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Abstract 

Snowfall derivative pricing: 

Index and daily modeling for the snowfall futures 

Lin Luo 

Snowfall derivatives are important complements to other weather derivatives such as 

the most popular temperature derivatives. However, non-arbitrage models could not be 

used to price snowfall derivatives because the snowfall index is not traded on the market. 

Also, utility maximization methods are normally too complex to use and the results are 

sensitive to departures from the models' assumptions. Therefore, I use statistical models 

to price snowfall derivatives, by modeling the index and the daily snowfall. I use 

numerical simulations to test the validity of all statistic models that I used.The 

explanatory power of historical index and daily snowfall values and the prediction 

accuracy of snowfall derivative prices are used to estimate the models' efficiency. The 

best model should well explain the past historical pattern and well predict the derivative 

prices. 
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I. Introduction: 

Weather changes can have potentially large impacts on a wide range of businesses. It 

is estimated that about $2.2 trillion or more of business profits might be weather-

sensitive. The El Nino conditions, which is defined as the warming of surface waters in 

the tropical eastern Pacific Ocean, accompanied by warm winters in the northeastern U.S. 

lead to huge energy cost savings, while La Nina, which is the opposite of El Nino with 

cooling of surface waters in the tropical eastern Pacific Ocean, caused severe winter 

conditions leading to high energy expenditure. In the rainy Pacific Northwest, La Nina 

brought even more rain and snow than usual. In addition, El Nino inhibited hurricane 

activities in Florida but exacerbated extreme floods in California. In order to eliminate 

uncertainty in economic profits from changes in weather, a new financial asset category 

was created - weather derivatives. 

The first weather derivative deal was initiated in July 1996 when Consolidated Edison 

Co. purchased electricity power from Aquila Energy for the entire month of August. The 

weather derivative characteristic of this deal was due to a clause embedded in the 

contract, which specified that if the temperature was cooler than usual, Consolidated 

Edison Co. would receive a discount. The measurement of "usual" in this contract was 

based on Cooling Degree Days (CDD)[1] measured at New York City's central park 

weather station. Later, weather derivatives commenced trading over-the-counter (OTC) 

in 1997. However, the further growth of such OTC market was limited by the credit risk 

aspects. Finally, the Chicago Mercantile Exchange (CME) initiated exchange-trading of 

weather derivatives on an electronic trading platform in 1999, increasing the size of the 

market and reducing credit risk. 
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Weather derivatives are structured as swaps, futures and options on different types of 

weather indexes. Among these weather indexes, Cooling Degree Days (CDD) and 

Heating Degree Days (HDD) are the most commonly referenced ones on the CME. The 

derivatives based on CDD and HDD are, therefore, the most heavily traded and liquid 

ones on the exchange. However, temperature derivatives are not sufficient under some 

conditions. For instance, snow resort business is directly related to snowfall rather than 

temperature. Winter tourism in these areas is affected mainly by the level of snowfall. 

Even though the uncertainty in snow related businesses could be partly hedged by using 

temperature derivatives (HDD), basis risk is an issue under this circumstance. As we all 

know, temperature and humidity are both the causes of snowfall. If the humidity is 

extremely low, the chance of a snowfall will be low no matter how cold it is. Thus, the 

unique feature of snowfall derivatives makes them complementary to temperature 

derivatives. 

[1] Cooling Degree Days are indices used to measure the demand for energy of cooling. They are 

cumulative indices calculated by adding the excessive temperature above some certain criterion over a 

specific period. It could be express as Max (0, Tn-T). Here Tn represents the average temperature for nth 

day and T represents the criterion temperature. For instance, if one day's average temperature is 70° 

Fahrenheit and the base temperature is 65°. The CDD value for this day is 70-65=5. If one day's average 

temperature is 60° with the same base temperature, the CDD value for that day will be 0. 
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II. Literature review 

Generally, there are two main categories of models in derivative valuation: 1) 

economic models; 2) statistical models. 

1. Economic Models 

Economic models usually have closed form formulas to value the derivative's price. 

They can be classified into: 1) arbitrage-free models; 2) utility maximization models. 

1.1 Arbitrage free models 

The most famous economic models in derivative pricing are derived by applying 

arbitrage free concepts. As described in Black and Scholes (1973), the closed-form option 

pricing formula of Black-Scholes (B-S) illustrates that if stock price follows a lognormal 

distribution and the stock pays no dividends, the no-arbitrage European style option's 

price is obtained by solving a partial differential equation (PDE) constructed based on a 

non-arbitrage hedge position with a certain combination of a long position in the stock 

and several short positions in the option. However, a closed-form equation is not always 

available from an economical model, because sometimes PDEs could not be solved 

mathematically, constraining the applicability of the B-S closed form formula to other 

type of options besides European style ones. For American-style options and observed 

path-dependent options, analytical solutions are unavailable (the PDE cannot be solved). 

For some observed Asian options, it is feasible to have an analytical solution, but the 

process is complex and not efficient. As a consequence, numerical methods are widely 

used to price those derivatives that cannot be priced using the B-S closed-form formula or 
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its variations. The suitability of any numerical method depends largely on the particular 

derivative. 

The assumption of the B-S model that traders are able to construct a arbitrage-free 

portfolio of the underlying asset and its derivative is critical to the ability to apply risk-

neutral valuation methods to price the derivative, because it determines whether risk-

neutral valuation can be used. If this is possible, the risk-free interest rate could be used 

as the discount rate to calculate the current price of any derivative. Weather derivatives 

may not be priced by using B-S type models, because the underlying, the weather index, 

is not traded in the market. Therefore, it is impossible to create a risk-free portfolio of the 

index and its derivative and thus impossible to use risk neutral pricing. 

