On RG-spaces and the space of prime d-ideals in

C(X)

Farhat M. Abohalfya

A Thesis
In the Department
| of

Mathematics and Statistics

Presented in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy at
Concordia University

Montréal, Québec, Canada

January 2010
(©Farhat M. Abohalfya, 2010



Library and Archives
* Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author’s permission.

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4

Canada
Your file Votre référence
ISBN: 978-0-494-71154-5
Our file Notre référence
ISBN: 978-0-494-71154-5
AVIS:

L’auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'internet, préter,
distribuer et vendre des théses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L'auteur conserve la propriété du droit d’auteur
et des droits moraux qui protége cette thése. Ni
la thése ni des extraits substantiels de celle-ci
ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Canada

Conformément a la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.



Abstract
On RG-spaces and the space of prime d-ideals in C(X)

Farhat M. Abohalfya, ph.D.
Concordia University, 2010

Let A be a commutative semiprime ring with identity. Then A has at least two
epimorphic regular extensions namely, the universal epimorphic regular extension
T(A), and the epimorphic hull H(A). We are mainly interested in the case of C(X),
the ring of real-valued continuous functions defined on a Tychonoff space X. It is a
commutative semiprime ring with identity and it has another important epimorphic
regular extension namely, the minimal regular extension G(X). In our study we
- show in chapter 5 that the spectrum of the ring H(A) with the spectral topology is
homeomorphic to the space of the prime (-ideals in A with the patch topology. In the
case of C(X), the spectrum of the epimorphic hull H(X) with the spectral topology
is homeomorphic to the space of prime d-ideals in C'(X') with the patch topology.

A Tychonoff space X which satisfies the property that G(X) = C(Xs) is called an
RG-space. We shall introduce a new class of topological spaces namely the class
of almost k-Baire spaces, and as a special case of this class we shall have the class
of almost Baire spaces. We show that every RG-space is an almost Baire space
but it need not be a Baire space. However in the case of RG-spaces of countable
pseudocharacter, RG-spaces have to be Baire spaces. Furthermore in this case every
dense set in RG-spaces has a dense interior.

The Krull z-dimension and the Krull d-dimension will play an important role to
determine which of the extensions H(X) and G(X) has the form of a ring of real-
valued continuous functions on some topological space. In [31] the authors gave some
techniques to prove that there is no RG-space with infinite Krull z-dimension, but
there was an error that we found in the proof of theorem 3.4. In this study we will give

an accurate proof which applies to many spaces but the general theorem will remain
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open. And we will use the same techniques to prove that if C(X) has an infinite chain
of prime d-ideals then H(X) cannot be isomorphic to a ring of real-valued continuous

functions.
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Chapter 1

Introduction

We begin with the assumption that our category is the category of commutative rings
and by a ring we mean a commutative ring with identity. By a ring homomorphism
we mean a ring homomorphism that preserves the identity. For a ring A, let Z(A)
denote the set of zero-divisors of A.

For A, a commutative semiprime ring with identity, there are at least two epi-
morphic regular extensions namely, the universal epimorphic regular extension T'(A)
which was defined by [Olivier] in [27], and the epimorphic hull H(A) which was de-
fined and studied by [Storrer] in [33]. Hochster in [10] proved that the spectrum of
T(A) as a topological space with the spectral topology can be identified with the
spectrum of A with the patch topology. Our first goal in this thesis is to show that
the spectrum of the ring H(A) with the spectral topology can be considered as the
space of prime (-ideals in A with the patch topology. We show that in the case where
A satisfies the strongly a.c. condition, then the spectrum of the ring H(A) with the
spectral topology can be identified with the space of prime d-ideals of A with the
patch topology.

The ring C(X) of real-valued continuous functions defined on a topological space X is
a commutative semiprime ring with identity. And it has another epimorphic regular

extension namely the minimal regular extension G(X) which was defined and studied



by Henriksen, Raphael, and Woods in [20]. Also in the same paper the definition
of RG-spaces was given and the properties of such spaces were studied in [20}, [31]
and [21]. Our second goal in this thesis is to get more results on RG-spaces. This
leads us to introduce a new cla.és of topological spaces, the class of almost k-Baire
spaces and as a special case of this class we will have the class of almost Baire spaces.
In [31] the authors gave some techniques to prove that there is no RG-space with
infinite Krull z-dimension. But there was an error that we found in the proof of theo-
rem 3.4. Our third goal in this thesis is to give an accurate proof of this result which
applies to many spaces although the general theorem will remain open. We use the
same techniques to prove that H(X) cannot be isomorphic to a ring of real-valued

continuous functions if C'(X) has an infinite chain of prime d-ideals.

This chapter is divided into three sections. The ﬁrst section is mostly devoted to
introducing the basic conceptual machinery in ring theory to be used in this thesis.
The second section contains the basic concepts on prime d-ideals and prime (-ideals
which we need for our research, and the third section will contain a review of the basic
concepts on algebraic frames. We have included [23], [24], [32] and [37] as general

references.

1.1 Basic concepts

Semiprime and regular rings

Definition 1.1 An element e of a commutative ring A is said to be idempotent if
e? = e. An element a is said to be nilpotent if there exists a positive integer n with

a®=0. A ring A is called semiprime if A has no nilpotent elements except 0.

It is well known fact that a ring A is semiprime if and only if the intersection of all
prime ideals in A is the zero ideal. And it is clear from the definition that every

subring of a semiprime ring is semiprime.



Definition 1.2 An element a of a ring A is called reqular if 3 b € A such that
a = a2b. If every element of A is regular then A is said to be a reqular ring (in the

sense of von Neumann).
If a = a2b for some b € A then ab and 1 — ab are idempotent elements.

Remark 1.1 If A is a regular ring and a = a2b then a* = b%a satisfies the equations

a = a’a* and a* = (a*)%a and b%a is called the quasi-inverse of a.

Lemma 1.1 Let A be a regular ring. Then the quasi-inverse of a is unique for each
a € A.
Proof.

Let 71,79 be two quasi-inverses of 1 € A. Thenr = r2ry,ry = r2r and r = r’ry, 79 =

2 2 o 2.2, 2,22 2, 2 i
rir. Now o = rir = rirery = r5rorir = rorrir = rry = r1. Thus the quasi-inverse

of a is unique for each a € A. 0

Definition 1.3 Let A be a ring such that for eacha € A 3n > 1 and b € A such that

a" = (a™)?b. Then A is said to be a Il-regular ring.
Clearly every regular ring is a Il-regular ring.

Theorem 1.1 Let A be a ring. Then A is a regular ring if and only if A is a
semiprime Il-reqular ring.

Proof.

(=>) Let A be a reqular ring, and let z € A such that x # 0. Then x = z%y for
some y € A. Suppose ™ = 0 for some n>1, and let ng be the smallest integer such
that z™° = 0. Then ng >2, 2! # 0, and z™! =(x"0‘1)2z for some z€A. Since
2(ng — 1)>ny, it follows that ™' = 0, which is a contradiction. Therefore A is
semaiprime.

(<) Let A be a semiprime ll-regular ring and let x € A. Then 2™ = (z™)%y for
some y € A, and therefore z" ~ (z™)*y = 0 which means (z(1 — (z")y))" = 0. But A
is semiprime, so (z(1 — (a™)y)) = 0. Ifn =1 we are done, if not x — (z" )y = 0

which implies that z = (x"*1)y and therefore x = z?(z"1)y. Thus A is regular. O



Since every finite ring is II-regular, it follows for finite rings that being regular is the

same as being semiprime.

Example 1.1 (Z4,+,.) is H-regular but is neither semiprime nor regular.

Let A be aring and let S be a non-empty multiplicative subset of A. Then there is an
equivalence relation defined on A x S by: (71, 51) ~ (72, 82) <= so(r182 — 7281) = 0
for some sy € S. By denoting the equivalence class [(r, s)] by £ one can turn the set
S'A ={f:r € A s € S} into a commutative ring with identity [12]. This ring
S~1A, denoted Ag, is called the localization of A4 at S. In particular, if P is a proper
prime ideal of A, then A— P is a multiplicative subset and the localization of A at P,
denoted Ap, is defined to be Ag_p. Moreover, there is a one-to-one correspondence
between the set of prime ideals in Ap and the set of prime ideals in A that are con-
tained in P [12, p.147].

For each s € S we have &, : A — Ag defined by ¥4 (a) = % is a ring ho-
momorphism. If I, J are ideals of A and Ag respectively then (®s,)7*(J), denoted
J¢ or JNA, is an ideal of A and ®,,(I)B, denoted I¢, is an ideal of Ag. Details
appear in [12].

We will use these facts in the next theorem.

Theorem 1.2 Let A be a semiprime ring. Then the following are equivalent:

(1) A is regular.

(2) "Fuery prime ideal is mazimal.

(3) Every principal ideal is generated by an idempotent element.

(4) Every finitely generated ideal is generated by an idempotent element.

Proof.

(1) = (2) Let A be a regular ring and P # A be a prime ideal. For any element
a ¢ P, we have that a = a’b for some b € A which means (a(1 — ab) = 0). Then

1 € P+aA and therefore P +aA = A. Hence P is a maximal ideal .



(2) = (1) Suppose that every prime ideal is mazimal, and let M be any mazimal
ideal of A. If I is any prime ideal of Ay, then I¢ is a prime ideal of A with I° C M,
which implies that I = M¢. Then Apn has a unique prime ideal namely M®, and
therefore M€ is the unique semiprime ideal in Ap. As A is a semiprime ring, then
| {0} is a semiprime ideal in Ay. Then {0} = M® and Ay is a field.

Clearly every invertible element is regular. Let r be a non-invertible element in A,
and let T = {t € A:rt = 0}. Then (T,r) cannot be contained in any mazimal ideal
M, as Ay is a field. So (T,r) = A, which implies that 1 =t + rx for some z € A.

2z and A is regular.

Thenr=r
(1) = (3) Let (a) be a principal ideal. Since a = a®b for some b € A. Then e = ab
is an idempotent element and (a) = (e).

(3) = (4) It is enough to prove the statement when I is finitely generated by two
idempotent elements. Let I = (e, f) where e, f are idempotent elements. Since (e +
[ — ef) is an idempotent element and (e, f) = ((e+ f — ef)) then I is generated by
an tdempotent element.

(4) = (1) Let x € A, then A = eA where e is an idempotent element. Then there

are y,z € A such that x = ez, e = xy = r?y® which implies that x = x%y?z. Thus A
Y Yy Y

s regular. ’ O
Definition 1.4 If K is any non-empty subset of the commutative ring A, we write

K*={a€ A:aK ={0}} and call this the annihilator of K. An ideal I of A is called
dense if I*= {0}.

We abbreviate (K*)* as K** for each non-empty subset K of A and {a}* as (a)i* for
each a in A.

Remark 1.2 (a) K* is an ideal of A for each non-empty subset K of A.

(b) If Ky, Ko are subgroups of A. Then K N K5 = (K1 + Ka)*.

Theorem 1.3 Let A be a semiprime ring and let K be an ideal of A. Then K N
K* = {0} and K + K* is a dense ideal of A.



Proof.

Let K be an ideal of A. Since KK* = 0 and (KN K*)? C KK* = {0}, then (K
N K*)? = {0} and therefore K N K* = {0}. But (K + K*)* = K*NK**. Then
(K + K*)*={0}. Thus K + K* is dense. O

Definition 1.5 A subring A of a ring S is called large if for every 0 £t € S there
exists a in A with 0 # at € A. An ideal I of A is called large if it is a large subring.

Clearly a subring A of a ring S is large if and only if A NtA # {0} for each nonzero

element ¢t € S. And it is clear that every dense ideal is a large ideal.

Theorem 1.4 Let A be a Ting. Then A is semiprime if and only if every large ideal
s dense.

Proof.

(=>) Let A be a semiprime, and let L be a large ideal. Let0 # a € A. Since
LN (a) # {0}, let z € LN (a) such thatx # 0. Then z € L and x = ra for some
r€ A. Since x? # 0 and z° € La. So La # {0} for each a # 0. Thus L is dense.
(<==) Suppose that every large ideal is dense and suppose 3z € A such that x # 0
and " = 0 for somen > 2. Then there is an element ‘y € A such thaty # 0 and
y?> = 0. Let I = (y), then it is clear that I? = {0}. Now suppose {(a) N I* = {0} for
some a in A. Since al C {a) N I* = {0} then al = {0} which implies a = 0. So
I* is a large ideal and therefore by assumption I* is dense. But al* = {0} for each
a € I. Therefore I = {0}, which is a contradiction with I = (y) # {0}. Hence A is

semiprime. O

Remark 1.3 Let Dy, Dy be two ideals of A. Then:
(1) Dy C Dy and Dy dense implies that Dy is dense ideal.
(2) Dy and D, dense implies that D1 Dy and Dy N Dy are dense ideals too.

Rings of quotients

The ring B is an extension of A if A is a subring of B and they have the same identity.



If B is an extension of A then the set ¢4 = {a € A : ca € A} is an ideal of A for

each c € B.

Definition 1.6 Let B be an extension of A. Then B is called a ring of quotients of
A if c YA is a dense subring of B for each c € B, in another words, ifV ¢ € B and

VYO0#d€ B3ac€ A such that ac € A and ad # 0.

Lemma 1.2 Let B be a ring extension of A Then:

(1) B is a ring of quotients of A if and only if b= A is dense ideal in A and b(b~'A) #
{0} V 0 b € B.

(2) b(b~*A) # {0} V 0 # b € B implies that b A is a large ideal in A for each b € B.
Proof.

(1) (=) Obvious

(<=) Suppose b™' A is dense in A and b(b'A) # {0} VO # b € B. Letb,c € B such
that 0 # c. Since c(c™*A) # {0}, then 3 a; € (c7'A) such that a;c # 0. Since aic €
A, then aic(b='A) # {0}. Choose as € (b1 A) such that a1azc # 0 and let a = ajas.
Then a € A, ab € A and ac # 0. Therefore B is a ring of quotients of A.

(2) Suppose b(b~1A) # {0} V0 # b € B. We need to show that (a) N b=*A # {0} for
each 0 # a € A. If a € b™'A we are done. If not, choose a; € (ab)((ab)"1A)# {0}.
Then aba; € A and aba; # 0, which means aa; € {(a), aa; € b 'A, and aa; # 0.
Thus (a) N b 1A # {0} and b= A is a large ideal of A. O

Theorem 1.5 Let B be a ring extension of a semiprime ring A. Then B is a ring
of quotients of A if and only if b(b='A) # {0} VO #be B.

Proof. ‘

(=) Obuious.

(<) Suppose b(b='A) # {0} VO # b € B. Then b'A is a large ideal [lemma
1.2, (2)], which implies by theorem 1.4, that b='A is a dense ideal of A. Thus B is a

ring of quotients of A [lemma 1.2, (1))]. O



The complete ring of quotients and the classical ring of quotients

The complete ring of quotients of a ring A can be constructed from equivalence
classes of module homomorphisms from dense ideals of A into A. Details appear
in [14, section 2.3]. The definition of addition and multiplication is natural, and the
resulting ring, denoted Q(A), is regular when A is semiprime [14, p.42]. Thus each
a € A has a quasi-inverse a* in Q(A). Furthermore, if T is any ring of quotients of
- A then by [14, prop.6 ] there is a monomorphism of 7" into Q(A) that induces the
canonical morphism of A into Q(A). Therefore Q(A) is the maximal ring of quotients
of A. In another words, if T is any ring of quotients of A. Then A C T C Q(A).
The classical ring of quotients of a ring A, denoted by Qn(A), is the subring of Q(A)
consisting of all elements of the form ab~! where a,b € A, b is a non zero-divisor in
A, and b7 is the inverse of b in Q(A). All non zero-divisors of A are units in Qa(A),
and A = Q4(A) if and only if each non zero-divisor in A is a unit.

Essential and epimorphic extensions

Definition 1.7 Let B be an extension of A. Then B is called an essential extension

of A if each non-zero ideal of B has non-zero intersection with A.

Lemma 1.3 FEvery ring of quotients B of A is an essential extension of A.
Proof.
Let I be a non-zero ideal in B, and 0 # a € I. Since a ' A is dense ideal of A, then

3b€ A such thatab€ A, ab+# 0. Thus B is an essential extension of A. O

A morphism f : A — B of a category C is called epic (or an epimorphism) if for all
objects D and morphisms g, h € Hom(B, D) we have that g = h whenever gof = hof.
Clearly the composition of two epimorphisms is an epimorphism and if f : A — B
and g : B — C are two homomorphisms such that gof is an epimorphism then g is
an epimorphism.

Assume that A is a semiprime ring and that our category C is the category of commu-

tative rings. It is well-known that any ring epimorphism defined on a regular ring A is
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surjective [33, 6.1]. A ring extension B of a ring A is called an epimorphic extension
of A if the inclusion map from A to B is an epimorphism. So one can conclude that
a regular ring has no proper epimorphic extensions.

The epimorphic hull of a ring: Let A be a semiprime ring and S be a regular
ring extension of A. Then one can define the smallest regular ring lying between A

and S, denoted Gs(A), as follows:
Gs(A) =({C:AC CCS, C isaregular ring}.

Theorem 1.6 Let A be a semiprime ring and S be a reqular extension of A. Then
Gs(A) is reqular and it is the smallest regular ring lying between A and S.

Proof.

The intersection of subrings is again a subring. Thus Gs(A) is a ring and A C
Gs(A) € S. Leta € GS(A); then 3! a* € S such that a = a’a* and a* = a**a. Since
a* is a unique, then a* € C V C a regular ring lying between A and S. Therefore |

a* € Gs(A). Thus Gg(A) is regular. O

Lemma 1.4 If B is a reqular extension of A such that A C B C Q(A) then Qa(A) C
B. |

Proof.

Let ab=1 € Qu(A) where b is a non zero-dwisor in A. Then a,b € B and b* = b~" s

in B and therefore ab=! € B. Hence Qq(A) C B. 0

For each semiprime ring A, the complete ring of quotients Q(A) is a regular ring.
Then one can talk about the ring Gg(a)(4) which is called the epimorphic hull of
the ring A and denoted H(A). It is clear that A C Qu(A) € H(A) C Q(A) for
each semiprime ring A. Then H(A) can be defined as the smallest fegular ring lying
between A and Q(A). As A C H(A) C Q(A), it follows that H(A) is a ring of

quotients of A and therefore an essential extension of A.

Theorem 1.7 Let A be a semuprime ring. Then Qu(A) 1is regular if and only if
Vae A3Jbe (a)* such that (a)* N (b)* = {0}.



Proof.

(=) Suppose Qu(A) is regular, and let a € A. Then 3z € Qu(A) such that a = a’z
where z = zy~'. Letb = y — az, then ab = ay — a’x = a’zy~ 'y — a’c = 0 which
implies that b € (a)*. To show that (a)* N (b)* = {0}, let ¢ € (a)* N (b)*. Then
0=chb=cly— azr)=cy — car = cy. Buty is a non zero-diisor. Then ¢ = 0 and
therefore (a)* N (b)* = {0}.

(<=) Suppose thatV a € A 3 b € (a)* such that (a)*N(b)* ={0}. Letad™ € Qu(A)
where d is a non zero-divisor. Choose b € (a)* such that (a)* N (b)* = {0}. We claim
that a +bd is a non zero-divisor. Suppose x(a+bd) = 0. Then ax(a+bd) = 0, which
implies that axa = 0, and therefore zbd = 0. Since d is a non zero-divisor, then
- zb =0 and therefore z € (a)* N (b)". Then a +bd is a non zero-divisor. Therefore
t=(a+bd)! € Qu(A), and [ad™" — (ad™")2dt] = (ad~")(1 - at) = (ad~?)(bdt) = 0.

So ad™1 = (ad~1)%(dt). Thus Qqu(A) is regular.
]

Lemma 1.5 Let A be a semiprime ring such that {a)* is a principal ideal for each a
in A. Then Qu(A) is regular.

Proof.

Leta € A, and let {a)* = bA. We claim that (a)*N(b)* = {0}. Let 0 # y € {a)*N(b)*.
Since (b)* = cA for some ¢ € A then y = r1b = roc # 0 and y*® = 0, which is a
contradiction. Then (a)* N (b)* = {0}, so by theorem 1.7, Qu(A) is reqular. O

The Structure of H(A)

Theorem 1.8 Let T be a reqular extension of A, and let S be the subring of T ge-
nerated by A and B where B = {r*r : v € A}. Then Qu(S)= H(S).

Proof. ‘

It is clear that S ={>."  rei: 1 € A, e, € B, n> 1}. Let x = [ rie;. But
[T, (ei+ (1 —e;)) = 1. Notice that this product can be written as (Zf;l fi)=1

where f; € S, fj2 = f;Vj =1,2,....., 2" [some of them possibly zeros|, and f;f; = 0 if

10



i 5.

Clearly e;f; = 0 or 1 depending on i and j. Now z = zl1 = > . ,(re;)l =
Y (rie)(gmy ) = 2 (i (riesf3))-
Let a; = Z;’ﬂ(rieif]—). Take tj = Tm1 + Tm2 + Tma + oo + rmn Where e f; = fj-

Then aj = t;f;, and ¢ = Z?; aj. Since {f; : 1 <j < 2"} is an orthogonal set then
(S 65.3) (Cimy t3)? = Spma(B555) = Xy t 5. 1t follows that x* = 3277, 63,
zz* = ijl(t;-t]—fj) € S and1—-zz* € S. To show that (x)* is a principal ideal of S,
det I = (z)* = {t € S:tz = 0}. It is clear that 1 — zz* € I. Conversely, ift € S such
that tx = 0 then t = t(1 — zx*). Therefore (x)* = (1 — zx*)S. So (z)* is a principal
ideal. Thus by lemma 1.4 Qq(S) is reqular and Qu(S) = H(S). O

Lemma 1.6 Let T be a regular extenswn of A. Then Gp(A) = { > .  risy 1,8 €
A n>1}

Proof. |

Let B={r*r:r€ A}, D={r*:r € A} and let S, K be the subrings of T generated
by A, B and A, D respectively. Then K = { > rist 11,8 € A, n > 1} and
S C K C Gr(A). To show that Qq(S) C K, let = be any non zero-divisor in S.
Since x = Yoy Tiei then as before z* = ZJ 15 fi € K. Since z(1 — zz*) = 0 and
(1—zz*) € S then 1 —zz* =0 and = has 27! in K. Therefore Qu(S) C K. It follows
that A C Qu(S) =H(S)C K CT. ButhT(A) is the smallest reqular ring between
Aand T. Then Gr(A) = K = H(S). O

Corollary 1.1 Since every finite semiprime ring is reqular then |A| = |Gr(A)| for

any semiprime ring A with a reqular extension T'.

Let A be a semiprime ring. Since the complete ring of quotients Q(A) is a regular

extension of A then H(A) = { )., risf :ri,si € A, n> 1}, and |A] = |[H(A)].

Lemma 1.7 Let A be a semiprime ring and let S be a ring extension of A such that

Vse S3dte S Fabe A withs =at and a = th. Then S is an epimorphic
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extension of A.

Proof.

Let:: A — S be the inclusion map and o, 8 : S — T be ring homomorphisms such
that cov= [ o1.

Let s€ S. Then3te€ S, 3 a,b€ A such that s =at and a =tb.

Now a(s) = a(at) = a(a)a(t) = Bla)a(t) = B(bt)a(t) = SB)B(t)alt) = a(b)B(t)alt) =
B(t)a(bt) = B(t)a(a) = B(t)B(a) = B(ta) = B(s). Thusa = .and S is an epimorphic

extension of A. | O

Corollary 1.2 Let A be a semiprime ring. Then H(A) is an epimorphic eztenlsion
of A.

