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Abstract 
On RG-spaces and the space of prime d-ideals in C(X) 

Farhat M. Abohalfya, ph.D. 

Concordia University, 2010 

Let A be a commutative semiprime ring with identity. Then A has at least two 

epimorphic regular extensions namely, the universal epimorphic regular extension 

T(A), and the epimorphic hull H(A). We are mainly interested in the case of C(X), 

the ring of real-valued continuous functions defined on a Tychonoff space X. It is a 

commutative semiprime ring with identity and it has another important epimorphic 

regular extension namely, the minimal regular extension G(X). In our study we 

show in chapter 5 that the spectrum of the ring H(A) with the spectral topology is 

homeomorphic to the space of the prime ("-ideals in A with the patch topology. In the 

case of C(X), the spectrum of the epimorphic hull H(X) with the spectral topology 

is homeomorphic to the space of prime d-ideals in C(X) with the patch topology. 

A Tychonoff space X which satisfies the property that G(X) = C(Xg) is called an 

RG-space. We shall introduce a new class of topological spaces namely the class 

of almost fc-Baire spaces, and as a special case of this class we shall have the class 

of almost Baire spaces. We show that every RG-space is an almost Baire space 

but it need not be a Baire space. However in the case of RG-spaces of countable 

pseudocharacter, RG-spaces have to be Baire spaces. Furthermore in this case every 

dense set in RG-spaces has a dense interior. 

The Krull 2-dimension and the Krull (/-dimension will play an important role to 

determine which of the extensions H(X) and G(X) has the form of a ring of real-

valued continuous functions on some topological space. In [31] the authors gave some 

techniques to prove that there is no RG-space with infinite Krull ^-dimension, but 

there was an error that we found in the proof of theorem 3.4. In this study we will give 

an accurate proof which applies to many spaces but the general theorem will remain 

in 



open. And we will use the same techniques to prove that if C(X) has an infinite chain 

of prime d-ideals then H(X) cannot be isomorphic to a ring of real-valued continuous 

functions. 
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Chapter 1 

Introduction 

We begin with the assumption that our category is the category of commutative rings 

and by a ring we mean a commutative ring with identity. By a ring homomorphism 

we mean a ring homomorphism that preserves the identity. For a ring A, let Z(A) 

denote the set of zero-divisors of A. 

For A, a commutative semiprime ring with identity, there are at least two epi-

morphic regular extensions namely, the universal epimorphic regular extension T(A) 

which was defined by [Olivier] in [27], and the epimorphic hull H(A) which was de-

fined and studied by [Storrer] in [33]. Hochster in [10] proved that the spectrum of 

T(A) as a topological space with the spectral topology can be identified with the 

spectrum of A with the patch topology. Our first goal in this thesis is to show that 

the spectrum of the ring H(A) with the spectral topology can be considered as the 

space of prime £-ideals in A with the patch topology. We show that in the case where 

A satisfies the strongly a.c. condition, then the spectrum of the ring H(A) with the 

spectral topology can be identified with the space of prime d-ideals of A with the 

patch topology. 

The ring C(X) of real-valued continuous functions defined on a topological space X is 

a commutative semiprime ring with identity. And it has another epimorphic regular 

extension namely the minimal regular extension G(X) which was defined and studied 
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by Henriksen, Raphael, and Woods in [20]. Also in the same paper the definition 

of RG-spaces was given and the properties of such spaces were studied in [20], [31] 

and [21]. Our second goal in this thesis is to get more results on RG-spaces. This 

leads us to introduce a new class of topological spaces, the class of almost /c-Baire 

spaces and as a special case of this class we will have the class of almost Baire spaces. 

In [31] the authors gave some techniques to prove that there is no RG-space with 

infinite Krull z-dimension. But there was an error that we found in the proof of theo-

rem 3.4. Our third goal in this thesis is to give an accurate proof of this result which 

applies to many spaces although the general theorem will remain open. We use the 

same techniques to prove that H(X) cannot be isomorphic to a ring of real-valued 

continuous functions if C(X) has an infinite chain of prime d-ideals. 

This chapter is divided into three sections. The first section is mostly devoted to 

introducing the basic conceptual machinery in ring theory to be used in this thesis. 

The second section contains the basic concepts on prime d-ideals and prime (-ideals 

which we need for our research, and the third section will contain a review of the basic 

concepts on algebraic frames. We have included [23], [24], [32] and [37] as general 

references. 

1.1 Basic concepts 

Semiprime and regular rings 

Definition 1.1 An element e of a commutative ring A is said to be idempotent if 

e2 = e. An element a is said to be nilpotent if there exists a positive integer n with 

an = 0. A ring A is called semiprime if A has no nilpotent elements except 0. 

It is well known fact that a ring A is semiprime if and only if the intersection of all 

prime ideals in A is the zero ideal. And it is clear from the definition that every 

subring of a semiprime ring is semiprime. 
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Definition 1.2 An element a of a ring A is called regular if 3 b G A such that 

a = a2b. If every element of A is regular then A is said to be a regular ring (in the 

sense of von Neumann). 

If a = a2b for some b G A then ab and 1 - ab are idempotent elements. 

Remark 1.1 If A is a regular ring and a = a2b then a* = b2a satisfies the equations 

a = a2a* and a* = (a*)2a andb2a is called the quasi-inverse of a. 

Lemma 1.1 Let A be a regular ring. Then the quasi-inverse of a is unique for each 

a G A. 

Proof. 

Let r\,r<i be two quasi-inverses of r G A. Then r = r2r\,r\ = r\r and r = r2r2,r2 = 

rjr. Now r2 = r2r = r2r2r\ = r2r2r\r = ^rrjr = rr\ = r\. Thus the quasi-inverse 

of a is unique for each a G A. • 

Definition 1.3 Let A be a ring such that for each a G A 3n ^ 1 and b G A such that 

an — (an)2b. Then A is said to be a II-regular ring. 

Clearly every regular ring is a II-regular ring. 

Theorem 1.1 Let A be a ring. Then A is a regular ring if and only if A is a 

semiprime U-regular ring. 

Proof. 

Let A be a regular ring, and let x G A such that x ^ 0. Then x = x2y for 

some y G A. Suppose xn = 0 for some n>l, and let no be the smallest integer such 

that x110 = 0. Then n0 >2, xno_1 ^ 0, and x" 0 - 1 ={xn°-rfz for some zeA. Since 

2(no it follows that x = 0, which is a contradiction. Therefore A is 

semiprime. 

(4=) Let A be a semiprime II-regular ring and let x G A. Then xn = (xn)2y for 

some y G A. and therefore xn - (xn)2y = 0 which means (x(l — (xn)y))n = 0. But A 

is semiprime, so (x(l — (xn)y)) = 0 . If n = 1 we are done, if not x — (xn~hl)y = 0 

which implies that x = (xn+1)y and therefore x = x2{xn"1)y. Thus A is regular. • 
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Since every finite ring is II-regular, it follows for finite rings that being regular is the 

same as being semiprime. 

Example 1.1 (Z4, +,.) is II-regular but is neither semiprime nor regular. 

Let A be a ring and let S be a non-empty multiplicative subset of A. Then there is an 

equivalence relation defined on A x S by: (ri, si) ~ (Y2, S2) — ?~2Si) = 0 

for some so E S. By denoting the equivalence class [(r, s)] by ^ one can turn the set 

S'^-A = : r E A,s E 5 } into a commutative ring with identity [12]. This ring 

S~*A, denoted As, is called the localization of A at S. In particular, if P is a proper 

prime ideal of A, then A — P is a multiplicative subset and the localization of A at P , 

denoted Ap, is defined to be As-p. Moreover, there is a one-to-one correspondence 

between the set of prime ideals in Ap and the set of prime ideals in A that are con-

tained in P [12, p. 147]. 

For each so € S we have : A —> As defined by $So(a) = ^ is a ring ho-

momorphism. If I, J are ideals of A and As respectively then (<frSo)-1( J) , denoted 

3° or J H A, is an ideal of A and <PSo(I)B, denoted Ie, is an ideal of As- Details 

appear in [12]. 

We will use these facts in the next theorem. 

Theorem 1.2 Let A be a semiprime ring. Then the following are equivalent: 

(1) A is regular. 

(2) Every prime ideal is maximal. 

(3) Every principal ideal is generated by an idempotent element. 

(4) Every finitely generated ideal is generated by an idempotent element. 

Proof. 

(1) = > (2) Let A be a regular ring and P ^ A be a prime ideal. For any element 

a P, we have that a = a2b for some b € A which means (a(l — ab) = 0). Then 

1 E P + aA and therefore P -f a A = A. Hence P is a maximal ideal . 
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(2) ==> (1) Suppose that every prime ideal is maximal, and let M be any maximal 

ideal of A. If I is any prime ideal of AM, then Ic is a prime ideal of A with Ic C M, 

which implies that I = Me. Then AM has a unique prime ideal namely Me, and 

therefore Me is the unique semiprime ideal in AM- As A is a semiprime ring, then 

{0} is a semiprime ideal in AM- Then {0} = Me and AM is a field. 

Clearly every invertible element is regular. Let r be a non-invertible element in A, 

and let T = {t £ A : rt = 0}. Then (T, r) cannot be contained in any maximal ideal 

M, as AM is a field. So (T,r) = A, which implies that 1 = t + rx for some x G A. 

Then r = r2x and A is regular. 

(1) =>• (3) Let (a) be a principal ideal. Since a = a2b for some b G A. Then e = ab 

is an idempotent element and (a) = (e). 

(3) (4) It is enough to prove the statement when I is finitely generated by two 

idempotent elements. Let I = (e, / ) where e, f are idempotent elements. Since (e + 

/ — e f ) is an idempotent element and (e, / ) = ((e + / — ef)) then I is generated by 

an idempotent element. 

(4) =>• (1) Let x G A, then xA = eA where e is an idempotent element. Then there 

are y, z G A such that x = ez, e — xy — x2y2 which implies that x — x2y2z. Thus A 

is regular. • 

Definition 1.4 If K is any non-empty subset of the commutative ring A, we write 

K* = {a G A : aK = {0}} and call this the annihilator of K. An ideal I of A is called 

dense if I* = {0}. 

We abbreviate (K*)* as K** for each non-empty subset K of A and {a}* as (a)* for 

each a in A. 

Remark 1.2 (a) K* is an ideal of A for each non-empty subset K of A. 

{b) If Kx, K2 are subgroups of A. Then K[ D I<*2 = { K\ + K2)* • 

Theorem 1.3 Let A be a semiprime ring and let K be an ideal of A. Then K D 

K* = {0} and I\ + K* is a dense ideal of A. 
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Proof. 

Let K be an ideal of A. Since KK* = 0 and {K n K*)2 C KK* = {0}7 then (K 

n K*f == {0} and therefore K D K* = {0}. But (K + K*)* = K* n K**. Then 

(.K + K*)* = {0}. Thus K + K* is dense. • 

Definition 1.5 A subring A of a ring S is called large if for every 0 t G S there 

exists a in A with 0 ^ at G A. An ideal I of A is called large if it is a large subring. 

Clearly a subring A of a ring S is large if and only if A HtA ^ {0} for each nonzero 

element t G S. And it is clear that every dense ideal is a large ideal. 

Theorem 1.4 Let A be a ring. Then A is semiprime if and only if every large ideal 

is dense. 

Proof. 

Let A be a semiprime, and let L be a large ideal. Let 0 ^ a G A. Since 

L D (a) {0}, let x G L D (a) such that x ^ 0. Then x G L and x = ra for some 

r G A. Since x2 ^ 0 and x2 G La. So La ^ {0} for each a ^ 0. Thus L is dense. 

(<£=) Suppose that every large ideal is dense and suppose 3 x G A such that x / 0 

and xn = 0 for some n > 2. Then there is an element y G A such that y ^ 0 and 

y2 = 0. Let I = (y), then it is clear that 72 = {0}. Now suppose (a) H I* = {0} for 

some a in A. Since al C (a) fl I* = {0} then al = {0} which implies a = 0. So 

I* is a large ideal and therefore by assumption P is dense. But aP = {0} for each 

a £ I. Therefore I = {0}, which is a contradiction with I = (y) ^ {0}. Hence A is 

semiprime. • 

Remark 1.3 Let D\, D2 be two ideals of A. Then: 

(1) D\ CD2 and D\ dense implies that D2 is dense ideal. 

(2) D\ and £>2 dense implies that D\ D2 and fl D2 are dense ideals too. 

Rings of quotients 

The ring B is an extension of A if A is a subring of B and they have the same identity. 
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If B is an extension of A then the set c 1A — {a G A : ca G A} is an ideal of A for 

each c G B. 

Definition 1.6 Let B be an extension of A. Then B is called a ring of quotients of 

A if c~xA is a dense subring of B for each c G B, in another words, if\/cEB and 

such that ac G A and ad 0. 

Lemma 1.2 Let B be a ring extension of A Then: 

(1) B is a ring of quotients of A if and only ifb~lA is dense ideal in A and bib'1 A) ^ 

{0} V b G B. 

(2) bib"1 A) ^ {0} V 0 y^ b E B implies that b~*A is a large ideal in A for each b G B. 

Proof. 

(1) (==>) Obvious 

(<=) Suppose b~lA is dense in A and bib"1 A) 7̂  {0} V 0 ^ b G B. Letb.c G B such 

that Since c(c~M) 7̂  {0}; then 3 ai G {c'^A) such that a±c 7̂  0. Since a\c G 

A, then a\c{b~xA) 7̂  {0}. Choose a2 G (2rM) such that aia2c 7̂  0 and let a = a\a2. 

Then a G A, ab G A and ac ^ 0. Therefore B is a ring of quotients of A. 

(2) Suppose b^-1 A) ± {0} V 0 ^ b G B. We need to show that (a) D {0} for 

each 0 7̂  a E A. If a G b~lA we are done. If not, choose a\ G (aty^ab^A)^ {0}. 

Then aba\ G A and aba\ 7̂  0. which means aa\ G (a), aai G b~^A, and aai 7̂  0. 

Thus (a) n b"1 A 7̂  {0} and b"1 A is a large ideal of A. • 

Theorem 1.5 Let B be a ring extension of a semiprime ring A. Then B is a ring 

of quotients of A if and only if bib'1 A) 7̂  {0} V 0 7̂  b G B. 

Proof. 

(=>) Obvious. 

(<=) Suppose bib'1 A) {0} V 0 7- b £ B. Then 6~M is a large ideal [lemma 

1.2, (2)]. which implies by theorem 1.4. that b'1 A is a dense ideal of A. Thus B is a 

ring of quotients of A [lemma 1.2, (1)]. • 
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The complete ring of quotients and the classical ring of quotients 

The complete ring of quotients of a ring A can be constructed from equivalence 

classes of module homomorphisms from dense ideals of A into A. Details appear 

in [14, section 2.3]. The definition of addition and multiplication is natural, and the 

resulting ring, denoted Q(A), is regular when A is semiprime [14, p.42]. Thus each 

a G A has a quasi-inverse a* in Q(A). Furthermore, if T is any ring of quotients of 

A then by [14, prop.6 ] there is a monomorphism of T into Q(A) that induces the 

canonical morphism of A into Q(A). Therefore Q(A) is the maximal ring of quotients 

of A. In another words, if T is any ring of quotients of A. Then A CTC Q(A). 

The classical ring of quotients of a ring A, denoted by Qci(A), is the subring of Q(A) 

consisting of all elements of the form abwhere a, b G A, b is a non zero-divisor in 

A, and b"1 is the inverse of b in Q(A). All non zero-divisors of A are units in Qci(A), 

and A = Qci{A) if and only if each non zero-divisor in A is a unit. 

Essential and epimorphic extensions 

Definition 1.7 Let B be an extension of A. Then B is called an essential extension 

of A if each non-zero ideal of B has non-zero intersection with A. 

Lemma 1.3 Every ring of quotients B of A is an essential extension of A. 

Proof. 

Let 1 be a non-zero ideal in B, and 0 ^ a G / . Since a~lA is dense ideal of A, then 

3 b G A such that ab G A, ab ^ 0. Thus B is an essential extension of A. • 

A morphism / : A -—> B of a category Q is called epic (or an epimorphism) if for all 

objects D and morphisms g,h G Hom(B, D) we have that g = h whenever gof = hof. 

Clearly the composition of two epimorphisms is an epimorphism and if / : A —* B 

and g : B —>• C are two homomorphisms such that gof is an epimorphism then g is 

an epimorphism. 

Assume that A is a semiprime ring and that our category Q is the category of commu-

tative rings. It is well-known that any ring epimorphism defined on a regular ring A is 
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surjective [33, 6.1]. A ring extension B of a ring A is called an epimorphic extension 

of A if the inclusion map from A to B is an epimorphism. So one can conclude that 

a regular ring has no proper epimorphic extensions. 

The epimorphic hull of a ring: Let A be a semiprime ring and S be a regular 

ring extension of A. Then one can define the smallest regular ring lying between A 

and S, denoted Gs(A), as follows: 

Gs(,4) = f|{C :ACCCS, C is a regular ring}. 

Theorem 1.6 Let A be a semiprime ring and S be a regular extension of A. Then 

Gs(A) is regular and it is the smallest regular ring lying between A and S. 

Proof. 

The intersection of subrings is again a subring. Thus G,s{A) is a ring and A C 

Gs(A) C S. Let a £ Gs{A), then 3! a* £ S such that a = a2a* and a* = a*2a. Since 

a* is a unique, then a* £ C V C a regular ring lying between A and S. Therefore 

a* £ GS(A). Thus GS(A) is regular. • 

Lemma 1.4 If B is a regular extension of A such that A C B C Q{A) then Qci(A) C 

B. 

Proof. 

Let ab~l £ Qd{A) where b is a non zero-divisor in A. Then a,b £ B and b* = 6 _ 1 is 

in B and therefore ab£ B. Hence Qci{A) C B. • 

For each semiprime ring A, the complete ring of quotients Q(A) is a regular ring. 

Then one can talk about the ring GQ(A){A) which is called the epimorphic hull of 

the ring A and denoted H(A). It is clear that A C Qd(A) C H(A) C Q(A) for 

each semiprime ring A. Then H(A) can be defined as the smallest regular ring lying 

between A and Q(A). As A C H(A) C Q(A), it follows that H(A) is a ring of 

quotients of A and therefore an essential extension of A. 

Theorem 1.7 Let A be a semiprime ring. Then Qci(A) is regular if and only if 

V a£ A 3b£ (a)* such that (a)* n <b)* = {0}. 
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Proof. 

(=>) Suppose Qd(A) is regular, and let a € A. Then 3z G Qci{A) such that a = a2z 

where z = xy~x. Let b = y — ax, then ab = ay — a2x = a2xy_1y — a2x = 0 which 

implies that b G (a)*. To show that {a}* n (b}* = {0}, let c G (a)* D (b)*. Then 

0 — cb — c(y — ax) — cy — cax = cy. But y is a non zero-divisor. Then c = 0 and 

therefore (a)* n (b)* = {0}. 

(«=) Suppose that V a G A 3 b G (a)* such that {a)* n (b)* = {0}. Let ad'1 G 

tu/iere d is a non zero-divisor. Choose b G (a)* such that (a)* Pi (b)* = {0}. We claim 

thata + bd is a non zero-divisor. Suppose x(a + bd) = 0. Then ax(a + bd) = 0, which 

implies that axa = 0, and therefore xbd = 0. Since d is a non zero-divisor, then 

xb = 0 and therefore x G (a)* D (b)*. Then a + bd is a non zero-divisor. Therefore 

t = (a + bd)-1 G Qd(A), and [ad'1 - [ad^fdt] = (ad"1)( 1 - at) = (<2d-^(bdt) = 0. 

So ad-1 = Thus Qci{A) is regular. 

• 

Lemma 1.5 Let A be a semiprime ring such that (a)* is a principal ideal for each a 

in A. Then Qci{A) is regular. 

Proof. 

Let a G A, and let (a)* = b A. We claim that {a}* f](b)* = {0}. LetO^ye (a)*D(b)*. 

Since (b}* = cA for some c G A then y = r\b = r2c 0 and y2 = 0. which is a 

contradiction. Then (a)* D (b)* = {0}, so by theorem 1.7. Qci[A) is regular. • 

The Structure of H(A) 

Theorem 1.8 Let T be a regular extension of A, and let S be the subring of T ge-

nerated by A and B where B = {r*r : r G A}. Then Qci{S) = H(S). 

Proof. 

It is clear that S = •' r« e A, e; G B, n > 1}. Let x = r*e«- &ut 

n"=i (ei + (1 ~~ ei)) = Notice that this product can be written as (]Cj=i f j ) = 1 

where f j £ S, f2 — f j Vj = 1,2, ,2" [some of them possibly zeros], and f i f j — 0 if 
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i^J-

Clearly eifj = 0 or 1 depending on i and j. Now x = xl = Yli= i(riei)l = 

ELiC^XEji f j ) = Eili(ET=i(riei/i))-

Lei a3 = Yli=i(rieifj)- tj = rml + rm2 + r m 3 + + rm n w/iere e m i / j = f j . 

Then aj = t j f j , and x = ar Since { f j : 1 < j < 2n} is an orthogonal set then 

1 tj f j ) (Zjh t j f j ) 2 = ZT=i(tjtjfj) = l i f r It follows that x* = E^i t*fj, 

xx* = Y^j=i(t*jtjfj) £ S and 1 — xx* £ S. To show that (x)* is a principal ideal of S, 

let I — (x)* = {t G S : tx — 0}. It is clear that 1 — xx* G I. Conversely, if t G S such 

that tx = 0 then t — t(.1 — xx*). Therefore {x}* = (1 — xx*)S. So (x)* is a principal 

ideal. Thus by lemma 1.4 Qci(S) is regular and Qci{S) — H(S). • 

Lemma 1.6 Let T be a regular extension of A. Then Gt(A) = { risi '• R*> si E 

A, n > 1}. 

Proof. 

Let B = {r*r : r G A}, D = {r* : r £ A} and let S, K be the subrings ofT generated 

by A, B andA,D respectively. Then K = { Y^i=\risi '• ri->si e A ™ > 1} 

S C K C Crr(;4). To s/iou; Qd(S) C i f , x 6e any non zero-divisor in S. 

Since x = E L i then as before x* = E j= i t j f j £ K- Since x(l — xx*) = 0 and 

(1 — xx*) £ S then 1 —xx* = 0 and x has x"1 in K. Therefore Qd(S) C K. It follows 

that A C Qd{S) = H(S) C K C T. But GT(A) is the smallest regular ring between 

A and T. Then GT(A) = K = H(S). • 

Corollary 1.1 Since every finite semiprime ring is regular then = \GT(A)\ for 

any semiprime ring A with a regular extension T. 

Let A be a semiprime ring. Since the complete ring of quotients Q(A) is a regular 

extension of A then H(A) = { ns* : ru Si £ A, n> 1}, and \A\ = \H(A)\. 

Lemma 1.7 Let A be a semiprime ring and let S be a ring extension of A such that 

V s £ S 3 t £ S, 3 a,b £ A with s = at and a = tb. Then S is an epimorphic 
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extension of A. 

Proof. 

Let % : A —> S be the inclusion map and a,P : S —• T be ring homomorphisms such 

that a o i = (3 o %. 

Let s £ S. Then 3 t £ S, 3 a, be A such that s = at and a = tb. 

Now a(s) = a(at) = a(a)a(t) = P(a)a(t) = p(bt)a(t) = p(b)p(t)a(t) = a(b)(3{t)a{t) = 

jd(t)a(bt) = P(t)a{a) = /3(t)P(a) = p(ta) = (3{s). Thus a = {3 and S is an epimorphic 

extension of A. n 

Corollary 1.2 Let A be a semiprime ring. Then H(A) is an epimorphic extension 

of A. 

Proof. 

Let a, P : H(A) —> S be ring homomorphisms such that aoi — p oi where i: A —> 

H(A) is the inclusion map. For each r G A, let t = r*2, a = r and b — r3 . Then 

s = at, a = tb and a,b G A. So by the same proof as in lemma 1.7 a(r*) = P(r*) 

Vr G A. Now for any x G H(A) we have x = r«si and aix) = risl) = 

Er= i a(ri)a(a?) = Eh P(rMs*) = P{T,U r t f ) = P(x). Then a = p and H(A) 

is an epimorphic extension of A. • 

The spectrum of a ring 

If A is a ring, then the spectrum of A, denoted spec(A), is the set of all prime ideals 

of A. For any subset E of A and a G A, let V(E) = {P G spec{A) : E C P}, 

V(a) = V{{a}). D{E) = spec(A) - V(E) = {P G spec(A) : E £ P), D(a) = £>({a}), 

r(E) = f | { P e spec(A) : E C P}, and ra = r({a}). 