1.2 Utility maximization models 

Utility maximization economic models are used to price weather derivatives when 

arbitrage-free models fail. In the literature on weather derivatives, the most cited 

economic model was developed by Cao and Wei (2004). An equilibrium approach was 

introduced for valuing temperature derivatives which was first developed in their 

working paper in 1999. This type of model does not rely on the assumption that the 

underlying assets of weather derivatives must be traded, because they price the derivative 

through maximizing the utility. The Generalized Lucas's model of 1978, which is an 

extension of a pure exchange economy with two state variables, was applied as the 

framework in the paper. The Lucas's model describes an optimal trading strategy to 

maximize expected lifetime utility for a representative investor. The first order conditions 

yield the standard Euler equation: 



Xt is the price of the security; D denotes the dividends; and Ucis the first derivative of 

utility function on consumption. From the Euler equation, the price of any security 

equals the expected discounted sum of its dividends. Under the assumption of 

equilibrium, aggregate consumption should equal the aggregate dividends generated from 

the security. Therefore, aggregate dividends can replace consumption in the Euler 

equation. And for a finite time period 0 to T, any contingent claim with a payoff qT at 

maturity T, its price at t, denoted by Ft(t, T), could be obtained from Euler equation with 

8t (represent aggregate dividends) replacing ct: 

F ( t ' 7 ) = n f l t\ Et(Uc(ST,T)qT) (2) t) 

Here qT represents the payoff of the contingent claim at T. For weather derivatives, like 

call options on the HDD index, the payoff equation could be further written as: 

CHDD(t,TltT2,X) = 1 Et(Uc(ST,T) • max(//DD(r1 ; T2) — X, 0)) (3) 
Uc(.St, t) 

The life of the call option is from Ti to T2, and t is a point between T[ and T2. The utility 

function and aggregate dividend behavior are defined by: 

cY+1 

U (Ct,t) = e ^ ^ (4) 

lnSt = a + Hindis + vt (5) 

Where the rate of time preference p > 0 and risk aversion parameter 7 < 0; and 1— y. 

measures the mean reversion, and vt takes the following form: 
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vt = aet + a : £ t + + #2£t-2 "I 1" 9mst-r , 0 < m < +00 (6) 

Using equation (4) and (5), equation (3) could be written as: 

CHDD(t,Ti,T2,X) = e-P^~^S;YEt{Sl2 • max(/ /DD(r1 (r2) - X, 0)) (7) 

Then after using the daily temperature to calculate the HDD index, the price of a call 

option on the HDD index could be found by using simulation (closed form formula are 

impossible to derive with Lucas's model). The temperature behavior is described by the 

residual model: 

*< = Y'-{ws K H ) (8> 

= ^ pt^t-i + °t£t 
i=l 

at = a0 ~ 
nt 

S i n ( 3 6 5 + W ) 

( 9 ) 

(10) 

st~i.i.dN( 0,1) 

Where /? is the warming trend parameter and n t is the residual following a k-lag auto-

correlation process. The above model could be used to price derivatives on underlyings 

which follow a similar process. 

2. Statistical Models 

Another important category of models used to value derivative is called statistical 

models, also named as actuarial models. Due to the complexity of utility maximization 

economic models, the statistical models are more widely used in industry and academic 

research when pricing weather derivatives. 
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Zeng (2000) published a paper which describes the differences between traditional 

financial asset valuation methods and new weather derivative valuation methods. These 

differences apply to non-traded and non-stationary weather indexes. Zeng proposed the 

biased sampling Monte Carlo approach to simulate the underlying CDD/HDD indexes, 

which sampled the fitted distribution evenly across the probability distribution. The first 

step of biased sampling is to fit the assumed distribution to the historical data. For 

instance, in this paper, a normal distribution was fitted to the historical data with mean 

and standard deviation equal to the historical sample mean and standard deviation. The 

second step is to divide the fitted sample into several segments according to the weather 

forecast. In the paper, for June-July-August (JJA) 2000 temperature in Phoenix, the 

National Center for Environment Prediction (NCEP) released (November 18, 1999) 

predicts PA, PN and PB to be approximately 0.41, 0.33 and 0.26 which represented the 

probability that the true temperature would be above, near or below the sample mean 

respectively. Thus, the Monte Carlo simulation retrieved data from the fitted distribution 

from different partitions with different probabilities rather than assigning them an equal 

chance. This is the reason why the name of this approach is called biased sampling Monte 

Carlo approach. The strength of this approach is to take advantage of the weather forecast 

rather than use historical data only. 

Jewson and Brix (2005) wrote a book to synthesize all the meteorological, statistical, 

financial and mathematical knowledge for statistical models. According to these authors, 

there are three methods to price weather derivatives by fitting a statistical distribution. 

These are burn analysis, index modeling and daily modeling respectively. In burn 

analysis, the historical mean of the pay-off is used instead of fitting a specific distribution 
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(in some cases a cumulative distribution function (CDF) would be fitted to the pay-off). 

Then a risk loading is estimated to complete the valuation process. The reason that they 

add a risk loading here is due to the lack of non-arbitrage assumption in statistical models. 

Therefore, a specific discount rate which must be higher than the risk free interest rate 

should be applied to reflect the risk aversion of different investors. Risk loading is used 

by practitioners to replace the discount rate, because it is easier to calculate and has a 

similar effect. Burn analysis is an approximate method for pricing weather derivatives. 

In index modeling, researchers fit a distribution to the underlying index first and estimate 

the pay-off to the derivative based on the estimated distribution. For daily modeling, 

researchers try to capture all the features of daily observations. It is a more complete way 

to use the available historical data than burn analysis and index modeling. Therefore, it is 

more accurate. 

Yamamoto (2006) gave a parallelizable algorithm for pricing temperature options 

using simulation. He used Dischel's D1 model (1999) as the daily temperature evolution 

process. The Dischel's D1 model is shown below: 

Tn = adn + bTn.x + yen (11) 

Here in the model, 6n represents the temperature of the n-th day in an average year; 7n_1 

is the one day lagged temperature; en is a sequence of i.i.d random variables that follow 

the normal distribution N(n,<j2). According to Dischel, the parameter a and /? are 

constrained by a + (3 = 1, and parameter y subjects to y = 1 based on simulation of 

thousands of seasons which make the statistics of the projected distribution close to those 

of the historical distribution. Then an algorithm that computes the price of the 
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temperature option based on the recurrence formulas derived from Dischel's D1 model is 

constructed: 

r +CO /. +CO 
E[PCaii] = I I k • max(CN - K, 0) pN(TN, CN)dTNdCN (12) 

J—CO J—CO 

Where (i) if Tn < T, 

Pn(Tn, Cn) = C ^ e x p f - 2 ^ } • P„-i(T»-i , CrddTn-i (13) 

( i i ) i f r n > f , 

Pn(Tn,Cn.) = • pn-i(Tn-i, Cn - (Tn - f ) ) d r n _ 1 ( 1 4 ) 

Here, an algorithm is created by separating the sample into two categories, Tn <T and 

Tn > T. The main contribution of Yamamoto's paper is that he used a fast Gaussian 

transformation and parallelization to price the derivative. The numerical pricing process, 

therefore, is very efficient as measured by speedup. 