~ Proof.

Let o, 3: H(A) — S.be ring-homomomhz‘snis such that ao1 = o1 where1: A —
H(A) is the inclusion map. For eachr € A, lett = 1% a =7 and b'=13. Then
s = at, a = th and a,b € A. So by the same proof as in lemma 1.7 a(r*) = B(r*)
Vr € A. Now for any x € H(A) we have x = Y i ris} and a(z) = a(d 1 ris]) =
Do alra(sy) = i, B(ri)B(st) = (i ris;) = B(z). Then a = B and H(A)

is an epimorphic extension of A. O

The spectrum of a ring

If A is a ring, then the spectrum of A, denoted spec(A), is the set of all prime ideals
of A. For any subset £ of A and a € A, let V(E) = {P € spec(4) : E C P},
V(a) = V({a}). D(E) = spec(A) — V(E) = {P € spec(A) : E £ P}, D(a) = D({a}),
r(E) =P € spec(A) : E C P}, and r, = r({a}).

Remark 1.4 If A is a ring. Then :
(1) V(E) =V ((E)) =V(r(E)) for each E subset of A.
(2) V({0}) = spec(A) and V(A4) = @.
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(3) V(U;er Ei) = Ny V(E;) for each family {E; :i € I} of subsets of A.
@) V(IJ)=V({INJ)=V(I)UV(J) for all I, ] ideals in A.

Lemma 1.8 Let A be a ring. Then X = spec(A) with the collection of open sets
T={D(FE): E C A} forms a topological space which has the collection 3 = {D(a) :
a € A} as an open base.

Proof.

Note that D({1}) = X, D({0}) = @, D(E1) N D(E2) = D({Ex) N (E3)), and

Uier P(E:) = D(U;¢; Ei). Thus (X, T) is a topological space. Since D(E) = |J,cg D(a)
then B = {D(a) : a € A} is open base for (X, T). m)

This topology is called the spectral topology on spec(A), and it is clear that the

closed subsets in this space are those of the form V(F) where F is any subset of A.

Remark 1.5 Let A be a ring, X = spec(A) and a,b€ A. Then :
1) D(a) N D(b) = D(ab).
2) D(a) = @ if and only if a is a nilpotent element.

(

(

(3) D(a) = X if and only if a is a unit.

(4) D(a) = D(b) if and only if r({a)) = r({b)).
(

5) (spec(A).,f) 1s a Ty-space.

Corollary 1.3 Let A be a ring, a € A, and U be an open subset of spec(A). Then:
(1) D(a) is a compact subset.

(2) U is a compact subset if and only if U is a finite union of sets of the form D(a).
Proof. |

(1) It is clear that D(a) = D(a™). Suppose D(a) C Uyer D(as) then V(a) 2
Naer V(aa) = V(Uuer{aa)) which implies that ro C 7(Paer({aq))). Since a € 14
then 3 no > 1 such that a™ € @yer({aq)). Therefore 3 any,any, . ..., aa,, Such that

(@) C (aay) + (Qny) + o oeeen + {aan)- It follows that (V_, V({aa,)) C V({a™)). Then
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Ui; D({aa,)) 2 D({a™)) = D(a), and D(a) is a compact subset for each a € A.

(2) (=) Suppose U is a compact subset. Since U is open, then U = D(I) for
some ideal I in A. But D(I) = |,c; D(a) and U is a compact subsel. Thus
D(I) = U, D(ai).

(<==)Obvious. 0O

Since spec(A) = D(1) then (spec(A), T) is a compact space. For each P € spec(A)
we have cl({P}) =V(P). So {P} is a closed set if and only if P is a maximal ideal.
Therefore the space spec(A) with the spectral topology is a Ti-space if and only if

every prime ideal is maximal, or equivalently if and only if A is a regular ring.

Lemma 1.9 If B C spec(A) then cl(B) = V((gep @)-
- Proof.
IfP ¢ V(Noep @), then Ngep @ & P. Choose a € (NoepQ)— P- Then D(a)NB =
@ and therefore cl(B) C V(ﬂQeB Q). On the other hand, if P € V((oep @) and
P ¢ cl(B) then 3 D(a) such that P € D(a), D(a) N B = &. Therefore a € @
Y Q € B, which implies that a € (yep Q@ C P which contradicts P € D(a). Thus
P € cl(B) and cl(B) =V ([pep @)- , m]

Let M(A) be the space of maximal ideals of A as a subspace of spec(A) with the
spectral topology. For each M € M(A),let ppr = {P: P C M}, and OY = Ngey,,, Q-

Corollary 1.4 Let A be a semiprime ring. Then OM ={a€ A:3b¢ M, D(b) C
V(a)}.

Proof.

Let T ={a € A:3b¢ M, Db) C V(a)} and let z € T. Then 3y ¢ M
such that V(z) UV (y) = spec(A). Since zy € PV P € spec(A) andy ¢ M then
xr € PV P € py. Therefore t € OM and T C OM. On the other hand, suppose
r€ OMandlet S = {2"c:n >0 ¢c€ A—-M}. Then it is clear that S is a
multiplicative subset. If 0 ¢ S then 3 P prime ideal such that P NS = &, which
implies that ¢ P and A— M C S. Therefore P C M which contradicts the fact that
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T € OM. Then 0 € S. But £™cy = 0 for some ng > 1 implies that xco = 0. Thus

V() UV(co) = spec(A). Thereforex € T and T = OM. a

Lemma 1.10 Let A be aring and T C M(A). Thencly(T) ={N :(\yer M < N}
Proof.

Since cly(T) = (T) N M(A) then cly(T) = {P : Vyper M C PYNM(A) ={N:
NuerM C N} o

Definition 1.8 Let A be a ring. Then A is called a pm-ring if every prime tdeal s

in a unique maximal ideal.

If A is a pm-ring, denote the unique maximal ideal containing P by Mp. Then there

is a function, p : spec(A) — M (A), defined by u(P) = Mp.

Theorem 1.9 If A is a pm-ring then p is a continuous function from spec(A) onto
M(A).

Proof.

Let T be a closed subset of M(A), J = (\yer M, and I = (N e P- Then T =
V(J) N M(A). Let us show that u=(T) = V(I). It is clear that u=*(T) C V(I).
Then one just has to show that I C Q implies Mg € T. Let Q € spec(A) such that
Q C B=UpyerM. Then Q+J C B C A which implies that Q + J C My where M,
is a mazimal ideal containing Q + J. Since J C My, then My € T and u(q) = M.
Now let I C P and take SK = {sk:s€ S,k € K} where S=A—B and K = A— P.
Then SK is a multiplicative subset, and SK N1 = &. Therefore by Zorn’s Lemma
3 Q a prime ideal such that I C Q, QNSK = @. Then Q C B, Q C P which
implies u(Q) = My € T and u(Q) = u(P). So I C P implies that u(P) € T. Thus

p~YT) =V(I) and p is a continuous function. : O

A topological space X is called irreducible if each non-empty open set is dense, or
equivalently if each pair of non-empty open subsets U,V has a non-empty intersec-

tion. It is clear that every Ty-space with more than one point is not an irreducible
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space. The space spec(A) is irreducible if and only if the ideal of nilpotent elements
is prime. It is clear that if A is semiprime then spec(A) is irreducible if and only if A

is an integral domain.

Lemma 1.11 Let F be a closed irreducible subset of spec(A). Then F = V(P) for
some P € spec(A)

Proof.

Let F be a closed irreducible subset of spec(A). Then F = V(I) for some ideal I.
Since V(I) = V(r(I)), then F = V(J) where J = r(I). So it is enough to show that
J 15 prime. '

Let zy € J. Then V(J) = V({J,z)) UV ({J,y)). Since F is an irreducible subset,
then V(J) = V({J;z)) or V(J) = V({Jy)). WLOG, let V(J) = V({J,z)). If
x ¢ J = r(I) then 3 P a prime ideal such that J C P and © ¢ P. Therefore
V(J) # V({J, x)), which is a contradiction. Thus x € J and J is prime. O

Definition 1.9 Let X be a topological space. Then X is called a spectral space if:
(1) X is a compact Ty-space.

(2) every irreducible closed subset is a closure of one point.

(3) X has a base of compact open sets. |
(

4) the intersection of any two compact open sets is compact.

Clearly for any commutative ring A with identity, the space spec(A) is a spectral
space.
There is another topology defined on the space spec(A) called the patch topology. It

is stronger than the spectral topology and it turns the space into a Hausdorff space.

Theorem 1.10 Let A be a ring and let 8 = {D(a)NV(I) : a € A, I is a finitely
generated ideal }. Then 3 forms an open base for a topology on spec(A).
Proof.
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It is clear that D(1) NV ({0}) = spec(A). If Py € (D(a;) NV (1)) (D(a2) NV (I3)),
then P() € (V((]], Iz>) N D(a1a2)) = (D(al) ﬂV(Il)) ﬂ(D(GQ) N V(Iz)) Thus /B 15 an

open base for a topology on spec(A). O

This topology is called the the patch topology. For any a in A we have D(a) N
V({0}) = D(a) is an open subset so the spectral topology is weaker than the patch
topology. Since V(a) = V({a)) is an open subset then D(a) is clopen subset. i.e.
D(a) € CO(X) Va € A. Also V(a) € CO(X) and V((a,b)) = V({a)) N V((b)).
Therefore V(I) € CO(X) for each finitely generated ideal I. Thus spec(A) with
the patch topology is a 0-dimensional Hausdorff space. We will dgnote the spectral

topology on spec(A) by 7 and the patch topology by 7.

Lemma 1.12 Let M be a Maximal wdeal of A. Then M is an isolated point in
(spec(A),7) if and only if 3 I a finitely generated ideal such that V (I) = {M}.
Proof.

(=>) Suppose M is an isolated point in X. Then {M} = D(a) N V(I) where I =
(a1, az, as, ....., an) 1s a finitely generated ideal. Since M is mazimal ideal then 3 b € A
such that ab—1 € M. Take J = {(a;,as,a3,.....,an,ab — 1). Then J is a finitely
generated ideal and J C M. So D(a) NV (I) = {M} C V(J). On the other hand,
if P € V(J) is any prime ideal then J C P which implies that ab—1 € P. So
Pe D()nV({I)={M}. ThenV(J)={M} where J is a finitely generated ideal.

(¢<=) Obuious. 0O

Theorem 1.11 Let A be a ring. Then A is reqular if and only if T = 7.

Proof. ‘

(=) Suppose that A is a reqular ring. Let I = {(a) be a principal ideal of A. Since
a’b = a for some b € A then V(a) = D(ab— 1) and therefore I = V(a) is an open
subset. Now if I = (a1, as,as,......,an) is any finitely generated ideal then V(I) =

My V(ai) is an open subset. Thus 7 = 7.
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(<) Suppose 7 = 7. Since (X,7) is a Hausdorff space then (X, 7) is a Hausdorff

space. Hence A is regular. O

Using the Alexander subbase lemma one can prove the compactness for spec(A) with
the patch topology. Details appear in [10, theorem 1].

Let f : A — B be a ring homomorphism with f(14) = l‘B and let I, J be ideals of
A, B respectively. Then f~!(J), denoted J¢ or JN A4, is an ideal of A and f(I)B,
denoted ¢, is an ideal of B. It is clear that I C (I°)¢ and (J°)¢ C J. In this case
there is another function associated with f, denoted f2, is defined from spec(B) into
spec(A) by f(P) = f~Y(P) V P € spec(B). It is a well known fact that if f is an

epimorphism then f¢is an injective map [16].

Lemma 1.13 If f : A — B is a ring homomorphism then f¢ : spec(B) — spec(A)
is a continuous function with the spectral topology [patch topology] on both spaces.
Proof.

First, let us start with the spectral topology. Let E = V(I) be a closed subset in
spec(A). If P € spec(B) such that I¢ = f(I)B C P then I C f‘l(IB) C f~YP) and
therefore P € (f*)~(V(I)). On the other hand, let P € (f*)"Y(V(1)). Then f*(P) =
f~Y(P) € V(I) and therefore f(I)B C f(f~Y(P))B C P. Then (f*)""(V({I)) =
V(f(I)B) and hence f* is a continuous map.

Secondly, let us consider the patch topology on both spaces. Since 8 = {D(a)NV(I):
a € A and I is a finitely generated ideal } is an opén’ base for the patch topology
7 on spec(A), then S = {V(a) UD(I) : a € A, I is a finitely generated ideal } is
a closed base for ¥+ on spec(A). Then it is enough to show that (f*)"(D(a)) is a
closed set in (spec(B),#) for each a € A. Let Q € (f2)"1(D(a)). Then a ¢ f*(Q),
and therefore f(a) ¢ Q i.e. Q € D(f(a)). Hence (f*)"*(D(a)) € D(f(a)).. On
the other hand, let Q € D(f(a)). Then f(a) ¢ Q which means that ‘a ¢ Q) =
Q). Then Q € (f*)"(D(a)). which implies that D(f(a)) C (f*)~*(D(a)). Hence
(f)"Y(D(a)) = D(f(a)) and therefore (f*)~'(D(a)) is a closed subset. Thus f* is a

continuous function under the patch topology. : ]

18



1.2 Prime d-ideals and prime (-ideals

Let A be a ring and P be a prime ideal. Then P is called a minimal prime ideal if
for each @ € spec(A) such that Q C P we have @ = P. Denote the space of minimal
prime ideals by Min(A).

For each B C A anda € A, let Ps = {{P € Min(A) : B C P}, P, = Py,
VA(B) = V(B) N Min(A), and D;(B) = D(B) N Min(A).

Theorem 1.12 Let A be a semiprime ring and P € spec(A). Then P is minimal
prime if and only ifVa € P 3b¢ P such that ab=0.

Proof. »

(=>) Let P be a minimal prime ideal, a € P, and let S = {sa*: s € (A—P) and k >
1}. Then S is a multiplicative subset. If 0 ¢ S, then 3 P a prime ideal such that
PNS =w@. Then P, C P, which is a céntmdiction. Therefore 3b¢ P and k > 1
such that ba* = 0. But A is a semiprime ring, so ab= 0.

(<) If P, C P, then 3a € P and a ¢ P;. So by hypothesis there is a b ¢ P such
that ab = 0, and therefore ab € P, while a,b ¢ Py, which is a contradiction. Thus P

s a minimal prime ideal. D

Lemma 1.14 Let A be a semiprime ring and let B,C be ideals of A such that B is
a finitely generated ideal. Then Vi(B) C Vi(C) if and only if B* C C*.

Proof.

(<=) Suppose B* C C* where B = {by, by, b3, ..., b,) is a finitely generated ideal. If
B C P where P is a minimal prime ideal, then for each b; there isz; ¢ P such
that bx; =0. Takex = [, z;. Then z ¢ P and bz = 0 for each b;. Therefore
€ B* CC* butx ¢ P. Then C C P, and therefore V1(B) C Vi(C).

(=) Let Vi(B) C Vi(C) and suppose aB = 0 and aC # 0. Then 3P a prime ideal
such that aC Q P. Let Py be a minimal prime ideal contained in P. Then C Q P

and B C Py which is a contradiction. Thus B* C C*. 0
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Remark 1.6 Let A be a semiprime ring and let B,C be finitely generated ideals.
Then Vi(B) = Vi(C) if and only if B* = C*.

Corollary 1.5 Let A be a semiprime ring. Then:

(1) P = I'** for each finitely generated I of A.

(2) I* = ({P € Min(A) : P € D(I)} for each ideal I of A.

Proof. »

(1) Let I = (by, ba, b3, ..., by) be a finitely generated ideal. Letz € I** and P € Min(A)
such that I C P. Then for each i =1,2,...,n I z; ¢ P such that ;b; = 0. Take
b= [l-,zi- Thenb € I* and therefore zb = 0. Butb ¢ P. Then z € P, and
therefore I** C P;. On the other hand, if x ¢ I** then xI* # {0}. Therefore 3 P a
minimal prime ideal such that zI* € P. Since II* = {0} then I C P, which implies
that x ¢ Pr. Hence Pr = I**.

(2) Since I € P implies that I* C P, then I* C ({P € Min(A) : P € D(I)}.
If x ¢ I, then there is a minimal prime ideal P such that zI ¢ P. Therefore
P € D(I) and x ¢ P, which means that x ¢ [{{P € Min(A) : P € D(I)}. Thus
I"=({P € Min(A) : P € D(I)}. O

Definition 1.10 Let A be a ring and I be an ideal of A. Then I is called a z-ideal if

Y a,b € A such that a,b lie in the same maximal ideals, and a € I implies that b € I.

Remark 1.7 Let A be a ring. Then:
(1) Every z-ideal is a semiprime ideal.
(2) Every mazimal ideal is a z-ideal.

(3) An arbitrary intersection of z-ideals is a 2-ideal.

Definition 1.11 Let A be a ring, and I be an ideal in A. Then I is called a d-ideal
[¢-ideal] if a € I implies P, C I [Py C I for each finitely generated ideal J C IJ.

From the definition we can see that every (-ideal is a d-ideal and every minimal prime

ideal is a (-ideal. It is clear from corollary 1.5 that if A is semiprime, then an ideal
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I is a d-ideal [(-ideal] if and only if (a)** C [ for eacha € I [J** C I for each finitely

generated idealJ C I]. It is obvious that I* is a (-ideal for each ideal I of A.

Remark 1.8 Let A be a ring. Then:

(1) Every d-ideal is a semiprime ideal.

(2) An arbitrary intersection of d-ideals [(-ideals| is a d-ideal [(-ideal].

(3) An ideal I is a d-ideal if and only if I =3 ;1 Pa=Upes Po-

Proof.

(1) If a™ €I for somen > 1 where I is a d-ideal thena € P, = P,n C 1.

(2) Obvious.

(3) The necessary condition is obvious. In order to prove the sufficient condition, let
I be a d-ideal. Since P, C I for each a € I then Y owct Po € 1. Since a € P, for each
a, then 3 Pa=1. Thus I CU,e; Pa €Y o Pa=1. O

Lemma 1.15 Let A be a semiprime ring. Then TFAE :

(1) I is a (-ideal.

(2) Vi(J) = Vi(K) where K, J are finitely generated ideals and J C I implies that
KClI.

(3) J* = K* where K, J are finitely generated ideals such that J C I implies that
KClI.

Proof.

1) == (2) This is clear because V1(J) = Vi(K') implies that Px = P;.

2) = (3) This is clear by remark 1.6.

3) = .

3) =

y € (bY* then y(J(b))) = {0} and therefore (b)* C (J(b))*. On the other hand, if
y(J{b))) = {0} then ybJ = {0} and therefore yb* = 0. But A is semiprime, so yb= 0

(
(
( (2) This is clear by remark 1.6.
(

(1) Let J be a finitely generated ideal such that J C I, and let b € J**. If
and therefore (b)* = (J(b))*. Since J(b) C I then (b) C I. Hence I is a (-ideal. O
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Since the d-ideals are a special case of (-ideals one can repeat the previous lemma for
d-ideals by replacing the finitely generated ideals with principal ideals. Recall that

the Jacobson radical, denoted by J(A), is the intersection of all maximal ideals of A.

Theorem 1.13 Let A be a ring. Then:

(1) J(A) = {0} implies that every d-ideal is a z-ideal.

(2) If A is a semiprime Ting such that every d-ideal is a z-ideal. Then J(A) = {0}.
Proof.

(1) Suppose J(A) = {0} and let T be a d-ideal such that a € I,b¢ I. Since P, C I
then b ¢ P, which implies that b{a)* # {0}. Therefore by assumption there is a
mazimal ideal M such that b{a)* € M. Thenb ¢ M and (a)* € M. But a{a)* = {0},
s0 a € M and therefore a and b are not in the same mazimal ideals. Hence I is a
z-ideal.

(2) Let A is a semiprime ring and suppose that every d-ideal is a z-ideal. Then {0} s
a z-ideal, because {0} is a d-ideal. Ifb € J(A), then O and b lie in the same mazimal
ideals and therefore b = 0. Thus J(A) = {0}. O

Corollary 1.6 Let A be a semiprime ring. Then:

(1) Every proper d-ideal consists of zero-divisors.

(2) Every zero-divisor is in some minimal prime ideal.

Proof. ‘

(1) Let I C A be a proper d-ideal and let a € I be a non zero-divisor. Then (a)** =
A & I, which ts a contradiction. Therefore I consists of zero-diwisors.

(2) If a =0 we are done. If not, let ¢ # 0 such that ca = 0. Since ¢ # 0 then there is

a minimal prime ideal P such that c ¢ P. Hencea € P for some P € Min(A). O

Lemma 1.16 Let A be a semiprime ring, let I be an ideal of A, and @ # S C A.
Then:
(1) I is a d-ideal implies that (I : S) = {a : aS C I} is a d-ideal.

(2) If S is a multiplicative subset. then Os = {a : asq = 0 for some sp € S} is a
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d-ideal.

(3) If I is a d-ideal and S is a multiplicative subset, then Is = {a : aso € I for some
s0 € S} is a d-ideal and I's = J,eg(1 : {3}) = D_,es(I : {s})-

Proof.

(1) Clearly (I : S) is an ideal of A. Leta € (I : S), b € {(a)**, and so € S. Since
asg € I, then {aso)** C I. Suppose that zasy = 0. Then zbsy = O which means ihat
bsg € {ase)*™ C I. Thusb € (I:S) and (I : S) is a d-ideal.

(2) Clearly Os is an ideal in A. Leta € Og, b € {(a)*. Thenasy = 0 for some sy € S.
Since b € (a)** then zb = 0, whenever xa =0. Therefore bsy =0 and b € Og. Hence
Ogs s a d-ideal.

(3) Following the same steps as in (1), one can show that Is is a d—idedl. It is clear
that Is = U,es(1 = {s}) and that J,cs(I : {s}) € D s i {5}). Letz = as +as+
..... +an € Y eg(l:{s}) whereais; € I foreachi=1,2,..n. Takes=][_;s€S.
Then xs € I and therefore x € Is. Thus Is = J,eg( : {s}) = 2 _ses(d i {s})- a

If A is a regular ring then every prime ideal is a minimal prime ideal which means
that every prime ideal is a (-ideal, and since in regular rings every ideal is semiprime

one can conclude that in regular rings all the ideals are (-ideals.

Corollary 1.7 Let A be a semiprime ring. Then A is regular if and only if every
principal ideal is a d-ideal. |
Proof.

(=) Obuious.

(¢<=) Since (a?) is a d-ideal and a € {a*)** C (a?) then A is reqular. O

Lemma 1.17 let A be a semiprime ring. Then:

(1) If I is a d-ideal [¢-ideal) of A, and J is a d-ideal [(-ideal] of A/I. Then w=(J) s
a d-ideal [C- ideal] of A.

(2) I is a d-ideal [(-ideal] if and only if I is an intersection of prime d-ideals [prime

(-ideals|.
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Proof.

(1) Let I be a (-ideal of A and J be a (-ideal of A/I. If (a1, az,...,a,) C 7w *(J), and
b€ (ai,a, .., a,)** thenca; =0V i=1,2,...,n implies that bc = 0. Since n(a;) € J
for eachi=1,2,...,n and A/I is semiprime, then (m(a1),m(az),...,m(a,))* C J. So
it is enough to show that b+ I € (m(ay),n(az), ..., m(a,))**, which is equivalent to
showing that bx € I whenever za; € IV 1= 1,2,...,n. Suppose that xa; € I for each
i=1,2,...,n. Since I is a (-ideal then (za,, Tas, ..., xa,)** C I. Now since k(za;) =0
for each i = 1,2,...,n implies that bxk = 0. Then bx € (xay,zaz;...,za,)** C I.
Hence w=(J) is a (-ideal.