Remark 1.4 If A is a ring. Then : 

(1) V(E) = V((E}) = V(r(E)) for each E subset of A. 

(2) V({0}) = spec(A) and V(A) = 0 . 
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(3) n u iei Ei) — Hig/ V(Ei) for each family {Ei : i G 1} of subsets of A. 
(4) V(IJ) = V(I n J) = V(I) U V(J) for all I, J ideals in A. 

Lemma 1.8 Let A be a ring. Then X = spec(A) with the collection of open sets 

T = {D(E) : E C A} forms a topological space which has the collection f3 = {D(a) : 

a G ^4} as an open base. 

Proof. 

Note that D{{1}) = X, £>({0}) = 0, D ^ ) n D(E2) = D({EX) n (E2)), and 

U i6; D{Ei) = D(U i€i Ei). Thus (X, T) is a topological space. Since D(E) — Uae£ D(a) 

then j3 = {D(a) : a G A} is open base for (X, r ) . • 

This topology is called the spectral topology on spec(A), and it is clear that the 

closed subsets in this space are those of the form V(E) where E is any subset of A. 

Remark 1.5 Let A be a ring, X = spec(A) and a,b£ A. Then : 

(1) D{a) f)D{b) - D{ab). 

(2) D(a) — 0 if and only if a is a nilpotent element. 

(3) D(a) — X if and only if a is a unit. 

(4) D(a) = D(b) if and only ifr{(a)) = r({b)). 

(5) (spec(A), r) is a To-space. 

Corollary 1.3 Let A be a ring, a G A, and U be an open subset of spec( A). Then: 

(1) D(a) is a compact subset. 

(2) U is a compact subset if and only ifU is a finite union of sets of the form D(a). 

Proof. 

(1) It is clear that D{a) = D(an). Suppose D{a) C \Ja€r D(aa) then V(a) D 

floer = ^ /(UQ6r(aa)) which implies that ra C r(©Qer((aQ})). Since a G ra 

then 3 no > 1 such that an° G ©aer((fla})- Therefore 3 aQl,aQ2, , aan such that 

(an°) C (aQ]) + (aa2) + + (aaJ. It follows that ( X i V{{aai)) C V((an°)). Then 
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Ur=i D((a<xi)) 5 D((a»°)) = D(a), and D(a) is a compact subset for each a £ A. 

(2) (=>) Suppose U is a compact subset. Since U is open, then U = D(I) for 

some ideal I in A. But D(I) = (Joe/ D(a) ani^ U is a compact subset. Thus 

D{I) = \JUD{ai). 

(<*=) Obvious. • 

Since spec(A) = D{ 1) then (spec(A),r) is a compact space. For each P G spec(A) 

we have d({P}) = V(P). So {P} is a closed set if and only if P is a maximal ideal. 

Therefore the space spec(A) with the spectral topology is a T\-space if and only if 

every prime ideal is maximal, or equivalently if and only if A is a regular ring. 

Lemma 1.9 If B C spec{A) then cl(B) = V{f]Q€BQ). 

Proof. 

UP^V(f)QeBQ),thenf]QeBQ^P- Choose a e(nQeBQ)~P- Then D(a)nB = 

0 and therefore cl(B) C V(P|Q€BQ)- On the other hand, if P G V((~]Q€BQ) and 

P £ cl(B) then 3 D{a) such that P G D(a), D(a) n 5 = 0. Therefore a G Q 

V Q G B, which implies that a G f ) g e B Q C P which contradicts P G D(a). Thus 

P G cl{B) and cl(B) = V ( D o 6 b <5)- d 

Let M(A) be the space of maximal ideals of A as a subspace of spec(A) with the 

spectral topology. For each M G M(A), let pM = {P : P C M}, and 0 M = nQ&PM Q. 

Corollary 1.4 Let A be a semiprime ring. Then 0M = {a £ A : 3 b M, D(b) C 

V(a)}. 

Proof. 

Let T = {a £ A : 3 b <£ M, D{b) C V(a)} and let x £ T. Then 3 y <£ M 

such that V(x) U V(y) = spec(A). Since xy £ P V P G spec(A) and y M then 

x £ P V P G pM- Therefore x £ 0M and T C 0M. On the other hand, suppose 

x £ 0M and let S = {xnc : n > 0, c £ A - M}. Then it is clear that S is a 

multiplicative subset. 7 / 0 ^ 5 then 3 P prime ideal such that P fl S = 0 . which 

implies that x P and A — M C S. Therefore PCM which contradicts the fact that 
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x G Om . Then 0 G S. But xn°c0 — 0 for some n0 > 1 implies that xco = 0. Thus 

V{x) U V(co) = spec{A). Therefore xeT andT = 0M. • 

Lemma 1.10 Let A be a ring andT C M{A). ThenclM(T) = {N : M C N} 

Proof. 

Since clM{T) = cl(T) n M(A) then clM{T) = {P : f]MeTM C P} n M(A) = {N : 

flMeTM CN}. • 

Definition 1.8 Let A be a ring. Then A is called a pm-ring if every prime ideal is 

in a unique maximal ideal. 

If A is a pm-ring, denote the unique maximal ideal containing P by Mp. Then there 

is a function, /j, : spec(A) —> M(A), defined by /x(P) = Mp. 

Theorem 1.9 If A is a pm-ring then /i is a continuous function from spec(A) onto 

M{A). 

Proof. 

Let T be a closed subset of M(A), J = H M e T M . and I = P Impst Then T — 

V{J) n M{A). Let us show that ^{T) = V(I). It is clear that ^ ( T ) C V(I). 

Then one just has to show that ICQ implies MQ G T. Let Q G spec(A) such that 

Q Q B = \JMeT M. Then Q + J C B C A which implies that Q + J C Mi where Mi 

is a maximal ideal containing Q + J. Since J C Mi, then Mi G T and n(q) = M\. 

Now let I C P and take SK ~ {sk : s G S,k G K) where S = A- B and K = A- P. 

Then SK is a multiplicative subset, and SK 0 1 = 0. Therefore by Zorn's Lemma 

3 Q a prime ideal such that ICQ, Q D SK — 0. Then Q C B, Q C P which 

implies jx{Q) = Mx G T and n(Q) = n(P). So I C P implies that n(P) G T. Thus 

/x_1(T) = V(I) and n is a continuous function. • 

A topological space X is called irreducible if each non-empty open set is dense, or 

equivalently if each pair of non-empty open subsets U, V has a non-empty intersec-

tion. It is clear that every T2-space with more than one point is not an irreducible 
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space. The space spec(A) is irreducible if and only if the ideal of nilpotent elements 

is prime. It is clear that if A is semiprime then spec(A) is irreducible if and only if A 

is an integral domain. 

Lemma 1.11 Let F be a closed irreducible subset of spec(A). Then F = V(P) for 

some P £ spec(A) 

Proof. 

Let F be a closed irreducible subset of spec(A). Then F — V(I) for some ideal I. 

Since V(I) = V(r(I)), then F = V(J) where J = r(I). So it is enough to show that 

J is prime. 

Let xy £ J. Then V(J) = V((J,x)) U V({J,y)). Since F is an irreducible subset, 

then V{J) = V({J,x)) or V(J) = V((J,y)). WLOG, let V{J) = V((J,x)). If 

x J = r(I) then 3 Pa prime ideal such that J C P and x P. Therefore 

V{ J) V({J, x)), which is a contradiction. Thus x £ J and J is prime. • 

Definition 1.9 Let X be a topological space. Then X is called a spectral space if: 

(1) X is a compact To-space. 

(2) every irreducible closed subset is a closure of one point. 

(3) X has a base of compact open sets. 

(4) the intersection of any two compact open sets is compact. 

Clearly for any commutative ring A with identity, the space spec(A) is a spectral 

space. 

There is another topology defined on the space spec(A) called the patch topology. It 

is stronger than the spectral topology and it turns the space into a Hausdorff space. 

Theorem 1.10 Let A be a ring and let (3 = {D(a) fl V(I) : a £ A, I is a finitely 

generated ideal }. Then (3 forms an open base for a topology on spec(A). 

Proof. 
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It is clear that D(l)nV({0}) = spec(A). If P0 G (£>(ai) n V{IX)) f K ^ M n V(I2)), 

then P0 G {V((h, I2)) D D(aia2)) = (D(ai) D V(h)) f K ^ M n V(I2)). Thus (5 is an 

open base for a topology on spec(A). • 

This topology is called the the patch topology. For any a in A we have D{a) D 

y({0}) = D(a) is an open subset so the spectral topology is weaker than the patch 

topology. Since V(a) = V({a)) is an open subset then D(a) is clopen subset, i.e. 

D(a) G CO{X) V a G A. Also V(a) G CO(X) and V((a,b)) = V((a)) n V((b)). 

Therefore V(I) G CO(X) for each finitely generated ideal I. Thus spec(A) with 

the patch topology is a O-dimensional Hausdorff space. We will denote the spectral 

topology on spec(A) by r and the patch topology by f . 

Lemma 1.12 Let M be a maximal ideal of A. Then M is an isolated point in 

(spec(A),r) if and only if 3 I a finitely generated ideal such that V(I) = {M}. 

Proof. 

(==>) Suppose M is an isolated point in X. Then {M} = D(a) fl V(I) where I = 

(ai, a2, <i3, , an) is a finitely generated ideal. Since M is maximal ideal then 3 b G A 

such that ab — 1 G M. Take J = (ai,a2,as, ,an,ab — 1). Then J is a finitely 

generated ideal and J C M. So D(a) fl V(I) = {M} C V(J). On the other hand, 

if P G V(J) is any prime ideal then J C P which implies that ab — 1 G P. So 

P e D(a) fl V(I) = {M}. Then V(J) = {M} where J is a finitely generated ideal. 

(-<=) Obvious. • 

Theorem 1.11 Let A be a ring. Then A is regular if and only if r = f . 

Proof. 

{==> ) Suppose that A is a regular ring. Let I = (a) be a principal ideal of A. Since 

a2b = a for some b G A then V(a) = D(ab — 1) and therefore I = V(a) is an open 

subset. Now if I = (ai,a2,as, ,an) is any finitely generated ideal then V(I) = 

DIU y(Qi) IS an °Ven subset. Thus r = f . 
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(<=) Suppose T = T. Since (X,T) is a Hausdorff space then (X,R) is a Hausdorff 

space. Hence A is regular. • 

Using the Alexander subbase lemma one can prove the compactness for spec(A) with 

the patch topology. Details appear in [10, theorem 1]. 

Let / : A —> B be a ring homomorphism with J{IA) = 1 B and let I, J be ideals of 

A,B respectively. Then / _ 1 ( J ) , denoted J° or J fl A, is an ideal of A and f(I)B, 

denoted 7e, is an ideal of B. It is clear that / C (I e) c and (Jc)e C J. In this case 

there is another function associated with / , denoted fa, is defined from spec(B) into 

spec(A) by fa(P) = / - 1 ( P ) V P £ spec{B). It is a well known fact that if / is an 

epimorphism then fa is an injective map [16]. 

Lemma 1.13 If f : A -—> B is a ring homomorphism then fa : spec(B) —> spec(A) 

is a continuous function with the spectral topology [patch topology] on both spaces. 

Proof. 

First, let us start with the spectral topology. Let E = V(I) be a closed subset in 

spec(A). I f P e spec(B) such that Ie = f(I)B C P then I C f~l{IB) C f~l{P) and 

therefore P G 0n the other hand, let P G Then fa(P) = 

/ ^ ( P ) G V(I) and therefore f(I)B C f{f~1{P))B C P. Then (fa)-\V{I)) = 

V(f(I)B) and hence fa is a continuous map. 

Secondly, let us consider the patch topology on both spaces. Since (3 = {D(a) Pi V ( f ) : 

a £ A and I is a finitely generated ideal } is an open base for the patch topology 

r on spec(A), then ^ = {V(a) U D(I) : a G A, I is a finitely generated ideal } is 

a closed base for T on spec(A). Then it is enough to show that (/a)_1(Z?(a)) is a 

closed set in (spec(B),f) for each a £ A. Let Q £ (/a)_1(£>(a)). Then a fa{Q), 

and therefore / ( a ) £ Q i.e. Q £ D{f{a)). Hence (fa)-\D{a)) C D{f(a)).. On 

the other hand, let Q £ D(f(a)). Then f(a) ^ Q which means that a ^ f~l{Q) = 

fa(Q). Then Q £ (fa)-\D(a)): which implies that D(f(a)) C (/a)-1( JD(a)). Hence 

{faYl{D{a)) = D(f(a)) and therefore (/"^(Dfa)) is a closed subset. Thus fa is a 

continuous function under the patch topology. • 
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1.2 Prime d-ideals and prime (-ideals 

Let A be a ring and P be a prime ideal. Then P is called a minimal prime ideal if 

for each Q G spec(A) such that Q C P we have Q = P. Denote the space of minimal 

prime ideals by Min(A). 

For each B C A and a G A, let PB = G Min{A) : B C P}, Pa = P{a}, 

Vj(B) = V{B) n Min(A), and Di(B) = D{B) n Min(A). 

Theorem 1.12 Let A be a semiprime ring and P G spec(A). Then P is minimal 

prime if and only i/V a 6 P 3 P such that ab = 0. 

Proof. 

(=4>) Let P be a minimal prime ideal, a G P, and let S = {sak : s € (A — P) and k ^ 

1}. Then S is a multiplicative subset. If 0 ^ S, then 3 Pi a prime ideal such that 

Pi fl S = 0. Then Pi C P, which is a contradiction. Therefore 3 b ^ P and k > 1 

such that bak = 0. But A is a semiprime ring, so ab = 0. 

(•£=) If Pi C P, then 3a G P and a £ Pi. So by hypothesis there is a b £ P such 

that ab — 0, and therefore ab G Pi while a,b £ Pi, which is a contradiction. Thus P 

is a minimal prime ideal. • 

Lemma 1.14 Let A be a semiprime ring and let B, C be ideals of A such that B is 

a finitely generated ideal. Then Vi(B) C Vi(C) if and only if B* C C*. 

Proof. 

( 4 = ) Suppose B* C C* where B — (bi, 62, 63,..., bn) is a finitely generated ideal. If 

B C P where P is a minimal prime ideal, then for each bi there is Xi £ P such 

that biXi = 0. Take x = YYi=ixi- Then x ^ P and biX = 0 for each bi. Therefore 

x G B* C C*, but x£P. Then C C P, and therefore Vi(B) C Vi(C). 

(=>) Let Vi(B) C Vi{C) and suppose aB = 0 and aC ^ 0. Then 3P a prime ideal 

such that aC ^ P. Let Pi be a minimal prime ideal contained in P. Then C ^ Pi 

and B C Pi which is a contradiction. Thus B* C C*. • 
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Remark 1.6 Let A be a semiprime ring and let B, C be finitely generated ideals. 

Then Vj (B) = Vi (C) if and only if B* = C*. 

Corollary 1.5 Let A be a semiprime ring. Then: 

(1) Pj = P* for each finitely generated I of A. 

(2) P = f | { P G Min(A) : P G D(I)} for each ideal I of A. 

Proof. 

(1) Let I = (t»i, 62, bn) be a finitely generated ideal. Let x G P* and P G Min(A) 

such that I C P. Then for each i = l ,2, . . . ,n 3 P such that Xibi = 0. Take 

b = niU*, Then b G P and therefore xb — 0. But b ^ P. Then x G P, and 

therefore P* C Pj. On the other hand, if x £ P* then xP {0}. Therefore 3 Pa 

minimal prime ideal such that xP ^ P. Since IP — {0} then I C P, which implies 

that x ^ Pi. Hence Pi = P*. 

(2) Since I £ P implies that I* C P, then P C f\{P G Min{A) : P G £>(/)}. 

If x £ I*, then there is a minimal prime ideal P such that xl P. Therefore 

P G D(I) and x £ P, which means that x £ e Min(A) : P G D(I)}. Thus 

I* = f]{P e Min{A) : P G £>(/)}. • 

Definition 1.10 Let A be a ring and I be an ideal of A. Then I is called a z-ideal if 

V a,b G A such that a, b lie in the same maximal ideals, and a G I implies that b G I. 

Remark 1.7 Let A be a ring. Then: 

(1) Every z-ideal is a semiprime ideal. 

(2) Every maximal ideal is a z-ideal. 

(3) An arbitrary intersection of z-ideals is a z-ideal. 

Definition 1.11 Let A be a ring, and I be an ideal in A. Then I is called a d-ideal 

[(-ideal] if a G I implies Pa C I [Pj C I for each finitely generated ideal J C / ] . 

From the definition we can see that every £-ideal is a d-ideal and every minimal prime 

ideal is a (-ideal. It is clear from corollary 1.5 that if A is semiprime, then an ideal 
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7 is a ri-ideal [("-ideal] if and only if (a)** C 7 for each a G 7 [J** C 7 for each finitely 

generated ideal J C /]. It is obvious that I* is a ("-ideal for each ideal I of A. 

Remark 1.8 Let A be a ring. Then: 

(1) Every d-ideal is a semiprime ideal. 

(2) An arbitrary intersection of d-ideals [(-ideals] is ad-ideal [(-ideal]. 

(3) An ideal I is a d-ideal if and only if I = Y2aei Ta = Uae/ Pa-

Proof. 

(1) If an G 7 for some n > 1 where I is a d-ideal then a G Pa — Pa
n Q I-

(2) Obvious. 

(3) The necessary condition is obvious. In order to prove the sufficient condition, let 

I be a d-ideal. Since Pa C 7 for each a £ I then EaeJ Pa C 7. Since a G Pa for each 

a, then £ae/ Pa = I• Thus I C U a e / Pa C £ a € / Pa = /• ° 

Lemma 1.15 Let A be a semiprime ring. Then TFAE : 

(1) I is a (-ideal. 

(2) Vi(J) = V\(K) where K,J are finitely generated ideals and J C 7 implies that 

KCI. 

(3) J* = K* where K, J are finitely generated ideals such that J C 7 implies that 

KCI. 

Proof. 

(1) (2) This is clear because V\(J) = Vi(K) implies that PK = Pj. 

(2) (3) This is clear by remark 1.6. 

(3) < = (2) This is clear by remark 1.6. 

(3) (1) Let J be a finitely generated ideal such that J C I, and let b G J**. If 

y G (b)* then y(J(b))) = {0} and therefore (b)* C (J(b))*. On the other hand, if 

y(J(b))) = {0} then ybJ = {0} and therefore yb2 = 0. But A is semiprime, so yb = 0 

and therefore (b)* = (J(b))*. Since J(b) C 7 then {b) C 7. Hence I is a (-ideal. • 
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Since the d-ideals are a special case of (-ideals one can repeat the previous lemma for 

d-ideals by replacing the finitely generated ideals with principal ideals. Recall that 

the Jacobson radical, denoted by J{A), is the intersection of all maximal ideals of A. 

Theorem 1.13 Let A be a ring. Then: 

(1) J(A) = {0} implies that every d-ideal is a z-ideal. 

(2) If A is a semiprime ring such that every d-ideal is a z-ideal. Then J{A) = {0}. 

Proof. 

(1) Suppose J(A) = {0} and let I be a d-ideal such that a £ I, b I. Since Pa C I 

then b ^ Pa which implies that b(a)* 7̂  {0}. Therefore by assumption there is a 

maximal ideal M such that b{a)* M. Then b M and (a)* ̂  M. But a(a}* = {0}, 

so a G M and therefore a and b are not in the same maximal ideals. Hence I is a 

z-ideal. 

(2) Let A is a semiprime ring and suppose that every d-ideal is a z-ideal. Then {0} is 

a z-ideal, because {0} is a d-ideal. IfbE J{A), then 0 andb lie in the same maximal 

ideals and therefore b = 0. Thus J(A) = {0}. • 

Corollary 1.6 Let A be a semiprime ring. Then: 

(1) Every proper d-ideal consists of zero-divisors. 

(2) Every zero-divisor is in some minimal prime ideal. 

Proof. 

(1) Let I C A be a proper d-ideal and let a £ I be a non zero-divisor. Then (a)** = 

A £ I, which is a contradiction. Therefore I consists of zero-divisors. 

(2) If a = 0 we are done. If not, let c 7̂  0 such that ca = 0. Since c 7̂  0 then there is 

a minimal prime ideal P such that c <£ P- Hence a € P for some P 6 Min(A). • 

Lemma 1.16 Let A be a semiprime ring, let I be an ideal of A, and 0 S C A. 

Then: 

(1) I is a d-ideal implies that (I : S) = {a : aS C 1} is a d-ideal. 

(2) If S is a multiplicative subset, then Os = {a : as0 = 0 for some so € 5*} is a 
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d-ideal. 

(3) If I is a d-ideal and S is a multiplicative subset, then Is = {a : aso G I for some 

so £ £} is a d-ideal and Is = LUsU : Is}) = Ylszstf '• {s})-

Proof. 

(1) Clearly (7 : S) is an ideal of A. Let a G (I : S), b G {a}**, and s0 G S. Since 

aso G I, then (aso)** C 7. Suppose that xaso — 0. Then xbso = 0 which means that 

bso G (aso)** C 7. Thus b G (7 : S) and (7 : S) is a d-ideal. 

(2) Clearly Os is an ideal in A. Let a G Os, b G (a)**. Then aso = 0 for some so G S. 

Since b G (a)** then xb = 0, whenever xa = 0. Therefore 6s0 = 0 and b G Os- Hence 

Os is a d-ideal. 

(3) Following the same steps as in (1), one can show that Is is a d-ideal. It is clear 

that Is = \JseS(I : (s-}) and tflat USes(l {si) ^ YlsesV : is})- Let x = a\ + a2 + 
+ a„ G £ s e S ( 7 : {s}) where aiSi G 7 for each i = 1,2, ...n. Take s = n iL i e 

T/ien .x.s G 7 and therefore x G / s . 77ms 7S = U s € S ( I : {s}) = £ s e 5 ( 7 : {s}). • 

If A is a regular ring then every prime ideal is a minimal prime ideal which means 

that every prime ideal is a ("-ideal, and since in regular rings every ideal is semiprime 

one can conclude that in regular rings all the ideals are ^-ideals. 

Corollary 1.7 Let A be a semiprime ring. Then A is regular if and only if every 

principal ideal is a d-ideal. 

Proof 

(=>•) Obvious. 

(<=) Since (a2) is a d-ideal and a G (a2)** C (a2) then A is regular. • 

Lemma 1.17 let A be a semiprime ring. Then: 

(1) If I is a d-ideal [(-ideal) of A, and J is a d-ideal [(-ideal] of A/I. Then 7r_1(J) ^s 

a d-ideal [(- ideal] of A. 

(2) I is a d-ideal [(-ideal) if and only if I is an intersection of prime d-ideals [prime 

(-ideals). 
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Proof. 

(1) Let I be a (-ideal of A and J be a (-ideal of A/1. If (ai, 02, —, an) C 7r_1(J), and 

b G (ai, 02,..., an)** then cai = 0 V i — 1,2, ...,n implies that be = 0. Since ir(ai) G J 

for eachi = 1,2, ...,n and A/1 is semiprime, then (7r(ai), 7r(a2),..., 7r(a„))** C J . 

it is enough to show that b + I G (7r(ai), 7r(a2),..., Tx{an))**, which is equivalent to 

showing that bx G / whenever xat G / V z = l,2, ...,n. Suppose that xai G / /or eac/i 

z = 1,2,.,.,n. Since I is a (-ideal then (xa-i, xa2, •••,xan)** CI. Now since k(xai) = 0 

/or eac/i i = 1,2, ...,n implies that bxk = 0. ITien for G (xai,a;a2,-...,xa„)** C / . 

Hence T X a (-ideal. 

The claims for d-ideals follow by the same argument. 

(2) (<*=) Obvious. 