Recently, Dorfleitner and Wimmer (2009) analyzed temperature futures at CME with 

and without detrending. They also incorporated weather forecasts in temperature future 

pricing which can significantly influence prices up to 11 days ahead. A linear model is 

established to accomplish detrending. 

Y = Xp + e (15) 
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"IV 

Where Y= Y} Y 1 ? 
} , x= 7 f for detrending model 

y j Li n-

i n n 

r y i l r n 

The mean squared error (MSE) based on these two different models have been calculated 

in the paper, they are 

MSE (So) = ^ Z ^ 0 " 2 f o r detrending 

MSE (So) = (~~)2/?f + for no detrending 

Here, n is the number of observations, a 2 is the variance of the errors the variance, y0 is 

the predicted value of equation (15) and (32 denotes the actual trend. The empirical 

examination against past U.S weather data show that the detrending model outperforms 

the non-detrending one, because the detrending model has a bias of approximately zero 

while the non-detrending model exhibits a significant bias. They further build trading 

strategies based on the detrending model and prove that their strategies yield high overall 

returns. 

The only previous research about snowfall derivative was Beyazit and Koc (2009). 

This study proposed a pricing method for put options on snowfall level in Palandoken ski 

resort in the east of Turkey. They studied put options rather than other derivatives, 

because put options are sufficient to be used as hedge instruments by ski resorts. An 

actuarial method with normal distribution was used in the paper: 
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pit) = 6 exp(—r(tn - 0 ) E [max[K - Hn, 0}] (16) 

Here, pit), 6, r, tn, t, K and Hn denotes the put price at time t, ticker size, risk-free rate, 

the expiration time point of put option, the current time point, strike price and cumulative 

HDD index at expiration. If the index follows a normal distribution, the put price function 

would be refined as: 

pit) = 6 e x p ( - r ( t n - 0 ) UK - ixn) ^ ( a n ) - <p 

a 1 /7V 
+ - ^ [ e x p [ - ^ ) - e x p [ - - ( ^ ) ] ) ] (17) 

Here, nn, an and q> denote the mean, standard deviation of average annual temperature, 

cumulative distribution function for standard normal distribution. an = ^ ^ . However, °n 

the snowfall index level does not follow a normal distribution. Thus the function 

mentioned above is not suitable for direct application. The authors use a technique called 

"Edgeworth Series Expansion" to approximate the true distribution of the snowfall index. 

After transformation, the put price function is given by: 

N / D \ 

PiE) = exp(—r(tn - t ) ) ^ • ^T f j ( x ) • max [k - ^ ( t n ) , 0J (18) 

Where: f i x ) = 

X U f j W 

1 + g ) six3 - 3x) + {£) (fc - 3)(x4 - 6x2 + 3) 

+ e2ixe - 15*4 + 45x2 - 15) 
aix) (19) 

In the above formula, £f=i Sj(tn) is the accumulated snowfall and a(x) is the standard 

normal density which is used to approximate the true distribution. The empirical part of 
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the paper compared the results of their model to Alaton, Djehiche and Stillberger (ADS) 

model (Altaon et al. 2002) and pricing the put using the historical probability density. 

The simulation results with different level of the strike price revealed that sellers would 

be better off using Edgeworth prices as it provided higher prices and buyers would be 

better off using ADS prices as they allowed the lower put prices. 

III. Data 

The snowfall data are collected from National Climate Data Center (NCDC), a 

subsidiary of the National Oceanic Atmospheric Administration (NOAA). The weather 

station that I am particularly interested in is the New York Central Park weather station 

(WNAB 94728), because I will compare my estimates of the price of the futures contract 

on the monthly snowfall in New York with actual future prices, whose underlying is the 

snowfall observed at the Central Park weather station. The snowfall index for a contract 

month is obtained by adding all the daily snowfall from the first to the last calendar date 

for that month. The snowfall index provider for the CME group is Earth Satellite Corp. 

which also creates the index data based on daily snowfall available from the NCDC. 

The daily snowfall data from NCDC could be found back to 1890. But before 1913, a 

lot of snowfall data are missing. Therefore, the actual data in my sample is from 1913.1.1 

to 2009.11.31 (the day I downloaded the data from NCDC). NCDC labels missing data as 

'-99999' and gives additional explanation in the 'data flag' category. The unit of daily 

snowfall in the NCDC database is 0.1 inches. In order to make it comparable to the 

monthly snowfall index whose unit is 1 inch, I convert the data by dividing by 10. 
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In order to make the format complete, NCDC provides 31 dates for each calendar 

month. However, 5 out of 12 months do not have 31 days. Thus, data are always missing 

in those dates, as for example Feb 31. These dates are deleted. 

The data for the New York monthly snowfall futures prices traded on the CME are 

collected from Bloomberg. The contract months for New York Monthly Snowfall Index 

Futures are from November to April. Cash settlement is used due to the nature of the 

underlying - the snowfall index. The position limit for this Snowfall Index futures 

contract is 10,000 contracts, combining all months. The current contract tick size is $50 

per 0.1 index point. Bloomberg provides futures prices quoted in 'inches' rather than 

'dollars' to avoid complexity due to tick size changes. There are two general types of 

ticker symbols which represent snowfall futures contracts. The first is 'MBA' which lists 

all data for active contract. The futures prices for 'MBA' are easy to understand: they 

simply list current traded prices for each active contract. For example, the most recent 

active contract is for the delivery month 2010 April. As a result, there is not enough daily 

snowfall data to run a simulation model and I choose to focus on the other ticker symbol 

- the generic 'MB' ticker. For this ticker symbol, historical prices for the expired futures 

contract are restored in a rolling method relative to expiration. This is illustrated by an 

example by Bloomberg: 

The snowfall futures contracts for 2006-2007 winter are Nov06, Dec06, Jan07, Feb07, 

Mar07 and Apr07 contracts. At December 2006, 'MB1' contains futures price for the 

Dec06 contract, while 'MB2' and 'MBS' list futures prices for the Jan07 contract and the 

Feb07 contract respectively. 



Bloomberg provides data for 'MB1' through 'MB7' contracts. Therefore, I am able to 

generate a 7-month period (including the contract month) for each contract. 

IV. Modeling the snowfall index 

In this chapter, I value the snowfall derivative by fitting a specific distribution to the 

monthly snowfall index. As described in the data section, the monthly snowfall index is 

obtained by accumulating the daily snowfall for a calendar month. Therefore it is 

possible to calculate the monthly snowfall index with NCDC daily snowfall data, even 

though data on the index calculated by Earth Satellite Corp. is not available. 

