1 — Zt. This means that any solution (X.,

Y, Z) of the FBSDE (3.37) must satisfy (3.38), (3.39) and (3.40). D

Corollary 3.1. // the factor process is given by (3.35) and the short, rate process is

represented by (3.34), the zero coupon bond price has exponential quadratic form.

P(t,T) = exp{R2(t)Xf + R1It)X1 + A0(O)

where R2(t): Ri(t) and Ro(t) are given by equations (3.36) and (3.41)- respectively.

In the next section we prove the main existence and uniqueness result in the ri-

dimensionai case. The proof is similar to the one-dimensional case just presented.
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3.4 FBSDE Approach

We prove the existence and uniqueness of the FBSDE (3.17) following a technique for

linear FBSDEs that was extended by Hyndman (2007b) and Hyndman (2009).

Theorem 3.2. // the Riccati equations

R2(t) + (R2(Jt) + R2(t))A - G + \(R2(t) + R'2(t))aa'(R2(t) + R'2(t)) = 0nxn
R1(I) + R1[Jt)A + B'(R2{t) + R'2(t)) -R + R1(^a' (R2(t) + R'2(t)) = 0lxri (3-57)

Ri(T) = 0lxn R2(T) = 0nxn.

admit unique solutions R2(·). Ri(') over the interval [0,T], the FBSDE

(3.58)

1 1

Yt =1 - j{Yu[X'uTXu + RXn + k] + ^}du - j ZudWl
t t

t t

Xt =X0 + J(AXn + B + a^)du + J odWl
o o

fort G [0,T], has a unique adapted solution (X. Y. Z) given by
t t

X1 = X0+ Í{[A + ss' (R2(U) + R'2(u)))Xu + B + aa'R'^u^du + J adW¿ , (3.59)
o

(3.60)Yt = exP(x'tR2(t)Xt + R1^)Xt + R0(t)j ,
Zt = \X't(R2(t) + R2W) + R,(t)]o exp(x'tR2(t)Xt + R1It)X1 + Ro(t)

where Rq(-) satisfies

(3.61)

dRo(t) = Ik - R1(QB - \ ¿ ¿(Ä?'°(f) + B!?\t))W - ^R^aa'R'^t) 1 dt
Ro(T) = 0.

(3.62)
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Proof. First, we must show that (X, Y, Z) given by (3.59), (3.60) and (3.61) satisfy

the FBSDE (3.58). Dividing (3.61) by (3.60), we have

= [X't(R2(t) + R'2(t)) + R1(I)]U (3.63)Zt
Yt

Substituting (3.63) into (3.59), we obtain the dynamics of Xt given by equation (3.58).

So Xt given by (3.59) satisfies the FBSDE (3.58).

Consider the function f(t, x) = exp ( x'R2(t)x + R1(^x + R0(t) J . Apply Itô's formula
to f(t,x) using the dynamics of Xt in (3.58). We have

dYt=df(t,Xt)
? -. ? ?

= ft(t;Xt)dt + S ?,- (*, Xt)UX? + - SS ***** (*' *«)<*<*.(0, X^h, (3-64)
where

2
i=l ¿=1 J=I

J=I ¿=1 ¿=1

fc=l

?^(?,?) = {??°(?) + ^W + [¿(¿?}W + -Rf0W)^ + äS°(*)]
fc=l

? lJ2(R{2kj\t) + R{2jk)(t))xk + R?(t)]}f(t,x).
fc=l

That is,

dY, = [Xt'Ä2(i)Xf + Ri(t)Xt + R0(t)}Ytdt

+ S??[??(??(?) + Rl" (t)) + R?(t)}[(Ar*Xt + I1 + ar^)dt + ar<d\V?}}dti=l *

+ \ SS^(^c) + R(23\t))^^'dt
¿=1 j=l

+ 5 S ¿WWW + *?'(*)) + R?(t)}[(Rr(t) + R?(t))Xt + R?(t)]aWdt
(3.65)

2
¿=1 j=l
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where R% is the ith column of square matrix R2, R2* is the zth row of R2, s°t is the ¿th

column of s and aTi is the ¿th row of s. Write (3.65) in matrices notation to obtain

dYt = [X'tR2(t)Xt + R1[I)X1 + R0(t) + X't(R2(t) + R'2(t))AXt

+ B'(R2(t) + R'2(t))Xt + [X't(R2{t) + R'2(t)) + Ri(t)]a§- + R1(I)AX1
+ R1(QB +IJr ¿(itfV) + R{2j\t)y>a^2

+ l-[X't{R2(t) + R2(I))-+ R1{t))oo'[(R'2{t) + R2(t))Xt + R\(t)]}Ytdt
+ Yt[X't(R2(t) + R'2(t)) + R1[I)]OdWj. (3.66)

Substitute (3.63) in (3.66) to find

dYt = {X'AMt) + (R2(t) + R2H))A + ^(R2(t) + R2(t))a&'[R2[I) + R2(t))]Xt
+ [R1[I) + B'(R2[t) + R2(J)) + R1It)A + R1(I)Oa' (R'2[t) + R2(t))]Xt

+ 2^ + A0(O + kw + \ S?>^w + ^Ht))W
+ ^R1(I)Oa'R'x(t)}Ytdt + ZtdWj. (3.67)

Substituting (3.57) and (3.62) into (3.67) gives,
Z ZTdYt = {Yt[XjTXt + RXt + k) + ^r-}dt + ZtdWj.