(==>•) Since A/1 is a semiprime ring, then {0 + / } = f]P&Min(A/i) P- Hence I = 

Plp^A/D^iP) ™here TT-I(P) is a prime d-ideal [(-ideal] for each P G Min(A/I). 
• 

Let A be a ring and I be a proper d-ideal [proper ("-ideal] of A. Then I called a 

maximal d-ideal [maximal (-ideal] if it is a maximal element in the set of proper d-

ideals [proper (-ideals]. By using the Axiom of choice one can prove that every proper 

d-ideal [proper ("-ideal] lies in some maximal d-ideal [maximal (-ideal]. It is clear that 

maximal d-ideals and maximal (-ideals are not necessarily maximal ideals in general. 

But they are prime ideals, because by lemma 1.17(2), every maximal d-ideal [maximal 

(-ideal] is an intersection of prime d-ideals [prime (-ideals] and therefore it has to be 

one of them. 

Theorem 1.14 Let A.B be semiprime rings and f : A —> B be a ring homomor-

phism. Then: 

(1) Ic is a (-ideal for each (-ideal I of B if and only if Pc is a (-ideal for each 

P G Min(B). 

(2) Ic is a d-ideal for each d-ideal I of B if and only if Pc is a d-ideal for each 

P G Min{B). 
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Proof. 

(1) [=$•) Obvious. 

(<=) Suppose that P° is a (-ideal for each P G Min(B), and let I be a (-ideal of 

B. If J, K are finitely generated ideals of A such that J C 1° and V\(J) = V\(K) 

then Je,Ke are finitely generated ideals of B and Je C I. We need to show that 

Vi(F) = Vi{Ke). Suppose Je C P where P is in Min(B). Then J C Pc. Since 

Pc is a (-ideal, then K C PK = Pj C P° and therefore Ke C P. On the other 

hand, if Ke C P where P is in Min(B), then K C Pc. But Pc is a (-ideal. Then 

J C Pj = PK C P°. Therefore V\(Je) = V\(Ke). Now since I is a (-ideal and 

Je C I, then by lemma 1.15 Ke C I. Hence K C 1° and Ic is a (-ideal. 

(2) This holds by the argument above with finitely generated ideals replaced by principal 

ideals. • 

Corollary 1.8 Let A be a semiprime ring, let S be a multiplicative subset of A, and 

let I be a d-ideal [(-ideal) of As- Then is a d-ideal [(-ideal) for each s G S. 

Proof. 

Since A and As are semiprime rings then it is enough by theorem 1.14, to show that 

$S
_ 1(P) is a (-ideal for each P G Min(As). Let P G Min(As) and s G S. Then 

P) G spec{A). If Q ~ $s~\P); then P = Qs = {f : a G Q,s G S} where 

Q f ) S = 0. It suffices to show that Q is a minimal prime ideal. Let a G Q. Then 

j G P which implies that ^ P such that ~ = So 3s2 G S such that s2a6s = 0. 

Since £ P, then b Q which means that s26s ^ Q. Hence Q G Min(A) and Q is 

a (-ideal. • 

Theorem 1.15 Let B be a regular ring of quotients of A and let J be a finitely 

generated ideal of A. Then Pj = J e fl A. 

Proof. 

Let I = (ai, a2,..., a„) be a finitely generated ideal of A. Then Je = X^=o anB. Since 

B is a regular ring, then aiB = eB for some idempotent element e G B. If 
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be G Je fl A and y G {a\, <22, an)* then yai = 0 for each % — 1, 2 , n and therefore 

ybe = 0. So be G (a\, 02,..., an)** = Pj, and JeC\AC Pj. On the other hand, suppose 

that x G A, x tfz eB. Then - e) 0. But B is a ring of quotients of A, therefore 

3 t G A such that t( 1 - e ) G A andxt( 1 - e ) 7̂  0. Since x2t( 1 - e ) 7̂  0 and xt( 1 - e ) G 

(d, a,2, On)*, then x $ (ai, a2,..., a„)**. Hence Pj = (ai, a2, ..., a„)** C Je fl and 

therefore Pj = Je n A. • 

Lemma 1.18 B be a regular ring of quotients of A and let J be an ideal of A. 

Then J = I D A for some ideal I of B if and only if J is a (-ideal. 

Proof. 

(=>•) Let J = I fl A for some ideal I of B, and let K = (ai, a2,..., an) C J be a 

finitely generated ideal of A. Then Ke C Je C I, and PK =KeDACinA = J. 

Thus J is a (-ideal. 

(<=) Suppose J is a (-ideal and let I — Je. It is clear that J C I D A. Let 

x G / D A. Then x = where ai G J V i = 1, 2, ...,,n. As J is a (-ideal, 

then (ai, a2,..., an)** C J. Since x G (EILi H 4̂) — (ai, a2,..., an)**, then x G J. 

Hence J = IDA. • 

Theorem 1.16 Let A be a semiprime ring, and let P be a prime ideal. Then TFAE: 

(1) P is a (-ideal. 

(2) P = N f] A for some maximal ideal N of Q(A). 

(3) P — M (1.A for some maximal ideal M of H{A). 

Proof. 

(1) (2) Since Q(A) is a regular ring of quotients of A, then P — J n A for 

some ideal J of Q(A). Since S = A — P is a multiplicative subset of Q(A), and 

S fl J = 0 then there is a prime ideal M of Q(A) and therefore a maximal ideal such 

that S n M = 0 and J C M. Therefore P=Jf)ACMr\A. If z G M n A, then 

z {A — P) which implies that z G P. Thus P = MD A where M is a maximal ideal 

ofQ(A). 
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(2) (3) Suppose that P = N f ) A for some maximal ideal N of Q(A). Let 

M = N D H(A). Then M is a maximal ideal of H(A) and P = M DA. 

(3) =>- (1) Suppose P = M fl A where M is a maximal ideal of H(A). Thus by 

lemma 1.18, P is a (-ideal. • 

Remark 1.9 Let A be a semiprime ring. Then: 

(1) If I — J DA for some ideal J of H(A) then I is a (-ideal. 

(2) I is a proper (-ideal implies that Ie = IH(A) ^ H(A). 

(3) P is a prime (-ideal implies that P = MO A where M is a maximal ideal of H(A) 

such that PH(A) CM and M D(A - P) = 0. 

(4) P is a prime (-ideal ideal does not imply PH(A) is a prime ideal. 

(5) Since H(A) is epimorphic extension of A then ia : spec(H(A)) —> spec(A) is a 

one-to-one map, that is, for each P a prime (-ideal of A 3! M maximal ideal of H(A) 

such that P = M D A. 

Corollary 1.9 Let A be a semiprime ring and let P G M(A). Then: 

(1) P is a (-ideal if and only if PH(A) ^ H(A). 

(2) P is a (-ideal implies that MP = PH(A). 

(3) PH(A) € M(H(A)) or PH{A) = H{A). 

Proof. 

(1) If P is a (-ideal then P — Mp Pi A for some MP e M(H(A)) such that PH{A) C 

MP. Therefore PH (A) ^ H {A). 

Conversely, if PH(A) ^ H(A) then P C (PH(A ) D A) ^ A. Since P is a maximal 

ideal then P = (PH(A) H A). Hence P is a (-ideal. 

(2) Let P be a (-ideal. Since i:A —> H{A) and tt : H(A) —• H(A)/{PH{A)) are 

ring epimorphisms, then TT O % is an epimorphism with ker{ix o ?,) = P and therefore 

there is an epimorphic monomorphism k from A/P into H{A)/(PH(A)). As A/P is 

a field, then k is an onto map and therefore H(A)/(PH(A)) is a field. Thus PH(A) 

is a maximal ideal and Mp = PH(A). 
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(3) If PH(A) ± H(A), then P is a (-ideal and therefore by (2), MP 

PH(A) £ M(H(A)). 

= PH(A). Hence 
• 

Definition 1.12 Let A be a semiprime ring Then: 

(1) we say that A satisfies condition c if I* ^ {0} for each finitely generated ideal of 

zero-divisors I. 

(2) we say that A satisfies the condition a.c. if for each finitely generated ideal I, 

there is a b in A such that I* = (b)*. 

(3) we say that A satisfies the strongly a.c. condition if for each finitely generated 

ideal I there is a b in I such that I* — (b)*. 

It is shown in [7] that a semiprime ring satisfies condition c if and only if every ideal 

consisting entirely of zero-divisors is contained in some proper £-ideal. Therefore if 

A is a semiprime ring which satisfies the condition c, then every maximal ideal of A 

consisting entirely of zero-divisors is a (-ideal. 

Lemma 1.19 Let A be a semiprime ring and b £ (a)*. Then (b)** = (a)* if and only 

if a + b is a non zero-divisor. 

Proof. 

Since (a)* is a d-ideal then (b)** C (a)* for each b £ (a)*. 

(==>) Suppose that (b)** = (a)*. Then xc = 0, whenever ax = 0 and cb = 0. Suppose 

(a + b)x = 0. Then a2x -I- bax = 0 which means a?x = 0. Therefore ax = 0 and hence 

bx = 0. But ax = bx = 0 implies that x2 = 0. Thus a + b is a non zero-divisor. 

(<£=) Suppose a + b is a non zero-divisor, and let x {b)**. Then 3 c £ A such 

that cb = 0, cx 0. If xa = 0. then (a + b)cx = 0, which is a contradiction. Then 

x i (a)*. Hence (b)** = (a)*. • 

Theorem 1.17 Let A be a semiprime ring. Then TFAE: 

(1) Minimal prime ideals are the only prime ideals consisting of zero-divisors. 

(2) A satisfies condition c and every prime d-ideal is minimal prime. 
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(3) Qci(A) is a regular ring. 

(4) For each a G A 3 b G A such that (b)** = (a)*. 

Proof. 

(1) =>• (2) Let I = (ax, a2,..., an) be a finitely generated ideal consisting of zero-

divisors. Then I C [J{P : P G Min(A)}. Let S = -P:P G Min(A)}. Then 

IDS = 0 and S is a multiplicative subset, which implies that there is a prime ideal Q 

such that ICQ and Q D S = 0. Now since x G Q implies that x £ S, therefore 3P0 

a minimal-prime ideal such that x G PQ, i.e. x is a zero-divisor. It follows by (1) that 

Q is a minimal prime ideal. Since ICQ, then at- G Q Vz = 1, 2, ...,n, and therefore 

there are yi,y%, ...,yn £ Q such that aiyi = 0 Vi. Take y = y\y2 yn- Then y £ Q 

and yl = {0}. Therefore I* ^ {0} and hence A satisfies condition c. It is clear that 

every prime d-ideal is minimal prime. 

(2) ==>- (3) Let M be a maximal ideal in Qd{A). Since M C Z(Qci(A)) and Qci(A) 

satisfies condition c, then M is a (-ideal, which implies by corollary 2.8, that M D A 

is a (-ideal and therefore a prime d-ideal. Hence by (2) M fl A is minimal prime. 

Since Qd(A) is an epimorphic extension of A, then ia is a one-to-one map. Suppose 

that M is not a minimal prime ideal in Qci(A). Then there is a Q G spec(Qci(A)) 

such that Q C M, which implies that Q fl A C M fl A and Q D A is a prime ideal of 

A, which is a contradiction. Thus M is a minimal prime ideal of Qci{A ) and hence 

Qd(A) is a regular ring. 

(3) =>• (4) Suppose that Qci{A) is a regular ring, and let x G Qci(A). Then x = x2y 

for some y in Qci{A). Take e = 1 — xy. Then e is an idempotent element and 

(x)* = Qci(A)e. For any a in A we have that (|)* = Qci(A)e for some idempotent 

element e = ^i. Take b = a\. Then we just have to show that (b)** = (a)*. Let xa = 0 

and tb = 0. Since f G (f)* = QD(A)e then f = g- , and therefore f f = g j = 0. 

Hence xt = 0 and x G (b)**. Conversely, let x G (b)**. Since f ^ = 0, then ab = 0. 

But x G {b}**, therefore xa = 0 and x G (a)*. Thus for each a G A 3 b G A such that 

•(b)" = (a)*. 
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(4) (1) Suppose that for each a G A 3 b G A such that (b)** = (a)*, and let P be 

a prime ideal in A such that P C Z(A). Suppose a G P such that (a)* C P. Since 

there is a b in A such that (b)** = (a)* then b G P and therefore a + b G P, which is 

a contradiction, because a + b is not a zero-divisor. Thus {a}* ^ P, and therefore P 

is a minimal prime ideal. • 

Lemma 1.20 Let A be a semiprime ring that satisfies the strongly a.c. condition. 

Then: 

(1) A satisfies condition c. 

(2) Every d-ideal is a (-ideal. 

(3) Every maximal ideal is a d-ideal if and only if A = Qd(A). 

Proof. 

(1) Let I be a finitely generated ideal such that I C Z(A), and suppose that P = {0}. 

Since 3 b G I such that P = (b)*. therefore b Z(A), which is a contradiction. Thus 

P ^ {0} and A satisfies condition c. 

(2) Let I be a d-ideal, and {a\,a2, •••,an} C I. Then 3 c G / such that (ai,a2,..., an)* = 

(c)*, which implies that (ai,a2,..., an)** = {c)** C 7. Hence I is a (-ideal. 

(3) Suppose that A = Qd(A), and let M be a maximal ideal in A. Then M C Z(A), 

and therefore M C N for some d-ideal N, which means that M = N. Hence M is 

a d-ideal. Conversely, suppose that every maximal ideal is a d-ideal, and let x be a 

non-unit element of A. Then x G M for some maximal ideal M, which implies that 

x&Z(A). Thus A = Qd(A). • 

1.3 Algebraic frames 

This section is based on the article [23], but it is reworked from the writer's point of 

view to give a review of the basic concepts on algebraic frames. 

A complete lattice L is called Brouwerian if for any two elements a and b in L, the set 

{x G L : a, Ax < 6} has a greatest element. It is well known fact that every Brouwerian 
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lattice is a distributive lattice. A complete lattice is called meet-continuous if for each 

directed subset D of L, we have a A (VXaeD) = VXaei?(a A xa). 

Definition 1.13 Let L be a complete lattice and a G L. Then: 

(1) a is called a joint-inaccessible element if a — Vxae£>Xa where D is a directed set 

implies that a = xa for some xa G D. 

(2) a is called a compact element if a < V aer x°< implies that there exist a finite subset 

13 of T such that a < Vae/3xa. 

(3) a is called a meet-irreducible element if a < 1 and a = A aer x<* that 

a = xQ0 for some a0 £ T. 

If L is a complete lattice, then the set of all compact elements in L, denoted by C(L), 

is closed under finite supremum and need not be closed under finite infimum. If it 

does, then it is said to have the finite intersection property F.I.P.. A complete lattice 

L is called compact if 1 is a compact element. 

Lemma 1.21 Let L be a complete lattice. Then: 

(1) Every compact element is a joint-inaccessible element. 

(2) If L is a meet-continuous lattice then a G L is compact element if and only if a 

is a joint-inaccessible element. 

Proof. 

(1) Let a — \/x
 where D is a directed set. Then a < where r is a 

finite subset of D, which means that a = VxQerxa- Since there is xao G D such that 

Xa < XQQ for each a G T then a < xao < \JXa(zD < a. Hence a is a joint-inaccessible 

element. 

(2)(=>) Obvious. 

(<£=) Let a be a joint-inaccessible element and suppose that a erzQ,. Then D — 

{z : z = V"=1Xi, Xi G T, n > 1} is a directed subset of D. and therefore a < \JXa£D xa. 

Then a = a A (VIn6£i ^a) = VXae£>(a A xa)- Since the set {a A xa : xQ G D} is 

a directed subset and a is a joint-inaccessible element, then a = a A xQo for some 

xao G D. which implies that a < xQ0 = V"=1xz. Thus a is a compact element. • 
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Definition 1.14 A complete lattice is called an algebraic lattice if every element can 

be written as a supremum of compact elements. 

Lemma 1.22 Every algebraic lattice is meet-continuous. 

Proof. 

It is clear that VxQei>(a A xa) < a A (\fXae£>xa)- Then, we need only show that 
A A (\JXAEDXA) < Vxae£>(a ^ x<*)- a A (WXAEDXA) a s a supremum of compact 

elements: a A (\J Xa^D xa) = Vaer c<5- ^ c^ear that < a and < Viq6D xa• Then 

there is a finite subset F of D such that c$ < \/aeFxa. But D is a directed subset. 

Then c$ < xao for some xao G D, and therefore a < (aAzao). So c$ < \JXa£D(aAx0) 

for each 5 G T. Hence a A {\/Xa€D xa) < \f Xaer>(a A xQ). Thus L is a meet-continuous 

lattice. • 

Lemma 1.23 Let L be an algebraic lattice, and suppose x < 1. Then 3 t a meet-

irreducible element such that t > x. Furthermore x is a meet of meet-irreducible 

elements. 

Proof. 

Since x < 1. then there exists c a compact element such that c ^ x. Let S = {t : t > 

x,t ^ c}. Then S is a non-empty partially ordered set. If {xi : i G 1} is a chain in S, 

then y = \fieI Xi is an element in L and Xi <y for each i G I. We need to show that 

y is in S. It is clear that y > x, so suppose that y > c. Since c is a compact element, 

then c < (xi Va^V.... Vxn). But {xi : i G 1} is a chain, therefore xi Vx2 V.... Vxn = xJ0 

for some 1 < io < n. so Xi0 £ S, which is a contradiction. Hence y jt c and therefore 

y E S. So S has a maximal element t. It is clear that t < 1, because t ^ c. To show 

that t is a meet-irreducible element, suppose that t = /\ieI xt such that t ^ Xi for each 

i G I. Then t < Xi for each i G I. But t > x. So Xi > x for each i, which implies that 

Xi ^ S, as t is a maximal element in S. Then xr > c for each i G I, and therefore 

t = f\i&j Xi > c. which is a contradiction. Thus t is a meet-irreducible element. 

Finally, to show that x is a meet of meet-irreducible elements, let T = {t, : t, is a meet 
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-irreducible element, U > x}, and let y — /\t.eTU. It is clear that y > x. Suppose 

y ^ x, since y = \ f j e J d j where dj is a compact element for each j G J. Then there 

exist dj0 such that dJ0 ^ x. Take Si = {d : d > x,d ^ dj0}. Then Si has a maximal 

element t\ which will be a meet-irreducible element. Since t\ G T, then y < t\. But 

dj0 < y and therefore dj0 < t\, which is a contradiction. Thus y < x and y ~ x. • 

Remark 1.10 If L is a algebraic lattice then 0 = A^er** where T is the set of all 

meet-irreducible elements. 

Lemma 1.24 Every distributive algebraic lattice L is a Brouwerian lattice. 

Proof. 

Let a,b G L and take S = {x : a A x < 6} and y = VXi€S Xi• nee L is a distributive 

lattice, then S is a directed subset. So by lemma 1.22, L is a meet-continuous lattice. 

Therefore a Ay — a A ( ' \ f X i € S
 xi) = \fXi&s(a ^ xi) — Then y € S and S has a largest 

element. Thus L is a Browerian lattice. • 

Definition 1.15 A complete lattice L is called a frame if aA(\JieIXi) = \Ji€l(aAxi) 

for each a G L and for each subset {xi : i G 1} of L. 

Lemma 1.25 Let L be an algebraic lattice. Then L is a frame if and only if L is a 

distributive lattice. 

Proof. 

(=>) Suppose L is a frame. Then L is a Browerian lattice and therefore L is a 

distributive lattice. 

(<£=) Suppose L is a distributive lattice, and let a G L and {xt : i G /} C L. 

Take D = {\JieFXi : where F is a finite subset of I}. Then D is a directed set 

and \JXieiXi = V z.eDZi- Since L is a meet-continuous lattice, then a A ( \ f z . e D Z i ) = 

Vz eD(a A Zi). So if z = xi V x2 V ... V x„ is any element in D, then a A z = 

a A (x\ Vx2 V... Vxn) = VZ=i(a^xi)- which implies that V z .e D(a A zt) = \JXi<ai(aAxi). 

Then VXl€/(a ^ xi) — a ^ (V2ier> Zi) — a A (V^e/ Xi)- Hence L is a frame. • 
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Definition 1.16 Let L be a complete lattice and p G L such that p < 1. Then: 

(1)p is called a prime element if x Ay < p implies that x < p or y < p for each 

x,y e L. 

(2) p is called a finite meet-irreducible element if x A y = p implies that x = p or 

y — p for each x,y G L. 

It is clear that for distributive lattices an element p is prime if and only if it is a finite 

meet-irreducible element. 

Lemma 1.26 Let L be an algebraic lattice and 1 ^ p G L. Then p is prime if and 

only if a,b G C(L) a A b < p implies that a < p or b < p. 

Proof. 

Let x Ay < p and x = \/x.€lXi, y = \lyjejyj where Xi,yj G C(L) V i,j. and let 

Dx, Dy be the subsets of finite suprema of the elements of / , J respectively. Then 

Dx, Dy are directed subsets of C(L) and \f z eDy(SIZieDx(zi ^ z»)) ^ V- Now if Zi < p 

for each Z{ G Dx we are done. If not, then 3Zi0 ^ p, but ZiQ Azj < p for each Zj G Dy. 

Therefore Zj < p for each Zj G Dy. Hence y < p. The proof of the other implication 

is obvious. • 

Let L be an algebraic frame and a,b G L. Then the element (a : b) is defined to be 

\/{x : x A a < b], and as a special case the element a1- is defined to be (a : 0). It is 

clear that a A (a : b) < b and, in particular, a A a1 = 0. An element a (E L is called 

complemented if a V a 1 = 1. L is said to be a zero-dimensional algebraic frame if 

every element can be written as a supremum of complemented elements. An element 

a £ L is called regular if a — \J{x : x < a} where x < a means that i i V a = l. An 

algebraic lattice L is called regular if every element is regular. Finally, an element 

a G L is called polar if there is another element b G L such that a = b-1. If L is 

an algebraic frame then the set of all prime elements in L and the set of all polar 

elements in L are denoted by spec(L) and p(L) respectively. 

Remark 1.11 Let L be an algebraic frame. Then: 
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(1) a < a1 — a-1-1"1" and a < b implies that bx < a1. 

(2) (a A > ( a 1 V b1) and (a V b)1 = {a1 A b1). 

(3) a b implies that a±J- < b. 

(4) The set of all complemented elements is closed under finite supremum. 

(5) a < b and b -< c implies that a X c. 

(6) a,b c implies that a V b X c. 

(7) c ^ a implies that c < a. 

If (X , T) is a topological space then the set of all open subsets, denoted D(X), is a 

partially ordered set. In fact (D(X), <) is a complete lattice where the supremum and 

the infimum are given by \Ji€l Ai = (Jie/ M a n d Ai€i A = (Die/ respectively. 

Since AA(\Ji€l Ai) = An{UiGlAi) = UieI{AnAi) = \fieI{AAAt), therefore {D{X), <) 

is a frame. However (D(X), <) is not an algebraic lattice in general. Clearly it forms 

one if and only if X has an open base consisting of compact open sets. 

Corollary 1.10 If (X, r ) is a topological space then (D(X), <) is a regular lattice if 

and only if X is regular. 

Proof. 

(=>•) Suppose (D(X),<) is a regular lattice. Then U = • V d: U} for each 

U 6 D{X). Let F be any closed subset and x G X such that x ^ F. Since x 6 Fc, 

then 3 V F° such that x 6 V and therefore F C V1. Since (D(X), <) is a frame, 

then V D V1 = 0. Hence X is a regular space. 

(«=) Suppose X is a regular space. IfV±UU = X, then V C ( l ^ ) 0 C U. So 

• V < U) Q U. On the other hand, if x G U, then 3 We D{X) such that 

x G W C cl(W) C U. Since Uc C (cl{W))c C W1 then U U W1 = X and therefore 

W Thus U = UO7 : V ^ U} far each U G D(X) and (D(X), <) is a regular 

lattice. • 

Definition 1.17 Let L be an algebraic frame. We say L has the compact splitting 

property CSP if each compact element in L is a complemented element. 
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Lemma 1.27 Let L be an algebraic frame. Then L has the CSP if and only if L is 

a zero-dimensional algebraic frame. 

Proof. 

{=>) Obvious. 

(4==) Suppose L is a zero-dimensional algebraic frame, and let x G C(L). Then 

x = \fieI yi where yi is a complemented element for each i G I, and therefore x < 

(?/i Vy2V .... V yn) < Vie/ V* ~ x• Hence x is a complemented element. • 

Theorem 1.18 Let L be an algebraic frame with the F.I.P.. Then there is a one-to-

one correspondence between the set of minimal prime elements in L and the set of all 

ultrafilters on C(L). 