Table 1: Summary Statistics for the Monthly Snowfall Index 

Historical statistics for each contract including - mean, maximum, minimum, median, standard deviation, 
skewness, kurtosis and Wald statistic and its p-value for the Shapiro-Wilk normality test are listed in Table 
1. In addition, the data sample is from 1913 to 2005. 

Month Mean Max Min Median Standard 
Deviation Skewness Kurtosis Wald-

Statistics 
Wald-

Statistics 
P-value 

November 0.534 12.8 0 0 1.600 5.479 38.054 0.373 0.00 

December 5.037 29.6 0 2.8 5.849 1.789 3.782 0.804 0.00 

January 7.110 27.4 0 5.5 6.343 1.282 1.420 0.877 0.00 

February 8.219 27.9 0 5.8 7.517 0.984 0.114 0.889 0.00 

March 4.727 25.5 0 3.1 5.511 1.773 3.065 0.794 0.00 

April 0.908 10.2 0 0 2.307 2.942 8.013 0.455 0.00 

Average of all 
contract months 4.422 29.6 0 1.9 6.019 1.803 3.081 0.755 0.00 

A reasonable assumption is that the distribution of the monthly snowfall index is 

different for each month. For instance, February is more likely to have a snow storm than 

November and April. As a consequence, a specific distribution is fitted to each calendar 
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month instead of fitting a general distribution for all 6 months. The six contract months 

are November, December, January, February, March and April. My sample includes 

monthly snowfall index from 1913 to 2005. 

In Table 1 above, summary statistics including mean, maximum, minimum, median, 

standard deviation, skwness, kurtosis and Wald statistic for the Shapiro-Wilk normality 

test are listed. Under the mean column, it is clear that January and February have the 

highest index value; November and April have the lowest level; December and March are 

in between. Under the standard deviation column, the pattern observed with volatilities is 

consistent with that observed for the means. In other words, higher mean values tend to 

be accompanied by higher standard deviations. After examining the daily snowfall data, 

the reason for this pattern is that high mean snowfall indices are most likely due to one or 

a few extremely high values for daily snowfall. The median values are always smaller 

than mean values and all skewness values are positive. Skewness and kurtosis are 

positive in all 6 month. From the Shapiro - Wilk test, all p-values for the Wald Statistic 

seem to be significant, suggesting that the null hypothesis (sample distribution follows a 

normal distribution) is rejected. Obviously, the snowfall index for each month is not 

normally distributed. 



Table 2: Distribution fitting for the Monthly Snowfall Index 
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Table 2 gives distribution fitting results for each month. All standard distributions, including the normal, 
inverse Gaussian, exponential, student, uniform, triangle, logistic, Chi-squared etc., are used to find the 
best fitting distribution. The best distribution is based on the Chi-Squared statistic. The formula to 
calculate the Chi-squared statistic is introduced by Snedecor and Cochran (1989): x 2 — Hf=i(Oj — £ ; ) 2 / 
£•(. Oj is the actual probability for the /'th snowfall index level from historical data, and Et is the expected 
probability for the /'th snowfall index level given a specific distribution. Anderson-Darling and Komogorov-
Smirnov statistics are also listed in Table 2. In the Figure column, the probability histogram and the best 
fitting probability density function (PDF) are plotted. The indices data are from 1913-2005. 

Month 
Number of 

Observations 
Best-Fitting 
Distribution 

Statistic 

Chi-
Squared 

Anderson-
Darling 

Kolmogorov-
Smirnov 

Figure 

November 

December 

January 

93 Exponential 490.71 166.15 

February 

March 

April 

Total 

93 

93 

93 

93 

Inverse 
Gaussian 

Exponential 

20.90 

1.98 

2.16 

0.31 

93 Exponential 7.42 1.14 

Pearson5 17.35 2.42 

Rayleigh 455.46 27.42 

0.73 

0.12 

0.07 

0.08 

558 Exponential 1064.20 245.68 

0.12 

0.46 

0.30 

L 
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In order to price the monthly snowfall index futures contract, the first and most 

important step is to find a distribution that describes the historical data. As described in 

the literature review, non-arbitrage economic models are not suitable here because the 

underlying indexes of weather derivatives are not traded. Moreover, equilibrium 

economic models are too complex to apply and sensitive to departures from their 

assumptions. In pricing futures contracts, the future payoffs do not need to be discounted 

to the present time, since the futures price is only paid on the delivery date. As a 

consequence, the main issue in using statistical models to price monthly snowfall index 

futures is to find a satisfactory model. 

In Table 2, several popular distributions are fitted to the historical monthly snowfall 

index data. Chi-Squared, Anderson-Darling and Kolmogorov-Smirnov statistics which 

are used to test the goodness-of-fit of the given distributions are reported. The best fitting 

distribution based on the chi-Squared statistic of all possible distributions which includes 

the normal, inverse Gaussian, exponential, student, uniform, triangle, logistic, chi-

squared and etc., for each contract month are reported in 'Best-Fitting Distribution' 

column. The 'Figure' column plots the actual historical probability histogram and the 

best-fitting distribution. The formula to calculate chi-squared statistic is introduced by 

Snedecor and Cochran (1989): 

k 
X2 = £ ( 0 , - E j ) 2 / E j ( 2 0 ) 

i=l 

Oi is the actual probability for the z'th snowfall index level from historical data, and Et is 

the expected probability for the z'th snowfall index level given a specific distribution. For 

example, there are 93 historical index values for November from 1913 to 2005, and 69 
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out of 93 are zero. The actual historical probability of an index value equal to zero is 

69/93=0.742. Therefore, 01 = 0.742. Substituting x=0 into a specific distribution, such 

as the exponential distribution P(x) = Xe~~Xx, the expected probability E1 could be 

obtained. Then repeating the process with other actual snowfall levels from historical 

data, it is possible to get all of the Ej and O,. The last step is to compute x2 using 

equation (20). From the method, it is clear that the chi-squared statistic is a simple but 

useful method to measure the deviation of historical data from the given distribution. The 

lower the chi-squared value, the better the fit of the given distribution to the historical 

data. 

According to the Best-Fitting column and the Figure column in Table 2, it appears 

that the exponential family of distributions describes the historical data better than the 

normal distribution in months when snowfall levels are higher, such as January and 

February. On the other hand, when snowfall levels are lower, the conclusion that the 

exponential family of distributions provides a better fit is not clear. However, it appears 

from the chi-squared, Anderson-Darling and Kolmogorov-Smirnov statistics, that the fit 

of even the best-fitting distribution is not satisfactory. To improve the accuracy of the 

fitted distribution, a technique called Generalized Edgeworth Series Expansion is 

implemented, which generates a unique distribution for each month to approximate the 

true distribution. This method belongs to the statistical series approximation methods, 

thus finding an approximation distribution to approximate the true distribution is critical. 