The claims for d-ideals follow by the same argument.

(2) («<==) Obvious.

(=) Since A/I is a semiprime ring, then {0+ I} - Npentinayny P- Hence I =
Npentinian ™ (P) where 7= (P) is a prime d-ideal [(-ideal] for each P € Min(A/I).

O

Let A be a ring and I be a proper d-ideal [proper (-ideal] of A. Then I called a
maximal d-ideal [maximal (-ideal] if it is a maximal element in the set of proper d-
ideals [proper (-ideals]. By using the Axiom of choice one can prove that every proper
d-ideal [proper (-ideal] lies in some maximal d-ideal [maximal ¢-ideal]. It is clear that
maximal d-ideals and maximal (-ideals are not necessarily maximal ideals in general.
But they are prime ideals, because by lemma 1.17(2), every maximal d-ideal [maximal
(-ideal] is an intersection of prime d-ideals [prime (-ideals] and therefore it has to be

one of them.

Theorem 1.14 Let A, B be semiprime rings and f : A — B be a ring homomor-
phism. Then:
(1) I¢ is a (-ideal for each (-ideal I of B if and only if P° is a (-ideal for each
P € Min(B).
(2) I¢ is a d-ideal for each d-ideal I of B if and only if P° 1s a d-ideal for each
P € Min(B).
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Proof.

(1) (=) Obvious.

(«<=) Suppose that P¢ is a (-ideal for each P € Min(B), and let I be a (-ideal of
B. If J, K are finitely generated ideals of A such that J C I¢ and Vi(J) = Vi(K)
then J¢, K¢ are finitely generated ideals of B and J® C I. We need to show that.
Vi(J¢) = Vi(K*®). Suppose J¢ C P where P is in Min(B). Then J C P°. Since
P¢ is a (-ideal, then K C Px = P; C P° and therefore K¢ C P. On the other
hand, if K¢ C P where P is zn Min(B), then K C P¢. But P° is a (-ideal. Then
J C Py = Px C P°. Therefore V1(J¢) = Vi(K®). Now since I is a (-ideal and
J¢ C1I, then by lemma 1.15 K¢ C I. Hence K C I¢ and I°¢ is a (-ideal.

(2) This holds by the argument above with finitely generated ideals replaced by principal

1deals. m]

Corollary 1.8 Let A be a semiprime ring, let S be a multiplicative subset of A, and
let I be a d-ideal [(-ideal] of As. Then ®,~(I) is a d-ideal [(-ideal] for each s € S.
Proof.

Since A and Ag are semiprime rings then it is enough by theorem 1.14, to show that
®,7(P) is a (-idéal for each P € Min(Ag). Let P € Min(As) and s € S. Then
®,7Y(P) € spec(A). If Q = &, (P), then P = Qs = {2 : a € Q,s € S} where
QNS = . It suffices to show that () s a mintmal prime ideal. Let a € Q. Then
> € P which implies that 3% ¢ P such that %% = g. So Jsq € S such that ssabs = 0.
Since ;’-’1— ¢ P, then b ¢ QQ which means that sobs ¢ Q). Hence Q € Min(A) and Q is

a (-ideal. ' O

Theorem 1.15 Let B be a reqular ring of quotients of A and let J be a finitely
generated ideal of A. Then P;=J¢N A.

Proof.

Let J = {ay, as, ..., an) be a finitely generated ideal of A. Then J¢ = )" a,B. Since

B is a regular ring, then > " a;B = eB for some idempotent element e € B. If
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be € J*NA and y € (a1, az, -..,an)* then ya; = 0 for each i =1,2,...,n and therefore
ybe = 0. So be € (ay,ay, ..., an)** = P;, and J*NA C P;. On the other hand, suppose
that t € A, © ¢ eB. Then x(1—e) # 0. But B is a ring of quotients of A, therefore
3t € A such thatt(l—e) € A and xt(1—e) # 0. Since °t(1—e) # 0 and zt(1—e) €
{a1,ag, ...,an)*, then x ¢ (a1, az,...,an)**. Hence Py = (a1,a,...,an)*™ C J°*N A and

therefore P; = J* N A. 0O

Lemma 1.18 Let B be a regular ring of quotients of A and let J be an ideal of A.
Then J =1N A for some ideal I of B if and only if J is a (-ideal.

Proof.

(=) Let J = I N A for some ideal I of B, and let K = (ay,az,...,a,) € J be a
finitely generated ideal of A. Then K¢ C J* C I, and Pk = K°*NACINA=J.
Thus J 1s a (-ideal.

(<=) Suppose J is a (-ideal and let I = J¢. It is clear that J C I N A. Let
z€INA Thenz =)  abi wherea; € JVi=1,2,..,n AsJis a (-ideal,
then (ai1,ag,...,an)*™ C J. Sincex € (3. a;BNA) = (a1,0as,...,an)*, then z € J.

Hence J=1N A. O

Theorem 1.16 Let A be a semiprime ring, and let P be a prime ideal. Then TFAE:
(1) P is a (-ideal.

(2) P=NnNA for some mazimal ideal N of Q(A).

(3) P=MnNA for some mazimal ideal M of H(A).

Proof.

(1) == (2) Since Q(A) is a regular ring of quotients of A, then P = J N A for
some ideal J of Q(A). Since S = A — P is a multiplicative subset of Q(A), and
SNJ = & then there is a prime ideal M of Q(A) and therefore a mazimal ideal such
that SN M =@ and J C M. Therefore P=JNAC MNA. If z€ M N A, then
z ¢ (A — P) which implies that z € P. Thus P = M N A where M 1is a mazimal ideal

of Q(A).
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(2) = (3) Suppose that P = N N A for some mazimal ideal N of Q(A). Let
M = NN H(A). Then M is a mazimal ideal of H(A) and P= M N A.
(3) = (1) Suppose P = M N A where M is a mazimal ideal of H(A). Thus by

lemma 1.18, P is a (-ideal. O

Remark 1.9 Let A be a semiprime ring. Then:

(1) If I = J N A for some ideal J of H(A) then I is a ¢-ideal.

(2) I is a proper (-ideal implies that I¢ = [H(A) # H(A). |
(3) P is a prime (-ideal implies that P = M NA where M is a ﬁam‘mal ideal of H(A)
such that PH(A) C M and MN(A— P)=o.

(4) P is a prime (-ideal ideal does not imply PH(A) is a prime ideal.

(5) Since H(A) is epimorphic extension of A then i® : spec(H(A)) — spec(A) is a
one-to-one map, that is, for each P a prime (-ideal of A 3! M mazimal ideal of H(A)
such that P = M N A.

Corollary 1.9 Let A be a semiprime ring and let P € M(A). Then:

(1) P is a ¢-ideal if and only if PH(A) # H(A).

(2) P is a (-ideal implies that Mp = PH(A).

(3) PH(A) € M(H(A)) or PH(A) = H(A).

Proof. |

(1) If P is a -ideal then P= MpnN A for some Mp € ]W(H(A)) such that PH(A) C
Mp. Therefore PH(A) # H(A). '
Conversely, if PH(A) # H(A) then P C (PH(A)N A) # A. Since P is a mazimal
ideal then P = (PH(A) N A). Hence P is a (-ideal. |

(2) Let P be a (-ideal. Sincer: A — H(A) and 7 : H(A) — H(A)/(PH(A)) are
ring epimorphisms, then m o1 is an epimorphism with ker(w o2) = P and therefore
there is an epimorphic monomorphism k from A/P into H(A)/(PH(A)). As A/P is
a field, then k is an onto map and therefore H(A)/(PH(A)) is a field. Thus PH(A)
is a mazimal ideal and Mp = PH(A). '
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(3) If PH(A) # H(A), then P is a (-ideal and therefore by (2), Mp = PH(A). Hence
PH(A) € M(H(A)). O

Definition 1.12 Let A be a semiprime ring Then:

(1) we say that A satisfies condition ¢ if I* # {0} for each finitely generated ideal of
zero-divisors 1.

(2) we say that A satisfies the condition a.c. if for each finitely generated ideal I,
there is a b in A such that I* = (b)*. |

(3) we say that A satisfies the strongly a.c. condition if for each finitely generated
ideal I there is a b in I such that I* = (b)*.

It is shown in [7] that a semiprime ring satisfies condition c if and only if every ideal
consisting entirely of zero-divisors is contained in some proper ¢-ideal. Therefore if
A is a semiprime ring which satisfies the condition ¢, then every maximal ideal of A

consisting entirely of zero-divisors is a (-ideal.

Lemma 1.19 Let A be a semiprime ring and b € (a)*. Then (b)** = (a)* if and only
if a + b is a non zero-divisor.

Proof. |

Since (a)* is a d-ideal then (b)** C (a)* for each b € (a)*.

(=) Suppose that (b)** = (a)*. Then xc =0, whenever az = 0 and cb = 0. Suppose
(a+b)z =0. Then a’z + bax = 0 which means a*z = 0. Therefore az = 0 and hence
b = 0. But ax = bx = 0 implies that 22 = 0. Thus a + b is a non zero-divisor.
(=) Suppose a + b is a non zero-divisor, and let x ¢ (b)*. Then 3 ¢ € A such
that cb =0, cx # 0. If za = 0, then (a+ b)cx = 0, which is a contradiction. Then
z ¢ (a)*. Hence (b)** = (a)*. O

Theorem 1.17 Let A be a semiprime ring. Then TFAE:
(1) Minimal prime ideals are the only prime ideals consisting of zero-divisors.

(2) A satisfies condition ¢ and every prime d-ideal is minimal prime.
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(3) Qu(A) is a regular ring.

(4) For each a € A 3b € A such that (b)** = (a)*.

Proof.

(1) = (2) Let I = (a1, az,...,a,) be a finitely generated ideal consisting of zero-
divisors. Then I C\{P : P € Min(A)}. Let S={{A—-P: P € Min(A)}. Then
INS = & and S is a multiplicative subset, which implies that there is a prime ideal Q
such that I C @ and Q NS = &. Now since x € Q implies that = ¢ S, therefore AP,
a minimal-prime ideal such that x € Py, i.e. T is a zero-divisor. It follows by (1) that
Q is a minimal prime ideal. Since I C Q, then a; € Q Vi =1,2,...,n, and therefore
there are y1, Y2, ..., Yn ¢ Q such that a;y; = 0 Vi. Take y = y1ya....yn- Theny ¢ Q
and yI = {0}. Therefore I* # {0} and hence A satisfies condition c. It is clear that
every prime d-ideal is minimal prime.

(2) == (3) Let M be a mazimal ideal in Qq(A). Since M C Z(Qa(A)) and Qu(A)
satisfies condition c, then M is a (-ideal, which implies by corollary 2.8, that MN A
is a (-ideal and therefore a prime d-ideal. Hence by (2) M N A is minimal prime.
Since Qa(A) is an epimorphic extension of A, then1* is a one-to-one map. Suppose
that M is not a minimal prime ideal in Q. (A). Then there is a Q € spec(Qu(A))
such that Q C M, which tmplies that QNAC MNA and QN A s a prime ideal of
A, which is a contradiction. Thus M is a minimal prime ideal of Q4(A) and hence
Qu(A) is a regular ring.

(3) = (4) Suppose that Qu(A) is a regular ring, and let 1 € Qq(A). Then x = z%y
for some y in Qu(A). Take e = 1 — zy. Then e is an idempotent element and
()" = Qu(A)e. For any a in A we have that ($)* = Qu(A)e for some idempotent
element e = 2. Take b = a;. Then we just have to show that (b)** = (a)*. Letza =0

S1

and th = 0. Since § € ($)* = Qu(A)e then T = ;’lsb;, and therefore $% = % =0

Hence xt = 0 and z € (b)**. Conversely, let z € (b)**. Since —%% =0, then ab = 0.

But x € (b)**, therefore za =0 and = € (a)*. Thus for eacha € A 3 b€ A such that

o) = Gay"
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(4) = (1) Suppose that for each a € A 3 b € A such that (b)** = (d)"‘, and let P be
a prime ideal in A such that P C Z(A). Suppose a € P such that (a)* C P. Since
there is a b in A such that (b)** = (a)* then b € P and thereforea+b € P, which is
a contradiction, because a + b is not a zero-divisor. Thus (a)* ¢ P, and therefore P

15 a minimal prime ideal. O

‘Lemma 1.20 Let A be a semiprime ring that satisfies the strongly a.c. condition.
Then:
(1) A satisfies condition c.
(2) Every d-ideal is a (-ideal.
(3) Every maximal ideal is a d-ideal if and only if A = Qu(A).
Proof.
(1) Let I be a finitely generated ideal such that I C Z(A), and suppose that I* = {0}.
Since 3 b € I such that I* = (b)*, therefore b ¢ Z(A), which is a contradiction. Thus
I* # {0} and A satisfies condition c. |
(2) Let I be ad-ideal, and {a1,az, ...,an} C I. Then3 c € I such that (a1, az, ..., an)* =
(c)*, which implies that (a1, az, ..., an)** = (c)** C I. Hence I is a (-ideal.
(3) Suppose that A = Qu(A), and let M be a mazimal ideal in A. Then M C Z(A),
and therefore M C N for some d-ideal N, which means that M = N. Hence M is
a d-ideal. Conversely, suppose that every mazimal ideal s a d-ideal, and let = be a
non-unit element of A. Then x € M for some maximal ideal M, which implies that

z € Z(A). Thus A = Qu(A). O

1.3 Algebraic frames

This section is based on the article (23], but it is reworked from the writer’s point of
view to give a review of the basic concepts on algebraic frames.
A complete lattice L is called Brouwerian if for any two elements @ and b in L, the set

{z € L : anz < b} has a greatest element. It is well known fact that every Brouwerian
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lattice is a distributive lattice. A complete lattice is called meet-continuous if for each

directed subset D of L, we have a A (Vg ep) = Ve en(a A zq)-

Definition 1.13 Let L be a complete lattice and a € L. Then:

(1) a is called a joint-inaccessible element if a = \/,_p, 2o where D is a directed set
implies that a = x, for some x, € D.

(2) a is called a compact element if a < \/ r 2o implies that there ezist a finite subset
B of T such that a < V4 Ta-

(3) a is called a meet-irreducible element if a < 1 and a = A\ o tmplies that

a = Ty, for some oy € T'.

If L is a complete lattice, then the set of all compact elements in L, denoted by C (L),
is closed under finite supremum and need not be closed under finite infimum. If it
does, then it is said to have the finite intersection property F.I.P.. A complete lattice

L is called compact if 1 is a compact element.

Lemma 1.21 Let L be a complete lattice. Then:

(1) Every compact element is a joint-inaccessible element.

(2) If L is a meet-continuous lattice then a € L is compaci element if and only‘z'f a
s a joint-inaccessible element.

Proof. |

(1) Let a = V, cpta where D is a directed set. Then a <\, 2o whereT is a
finite subset of D, which means that a = Vzaer To. Since there is x,, € D such that
To < Ty for each a € T then a < x4, < \/IQED < a. Hence a is a joint-inaccessible
element. |

(2)(=) Obvious.

(=) Leta be a joint-inaccessible element and suppose thata < \/, cp7o. Then D =
{z:2=VL 2,z € ,n > 1} is a directed subset of D; and therefore a </, p Ta-
Then a = a A (Vg ep Ta) = Vi epla A za). Since the set {a Ao @ zo € D} 15
a directed subset and a s a joint-inaccessible element. then a = a N z,, for some

Toe € D, which implies that a < T4, = Vi 2:. Thus a is a compact element. O
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Definition 1.14 A complete lattice is called an algebraic lattice if every element can

be written as a supremum of compact elements.

Lemma 1.22 FEvery algebraic lattice is meet-continuous.

Proof.

1t is clear that \/, cpla A za) < a A (V. epTa)- Then, we need only show that
aN(VaepTa) < Vo, eplaNzy). Write a AV, cpTa) as a supremum of compact
elements: a A (V,_cp Ta) = Vsepcs- It is clear that cs < a and ¢; <\, _cp Ta- Then
there is a finite subset F' of D such that cs < \/ cpzo- But D is a directed subset.
Then cs < o, for some x,, € D, and therefore c; < (aNzy,). Socs < Ve, epl@Nza)
for each 6 € T. Hence aN(V, cpTa) < V., eplanzy). Thus L is a meet-continuous

lattice. ' ' 0

Lemma 1.23 Let L be an algebraic lattice, and suppose x < 1. Then 3 t a meet-
irreducible element such that t > x. Furthermore x is a meet of meet-irreducible
elements.

Proof.

Since © < 1, then there exists ¢ a compact element such that c £ z. Let S = {t : ¢t >
z,t # c}. Then S is a non-empty partially ordered set. If {x; : ¢ € I} is a chain in S,
then y = \/;c; x; is an element in L and z; <y for eachi € I. We need to show that
y isin S. It is clear that y > x, so suppose that y > c. Since c is a compact element,v
then ¢ < (x1VzaV...Vxy,). But{z;:1 € I} is'a chain, therefore ;aVaV...Vx, = x;,
for some 1 < iy < n, soxiy, ¢S, which is a contradiction. Hence y # ¢ and therefore
y € S. So S has a mazimal element t. It is clear that t < 1, because t # c¢. To show
that t is a meet-irreducible element, suppose thatt = \,.; x; such that t # x; for each
1€ 1. Thent < x; for eachi € I. Butt > x. So x; > x for each i, which implies that
xz; ¢ S, ast is a mazimal element in S. Then x; > ¢ for each i € I, and therefore
t = N;e;Ti 2> c. which is a contradiction. Thust is a meet-irreducible element.

Finally, to show that z is a meet of meet-irreducible elements, let T = {t; : t, is a meet
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-irreducible element, t; > x}, and let y = \, .t It is clear thaty > x. Suppose
y £ x, since y = Vje ; d; where d; is a compact element for each j € J. Then there
ezist dj, such that d;, £ x. Take Sy = {d:d > z,d } d;,}. Then S has a mazimal
element t, which will be a meet-irreducible element. Since t; € T, then y < t;. But

dj, <y and therefore d;, < t1, which is a contradiction. Thusy <z andy =2z. O

Remark 1.10 If L is a algebraic lattice then 0 = A, .t; where T is the set of all

meet-irreductble elements.

Lemma 1.24 Every distributive algebraic lattice L is a Brouwerian lattice.

Proof.

Leta,b€ L and take S ={x:a Az < b} andy =V g7 Since L is a distributive
lattice, then S is a directed subset. So by lemma 1.22, L is a meet-continuous lattice.
Therefore a Ny = aA(V,,es%i) = VyeslaAz:) <b. Theny € S and S has a largest

element. Thus L is a Browerian lattice. O

Definition 1.15 A complete lattice L is called a frame if aA(\;¢; ©i) = V(@A i)

for each a € L and for each subset {x;:i € I} of L.

Lemma 1.25 Let L be an algebraic lattice. Then L is a frame if and only if L is a
distributive lattice. |

Proof.

(=) Suppose L is a frame. Then L is a Browerian lattice and therefore L is a
distributive lattice.

(=) Suppose L is a distributive lattice, and let a € L and {x; : 1 € [} C L.

Toke D = {\/,cpzi : where F is a finite subset of I}. Then D is a directed set
and \/ ;% =\, cpz- Since L is a meet-continuous lattice, then a A (V,,cp2) =
V.eplaNz). Soif z = 23V V.. Vz, is any element in D, then a Az =
alN(z1VaV.. . Va,) = Vi (aAx;), which implies that \/, cp(a A z) = Vg, (an ;).

Then \/, (aNz))=a N (V,cp2z) =ar(V, e i) Hence L is a frame. O
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Definition 1.16 Let L be a complete lattice and p € L such that p < 1. Then:

(1) p is called a prime element if x ANy < p implies that x < p or y < p for each
z,y € L.

(2) p is called a finite meet-irreducible element if x Ay = p implies that x = p or

y = p for each x,y € L.

It is clear that for distributive lattices an element p is prime if and only if it is a finite

meet-irreducible element.

Lemma 1.26 Let L be an algebraic lattice and 1 + p € L. Then p is prime if and
only if a,b € C(L) a/\bﬁp implies that a < p or b < p.

Proof.

Letx Ay <pandz =V, 1;, y= Vyje»J y; where z;,y; € C(L) V i3, and let
Dz, D, be the subsets of finite suprema of the elements of I, J respectively. Then
D, D, are directed subsets of C(L) and szeDy(Vz,-eDI (zjNz)) <p. Nowifz <p
for each z; € D, we are done. If not, then Jz;, £ p, but z;, Azj < p for each z; € D,.
Therefore z; < p for each z; € D,. Hence y < p. The proof of the other implication

18 obvious. O

Let L be an algebraic frame and a,b € L. Then the element (a : b) is defined to be
V{z : £ Na < b}, and as a special case the element a is defined to be (a : 0). It is
clear that a A (a : b) < b and, in particular, a A at = 0. An element a € L is called
complemented if a V at = 1. L is said to be a zero-dimensional algebraic frame if
every element can be written as a supremum of complemented elements. An element
a € L is called regular if a = \/{z : ¥ < a} where z < a means that - Va = 1. An
algebraic lattice L is called regular if every element is regular. Finally, an element
a € L is called polar if there is another element b € L such that a = bt. If L is
an algebraic frame then the set of all prime elements in L and the set of all polar

elements in L are denoted by spec(L) and p(L) respectively.

Remark 1.11 Let L be an algebraic frame. Then:
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at = a*tt and a < b implies that b+ < a™.

1)a

2 (aAb)J'>(a Vbt) and (a Vb))t = (at AbL).

l/\

(
(
(3) a < b implies that a*+ < b.

(4) The set of all complemented elements is closed under finite supremum.
(

(6) a,b < c implies that aV b < c.

(

)
)
)
5) a < b and b < ¢ implies that a < c.
)
)

7) ¢ < a implies that ¢ < a.

If (X, 7) is a topological space' then the set of all open subsets, denoted D(X), is a
partially ordered set. In fact (D(X), <) is a complete lattice where the supremum and
the infimum are given by V,.; Ai = U,c; 4i and A\, Ai = ([;c; 4i)° respectively.
Since AN(V,e; Ai) = AN(UierAi) = Uier(ANA;) = VieI(A/\Ai)7 therefore (D(X), <)
~ is a frame. However (D(X), <) is not an algebraic lattice in general. Clearly it forms

one if and only if X has an open base consisting of compact open sets.

Corollary 1.10 If (X, 7) is a topological space then (D(X), <) s a reqular lattice if
and only if X is reqular.

Proof.

(=) Suppose (D(X), <) is a regular lattice. Then U = |J{V : V = U} for each
" U € D(X). Let F be any closed subset and x € X such that x ¢ F. Since x € F*°,
then 3V < F° such that € V and therefore F C V. Since (D(X), <) is a frame,
then VN VL = @. Hence X is a reqular space.

(<=) Suppose X is a regular space. If VX UU = X, then V C (V1)* C U. So
WU{V : V U} C U. On the other hand, if x € U, then 3 W € D(X) such that
T €W C (W) CU. Since U C (cl(W))* C W then UUW™ = X and therefore
W =U. ThusU = | J{V : V X U} far each U € D(X) and (D(X),<) is a regular

lattice. 0

Definition 1.17 Let L be an algebraic frame. We say L has the compact splitting

property CSP if each compact element in L s a complemented element.
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Lemma 1.27 Let L be an algebraic frame. Then L has the CSP if and only if L is
a zero-dimensional algebraic frame.

Proof.

(=) Obvious.