(3.68)

That is, Yt defined by (3.59)-(3.61) satisfies
T T

Yt = Yr- J[Yu[X1JXu + RXu + k] + ^}du - j ZudWj.
t t

By the boundary condition in (3.57) we have

YT = exp[X'TR2(T)XT + Ri(T)Xx + R0(T)) = exp[XT0nxnXT + 0lxnXT + 0} = 1.

Therefore,
t t

Yt = I- f[Yu[X'uTXu + RXU + k) + ^}du~J Z"dWu-
t t
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Hence (X, Y, Z) given by (3.59), (3.60) and (3.61) satisfy the FBSDE (3.58).

Second, we prove the uniqueness of the solution. Let (X, Y, Z) be any adapted

solution of the FBSDE (3.58). Define

log Y, = X[R2(I)Xt + Ri(t)Xt + Ro(t), (3.69)

Zt = \X[(R2(t) + R'2(t)) + R1(^aY1, (3.70)

then

§ = [X[(R2(t) + R'2(t)) + R,(t)]a. (3.71)it

Consider the function

f(t,x) = x'R2(t)x + R-i(t)x + R0(t).

Apply Itô's formula to f(t,x) where Xt is given by (3.58) we have

df(t, X1) = dlogYt = [X[R2(t)Xt + R1(I)Xt + R0(t)

+ X[(R'2(t) + R2(t))AXt + R1(I)AX1 + B'(R2(t) + R2(I))X1 + R1(I)B

+ [X't(R'2(t) + A2(E)) + Ri(t)]a% + \J2 ¿(Ä?*\t) + F!»\t))aW}dt
+ {X[(R'2(t) + R2(t)) + R1(^dWf. (3.72)

Substitute (3.57), (3.62) and (3.71) into (3.72) to find

d\og?t = [X[TXt + RXt + k-1-^ + ^}dt + ^dWj (3.73)Z Y1 If It It

and

log?T = 0. (3.74)

So
t _ _ _ J _

log?, = - J[X1JXn + RXn + k - \^f + yjftdu - J ^dWl (3.75)t u t
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Subtract (3.75) from (3.18) to find

t t

T _ _ T

= -\ ?F - &F - ^du - /F - v)dw?· (3'76)
Define

Yt= logy, -log Yt (3.77)

Yt ?Zt =§ - S. (3.78)
Then equation (3.76) becomes

t

yt = -\J ZuZ'Ju - J ZudWl (3.79)
t t

By the result of Kobylanski (2000), the BSDE (3.79) admits a unique adapted solution

(Yt, Z1) = (0, 01XTi). So we have Yt = Yt and Zt = Z1. This means that any solution (X,

Y, Z) of FBSDEs (3.58) must satisfy (3.59), (3.60) and (3.61). D

As we have discussed in the previous material, Yt is the zero coupon bond price

P(t,T), which is given by the Theorem 3.2. So we have the following Corollary.

Corollary 3.2. If the factor process is given by (2.2) and the short rate process is

represented by Model A. the zero coupon bond price has exponential quadratic form.

P(LT) = exp{X'tR2(t)Xt + RAt)Xt + Ro(t)}.

where /^(i),· R\(t) and Ro(t) solve equations (3.57) and (3.62). respectively.
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Chapter 4

Conclusion

In this thesis we have implemented the stochastic flows approach and the FBSDE ap-

proach to quadratic term structure models. By using the stochastic flows approach, we

obtain a closed-form solution for the zero-coupon bond price in the one dimensional

QTSM. This result is consistent with that in Nawalkha et al. (2007). However, as

shown in Chapter 2, the stochastic flow method is difficult to generalize to the higher

dimensional QTSMs without restrictions. We discuss the necessary restrictions to im-

plement the flows method in the two-dimensional Model B in Chapter 2. In Chapter 3

we prove that the zero-coupon bond price is an exponential quadratic function of the

factor variables by using the FBSDEs approach. The main result of the thesis is an

existence and uniqueness theorem for a FBSDE satisfied by the zero-coupon bond price.

The existence and uniqueness theorem also provides an explicit solution which gives the

bond price as a corollary. This is consistent with Chen et al. (2004) and Leippold and

Wu. The FBSDEs approach can be implemented to the ?-dimensional QTSMs without

restrictions. In this regard, the FBSDEs approach is more powerful than the stochastic

flows approach, hence it has the potential to solve other pricing problem. In the future,
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following Hyndman (2009), we would like to implement the FBSDE approach to price

futures, forward contracts, options and other derivatives under the QTSMs. Also, we

might be able to relax the restrictions we have discussed in Chapter 2 in the future

study.
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