The exponential distribution seems to be best choice here. There are four reasons to 

support this choice. First, random values are restricted to be non-negative, which is the 

case of the snowfall index, while distributions like the normal distribution allows the 



1 9 

variable to from negative infinity to positive infinity. Second, the sample distributions of 

the snowfall index for all months have positive skewness. The frequency of occurrence of 

a value of zero for the snowfall index is higher than for other values of the snowfall index 

which is the same as the property of the exponential distribution. Third, the Generalized 

Edgeworth Expansion technique requires that the underlying density function possesses 

continuous cumulants which is satisfied by the exponential distributions. Fourth, as Table 

2 indicates, the exponential distribution seems to provide the best fit of all the considered 

distributions. Next, I will introduce the Generalized Edgeworth Expansion technique and 

approximate the true distribution using the exponential distribution as the base 

distribution. 

According to Schleher (1977), a given distribution F(x), called the true distribution, 

could be approximated by an alternative distribution A(x), called the approximating 

distribution, as far as both distributions have continuous density functions and F(x) 

converges to A(x) as x tends towards infinity. In the statistics literature, this methodology 

is termed the Generalized Edgeworth Series Expansion. The basic idea of this method is 

to expand the log of characteristic function of the true distribution F: 

Here, (p{F, t)is the characteristic function of the distribution F; kj (F) is the y'th cumulant 

of F. The same function for the approximating function A could be derived with A 

replacing F in equation (21). The final Generalized Edgeworth Expansion is shown 

below, (the detailed proof is provided by Jarrow and Rudd (1982)): 

JV-l 

(21) 



2 0 

JV-l 
f i x ) = a(x) + ^ Qj ( ^ d J ^ f + N) (22) 

7=1 

Qo = l 

<2i = fci(F) - k^A) 

Q2 = k2(F) - k2(A) + Q2 

Qs = k3(F) - k3(A) + 3Qx[k2(F) - k2(A)] + Qx
3 

Q4 = k^F) - k^A) + 4[FC3(F) - FC3GO]<2I + 3[ /c 2 (F) - k2(A)]2 

+ 6<?1
2[/c2(F)-fc2G4)]+<21

4 

Substituting Qj up to the forth cumulant,f(x) is simplified as if a(x) is exponential: 

da(x) Q2d2a(x) Qr,d3a(x) Q4da4(;t) 
m - « w - % + f - f + f j - ^ + « ) 

= a (x ) ( l + ftA + %A 2 + % A 3 + + £(*,«) 
^ o Z4 

- a(x) I 4 /C4(^ + ^-/C!(F)/C3(F) + ^ f c i ( F ) + ^k\{F)k2{F) + + ^ ( F ) 

A 1 
+ £(X,AF) (23) 

The error term,e(x, N), contains all terms associated with higher other moments. There is 

no general bound for the error term for arbitrary a(x) and f(x) as a function of N, which is 

the number of the expansion terms. But in the case in which all moments of both a(x) and 

f(x) exist, it can be shown that 

lim \ e(x,N)\ = 0 (24) N —*co 
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The proof is beyond the scope of my thesis, but it is also given by Jarrow and Rudd 

(1982). Based on the Generalized Edgeworth distribution, the expected value of the 

contract month snowfall index could be calculated as: 

E(x) = J x/(x)dx (25) 

Integrating the product of the true density and the index value, the expected value of the 

monthly snowfall index can be rewritten as: 

'da(x) Q2 f+xd2a(x) Q3 f+xd3a(x) f , ^ f da{x) Q2 r™d'a(x) Q3 r 
E(x) = a{x)xdx — Q1 —-—xdx+—\ , _ xdx — — 

J-a* J-oo d X 2 J-oo dx 6 J-c dx3 -xdx 

+ ^ f X ^ p - x d x + e(xlN) (26) 

By offsetting the differential and integration, the formula of E(x) is further simplified to: 

ZTCc) = C:a(x)xdx - Ql [xa(x) | ̂  - f ^ a(x)dx] + f | ̂  - a ( x) | ^ 

6 
d2a(x) +a0 da(x) +00 

x—;—t— j — dx2 dx 1-00 

24 

d3a(x) ^ d2a(x) y. v J l+oo v y l+oo 
dx3 '-00 dx2 1-00 (27) 

Generally, the normal distribution is used as the approximating distribution, and it is 

known as Edgeworth Expansion. Cramer (1946), Kendall and Stuart (1977) and Beyazit 

and Koc (2009) discussed Edgeworth Expansion in detail. However, in my case a closed 

form solution based on the normal distribution could not be solved to obtain expected 

value. Jarrow and Rudd (1982) applied the lognormal distribution to value stock options 

using the Generalized Edgewroth Expansion, and obtained a close form solution. The 

lognormal distribution explains stock prices quite well, but, unfortunately, not the 
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snowfall index in my thesis. Therefore, I use the exponential distribution which fits the 

snowfall index better. Given the exponential distribution, a(x; X) = Xe~Xx (where x > 0 

and X is the distribution parameter), E(.x) in equation (27) is reduced to: 

E(x) = -e~>* (x + - + e - * a + f [-xX^|0+°° - X e ^ ] 

[xA3e~^\^ + +|f J00 - ^e^X™] (28) 

Since xe_/U and e_;bc both converge to zero when x approaches infinity: 

E(x) = j + Q1 + ^ A + ^ X 2 + ^ A3 (29) 

The expected values of the monthly snowfall index given the exponential distribution 

can be calculated using the value of X and the first to the forth moments o f f ( x ) and a(x). 

The mean, standard deviation, skewness and kurtosis for/fx) are given in Table 1. The 

i I first four moments for a(x) are - , —, 2 and 6 respectively. In the original Edgeworth A A 

Expansion, the first moments of the approximating distribution, the sample mean, is 

always set to equal the historical mean. However, I allow the approximating mean to 

deviate from the historical mean, because the best fitting Generalized Edgeworth adjusted 

exponential distribution in equation (29) will not necessarily having the same mean as the 

historical mean. This is one of the major differences between the exponential distribution 

and the normal distribution. Herewith, the exponential density and the Generalized 

Edgeworth adjusted exponential density will be referred as a(x) and f(x) for short 

respectively. 