Proof. 

Let pM = V{cx : c G M} for each ultrafilter M on C(L) and MP = {c G C(L) : c ^ 

p} for each minimal prime element p. Suppose that M is an ultrafilter. Firstly, we 

show that M = MPm. Let d G C(L) such that d < pm• Then there are c\, c2,..., Ck 

in M such that d < (cf V c2 V ... V ). But c — ci A c2 A ... A Ck G M and d < cx. 

So d A c = 0 and therefore d ^ M, as c G M. Then M C MPm. On the other hand, 

let d ^ PM and suppose c A d = 0 for some c G M. Then d < c1 and therefore 

d < PM, which is a contradiction. Then c A d > 0 for each c G M which implies that 

d G M. Then M = MPm . Secondly, we show that PM IS a minimal prime element. 

Let x, y G C(L) such that x,y ^ PM • Then x,y G MPM = M which implies that 

x A y G M = Mpm, therefore x Ay ^ PM- SO PM is a prime element. Suppose there 

is a prime element q such that q < PM• Then M = MPM C MQ. Since MQ is a filter, 

then M = MPM = MQ which implies that q = PM- Hence PM is a minimal prime 

element. Finally, i f p is any minimal prime element, then MP is a filter on C(L). So 

by Zorn's lemma there is an ultrafilter N such that MP C N, and therefore p^ is a 

minimal prime element. Suppose p^ ^ p. Then 3 c G C(L) such that c < pw and 

c ^ p. So Mp ^ Npn = N, which is a contradiction. Then p^ < p and therefore 

Pn = P- So N = NPn = Mp and Mp is an ultrafilter on C(L). Thus the map p —> Mp 
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is a one-to-one correspondence between the set of minimal prime elements in L and 

the set of all ultrafilters on C(L). • 

Lemma 1.28 Let L be an algebraic frame with the F.I.P. and let p be a prime ele-

(<=) Letp be a prime element such thatp = V{C_L •' c e C(L), c ^ p}. Suppose there 

is a minimal prime element q such that q < p and p jt q then Mp C Mq and Mq is 

an ultrafilter. Since there is a compact element d such that d < p and d ^ q, then 

d < (ci V c2 V ... V c£) where Ci p for each i — 1,2, ....k. Let c = c\ A c2 A Cfc. 

Then c G Mp C Mq. Since d < c1-, then d A c = 0 and therefore d 0 Mq, which is a 

contradiction. Thus p is a minimal prime element. • 

Theorem 1.19 Let L be an algebraic frame. Then L has the CSP if and only if L 

has the F.I.P. and spec(L) is a trivially ordered set. 

(=>) Suppose L has the CSP and let c,d£ C(L). Then c A d = \JieIXi where 

Xi G C(L) for each i € I. But d V d1 = 1 which implies that c = c A (d V d1) = 

(d A c) V (c A dx) = (Vie/ xd v A c) = \J i€l{xi V (d-1 A c)). Since c is a compact 

element, there is a finite subset F of I such that c = \JieF{xi V A c)). Therefore 

c = x V (d1- Ac) where x = \JieF Xi is a compact element. Then cAd = (x V (d1 Ac)) = 

(xAd)\/ (cAdAd"*") — x Ad. But cAd>x. Thus cAd = x is a compact element and 

L has has the F.I.P.. Next we show that spec(L) is a trivially ordered set. Let p. q 

be prime ideals such that p < q and q ^ p. Then there is a compact element c such 

that c < q and c^~p. Since c A c 1 = 0 < p then cx <p and therefore c 

which is a contradiction. Thus the set spec(L) is a trivially ordered set. 

(<r=) Suppose L has the F.I.P. and spec(L) is a trivially ordered set. Let c G C(L) 

Proof. 

37 



such that c V c 1 < 1. By lemma 1.23 there is a meet-irreducible element b such that 

c V c1 < b and b < 1. Then b is a prime element and therefore a minimal prime 

element and c, cx < b, which is a contradiction. Then c Vcx = 1 and L has the CSP. 
• 

Corollary 1.11 If L is an algebraic frame then a is a regular element if and only if 

d < a implies that d<a for each compact element d. 

Proof. 

(=>•) Suppose a is a regular element and let d G C(L) such that d < a. Then 

d < \J{x : x ^ a}, which implies that d < (x\ V x2 V Xk) where Xi < a for each 

i = 1,2, ...k. Let x = xi V x2 V xThen x -< a and d < x. Hence d < a. 

(4=) Suppose d < a implies that d •< a for any compact element d. It is clear that 

\/{x : x a} < a. Since a can be written as a supremum of compact elements, then 

a < \/{x \ x < a). Thus a = \J{x : x •< a}. • 

If L is an algebraic frame, and a is a regular element then by corollary 1.11 we can 

see that a = \J{c : c G C(L), c X a}. 

Lemma 1.29 Let L be an algebraic frame, and a be a regular element. Then a = 

V ( c x x : c G C(L), c < a}. 

Proof. 

Since a = \J{c : c G C(L), c ^ a} = \/{c : c G C(L),c ^ a} and c ^ cxx- then 

a ^ V{C_LJ" : c e C(L), c < a}. On the other hand, if c ^ a, then c •< a. Therefore 

(cx± A c1) V (cr1-1 A a) = c 1 1 A (c1 V a) = c 1 1 , which implies cx± < a. Thus 

\f{cx± : c G C{L), c<a} ^ a and a = V { c ± ± : c G C(L), c < a}. • 

Definition 1.18 Let L be an algebraic frame and a G L. Then a is called a d-element 

ifa = \J{c±x:ceC{L),c<a). 

It is clear from lemma 1.29 that every regular element is a d-element. 
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Lemma 1.30 let L be an algebraic frame. Then: 

(1) Every polar element is a d-element. 

(2) If L has the F.I.P. then every minimal prime element is a d-element. 

Proof. 

(1) Suppose a is a polar element. Since a < Vi0"11 : c € C(L), c< a} and a = a11, 

then c < a which implies that cJ"L < a±J- = a. Therefore Vic11 : c E G(L), c < 

a} < a and hence a = Vi0"1"1" : c € C(L), c < a}. 

(2) Suppose L has the F.I.P. and letp be a minimal prime element. Thenp = V{c± : 

c G C(L), c ^ p). Let d be a compact element. If d < p, then dx ^ p. Therefore 

< P- So p = Vic11- : c E C(L), c < p). Thus p is a d-element. • 

If L is an algebraic frame, and X = spec(L) then X becomes a topological space by 

taking the subsets of the form coz(c) = {p : p £ X,c <£ pj as basic open sets for each 

c E C(L). This topology is called the hull kernel topology on spec(L). 

Theorem 1.20 Let L be an algebraic frame. Then : 

(1) Any open subset in spec(L) has the form of coz(a) for some a E L. 

(2) coz(a) = coz(b) implies that a = b. 

(3) L = D(spec(L)) as a lattice isomorphism. 

(4) spec(L) is a T\ -space if and only if spec(L) is a trivially ordered set. 

Proof. 

(1) Suppose U is an open subset of spec(L). Then U = |JieIcoz(ci) for some family 

{ci E C(L) : i E I}. Let a = \Ji&1Ci. If p E U then p E coz(ci0) for some io E I 

which implies CiQ <£ p. Then a ^ p and therefore p E coz(a). On the other hand, if 

p E coz(a) then a ^ p which implies that there exists i0 E I such that Ci0 ̂  p. So 

p E coz(ci0) C U. Hence U = coz(a). 

(2) Let coz(a) = coz(b) and suppose that a ^ b. Then a ^ b or b ^ a. 1VLOG, 

suppose that a b. Then it is obvious that b < 1. Since a ^ b, then there is a 

compact element c such that c < a and c ^ b. Take S = {t : t > b.t ^ c}. Clearly 

S is a nonempty subset. By the same argument as that used in lemma 1.23 one can 
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prove that there is a meet -irreducible element t such that t G S. Then t is a prime 

element and t G coz(a), t ^ coz(b), which is a contradiction. Thus a = b. 

(3) Let f : L —* D(spec(L)) be defined by f(a) = coz(a) for each a G L. Then 

it is clear from (1) and (2) that f is a one-to-one and onto map. It is clear that 

f(a V b) = coz(a V b) = coz(a) U coz(b) and f(a A b) = coz(a A b) = coz(a) fl coz(b) 

for each a,b G L. Thus f is a lattice isomorphism. 

(4) First we show that cl(p) = {q : q > p}. Clearly p £ {q : q > p} and {q : 

Q > p} = (coz(p))c is a closed subset. Then cl(p) C {q : q > p}. If q > p and 

q G coz(c) for some c G C(L) then c jt q which implies that c ^ p and p G coz(c). 

Therefore q G cl(p) and hence cl(p) = {q : q > p}. Now if spec(L) is a T\-space then 

cl{p) — {p} = {q : q > p} which means that spec(L) is a trivially ordered set. On the 

other hand, if spec(L) is a trivially ordered set then cl(p) = {q : q > p} = {p} and 

hence spec(L) is a Ti-space. • 

It is clear from corollary 1.10, that if L is an algebraic frame, then L is a regular if 

and only if spec(L) is a regular space. 

Theorem 1.21 Let L be an algebraic frame. ThenTFAE: 

(1) L is regular. 

(2) L has the CSP. 

(3) spec(L) is a T\-space and coz(a)Dcoz(b) is a compact subset for each a,b G C(L). 

(4) spec(L) is a T2-space. 

Proof. 

(1) = > (2) Let c G C(L). Since c11- is a regular element, and c < clx then c -< c±-L 

and therefore c±A- is a complemented element for each c G C(L). Since every regular 

element is a d-element then c = \/{dJ-L : d G C(L), d < c} which means that c = r1-1. 

Thus every compact element is a complemented and L has the CSP. 

(2) (1) Let a G L and c G C(L) such that c < a. Since L has the CSP, then 

c V c1 = 1 which implies flVci = l. and therefore c ^ a. Thus by corollary 1.11, a 

is regular. 
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(2) ==> (3) Since L has the CSP then by theorem 1.19, L has the F.I.P. and spec(L) 

is a trivially ordered set. Therefore by theorem 1.20 spec(L) is aT\-space andcoz(a)f] 

coz(b) is a compact subset for each a,b € C(L). 

(3) (2) Since spec(L) is a T\-space and coz(a) fl coz(b) is a compact subset for 

each a,b G C(L) then L has the F.I.P. and spec(L) is a trivially ordered set. Hence 

by theorem 1.19 L has the CSP. 

(3) ==> (4) Since spec(L) is a regular T\-space then spec(L) is a T2-space. 

(4) ==> (3) Since spec(L) is a T^-space and coz(a) and coz(b) are compact subsets 

then coz{a) and coz(b) are closed subsets and therefore coz(a) fl coz(b) is a closed 

subset too. Hence coz(a) fl coz(b) is a compact subset. • 

Let A be a commutative ring with identity and let 1(A) be the set of all ideals 

of A. Then this set can be turned into a complete lattice under the inclusion order 

where the supremum is given by the sum and the infimum is given by intersection. 

Since every principal ideal is a compact element, then 1(A) is an algebraic lattice 

which is not a distributive lattice in general unless we take A to be an arithmetical 

ring. And for this reason since we take A to be a general semiprime ring, we consider 

only the subset of semiprime ideals, denoted SP(A), which turns out to be a compact 

algebraic frame where the supremum is given by the square root of the sum and the 

infimum is given by intersection. 

Theorem 1.22 Let A be a commutative semiprime ring with identity. Then SP(A) 

is a compact algebraic frame. 

Proof. 

Let T : SP(A) —> D(spec(A)) be defined by T(I) = coz(I) = {P:I £P}. 

It is clear that T is a map. Since SP(A) is the set of all semiprime ideals of A 

then for any two ideals I.J € SP(A) we have I C J if and only if T(I) C T(J). 

So T is a one-to-one and order-preserving function. For any open subset coz(K) in 

D(spec(A)), we have VK G SP(A) and T{y/K) = {P : \[K £ P} = coz(K). There-

fore T is an onto map. 
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It is clear that T{I A J) = coz{I fl J ) = coz(I) n coz(J) = T(I) A T{J). If 

{Ki : i G T} is any collection of semiprime ideals of SP(A) and Q is a prime 

ideal then \AJ)ier ki ^ Q if and only if there is an io G T such that Ki0 Q. Then 

T{\Jl€VKi) = n ^ ^ K i ) = coz(^®ierKi) = [ji€r coz(Ki)) = \/ierT(Ki)). 

Thus SP(A) and D(spec(A)) are isomorphic as compact algebraic frames. • 

Let A be a semiprime ring. Then by corollary 1.3 we can conclude that C(SP(A)) = 

{V? : I is a finitely generated ideal }. 

Corollary 1.12 Let A be a semiprime ring. Then (SP(A), <) is a regular algebraic 

frame if and only if A is regular. 

Proof. 

(=>) Suppose that (SP(A), <) is a regular algebraic frame. Then (D(spec(A)), <) is 

a regular algebraic frame, and therefore spec(A) is a regular space. Let P ^ Q be any 

two points in spec(A) and assume WLOG that P Q. Since P ^ V(Q) and V(Q) is 

a closed subset, then there are disjoint open subsets D(I),D(J) such that P G D(I) 

and V(Q) C D(J). Hence spec(A) is a T2-space and therefore A is regular. 

(<=) Suppose A is regular. Then spec(A) is a regular space. Thus D(spec(A)) is a 

regular algebraic frame and so is SP(A) . • 
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Chapter 2 

On RG-spaces and Almost Baire 

Spaces 

In the first section of this chapter we shall give a review for the basic concepts on 

RG-spaces which were originally given in [31]. However we present these results from 

our point of view. And then we will give new results on RG-spaces which we have 

obtained in our study. We will introduce a new class of topological spaces which we 

call almost fc-Baire spaces and as special case of this class we will introduce the class 

of almost Baire spaces. 

Throughout this study we start with the assumption that by a topological space X 

we mean a Tychonoff space, by C(X) we mean the ring of real-valued continuous 

functions defined on X, and by F(X) we mean the ring of all real-valued functions 

defined on X. It is clear that both of these rings are commutative semiprime rings 

with the same identity. Moreover the ring F(X) is a regular ring. The smallest reg-

ular ring GF(X){C{X)) lying between C(X) and F(X) is denoted by G(X) [theorem 

1.6]. 

For any function / in F(X), the quasi-inverse of / is given by: 
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, 0 i f x e Z ( f ) 

j f e if X € coz(f) 

where Z ( f ) = {x : f(x) = 0} and coz{f) = X - Z{f). A subset of X is called a 

zeroset [cozeroset] if it has the form of Z ( f ) [coz(f)] for some function / e C(X). 

The set of all zerosets in X is denoted Z(X). An ideal I in the ring C(X) is called a 

z-ideal if for any two functions / , g in C(X) with the same zerosets, both are in I or 

both outside of I. Also, an ideal I of C(X) is called an ^-ideal if 0 < | / | < and 

gel imply f el. 

2.1 RG-spaces 

For a topological space X, a point p in X is called a P-point if p is in the interior of 

each zeroset containing it. A topological space X is called a P-space if every point in 

X is a P-point [8, 4L]. A space X is a P-space if and only if C(X) is a regular ring, or 

equivalently if every Gs~set is open [8, 4J]. A topological space X is called an almost 

P-space if every non-empty zeroset has a non-empty interior. Therefore a space X is 

an almost P-space if and only if C(X) = QD(X). Details on almost P-spaces appear 

in [18]. If (X,T) is a topological space then the collection (3 = {A : A is & GVset} 

forms an open base for a potentially stronger topology on X. This topology is called 

the G(5 topology in the literature. It is denoted T6 and the space is denoted Xs-

Remark 2.1 Let (X.r) be a topological space. Then: 

(1) (3 = {A : A is a G5 set} forms an open base for the topology on X and r < 

(2) Xs is a P-space. 

(3) X is a P-space if and only if t = Tj. 

(4) IfY is any subspace of X then (Ty)^ = (TS)Y-

We now discuss the minimal regular extension G(X) of the semiprime ring C{X). By 

lemma 1.6 and corollary 1.1 we have: 
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G{X) = { E t i fi9i • fi,9i e C(X), n > 1}, and \C(X)\ = \G(X)\. 

Lemma 2.1 Let X be a topological space. Then: 

(1) C(X)CG(X) CC(XS). 

(2) X is P-space if and only if C(X) = G{X). 

(3) If (X,Ta) is a Tychonoff space such that C(X,Ta) is a regular ring and r < rQ 

then < ra. 

(4) G(X) — C(X, ra) for some Tychonoff topology ra on X if and only if G(X) = 

C(XS). 

Proof. 

(1) Since C(X) C C{X5) C F{X) and C(X5) is a regular ring. Then C{X) C 

G(X) C C(XS). 

(2) If X is a P-space then X = Xs which implies that C(X) = G(X) = C(X5). On 

the other hand, if C(X) = G(X) then C'(X) is a regular ring and therefore X is a 

P-space. 

(3) Since C(X, ra) is a regular ring, then every G$ set in (X, r a ) is open. But T < ra. 

So every G$ set in (X$) is an open subset in (X,ra). Hence < ra. 

(4) ( = > ) Suppose that G(X) = C(X,Tq) for some topology r a on X. Then ( X , r a ) is 

a P-space and C(X) C C(X, rQ). Since for any Z ( f ) € Z(X), we have f E C(X, ra) 

therefore R < ra. Using (3) we can see that < Tq. Hence C(X$) C C(X,TQ) = 

G(X) and therefore G{X) = C(XS). 

(<=) Suppose G(X) = C{Xs). Since X§ is a P-space, then X$ is a 0-dimensional 

Ti-space. So X$ is a Tychonoff space and G(X) = C(Xs). • 

Definition 2.1 Let X be a topological space and f 6 G{X). Then the regularity 

degree of f , denoted by rg(f), is defined to be: 

r g ( f ) = min{n <E N : / = Yl?=i 9*K where gi: hi G C(X), n > 1}. 

The regularity degree of the topological space X, denoted by rg(X), is defined to be: 

rg(X) = sup{rg(f):feG(X)}. 

45 



Definition 2.2 Let X be a topological space. Then X is called a regular good space, 

denoted RG-space, if G(X) = C(Xs). 

It is clear from the definition of RG-spaces that every P-space is an RG-space because 

for P-spaces G{X) = C{X) = C(X5). 

Theorem 2.1 Let X be a topological space. Then rg(X) = 1 if and only if X is a 

P-space . 

Proof. 

(=>) Suppose rg(X) = 1 and let f e C(X). Then 1 + (-/)/* G G(X) which implies 

that there are g.h £ C(X) such that 1 + (—/)/* = gh*. Then gh* + f f * = 1 and 

therefore Z ( f ) = coz(gh). So Z ( f ) is an open set for each f € C(X). Thus X is a 

P-space. 

(4=) Suppose X is a P-space. Then G(X) = C(X) which implies that rg(f) = 1 for 

each f 6 G(X). Thus rg(X) = 1. • 

Definition 2.3 Let X be a topological space. Then X is called a scattered space if 

every non empty subspace of X has an isolated point. 

Lemma 2.2 Let X be a scattered topological space. Then: 

(1) Every non empty subspace Y of X is scattered. 

(2) The set I(X) of all isolated points in X is a dense subset. 

Proof. 

(1) Let 0 / B C 7 . So B as a subspace of X has an isolated point ,t0 £ B. Then 

there is an open subset U of X such that U D B = {xo}. Therefore V = U C\Y is an 

open subset ofY and V fl B = {xo}- So B has an isolated point as a subspace ofY. 

Thus Y is a scattered space. 

(2) It is clear that I{X) ^ 0 . Since every nonempty open set has an isolated point 

then I(X) is a dense subset of X. • 

For each ordinal number a define Da(X) inductively as follows: D0(X) = X, D\(X) = 

X - I{X), Da+x{X) = Dx{Da{X)) and if A is limit ordinal number let Dx(X) = 
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f]a<x Da(X). Then a space X is scattered if and only if there is ordinal number ao 

such that Dao(X) = 0 [29]. Let X be a scattered space. Then the Cantor-Bendixson 

number, denoted by CB(X), is defined to be CB(X) = min{a : Da(X) = 0}. 

It is shown in [13] that if X is a non-empty scattered compact space, then CB(X) is 

a successor ordinal, 5 + 1, and that Ds(X) is a finite subset. 

Theorem 2.2 Let X be a topological space and let f £ Then: 

(1) / is continuous on dense open subset of X. 

(2) IfT is any non-empty subspace of X then f £ G(T) andrg(f |r) < rg(f). 

(3) / can be written as f = i h-9i where fi,gi £ C*(X) for each i — 1, 2, ...n and 

rg(f) will not change by this new presentation. 

(4) IfT is C*-embedded in X then T is G-embedded. 

Proof. 

(1) Suppose f = X^ILi fi9i where f,gi £ C(X) for each i. Take Di = X — bd(Z(gi)) 

and D = fj"=i Di. Since Di is a dense open subset of X for each i, then D is a dense 

open subset of X. It is clear that fig* is a continuous function on Di and therefore 

on D for each i = 1,2, ...n. Since f can be written as a finite sum of real-valued 

functions each of which is continuous on D, then f is continuous on D. 

( 2 ) Suppose f = fi9i where /,-, 9i £ C{X) for eachi. Then f\T = J2?=i(Mt)(&?|t) 

where f\T, gz\T £ C(T) for each i. Thus f \T £ G{T). It is clear that rg(f\T) < rg(f). 

(3) Let f = i fi-9i where fi,gi £ C(X) for each i = 1,2, ...n. For each i let 

Ti = (1 + f l ) V (1 + g}). Then % £ C{X) and T<(x) ^ 0 for each x E X, which 

implies that jr £ C(X). It is clear that < 1 for mch x £ X, therefore 

f | £ C*{X) for each i = 1,2, ...n. Since fi9* = then f = ^ArJW*• 

It is clear that this new presentation does not change the regularity degree of the func-

tion f . 

(4) Suppose T is a C*-embedded subset of X, and let h £ G(T). Then by (3) there 

are n £ TV and gi, ki £ C*{T) for each i = 1,2,...n such that h = gik*. Since 

T is C*-embedded, then there are gt,ki £ C*{X) such that g^r = gi and k^r = ki 
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for each i. Take F = J21=i(9i)(k*)- Then F e G ( x ) and f\t 

G-embedded subset of X. 

= h. Hence T is a 
• 

Lemma 2.3 Lei X be an RG-space. Then no dense subset can be written as a count-

able union of nowhere dense zerosets. 

Proof. 

Let X be an RG-space, and suppose {Zi : i £ N} is a collection of nowhere dense 

zerosets of X such that S = Zi is a dense subset of X. Take A\ = Z\ and 

An = Zn — (IXi1 Zi) for each n > 2. Then {Ai : i 6 N} is a collection of 

disjoint clopen subsets of Xs and S is an Fa-subset of Xs- As Xs is a P-space, 

then {Ai : % £ N} U {X — S} is a partition of Xs- Now define f : Xs —• R by 

f{Ai) = {i + 1} for each i £ N and f(X - S) = {1}. Then f £ C{XS) = G(X). So 

by theorem 2.2(1), there is a dense open subset D of X such that f\D is a continuous 

function. Since S f l D / 0 then there exists p £ S fl D, and therefore p £ Ano for 

some no > 1. Since f is continuous at p and f(p) = no + 1, then there is a open 

neighborhood Wp of p such that f{Wp) C (n0 + §, no + f)- So Wp C Ano C Zno, 

which is a contradiction. Thus no dense subset can be written as a countable union 

of nowhere dense zerosets. • 

2.2 Almost Baire Spaces 

Recall that a topological space X is called /c-Baire where A: is a fixed cardinal number 

if the intersection of fewer than k dense open sets is dense [34], Thus the usual Baire 

spaces are H]-Baire spaces. It is clear that the intersection of all dense open subsets 

of X is a dense subset if and only if X has a dense subset of isolated points, which 

means that if X has a dense subset of isolated points then X is a fc-Baire space for 

any cardinal number k. So one can conclude that every scattered space is a A:-Baire 

space for any cardinal number k. 