(<==) Suppose L is a zero-dimensional algebraic frame, and let x € C(L). Then
& = V,c; vi where y; is a complemented element for each i € I, and therefore x <

(vi Vi V... Vyn) < Ve ¥ = z. Hence x is a complemented element. a

Theorem 1.18 Let L be an algebraic frame with the F.I.P.. Then there is a one-to-
one correspondence between the set of minimal prime elements in L and the set of all
ultrafilters on C(L).

Proof.

Let py = \{ct : c € M} for each ultrafilter M on C(L) and Mp = {c€ C(L): c £
p} for each minimal prime element p. Suppose that M is an ultrafilter. Firstly, we
show that M = M,,,. Let d € C(L) such that d < pp. Then there are c1,co, ..., Ck
in M such that d < (c; Vey V...Vei). Bute= cACsA . Ack €M and d < c*.
So dAc=0 and therefore d ¢ M, as c € M. Then M C M,,,. On the other hand,
let d £ pu and suppose c Ad = 0 for some c € M. Then d < ¢! and therefore
d < pu, which is a contradiction. Then ¢ A\ d > 0 for each c € M which implies that
d € M. Then M = M,,,. Secondly, we show that pps is a minimal prime element.
Let z,y € C(L) such that x,y £ pm. Then z,y € Mp,, = M which implies that
TNy €M = M,,,, therefore z Ny £ pp. So pum is a prime element. Suppose there
is a prime element q such that ¢ <ppy. Then M = My,,, € M,. Since My is a filter,
then M = M,,, = M, which implies that q = py. Hence py is a minimal prime
element. Finally, if p is any minimal prime element, then M, is a filter on C(L). So
by Zorn's lemma there s an ultrafilter N such that M, C N, and therefore py s a
minimal prime element. Suppose py % p. Then 3 ¢ € C(L) such that ¢ < py and
c % p. SoM,Z Nyy = N, which is a contradiction. Then py < p and therefore
pn =p. So N = N,y = M, and M, 1s an ultrafilter on C(L). Thus the map p — M,
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is a one-to-one correspondence between the set of minimal prime elements in L and

the set of all ultrafilters on C(L). ]

Lemma 1.28 Let L be an algebraic frame with the F.I.P. and let p be a prime ele-
ment. Then p is minimal if and only if p = \{ct : c€ C(L),c £ p}.

Proof. _

(=>) Suppose p is a minimal prime element. Thenp = py, = V{ct : c € C(L),c £
p}

(¢<=) Let p be a prime element such thatp = \/{c* : c € C(L),c £ p}. S@ppose there
is @ minimal prime element q such that ¢ < p and p £ q then M, C M, and M, is
an ultrafilter. Since there 1s a compact element d such that d < p and d £ q, then
d<(cf VesV..Vci) wherec; £ p for each i =1,2,...k. Letc = ¢y Acgoo A ek
Then c € M, C M,. Since d < ct, then d A ¢ = 0 and therefore d ¢ M,, which is a

contradiction. Thus p is a minimal prime element. O

Theorem 1.19 Let L be an algebraic frame. Then L has the CSP if and only if L
has the F.I.P. and spec(L) is a trivially ordered set.

Proof.

(=>) Suppose L has the CSP and let c,d € C(L). Then c ANd = \/,.; x; where
z; € C(L) for each i € 1. But d vV d' = 1 which implies that ¢ = ¢ A (d V d*') =
(dAe)V (eAdY) = (Vg zi)V (dE Ae) = Ve (i V (dF Ac)). Sz'ncerc‘ s a compact
element, there is a finite subset F of I such that ¢ = \/,.p(x: V (d* A c)). Therefore
¢ =z V(d*+ Ac) where z = \;.p x; is a compact element. Then cAd = (zV (d*Ac)) =
(zAd)V (cAdAdt) =z Ad. But cAd>z. ThuscAd = x is a compact element and
L has has the F.I.P.. Next we show that spec(L) is a trivially ordered set. Let p.q
be prime ideals such that p < q and q £ p. Then there is a compact element ¢ such
that ¢ < q and ¢ & p. SincecAct =0 < p then ct < p and therefore c Vet =1<gq,
which s a contradiction. Thus the set spec(L) is a trivially ordered set.

(<=) Suppose L has the F.I.P. and spec(L) is a trivially ordered set. Let ¢ € C(L)
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such that ¢V ¢+ < 1. By lemma 1.23 there is a meet-irreducible element b such that
cVel <bandb < 1. Thenb is a prime element and therefore a minimal prime
element and ¢, ¢+ < b, which is a contradiction. Then cVc¢t =1 and L has the CSP.

0

Corollary 1.11 If L is an algebraic frame then a is a reqular element if and only if
d<a implies that d < a for each compact element d.

Proof.

(=) Suppose a is a regular element and let d € C(L) such that d < a. Then
d < \{z : x < a}, which implies that d < (x1 V za...... V zx) where z; < a for each
1=1,2,..k. Letx=xzyV x9...... Vzr. Then x <a and d < z. Henced < a.

(«<=) Suppose d < a implies that d < a for any compact element d. It is clear that
V{z : z 2 a} < a. Since a can be written as a supremum of compact elements, then

a<V{z:z=<a}. Thusa=V{z:z<a}. O

If L is an algebraic frame, and a is a regular element then by corollary 1.11 we can

see that a = \/{c:c€ C(L), c 2 a}.

Lemma 1.29 Let L be an algebraic frame, and a be a regular element. Then a =
V{ctt:ce C(L), c<a}.

Proof.

Since a = \{c:c€ C(L), c 2 a} = V{c:ce C(L),c < a} and ¢ < c** then
a < V{ctt:ce C(L), c <a}. On the other hand, if ¢ < a, then ¢ < a. Therefore
(ctt A ct) ‘V (cttAa) = A (et Va) = ¢, which implies ¢t < a. Thus

V{c*t:ce C(L), c<a} <aanda=\{ct:ce€ C(L), c< a}. -

Definition 1.18 Let L be an algebraic frame anda € L. Then a s called a d-element
ifa=\{c"t:ceC(L), c<al}.

It is clear from lemma 1.29 that every regular element is a d-element.
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Lemma 1.30 let L be an algebraic frame. Then:

(1) Ewvery polar element is a d-element.

(2) If L has the F.1.P. then every minimal prime element is a d—elehent.

Proof.

(1) Suppose a is a polar element. Since a < \/{c'*:c€ C(L), c<a} and a = at?,
then ¢ < a which implies that L <att =a. Therefore V{ctt : c € C(L), c <
a} < a and hence a = \/{c**+ : c € C(L), ¢ < a}. ‘

(2) Suppose L has the F.I.P. and let p be a minimal prime element. Thenp = \/{c* :
c€ C(L), c £ p}. Letd be a compact element. Ifd < p, then d* £ p. Therefore
dtt <p. Sop=\{ctt:ce C(L), c<p}. Thusp is a d-element. |

If L is an algebraic frame, and X = spec(L) then X becomes a topological space by
taking the subsets of the form coz(c) = {p : p € X,c £ p} as basic open sets for each

¢ € C(L). This topology is called the hull kernel topology on spec(L).

Theorem 1.20 Let L be an algebraic frame. Then :

(1) Any open subset in spec(L) has the form of coz(a) for some a € L.

(2) coz(a) = coz(b) implies that a = b.

(3) L = D(spec(L)) as a lattice isomorphism.

(4) spec(L) is a Ty-space if and only if spec(L) is a trivially ordered set.

Proof.

(1) Suppose U is an open subset of spec(L). Then U = | J,¢; coz(c;) for some family
{eee C(L):i€I}. Leta=\,;c Ifp €U then p € coz(ci,) for some ig € I
which implies c;, £ p. Then a £ p and therefore p € coz(a). On the other hand, if
p € coz(a) then a £ p which implies that there exists io € I such that c;, £ p. So
p € coz(ci,) C U. Hence U = coz(a).

(2) Let coz(a) = coz(b) and suppose that a # b. Then a « b or b £ a. WLOG,
suppose that a £ b. Then it is obvious that b < 1. Since a £ b, then there is a
compact element ¢ such that ¢ < a andc £ b. Take S = {t : ¢t > b,t # c}. Clearly

S is a nonempty subset. By the same argument as that used in lemma 1.23 one can
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prove that there is a meet -irreducible element t such thatt € S. Then t is a prime
element and t € coz(a), t ¢ coz(b), which is a contradiction. Thus a =b.

(3) Let f : L — D(spec(L)) be defined by f(a) = coz(a) for each a € L. Then
it is clear from (1) and (2) that f is a one-to-one and onto map. It is clear that
f(aVb) = coz(aVb) = coz(a)Ucoz(b) and f(a A b) = coz(a A b) = coz(a) N coz(b)
for each a,b€ L. T hus f is a lattice isomorphism.

(4) First we show that cl(p) = {q : ¢ > p}. Clearlyp € {q : ¢ > p} and {q :
g > p} = (coz(p))© is a closed subset. Then cl(p) C {q:q > p}. Ifq > p and
q € coz(c) for somec € C(L) then ¢ & q which implies that ¢ £ p and p € coz(c).
Therefore q € cl(p) and hence cl(p) = {q : ¢ > p}. Now if spec(L) is a T;-space then
cl(p) = {p} = {q: ¢ > p} which means that spec(L) is a trivially ordered set. On the
other hand, if spec(L) is a trivially ordered set then cl(p) = {q : ¢ > p} = {p} and

hence spec(L) is a Ti-space. O

It is clear from corollary 1.10, that if L is an algebraic frame, then L is a regular if

and only if spec(L) is a regular space.

Thedrem 1.21 Let L be an algebraic frame. Then TFAE:

(1) L is regular.

(2) L has the CSP.

(3) spec(L) is a Ti-space and coz(a)Ncoz(b) is a compact subset for each a,b € C(L).
(4) spec(L) is a Ty-space.

Proof.

(1) = (2) Let c € C(L). Since c** is a regular element, and ¢ < ¢t then ¢ < ¢t
and therefore ¢t is a complemented element for each c € C(L). Since every reqular
element is a d-element then c = \/{d*L : d € C(L),d < ¢} which means that ¢ = c*+*.
Thus every compact element is a complemented and L has the CSP.

(2) = (1) Let a € L and ¢ € C(L) such that ¢ < a. Since L has the CSP, then
cV et =1 which implies a V ¢t = 1, and therefore ¢ < a. Thus by corollary 1.11, a

s reqular.
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(2) = (3) Since L has the CSP then by theorem 1.19, L has the F.I.P. and spec(L)
is a trivially ordered set. Therefore by theorem 1.20 spec(L) is a Ty-space and coz(a)N
coz(b) is a compact subset for each a,b € C(L).

(3) => (2) Since spec(L) is a T1-space and coz(a) N coz(b) is a compact subset for
each a,b € C(L) then L has the F.I.P. and spec(L) is a trivially ordered set. Hence
by theorem 1.19vL has the CSP.

(3) == (4) Since spec(L) is a regular Ty-space then spec(L) is a Ty-space.

(4) = (3) Since spec(L) is a Ty-space and coz(a) and coz(b) are compact subsets
then coz(a) and coz(b) are closed subsets and therefore coz(a) N coz(b) is a closed

subset too. Hence coz(a) Ncoz(b) is a compact subset. O

Let A be a commutative ring with identity and let I(A) be the set of all ideals
of A. Then this set can be turned into a complete lattice under the inclusion order
where the supremum is given by the sum and the infimum is given by intersection.
Since every principal ideal is a compact element, then I(A) is an algebraic lattice
which is not a distributive lattice in general unless we take A to be an arithmetical
ring. And for this reason since we take A to be a general semiprime ring, we consider
only the subset of semiprime ideals, denoted SP(A), which turns out to be a compact
algebraic frame where the supremum is given by the square root of the sum and the

infimum is given by intersection.

Theorem 1.22 Let A be a commutative semiprime ring with identity. Then SP(A)
is a compact algebraic frame.

Proof.

Let T : SP(A) — D(spec(A)) be defined by T(I) = coz(I) ={P:1 ¢ P}.

It is clear that T' is a map. Since SP(A) is the set of all semiprime ideals of A
then for any two ideals I,J € SP(A) we have I C J if and only if T(I) C T(J).
So T is a one-to-one and order-preserving function. For any open subset coz(K) in
D(spec(A)), we have VK € SP(A) and T(VK) = {P: VK ¢ P} = coz(K). There-

fore T is an onto map.
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It is clear that T(I A J) = coz(INJ) = coz(I) Ncoz(J) = T(I)ANT(J). If
{Ki : i € T} is any collection of semiprime ideals of SP(A) and Q is a prime
ideal then \/@,;.r ki € Q if and only if there is an iy € T such that K,y € Q. Then

T(Vie[‘ K;) = T(V @zel" i) = coz( \/ i€l K;) = icr COZ (Ki) = Viel‘ T(K3)).

Thus SP(A) and D(spec(A)) are isomorphic as compact algebraic frames. m]

Let A be a semiprime ring. Then by corollary 1.3 we can conclude that C(SP(A)) =
{V/T : I is a finitely generated ideal }.

Corollary 1.12 Let A be a semiprime ring. Then (SP(A), <) is a regular algebraic
frame if and only if A is reqular.

Proof.

(=) Suppose that (SP(A), <) is a reqular algebraic frame. Then (D(spec(A)), <) is
a regular algebraic frame, and therefore spec(A) is a regular space. Let P # Q be any
two points in spec(A) and assume WLOG that P € Q. Since P ¢ V(Q) and V(Q) s
a closed subset, then there are disjoint open subsets D(I), D(J) such that P € D(I)
and V(Q) C D(J). Hence spec(A) is a Ty-space and therefore A is regular.

(<=) Suppose A is reqular. Then spec(A) is a reqular space. Thus D(spec(A)) is a

regqular algebraic frame and so is SP(A) . O
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Chapter 2

On RG-spaces and Almost Baire

Spaces

in the first section of this chapter we shall give a review for the basic concepts on
RG-spaces which were originally given in [31]. However we presént these results from
our point of view. And then we will give new results on RG-spaces which we have
obtained in our study. We will introduce a new class of topological spaces which we
call almost k-Baire spaces and as special case of this class we will introduce the class
of almost Baire spaces. |

Throughout this study we start with the assumption that by a topological space X
we mean a Tychonoff space, by C(X) we mean the ring of real-valued continuous
functions defined on X, and by F(X) we mean the ring of all real-valued functions
defined on X. It is clear that both of these rings are commutative semiprime rings
with the same identity. Moreover the ring F'(X) is a regular ring. The smallest reg-
ular ring Gp(x)(C(X)) lying between C(X) and F(X) is denoted by G(X) [theorem
1.6]. |

For any function f in F'(X), the quasi-inverse of f is given by:
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) = 0 ifzxeZ(f)
if z € coz(f)

7o
where Z(f) = {z : f(z) = 0} and coz(f) = X — Z(f). A subset of X is called a
zeroset [cozeroset] if it has the form of Z(f) [coz(f)] for some function f € C(X).
The set of all zerosets in X is denoted Z(X). An ideal I in the ring C(X) is called a
z-ideal if for any two functions f, g in C(X) with the same zerosets, both are in I or

both outside of I. Also, an ideal I of C(X) is called an ¢-ideal if 0 < |f| < |g| and
g€ limply fel.

2.1 RG-spaces

For a topological space X, a point p in X is called a P-point if p is in the interior of
each zeroset containing it. A topological space X is called a P-space if every point in
X is a P-point [8, 4L]. A space X is a P-space if and only if C(X) is a regular ring, or
equivalently if every Gs-set is open (8, 4J]. A topological space X is called an almost
Pfspace if every non-empty zeroset has a non-empty interior. Therefore a space X is
an almost P-space if and only if C(X) = Qu(X). Details on almost P-spaces appear
in [18]. If (X,7) is a topological space then the collection § = {A : A is a Gs-set}
forms an open base for a potentially stronger topology on X. This topology is called

the Gj topology in the literature. It is denoted 75 and the space is denoted Xj.

Remark 2.1 Let (X, 1) be a topological space. Then:

(1) B={A: AisaGs set} forms an open base for the topology 75 on X and 7 < 75.
(2) X5 is a P-space.

(3) X s a P-space if and only if T = 75.

(4) If Y is any subspace of X then (1y)s = (75)y-

We now discuss the minimal regular extension G(X) of the semiprime ring C(X). By

lemma 1.6 and corollary 1.1 we have:
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G(X) = { X0 figi © fogi € C(X), n > 1}, and [C(X)] = |GXX)].

Lemma 2.1 Let X ‘be a topological space. Then:

(1) C(X) € G(X) € C(Xs)-

(2) X is P-space if and only if C(X) = G(X).

(3) If (X, 7a) is a Tychonoff space such that C(X,7,) is a regular ring and 7 < 7,
then 15 < 7.

(4) G(X) = C(X, 14) for some Tychonoff topology 1o on X if and only if G(X) =
C(Xs).

Proof. |

(1) Since C(X) C C(X5) € F(X) and C(X;) is a regular ring. Then C(X) C
G(X) C C(Xs).

(2) If X is a P-space then X = X5 which implies that C(X) = G(X) = C(X;). On
the other hand, if C(X) = bG(X) then C(X) is a reqular ring and therefore X is a
P-space.

(3) Since C(X, 1) is a regular ring, then every Gs set in (X, 7,) is open. But 7 < 7.
So every G set in (X;) is an open subset in (X, 7,). Hence 15 < T4.

(4) (=) Suppose that G(X) = C(X,1,) for some topology 7o on X. Then (X, 74) is
a P-space and C(X) C C(X, 74). Since for any Z(f) € Z(X), we have f € C(X, 1)
therefore T < 7,. Using (3) we can see that 75 < 7,. Hence C(Xs) C C(X,74) =
G(X) and therefore G(X) = C(X;).

(<=) Suppose G(X) = C(Xs). Since X is a P-space, then X is a 0-dimensional
Ty-space. So X5 is a Tychonoff space and G(X) = C(Xj;). O

Definition 2.1 Let X be a topological space and f € G(X). Then the reqularity
degree of f, denoted by rg(f), is defined to be:

rg(f)=min{n € N: f=>""_ ghl where g;,h; € C(X), n>1}.

The reqularity degree of the topological space X, denoted by rg(X), is defined to be:
rg(X) = suplrg(f) : f € G(X)}.
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Definition 2.2 Let X be a topological space. Then X is called a regular good space,
denoted RG-space, if G(X) = C(Xs).

It is clear from the definition of RG-spaces that every P-space is an RG-space because

for P-spaces G(X) = C(X) = C(Xj;).

Theorem 2.1 Let X be a topological space. Then rg(X) =1 if and only if X is a
P-space .

Proof.

(=) Suppose rg(X) -: 1 andlet f € C(X). Then 14 (—f)f* € G(X) which implies
that there are g,h € C(X) such that 1 + (—f)f* = gh*. Then gh* + ff* =1 and
therefore Z(f) = coz(gh). So Z(f) is an open set for each f € C(X). Thus X is a

P-space.
(<) Suppose X is a P-space. Then G(X) = C(X) which implies that rg(f) =1 for
each f € G(X). Thus rg(X) = 1. O

Definition 2.3 Let X be a topological space. Then X is called a scattered space if

every non empty subspace of X has an isolated point.

Lemma 2.2 Let X be a scattered topological space. Then:

(1) Every non empty subspace Y of X is scattered.

(2) The set I(X) of all isolated points in X is a dense subset.

Proof. |

(1) Let @ # B C Y. So B as a subspace of X has an isolated point xo € B. Then
there is an open subset U of X such that U N B = {xo}. Therefore V. =UNY is an
open subset of Y and V N B = {xo}. So B has an isolated point as a subspace of Y.
ThusY 1s a scattered space.

(2) It is clear that 1(X) # @. Since every nonempty open set has an isolated point
then I(X) is a dense subset of X. O

For each ordinal number « define D, (X ) inductively as follows: Do(X) = X, Dy(X ) =
X — I{X), Dqs1(X) = Dy(D,(X)) and if X is limit ordinal number let D\(X) =
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MNa<xr Da(X). Then a space X is scattered if and only if there is ordinal number «
such that D, (X) = @ [29]. Let X be a scattered space. Then the Cantor-Bendixson
number, denoted by CB(X), is defined to be CB(X) = min{a : Dy(X) = o}.

It is shown in [13] that if X is a non-empty scattered compact space, then CB(X) is

a successor ordinal, § + 1, and that Ds(X) is a finite subset.

Theorem 2.2 Let X be a topological space and let f € G(X). Then:

(1) f 1is continuous on dense open subset of X.

(2) If T is any non-empty subspace of X then flr € G(T) and rg(f|r) < rg(f).

(3) f can be written as f = .-, fi.g} where fi,g; € C*(X) foreach1=1,2,..n and
rg(f) will not change by this new presentation. )

(4) If T is C*-embedded in X then T is G-embedded.

Proof.

(1) Suppose f =37 | figi where f;, g € C(X) for each i. Take D; = X — bd(Z(g;))
and D = (\._, D;. Since D; is a dense open subset of X for each i, then D is a dense
open subset of X. It is clear that f;g} is a continuous function on D; and therefore
on D for eachi = 1,2,..n. Since f can be written as a finite sum of real-valued
functions each of which is continuous on D, then f is continuous on D.

(2) Suppose f =3 -, fig; where f;, g; € C(X) for eachi. Then flr =Y 0 (filr)(9|7)
where fi|r, gilr € C(T) for eachi. Thus f|r € G(T). It is clear that rg(flr) < rg(f). -
(3) Let f = >, fi-g; where fi,gi € C(X) for each i = 1,2,..n. For each 7 let
T, =1+ f)V(1+g?). Then T; € C(X) and Ti(z) # O for each z € X, which

implies that % € C(X). It is clear that l%%], l%ﬁﬁf < 1 for each z € X, therefore

—%, % € C*(X) for eachi=1,2,..n. Since f;g; = (%)(%—)* then f = Z?:l(%)(%)*
It is clear that this new presentation does not change the regularity degree of the func-
tion f.

(4) Suppose T is a C*-embedded subset of X, and let h € G(T). Then by (3) there
are n € N and g;, k; € C*(T') for each i = 1,2, ..n such that h = Y___, g;k;. Since

T is C*-embedded, then there are g, k; € C*(X) such that Glr = g; and ki|r = k;
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for each i. Take F = 7 (§:)(ki ). Then F € G(X) and Flr = h. Hence T is a
G-embedded subset of X . t

Lemma 2.3 Let X be an RG-space. Then no dense subset can be written as a count-
able union of nowhere dense zerosets.

Proof. |

Let X be an RG-space, and suppose {Z; : i € N} is a collection of nowhere dense
zerosets of X such that S = oy Z; is a dense subset of X. Take Ay = Zy and
A, = Zp, — ( ;:11 Z;) for each n > 2. Then {A; : i € N} is a collection of
disjoint clopen subsets of Xs and S is an F,-subset of X5. As X; is a P-space,
then {A; : ¢ € N} U{X — S} is a partition of Xs. Now define f : Xs — R by
f(A)={i+ 1} for eachi € N and f(X — S) = {1}. Then f € C(Xs) = G(X). So
by theorem 2.2(1), there is a dense open subset D of X such that f|D is a continuous
function. Since SN\ D # @ then there ezists p € SN D, and therefore p € Ay, for
someng > 1. Since [ is continuous at p and f(p) = ng + 1, then there is a open
neighborhood W, of p such that f(W,) C (ng + %,no + %) So W, C Any C Zny,
which is a contradiction. Thus no dense subset can be written as a countable union

of nowhere dense zerosets. O

2.2 Almost Baire Spaces

Recall that a topological space X is called k-Baire where k is a fixed cardinal number

if the intersection of fewer than k dense open sets is dense [34]. Thus the usual Baire

spaces are N;-Baire spaces. It is clear that the intersection of all dense open subsets

of X is a dense subset if and only if X has a dense subset of isolated points, which

means that if X has a dense subset of isolated points then X is a k-Baire space for -
any cardinal number k. So one can conclude that every scattered space is a k-Baire

space for any cardinal number k.