In Table 3, the best fitting a(x) could be found in the left part of the table. On the 

right hand side of the table, the chi-squared goodness-of-fit statistic for f(x) is reported. 
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Generally, X has a value below 1. The lower the value of X, the higher the tail probabilities, 

which means the PDF is flatter. Intuitively, we would expect that the best fit X value tends 

to be higher for months when snow rarely occurs. 

Table 3: Best fitting X for the exponential distribution 

In Table 3, Chi-squared statistics with different X values are listed. Chi-squared statistics for goodness-of-fit 
are used to find the best fitting exponential distribution. The formula to compute Chi-squared statistic is: 
X2 = £?=i(Oi — Ei)2/Et- On the left hand side of Table 3, Chi-squared statistics for the exponential density 
are listed. Exponential density is the a(x) used to approximate f(x). On the right hand side of Table 3, chi-
squared statistics for Edgeworth adjusted exponential density/fx,), are listed. The sample period is 1913-
2005 for each contract month. 

X Chi-Squared for exponential PDF Chi-Squared for Edgeworth adjusted exponential PDF 

Nov Dec Jan Feb Mar Apr Nov Dec Jan Feb Mar Apr 

0.01 53.75 1.89 0.36 0.55 2.14 50.56 218.82 10.59 4.19 4.96 11.61 204.97 

0.02 26.12 0.77 0.23 0.24 0.90 24.58 107.72 4.29 1.35 1.67 4.80 100.37 

0.03 17.01 0.67 0.52 0.43 0.77 16.04 70.71 2.32 0.56 0.73 2.65 65.55 

0.04 12.53 0.80 0.88 0.69 0.89 11.85 52.24 1.42 0.29 0.38 1.67 48.18 

0.05 9.89 0.99 1.23 0.96 1.08 9.40 41.17 0.96 0.22 0.26 1.16 37.78 

0.06 8.17 1.20 1.56 1.21 1.31 7.80 33.80 0.71 0.26 0.26 0.88 30.88 

0.07 6.98 1.41 1.86 1.44 1.54 6.71 28.55 0.59 0.36 0.32 0.73 25.96 

0.08 6.11 1.62 2.14 1.65 1.76 5.91 24.63 0.54 0.50 0.44 0.67 22.29 

0.09 5.46 1.81 2.40 1.85 1.98 5.32 21.58 0.54 0.67 0.60 0.66 19.45 

0.10 4.96 2.00 2.65 2.03 2.19 4.86 19.15 0.59 0.88 0.78 0.70 17.19 

0.15 3.64 2.83 3.67 2.86 3.11 3.69 11.92 1.20 2.31 2.25 1.26 10.51 

0.20 3.18 3.65 4.64 3.86 3.91 3.30 8.36 2.43 4.79 5.04 2.35 7.30 

0.25 3.02 4.91 6.08 5.85 4.79 3.19 6.25 4.66 9.12 10.20 4.12 5.46 

0.30 3.01 8.02 9.26 11.09 6.12 3.22 4.86 8.80 16.53 19.27 6.98 4.32 

0.35 3.07 18.05 18.15 26.75 9.32 3.32 3.91 16.82 28.75 34.42 11.62 3.58 

0.40 3.18 53.93 45.57 76.37 17.61 3.47 3.25 33.51 48.38 58.83 19.21 3.12 

0.45 3.31 188.45 134.05 238.95 41.51 3.64 2.84 71.37 79.71 97.67 31.94 2.89 

0.50 3.48 705.92 427.45 784.25 113.46 3.86 2.66 165.41 130.88 160.58 54.42 2.85 

0.55 3.69 2371.39 1419.00 2624.27 336.00 4.11 2.74 417.84 219.62 268.25 96.94 3.00 



The best fitting X values from November to April for a(x) are 0.30, 0.03, 0.02, 0.02, 

0.03 and 0.25, while the best fitting X values f(x) are 0.50, 0.08, 0.05, 0.06, 0.09 and 0.5. 

Obviously, the best fitting X values are universally larger for f(x) than for a(x). The reason 

for this phenomenon is that f(x) could approximate the tail better than a(x). As a 

consequence, it is unnecessary for f(x) to use a flatter density to capture the fat tails. 

Another surprising finding from Table 3 is that the best fitting a(x) have much smaller 

chi-squared values compared to chi-squared values for best fitting standard distributions 

in Table 2. Four reasons why a(x) fits the historical data better than densities other than 

the exponential density in Table 2 do have been given above. In addition, the reason why 

a(x) in Table 3 works better than in Table 2 is that X is fixed as 1 in Table 2 while X here 

in Table 3 varies. If we further compare the Chi-squared statistics for the a(x) and f(x),f(x) 

obviously outperforms a(.x). This suggests that the Generalized Edgeworth Series 

Expansion using the exponential distribution describes the underlying historical snowfall 

data better. 

Using the best X values, the expected value of E(x) could be obtained from equation 

(29). Later in the simulation chapter, I will compare expected value of the snowfall index 

under the normal distribution, Edgeworth adjusted normal distribution, exponential 

distribution and Generalized Edgeworth adjusted exponential distribution. However, as a 

closed form solution is not available for calculating the expected value of the normal and 

Edgworth adjusted normal distribution, I will apply a numerical method to simulate the 

predicted expected index value. 
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V. Modeling the daily snowfall 

In the index modeling chapter, statistical models are implemented to predict the 

monthly snowfall index. The advantages related to daily modeling which are discussed in 

Jewson and Brix (2005), include more complete use of the available daily data, more 

accurate mark to model estimates during the contract, more accurate extrapolation of 

extremes, more accurate valuation of in-period derivatives (derivatives in the contract 

months), and easier incorporation of meteorological forecasts into the pricing algorithm. 

The main disadvantage of applying daily modeling is the complexity of the model. The 

complexity leads to a greater potential for model errors, if the model is misspecified. 

Unlike temperature, snow is not continuous in all 12 calendar months. Actually, it is 

only necessary to model the daily snowfall level in contract months from November to 

the coming February, while temperature must be modeled for all 12 months. Moreover, 

snowfall is not the same as temperature because it is bounded by zero as the minimum 

value. January and February tend to have more snowfall than November and April. Thus, 

the irregular distribution of daily snowfall within each winter month makes the seasonal 

component less important. However, global warming may lead to decreasing snowfall 

levels across different years. The yearly trend is therefore introduced into the daily 

snowfall forecasting model. 