For a Tychonoff space X an open subset does not have to be a cozeroset, and the 
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collection of all dense cozerosets may have any cardinal number. For these reasons we 

will introduce the class of almost /c-Baire spaces where k is a fixed cardinal number. 

Definition 2.4 Let X be a topological space and k be a cardinal number. Then we 

will call X an almost k-Baire space if any collection with cardinal number fewer than 

k of dense cozerosets intersects in a dense subset, and we will call X almost-Baire if 

X is an almost N] -Baire space. 

Let X be a topological space and A; be a fixed cardinal number. Then X is an almost 

&>Baire space if and only if the union of any collection with cardinal number fewer 

than k of nowhere dense zerosets has an empty interior. It is clear that every clopen 

subspace of almost A;-Baire space is an almost fc-Baire space and a space X is almost 

/c-Baire if and only if X has a dense subspace which is an almost fc-Baire space. Every 

/c-Baire space is an almost /c-Baire space, but the converse is not true in general as 

we will see next. 

Theorem 2.3 Let X be an RG-space and (Zn)™=1 be a sequence of nowhere dense 

zerosets in X. Then ( J ^ Zn is a nowhere dense subset. 

Proof. 

Let S = |jr=i M = Zi and Am = Zm- ((J?!"1 Zi) for each m > 2. Then {An : 

n £ N} is a collection of clopen subsets in Xs, and therefore {An : n £ N} U {X — S1} 

is a clopen partition of Xs. Let f : Xs —> R be defined by f{An) = {n + 1} for 

each n £ N and f(X — S) = {1}. Then f £ G(X), and since X is an RG-space 

therefore there is a dense open subset D of X such that f\D is a continuous function. 

Now suppose d(LT=i Zn) has an interior point p. Then there is an open subset JJV 

containing p such that Up C c/dJ^Lj Zn), which means that for each y in Up and each 

neighborhood Wy of y we have Wy fl Zn) ^ Since D is a dense subset, then 

D fl Up 0 . Let y £ D fl Up. There are two cases: 

(1) If f(y) = 1, then there is an open neighborhood Wy of y such that f(Wy) C (0, | ) . 

So Wy fl ( ( X i Zn) = 0- which is a contradiction. 
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(2) If f ( y ) — k + 1, then y £ Ak, and therefore there is an open neighborhood Wy of y 

such that f(Wy) C (k + k + |). Then Wy C Ak Q Zk, which is a contradiction too. 

Thus LT=1 Zn is a nowhere dense subset of X. • 

If X is an RG-space then it is clear from theorem 2.3 that every countable intersection 

of dense cozero subsets of X has a dense interior. Recall that a space X is an almost 

P-space if and only if every non-empty countable intersection of open sets has a 

non-empty interior. It is clear that every almost P-space is almost /c-Baire for each 

cardinal number k. 

Corollary 2.1 Every RG-space space is an almost-Baire space. 

RG-spaces need not be Baire. In [6] the authors gave two examples. First they gave 

an example of a regular P-space without any isolated points. Secondly they gave an 

example of a Tychonoff space X with a dense set of isolated points such that X$ is 

not a Baire space. So an RG-space does not have to be a Baire space. 

Recall that a topological space X is called separable at a point p if there exists an 

open set O containing p such that O is separable. A topological space X is called 

nowhere separable if X is not separable at any of its points. Details appear in [4]. 

Theorem 2.4 If X is an RG-space with no almost P-points then X is a nowhere 

separable space. 

Proof. 

Suppose X is an RG-space with no almost P-points and is a somewhere separable 

space. Then there is a countable subset {an : n £ N} such that zn£(c/((J^Lj{a„})) 

0. For each a„ pick a nowhere dense zeroset Zn such that an £ Zn. Then 

int(cl{\J^=l Zn)) 0 which is in contradiction to theorem 2.3. Thus X is a nowhere 

separable space . • 

Definition 2.5 A topological space X is said to be of countable pseudocharacter if 

every point in X is a G^-set. 
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Lemma 2.4 Let X be a topological space. Then: 

(1) X is of countable pseudocharacter if and only if every point is a zeroset. 

(2) X is of countable pseudocharacter if and only if Xs is a discrete space, or equiv-

alently ifC(Xs) = F(X). 

Proof. 

(1) (=>) Suppose X is of countable pseudocharacter. Since for each Gs-set G and 

compact set A C G there is a zeroset Z such that A C Z C G. Then taking 

A = G = {xo} implies that {xo} is- a zeroset for each x0 6 X. 

(4=) Obvious. 

(2) It is clear that X being of countable pseudocharacter implies that Xs is a dis-

crete space, and Xs discrete implies that C(Xs) = F(X). Suppose Xs is a discrete 

space. Since Xs has the collection of Gs-sets as open base. Then every point is a 

Gs-set and therefore X is of countable pseudocharacter. On the other hand, suppose 

C(Xg) = F(X). Since the character function X{xo} £ F(X). Then {xo} is open 

subset of Xs for each XQ G X. Thus X§ is a discrete space. • 

Recall that a topological space X is called Blumberg if every real-valued function 

defined on X can be restricted continuously to a dense subset [36]. J. C. Bradford 

and C. Goffman in [3] proved that every Blumberg space is Baire and R. Levy in [17] 

showed that there is consistently a compact Hausdorff space X and therefore Baire 

space which is not Blumberg. 

By theorem 2.2(1) one can conclude that every RG-space of countable pseudocharac-

ter is a Blumberg space. 

Theorem 2.5 Let X be an RG-space of countable pseudocharacter. Then X is a 

Baire space. 

Proof. 

Suppose X is an RG-space of countable pseudocharacter. Since Xs is a discrete space, 

then by theorem 2.2 we have that every real-valued function defined on X can be 
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restricted continuously on dense open subset. So X satisfies the Blumberg's Theorem. 

Hence X is a Baire space. • 

The following lemma originally appeared in [20]. 

Lemma 2.5 Let X be an RG-space and Y be a subspace of X such that Y$ is C*-

embedded in X&. Then Y is an RG-space. 

Proof. 

Since every C*-embedded subset in X$ is C-embedded, then Yg is C-embedded in Xj. 

Let h G C(Ys). Then there exists H G C{XS) such that H|y = h. Since X is an 

RG-space, then H 6 G(X) which implies that H\y G G{Y). So G(Y) = C(YS) and 

Y is an RG-space. D 

It follows that every clopen subset of X6 of an RG-space X is an RG-space, in par-

ticular every cozero and zero subspace of an RG-space is an RG-space. 

Corollary 2.2 The cozerosets and zerosets of RG-spaces are almost-Baire spaces. 

Definition 2.6 Let X be a topological space. Then the subset gX is defined to be the 

intersection of all dense cozero subsets of X. 

It is clear that gX is the set of almost P-points in X. If X is an RG-space, then it 

is clear from theorem 2.4 that every countable subset of X — gX is a nowhere dense 

subset of X. 

Lemma 2.6 Let X be a topological space. Then: 

(1) X is almost Baire implies that every dense open C*-embedded subset in X is 

almost Baire. 

(2) X is almost k-Baire for each cardinal number k if and only if gX is dense. 

Proof. 

(1) Let X be an almost Baire space, let U be a dense open C*-embedded subset in 

X and let Vn,n = 1,2,3,.... be a collection of dense cozerosets in U. Since U is 
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C*-embedded in X then for each n, there is a dense cozeroset Wn in X such that 

Wn f)U = Vn. But X is almost Baire. Therefore H^Li W/T
n is a dense subset of X 

which implies that fl^Li Wn H U — fl^Li Vn is a dense subset of U. Thus U is almost 

Baire. 

(2) (=>) Let X be almost k-Baire for each cardinal number k. Suppose there exists 

a non-empty open subset U such that U C\gX = 0. For each x £ U choose a nowhere 

dense zeroset Zx such that x 6 Zx and letVx = X — Zx. Then Vx is a dense cozeroset 

for each x £ U and U Pi Pixel/ ̂  = w^ich contradicts the fact that X is an almost 

k-Baire space for each cardinal number k. Thus gX is a dense subset of X. 

{<=) This is clear from the fact that gX is contained in every dense cozeroset. • 

The following theorem originally appeared in [20]. 

Theorem 2.6 Let X be an RG-space andY be a subspace of X. Then Y is an RG-

space if one of the following hold: 

(1) Ys is a Lindelof space. 

(2) Y is a scattered Lindelof space. 

(3) X5 is a normal space and Y is a realcompact C*-embedded subset of X. 

(4) < c, the continuum hypothesis holds, and Y is a realcompact C*-embedded 

subset of X . 

(5) Y is a countable union of zerosets or cozerosets. 

(6) X is a paracompact scattered space and Ys is a closed subset in Xs-

Proof. 

(1) It is clear that Ys is completely separated from each zeroset in Xs disjoint from it. 

But by [J, 4.2] if a Lindelof subspace of S is completely separated from each zeroset of 

S disjoint from it. then that subspace is C-embedded. Thus Ys is a C-embedded subset 

of Xs- Hence by lemma 2.5. Y is an RG-space. 

(2) IfY is a scattered Lindelof space, then by [29, 5.2] Ys is a Lindelof space. Hence 

by (1) Y is an RG-space. 

(3) Suppose Xs is a normal space and Y is a realcompact C*-embedded subset of X. 

53 



Let T = el(Y). Then Y is dense and C* — embedded in T, which implies by [8,6.7] 

that Y C T C f3Y. Recall that Y is a realcompact space if and only if Y is a 

Gs-closed subset of (3Y. Then Vx G (T — Y) there is a Gs-set D in (3Y such that 

x G D C (/3Y - Y). If E{x) = DC\T then E{x) is a Gs-set of T. Therefore 

E{x) = H{x) n T for some G5-set H(x) of X and x G E(x) C (T — Y). Then 

X -Y = {X - T ) U {H(x) :x e(T-Y)}. So X - Y is an open subset of X5, and 

therefore Y$ is a closed subset of Xs- Since every closed subset in a normal space is 

C*-embedded then Y$ is a C*-embedded subset of Xs- Hence by lemma 2.5, Y-is an 

RG-space. 

(4) Suppose that \X\ < c and assume the continuum hypothesis holds. Since every P-

space with cardinality no greater than c is paracompact [£5] then is a paracompact 

space and hence normal. Thus the result follows by (3). 

(5) If Y is a countable union of zerosets or cozerosets then Y& is a clopen subset in 

Xs- Hence Y is an RG-space. 

(6) If X is a paracompact scattered space and Y$ is a closed subset in Xs then Xs is 

paracompact and hence normal. So by lemma 2.5, Y is an RG-space. • 

The next four results originally appeared in [20]. We include them to give more 

background on RG-spaces. 

Corollary 2.3 Every countable subspace of RG-space is a scattered subspace. 

Proof. 

Suppose S is a countable subspace which is not scattered. Then there is an infinite 

countable subspace T of S without isolated points. Let T = {an : n G iV}. Then {an : 

n G iV} is a countable collection of nowhere dense zerosets in T and T = U«67v{an}-

But by (1) in theorem 2.6. T is an RG-space. which is a contradiction. Thus S is a 

scattered subspace. • 

Theorem 2.7 Compact subspaces of RG-space are scattered RG-spaces. 

Proof. 
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Let X be an RG-space and suppose K is a non-scattered compact subspace of X. Then 

K has a subspace T without isolated points. Let L = cl(T). Then L is a compact 

space without isolated points which implies by [29, 3.17] that there is a continuous map 

from L onto the Cantor set C. So by [28,6.5] there is a compact subspace M of L such 

that f\ m is an irreducible continuous function from M onto C. Since C is a compact 

metric space, then C has a countable dense subset S. For each s 6 S pick one point 

in / - 1 { s } and ca-ll it Let T — {ms : s € 5} C M. Then T is a countable subset 

of M. Now since is an irreducible function and C has no isolated points, thenT 

has no isolated points, which is a contradiction with the previous corollary. Thus K 

must be a scattered space. Since K is scattered and compact then by (2) in theorem 

2.6, K is an RG-space. • 

Definition 2.7 Let X be a topological space. Then X is called resolvable if X can 

be written as a union of two disjoint dense subsets. 

In [2] it is shown that first countable spaces, locally compact Hausdorff spaces, K-

spaces, linear topological spaces over a nondiscrete valuated field, and countably 

compact spaces without isolated points are resolvable spaces. Note that a topological 

space X is resolvable if and only if it can written as a finite union of sets with void 

interiors. 

Theorem 2.8 Let X be a topological space. Then: 

(1) If X is a resolvable space of countable pseudocharacter, then X is not an RG-

space. 

(2) If X is an RG-space of countable pseudocharacter that is countably compact, lo-

cally compact, or a K-space, then X is scattered. 

Proof. 

(1) If X is a resolvable space of countable pseudocharacter then X = A U A° where 

A, Ac are dense subsets. Since the characteristic function XA is in C(Xs) and it is 

nowhere continuous then X is not an RG-space. 
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(2) Let X be an RG-space of countable pseudocharacter that is countably compact, 

locally compact, or a K-space that is not scattered. Then X has a closed subspace T 

without isolated points. Then T inherits the assumed property from X. But as we 

mentioned before, T will be a resolvable space of countable pseudocharacter. There-

fore T cannot be an RG-space. But by lemma 2.5, T is an RG-space, which is a 

contradiction. Thus X must be scattered. • 

Corollary 2.4 Every first countable RG-space is scattered. 

Lemma 2.7 If X is an RG-space of countable pseudocharacter then every finite in-

tersection of dense subsets is a dense subset. 

Proof. 

It is enough to consider the case of two dense subsets. Let A, B be two dense subsets 

such that A D B is not dense. Then there exists a non-empty subset U such that 

U f l A fl B = 0 . Since the characteristic function X(unA) IS IN C(Xj), then there is a 

dense open set D such that X(UCIA)\D IS
 a continuous function. Let yo G U fl A fl D. 

Then there is an open set V such that f(V) C | ) . So V fl B = 0, which is a 

contradiction. Thus AD B is dense. • 

Definition 2.8 Let X be a topological space. Then X is called almost resolvable 

space if it is a countable union of sets with void interiors. 

Theorem 2.9 If X is an RG-space of countable pseudocharacter then X is not an 

almost resolvable space. 

Proof. 

Let X be an RG-space of countable pseudocharacter and suppose X is almost resolv-

able. Then there is a countable collection {Fn : n G N} of sets with void interior such 

that X = Fn- Let A\ — F\ and An = Fn — (Um^i for eac^ n — 2- Then it is 

clear that {An : n G N} is a a countable collection of disjoint sets with void interiors 

and X = U^Li -A- Define f : X —> R by f(A„) = n for each r? G N. Since XA 
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is a discrete space, then f G C(Xg) — G(X), which implies that f is continuous on 

a dense open subset D, which is a contradiction because f is not continuous at any 

point. Thus X is not almost resolvable. • 

We know from theorem 2.5 that RG-spaces of countable pseudocharacter are Baire. 

In fact one can do better for RG-spaces of countable pseudocharacter. If X is an 

RG-space of countable pseudocharacter then every countable union of nowhere dense 

subsets of X is nowhere dense as we shall see in the next result. 

Lemma 2.8 If X is an RG-space of countable pseudocharacter then every countable 

union of nowhere dense subsets is nowhere dense. 

Proof. 

Let X be an RG-space and be a sequence of nowhere subsets in X. Take S = 

IXLi An> Fi = M and Fm = An-flJ™!1 A) for each m> 2. Then {Fn : n G N} is a 

collection of disjoint nowhere dense subsets ofX, and therefore {Fn : n G N}u{X—S1} 

is a partition of X. Now define f : X6 —> R by f(Fn) = {n + 1} for each n E N 

and f(X — S) = {1}. Then f G C(X$) = G(X), which implies that there is a dense 

open subset D of X such that f\D is a continuous function. Suppose Fn) 

has an interior point p. Then there is an open subset Up containing p such that 

Up C c/dJ^Lj Fn), that is V y E Up and for each neighborhood Wy of y we have 

Wy D (IX=i Fn) 0- Since D fl Up ^ 0 . let y be any point in G D fl Up. There are 

two cases: 

(1) If f(y) = 1, then there is an open neighborhood Wy ofy such that f{Wy) C (0, | ) . 

Hence Wy D (U^Li Fn) = which is a contradiction. 

(2) If f(y) = k + 1, then y G i v So there is an open neighborhood Wy ofy such that 

/(Wy) Q {k + §, k + |). and therefore Wy C F t C Ak, which is a contradiction too. 

Thus U^Li is a nowhere dense subset of X. • 

A topological space X can have a dense subset K such that K° is somewhere dense 

or even a dense subset. This is will be a very interesting point for RG-spaces. 
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Lemma 2.9 Let X be a topological space. Then X is either has the property that 

every dense subset has a nowhere dense complement or X has a resolvable cozero 

subspace. 

Proof. 

Suppose D is a dense subset such that Dc somewhere dense. Then there is a non-

empty cozero subset U such that U C cl(Dc). Let A = D fl U and B = Dc D U. Then 

A and B are disjoint dense subsets ofU. Hence U is a resolvable cozero subspace. • 

Theorem 2.10 Let X be an RG-space of countable pseudocharacter. Then: 

(1) Every dense subset of X has a nowhere dense complement. 

(2) Every countable intersection of dense sets has a dense interior. 

(3) Every dense set has a dense interior. 

Proof. 

(1) Since every cozero subset of X is an RG-space of countable pseudocharacter then 

it cannot be resolvable. Thus the result follows directly by lemma 2.9. 

(2) Let (Dn)™=1 be a sequence of dense subsets of X. Take An = X — Dn for each 

n G N. Then is a sequence of nowhere subsets of X, which implies that 

IX=1 An is a nowhere dense subset of X. Hence the result follows directly from the 

fact that cl(T)c = int(Tc) for any subset T of X. 

(3) This follows directly from (2). • 

Recall that a topological space X is called open hereditarily irresolvable (simply o.h.i) 

if each open subspace of X is irresolvable [5, def 1.2]. And in [25] Ganster proved 

that a topological space X is open hereditarily irresolvable if and only if every dense 

set of X has a dense interior. Since every RG-space of countable pseudocharacter is 

an open hereditarily irresolvable space, thus one can give a proof of (3) in theorem 

2.10 from a somewhat different point of view. 

Before finishing this chapter, we would like to use proposition 4.10 which appears 

in [35] to prove that under the assumption V = L, every RG-space of countable 
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pseudocharacter has a dense set of isolated points. 

First let us recall proposition 4.10 [Assume V = L. Then every space without isolated 

points is almost resolvable.] [35]. 

Theorem 2.11 Assume V = L. Then every RG-space of countable pseudocharacter 

has a dense set of isolated points. 

Proof. 

Since every cozero subspace of X is an RG-space of countable pseudocharacter, then 

by proposition 4.10 in [35] and theorem 2.9, we can see that every cozero set has an 

isolated point. Thus X has a dense set of isolated points. • 
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Chapter 3 

The Krull z-dimension for C(X) 

The set of prime ideals in the regular ring G(X) is in one-to-one correspondence 

with the prime z-ideals PZ(X) in the ring C(X). Furthermore spec(G(X)) with the 

spectral topology is homeomorphic to the space PZ(X) as a subspace of spec(C(X)) 

with the patch topology [31]. Therefore the Krull z-dimension will play an important 

role to determine when the minimal regular ring extension G(X) has the form of a ring 

of real-valued continuous functions defined on some topological space. In the article 

(On RG-spaces and regularity degree) by [RRaphael, R.G.Woods] the authors gave 

some techniques to prove that there is no RG-space with infinite Krull z-dimension. 

There was an error that we found in the proof of theorem 3.4. Our goal in this section 

is to revisit the theorem. We will prove that the theorem is still correct in many cases, 

but the general theorem will remain open. 

3.1 The Krull z-dimension for the ring C(X) 

Let PZ(X) be the set of prime z-ideals in the ring G(X). By the Krull z-dimension 

of a maximal ideal we mean the supremum of the lengths of chains of prime z-ideals 

lying in it. The Krull z-dimension of G(X) is the supremum of the dimensions of 

the maximal ideals of C(X). By the fixed Krull z-dimension of C(X) we will mean 
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the supremum of the dimensions of the fixed maximal ideals of C(X). The following 

lemma originally appeared in [31]. 

Lemma 3.1 The collection f3 = {D(f) fl V(g) : f,g £ C(X)} forms an open base 

for the space PZ(X) with the patch topology. 

Proof. 

It is clear from theorem 1.10 that the collection: 

f3 = {D(f) fl V(I) : / £ C(X), I is a finitely generated ideal } is an open base 

for PZ(X) with the patch topology. Since V((g\,g2)) = V(g\) f l % ) , then it is 

enough to show that for any gi,g2 G C(X), we have V(gi) fl V(g2) = V(h) for some 

h G C(X). Let h = g\2 + g2
2 and let P be a prime z-ideal. Then g\,g2 G P implies 

that h G P. On the other hand, if h G P, then Z{h) = Z(gx) n Z(g2) G Z[P) 

where Z[P] is the prime z-filter corresponding to the prime z-ideal P [8, 2.12]. Then 

Z{gi), Z{g2) G Z\P\, which implies that g^g2 G P. Thus V(gi) fl V{g2) = V{h). • 

Recall that a Boolean algebra A is a complemented distributive lattice with 0 and 1. 

A nonempty subset S of A is called an v4-filter i f O ^ S , aAb £ whenever a, b G Q 

and a < b, a G 3 implies that 6 G An A-filter 5 is called prime if a G S or b G 3 

whenever o V 6 G 3, and it is called an yl-ultrafilter if it is a maximal element in the 

set of all ^-filters defined on the Boolean algebra A. It is clear that every A-filter is 

contained in some A-ultrafilter. Details appear in [28]. 

Remark 3.1 let A be a Boolean algebra and Q be an A-filter. Then TFAE: 

(1) 5 is an A-ultrafilter. 

(2) If a £ A such that a A b ^ O for each b G S then a G 

(3) S is a prime A-filter. 

(4) For each a £ A we have a £ Q or a' £ where a' is the complement of a. 

For a Tychonoff space X, the set of clopen subsets B(X), the set of regular closed 

subsets R(X), and the set of regular open subsets RO(X) are Boolean algebras. On 

the other hand, if A is any Boolean algebra, then the set 5(A) of A-ultrafilters defined 
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on A can be turned into a topological space by taking the collection (3 — {V(a) : a £ 

A} as an open base where V{a) — {U G £(>1) : a £ U} for each a £ A. And S(A) 

under this topology will be a compact O-dimensional Hausdorff space. Moreover, 

B(S(A)) — -{V(a) : a G >1}. The map a —> V(a) is a Boolean isomorphism from A 

onto B(S(A)). Details appear in [28]. 

The following theorem originally appeared in [28]. 

Theorem 3.1 Let X be a O-dimensional topological space and A be a subalgebra of 

B(X) which forms an open base for X. Then: 

(1) The map x : X —> S(A) defined by i(x) = {C £ A : x £ C} is a topological 

homeomorphism from X onto i{X). 

(2) i(X) is a dense subset in S(A). 

Proof. 

(1) It is clear that i(x) is an A-ultrafilter on A. Since for each Co £ A, we have 

z~1(V/(Co)) = {x : i{x) £ V(Co)} = {x : Co G z(x)} = Co is an open subset. Then t 

is a continuous map. Suppose i(x\) = for some x\ ^ G X. Then there are 

C\, C2 £ A such that Xi £ Ci and C\ fl C2 = 0, and therefore z(x\) ^ «(a;2)J which 

is a contradiction. Thus i is a one-to-one map. Finally, we show that i is an open 

map from X onto i(X). Let Co £ A. Then i{Co) = t{X) fl V(Co) is an open subset 

ofz(X). Thus z is a homeomorphism from X ontoi(X). 

(2) It is obvious that ?(xo) £ ^(Co) ^ for each non-empty subset Co in A and 

for each xq £ Co. Therefore i{X) is a dense subset of S(A). • 

It is clear from theorem 3.1 that if X is a O-dimensional topological space, then the 

space S(A) is a O-dimensional compactification of X where A is a subalgebra of B(X) 

and an open base of X. 

It is clear that the zeroset of any real-valued function in G(X) can be written as a 

finite union of sets of the form ZDC where Cc are both zerosets in X [30, 4.2], On 

the other hand, every zeroset and every cozeroset in X is a zeroset for some function 

in G(X). 
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The next theorem originally appeared in [31]. It shows that there is a one-to-one 

correspondence between the set of prime 2-ideals of C(X) and the set of maximal 

ideals of G{X). 