For a Tychonoﬁf space X an open subset does not have to be a cozeroset, and the

48



collection of all dense cozerosets may have any cardinal number. For these reasons we

will introduce the class of almost k-Baire spaces where & is a fixed cardinal number.

Definition 2.4 Let X be a topological space and k be a cardinal number. Then we
will call X an almost k-Baire space if any collection with cardinal number fewer than
k of dense cozerosets intersects in a dense subset, and we will call X almost-Baire if

X s an almost R;-Baire space.

Let X be a topological space and k be a fixed cardinal number. Then X is an almost
k-Baire space if and only if the union of any collection with cardinal number fewer
than k of nowhere dense zerosets has an empty interior. It is clear that every clopen
subspace of almost k-Baire space is an almost k-Baire space and a space X is almost
k-Baire if and only if X has a dense subspace which is an almost k-Baire space. Every
k-Baire space is an almost k-Baire space, but the converse is not true in general as

we will see next.

Theorem 2.3 Let X be an RG-space and (Z,)32, be a sequence of nowhere dense
zerosets in X. Then )2, Zn s a nowhere dense subset.

Proof. }

Let S =2, Zn, A1 = Z1 and Am = Zm — (U5 Z:) for each m > 2. Then {A, :
n € N} is a collection of clopen subsets in X5, and therefore {A, :n € N}U{X — S}
is a clopen partition of Xs. Let f : Xs — R be defined by f(An) = {n+ 1} for
eachn € N and f(X — S) = {1}. Then f € G(X), and since X is an RG-space

therefore there is a dense open subset D of X such that f|D is a continuous function.

e}
n=1

Now suppo‘se cl(U,_1 Zn) has an interior point p. Then there is an open subset U,
containing p such that U, C (5w Zn), which means that for each y in U, and each
neighborhood W, of y we have W, N ({J;o, Zn) # @. Since D is a dense subset, then
DNU,# 2. Lety € DNU,. There are two cases:

(1) If f(y) = 1, then there is an open neighborhood W, of y such that f(W,) C (0, 2).

So Wyn (U2, Z,) = @, which is a contradiction.
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(2) If f(y) =k+1, theny € Ay, and therefore there is an open neighborhood W, of y
such that f(W,) C (k+ %, k+ %) Then W, C Ax C Z, which is a contradiction too.

Thus | J;2, Z, is a nowhere dense subset of X. a

If X is an RG-space then it is clear from theorem 2.3 that every countable intersection
of dense cozero subsets of X has a dense interior. Recall that a space X is an almost
P-space if and only if every non-empty countable intersection of open sets has a
non-empty interior. It is clear that every almost P-space is almost k-Baire for each

cardinal number k.
Corollary 2.1 FEvery RG-space space is an almost-Baire space.

RG-spaces need not be Baire. In [6] the authors gave two examples. First they gave
an example of a regular P-space without any isolated points. Secondly they gave an
example of a Tychonoff space X with a dense set of isolated points such that X is
not a Baire space. So an RG-space does not have to be a Baire space.

Recall that a topological space X is called separable at a point p if there exists an
open set O containing p such that O is separable. A topological space X is called

nowhere separable if X is not separable at any of its points. Details appear in [4].

Theorem 2.4 If X is an RG-space with no almost P-points then X is a nowhere
separable space.

Proof.

Suppose X 1is an RG-space with no almost P-points and is a somewhere separable
space. Then there is a countable subset {a, :n € N} such that int(cl(U;e,{an})) #
@. For each a, pick a nowhere dense zeroset Z, such that a, € Z,. Then
int(cl(Uney Zn)) # @ which is in contradiction to theorem 2.3. Thus X is a nowhere

separable space . O

Definition 2.5 A topological space X 1is said to be of countable pseudocharacter if

every point in X is a Gs-set.
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Lemma 2.4 Let X be a topological space. Then:

(1) X is of countable pseudocharacter if and only if every point is a zeroset.

(2) X is of countable pseudocharacter if and only if X5 is a discrete space, or equiv-
alently if C(X;s) = F(X).

Proof. ,

(1) (=) Suppose X ‘is of countable pseudocharacter. Since for each Gs-set G and
compact set A C G there is a zeroset Z such that A C Z C G. Then taking
A =G = {xo} implies that {xo} is a zeroset for each zo € X.

(<=) Obuious.

(2) It is clear that X being of countable pseudocharacter implies that X; 1s a dis-
crete épace, and X; discrete implies that C(X;) = F(X). Suppose X; is a discrete
space. Since Xs has the collection of Gs-sets as open base. Then every point is a
Gs-set and therefore X is of countable pseudocharacter. On the other hand, suppose
C(X5) = F(X). Since the character function X{z,} € F(X). Then {zo} is open

subset of X5 for each xg € X. Thus X5 is a discrete space. O

Recall that a topological space X is called Blumberg‘ if every real-valued function
defined on X can be restricted continuously to a dense subset [36]. J. C. Bradford
and C. Goffman in [3] proved that every Blumberg space is Baire and R. Levy in [17]
showed that there is consistently a compact Hausdorff space X and therefore Baire
space which is not Blumberg.

By theorem 2.2(1) one can conclude that every RG-space of countable pseudocharac-

ter is a Blumberg space.

Theorem 2.5 Let X be an RG-space of countable pseudocharacter. Then X 1is a
Baire space.

Proof.

Suppose X is an RG-space of countable pseudocharacter. Since X is a discrete space,

then by theorem 2.2 we have that every real-valued function defined on X can be
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restricted continuously on dense open subset. So X satisfies the Blumberg’s Theorem.

Hence X is a Baztre space. O
The following lemma originally appeared in [20].

Lemma 2.5 Let X be an RG-space and Y be a subspace of X such that Ys is C*-
embedded in X;. Then'Y is an RG-space.

Proof.

Since every C*-embedded subset in X5 is C-embedded, then Yy is C-embedded in X;.
Let h € C(Y;). Then there ezists H € C(X5) such that Hly = h. Since X is an
RG-space, then H € G(X) which implies that H|y € G(Y). So G(Y) = C(Y5) and

Y is an RG-space. O

It follows that every clopen subset of X5 of an RG-space X is an RG-space, in par-

ticular every cozero and zero subspace of an RG-space is an RG-space.

Corollary 2.2 The cozerosets and zerosets of RG-spaces are almost-Baire spaces.

Definition 2.6 Let X be a topological space. Then the subset gX is defined to be the

intersection of all dense cozero subsets of X.

It is clear that gX is the set of almost P-points in X. If X is an RG-space, then it
is clear from theorem 2.4 that every countable subset of X — gX is a nowhere dense

subset of X.

Lemma 2.6 Let X be a topological space. Then:

(1) X is almost Baire implies that every dense open C*-embedded subset in X s
almost Baire.

(2) X is almost k-Baire for each cardinal number k if and only if gX s dense.
Proof.

(1) Let X be an almost Baire space, let U be a dense open C*-embedded subset in

X and let V,,n = 1,2,3,.... be a collection of dense cozerosets in U. Since U 1s
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C*-embedded in X then for each n, there is a dense cozeroset W, in X such that
W,.NU =V, ButX zs almost Baire. Therefore ﬂf;l W, is a dense subset of X
which implies that (Yoo, W, NU =Ny Vi is a dense subset of U. Thus U is almost
Baire.

(2) (=>) Let X be almost k-Baire for each cardinal number k. Suppose there exists
a non-empty open subset U such that U NgX = &. For each x € U choose a nowhere
dense zeroset Z, such that x € Z, and let V, = X — Z,. Then V s a dense cozeroset
for each x € U and-U N[,y Ve = B, which contradicts the fact that X is an almost
k-Baire space for each cardinal number k. Thus gX is a dense subset of X.

(=) This is clear from the fact that gX is contained in every dense cozeroset. O
The following theorem originally appeared in [20].

Theorem 2.6 Let X be an RG-space andY be a subspace of X. Then'Y is an RG-
space if one of the following hold:

(1) Y5 is a Lindelof space.

(2) Y is a scattered Lindelof space.

(3) X5 is a normal space and Y is a realcompact C*-embedded subset of X .

(4) |X| < ¢, the continuum hypothesis holds, and Y is a realcompact C*-embedded
subset of X .

(5) Y is a countable union of zerosets or cozerosets.

(6) X is a paracompact scattered space and Ys is a closed subset in X;.

Proof.

(1) It is clear that Y; is completely separated from each zeroset in X; disjoint from it.
But by [1,4.2] if a Lindelof subspace of S is completely separated from each zeroset of
S disjoint from it, then that subspace is C-embedded. Thus Y is a C-embedded subset
of Xs. Hence by lemma 2.5, Y is an RG-space.

(2) If Y is a scattered Lindelof space. then by [29,5.2] Y; is a Lindelof space. Hence
by (1).Y is an RG-space.

(3) Suppose X is a normal space and Y is a realcompact C*-embedded subset of X .
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Let T = cl(Y). ThenY is dense and C*—embedded in T, which implies by [8,6.7]
that Y C T C BY. Recall that Y is‘ a realcompact space if and only if Y is a
Gs-closed subset of 8Y. Then Vx € (T —Y) there is a Gs-set D in BY such that
x € DC(BY -Y). If E(x) = DNT then E(z) is a Gs-set of T. Therefore
E(z) = H(z) NT for some Gs-set H(z) of X and x € E(x) C (T —Y). Then
X-Y=(X~-T)U{H(z): 2 € (T-Y)}. SoX Y is an open subset of X5, and
therefore Ys is a closed subset of Xs. Since every closed subset in a normal space s
C*-embedded then Y; is a C*-embedded subset of X5. Hence by lemma 2.5, Y-1s an
RG-space.

(4) Suppose that | X| < ¢ and assume the continuum hypothesis holds. Since every P-
space with cardinality no greater than c is paracompact [29) then X; is a paracompact
space and hence normal. Thus the result follows by (3).

(5) If Y is a countable union of zerosets or cozerosets then Y is a clopen sﬁbset m
Xs. HenceY 1is an RG—épace.

(6) If X is a paracompact scattered space and Y is a closed subset in X then X; is

paracompact and hence normal. So by lemma 2.5, Y is an RG-space. O

The next four results originally appeared in [20]. We include them to give more

background on RG-spaces.

Corollary 2.3 FEvery countable subspace of RG—space 15 a scattered subspace.
Proof.

Suppose S is a countable subspace which is not scattered. Then there is an infinite |
countable subspace T of S without isolated points. Let T = {an : n € N}. Then {aﬁ :
n € N} is a countable collection of nowhere dense zerosets in T and T = J,cn{an}-
But by (1) in theorem 2.6, T is an RG-space. which is a contradiction. Thus S is a

scattered subspace. o

Theorem 2.7 Compact subspaces of RG-space are scattered RG-spaces.

Proof.
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Let X be an RG-space and suppose K is a non-scattered compact subspace of X. Then
K has a subspace T without isolated points. Let L = cl(T). Then L is a compact
space without isolated points which implies by [29, 3.17] that there is a continuous map
from L onto the Cantor set C. So by [28,6.5] there is a compact subspace M of L such
that f|ar is an irreducible continuous function from M onto C. Since C is a compact
metric épace, then C has a countable dense subset S. For each s € S pick one point
in f~{s} and call it m,. Let T = {m,:s € S} C M. Then T is a countable subset
of M. Now since f|p is an irreducible function and C has no isolated points, then T
has no isolated points, which is a contradiction with the previous corollary. Thus K
must be a scattered space. Since K is scattered and compact then by (2) in theorem

2.6, K is an RG-space. O

Definition 2.7 Let X be a topological space. Then X is called resolvable if X can

be written as a union of two disjoint dense subsets.

In [2] it is shown that first countable spaces, locally compact Hausdorff spaces, K-
spaces, linear topological spaces over a nondiscrete valuated field, and countably
compact spaces without isolated points are resolvable spaces. Note that a topological
space X is resolvable if and only if it can written as a finite union of sets with void

nteriors.

Theorem 2.8 Let X be a topological space. Then:

(1) If X is a resolvable space of countable pseudocharacter, then X is not an RG-
space.

(2) If X is an RG-space of countable pseudocharacter that is countably compact, lo-
cally compact, or a K-space, then X 1is scattered.

Proof. |

(1) If X is a resolvable space of countable pseudocharacter then X = AU A°® where
A, A® are dense subsets. Since the characteristic function x4 is in C(Xs) and it is

nowhere continuous then X is not an RG-space.
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(2) Let X be an RG-space of countable pseudocharacter that is countably compact,
locally compact, or a K-space that is not scattered. Then X has a closed subspace T
without solated points. Then T inherits the assumed property from X. But as we
mentioned before, T will be a resolvable space of countable pseudocharacter. There-
fore T cannot be an RG-space. But by lemma 2.5, T' is an RG-space, which is a

contradiction. Thus X must be scattered. a
Corollary 2.4 Ewvery first countable RG-space is scattered.

Lemma 2.7 If X is an RG-space of countable pseudocharacter then every finite in-
tersection of dense subsets is a dense subset.

Proof.

It 1s enough to consider the case of two dense subsets. Let A, B be two dense subsets
such that AN B 1is not dense. Then there exists a non-empty subset U such that
UNANB=a. Since the characteristic function'X(UnA) s in C(X;), then there is a
dense open set D such that xwna)|p 15 @ continuous function. Let yo € UNAND.
Then there is an open set V such that f(V) C (3,3). SoVNB =@, which is a

contradiction. Thus AN B is dense. O

Definition 2.8 Let X be a topological space. Then X is called almost resolvable

space if it is a countable union of sets with void interiors.

Theorem 2.9 If X s an RG-space of countable pseudocharacter then X s not an
almost resélvable space.

Proof.

Let X be an RG-space of countable pseudocharacter and suppose X is almost resolv-
able. Then there is a countable collection { F,, : n € N} of sets with void interior such
that X =2, Frn. Let Ay = Fy and A, = F, — (U;_:ll Fy,) foreachn > 2. Then it is .

clear that {A, : n € N} is a a countable collection of disjoint sets with void interiors

and X =2, A,. Define f : X — R by f(As) = n for each n € N. Since X5
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is a discrete space, then f € C(Xs) = G(X), which implies that f is continuous on
a dense open subset D, which is a contradiction because f is not continuous at any

point. Thus X 1is not almost resolvable. O

We know from theorem 2.5 that RG-spaces of countable pseudocharacter are Baire.
In fact one can do better for RG-spaces of countable pseudocharacter. If X is an
RG-space of countable pseudocharacter then every countable union of nowhere dense-

subsets of X is nowhere dense as we shall see in the next result.

Lemma 2.8 If X is an RG-space of countable pseudocharacter then every countable
union of nowhere dense subsets is nowhere dense.

Proof.

Let X be an RG-space and (A,)5%, be a sequence of nowhere subsets in X. Take S =
Ui An, Ft = Ay and Fy,, = Am—(U;:1 A;) foreachm > 2. Then{F,:n€ N} isa
collection of disjoint nowhere dense subsets of X, and therefore {Fn :n € N}U{X-S}
is a partition of X. Now define f : X5 — R by f(Fy) = {n+1} for each n € N
and f(X —S) ={1}. Then f € C(Xg) = G(X), which implies that there is a dense
open subset D of X such that f|D is a continuous function. Suppose cl({Jo~, Fy)
has an interior point p. Then there is an open subset U, containing p suéh that
Uy, C (U Fn), that is V y € U, and for each neighborhood W, of y we have
W, 0 (U2, Fn) # @. Since DNU, # &, let y be any point in € D N Up'.i There are
two cases:

(1) If f(y) = 1, then there is an open neighborhood Wy, of y such that f(W,) C (0,2).
Hence Wy 0 (s, F) = @, which is a contradiction.

(2) If fly) =k+1, theny € Fy. So thereviis an open neitghborhood W, of y such that
fW,) C(k+ %, k+ %), and therefore W,, C Fy, C Ay, which is a contradiction too.

Thus J,_, An is a nowhere dense subset of X. 0

A topological space X can have a dense subset K such that K¢ is somewhere dense

or even a dense subset. This is will be a very interesting point for RG-spaces.
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Lemma 2.9 Let X be a topological space. Then X is either has the property that
every dense subset has a nowhere dense complement or X has a resolvable cozero
subspace.

Proof.

Suppose D is a dense subset such that D¢ somewhere dense. Then there is a non-
empty cozero subset U such that U C cl(D°). Let A= DNU and B = D° ﬂ U. Then

A and B are disjoint dense subsets of U. Hence U is a resolvable cozero subspace. O3

Theorem 2.10 I;et X be an RG-space of countable pseudocharacter. Then:

(1) Every dense subset of X has a nowhere dense complement.

(2) Every countable intersection of dense sets has a dense interior.

(3) Every dense set has a dense interior.

Proof.

(1) Since every cozero subset of X is an RG-space of countable pseudocharacter then
it cannot be resolvable. Thus the result follows directly by lemma 2.9.

(2) Let (D)2, be a sequence of dense subsets of X. Take A, = X — D,, for each
n € N. Then (A,)2, is a sequence of nowhere subsets of X, which implies that
U2, An is a nowhere dense subset of X. Hence the result follows directly from the
fact that cl(T)® = int(T°) for any subset T of X.

(3) This follows directly from (2). a

Recall that a topological space X is called open hereditarily irresolvable (simply o.h.i)
if each open subspace of X is irresolvable [5, def 1.2]. And in [25] Ganster proved
that a topological space X is open hereditarily irresolvable if and only if every dense
set of X has a dense interior. Since every RG-space of countable pseudocharacter is
an open hereditarily irresolvable space, thus one can give a proof of (3) in theorem
2.10 from a somewhat different point of view.

Before finishing this chapter, we would like to use proposition 4.10 which appears

in [35] to prove that under the assumption V = L, every RG-space of countable
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pseudocharacter has a dense set of isolated points.
First let us recall proposition 4.10 [Assume V = L. Then every space without isolated

points is almost resolvable.] [35].

Theorem 2.11 Assume V = L. Then every RG-space of countable pseudocharacter
has a dense set of isolated points.

Proof.

Since every cozero subspace of X is an RG-space of countable pseudocharacter, then
by proposition 4.10 in [35] and theorem 2.9, we can see that every cozero set has an

isolated point. Thus X has a dense set of isolated points. ]
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Chapter 3

The Krull z-dimension for C(X)

The set of prime ideals in the regular ring G(X) is in one-to-one correspondence
with the prime z-ideals PZ(X) in the ring C(X). Furthermore spec(G(X)) with the
spectral topology is homeomorphic to the space PZ(X) as a subspace of spec(C(X))
with the patch topology [31]. Therefore the Krull z-dimension will play an important
role to determine when the minimal regular ring extension G(X) has the form of a ring
of real-valued continuous functions defined on some topological space. In the article
(On RG-spaces and regularity degree) by [R.Raphael, R.G.Woods] the authors gave
some techniques to prove that there is no RG-space with infinite Krull z-dimension.
There was an error that we found in the proof of theorem 3.4. Our goal in this section
is to revisit the theorem. We will prove that the theorem is still correct in many cases,

but the general theorem will remain open.

3.1 The Krull z-dimension for the ring C(X)

Let PZ(X) be the set of prime z-ideals in the ring C(X). By the Krull z-dimension
of a maximal ideal we mean the supremum of the lengths of chains of prime z-ideals
lying in it. The Krull z-dimension of C(X) is the supremum of the dimensions of

the maximal ideals of C(X). By the fixed Krull z-dimension of C'(X) we will mean

60



the supremum of the dimensions of the fixed maximal ideals of C(X). The fbllowing

lemma originally appeared in [31].

Lemma 3.1 The collection 8 = {D(f)NV(g) : f,9 € C(X)} forms an open base
for the space PZ(X) with the patch topology.

Proof.

It is clear from theorem 1.10 that the collection:

g = {D(f) NV() : f € C(X), I isa finitely genefated ideal } is an open base
for PZ(X) with the patch topology. Since V({g,g2)) = V(g1) NV(ga), then it is
 enough to _show that for any g1, 92 € C(X), we have V(g1) NV (g2) = V(h) for some
h € C(X) Let h = g12 + g2* and let P be a prime z-ideal. Then g;,go € P implies
that h € P. On the other hand, if h € P, then Z(h) = Z(g1) N Z(g2) € Z|[P]
~where Z|P] is the prime z-filier corresponding to the prime z-ideal P [8,2.12). Then
Z(q1), Z(g2) € Z[P), which implies that g1, g, € P. ThusV(g1) NV (ge) = V(h). O

Recall that a Boolean algebra A is a complemented distributive lattice with 0 and 1.
A nonempty subset S of A is called an A-filter if 0 ¢ 3, aAb € S whenever q,b € &
and a < b,a € & implies that b € &. An A-filter S is called prime ifa € Sorb e S

whenever a V b € S, and it is called an A-ultrafilter if it is a maximal element in the
set of all A-filters defined on the Boolean algebra A. It is clear that every A-filter is

contained in some A-ultrafilter. Details appear in [28].

Remark 3.1 let A be a Boolean algebra and S be an A-filter. Then TFAE:
(1) S is an A-ultrafilter.

(2) Ifa € A such that a ANb#0 for eachb € S thena € S

(3) S is a prime A-filter.
(

4) For each a € A we havea € S or a' € S, where @’ is the complement of a.

For a Tychonoff space X, the set of clopen subsets B(X), the set of regular closed
subsets R(X ), and the set of regular open subsets RO(X) are Boolean algebras. On
the other hand, if A is any Boolean algebra, then the set S(A) of A-ultrafilters defined
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on A can be turned into a topological space by taking the collection f = {V(a) : a €
A} as an open base where V(a) = {U € S(A) :a € U} foreach a € A. And S(A)
under this topology will be a compact O-dimensional Hausdorff space. Moreover,
B(S(A)) = {V(a) : a € A}. The map a — V/(a) is a Boolean isomorphism from A
onto B(S(A)). Details appear in [28].

The following theorem originally appeared in [28].

Theorem 3.1 Let X be a 0-dimensional topological space and A be a subalgebra of
B(X) which forms an open base for X. Then:

(1) The map » : X — S(A) defined by 1(x) = {C € A :z € C} is a topological
homeomorphism from X onto 1 X).

(2) +(X) is a dense subset in S(A).

Proof.

(1) It is clear that «(z) is an A-ultrafilter on A. Since for each Cy € A, we have
UV (Co)) = {z : z) € V(Co)} = {z: Co € +(x)} = Cp is an open subset. Then 2
18 a continuous map. Suppose z(:rl) = 1(z2) for some x1 # xo € X. Then there are
C1,Cs € A such that x; € C; and C; NCy = &, and therefore 1(xy) # 2(x2), which
is a contradiction. Thus 1 is a one-to-one map. Finally, we show that v is an open
map from X onto 1(X). Let Cy € A. Then 1(Cp) = «(X) NV (Co) is an open subset
of «(X)- Thus v is a homeomorphism from X onto1(X).

(2) It is obvious that 1(xy) € V(Co) Nu(X) for each non-empty subset Cy in A and
for each zo € Cy. Therefore 1(X) is a dense subset of S(A). ]

It is clear from theorem 3.1 that if X is a O-dimensional topological space, then the
space S(A) is a O-dimensional compactification of X where A is a subalgebra of B(X')
and an open base of X.