The behavior of daily snowfall is modeled by an Ornstein-Uhlenbeck process and 

described by the following equation. 

dS(_t) = [a9(t) + ps(t)]dt + ydmx + Sdm2 (30) 



In the diffusion model above, S(t) is the daily snowfall level for day t. dS(t) is the 

continuous difference between S(t) and S(t+1). a6(t) + fiS(t) is the expected value of 

daily snowfall. dm1 and dm2 are the actual distributions which have no assumption 

about the shape but are bootstraped from the actual historical snowfalls. While the model 

of equation (31) is based on a continuous process for daily snowfall, it is discretized for 

estimation purpose. The final discrete form model of daily snowfall is based on Dischel's 

(1999) model which was used to model temperature. This is named as Dischel's D1 

model. 

Sn = a6n + + sn (31) 

Sn is the daily snowfall value for day n. Sn_1 is the snowfall value for day n-1. 0n is the 

average snowfall value for the same day in the year as day n. The number of years if data 

that are used to calculate Qn is arbitrary and I simply pick 10 years based on the solar 

cycle. s n is an error term. In order to make these variables easy to understand, I will give 

an example. If n is December 5th, 1975, then Sn is the daily snowfall level for this day, Sn 

is the daily snowfall value for December 4th, 1975, and 9n is the average snowfall level 

for the calendar date December 5th from 1965 to 1974. 

The summary statistics for the variables that are needed to estimate the discrete model 

are given in Panel A, Table 4. Not surprisingly, the standard deviation of Qn is much 

smaller than Sn and the mean of these two are very close, because On is the 10 year 

moving average value of Sn. S„.j is simply the lag value of S„ and all statistics for these 

two are exactly the same. The coefficient a and b are restricted by the constraint a+b=l. 

Under this assumption, the predicted snowfall value is simply the sum of the weighted 

value of the moving average and lagged snowfall level and a random value. 



Any ordinary least-squares (OLS) method is first used to fit the Dl model with an 

additional term t to capture the global warming trend. After adding an additional trend 

term, the discrete Dl model is written as: 

Sn = adn + + ct + sn ( 3 2 ) 

tis a variable to capture the global warming trend. Since my sample only includes days in 

the contract months from November to the next April and the sample period is from 1913 

to 2005,1 set the value of ?in the following way: t=l for November 1st, 1913 which is the 

first day of my sample; and 2 for November 2nd, 1913. On proceeding as above, the value 

of t for April 30th, 1914 is 301. The value o f t for November 1st, 1914, which is the next 

day of daily snowfall data used in the estimation is =302. 

In Panel B Table 4, estimated values of the parameters are reported. 9n and Sn.j 

significantly affect the dependent variable, because the coefficients of the independent 

variables are significantly different from zero. Further, the magnitude of the coefficient of 

Qn is much higher than that of S„. c is not significantly different from zero and is a very 

small negative number. The negative sign of coefficient c is consistent with global 

warming because a higher temperature in winter leads to a lower snowfall level. However, 

as the number is so small and not statistically different from zero, the results are 

consistent with a lack of an effect of global warming on snowfall. 
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Table 4: Result of the estimation of the daily snowfall Dl model using OLS 

Panel A in Table 4 reports summary statistics for dependent and independent variables and residuals of the 
regression of equation (32): Sn = a0n + hS,,^ + ct + sn. 0n is the 10 years daily moving average snowfall 
level for the same day. Sn_a is the lagged snowfall level, t represents time. en is the error term. Panel B 
reports parameter estimates of a, b and c. Panel C provides statistics from the tests of normality and 
heteroscedasticity. 

Panel A: Summary Statistics 

Variable Number of 
Observation Mean Standard 

Deviation Skewness Kurtosis 

17385 0.147 0.870 10.719 166.765 

on 15730 0.145 0.287 3.239 14.132 

S-n-1 17384 0.147 0.870 10.719 166.765 

Residual 15446 -0.002 0.901 9.502 150.117 

Panel B: Parameter Estimation 

Parameter Number of Estimated value T- P-Value Parameter Observation of the parameter statistic P-Value 

a 15446 0.811 103.15 0.00 

b 15446 0.189 24.02 0.00 

c 15446 -0.000 -0.07 0.95 

Panel C: Tests for normality and heteroscedasticity 

Statistics 

Anderson-Darling 

Cramer-von Mises 
Kolmogorov-

Smirnov 
White's 

Normality 

3252.30 

679.07 

0.43 

Heteroscedasticity 

144.40 

P-Value 

0.01 

0.01 

0.01 

0.00 

Panel C snows the results of the tests of normality and heteroscedasticity of the error 

term in the regression equation (32). Not surprisingly, the error term here fails both the 

normality test and the constant variance test (homoscedasticity). There are two options to 

modify the model to account for non-normality and heteroscedasticity in the error term. 

One is to transform the variables in the Dl model. The second is to find a different model 
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under which the error term follows the assumptions of OLS of normality and 

homoscedasticity. 

A Box-Cox transformation (Box and Cox (1964)) is a commonly used parametric 

distribution transformation. The general format of a Box-Cox transformation is: 

(y + h)x - 1 
- — r A * 0 ( 3 3 ) Ag 

log (y + K) 
A = 0 (34) 

9 

y is the denotes dependant variable before transformation, h, g and A are parameter of 

Box-Cox transformation. The default value is zero for h and one for g. For daily snowfall, 

there are a large number of days that do not have any snowfall. As a consequence, h is set 

as one instead of its default value to restrict the sum of y+h to be positive. The A value 

gives the optimum maximum likelihood value is -15.3 and I further test the normality of 

the error term after the Box-Cox transformation. Unfortunately, all tests are significant 

enough to reject the null hypothesis. In other words, the error term is still non-normal 

even after the Box-Cox transformation. These results are not reported in this thesis, but 

are available on request. 

Generally, a simple transformation strategy like the Box-Cox is not sufficient to 

handle complex non-normal distributions. In Jewson and Caballero (2003), the authors 

suggested a non-parametric way to transform the variables. They derived a separate 

estimate of the cumulative distribution of daily de-trended temperature for each day of 

the year. These cumulative distributions were used to convert the historical data into a 

probability. Then these probabilities were converted back to daily de-trended 

temperatures using the inverse of the standard normal cumulative distribution function. 