Theorem 3.2 Let X be a Tyehonoff space. Then: 

(1) A — Z(G(X)) is a subalgebra of B(Xs) and, it forms an open base for Xs- Fur-

thermore S(Z(G(X))) is a O-dimensional compactification of Xs-

(2) The map K : S(A) —> PF(X) defined by K(a) = a n Z{X) is a topological 

homeomorphism from S(A) onto PF(X) with the patch topology, and K\xs is a bi-

jection m.ap onto the fixed z-ultrafilters of C(X). 

(3) 5(A) can be considered as the space of maximal ideals of G(X) with the spectral 

topology. 

Proof. 

(1) It is clear that 0,X € Z(G(X)) and Ai U A2, Ai n A2 G Z{G{X)) whenever 

AUA2 G Z(G(X)). Since Z{G(X)) C Z(XS) C B(XS), then Z(G{X)) is a subalge-

bra of B(Xs) and it forms an open base for Xs- Hence by theorem 3.1, S{Z(G(X))) 

is a O-dimensional compactification of Xs-

(2) It is clear that a D Z(X) is a z-filter for any A-ultrafilter a. Suppose Z\, Z2 

are two zerosets in X such that Z\ U Z2 € K(a). Then Z\ G a or Z2 G a 

which implies that K(a) G PF(X) i.e. K is a well-defined function. We first 

show that K is a one-to-one map. Suppose a\ ^ a2 G 5(A). Then there are 

Z, Cc G Z(X) such that Z D C G (aj - a2). Therefore Z G c*i and Z fl C £ a2. 

Now if Z <£ a2 we are done. If not, then C ^ a2 and therefore Cc G {a2 — ai) . 

Then K(ct\) K(a2) and hence K is a one-to-one map. Secondly, we show that 

K is an onto map. Let F G PF(X) be any prime z-filter of C(X), and take 

a(F) = {C G Z(G{X)) : 3Z G F,3 S G (Z{X) - F),Z D Sc C C}. Then a(F) 

is an A-ultrafilter and F = K(a(F)). Hence K is a bijection map from 5(A) onto 

PF(X). 

Since 0 = {V(Z D 5) : 5C G Z(X)} is an open base for 5(A), then to prove that 
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K is an open map, it is enough to show that K(V(Z D 5')) is an open set for each 

V(Z n S)ep. Since K{V{Z n S)) = {afl Z(X) : z n S £ a} = {a n Z(X) : z e 

a, Sc <£ a}, then K(V{Z D 5)) = {F £ PF(X) :Z £ F,SC £ F} = V(Z) D D{SC). 

Hence K is an open map. Finally, we show that K is a continuous function. Since 

K(V(ZnS)) = V(Z)nD{Sc) and K is a bijection map then K^iViZ) fl D{SC)) = 

V(ZC\S) is an open set. So K is a continuous function. Thus K is a homeomorphism 

from S(A) onto PF(X) with the patch topology. 

Since Xs = t(X) and K{i(x)) = {Z £ Z(X) : x £ Z} is a fixed z-ultrafilter on X for 

each x £ X, then K\xs is a bijection map onto the fixed z-ultrafilters of C(X). 

(3) Since the map M —> Z(M) is a topological homeomorphism from the set of max-

imal ideals ofG(X) with the spectral topology onto S(A), then S(A) can be considered 

as the space of maximal ideals of G(X) with the spectral topology. • 

Since every prime ideal of C(X) is contained in a unique maximal ideal [8, 2.11], then 

the ring C(X) is a pm-ring, and therefore the map ^ : spec(C(X)) —> M(X) defined 

by /i(P) = Mp is a continuous function with the spectral topology on both spaces. 

The next lemma originally appeared in [31]. 

Lemma 3.2 Let X be a Tychonoff space. Then: 

(1) The identity map i : Xs —> X can be continuously extended to a function: 

i: S(A) PX. v , 

(2) If X is an RG-space then S(Z(G{X))) = f3(Xs). 

Proof. 

(1) We know that /i : spec(C(X)) —> M(X) is a continuous function. Let % = 

n\pz(x)- As S{A) = PF(X) = PZ(X), then one can consider % as a continuous 

function from S(A) onto the set of maximal ideals ofC(X) with the spectral topology 

on both spaces. This map will be defined by i(a) = M(anz{x))- Since for any xo £ X 

we have i{i{x0)) = M^Xo)nZ(x)) = M±0 = i(xo), then = i. 

(2) Let X be an RG-space. Then Z{G{X)) = Z(C{XS)). and therefore S{Z(G(X))) = 

S(Z(C(Xs))) = (3{Xs). • 
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It is clear from the previous discussion that for any Tychonoff space X we have that 

the space of prime z-ideals PZ(X) of C(X) with the patch topology is homeomor-

phic to the space of maximal ideals M(G(X)) of G(X) with the spectral topology. 

Furthermore, PZ{X) = {M n C(X) : M is a maximal ideal in G(X)}. If P is an 

arbitrary prime z-ideal of C(X) then there is a unique corresponding maximal ideal 

in G(X) whose intersection with G(X) equals P. We denote this maximal ideal by 

MP. 

Lemma 3.3 Let X be a Tychonoff space. Then: 

(1) For any P G PZ(X), we have Qci(C{X)/P) = G{X)/MP and Qd(C(X)/P) is 

an epimorphic image of G(X). 

(2) If PQ C P j C C Pk is a strictly ascending chain of prime Z-ideals, then 

Ylto(Qci(C(X)/Pi)) is an epimorphic image of G{X) and flto{Qd(C(X)/P)) * 

(G(X)/nl0MPt). 

Proof. 

(1) Let P be a prime z-ideal. Since the ring homomorphisms % : C(X) —> G(X), 7r : 

G(X) —> G(X)/Mp are epimorphisms then-noi : C(X) —G(X)/Mp is an epimor-

phism with Ker(iroi) — P. Therefore the homomorphismT : C(X)/P —» G(X)/Mp 

defined by T(f + P) = / + Mp is a one-to-one epimorphism. Since G(X)/MP is a 

field, then there is a unique homomorphism T : Qci(C(X)/P) —> G(X)/Mp such 

that T o % = T. It is clear that T is a one-to-one epimorphism, and therefore it 

is an onto map, because it emanates from a field. So Qci(C(X)/P) = G(X)/Mp. 

Since the natural map ix\ : G(X) —> G(X)/Mp is an epimorphism, then T o TT\ : 

G(X) —> Qci(C(X)/P) is an epimorphism. Hence Qci(C(X)/P) is an epimorphic 

image of G(X). Let us denote the last map by irp. Then it is clear that for any 

h = £r=i fr9* e G(X), we have vr P(h) = where L = {i:9l(£P}. 

(2) For any h = gg* G G(X). we know that np(h) = if g <£ Mp and irp(h) = 

if 9 £ MP. Now if P0 C Pj C C Pk is a strictly ascending chain 

of prime z-ideals, then the map ix : G{X) n-=o(Qd(C(X)/Pl)) defined by 
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•n(h) = (irpo(h),npl(h), ,nPk(h)) is a ring homomorphism. To show that n is 

an onto map, fix io and for each i ^ io, choose gi £ (Mpi — MpiQ) and let ki0 = 

IL/io 9i and U0 = h0h0*• Then tio £ MPi for each i ^ i0 and tio <£ MPiQ, and 

therefore ttPi(t l0) = 2±g and = Let ( g g , , A±&) be 

an arbitrary element in UUQd(C(X)/Pi)), and take h = JJUo(fi9i*U). Then 

~ (go+p"' gi+Pi' , ll+pl) • Hence n is an epimorphic map and therefore 

Tli=o(Qci(C(X)/Pi)) is an epimorphic image ofG(X). Since Ker{n) = Di=o Ker^p^ 

n t o MPi, thus n t o ( Q c i ( C ( X ) / P i ) ) - (G(X)/nt0MPi). • 

The next theorem originally appeared in [31]. 

Theorem 3.3 Let X be a Tychonoff space such that C(X) has a strictly ascending 

chain of k+ 1 prime z-ideals. Then G(X) has a function of regularity degree at least 

k + 1. 

Proof. 

Let PQ C P j C C Pk C C(X) be a strictly ascending chain of prime z-

ideals. For each i — 0,1,2, ....k — 1, take f £ Pi+1 — p and take fk = 1- Then 

the element t = , <= 5 where S = Ylto(Qci(C(X)/P)). 

Now suppose that the reg(degc[x)G(X)) < k. Since for each g £ G(X) we have 

9 — where m < k and at,bi £ C(X) for each i = 1,2, ...,m, then 

h = ir(g) = Y1T= 17r(ai)-7r(^*) — SHi 7r(ai)-7r(^i)* for each h £ S and therefore 

reg{degc(x)S) < k, which is a contradiction. Thus reg{degc(x)G{X)) > k + 1. • 

We need the next three lemmas before we reach our main results in this section which 

are to address an error that we found in the proof of [On RG-spaces and regularity 

degree, Theorem 3.4] and to give an accurate proof which applies to many spaces 

including those which are cozero complemented. 

For any A C Xg we will denote to clp(x6){A) by A. 

Lemma 3.4 Let X be an RG-space. Then: 

(1) PZ(X)^P(XS). 
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(2) There is an algebra isomorphism between B(X$) and B(0(Xs)). 

(3) If he G(X) and A = coz(h) then A = A nXs. 

(4) I f f e C(X) then coz(f) — {P e PZ(X) : / $ P}. 

Proof. 

(1) Since PZ{X) S(Z(G{X))) and S(Z(G(X))) = 0{X5), then PZ{X) 0{X6). 

(2) Since S(B{Xs)) = 0{XS), then the map f : B(X5) —• B{0{XS)) defined by 

f(B) = B is a Boolean isomorphism [see the discussion before theorem 3.1]. It is 

clear that — An X^ = {U : U is a fixed z-ultafilter of A G U} for each 

A e B(P{XS)). 

(3) Let h e G(X) and let A = coz(h). Then h G C(Xs) which implies that coz(h) G 

B(XS). Therefore A G B(0{Xs)) and hence A = A HXS. 

(4) Let f G C(X). Since PZ{X) ^ 0{X5), then coz(f) as a subspace of PZ{X) 

is the set {Mx : x G coz(f)}. If Mxo G coz(f) then x0 G coz(f) which means 

that f{x0) ^ 0. Therefore f £ MXo i.e. MXo G {P G PZ{X) : / £ P}. So 

coz{f) C {P e PZ(X) : / £ P} = D{f). Since D ( f ) is a closed subset of PZ(X), 

then coz(h) C {P G PZ{X) : f £ P}. On the other hand, let P G £>(/) and 

let V(g) fl D(k) be any basic open set containing P where f , k E C{X). Suppose 

that (Z{g) n coz{k) n coz(f)) = 0 . Then Z{g) C (Z(k) U Z(f)). But kf £ P. 

Then Z(k) U Z ( f ) Z[P] and therefore Z(g) Z[P], which is a contradiction. 

So (Z(g) n coz(k) n coz(f)) ± 0 . Choose x0 G (Z(g) fl coz(k) fl coz(f)). Then 

Mxo e coz{f), Mxo e (V(g) n D(k)). Hence coz{f) n (V(^) n D(k)) ^ 0 . Thus 

^ ( h ) = D{f) = {Pe PZ(X) : f<£P}. • 

Recall that for a commutative ring with identity A, the set = (JP & s p e c(A) Qci{A/P) 

can be turned into a topological space by giving 9? the sheaf topology. This topology 

is defined to be the smallest topology defined on 5ft such that [a, 6] is a continuous 

function for each a,b G A. Recall that the function [a, b] : spec(A) —> 3R is defined 
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by: 

[a,b](P)=<! b+: 
i f&GP 

where the topology which is given on spec(A) is the patch topology. In this case the 

set 5? will have the collection (3 = {[a, b]{D{c) D V(J)) : a, b,c G A, J is a finitely 

generated ideal} as an open base [16]. The function [a, 1] is often denoted a. 

Corollary 3.1 Let A be a commutative ring with identity. Then the set T = {j^p : 

P G spec(A)} is a closed subset of$t = Upespec(yi) Qd(A/P). 

Proof. 

U ^ ^ T , then a,b <£ Px. But [a, b]{D(a, b))DT = 0, g g - 6 [a, b](D{a, b)), and 

[a, b](D(a, b}) is open in 3?. Thus T is a closed subset o/K. • 

Lemma 3.5 Let X be an RG-space, P G B G B(/3{XS)), A = B n Xs, h = 

YliLifidi* e G(X), and a G C(X) such that h\A = o\a- Then h(P) = a(P) and 

^ Z i t L ^ ™here L = {i,:gttP}. 

Proof. 

Since h G G(X) = C(XS), then the map h: M(C(XS)) —> U M p Z M ( C ( X 5 ) ) ( C ( X S ) / M P ) 

defined by h(Mp) = h + Mp is a continuous function. Since PZ(X) = /3(X$), then h 

can be considered as a continuous function from PZ(X) into (J MP£M{C(xs))(C{Xs) / Mp) 

where h{P) =h, + MP for each P G PZ(X). 

Since A, as a subset of PZ(X). is the set {Mxo : xo G A,MX0 G M(C(X)} and since 

a - h G C(XS), then (a - h)(MX0) = (a - h) + Mxo = 0 + MXo for each x0 G A. 

Therefore ( a - h)(P) = O + Mp and hence a + MP = h + Mp. Now since a-h G MP, 

then trP(a - h) = Hence f±f = £\ei
 where L = {z:gi^P}. • 

Let us recall that if {an : n G N} is a sequence, then the term a„, is called a peak of 

the sequence, if > n\ implies ani > a„2, i.e. if ani is greater than or equal to every 

subsequent term in the sequence. 
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Lemma 3.6 If PZ(X) has a chain C with infinite length then C contains an infinite 

strictly decreasing sequence of prime z-ideals or an infinite strictly increasing sequence 

of prime z-ideals. 

Proof. 

Let D = {Pn : n € N} be any infinite countable subset of C such that Pni ^ Pn2 for 

each ni ^ n2- Then we will have two cases: 

(1) D has an infinite number of peaks. In this case we take Pni to be the first peak. 

Then Pni D Pn V n > ni . Let n2 > n\ such that Pn2 is a peak. Then Pni ^ Pn2. 

Since D has infinitely many peaks, then this operation will not stop and we get an 

infinite strictly decreasing sequence of prime z-ideals Pni Pn2 2 Pn3, 

(2) If D has only a finite number of peaks namely Pmi, Pm2, •••, Pmk- In this case 

we take L = max{m\,m2, ...,mfc} + 1 and take Pni = Pi. Since Pni is not a peak, 

then there is n2 > n\ such that Pni C Pn2. And since Pn2 is not a peak then there is 

77,3 > n2 such that Pn2 C Pm. This operation will not stop and we will get an infinite 

strictly increasing sequence of prime z-ideals Pni C Pn2 C Pm,....... • 

Our goal is to revisit the theorem 3.4 in [31]. For completeness let us recall the result 

that was claimed. 

[If the Krull z-dimension of C(X) is infinite then X is not an RG-space and rg{X) = 

oo]. The proof which was given for this theorem is mistaken even though the claim 

that rg(X) = oo is still correct [Theorem 3.3]. The assertion that clBk,t contains 

Qk.t and no other prime from the array is not justified because there is a countably 

infinite operation used in defining Bt,t• Our work will be to prove that the theorem 

is still correct in many cases, but the general theorem will remain open. 

Theorem 3.4 Let X be a Tychonoff space such that C(X) contains an infinite chain 

of prime z-ideals. Then X is not an RG-space. 

Proof. 

Since C(X) contains an infinite chain of prime z-ideals, then by lemma 3.6, we will 

have two cases: 
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First case: C(X) contains an infinite strictly increasing sequence of prime z-ideals 

Pi C P2 C C Pn C For eac/i n > 1, choose bn £ Pn+i — Pn and let Dn = 

coz{bn), Bi = Di, and Bn = Dn - /or each n > 2. Then Dn, Bn £ B(XS) 

for each n > 1, BnC\Bm = 0 V n ^ m and Pn £ Dn Vn > 1. .Since Pn £ Di V i = 

1,2,3, ...ra— 1 and~Di\J(X5 - Di) = PZ{X), thenPn £ (X5 - A ) V i = 1, 2, 3, . . .n-1. 

Therefore Pn £~EL, Pi ^ V i ^ n. 

Z?e/me A : —• P % A|Bn = &„|Bn and h(x) = OV x £ (Xs - U™=1Bn). Then 

h £ C(Xs) = G(X) and therefore h = where a,di £ C(X). It is clear by 

lemma 3.5, that = £ i e L n w/iere Ln = {i : di £ Pn} Q {1, 2, ...,m}. Lei 

w = {A, P2, , Pm+2} and t = , ^ f f ^ 2 ) - Then it is clear that 

rg(t) > m + 2. the same time, we /mve ^ = 7r(/i) and therefore rg(t) < m, which 

is a contradiction. Hence X cannot be an RG-space. 

Second case: C(X) contains an infinite strictly decreasing sequence of prime z-ideals 

Pi 2 Pi 2 Pn2 

For each n > 1, choose bn £ Pn — Pn+i and let Dn — coz(bn) — coz(bn+i). Since 

A — B = A — B for each A, B £ B(Xs), and since bn £ Pm V m > n + 1, bn £ 

Pm V m < n. Then Pm £ Dn V m ^ n + 1, P„+i 6 P>n. Now; ma&e the Dn 

disjoint in the standard way by letting C\ = D\, C2 = D2 — D\, and in general 

Cn = Dn-[{j::i
1Di\. 

The (Cn)^! are non-empty clopen and disjoint subsets ofXs and each Cn has P„+i but 

no other Pi in its closure. Define h : —> R by h\c„ = bn+i\cn and h(x) = 0 V x £ 

(Xs - U™=1Cn). Then h £ C(XS) = G(X). which implies that h = Y1T=I where 

Ci,di £ C(X). So by lemma 3.5, h-f_= g j ? where Ln = {z : di £ Pn} C 

{1,2,..., m}. Let W = {Pm+3; Pm+2, , P2] and t = 

Then rg(t) > m + 2. At the same time, t = ir(h) and therefore rg(t) < m, which is 

a contradiction. Hence X cannot be an RG-space. • 

The case where the saturated chains in PZ(X) have finite length yet the general 

dimension is infinite could potentially occur in two ways. 
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Two cases: 

Case A. There exists a countably infinite set of distinct maximal ideals {Mn} such 

that Mn has a chain of length sn > n descending from Mn (these maximal ideals 

might have finite or infinite dimension). 

Case B. With finitely many exceptions all maximal ideals have finite dimension and 

there is a finite (global) bound for said dimension. 

We begin with the case A and show that it does not occur for RG-spaces. 

Theorem 3.5 Suppose that there exists in C(X) a countable infinite set of distinct 

maximal ideals Mn,n = 1, 2,3, such that for each n, the ideal Mn has a chain of 

length sn > n descending from it. Then X is not an RG-space. 

Proof. 

Let T be the set of the maximal ideals which are at the top of our chains. By [5,0.13] 

T as a subspace of 13X has an infinite discrete subset T\. In this case we will be able 

to choose an infinite sequence of chains Qk ,k = 1, 2,3, such that: 

(1) k\ > k2 implies that skl > Sk2 where ŝ  denotes the length of Qk • 

(2) Qkl n Qk2 = 0 V h ± k2. 

(3) Every chain has a maximal ideal Mk from Ti which is in the top of it. 

Since (3X has an open base Pi = {D(f) : f G C(X)}, then for each k there exists 

fk G C(X) such that Mk G D(fk) and Mn fi D(fk) V n ^ k. Since the function 

H : Spec(C(X)) —> M(C(X)) is a continuous function with the spectral topology 

on both spaces, then /j,~1(D(fk)) is an open set which contains the chain Qk but 

no any other chain from our chains. Since PZ(X) is a O-dimensional space, then 

for each k there is a clopen subset Ak such that Qk C Ak C /j,~~1(D(fk))- Taking 

Bi = Ai and Bn = An — (U^M;) will separate these different chains by disjoint clopen 

subsets of P(Xs)- For each k choose gk.t G Pk,t+i — Pk,t for each t = 1,2,..., Sk — 1, 

gk:Sk = 1. and let Uk,t = [coz(gk,t) - (u\zlcoz(gkA))] 0 X6 H Bk. Then Uk,t e B(XS). 

Pk.t £ Uk.t, and UklM H Uk2,t2 = 0 for each {h,ti) ± (k2, t2). Define h\ X6 —> R by 

h\ukt
 = 9k.t\ukt and h(x) = 0 V x G (Xs — Uk,tUk,t)- Then h G C(Xs) which implies 
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that h = YULI Ci.d* where a,di e C{X), and = £ieLn where Ln = 

{i : dl £ Pk,t} C {1,2,..., m}. Taking t = , J J J j ) where sk > m + 2 will 

give us a contradiction as before. Thus X cannot be an RG-space. • 

Case B: If case B can also be shown not to hold for RG-spaces, then theorem 3.4 in 

[On RG-spaces and regularity degree] will be established. To date we are not able to 

give a general proof that excludes case B for all RG-spaces. We can get the result for 

a broad class of spaces (the cozero complemented spaces). 

We need a wee bit of preparation for the cozero complemented case. 

Definition 3.1 Suppose that P is a prime z-ideal that lies inside the maximal ideal 

M. We will say that P is on level k of M if there is a saturated chain of prime 

z-ideals of length k + 1 that descends from M to P. 

Thus, M is on level 0, a prime directly below M is one level 1 and so on. In the case 

of infinite chains the definition of level may not be pertinent, but in case B we are 

not concerned with infinite chains. The nature of the inclusions of prime ideals in 

a ring of the form C(X) is such that the level to which a prime z-ideals belongs is 

uniquely defined [8]. 

Proposition 3.1 Suppose that M is a maximal ideal of C(X) that contains no infi-

nite chains but does have infinite dimension. Then there is a positive integer k > I 

for which there are infinitely many prime z-ideals on level k. Furthermore this set is a 

T2-space in the relative topology inherited from Spec(C(X)) with the spectral topology. 

Proof. 

The first statement follows immediately from Konig's infinite lemm,a [16]. The fact 

that the prime z-ideals which all lie on the same level form a Hausdorff space holds 

by the proof of [22, pA61]. • 

Case B does not occur for RG-spaces that are cozero complemented as will be seen 

in the next theorem. 
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Theorem 3.6 Suppose thatX is cozero complemented, thatC(X) is of infinite Krull 

z-dimension, and that case B holds. Then X is not an RG-space. 

Proof. 

By hypothesis the infinite Krull z-dim,ension is realized inside a finite number of maxi-

mal ideals. Each is obviously itself of infinite dimension. Thus there exists a maximal 

ideal M that contains for each n a chain Cn of length sn> n +1 such that the primes 

from distinct chains are not comparable. 

By proposition 3.1, there is a level, say the k'th, in which there are infinitely many 

prime z-ideals and these form a Hausdorff subspace of Spec(C(X)). 

Let T = {Rn : n G N} be a countably infinite subset of all the chains which contain 

primes from the k 'th level and below them descend subchains such that chains in T 

have strictly increasing lengths. 

Since the primes on level k form a T-2 space, there is by [8, 0.13] a countably infinite 

subset £>i, Z>2,.... of R\,Ri, which is discrete in the relative topology inherited from 

Spec{C(X)) . We can also assume that the Dn have been ordered such that n\ > n2 

implies that sni > sn2. Let the top element in the chain Dn be called Pn and the 

smallest be called Qn. Since the set {Pn} is discrete there exist functions fn G C(X) 

so that fn £ Pn but fn G Pm V m ^ n. R follows that fn £ Qn but fn maybe is not in 

Qm form\ t W e will show that this is not the case if X is a cozero complemented 

space. 

We will need the fact that a cozero subset of a cozero complemented space is also 

cozero complemented [9,1-5(6)] . 

Let m n and let cozig) be a cozero complement of cozifn) inside the space cozifn) U 

coz(fm), i.e. cozig) Ucozifn) is dense in cozifn)Ucozifm) and cozig) C\cozifn) = 

Therefore coz(fn) U cozifm) = cozig) u coz(fn), cozig) ^coz(fn) = 0 and g f n = 0. 