It is clear that the zeroset of any real-valued function in G(X) can be written as a
finite union of sets of the form ZNC where Z, C* are both zerosets in X [30, 4.2]. On

the other hand, every zeroset and every cozeroset in X is a zeroset for some function

in G(X).
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The next theorem originally appeared in [31]. It shows that there is a one-to-one
correspondence between the set of prime z-ideals of C'(X) and the set of maximal

ideals of G(X).

Theorem 3.2 Let X be a Tychonoff space. Then:

(1) A= Z(G(X)) is a subalgebra of B(Xs) and it forms an open base for Xs. Fur-
thermore S(Z(G(X))) ts a 0-dimensional compactiﬁcatz'on of Xs.

(2) The map K : S(A) — PF(X) defined by K(a) = a N Z(X) is a topological
homeomorphism from S(A) onto PF(X) with the patch topology, and K |x, is @ bi-
jection map onto the fized z-ultrafilters of C(X).

(3) S(A) can be considered as the space of mazimal ideals of G(X) with the spectral
topology.

Proof.

(1) It is clear that @, X € Z(G(X)) and A1 U Az, Ay N Ay € Z(G(X)) whenever
Ay, Az € Z(G(X)). Since Z(G(X)) C Z(X5) C B(Xs), then Z(G(X)) is a subalge-
bra of B(Xs) and it forms an open base for X;. Hence by theorem 3.1, S(Z(G(X)).)
s a 0-dimensional compactification of Xs. | |

(2) It is clear that o N Z(X) is a z-filter for any A-ultrafilter a. Suppose Z1,Zy
are two zerosets in X such that Zy U Zy € K(a). Then Z; € o or Zy € «a
which implies that K(a) € PF(X) i.e. K is a well-defined function. We first
show that K is a one-to-one map. Suppose oy # as € S(A). Then there are
Z,C¢ € Z(X) such that ZNC € (a; — as). Therefore Z € a3 and Z N C ¢ .
Now if Z ¢ «az we are done. If not, then C ¢ s and therefore C° € (as — o).
Then K(a1) # K(ag) and hence K is a one-to-one map. Secondly, we show that
K is an onto map. Let F € PF(X) be any prime z-filter of C(X). and take
alF) = {C € 2(G(X)) : 3Z € F,3S € (Z(X) — F),ZN S C C}. Then a(F)
is an A-ultrafilter and F = K(a(F)). Hence K is a bijection map from S(A) onto
PF(X).

Since B ={V(ZNS): Z 5 € Z(X)} is an open base for S(A), then to prove that
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K is an open map, it is enough to show that K(V(Z N S)) is an open set for each
V(ZNS)ep. Since KV(ZNS))={anZ(X):ZNS€a}={aNZ(X):Z €
a,S¢ ¢ a}, then K(V(ZNS))={F € PF(X):Z € F,5¢¢ F} = V(Z)N D(S°).
Hence K is an open map. Finally, we show that K is a continuous function. Since
K(V(ZnN8)) =V(Z)ND(S°) and K is a bijection map then KX (V(Z)Nn D(S°)) =
V(ZNS) isan open set. So K is a continuous function. Thus K is a homeomorphism
from S(A) onto PF(X) with the patch topology.

Since X5 =21(X) and K(l(z)) ={Z € Z(X) : © € Z} is a fized z-ultrafilter on X for
each x € X, then K|x, is a bijection map onto the fixed z-ultrafilters of C(X).

(3) Since the map M — Z(M) is a topological homeomorphism from the set of maz-
imal ideals of G(X) with the spectral topology onto S(A), then S(A) can be considered

as the stpace of mazximal ideals of G(X) with the spectral topology. 0O

Since every prime ideal of C(X) is contained in a unique maximal ideal [8, 2.11], then
the ring C(X) is a pm-ring, and therefore the map p : spec(C(X)) — M(X) defined
by u(P) = Mp is a continuous function with the spectral topology on both spaces.

The next lemma originally appeared in [31].

Lemma 3.2 Let X be a Tychonoff space. Then:

(1) The identity map 1+ : X5 — X can be continuously extended to a function:
i:S(A) — BX. <

(2) If X is an RG-space then S(Z(G(X))) = B(Xs).

Proof.

(1) We know that p : spec(C(X)) — M(X) is a continuous function. Let i =
plpzxy. As S(A) = PF(X) = PZ(X), then one can consider i. as a continuous
function from S(A) onto the set of mazimal ideals of C(X) with the spectral topology
on both spaces. This map will be defined by (o) = Mianz(x)). Since for any xp € X
we have i(((zo)) = Munzx)y) = Me, = 1(T0), then ils = 2.

(2) Let X be an RG-space. Then Z(G(X)) = Z(C(X;s)) and therefore S(Z(G(X))) =
S(Z(C(Xs))) = B(Xs)- o
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It is clear from the previous discussion that for any Tychonoff space X we have that
the space of prime z-ideals PZ(X) of C(X) with the patch topology is homeomor-
phic to the space of maximal ideals M(G(X)) of G(X) with the spectral topology.
Furthermore, PZ(X) = {M NC(X) : M is a maximal ideal in G(X)}. If P is an
arbitrary prime z-ideal of C(X) then there is a unique corresponding maximal ideal
in G(X) whose intersection with C(X) equals P. We denote this maximal ideal by
Mp.

Lemma 3.3 Let X be a Tychonoff space. Then:

(1) For any P € PZ(X), we have Qu(C(X)/P) = G(X)/Mp and Qu(C(X)/P) is
an epimorphic image of G(X).

(2 IfPhb C P C ... C Py is a strictly ascending chain of prime z-ideals, then
[T, (Qu(C(X)/R)) is an epimorphic image of G(X) and [1y(Qu(C(X)/P,)) =
(GO Mp,).

Proof.

(1) Let P be a prime z-ideal. Since the ring homomorphisms 1 : C(X) — G(X), 7 :
G(X) — G(X)/Mp are epimorphisms then wor : C(X) — G(X)/Mp is an epimor-
phism with Ker(mwoi) = P. Therefore the homomorphismT : C(X)/P — G(X)/Mp
defined by T(f + P) = f + Mp is a one-to-one epimorphism. Since G(X)/Mp is a
field, then there is a unique homomorphism T : Qu(C(X)/P) —> G(X)/Mp such
that To1 = T. It is clear that T is a one-to-one epimorphism, and therefore it
is an onto map, because it emanates from a field. So Qu(C(X)/P) = G(X)/Mp.
Since the natural map m : G(X) —> G(X)/Mp is an epimorphism, then T o T
G(X) — Qu(C(X)/P) s an epimorphism. Hence Qu(C(X)/P) is an epimorphic
image of G(X). Let us denote the last map by wp. Then it is clear that for any
h=7%",figr €G(X), wehave mp(h) = > ey 211}; where L = {i:g; ¢ P}.

(2) For any h = gg* € G(X). we know that mp(h) = 135 if g ¢ Mp and wp(h) =

%I; ifg € Mp. Now if Bh & P & ... C Py 15 a strictly ascending chain

of prime z-ideals. then the map m : G(X) — HfZO(ch(C(X)/Pi)) defined by
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(k) = (mpy(h), mp, (), .....7p (k) is a rTing homomorphism. To show that m is
an onto map, fix iy and for each i # ip, choose g; € (Mp, — Mpl.o) and let k;, =
[izi, 9i and tiy = kioki,”. Then ti, € Mp, for each i # i9 and t;, ¢ Mp,, and

) — O+P ) = 1P fotPy fith FetPe
therefore mp,(ti,) = 15 and mp, (t;) = mp - Let (SR 2Py e o) be

an arbitrary element in [[o(Qu(C(X)/P)), and take h = r (fig:"t:). Then

w(h) = (ggj:—ﬁg,gi—};;, ....... fetFe)  Hence m is an epimorphic map and therefore
[150(Qa(C(X)/P,)) is an epimorphic image of G(X). Since Ker(n) = (', Ker(np,)

Mo M, thus [T1o(Qa(C(X)/P)) = (G(X)/NkoMp). -G
The next theorem originally appeared in [31].

Theorem 3.3 Let X be a Tychonoff space such that C(X) has a strictly ascending

chain of k+1 prime z-ideals. Then G(X) has a function of reqularity degree at least

k+1.
Proof.
Let Py C P, © ....... C B, C C(X) be a strictly ascending chain of prime z-

ideals. For each ¢ = 0,1,2,...k — 1, take f; € P41 — P; and take fr = 1. Then

the element t = (fbfo oA Vi) € S where § = [T (Qu(C(X)/Py)).

Now suppose that the reg(degc(x)G(X)) < k. Since for each g € G(X) we have

g = > riai.b” where m < k and a;,b; € C(X) for each i = 1,2,...,m, then
h=n(g) = > mla)n(b*) = > w(a;).w(b;)" for each h € S and therefore
reg(degc(x)S) < k, which is a contradiction. Thus reg(dege(x)G(X)) > k+1. O

We need the next three lemmas before we reach our main results in this section which
are to address an error that we found in the proof of [On RG-spaces and regularity
degree, Theorem 3.4] and to give an accurate proof which applies to many spaces
including those which are cozero complemented.

For any A C X we will denote to clgx,)(A) by A.

Lemma 3.4 Let X be an RG-space. Then:
(1) PZ(X) = B(Xs)-
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(2) There is an algebra isomorphism between B(X;) and B(3(Xs)).
(3) If h € G(X) and A = coz(h) then A= AN X;.

(4) If f € C(X) then coz(f) = {P € PZ(X): f ¢ P}.

Proof.

(1) Since PZ(X) = S(Z(G(X))) and S(Z(G(X))) = B(X;), then PZ(X) = 6(X;).
(2) Since S(B(Xs)) = B(Xs), then the map f : B(X5) — B(B(Xs)) defined by

f(B) = B is a Boolean isomorphism [see the discussion before theorem 3.1]. It is

clear that f~1(A) = AN X; ={U : U is a fized z-ultafilter of X5, A € U} for each
A € B(B(X5s))-

(3) Let h € G(X) and let A= coz(h). Then h € C(X;) which implies that coz(h) €
B(Xs). Therefore A € B(3(X5)) and hence A= AN X;.

(4) Let f € C(X). Since PZ(X) = B(X;s), then coz(f) as a subspace of PZ(X)
is the set {M, : = € coz(f)}. If My, € coz(f) then zo € coz(f) which means
that f(xo) # 0. Therefore f ¢ M,, i.e. M,, € {P € PZ(X): f ¢ P}. So
coz(f) C{P € PZ(X) : f ¢ P} = D(f). Since D(f) is a closed subset of PZ(X),
then coz(h) € {P € PZ(X) : f ¢ P}. On the other hand, let P € D(f) and
let V(g) N D(k) be any basic open set containing P where f,k € C(X). Suppose
that (Z(g) N coz(k) N coz(f)) = &. Then Z(g) C (Z(k)U Z(f)). But kf ¢ P.
Then Z(k) U Z(f) ¢ Z[P] and therefore Z(g) ¢ Z[P], which is a contradiction.
So (Z(g) N coz(k) N coz(f)) # &. Choose zo € (Z(g) N coz(k) Ncoz(f)). Then
M., € cox(f), My, € (V(g) N D(k)). Hence coz(f) N (V(g) N D(k)) # @&. Thus

coz(h) =D(f) ={P € PZ(X): f ¢ P}. m]

Recall that for a commutative ring with identity A, the set ® = Upc,peca) Qu(A/ P)
can be turned into a topological space by giving R the sheaf topology. This topology
is defined to be the smallest topology defined on R such that [a,b] is a continuous

function for each a,b € A. Recall that the function [a,b] : spec(A) — R is defined
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Py = 7 AT

ur ifbep

where the topology which is given on spec(A) is the patch topology. In this case the
set R will have the collection 8 = {[a,b](D(c) NV (J)) : a,b,c € A, J is a finitely

generated ideal} as an open base [16]. The function [a, 1} is often denoted a.

Corollary 3.1 Let A be a commutative ring with identity. Then the set T = { (l’jr—}]z :

P € spec(A)} is a closed subset of R = | pepec(a) @et(A/P).
Proof.

If E—E’- ¢ T, then a,b ¢ P,. But [a,b](D{a,b))NT = @, ‘;Lljll € [a,b)(D{(a,b)), and

la, b](D{a, b)) is open in R. Thus T is a closed subset of R. a

Lemma 3.5 Let X be an RG-space, P € B € B(3(Xs)), A = BNXs, h =
ST figt € G(X), and a € C(X) such that h|la = ala. Then h(P) = a(P) and

i+P .
(11111; :ZieL% where L ={i : g; ¢ P}.

Proof.

Sinceh € G(X) = C(X;), then the map b : M(C(X5)) — Unspenricix,) (C(Xs)/Mp)
defined by h(Mp) = h+ Mp is a continuous function. Since PZ(X) = B(X;), then h
can be considered as a continuous function from PZ(X) into Ups, earioex; ) (C(Xs)/Mp)
where h(P) = h+ Mp for each P € PZ(X). -

Since A, as a subset of PZ(X), is the set {M,, : o € A}, M., € M(C(X)} and since
a—h e C(Xy), then (@ — h) (M) = (a — h) + My, = 0+ M,, for each zq € A.
Therefore (& — h)(P) = 04+ Mp and hence a+ Mp = h+Mp. Now since a —h € Mp,

then np(a — h) = g’—i—g. Hence ‘fiﬁ = el ;{—:}g where L= {1 :g; ¢ P}. O

Let us recall that if {a, : n € N} is a sequence, then the term a,, is called a peak of
the sequence, if ny > n; implies a,, > a,,, 1.e. if a,,, is greater than or equal to every

subsequent term in the sequence.
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Lemma 3.6 If PZ(X) has a chain C with infinite length then C contains an infinite
strictly decreasing sequence of prime z-ideals or an infinite strictly increasing sequence
of prime z-ideals.

Proof.

Let D = {P, : n € N} be any infinite countable subset of C such that P,, # P,, for
each ny # ny. Then we will have two cases:

(1) D has an infinite number of peaks. In this case we take P,, to be the first peak.
Then P,, 2 P, Y n > ny. Let ng > ny such that P,, is a peak. Then P,; 2 P,,.
Since D has infinitely many peaks, then this operation will not stop and we get an
infinite strictly decreasing sequence of prime z-ideals Py, 2 Pny 2 Py, ovvvee.. .

(2) If D has only a finite number of peaks namely P, Pp,, ..., Pn,. In this case
we take L = maa;{ml,mz, ..mi} + 1 and take P,; = Pp. Since Py, is not a peak,
then there is ny > ny such that P,, C P,,. And since P,, is not a peak then there is

-

ng > ng such that P, C Pns. This operation will not stop and we will get an infinite

strictly increasing sequence of prime z-ideals P, G Pny, © Prgyovveen O

o =

Our goal is to revisit the theorem 3.4 in [31]. For completeness let us recall the result
that was claimed.

[If the Krull 2-dimension of C(X) is infinite then X is not an RG-space and r¢(X) =
o0]. The proof which was given for this theorem is mistaken even though the claim
that rg(X) = oo is still correct [Theorem 3.3]. The assertion that c!/By, contains
(k. and no other prime frbm the array is not justified because there is a countably
infinite operation used in defining By . Our work will be to prove that the theorem

is still correct in many cases, but the general theorem will remain open.

Theorem 3.4 Let X be a Tychonoff space such that C(X) contains an infinite chain
of prime z-ideals. Then X is not an RG-space.

Proof.

Since C(X) contains an infinite chain of prime z-ideals, then by lemma 3.6, we will

have two cases:
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First case: C(X) contains an infinite strictly increasing sequence of prime z-ideals
PCPC ... CP C ... For each n > 1, choose b, € P41 — P, and let D, =
coz(b,), By = D1, and B, = D,, — (U}5'D;) for each n > 2. Then D,, B, € B(X;)
foreachn>1,B,NB, =@V n # mand P, € D,Vn > 1. Since P, ¢ D; Vi=
1,2,3,..n—1 and D;U(X;5 — D;) = PZ(X), then P, € (X; — D;)Vi=1,2,3,..n—1.
Therefore P, € By, P, ¢ B,Vi#n. |

Define h : Xs — R by hlg, = bu|p, and h(z) = 0V z € (X5 — UL, B,). Then
h € C(Xs) =G(X) and therefore h =Y ", ¢;.d;" where ¢;,;d; € C(X). It is clear by
lemma 3.5, that 2t =5 P yypere [, = {i:d; ¢ P} C {1,2,...,m}. Let

1+P t€Ln d;+ Py
— _ (P b+ P b2+ Prmy2 oy
W ={P, Py, ..., Prya} and t = (1+P1 VBB e R ). Then it is clear that

rg(t) > m + 2. At the same time, we have t = w(h) and therefore rg(t) < m, which
is a contradiction. Hence X cannot be an RG-space.

Second case: C(X) contains an infinite stm’ctlg) decreasing seque‘nceb of prime z-ideals
PP P2

For each n > 1, choose b, € P, — P,y1 and let D, = coz(by) — coz(bpy1). Since
A—B = A - B for each A,B € B(X;), and since b, ¢ P,V m > n+1,b, €
P,¥Ym < n. Then P, ¢ D, Vm # n+1, P.yy € D,. Now make the D,
disjoint in the standard way by letting Cl = Dy, C; = Dy — Dy, and in general
Cn = Du ~ U5 D]

The (C,)22., are non-empty clopen and disjoint subsets of X5 and each Cy, has P41 but
no other P, in its closure. Define h : Xs — R by hlc, = bos1lc, and h(z) =0V z €
(Xs — U2 ,Cy). Then h € C(Xs) = G(X), which implies that h = .-, ¢;.d;" where
ci,d; € C(X). So by lemma 3.5, l—’i’fp%‘ = D icL. Z’ig’: where L, = {1 : d; ¢ P,} C

_ (bm43+Pm b3+P; bo+ P
{1,2,....m}. Let W = {Pni3, Put2,....., P2} and t = ( i T SER vy pr )

Then rg(t) > m+ 2. At the same time, t = w(h) and therefore rg(t) < m, which is

a contradiction. Hence X cannot be an RG-space. O

The case where the saturated chains in PZ(X) have finite length yet the géneral

dimension is infinite could potentially occur in two ways.
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Two cases:

Case A. There exists a countably infinite set of distinct maximal ideals { M, } such
that M, has a chain of length s, > n descending from M, (these maximal ideals
might have finite or infinite dimension).

Case B. With finitely many exceptions all maximal ideals have finite dimension and
there is a finite (global) bound for said dimension.

We begin with the case A and show that it does not occur for RG-spaces.

Theorem 3.5 Suppose that there exists in C(X) a countable infinite set of distinct
mazimal ideals M,,,n = 1,2,3,..... such that for each n, the ideal M, has a chain of
length s, > n descending from it. Then X is not an RG-space.

Proof. |

Let T' be the set of the mazimal ideals which are at the top of our chains. By [8,0.13]
T ds a subspace of BX has an infinite discrete subset T1. In this case we will be able
to choose an infinite sequence of chains Qx ,k =1,2,3,..... such that:

(1) k1 > ko implies that sk, > sy, where s, denotes the length of Q.

(2) Qi NQr, =BV k1 # ko | |

 (3) Every chain has a maximal ideal My from Ty which is in the top of it.

Since SX has an open ba.se B = {D(f) : f € C(X)}, then for each k there ezists
fr € C(X) such that My € D(fx) and M,, ¢ D(fx) ¥V n # k. Since the function
p o Spec(C(X)) — M(C(X)) is a continuous function with the spectral topology
on both spaces, then u='(D(fi)) is an open set which contains the chain Qi but
no any other chain from our chains. Since PZ(X) is a 0-dimensional space, then
for each k there is a clopen subset Ay such that Q) C Ax C pu Y (D(fx)). Taking
By = Ay and B, = A,—(U2 ' A;) will separate these different chains by disjoint clopen
subsets of B(Xs). For each k choose gxs € Pryy1 — Py for eacht =1,2, ..., 5, — 1,
gks, = 1. and let Uxy = [coz(grs) — (UZ1co2(gk:))] N X5 N By. Then Ux; € B(Xs),

Pet € Uy, and Ug 4y NUxy 1, = @ for each (ki t1) # (ko,t2). Define h: Xy — R by
hu, . = gralu,, and h(z) =0V z € (X5 — Uk, Ury). Then h € C(X;s) which implies
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that h = 3 v, c;.d;* where ¢;,d; € C(X), and g’;S,P“ =YL, %’;’ﬁ where L, =

: j2 1+Py s
{i:d; ¢ Py} C{1,2,...,m}. Takingt= (ggjrj;k’;‘, ..... TR £) where s, > m+2 will
give us a contradiction as before. Thus X cannot be an RG-space. O

Case B: If case B can also be shown not to hold for RG-spaces, then theorem 3.4 in
[On RG-spaces and regularity degree] will be established. To date we are not able to
give a general proof that excludes case B for all RG-spaces. We can get the result for
a broad class of spaces (the cozero complemented spaces).

We need a wee bit of preparation for the cozero complemented case.

Definition 3.1 Suppose that P is a prime z-ideal that lies inside the mazimal ideal
M. We will say that P is on level k of M if there is a saturated chain of prime
z-ideals of length k + 1 that descends from M to P.

Thus, M is on level 0, a prime directly below M is one level 1 and so on. In the case
of infinite chains the definition of level may not be pertinent, but in case B we are
not concerned with infinite chains. The naturé of the inclusions of prime ideals in
a ring of the form C(X) is such that the level to which a prime 2-ideals belongs is

uniquely defined [8].

Proposition 3.1 Suppose that M is a mazimal ideal of C(X) that contains no infi-
nite chains but does have infinite dimension. Then there is a positive integer k > 1
for which there are infinitely many prime z-tdeals on level k. Furthermore this set is a
Ty-space in the relative topology inherited from Spec(C (X)) with the spectral topology.
Proof.

The first statement follows immediately from Konig’s infinite lemma [16]. The fact
that the prime z-ideals which all lie on the same level form a Hausdorff space holds

by the proof of [22,p.461]. 0

Case B does not occur for RG-spaces that are cozero complemented as will be seen

in the next theorem.
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Theorem 3.6 Suppose that X is cozero complemented, that C(X) is of infinite Krull
z-dimension, and that case B holds. Then X is not an RG-space.

Proof.

By hypothesis the infinite Krull z-dimension is realized inside a finite number of maxi-
mal ideals. Fach is obviously itself of infinite dimension. Thus there exists a mazimal
ideal M that contains for each n a chain C, of length s, > n+1 such that the primes
from distinct chains are not comparable.

By proposition 3.1, there is a level, say the k’th, in which there are infinitely many
prime z-ideals and these form a Hausdor(f subspace of Spec(C(X)).

Let T={R, :nE€ N} be a countably infinite subset of all the chains which contain
primes from the k’th level and below them descend subchains such that chains in T
have strictly increasing lengths.

Since the primes on level k form a T-2 space, there is by [8,0.13] a countably infinite
subset Dy, Do, .... of Ry, Ro, ..... which 1s discrete in the relative topology inherited from
Spec(C(X)) . We can also assume that the D, have been ordered such that ny > ny
implies that s,, > s,,. Let the top element m the chain D,, be called P, and the
smallest be calléd Qn- Since the set {P,} 1is discrete there exist functions f, € C(X)
so that f, ¢ P, but f,, € P, ¥V m # n. It follows that f, ¢ Q. but f, maybe is not in
Qm for m # n. We will show that this is not the case if X is a cozero complemented
space. |

We will need the fact that a cozero subset of a cozero complemented space is also
cozero complemented [9,1.5(b)] .