Since fn G Pm, then Pm G cozig) and therefore g £ Pm ^ Qm• But g f n = 0, so 

fn G Qm for each n ^ m. 

Thus we have that each chain Dn lies in a different clopen set of l3{Xi) and we can 
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proceed to build an appropriate function using "the method" of theorem 3.5. • 

Remark 3.2 The proof above also holds if the functions {/„} are pairwise orthogonal, 

but actually less is required. It suffices that one be able to appropriately separate the 

primes in one chain from those in the other ones. The clopen sets used need not 

be disjoint in P(Xs)- For example, with the sets {Pn} and {Qn} chosen as above, 

suppose that p|P„ = Qn. Consider the n'th chain. We have fn ^ Qn but fn G Pm 

for all m n. Now for a fixed m ^ n, the product fnfm G f]Pn ^ Qm a prime 

ideal, so since fm Qm, fn G Qm,• This means that the closures of the different sets 

coz(fn) will give clopen sets in f3(Xs) which separate the chains Dn. Then by using 

"the method" of theorem 3.5 one can build the appropriate function. It is easy to see 

that the condition f]Pn = f]Qn holds i f f ] P n = Op (see [8,41]. 

Remark 3.3 Suppose our chains Dn have been chosen as above. Then one can 

appropriately separate an infinite sequence of these chains and then prove that Case 

B does not occur for such RG-space if the following condition holds: for any infinite 

countable subset T of {Pn : n G N}, we have that Op^ t-^" — UpnerQn-

Proof. 

Suppose our chains Dn and our functions { f n } have been chosen as above, and sup-

pose that our condition holds. We will prove our statement by induction as follows: 

As fi G Pn V n > 2, then there exists Qni where n j > 2 such that f2 G Qni • Since 

our condition also holds for the set {Pn : n > n\ + 1}, then there exists Qn2 where 

n2 > n\ + 1 such that f2 G Qn2. This operation will never stop and in the end we 

will be able to replace our chains by a new infinite number of chains which will have 

the first chain separated from the other ones. Now our condition will alow us to do 

the same thing for our new chains disregarding the first chain. One can continue this 

process forever. In the end we will be able to replace our chains by a new infinite 

number of chains each of which is separated from the set of all the chains which come 

after it. The latter means that for each chain Dn there exists an open set U of PZ(X) 
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such that Dn C U and U P|(|J/c>n Dn) = 0 . The prime z-ideals which lie inside the 

chains which precede Dn may or may not be in U, but in any case we will be able to 

separate them from Dn because it will be a matter of separating a finite subset inside 

a Hausdorff space. Thus one can prove that Case B does not occur for such RG-space 

by following the same steps as in theorem 3.6. • 

Recall that the rank of a maximal ideal M of C(X) is the number of minimal prime 

ideals contained in it if this is a positive integer, and infinity otherwise [19]. 

Corollary 3.2 Let X be an RG-space such that every maximal ideal in C(X) has 

finite rank. Then X has finite Krull z-dimension. 

Proof. 

This follows directly from the fact that Case B does not occur for such RG-spaces. • 

A topological space X is called an SV-space if C(X) is an SV-ring that is, if C(X)/P 

is a valuation domain for each minimal prime ideal P of C(X) [15]. It is clear that 

every F-space in the sense of the Gillman-Jerison text is an .SV-space [19]. It is shown 

in [15], that every .SV-space has finite rank. 

Remark 3.4 Let X be an RG-space that is an SV-space. Then C(X) has finite 

Krull z- dimension. 

Proof. 

R follows directly from the fact that every SV-space has finite rank. • 

Example 3.1 Any F-space has rank 1, so corollary 3.2 applies to RG-spaces which 

are F-spaces. The compact connected space (3R+ — R+ of \8,14.27] is not RG because 

it has no isolated points. R is clearly not cozeo complemented because in compact 

cozeo complemented F-spaces. Minspec and Maxspec are homeomorphic as well as 

basically disconnected. 
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Chapter 4 

The space of prime d-ideals in 

C(X) and the Krull d-dimension 

In the first section of this chapter we will prove that the spectrum of the ring H(A) 

with the spectral topology is homeomorphic to the space of prime (-ideals of A with 

the patch topology. We will also show that when A satisfies the strongly a. c. condi-

tion, then the spectrum of H(A) with the spectral topology is homeomorphic to the 

space of prime d-ideals of A with the patch topology. In the second section we show 

that the prime ("-ideals of a semiprime ring A are exactly the prime d-elements inside 

the algebraic frame SP(A). The third and fourth sections are a review of the prime 

d-ideals of C(X), and of the structure of H(X) originally given in [24], [30] and [28]. 

The last section is on the Krull d-dimension for the ring C(X). 

for 
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4.1 The spectrum of the epimorphic hull H(A) 

Let A be a semiprime ring and spec(A) be the space of all prime ideals of A. We are 

interested in three subspaces associated with this space, namely the space of prime 

ideals denoted PZ(A), the space of prime d-ideals denoted PD(A), and the space 

of prime ^-ideals denoted P((A). 

Theorem 4.1 Let A be a semiprime ring. Then P({A) = spec(H(A)) as topological 

spaces with the patch topology on both spaces. 

Proof. 

Since the inclusion map i : A —> H(A) is a ring epimorphism, then by lemma 

1.13, we have that ia : spec(H(A)) —> spec(A) is a one-to-one continuous map. 

Also by remark 1.9, we know that ia : spec(H(A)) —• P((A) is an onto map. Then 

ia : spec(H(A)) —> P((A) is a bijective continuous map. And since ia is a continuous 

map, P((A) is a hausdorff space, and spec(H(A)) is a compact space, then ia is a 

closed map. Hence %a is a topological homeomorphism and P((A) = spec(H(A)) as 

topological spaces. • 

Since H(A) is regular, then the patch topology on spec(H(A)) coincides with the 

spectral topology on it. 

Corollary 4.1 Let A be a semiprime ring that satisfies the strongly a.c. condition. 

Then PD(A) = spec(H(A)) as topological spaces with the patch topology on both 

spaces. 

Proof. 

Since A satisfies the strongly a.c. condition then PD(A) = P((A) and therefore 

PD(A) ^ spec(H{A)). • 

Theorem 4.2 Let A be a semiprime ring and P G PC, (A). Then Qci(A/P) = 

H(A)/M and Qci{A/P) is an epimorphic image of H(A) where M is the unique 

maximal ideal of H(A) such that M fl A = P. 
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Proof. 

Since I: A —• H(A) and IT : H(A) —» H(A)/M are ring epimorphisms, then TT O %: 

A —> H(A)/M is an epimorphism and ker(iroi) = {a : a G A, a+M = 0 + M } = P. 

Then the map K : A/P —> H(A)/M defined by K(a + P) = a + M is an epimorphic 

monomorphism. But H(A)/M is a field which implies that 3! K : Qci{A/P) —> 

H(A)/M a ring homomorphism such that = (a + M)(b + M)" 1 . Since K 

is an epimorphic monomorphism and H(A)/M is a field, then K is an onto map. 

Therefore Qd{A/P) = H{A)/M as fields. 

Since K"1 : H(A)/M —• Qcl(A/P) and IT : H(A) —> H(A)/M are epimorphisms 

then K~l on : H(A) —> Qci(A/P) is an epimorphism. Hence Qci(A/P) is an epi-

morphic image of H (A). • 

If this epimorphism from H(A) onto Qci{A/p) is denoted by ti>, then one can see 

that 7T P(a) = f±£, 7rP(b*) = if b tf P, and 7vP(b*) = if be P V a, b G A. 

Therefore, if aib\ + a2b2 + ... + anb* e H(A) then irp(a\b\ + a2b*2 + ... + anb*n) = 

np(ai)np{bl) = £ier
 where r = ^ : bi & Also for each 9 G H{A) we 

have: 
, 2±g if geP 

-xpigg*) = I+P 

i+P 

Lemma 4.1 Let{Pi}?=0 C PC(A) such thatP0 C P^... C Pn C A. Then nr=o Qd{A/Pi) 
is an epimorphic image of H(A). 

Proof. 

Let ir : H(A) — > YYi=o Qd(A/Pi) be defined by IT(h) = {TTp0(h)-,^p1(h),^p2(h), ,TTp„(h))-
It is clear that IT is a ring homomorphism. We need only show that IT is an onto map. 

Since V i 3Mi e M(H(A)) such that M% fl A = Pi, fix i0, let £ (Mt - Mio) and 

let kl0 = Xl^gi, and Tl0 = klok1Q*. Then Tl0 G Mi V i ^ i0 and Tl0 £ Mio, which 

implies that t t ^ T J = and TTpo(Tj = Now let (a±a - j j g , | n ± £ ) 

be an arbitrary element in YYi=oQcl(A/Pi)- Then h = ^ H(^) and 

*{h) = f j j g , . . . , g ^ ) . Hence tr is an onto map. • 
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If 7r is defined as above, then ker(ir) = P|"=0 Mi and therefore ker(ir) PI A = P0. 

Definition 4.1 Let A be a semiprime ring and f G H(A). Then the hull regularity 

degree of f , denoted by rgh(f), is defined to be: 

rgh(f) = min{n G N : f = ]T"=1 gih* , gu hi G A, n > 1}. 

The hull regularity degree of the ring A, denoted by rgh(A), is defined to be: rgh(A) = 

sup{rgh{f) : / G H(A)}. 

The lengths of the chains of prime ("-ideals inside the semiprime ring A will be related 

to the the hull regularity degree of the ring A as we will see in the next proposition. 

Proposition 4.1 Let A be a semiprime ring with a strictly ascending chain of k + 1 

prime (-ideals. Then H(A) has an element of hull regularity degree at least k + 1. 

Proof. 

Suppose PQ C Pj C C PK C A be a strictly ascending chain of prime (-ideals. 

For each i = 0,1, 2, ....k — 1 take fi G Pi+\ — Pi and fk = 1- Then the element t = 

, , g f t ) € 5 = nto(Qc*(^))- We know thatreg{degAS) >k +1, 

and 7r : H(A) —> S is an onto map [lemma 4.1]. Now suppose that the rgh(A) < k. 

Since for each g G H(A) we have g = where m < k and ai, bi G A for each 

i = 1,2,..., m. Then h = n(g) = YllLi = YaLi 7r(aj)7r(&i)* for each h G S. 

Therefore reg(degAS) < k, which is a contradiction. Thus rgh(A) > k + 1. • 

The Krull ("-dimension of the semiprime ring A is defined to be the supremum of of 

the lengths of chains of prime ("-ideals lying inside A. 

Lemma 4.2 If the Krull (-dimension of the semiprime ring A is infinite then rgh{A) = 

oo and for each n <E N there exists f G H(A) such that rgh( f ) > n. 

Proof. 

This follows directly from proposition 4.1. • 
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4 .2 (-ideals as d-element s in algebraic frames 

In this section we show that the definition of a prime ("-ideal inside the semiprime ring 

A is exactly the definition of a prime d-element inside the algebraic frame SP(A). 

Theorem 4.3 Let A be a semiprime ring and J G SP(A). Then: 

(1) J^ = J*. 

(2) J is a prime element in SP(A) if and only if J is a prime ideal. 

(3) J is a (-ideal if and only if J is a d-element in SP(A). 

Proof. 

(1) Since A is a semiprime ring, then J* is a semiprime ideal and J* fl J = {0}. 

But J1 = \/{I : I e SP{A),I n J = {0}}. Therefore J* C J-1. On the other hand, 

if x G J 1 = y/0ier ki where k,i fl J = {0} for each i, then there exists n > 1 such 

that xn G © j € r ki, and therefore there is a finite subset {ii, i2,..., im} ofT such that 

xn — aij + ai2 + .. + ajm where {a;, G Kit} for each t — 1,2, ...,m. Now if y is any 

element in J, then yait G (Kit fl J) which implies yait = 0 for each t = 1,2,..., m. So 

xny = 0. But A is a semiprime ring so xy = 0. This will be true for any element 

y G J, so x G J*. Hence J1 = J*. 

(2) (=>) Suppose J is a prime element in SP(A), and let I\,l2 be ideals of A such 

that I\ fl I2 C J. Then \[T\ H a/T^ C J, which implies y/ll C J or \fl2 C J. So J is 

a prime ideal. 

{<=) Obvious. 

(3) (=>•) If J is a (-ideal, then J is a semiprime ideal and therefore J G SP(A). 

Let K = (ai, a2,..., an) be a finitely generated ideal such that C J. Then 

(ai, a2,..., an) C J. But J is a (-ideal, therefore (y/K)** = K** C J. Then 

J = y{{VK)** :VK C J, K 

is a finitely generated ideal }. Hence J is a d-element 

in SP(A). 

(<*=) Suppose J is a d-element in SP{A). Then J = \f{(y/K)** : y/K CJ,K is a 

finitely generated ideal}. which meansthat (ai,a2. ...,an)** C J for each (ai, a2,..., an) C 
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J. Hence J is a (-ideal. • 

If A is a semiprime ring, then SP(A) is a compact algebraic frame with the F.I.P., 

because D(spec(A)) has it. And if A satisfies the strongly a.c. condition then an ideal 

J in SP(A) is a d-element if and only if J is a d-ideal. 

4.3 T h e space of prime d-ideals in C(X) 

The ring of continuous functions C (X) is a commutative semiprime ring with identity 

whose complete ring of quotients, Q(X), can be constructed as follows: 

Let D(X) be the set of all dense open subsets in X and let L(X) = (J{C(i7) : ^ ^ 

D(X)}. Then one can define an equivalence relation on L(X) by: 

for each / G C(V), g G C{W) where V,W G D(X), let / ~ g if f\VnW = g\Vnw-

Then the complete ring of quotients Q(X) will be the equivalence classes of this re-

lation, i.e. Q(X) = {[/] : / G L(X)}, and for any two elements [/], [<7] G L(X) where 

/ G C(V), g G C(W) the addition and multiplication is defined as follows: 

[/] + [f] = [flvnw + g\vnw] and [f][g] - [f\vnwg\vnw]-

The classical ring of quotients of C(X), denoted by Qd{X), is constructed similarly 

except that D(X) is replaced with the family of all dense cozerosets in X. Details 

appear in [26]. 

If X is a topological space, then it follows by lemma 1.4 that C(X) C Qci(X) C 

H(X) C Q(X). It is clear that C(X) — Qci(X) if and only if every non-zero divisor in 

C(X) is a unit, or equivalent,ly if X is an almost P-space. Taking C*(X), Q"d{X). Q*(X) 

to be the bounded functions in C(X), Qd(X), Q(X) respectively, then one can see that 

C*(X) = Q*cl(X) if and only if every dense cozeroset is C*-embedded, C*(X) = Q*{X) 

if and only if X is extremally disconnected space, and C(X) = Q(X) if and only if 

X is extremally disconnected P-space [26, 3.5]. 

The ring of continuous functions C(X) satisfies the strongly a.c. condition by [24, 

Ex, p.948], and as a consequence of that PD(X) = P({X). 
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Remark 4.1 IfX is a topological space then spec(H(X)) = PD(X) with the spectral 

topology on the first space and the patch topology on the second space. 

It is clear by lemma 1.20(3), that X is an almost P-space if and only if every maximal 

ideal is a d-ideal. So by corollary 1.9 we can conclude that X is an almost P-space 

if and only if MH(X) G M(H(X)) for each M G H(X). Part of this result appears 

in [30, corollary 3.11]. 

We need to mention the next definition and two lemmas which appeared in [11]. They 

give a good description of the d-ideals inside C(X). 

Definition 4.2 Let F be a closed subset of X. Then an ideal I ofC(X) is called an 

o-ideal if I = {h G C(X) : F C z(h)}. 

Lemma 4.3 Let X be a topological space. Then: 

(1) Every o-ideal is a z-ideal and an I— ideal. 

(2) If I is o-ideal then I* = {h G C(X) : cl{Fc) C z(h)}. 

Proof. 

(1) It is clear from the definition that every o-ideal is a z-ideal. Let 0 < |g| < |/i|, 

h. G I. Since h(x) = 0 implies that g(x) = 0, then z(h) C z(g) and therefore g G I. 

Hence I is an ideal. 

(2) Let I = {h G C(X) : F C z(h)} be an o-ideal, and suppose h G I*. Then hg = 0 

for each g G I. Since F = P|aGJ; z(ga), then hga = 0 for each a G T, which implies 

that z(h) U F = X. Then cl{Fc) C z{h). Conversely, if cl{Fc) C z(h) and g e l , 

then for any x G X we have x £ F whenever x £ z(g). Therefore hg = 0 and g G I*. 

Thus T = {h G C{X) : cl(Fc) C z(h)}. • 

Lemma 4.4 Let X be a topological space. Then: 

(1) For each f G C{X), we have (/)* = {h G C(X) : X - int(z{f)) C z{h)}, and 

if)** = {h G C(X) : mt(z(f)) C mt(z(h))} . 

(2) An ideal I is a d-ideal if and only if int(z(f)) C int(z(g)) and f G / implies that 
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gel. 

(3) Ox = { / : x £ mi(z(/))} is a d-ideal for each x £ X. 

Proof. 

(1) If f , h £ C(X) such thathf = 0, then coz(f)ncoz(h) = 0 . Suppose x ^ z(/i), £/ien 

x ^ cl(coz(f)), which implies that x £ int(z(f)). Therefore X — int(z(f)) C z(h), so 

</)* C(X) : X - int(z(f)) C z(/i)}. Conversely, if X - int(z(f)) C z(/i), 

then x ^ z( / ) implies that x £ z(/i), so /i/ = 0. Therefore (/}* = {/i £ C(X) : 

Since (/}* is an o-idea/ fften (/}** = {/i £ C{X) : c/(m<(z(/))) C z{h)}. But 

cl(int(z(f))) C z(K) if and only if int{z{f)) Cint{z(h)). Thus (/)** = {ft £ C(X) : 

int(z(f)) C mi(z(/i))}. 

(2) 77ms follows directly from (1). 

(3) Suppose int(z(f)) C int(z(g)), and let f £ Ox . .Since x £ int(z(f)) C int(z(g)), 

then g £ Ox. Hence Ox is a d-ideal for each x € X. • 

We present, from our point of view, certain results that appear in [30] and [28]. 

Our goal is to see the structure of H(X) and to recall the corollary 4.12 in [30] 

which states that if H(X) is isomorphic to a C(Y) then Y = (gX)s- Furthermore, 

Lemma 4.5 Let X be a topological space and g £ C(X). Then: 

(1) The set S(g) = coz(g) U int(Z(g)) is a dense open subset of X, and [5] £ Q(X) 

where g is given by: 

(2) [(/]* = [(7] where [5]* is the quasi-inverse of [g] in Q(X). 

(3) If [/] £ H(X). Then f can be represented by a function g such that g £ 

4.4 The structure of H(X) 

H(X) = H(gX). 

0 if x e int{Z{g)) 

j ifx£coz{g) 
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C ( n f = 1 5 ( ^ ) ) where {gi : i = 1,2, ....n} is a finite subset ofC(X). 

(4) P(X) = f |{5(5) : g e C(X)} where P(X) is the set of all P-points in X. 

Proof. 

(1) It is clear that S(g) is a dense open subset and that g £ C(S(g)). Therefore 

(2) Since [g*}[g} = [g2\s{g)g} = [5|s(fl)] = [g], then [<?]* = [gf[g} = [g2g\s{g)] = [g]. 

(3) / / [ / ] £ H(X), then by lemma 2.6 we know that [f] = where fi, gi £ 

C(X) for each i = 1,2, ...,n. Take g = fi\B§i\B where B — fl"=1S'(5i). Hence 

g £ Ci^Stei)) and [/] = \g). 

(4) If x is a P-point, then x £ Z ( f ) implies that x £ int(Z(f)). So x £ S(g) for 

all g £ C(X). On the other hand, if x £ S(g) for all g £ C(X). Then x £ coz(f) 

implies that x £ int(Z(f)). Hence x is a P-point. • 

Theorem 4.4 Let Y be a dense C*-embedded subset in X. Then C(Y) is an epi-

morphic extension of C(X) and H(X) = H(Y), in particular H(X) = H(j3X). 

Proof. 

We have ip : C(X) —> C{Y) defined by i p ( f ) = f\y is a ring monomorphism. Thus 

one can consider C(X) to be a subring of C(Y). 

For each f £ C(Y), let gi = J^JS, <?2 = and gz = f2 + 1. It is clear that 

gi,g2 £ C(X), gz £ C(Y), f = g^g3 and g\ — g2gz- Then using lemma 1.7 we can 

conclude that C(Y) is an epimorphic extension ofC(X). For each 0 ^ / £ C(Y), 

we have ^ £ C*{Y) and 0 ^ ^ 6 C*(Y) C C(X). Therefore C(Y) is a ring of 

quotients of C(X). By lemma 1.3 we have C(Y) is essential extension ofC(X). Since 

H(X) is the maximal essential epimorphic extension ofC(X) then C(Y) C H(X). 

Since U DY is a dense open subset in Y for each dense open subset U of X then 

Q(X) C Q(Y) and therefore C{Y) C H{X) C Q{Y). Hence H(Y) C H{X). But 

H(Y) is a ring quotients ofC{X), so C(X) C H{Y) C Q(X). Thus H(X) C H(Y). 

Since X is C*-embedded in pX then H(X) = H((5X). • 

Corollary 4.2 If X is an extremally disconnected space then H(X) = Q(X). 
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Proof. 

Suppose X is an extremally disconnected space and [/] £ Q(X), then f £ C(V) for 

some dense open set V. Since V is dense and C*-embedded in X, then by theorem 

4.4 C(V) C H(X). So Q{X) = H{X). • 

A topological space X is called realcompact space if every real maximal ideal of 

C(X) is fixed. For any Tychonoff space X there is a unique (up to homeomorphism) 

realcompact space vX such that X is dense and C-embedded in vX. Therefore 

C(X) C{vX) and H{X) = H(vX). So to study the epimorphic hull H(X) for a 

topological space X it is enough to study the epimorphic hull for its realcompactifi-

cation vX. We will assume that all our topological spaces are realcompact spaces. 

In [28, 5F(7)] the authors proved that Xs is real-compact space whenever X is. And 

by [8, 8.9, 8.14] we know that if X is realcompact space then the subspace gX is a 

realcompact space too. 

Lemma 4.6 Let a : Y —> X be a continuous function. Then: 

(1) 6 : C(X) —> C(Y) defined by 6(g) = g o a is a ring homomorphism which 

preserves the identity. 

(2) 6 is a monomorphism if and only if o(Y) is a dense subset of X. 

(3) 6 is onto if and only if o : Y —> a(Y) is a topological homeomorphism and o(Y) 

is a C-embedded subset in X. 

Proof. 

(1) Since ((91+92) °<r)(x) = ((gi+g2)(o(x)) = g1(a(x))+g2(a(x)) and ((gig2)oa)(x) = 

{{9192)(cr(x)) = g!(a(x))g2(a(x))T then o(gl + g2) = 6(gi) + 6{g2) and o(gig2) = 

o(gi)d(g2). Thus a is a ring homomorphism. Since &(l)(x) = ( loa)(x) = l(o(x)) = 

1 then & preserves the identity. 

(2) (=>-•) Suppose & is a ring monomorphism. Then 6(g) = 0 implies that g = 0 for 

each g 6 C(X), i.e. g(o(Y)) = {0} implies that g = 0. Suppose that a(Y) is not a 

dense subset of X. Then there is an open set U 0 of X such that U fl o(Y) — 0 . 

Take any point XQ £ U. Then there is a continuous function f : X —> R such that 
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f{xo) = 1 and f{Uc) = {0}. Since a(Y) C [/c, then f(o(Y)) = {0} and f ^ 0, which 

is a contradiction. Thus cr(Y) is a dense subset of X. 

(<=) Suppose that o(Y) is a dense subset in X and let g G C(X) such that a(g) = 0. 

Since g(a(Y)) = {0} implies that cr(Y) C Z(g), then Z(g) = X, because a(Y) is 

dense in X. Hence & is a ring monomorphism. 

(3) {=>) Let 6 be an onto map. Firstly, we prove that a is a one-to-one map. Suppose 

°{yi) = a(yz) for some 2/i t^ 2/2 G Y. Then g(a(yi)) = g(a(y2)) for each g G C{X). 

But 6 is an onto map, so V/ G C{Y) there exists agE C(X) such that 6(g) = f . 

Choose f G C(Y) such that f(yi) /(2/2)- Then g(o(yi)) ^ g(a(y2)), which is a 

contradiction. Thus a is a one-to-one map. Since a is a one-to-one map, then one can 

define the function : a(Y) —• Y. Now since & is an onto map, then V/ G C(Y) 

there exists age C(X) such that g o a = f , which means that f o a~l = g\A(Y) is a 

continuous function V/ G C(Y). Then by [6,3.8], a"1 : a(Y) —>• Y is a continuous 

map. So o :Y —> aiy) is a topological homeomorphism. Finally, we show that a(Y) 

is C-embedded in X. Let g : <J{Y) —R be a continuous function. Then goer G C(Y). 

Therefore there is an h G C(X) such that 6(h) — g o a, i.e. g o a = h o a. Hence 

h\A(Y) = g and therefore cr(Y) is C-embedded in X. 

(4=) Suppose that o : Y —> o(Y) is a topological homeomorphism such that cr(Y) is 

a C-embedded subset in X. Then for any f G C(Y) we have f o a"1 : cr(Y) —> R is 

a continuous function. Therefore there exists an h G C(X) such that h\a(y) — /ocr_1-

But o(h)(x) = (ho o)(x) = h(a(x)) = (f o o~1)(a(x)) = f(x) for each x G X. Then 

6(h) = / . Hence 6 is an onto map. • 

Since every non-zero ring homomorphism from the field of the real numbers into 

itself is the identity homomorphism, then one can conclude that if X is a topolog-

ical space then every non-zero ring homomorphism ip from C(X) into R is an onto 

homomorphism and therefore Ker(tp) is a real maximal ideal of C(X). 

Lemma 4.7 Let X be a topological space. Then: 

(1) If h\,h2 are two homomorphisms from C(X) onto R then hi = h2 whenever 
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Ker(hi) = Ker(h2). 

(2) If M is a real maximal ideal of C{X) then there is a unique onto homomorphism 

(p : C(X) —> R such that M = Ker(<p). 

Proof. 

(1) Let hi, h2 be homomorphisms from C(X) onto R such that Ker(h\) — Ker(h2) = 

K. Then hi,h2 : C(X)/K —• R are isomorphisms, which implies that hi o h2 

is the identity isomorphism on R. So hi — h2. Now for any f G C(X) we have 

h i ( f ) = hi(f) = h 2 ( f ) = h 2 ( f ) . Hence hi = h2. 

(2) Let M be a real maximal ideal ofC(X). Then the monomorphism ir : R —> 

C(X)/M defined by n(r) = r + M is an onto map. Since the natural map rci : 

C(X) —> C(X)/M is an onto map too, then it"x o m : C(X) —> R is an onto 

homomorphism. It is clear that Ker(-n~l o 7Ti) = {g : 7r-1 0^1(3) = 0} = {g : 

7r~1(g + M) = 0} = {g : 7Ti (0) = g + M} = M. The uniqueness follows directly from 

(1). • 

Theorem 4.5 Let X, Y be topological spaces. Then: 

(1) X is a realcompact space if and only if for every onto homomorphism <p : C(X) — 

R there is a unique XQ G X such that <p(g) = g(x0) for each g G C(X). 

(2) If X is a realcompact space and t : C(X) -—> C(Y) is a ring homomorphism with 

t( 1) = 1, then 3 ! t* : Y —> X continuous function such that t* = t. 

(3) Let X be a realcompact space and letY be a dense C-embedded subset ofT. Then 

for each continuous function t : Y —> X there is a continuous function t : T —> X 

such that t\y = t. 

Proof. 

(1) (==>) If X is a realcompact space and(p : C(X) —> R is an onto homomorphism, 

then </? : C(X)/K —• R is an isomorphism where K = Ker(ip). Since X is a 

realcompact space, then there is a unique XQ G X such that K = MXo. On the other 

hand, we have : C(X) —> R defined by <p(g) = g(x0) is an onto homomorphism 

with the same kernel, so <p = tp. Hence <p(g) = g(x0) for each g G C(X). 
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(<*=) If if : C(X) —> R is an onto homomorphism, then there is a unique xq G X 

such that ip(g) = g(xo) for each g G C(X) and therefore Ker(<p) = MXo, i.e. every 

real maximal ideal of C(X) is fixed. Hence X is a realcompact space. 

(2) Let X be a realcompact space and let t: C(X) —• C(Y) be a ring homomorphism 

with i(l) = 1. Fixy eY and let H : C{X) —> R be defined by H(g) = t(g)(y). 

Then it is clear that H is non-zero ring homomorphism and therefore H is an onto 

map. So by (1) there is a unique t*(y) G X such that H(g) = g{t*(y)) for each 

g G C(X). Then one can define a function t* : Y —• X by y —> t*(y). Since 

H{g) = g{t*{y)) = {g°t*){y), H{g) = t{g){y), then t(g){y) = (got*)(y), which 

implies that go t* — t(g) G C(Y) for each g G C(X). Thus t* : Y >• X is a 

continuous function. Since t* : C(X) —> C(Y) is defined by t*(g) = g o t* = t(g), 

hence t* = t. For the uniqueness, let t\ : Y —> X be another continuous function 

such that ti = t. Then ti(g) = g o t\ — t(g) for each g G C(X), which means that 

(goti)(x) = t(g)(x), i.e. g(h{x)) = g{t*{x)) for each g G C{X). Thus t^x) = t*(x) 

and t* is a unique map. 

(3) We have t : C(X) —> C(Y) is a homomorphism where t(g) —got for each 

g G C(X). Since Y is a C-embedded subset in T, then there exists got G C(T) 

such that g ot\y = g ° t. So H : C(X) —• C(T) defined by H(g) = g o t is a ring 

homomorphism which preserves the identity. Thus by (2) there is a unique continuous 

function H* : T —> X such that H* = H. Take t = H*. Then for any y G Y we 

have g(t(y)) = H{g){y) - £7t(y) = (g o t){y) = g(t(y)) for each g G C(X). Then 

t(y) = t(y). Thus T\y = t. • 

From theorem 4.5 we see that every ring embedding t : C(X) —> C(Y) that pre-

serves the identity can be considered as an embedding which arises from a continuous 

function t* : Y —> X. And the ring C(X) can be replaced by its epimorphic copy 

{ / o f : / g C{X)}, which is asubring of C{Y). 

Lemma 4.8 Let X,Y be topological spaces and let t : C(X) —> C(Y) be a ring 

embedding that preserves the identity. Then C(Y) is a ring of quotients of C(X) 
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implies that (t*) 1 (D) is a dense subset ofY for each dense subset D oft*(Y). 

Proof. 

We have C(X) = {/ o t* : f G C{X)}. Suppose Tx = (t*)-1(Z>) is not a dense 

subset ofY. Then there is a non-zero function f G C(Y) such that f(T\) = {0}. 

Since C{Y) is a ring of quotients of C(X), then there is a g G C(X) such that 

0 ^ f(got*) G C(X), i.e. there isanhe C(X) such that 0 ^ f{got*) = hot*. Since 

(•t*)_1{d} ± 0 M each d G D, then 0 = f(p) = f{p)(g o t*){p) = [h o t*)(p) = 

/or each p G (f*)-1{d}. Therefore h = 0 and so is f(got*), which is a contradiction. 

Thus (£*)-1(.D) is a dense subset ofY. • 

Since the identity map j is a continuous map from the space Xs onto the space X, 

then the homomorphism j : C(X) —> C(Xs) defined by j(g) = goj is an embedding 

which preserves the identity. 

Lemma 4.9 Let X, Y be topological spaces such that Y is a P-space. Then every 

continuous function g : Y —> X can be considered as a continuous function from Y 

into Xs-

Proof. 

We know that the Gs-sets form an open base for Xs- Let G = ^ a Gs-set 

of X. Then g^if^iUi) = riiSiG?-1^)) ^5 a Gs-set ofY, and hence it is an open 

subset ofY. Thus g : Y —> Xs is a continuous function. • 

Theorem 4.6 Let X be a realcompact space. Then TFAE: 

(1) C(Xs) is a ring of quotients ofC(X). 

(2) X is an almost P-space. 

(3) Every dense subset of X is a dense subset of Xs-

Proof. 

(1) (3) This is clear by lemma 4.8. 

(3) (2) Let 0 ^ Z G Z(X). Since int(Z) U Zc is a dense subset of X, then it 

is a dense subset of Xs, which implies that Z H (int(Z) U Zc) ^ 0, i.e. int(Z) ^ 0. 
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Hence X is an almost P-space. 

(2) = > (1) Let 0 ^ f G C{X5). Then there exists r e R-{0} such that f~l{r) ± 0 . 

Since / - 1 ( r ) G Z(Xs) and Z(X) is an open base for Xs, then there is a zeroset S of 

X such that Now since X is an almost P-space, then intx(S) ^ 0. 

Choosep G intx(S), and take g G C{X) such thatg(p) = 1 andg(X—intx(S)) = {0}. 

Since f(goj)(p) =r^0, then f(goj) ± 0. But rg G C(X), f(goj)(x) = f(x)g(x), 

and 0 f(g o j) = (rg) o g G C(X). Thus C(Xs) is a ring of quotients of C(X). • 

Corollary 4.3 If T is a dense almost P-subspace of X then C(T) is a ring of quo-

tients ofC(X). 

Proof. 

We have C(X) ^ { / | T : / G C{X)}. Lei 0 ^ / G C{T). Then there exists r G R-{0} 

such that / _ 1 ( r ) ^ 0 . Since / _ 1 ( r ) is a zeroset in T andT is an almost P-space, then 

there is an open subset V ofX such that 0 ^ ( F n T ) C /~ a(r) . Choosep G (VflT) and 

take g G C{X) such that g(p) = 1 and g(Vc) = {0}. Then 0 + fg\T = {rg)\T G C(X). 

Hence C(T) is a ring of quotients ofC(X). • 

Lemma 4.10 Let X be a realcompact space. Then TFAE: 

(1) gX is a dense subset of X. 

(2) X has a dense subspace which is an almost P-space. 

(3) gX is a dense almost P-space and it contains every dense almost P-subspace of 

X. 

Proof. 

(1) ==>. (2) LetpeZe Z(gX). Since Z is a Gs set in gX, then Z = f l^ iC^i n 9X) 

where Vi is an open subset of X for each i = 1,2, Therefore there is a zeroset 

F of X such that p G F C p ^ V ^ . Suppose int(F) = 0 . Then U = F° is a 

dense cozeroset and therefore gX C U. which contradicts the fact that p G gX. Then 

int(F) 0. Since gX is a dense subset of X then int(F) C intgx(F D gX), which 

implies that intgx(Z) ^ 0. Thus gX is an almost P-space. 
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(2) (3) Let T be a dense almost P-subspace of X. IfV is any dense cozeroset 

of X then V (IT is a dense cozeroset of T. But T has no proper dense cozerosets. 

Therefore V D T — T, i.e. T C V, so T C gX. Hence gX is a dense subset of X. 

Using the same argument as in the previous proof, we can show that gX is an almost 

P-space which contains every dense almost P-subspace of X. 

(3) (1) Obvious. • 

Corollary 4.4 I f t : C(X) —> C(Y) is a ring embedding such that C(Y) is a regular 

ring of quotients ofC(X), thenC(Y) is a regular ring of quotients ofCiTs) andC(Ts) 

is a regular ring of quotients of C(T) where T is the image ofY under the map t*. 

Proof. 

Note that T is a dense subset of X, because t is a ring embedding. Since Y is a P-

space, then t* can be considered as a continuous function from Y onto T$. Therefore 

we have the ring embeddings C(T) —> C(T$) —> C'(Y). Since C(Y) is a regular 

ring of quotients ofC(X), then C(Y) is a regular ring of quotients of C(T). Thus 

C(Y) is a regular ring of quotients ofC(Ts) and C(Ts) is a regular ring of quotients 

ofCiT). • 

It is clear by theorem 4.6 that if T is the image of Y under the map t* as in corollary 

4.4, then T has to be an almost P-space whenever T is a realcompact space. 

Theorem 4.7 Let X be a realcompact space. Then TFAE: 

(1) C(X) has a regular ring of quotients of the form C(Y). 

(2) gX is a dense subset of X. 

Proof. 

(1) =>• (2) Let t. : C(X) —> C(Y) be the ring embedding such that C(Y) is a regular 

ring of quotients of C(X), and let t* : Y > X be the unique continuous function 

such that t* —t. Then T = t*(Y) is a dense subset of X and it is an almost P-space. 

So by lemma 4.10, gX is a dense subset of X. 

(2) => (1) If gX is a dense subset of X, then by corollary 4.3 we have that C{gX) 
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is a ring of quotients ofC(X). But C((gX)s) is always a ring of quotients ofC(gX). 

Hence C'((gX)$) is a regular ring of quotients of C(X). • 

Let C(Y) be a regular ring of quotients of C(X) and let T be the image of Y under 

the map t*. By lemma 4.10, we know that T is a dense subset of gX where T and gX 

are both dense almost P-subspaces of X. Then is a dense subset of (gX)$. Hence 

there is a ring embedding k : C((gX),5) —> C(Ts). Also we have the ring embeddings 

C{X) —• C(T) —• C(TS) —• C(Y). So by combining these two embeddings, one 

has the ring embeddings C{X) —• C{gX) —• C((gX)s) —> C(Y). 

Lemma 4.11 Let X be a realcompact space. Then H(X) is isomorphic to a ring of 

real-valued continuous functions if and only if H(X) = C((gX)$) and in that case 

H(X) - H(gX). 

Proof. 

(=>) Suppose that H(X) = C{Y) for some topological space Y. Then it follows from 

theorem 4.7 that gX is a dense subset of X, and therefore there are ring embeddings 

C(X)—• C(gX) —• C((gX)s) —> C(Y). Since C(Y) is an epimorphic extension 

of C(X), then the embedding C((gX)s) —> C(Y) is an epimorphic homomorphism. 

But C((gX)s) is a regular ring, which means that it has no proper epimorphic exten-

sion, i.e. C(Y) ^ C{(gX)s). Thus H{X) ^ C((gX)s). 

(4=) Obvious. 

If H(X) = C((gX)s), then we have an epimorphic ring embeddings C(X) —> 

C(gX) —> C((gX)s), and therefore C((gX)s) is a regular epimorphic ring of quo-

tients of C(gX), i.e. H(gX) = C((gX)s). Thus H{X) = H{gX). • 

4.5 The Krull ^-dimension for the ring C(X) 

Let PD(X) be the set of prime d-ideals of the ring C(X). Then by the Krull d-

dimension of a maximal ideal we mean the supremum of the lengths of chains of 

prime d-ideals lying in it. The Krull d-dimension of C(X) is the supremum of the 
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dimensions of the maximal ideals of C(X). Then it is clear by theorem 1.17 that the 

Krull d-dimension of C(X) is one if and only if Qd(X) is a regular ring, which means 

that a necessary and sufficient condition for the Krull (/-dimension of C(X) to be one 

is that the space X be a cozero complemented space. 

The space P D ( X ) as a subspace of PZ(X) with the patch topology has the sets of 

the form V(F) fl D(g) as basic open sets where f,g G C(X). In the next lemma we 

show that if H(X) = C((gX)s) then the space PD(X) is isomorphic to fi((gX),5). 

Lemma 4.12 Let X be a topological space such that H(X) = C((gX)$). Then 

PD(X) = P((gX)s). 

Proof. 

Suppose that H(X) = C((gX)5). We know that spec(H(X)) = PD(X) with the patch 

topology on both of spaces, and that the patch topology on C((gX)$) coincides with 

the spectral topology on it. Hence PD(X) = /3((gX)s). • 

If the epimorphic hull H(X) is isomorphic to a ring of continuous functions C(Y), 

then by lemma 4.11 we know that H(X) = C((gX)s), where we identify C(X) with 

the set {f\gx f £ C(X)}. Taking K = gX, then the topological homeomorphism 

ip : pK —* Pd{X) is defined by <p(M) = MnC(X). A function t G C(K) will 

be considered as an element in C(X) if there exists a function g G C(X) such that 

d\gx = t- The subset K as a subset of j3K is identified with the set { M x : x G K} 

where Mx = { / G C{K) : f{x) = 0}. But K as a subset of PD(X) is identified with 

the set {Mx H C(X) : x G K} = {Mx : x G K} where Mx = { / G C(X) : f(x) = 0}. 

Theorem 4.8 Let X be a Tychonoff space such that C(X) contains an infinite chain 

of prime d-ideals. Then H(X) is not isomorphic to C((gX)s). 

Proof. 

Since C(X) contains an infinite chain of prime d-ideals, then by lemma 4.6 we will 

have two cases: 

First case: C(X) contains an infinite strictly increasing sequence of prime d-ideals 
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Pi C P2 C C Pn C For eac/j n > 1, choose bn G Pro + 1 — P n and let 

Dn = coz{bn\K), Bi = A , and Bn = Dn - ( U ^ A ) - A , A G /or 

each n > 1. We fcnow; Bn fl An = 0 V n ^ m and P n G Dn V n > 1. 

But Pn £ A V t = 1, 2, 3, ...n - 1, and Di U (X5 - A ) = Pd(X). T/ien P„ G 

(X* - A ) V i = 1, 2,3, ...n - 1. Therefore Pn G A and P{ £ A V i ± n. 

Define h:Ks —• P by h\Bn = 6n |Bn and /i(x) = 0 V x G (Ks - U™=1Bn). It 

is clear that h G C(K$) = H(X), so h = YILi cA* where a,di G C(X). Hence 

by lemma 3.5 bf= l i f e ^ e r e = 0 : di £ A } C {1,2, ...,m}. Let 

W = {Pi, P2, , Pm+2} and t = , & t + l F r ) - T / i e n U i s c l e a r t h a t 

rg(t) > m + 2. i/ie same t = 7r(/i) and therefore rg(t) < m, which is a 

contradiction. Hence X cannot be isomorphic to C((gX)s). 

Second case: C(X) contains an infinite strictly decreasing sequence of prime d-ideals 

p^ D P„ D p D r l r2 jt rn jt 

For each n > 1, choose bn G P„ — Pn+i and let Dn — coz(bn\K) — coz(bn+i\x)- Since 

A- B = A- B for each A, B G B(KS), bn £ Pm V m > n +1, and &„ G P m V m < n, 

then Pm £ A , and Pn+i £ A V m ^ n + 1. iVou; make the Dn disjoint in the 

standard way by letting C\ — A? C2 = A — A > and in general C„ = Dn— [Ul^a • 

Tfte (Cn)™=l are non-empty disjoint clopen subsets in Each Cn has P„+1 but 

no other Pi in its closure. Define h : Ks —> R by h\cn = bn+i\cn and h(x) = 

0 V x E (Ks- U~=1C„), so h e C(KS) = H(X) and therefore h = YT=ici-^* 

where c^di G C(X). Then it is clear by lemma 3.5 that = Y2ieLn X+pL 

where Ln = {i : di £ Pn} C {1,2, ...,m}. Let W = {Pi,P2, ,Pm+2} and t = 

, bmi
++iC"2+2^ {t ^ deCLr thCLt rgW ~ m + 2- ^ 5ame 

/ = yr(/i) and therefore rg(t) < m. which is a contradiction. Hence H(X) cannot be 

isomorphic to C((gX)s). n 

The ease where saturated chains in PD(X) have finite length yet the general dimen-

sion is infinite could potentially occur in two ways. 

Two cases: 
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Case A. There exists a countably infinite set of distinct maximal ideals {Mn} such 

that Mn has a chain of length sn > n descending from Mn (these maximal ideals 

might have finite or infinite Krull d-dimension). 

Case B. With finitely many exceptions all maximal ideals have finite Krull d-dimension 

and there is a finite (global) bound for said dimension. 

Theorem 4.9 Suppose that there exists in C(X) a countable infinite set of distinct 

maximal ideals Mn,n = 1, 2,3, such that for each n, the ideal Mn has a chain of 

prime d-ideals of length sn>n descending from it. Then H(X) is not isomorphic to 

C((gX)s). 

Proof. 

One follows the same steps as in the proof of the theorem 3.5. • 

Corollary 4.5 If H(X) is isomorphic to C((gX)&) such that every maximal ideal in 

C(X) has a finite rank then C(X) has finite Krull d-dimension. 

Proof. 

It follows directly from the fact that Case B does not occur for such spaces. • 

Remark 4.2 Let X be an RG-space that is an SV-space. Then C(X) has finite 

Krull d-dimension. 

Proof 

It follows directly from the fact that every SV-space has finite rank. • 

Case B remains open. To date we do not know if there is a topological space X 

such that X has a maximal ideal with infinite Krull d-dimension and still have H(X) 

isomorphic to C{{gX)s). 
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Chapter 5 

Conclusion 

5.1 Conclusion 

In this thesis we have proved that for a commutative semiprime ring with identity A, 

the spectrum of the ring H(A) with the spectral topology can be identified with the 

space of prime C-ideals of A under the patch topology. In particular, for a commutative 

semiprime ring with identity which satisfies the strongly a.c. condition, the spectrum 

of the ring H(A) with the spectral topology can be identified with the space of prime 

d-ideals of A under the patch topology. 

We have also studied the class of RG-spaces and obtained new results about them. We 

have introduced the class of almost A,-Baire spaces as well as the class of almost Baire 

spaces. Finally we have studied the Krull z-dimension and the Krull d-dimension for 

the ring of real-valued continuous functions defined on a Tychonoff space X. 

5.2 Our contribution in this thesis 

The main new results contributed by this thesis are the following: 

(1) For a commutative semiprime ring with identity A, we have PC,{A) = spec(H(A)) 

as topological spaces with the patch topology on both spaces. 
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(2) If A is a commutative semiprime ring with identity such that A satisfies the 

strongly a.c. condition then PD(A) = spec(H(A)) as topological spaces with the 

patch topology on both spaces. 

(3) Every an RG-space is an almost-Baire space . 

(4) If X is an RG-space then every countable intersection of dense cozerosets of X 

has a dense interior. 

(5) Every RG-space of countable pseudocharacter X is a Baire space. 

(6) If X is an RG-space of countable pseudocharacter then every finite intersection 

of dense subsets is a dense subset. 

(7) If X is an RG-space of countable pseudocharacter then X is not an almost re-

solvable space. 

(8) Assume V = L. Then every RG-space of countable pseudocharacter has a dense 

set of isolated points. 

(9) If X is a Tychonoff space such that C(X) contains an infinite chain of prime 

z-ideals then X is not an RG-space. 

(10) If there exists in C(X) a countable infinite set of distinct maximal ideals Mn. n = 

1, 2,3, such that for each n, the ideal Mn has a chain of length Sn > n descending 

from it then X is not an RG-space. 

(11) If X is a cozero complemented RG-space then C(X) has finite Krull z-dimension. 

(12) If X is an RG-space such that every maximal ideal of C(X) has finite rank then 

C(X) has finite Krull z-dimension. 

(13) Let X be a topological space such that H{X) = C{{gX)s). Then PD(X) = 

Pi(9X)s). 

(14) Let X be a Tychonoff space such that C(X) contains an infinite chain of prime 

d-ideals. Then H(X) is not isomorphic to C((gX)g). 

(15) If H(X) is isomorphic to C((gX),5) such that every maximal ideal in C(X) has 

finite rank then C(X) has finite Krull d-dimension. 

(16) Every almost P-space is an almost /r-Baire space for each cardinal number k. 
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(18) A topological space X has a dense set of almost P-points if and only if X is an 

almost fc-Baire space for each cardinal number k. 

5.3 Open questions and future work 

Question (1) Is there an example of RG-space for which all fixed maximal ideals are 

of finite Krull z-dimension, but there are maximal ideals of infinite Krull z-dimension? 

If so, is there example where the fixed Krull z-dimension is finite? 

Question(2) If X is a topological space with infinite Krull z-dimension such that 

every chain of prime z-ideals is finite, and for all but finite number of the maximal 

ideals have a global bound Krull z-dimension. Does this implies that X is not an 

RG-space? An affirmative answer of this question will establish theorem 3.4. 

Question(3) Are all RG-spaces of finite Krull z-dimension of finite regularity degree? 

Question(4) If H(X) = C{{gX)5) does it follow that C{X) has finite Krull d-

dimension? 
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