Let m # n and let coz(g) be a cozero complement of coz(f,) inside the space coz(fn)U
coz(fm), t.e. coz(g)Ucoz(fn) is dense in coz(fn)Ucoz(fm) and coz(g) Ncoz(f,) = 2.

Therefore coz(f,) U coz(fm) = coz(g) U coz(fr), coz(g) Ncoz(fn) = & and gf, = 0.

Since f, € Pp, then P, € coz(g) and therefore g ¢ P, O Qn. But gf, = 0, so
fn € Qm for each n # m.

Thus we have that each chain D, lies in a different clopen set of 3(Xs) and we can
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proceed to build an appropriate function using “the method” of theorem 3.5. 0

Remark 3.2 The proof above also holds if the functions { f,} are pairwise orthogonal,
but actually less is required. It suffices that one be able to appropriately separate the
primes in one chain from those in the other ones. The clopen sets used need not
be disjoint in B(Xs). For erample, with the sets {P,} and {Q,} chosen as above,
suppose that (P, = [YQn. Consider the n'th chain. We have f, ¢ Q, but f, € Py
for allm # n. Now for a fited m # n, the product fofm € (VP C Qm a prime
ideal, so since f, & Qm, fn € Qm. This means that the closures of the different sets
coz(fn) will give clopen sets in B(Xs) which separate the chains D,. Then by using
“the method” of theorem 3.5 ane can build the appropriate function. It is easy to see

that the condition () P, = [ Qn holds if () P, = O, (see [8,41}.

Remark 3.3 Suppose our chains D, have been chosen as above. Then one can
appropriately separate an infinite sequence of these chains and then prove that Case
B does not occur for such RG-space if the following condition holds: for any infinite
countable subset T of {P, : n € N}, we have that (\p .7 Po C Up o1 @n-

Proof.

Suppose our chains D,, and our functions {f,} have been chosen as above, and sup-
pose that our condition holds. We will prove our statement by induction as follows:
As fo € P, Y n > 2, then there exists Qn, where ny > 2 such that fo € Qn,. Since
our condition also holds for the set {P, : n > ny + 1}, then there exists Qn, where
ng > ny + 1 such that fo € Qn,. This operation will never stop and in the end we
will be able to replace our chains by a new infinite number of chains which will have
the first chain separated from the other ones. Now our condition will alow us to do
the same thing for our new chains disregarding the first chain. One can continue this
process forever. In the end we will be able to replace our chains by a new infinite
number of chains each of which is separated from the set of all the chains which come

after it. The latter means that for each chain D, there ezists an open set U of PZ(X)
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such that D, C U and U (YU, Dn) = 9. The prime z-ideals which lie inside the
chains which precede D, may or may not be in U, but m any case we will be able to
separate them from D,, because it will be a matter of separating a finite subset inside
a Hausdorff space. Thus one can prove that Case B does not occur for such RG-space

by following the same steps as in theorem 3.6. O

Recall that the rank of a maximal ideal M of C(X) is the number of minimal prime

ideals contained in it if this is a positive integer, and infinity otherwise [19].

Corollary 3.2 Let X be an RG-space such that every mazximal ideal in C(X) has
finite rank. Then X has finite Krull z-dimension.
Proof.

This follows directly from the fact that Case B does not occur for such RG-spaces. O

A topological space X is called an SV-space if C'(X) is an SV -ring that is, if C(X)/P
is a valuation domain for each minimal prime ideal P of C'(X) [15]. It is clear that
every F-space in the sense of the Gillman-Jerison text is an SV -space [19]. It is shown

in [15], that every SV -space has finite rank.

Remark 3.4 Let X be an RG-space that is an SV -space. Then C(X) has finite
Krull z-dimension.

Proof.

It follows directly from the fact that every SV -space has finite rdnk. O

Example 3.1 Any F-space has rank 1. so corollary 3.2 applies to RG-spaces which
are F-spaces. The compact connected space SR — RY of [8,14.27] is not RG because
it has no isolated points. It is clearly not cozeo complemented because in compact
cozeo complemented F-spaces, Minspec and Mazspec are homeomorphic as well as

basically disconnected.
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Chapter 4

The space of prime d-ideals in
C(X) and the Krull d-dimension
for C(X)

In the first section of this chapter we will prove that the spectrum of the ring H(A)
with the spectral topology is homeomorphic to the space of prime (-ideals of A with
the patch topology. We will also show that when A satisfies the strongly a.c. condi-
tion, then the spectrum of H(A) with the spectral topology is homeomorphic to the
space of prime d-ideals of A with the patch topology. In the second section we show
that the prime (-ideals of a semiprime ring A are exactly the prime d-elements inside
the algebraic frame SP(A). The third and fourth sections are a review of the prime
d-ideals of C(X), and of the structure of H(X) originally given in [24], [30] and [28].

The last section is on the Krull d-dimension for the ring C(X).
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4.1 The spectrum of the epimorphic hull H(A)

Let A be a semiprime ring and spec(A) be the space of all prime ideals of A. We are
interested in three subspaces associated with this space, namely the space of prime
z-ideals denoted PZ(A), the space of prime d-ideals denoted PD(A), and the space
of prime (-ideals denoted P((A).

Theorem 4.1 Let A be a semiprime ring. Then P((A) = spec(H(A)) as topological
spaces with the patch topology on both spaces.

Proof.

Since the inclusion map 1 : A — H(A) is a ring epimorphism, then by lemma
1.13, we have that +* : spec(H(A)) — spec(A) is a one-to-one continuous map.
Also by remark 1.9, we know that 1* : spec(H(A)) — P((A) is an onto map. Then
1% : spec(H(A)) — P((A) is a bijective continuous map. And since* is a continuous
map, PC(A) is a hausdor(f space, and spec(H(A)) is a compact space, then 1* is a
closed map. Hence 1* is a topological homeomorphism and P((A) = spec(H(A)) as

topological spaces. o

Since H(A) is regular, then the patch topology on spec(H(A)) coincides with the

spectral topology on it.

Corollary 4.1 Let A be a semiprime ring that satisfies the strongly a.c. condition.
Then PD(A) ~ spec(H(A)) as topological spaces with the patch topology on both
spaces.
Proof.
Since A satisfies the strongly a.c. condition then PD(A) = P((A) and therefore
PD(A) = spec(H(A)). O

Theorem 4.2 Let A be a semiprime ring and P € P((A). Then Qu(A/P) =
H(A)/M and Qu(A/P) is an epimorphic image of H(A) where M is the unique
mazimal ideal of H(A) such that M N A= P.
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Proof.

Sincer: A — H(A) and w: H(A) — H(A)/M are ring epimorphisms, then w o1 :
A — H(A)/M is an epimorphism and ker(noi) = {a:a € A, a+M = 0+M} = P.
Then the map K : A/P — H(A)/M defined by K(a+P) = a+ M is an ej)imorphz'c
monomorphism. But H(A)/M is a field which implies that 3! K : Qu(A/P) —
H(A)/M a ring homomorphism such that I?(‘;L’;) = (a+ M)(b+ M) Since K

is an epimorphic monomorphism and H(A)/M is a field, then K is an onto map.
Therefore Qu(A/P) = H(A)/M as fields.

Since K~ : H(A)/M — Qq(A/P) and r : H(A) — H(A)/M are epimorphisms
then K~lom : H(A) — Qu(A/P) is an epimorphism. Hence Qu(A/P) is an epi-

morphic image of H(A). O

If this.epimorphism from H(A) onto Q. (A/p) is denoted by mp, then one can see
that 7p(a) = 85, 7p(b*) = 25 if b ¢ P, and 7p(b*) = L ifbe P Va,b € A
Therefore, if a;b] 4+ asb; + ... + anb;, € H(A) then 7p(aib] + azb; + ... + anb;,) =

Sier (@) mp(b}) = Yicr L where T = {i: b; ¢ P}. Also for each g € H(A) we

i€l b, +P
have:
0+P
=5 ifgeP
mp(9g") = { o

Lemma 4.1 Let {P,}", C P((A) suchthat Py G P1.... C P, C A. Then ][, Qu(A/P)
is an epimorphic image of H(A). |

Proof.

Letw : H(A) — [y Qu(A/P;) be deﬁned by m(h) = (TRy(h). TPy (h)s TPs(h)s o> TP (R))-

It is clear that w is a ring homomorphism. We need only show that m is an onto map.
Since Y ¢ IM; € M(H(A)) such that M; N A = P, fix 9. let g; € (M; — M,,) and

let ki = [liss, 9i> and Tig = kigks,"- Then Ty € My Vi # do and Ty, ¢ Mi,, which

» - 0+P; _ A P P ntPn

implies that 7p,(T;,) = 15 and 7p, (Ti,) = ﬁ?’% Now let (32552, B, s 525 P0)

be an arbitrary element in [|._,Qa(A/P;). Then h = Y 7 ((a:b,'T;) € H(A) and
P P n+Pn :

m(h) = (355, P51 - pigpr)- Hence m is an onto map. O
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If 7 is defined as above, then ker(w) = [),_, M; and therefore ker(m) N A = P,.

Definition 4.1 Let A be a semiprime ring and f € H(A). Then the hull regularity
degree of f, denoted by rg,(f), is defined to be:

rogn(f) =min{n € N : f =3, gh; , gihi€ An > 1}

The hull reqularity degree of the ring A, denoted by rgy,(A), is defined to be: rgn(A) =
sup{rgn(f) : f € H(A)}.

The lengths of the chains of prime (-ideals inside the semiprime ring A will be related

to the the hull regularity degree of the ring A as we will see in the next proposition.

Proposition 4.1 Let A be a semiprime ring with a strictly ascending chain of k + 1
prime (-ideals. Then H(A) has an element of hull regularity degree at least k+1.
Proof.

Suppose By & P € ....... C P C A be a strictly ascending chain of prime (-ideals.
For each 1 = 0,1,2,....k — 1 take f; € P;yy — P, and fr = 1. Then the element t =

(Lol ol EE) € S =[1Lo(Qu(A/P)). We know that reg(degaS) > k+1,

and 7 : H(A) — S is an onto map [lemma 4.1]. Now suppose that the rgn(A) < k.
Since for each g € H(A) we have g =) -, aibi* where m < k vand a;, b; € A for each
i=12,...,m. Then h =n(g9) = > -, w(a:)nw(b") = > o) m(a:)m(b;)" for each h € S.
Therefore reg(dégAS) < k, which is a contradiction. Thus rgn(A) > k+ 1. 0

The Krull ¢-dimension of the semiprime ring A is defined to be the supremum of of

the lengths of chains of prime (-ideals lying inside A.

Lemma 4.2 If the Krull (-dimension of the semiprime ring A is infinite then rgy(A) =
oo and for eachn € N there exists f € H(A) such that rgn(f) > n.
Proof.

This follows directly from proposition 4.1. 0O
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4.2 (-ideals as d-elements in algebraic frames

In this section we show that the definition of a prime (-ideal inside the semiprime ring

A is exactly the definition of a prime d-element inside the algebraic frame SP(A).

Theorem 4.3 Let A be a semiprime ring and J € SP(A). Then:

(1) Jt=J~

(2) J is a prime element in SP(A) if and only if J is a prime ideal.

(3) J s a (-ideal if and only if J is a d-element in SP(A).

Proof.

(1) Since A is a semiprime ring, then J* is a semiprime ideal and J* N J = {0}.
But J*t =\/{I:1¢€ SP(A),INJ = {0}}. Therefore J* C J+. On the other hand,
if x € Jt = m where k; N J = {0} for each i, then there exists n > 1 such
that " € @, ki, and therefore there is a finite subset {11,142, ...,im} of I' such that
" = a; + a;, + .. + a;,, where {a;, € K;,} for eacht =1,2,...,m. Now if y is any
element in J, then ya;, € (Ki; N J) which implies ya;, =0 fof eacht=1,2,..,m. So
"y = 0. But A is a semiprime ring so Ty - 0. This will be true for any element
y € J,s0zx € J*. Hence Jt = J*.

(2) (=) Suppose J is a prime element in SP(A), and let I, I be ideals of A such
that LN I, C J. Then /Iy N /T, C J, which implies /T C J or /I, C J. So J is
a prime ideal. | |
(<=) Obuious.

(3) (=) If J is a (-ideal, then J is a semiprime ideal and therefore J € SP(A).
Let K = (ay,as,...,an) be a finitely generated ideal such that VK C J. Then
(ay,as,...,an) € J. But J is a (-ideal, therefore (\/_I?)** = K* C J. Then
J =V{VK)* : VK C J K is a finitely generated ideal }. Hence J is a d-elément
in SP(A).

(<=) Suppose J is a d-element in SP(A). Then J = V{(VK)* : VK C J K is a

finitely generated ideal }. which means that (a1, az, ..., an)** C J for each (ai,as, ..., an) C
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J. Hence J is a (-ideal. .|

If A is a semiprime ring, then SP(A) is a compact algebraic frame with the F.1.P,,
because D(spec(A)) has it. And if A satisfies the strongly a.c. condition then an ideal
J in SP(A) is a d-element if and only if J is a d-ideal.

4.3 The space of prime d-ideals in C(X)

The ring of continuous functions C(X) is a commutative semiprime ring with identity
whose complete ring of quotients, Q(X), can be constructed as follows:
Let D(X) be the set of all dense open subsets in X and let L(X) = J{CU): U €
D(X)}. Then one can define an equivalence relation on L(X) by:
for each f € C(V), g € C(W) where VW € D(X), let f ~ gif flvaw = glvaw.
Then the complete ring of quotients Q(X) will be the equivalence classes of this re-
lation, i.e. Q(X) = {[f]: f € L{X)}, and for any two elements [f], [g] € L(X) where
feC(V),g € C(W) the addition and multiplication is defined as follows:

[f1+ 9] = [flvew + glvew] and [f][g] = [flvew glvaw].
| The classical ring of quotients of C(X), denoted by Q.(X), is constructed similarly
except that D(X) is replaced with the family of all dense cozerosets in X. Details
appear in [26].
If X is a topological space, then it follows by lemma 1.4 that C(X) C Qu(X) C
H(X) C Q(X). It is clear that C(X) = Qu(X) if and only if every non-zero divisor in
C(X) is aunit, or equivalently if X is an almost P-space. Taking C*(X), Q%(X), Q*(X)
to be the bounded functions in C(X), Qu(X), @(X) respectively, then one can see that
C*(X) = Q4(X) if and only if every dense cozeroset is C*-embedded, C*(X) = Q*(X)
if and only if X is extremally disconnected space, and C(X) = Q(X) if and only if
X is extremally disconnected P-space [26, 3.5].
The ring of continuous functions C(X) satisfies the strongly a.c. condition by [24,
Ex, p.948], and as a consequence of that PD(X) = P{(X).
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Remark 4.1 If X is a topological space then spec(H (X)) = PD(X) with the spectral

topology on the first space and the patch topology on the second space.

It is clear by lemma 1.20(3), that X is an almost P-space if and only if every maximal
ideal is a d-ideal. So by corollary 1.9 we can conclude that X is an almost P-space
if and only if MH(X) € M(H(X)) for each M € H(X). Part of this result appears
in [30, corollary 3.11].

We need to mention the next definition and two lemmas which appeared in [11]. They

give a good description of the d-ideals inside C(X).

Definition 4.2 Let F' be a closed subset of X. Then an ideal I of C(X) is called an
o-ideal if I = {h € C(X) : F C z(h)}.

Lemmé’4.3 Let X be a topologiéal space. Then:

(1) Every o-ideal is a z-ideal and an {—ideal.

(2) If I is o-ideal then I = {h € C(X) : cl(F*) C 2(h)}.

Proof.

(1) It is clear from the definition that every o-ideal is a z-ideal. Let 0 < |g| < |hl,
h € 1. Since h(z) = 0 implies that g(x) = 0, then z(h) C 2(g) and therefore g € I.
Hence I is an {—ideal.

(2) Let I ={h € C(X): F C z(h)} be an o-ideal, and suppose h € I*. Then hg =0
for each g € I. Since F' = () ¢y 2(ga), then hg, = 0 for each o € I', which implies
that 2(h) U F = X. Then cl(F¢) C z(h). Conversely, if cl(F¢) C z(h) and g € I,
then for any © € X we have x ¢ F whenever x ¢ z(g). Therefore hg =0 and g € I*.
Thus I* = {h € C(X) : cl(F*) C z(h)}. a

Lemma 4.4 Let X be a topological space. Then:
(1) For each f € C(X), we have (f)* = {h € C(X) : X —int(2(f)) C 2(h)}, and
() ={h € C(X) int(=(f)) C int(z(R))} -

(2) An ideal T is a d-ideal if and only if int(+(f)) C int(2(g)) and f € I implies that
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gel.

(3) Oy ={f : z € int(2(f))} is a d-ideal for each z € X.

Proof.

(1) If f,h € C(X) such thathf = 0, then coz(f)Ncoz(h) = &. Suppose x ¢ z(h), then
z ¢ cl(coz(f)), which implies that x € int(z(f)). Therefore X —int(z(f)) C 2(h), so
(f)r C{h € CX): X —int(2(f)) C 2(h)}. Conversely, if X ~int(z(f)) C z(h),
then © ¢ 2(f) implies that x € z(h), so hf = 0. Therefore (f)* = {h € C(X) :
X —int(2(f)) C 2(h)}-

Since (f)* is an o-ideal then (f)** = {h € C(X) : cl(int(z(f))) C z(h)}. But
cl(int(2(f))) C 2(R) if and only if int(z(f)) C int(z(h)). Thus (f)** = {h € C(X):
int(z(f)) C int(z(h))}-

(2) This follows directly from (1).

(3) Suppose int(2(f)) C int(z(g)), and let f € Os. Since x € int(z(f)) C int(z(g)),
then g € O,. Hence O, is a d-ideal for each z € X. O

4.4 The structure of H(X)

We present, from our point of view, certain results that appear in [30] and [28].
Our goal is to see the structure of H(X) and to recall the corollary 4.12 in [30]
which states that if H(X) is isomorphic to a C(Y) then Y = (9X);. Furthermore,

H(X) = H(gX).

Lemma 4.5 Let X be a topological space and g € C(X). Then:
(1) The set S(g) = coz(g) Uint(Z(g)) is a dense open subset of X, and [§] € Q(X)
where g s given by:
0 iz eint(Z(g))
{ le_) if x € coz(g)
(2) [g]* = |g] where [g]* is the quasi-inverse of [g] in Q(X).
(3) If [f] € H(X). Then f can be represented by a function g such that g €
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C(NS(g:)) where {g; :1=1,2,...n} is a finite subset of C(X).

(4) P(X) = )S(g): g € C(X)} where P(X) is the set of all P-points in X.
Proof.

(1) 1t is clear that S(g) is a dense open subset and that g € C(S(g)). Therefore
9] € Q(X).

(2) Since [g][3] = [9°]s(0)8] = l9lsto)] = lg], then [g]* = [§]*]g] = [°9ls(0)] = [3]-

(3) If [f] € H(X), then by lemma 2.6 we know that [f] = > ,[fil(d:] where f;, g; €
C(X) for eachi=1,2,..,n. Take g =Y., filg:i|s where B = N,S(g;). Hence
g € C(Ni.15(g4)) and [f] = [g)-

(4) If z is a P-point, then x € Z(f) implies that x € int(Z(f)). So xz € S(g) for
all g € C(X). On the other hand, if x € S(g) for all g € C(X). Then x ¢ coz(f)

implies that x € int(Z(f)). Hence z is a P-point. m

Theorem 4.4 LetY be a dense C*-embedded isubset in X. Then C(Y) is an epi-
morphic extension of C(X) and H(X) = H(Y), in particular H(X) = H(8X).
Proof.

We have ¢ : C(X) — C(Y) defined by ¢ (f) = fly is a ring monomorphism. Thus
one can consider C(X) to be a sﬂbring of C(Y). |

For each f € C(Y), let g1 = %7, go = ﬁz’ and g3 = f2+ 1. It is clear that
91,92 € C(X), g3 € C(Y), f = g193 and g1 = gogs. Then using lemma 1.7 we can
conclude that C(Y) is an epimorphic extension of C(X). For each 0 # f € C(Y),
we have T:T e C*(Y) and 0 # T_f—ff € C*(Y) C C(X). Therefore C(Y') is a ring of
quotients of C'(X). By lemma 1.3 we have C(Y') is essential extension of C'(X). Since
H(X) is the mazimal essential epimorphic extension of C(X) then C(Y) C H(X).
Stnce UNY s a dense open subset in Y for each dense open subset U of X then
Q(X) C Q(Y) and therefore C(Y) C H(X) C Q(Y). Hence H(Y) C H(X). But
H(Y) is a ring quotients of C(X ). so C(X) C H(Y) C Q(X). Thus H(X) C H(Y).
- Since X is C*-embedded in BX then H(X) = H(X). - O

Corollary 4.2 If X is an extremally disconnected space then H(X) = Q(X).
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Proof.
Suppose X 1is an extremally disconnected space and [f] € Q(X), then f € C(V) for
some dense open set V. Since V is dense and C*-embedded in X, then by theorem

44 C(V) C H(X). So Q(X) = H(X). O

A topological space X is called realcompact space if every real maximal ideal of
C(X) is fixed. For any Tychonoff space X there is a unique (up to homeomorphism)
realcompact space vX such that X is dense and C-embedded in v.X. Therefore
C(X) = C(vX) and H(X) = H(vX). So to study the epimorphic hull H(X) for a
topological space X it is enough to study the epimorphic hull for its realcompactifi-
cation v.X. We will assume that all our topological spaces are realcompact spaces.
In [28, 5F(7)] the authors proved that Xj is real-compact space whenever X is. And
by [8, 8.9, 8:14] we know that if X is realcompact space then the subspace gX is a

realcompact space too.

Lemma 4.6 Let 0 : Y — X be a continuous function. Then:

(1) 6 : C(X) — C(Y) defined by 6(g) = g o o is a ring homomorphism which
preserves the identity.

(2) 6 is a monomorphism if and only if o(Y') is a dense subset of X.

(3) 6 is onto if and only ifoc : Y — o(Y) zs a topological homeomorphism and o(Y)
15 a C-embedded subset in X .

Proof.

(1) Since ((g1+92)00)(z) = ((g1+92) (0 (2)) = g1 (0(x))+92(0(z)) and ((g192)00) (x) =
((g192)(o(x)) = g1(o(2))g2(o(z)). then 6(g1 + g2) = 6(g1) + (g2) and 6(gg2) =
6(g1)6(g2). Thus & is a ring homomorphism. Since 6(1)(z) = (loo)(z) = 1(o(z)) =
1 then o preserves the identity.

(2) (=) Suppose & is a ring monomorphism. Then'é(g) = 0 implies that g = 0 for
each g € C(X), i.e. g(o(Y)) = {0} implies that g = 0. Suppose that o(Y') is not a
dense subset of X. Then there is an open set U # @ of X such that U No(Y) = @.

Take any point g € U. Then there is a continuous function f: X — R such that

85



f(zo) =1 and f(U°) = {0}. Since a(Y) C U, then f(o(Y)) = {0} and f # 0, which
is a contradiction. Thus o(Y') is a dense subset of X.

(=) Suppose that o(Y') is a dense subset in X and let g € C(X) such that 5(g) = 0.
Since g(o(Y)) = {0} implies that o(Y') C Z(g), then Z(g) = X, because o(Y) is
dense in X. Hence ¢ is a Ting monomorphism.

(3) (=) Let 6 be an onto map. Firstly, we prove that o is a one-to-one map. Suppose
o(y1) = o(yz) for some y1 # yo € Y. Then g{o(y1)) = g(o(yz)) for each g € C(X).
But 6 is an onto map, so Vf € C(Y) there exists a g € C(X) such that 6(g) = f.
Choose f € C(Y) such that f(y1) # f(y2). Then g(o(y1)) # g(o(ys2)), which is a
contradiction. Thus o is a one-to-one map. Since o is a one-to-one map, then one can
define the function o= : 0(Y) — Y. Now since ¢ is an onto map, then Vf € C(Y)
there exists a g € C(X) such that g o o = f, which means that f o 07! = gly(v) is @
continuous function Vf € C(Y). Then by[6,3.8], 07! : 0(Y) — Y is a continuous
map. So o : Y — o(Y) is a topological homeomorphism. Finally, we show that o(Y)
is C-embedded in X. Let g : o(Y') — R be a continuous function. Then goo € C(Y).
Therefore there is an h € C(X) such that 6(h) = goo, t.e. goo = hoo. Hence
hls(vy = g and therefore o(Y') is C-embedded in X .

(=) Suppose that 0 : Y — o(Y) s a topological homeomorphism such that o(Y') is
a C-embedded subset in X. Then for any f € C(Y') we have foo ™ :0(Y) — R is
a continuous function. Therefore there exists an h € C(X) such that hl,y) = foo .
But 6(h)(z) = (hoo)(z) = h(o(z)) = (foo ) (o(z)) = f(z) for eachz € X. Then

6(h) = f. Hence 6 is an onto map. O

Since every non-zero ring homomorphism from the field of the real numbers into
itself is the identity homomorphism, then one can conclude that if X is a topolog-
ical space then every non-zero ring homomorphism ¢ from C(X) into R is an onto

homomorphism and therefore Ker(yp) is a real maximal ideal of C'(X).

Lemma 4.7 Let X be a topological space. Then:
(1) If hy, hy are two homomorphisms from C(X) onto R then hy = hy whenever
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Ker(h,) = Ker(hsz).

(2) If M is a real mazimal ideal of C(X) then there is a unigue onto homomorphism
¢ : C(X) — R such that M = Ker(p).

Proof.

(1) Let hy, hy be homomorphisms from C(X) onto R such that Ker(h,) = Ker(hs) =
K. Then lﬁ,h; : C(X)/K — R are isomorphisms, which implies that I:] o i;_l
is the identity isomorphism on R. So hy = hy. Now for any f € C(X) we have
ha(f) = ha(f) = ha(f) = ha(f). Hence hy = ha.

(2) Let M be a real mazimal ideal of C(X). Then the monomorphism m : R —
C(X)/M defined by n(r) = r + M is an onto map. Since the natural map m :
C(X) — C(X)/M is an onto map too, then n~'om : C(X) — R is an onto
homomorphism. It is clear that Ker(n ™' om) = {g : n ' om(g) = 0} = {g :
7 g+ M)=0} ={g9: m(0) =g+ M} = M. The uniqueness follows directly from
(1). w

Theorem 4.5 Let X,Y be topological spaces. Then:

(1) X s a realcompact space if and only if for every onto homomorphism ¢ : C(X) —
R there is a unique xy € X such that o(g) = g(xo) for each g € C(X).

(2) If X is a realcompact space and t : C(X) — C(Y) is a ring homomorphism with
t(1) =1, then 3 ' t* : Y —> X continuous function such that t* = t.

(3) Let X be a realcompact space and letY be a dense C-embedded subset of T. Then
for each continuous function t : Y — X there is a continuous function t : T — X
such that tly = t.

Proof.

(1) (=) If X is a realcompact space and ¢ : C(X) — R 1is an onto homomorphism,
then ¢ : C(X)/K — R is an isomorphism where K = Ker(p). Since X s a
realcompact space. then there is a unique xo € X such that K = M,,. On the other
hand, we have ¢ : C(X) — R defined by ¢(g) = g(xo) is an onto homomorphism

with the same kernel. so ¢ = . Hence p(g) = g{(xo) for each g € C(X).
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(<) If p : C(X) — R is an onto homomorphism, then there is a unique To € X
such that p(g) = g(zo) for each g € C(X) and therefore Ker(¢) = My,, i.e. every
real mazimal ideal of C(X) is fited. Hence X is a realcompact space.

(2) Let X be a realcompact space and let t: C(X) — C(Y') be a ring homomorphism
witht(l) = 1. Fizy € Y and let H : C(X) — R be defined by H(g) = t(g)(y)-
Then it is clear that H is non-zero ring homomorphism and therefore H is an onto
map. So by (1) there is a unique t*(y) € X such that H(g) = g(t*(y)) for each
g € C(X). Then one can define a function t* : Y — X by y — t*(y). Since
H(g) = g(t*(y)) = (9o t*)(y), H(g) = t{g)(y), then t(g)(y) = (g 0 t*)(y), which
implies that got* = t(g) € C(Y) for each g € C(X). Thust* .Y — X isa
continuous function. Since t* : C(X) — C(Y) is defined by t*(g) = g o t* = t(g),
hence t* = t. For the uniqueness, let t; : Y — X be another continuous function
such that ¢, = t. Then t1(g) - goty =t(g) for each g € C(X), which means that
(got))(x) = t(g)(:z:), i.e. g(t1(z)) = g(t*(z)) for each g € C(X). Thus t1(x) = t*(x)
and t* 15 a unique map.

(3) We have { : C(X) — C(Y) is a homomorphism where t(g) = g ot for each

g € C(X). Since Y is a C-embedded subset in T, then there exists got € C(T)
such that gotly = got. So H: C(X) — C(T) defined by H(g) = got is a ring
homomorphism which preserves the identz’ty. Thus by (2) there is a unique continuous
function H* : T — X such that H* = H. Taket= H*. Then for any y €Y we
have g(t(y)) = H(g)(y) = got(y) = (got)y) = g(t(y)) for each g € C(X). Then
tly) =t(y). Thustly =t. O

From theorem 4.5 we see that every ring embedding ¢ : C(X) — C(Y") that pre-
serves the identity can be considered as an embedding which arises from a continuous
function ¢* : Y — X. And the ring C(X) can be replaced by its epimorphic copy
{fot*: f € C(X)}, which is a subring of C(Y).

Lemma 4.8 Let X,Y be topological spaces and lett : C(X) — C(Y) be a ring
embedding that preserves the identity. Then C(Y) is a ring of quotients of C(X)
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implies that (t*)~1(D) is a dense subset of Y for each dense subset D of t*(Y).
Proof.

We have C(X) = {fot* : f € C(X)}. Suppose Ty = (t*)"*(D) is not a dense
subset of Y. Then there is a non-zero function f € C(Y) such that f(T1) = {0}.
Since C(Y) is a ring of quotients of C(X), then there is a ¢ € C(X) such that
0 # f(got*) € C(X), i.e. thereisanh € C(X) such that 0 # f(got*) = hot*. Since
(t*)"{d} # @ for each d € D, then 0 = f(p) = f(p)(g o t*)(p) = (h o t*)(p) = h(d)
for each p € (t*)"{d}. Therefore h =0 and so is f(g o t*), which is a contradiction.
Thus (t*)"Y(D) is a dense subset of Y. O

Since the identity map j is a continuous map from the space X5 onto the space X,
then the homomorphism j : C(X) — C(Xj) defined by j(g) = goj is an embedding

which preserves the identity.

Lemma 4.9 Let X,Y be topological spaces such that Y is a P-space. Then every
continuous function g:Y — X can be considered as a continuous function from Y
nto Xs.
Proof.
We know that the Gs-sets form an open base for Xs. Let G = (o, U; be a Gs-set
of X. Then g~ (i, Us) = Nz (971 (Us)) is a Gs-set of Y, and hence it is an open

subset of Y. Thus g:Y — Xs is a continuous function. O

Theorem 4.6 Let X be a realcompact space. Then TFAE:

(1) C(X;) is a ring of quotients of C(X).

(2) X is an almost P-space.

(3) Ewvery dense subset of X is a dense subset of X;.

Proof. |

(1) == (3) This is clear by lemma 4.8.

(3) = (2) Let @ # Z € Z(X). Since int(Z)U Z°¢ is a dense subset of X, then it

is a dense subset of Xs, which implies that Z N (int(Z) U Z°) # &, i.e. int(Z) # 2.
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Hence X is an almost P-space.

(2) = (1) Let 0 # f € C(X;). Then there existst € R~ {0} such that f~(r) # &.
Since f~Yr) € Z(Xs) and Z(X) is an open base for X5, then there is a zeroset S of
X such that @ # S C f~Y(r). Now since X is an almost P—spdce, then int x (S) # @.
Choose p € intx(S), and take g € C(X) such that g(p) = 1 and g(X —intx(S)) = {0}.
Since f(goj)(p) =7 #0, then f(goj) #0. Buirg € C(X), f(goj)(z) = f(z)g(z),
and 0 # f(go j) = (rg) o g € C(X). Thus C(Xs) is a ring of quotients of c(x). O

Corollary 4.3 IfT is a dense almost P-subspace of X then C(T) z:s a ring of quo-
tients of C(X). |

Proof.

We have C(X) = {f|r: f € C(X)}. Let0 # f € C(T). Then there existsr € R—{0}
such that f~1(r) # @. Since f~(r) is a zeroset in T and T is an almost P-space, then
there is an open subset V of X such that0 # (VNT) C f~Y(r). Choosep € (VNT) and
take g € C(X) such that g(p) =1 and g(V°) = {0}. Then0 # fg|lr = (rg)lr € C(X).
Hence C(T) is a ring of quotients of C(X). o

Lemma 4.10 Let X be a realcompact space. Then TFAFE:

(1) gX is a dense subset of X.

(2) X has a dense subspace which is an almost P-space.

(3) gX is a dense almoéi P-space and it contains every dense almost P-subspace of
X.

Proof.

(1) = (2) Let p € Z € Z(gX). Since Z is a Gs set in gX, then Z =)oy (ViNgX)
where V; is an open subset of X for eachi = 1,2,...... Therefore there s a zeroset
F of X such thatp € F C ()oq Vi Suppose int(F) = @. Then U = F°is a
dense cozeroset and therefore gX C U, which contradicts the fact that p € gX. Then
int(F) # @. Since gX ts a dense subset of X then int(F) C intyx(F N ¢X). which

implies that int,x(Z) # @. Thus gX 1s an almost P-space.
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(2) = (3) Let T be a dense almost P-subspace of X. IfV is any dense cozeroset
of X then VNT is a dense cozeroset of T. But T has no proper dense cozerosets.
Therefore VNT =T, 1e. TCV, s0T C gX. Hence gX is a dense subset of X.
Using the same argument as in the previous proof, we can show that ¢X is an almost
P-space which contains every dense almost P-subspace of X.

(3) = (1) Obvious. m]

Corollary 4.4 Ift: C(X) — C(Y) is a ring embedding such that C(Y') is a reqular
ring of quotients of C(X), then C(Y') is a regular ring of quotients of C(Ts) and C’(T5)
is a reqular ring of quotients of C(T) where T is the tmage of Y under the map t*.
Proof.

Note that T is a dense subset of X, because t is a ring embedding. Since Y is a P-
space, then t* can be considered as a continuous function from'Y onto Ts. Therefore
we have the ring embeddings C(T) — C(Ts5) — C(Y). Since C(Y) is a reqular
ring of quotients of C(X), then C(Y) is a regular ring of quotients of C(T). Thus
C(Y) is a regqular ring of quotients of C(Ts) and C(Ts) is a regular ring of quotients
of C(T). ]

It is clear by theorem 4.6 that if T is the image of Y under the map ¢* as in corollary

4.4, then T has to be an almost P-space whenever T is a realcompact space.

Theorem 4.7 Let X be a realcompact space. Then TF AFE:

(1) C(X) has a regular ring of quotients of the form C(Y).

(2) gX is a dense subset of X.

Proof.

(1) == (2) Let t : C(X) — C(Y) be the ring embedding such that C(Y') is a regular
ring of quotients of C(X), and let t* : Y — X be the unique continuous function
such thatt* =t. ThenT = t*(Y) is a dense subset of X and it is an almost P—spdce.
So by lemma 4.10, gX 15 a dense subset of X.

(2) => (1) If gX is a dense subset of X, then by corollary 4.3 we have that C(gX)
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is a ring of quotients of C(X). But C((gX)s) is always a ring of quotients of C(gX).

Hence C((9X)s) is a reqular ring of quotients of C(X). ]

Let C(Y') be a regular ring of quotients of C(X ) and let T be the image of Y under
the map t*. By lemma 4.10, we know that T is a dense subset of gX where T and g X
are both dense almost P-subspaces of X. Then Tj is a dense subset of (¢9.X )s. Hence
there is a ring embedding k : C((gX)s) — C(T}s). Also we have the ring embeddings
C(X) — C(T) — C(T5) — C(Y'). So by combining these two embeddings, one
has the ring embeddings C(X) — C(gX) — C((gX)s) — C’(Y)

Lemma 4.11 Let X be a realcompact space. Then H(X) is isomorphic to a ring of
real-valued continuous functions if and only if H(X) = C((¢9X)s) and in that case
H(X)= H(gX).

Proof.

(=>) Suppose that H(X) = C(Y') for some topological space Y. Then it follows from
theorem 4.7 that gX is a dense subset ofX . and therefore there are ring embeddings
C(X) — C(gX) — C((gX)s) — C(Y). Since C(Y) is an epimorphic extension
- of C(X), then the embedding C((9X)s) — C(Y') is an epimorphic homomorphism.
But C((gX)s) is a reqular ring, which means that it has no proper epimorphic exten-
sion, i.e. C(Y) = C((gX)s). Thus H(X) = C((gX)s).

(&<=) Obvious.

If HX) = C((gX)s), then we have an epimorphic ring embeddings C(X) —
C(gX) — C((gX)s), and therefore C((gX)s) is a regular epimorphic ring of quo-
tients of C(gX), i.e. H(gX) = C((gX)s). Thus H(X) = H(gX). O

4.5 The Krull d-dimension for the ring C(X)

Let PD(X) be the set of prime d-ideals of the ring C'(X). Then by the Krull d-
dimension of a maximal ideal we mean the supremum of the lengths of chains of

prime d-ideals lying in it. The Krull d-dimension of C'(X) is the supremum of the
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dimensions of the maximal ideals of C(X). Then it is clear by theorem 1.17 that the
Krull d-dimension of C(X) is one if and only if Q4(X) is a regular ring, which means
that a necessary and sufficient condition for the Krull d-dimension of C'(X) to be one
is that the space X be a cozero complemented space.

The space PD(X) as a subspace of PZ(X) with the patch topology has the sets of
the form V(F) N D(g) as basic open sets where f,g € C(X). In the next lemma we
show that if H(X) = C((9X);) then the space PD(X) is isomorphic to 5((gX)s)-

Lemma 4.12 Let X be a topological space such that H(X) = C((gX)s). Then
PD(X) = B((9X)s).

Proof.

Suppose that H(X) = C((gX)s). We know that spec(H (X)) = PD(X) with the patch
topology on both of spaces; and that the patch topology on C((gX)s) coincides with

the spectral topology on it. Hence PD(X) =2 B((gX)s). O

If the epimorphic hull H(X) is isomorphic to a ring of continuous functions C(Y'),
then by lemma 4.11 we know that H(X) = C((¢9X)s), where we identify C(X) with
the set {fl;x : f € C"(X )}. Taking K = gX, then the topological homeomorphism
¢ : BK — Pd(X) is defined by (M) = M NC(X). A function t € C(K) will
be considered as an element in C(X) if there exists a function g € C(X) such that
glgx = t. The subset K as a subset of GK is identified with the set {MI cx € K}
where M, = {f € C(K) : f(z) = 0}. But K as a subset of PD(X) is identified with
the set {M, NC(X):z € K} ={M,:z € K} where M, = {f € C(X) : f(z) = 0}.

Theorem 4.8 Let X be a Tychonoff space such that C(X) contains an infinite chain
of prime d-ideals. Then H(X) is not isomorphic to C((gX)s)-

Proof.

Since C(X) contains an infinite chain of prime d-ideals, then by lemma 4.6 we will
have two cases:

First case: C(X) contains an infinite strictly increasing sequence of prime d-ideals
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P ChC... C P < ... For each n > 1, choose b, € Pn+1— B, and let
D, = coz(by|x), B1 = D1, and B, = D, — (U}-'D;). Then D,, B, € B(Kj;) for
eachn > 1. We know that B,N B, =@ V n. # mand P, € D, Vn > 1.
ButP, ¢ D; Vi=123.n-1, and D; U (X5 — D;) = Pd(X). Then P, €
(Xs— D;)Vi=1,2,3,..n~1. Therefore P, € B, and P, ¢ B, Vi # n.

Define h : Ks — R by hlg, = bylp, and h(z) = 0V z € (K; — U ,B,). It
is clear that h € C(Ks) = H(X), so h = Y v, cid;® where ¢;,d; € C(X). Hence

by lemma 3.5 "1"—:1%- = ZieLn fi’if,: where L, = {i : d; ¢ P,} C {1,2,...,m}. Let

= — (1t+P1 btPp bmt2+Pmt2 o
W = {P, P, ..., Pmy2} and t = (3558 52, s Ty ). Then it is clear that

rg(t) > m + 2. At the same time, t = w(h) and therefore rg(t) < m, which is a
contradiction. Hence X cannot be isomorphic to C((gX)s)-

Second case: C(X) contains an infinite strictly decreasing sequence of prime d-ideals
P2P2. P

For each n > 1, choose b,, € P, — P41 and let D, = coz(bn|x) — coz(bp+1|k)- Since
A—B=A-B foreach A,B € B(Ks), by, ¢ P, Y m > n+1, andb, € P, Vm < n,
then P, ¢ D, , and Poy1 € D, Y m # n+ 1. Now make the D, disjoint in the
standard way by letting Cy = Dy, Co = Dy— D1, and in general C, = D,, — [U;:ll D;].
The (C,)%., are non-empty disjoint clopen subsets in K;. Fach C, has P, but
no other P; in its closure. Define h : Ks —> R by hlc, = bnyile, and hiz) =
0V e (Ks—U2Cy), soh € C(Ks) = H(X) and therefore h = > 1 c;.d;*

where ¢;,d; € C(X). Then it is clear by lemma 3.5 that %J“—PBT?- = D L. —g‘ﬁ%
where L, = {i : d; ¢ P,} C {1,2,..m}. Let W = {P, P, ..., Ppya} and t =
(bllff,)]‘, bf:;;"’, ..... , b”;f;:g“). Then it is clear that rg(t) > m + 2. At the same time,

t = w(h) and therefore rg(t) < m, which is a contradiction. Hence H(X) cannot be

isomorphic to C((gX)s)- )

The case where saturated chains in PD(X) have finite length yet the general dimen-
sion is infinite could potentially occur in two ways.

Two cases:
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Case A. There exists a countably infinite set of distinct maximal ideals {M,} such
that M, has a chain of length s, > n descending from M, (these maximal ideals
might have finite or infinite Krull d-dimension).

Case B. With finitely many exceptions all maximal ideals have finite Krull d-dimension

and there is a finite (global) bound for said dimension.

Theorem 4.9 Suppose that there ezists in C (X) a countable infinite set of distinct
mazimal ideals M,,n=1,23,..... such that for each n, the ideal M, has a chain of
prime d-ideals of length s, > n descending from it. Then H(X) is not isomorphic to
C((9X)s)-

Proof.

One follows the same steps as in the proof of the theorem 3.5. O

Corollary 4.5 If H(X) is isomorphic to C((g9X)s) such that every mazimal ideal in
C(X) has a finite rank then C(X) has finite Krull d-dimension.
Proof.

It follows directly from the fact that Case B does not occur for such spaces. O

Remark 4.2 Let X be an RG-space that is an SV -space. Then C(X) has finite
Krull d-dimension.

Proof.

It follows directly from the fact that every SV -space has finite rank. O

Case B remains open. To date we do not know if there is a topological space X
such that X has a maximal ideal with infinite Krull d-dimension and still have H(X)

isomorphic to C((gX)s)-

95



Chapter 5

Conclusion

5.1 Conclusion

In this thesis we have proved that for a commutative semiprime ring with identity A,
the spectrum of the ring H(A) with the spectral topology can be»identiﬁed with the
space of prime (-ideals of A under the patch topology. In particular, for a commutative
semiprimé ring with identity which satisfies the strongly a.c. condition, the spectrum
of the ring H(A) with the spectral topology can be identified with the space of prime
d-ideals of A under the patch topology.

We have also studied the class of RG-spaces and obtained new results about them. We
have introduced the class of almost k-Baire spaces as well as the class of almost Baire
spaces. Finally we have studied the Krull z2-dimension and the Krull d-dimension for

the ring of real-valued continuous functions defined on a Tychonoff space X.

5.2 Our contribution in this thesis

The main new results contributed by this thesis are the following:
(1) For a commutative semiprime ring with identity A, we have P((A) = spec(H(A))

as topological spaces with the patch topology on both spaces.
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(2) If A is a commutative semiprime ring with identity such that A satisﬁes‘ the
strongly a.c. condition then PD(A) = spec(H(A)) as topological spaces with the
patch topology on both spaces.

(3) Every an RG-space is an almost-Baire space .

(4) If X is an RG-space then every countable intersection of dense cozerosets of X
has a dense interior.

(5) Every RG-space of countable pseudocharacter X is a Baire space.

(6) If X is an RG-space of countable pseudocharacter then every finite intersection
of dense subsets is a dense subset.

(7) If X is an RG-space of countable pseudocharacter then X is not an almost re-
solvable space.

(8) Assume V = L. Then every‘RG—space of countable pseudocharacter has a dense
set of isolated points.

(9) If X is a Tychonoff space such that C'(X) contains an infinite chain of prime
z-ideals then X is not an RG-space.

(10) If there exists in C'(X) a countable infinite set of distinct maximal ideals M,.n =
1,2,3, ... such that for each n, the ideal M, has a chain of length S,, > n descending
from it then X is not an RG-space.

(11) If X is a cozero complemented RG-space then C'(X) has ﬁﬁite Krull z-dimension.
(12) If X is an RG-space such that every maximal ideal of C(.X) has finite rank then
C(X) has finite Krull z-dimension.

(13) Let X be a topological space such that H(X) = C((9X)s). Then PD(X) =
B((gX)s)-

(14) Let X be a Tychonoff space such that C'(X) contains an infinite chain of prime
d-ideals. Then H(X) is not isomorphic to C((¢X)s).

(15) If H(X) is isomorphic to C((gX);) such that every maximal ideal in C(X) has
finite rank then C'(X) has finitc Krull d-dimension.

(16) Every almost P-space is an almost k-Baire space for each cardinal number k.
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(18) A topological space X has a dense set of almost P-points if and only if X is an

almost k-Baire space for each cardinal number k.

5.3 Open questions and future work

Question (1) Is there an example of RG-space for which all fixed maximal ideals are
of finite Krull z-dimension, but there are maximal ideals of infinite Krull 2-dimension?
If so, is there example where the fixed Krull z-dimension is finite? 7
Question(2) If X is a topological space with infinite Krull z-dimension such that
every chain of prime z-ideals is finite, and for all but finite number of the maximal
ideals have a global bound Krull z-dimension. Does this implies that X is not an
RG-space? An affirmative answer of this question will establish theorem 3.4.
Question(3) Are all RG-spaces of finite Krull z-dimension of finite regularity degree?
Question(4) If H(X) = C((¢gX)s) does it follow that C(X) has finite Krull d-

dimension?
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