The historical data are then adjusted to fit a normal distribution. In estimating the 

cumulative distribution function (CDF) of temperature for each day, the days that could 

be used for estimating the CDF must be decided upon. If only the data from that day of 

the year is used, the estimation of the CDF would be relatively poor because of the data 

limitation. For instance, in Jewson and Caballero (2003), the sample includes 50 years of 

daily temperature data. Using daily data to estimate the CDF would end up with only 50 

points on the distribution for each day. Instead, they pick temperature values from a 

window surrounding the actual day, with a window length of 91 days. Now the 

estimation has 90*51=4550 days of data. This gives a smoother estimate. 

The window is chosen arbitrarily. The standard they use to that the window is long 

enough to give a smooth distribution, but short enough not to smooth out seasonal 

variation. In the case here, I simply pool all the days in the same month to create the CDF. 

However, even this non-parametric normalization method does not help much, as can be 

found in Table 5 even after the transformation of the snowfall data. The reason is that the 

probability of occurrence of snowfall each day is incredibly low. Even in January and 

February, the probability for each to have snowfall is around 10%. Thus the PDF of daily 

snowfall will tend to have a fat left tail. 
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Table 5: Result of the estimation of the daily snowfall Dl model using a 
non-parametric transformation 

Panel A in Table 5 reports summary statistics for dependent and independent variables and residuals from 
the estimation of regression equation (32): Sn = a0n + bSn_! + ct + en. 0n is the 10 years daily moving 
average snowfall level for the same day. S , ^ is the lagged snowfall level, t represents time. enis the error 
term. The difference between Table 4 and Table 5 is that Sn here is the normal transformed snowfall level. 
Panel B reports parameter estimates of a, b and c. Panel C gives statistics tests of normality and 
heteroscedasticity. 

Panel A: Summary Statistic 
Number of Variable 

On 

Sn-1 

Residual 

Observations 
17385 

15730 

17384 

15446 

Mean 

1.248 

1.247 

1.242 

-0.002 

Standard 
Deviation 

0.542 

0.426 

0.549 

0.334 

Skewness Kurtosis 

11.738 462.268 

-0.173 0.686 

11.241 438.576 

38.510 2236.602 

Panel B: Parameter Estimation 
Number of Estimated value 

Observations of the parameter 
a 15446 0.968 

Parameter 

b 

c 

15446 

15446 

0.032 

-0.000 

T-
statistic 

122.75 

5.07 

-0.72 

P-Value 

0.00 

0.00 

0.47 

Panel C: Tests for Normality and Heteroscedasticity 

Statistics 

Anderson-Darling 

Cramer-von Mises 
Kolmogorov-

Smirnov 
White's 

Normality 

3509.00 

729.50 

0.41 

Heteroscedasticity 

24.05 

P-Value 

0.01 

0.01 

0.01 

0.00 

It is also possible to use econometric methods other than OLS to deal with the non-

normality and heteroscedasticity of the error term. Before choosing a specific method, the 

characteristics of all variables are reviewed again in great detail. As the kurtosis values 

reported in Panel A of Table 4 shows, the sample distribution has fat tails. Volatility 
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clustering may be a concern here. In Figure 1, large changes of daily snowfall levels tend 

to be followed by large changes, while small changes tend to be followed by small 

changes, either increases or decreases. 

Figure 1: Volatility of daily snowfall 

The x axis represents variable t of equation (32). The y axis represents the daily snowfall changes. 

daily snowfall changes 

Among these properties, volatility clustering has intrigued a type of stochastic models 

in finance - GARCH models. The characteristics of the historical data on daily snowfall, 

kurtosis and volatility clustering may be accounted for by applying a Generalized 

Autoregressive Conditional Heteroscedastic (GARCH) model to estimate the regression 

equation (32). GARCH (1, 1) is used here to model the variance of the error term of 

snowfall. 

Given these additional features of snowfall level, I believe that fitting the mean 

model with dynamic variance which follows GARCH type evolution process is possibly a 

better method of estimation than OLS. The model may be described as follows: 
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Sn = aGn + Wn-i + ct + sn (32) 

h*=a0 + + (35) 

The mean function of GARCH model equals to equation (32) which has been 

described. £n in equation (32) is different here and equals N(0,h„). The dependant 

variable h^ in variance function in equation (35) is the conditional variance of the error 

term in equation (32). and are the lagged residual and lagged conditional 

variance of equation (32) respectively. As before, a+b is constrained to equal 1. And 

based on Bollerslev (1986), 0 < a x + & < 1 must be satisfied to make the GARCH (1, 

1) process stable. Moreover, a0 = y * VL, and y + at + /?! = 1 . VL is the long run 

average variance rate. I estimate all five parameters subject to the restrictions mentioned 

above. Maximum likelihood estimation is used to estimate the parameters of the model. 

The PDF for daily snowfall Sn is normally distributed as N(a9n + /i£). The 

maximum likelihood function is: 

N 

Y l n a d n + bSn^.hZ) (36) 
n=2 

Here N is the number of observations and function f denotes the PDF of daily snowfall. It 

is mathematically the same to find the maximized product of the PDF and to find the 

maximized summation of logarithm transformation of the PDF: 

r N 
Max 

Ln=2 

N 

Y \ f ( a e n + bSn^.hl) =Max\'Yj ln[f(adn + b S ^ h m (37) 
vn=2 

If we substitute the normal density with log-likelihood function, equation (37) could be 

written as: 
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N 

Max ln[fdaen + bSn_1,hI)] ( 3 8 ) 

•71=2 

N [Sn-iaBn+bSn-j.)] 21 
Max\ > In p 

^ yinhl 
( 3 9 ) 

Because Sn — (a0n + bSn_1) = sn , I further simplify the function: 

IN N _ \ 

N 1 V lv -1£ 2 
n=2 n=2 ) 

N N 

( 4 1 ) 

n=2 n=2 

where e„ = [Sn - (a0n + bSn_!)]2; h„ = a 0 + a ^ - i + Pi^n-i- I 3111 able t o s ° l v e the 

parameter vector G(0) = G(a,b, a0, a 1 ,p 1 ) by maximizing the log-likelihood function 

above. 

All coefficients except c are significantly different from zero which suggests that 

GARCH effect indeed do exits in our sample. Since c is not statistically significant, I can 

use the model without the t variable. The long term average variance rate could 

calculated as ccQ/{l — a1 — = 3.39. If we compare the coefficient estimates of the 

GARCH model to those estimated by OLS, it is clear that Sn-1 is now more important 

than 9„. 
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Table 6: Result of the estimation of the daily snowfall Dl model using 
GARCH 

In Table 6, parameters for dependent and independent variables in equation (32) with GARCH type 
variance are reported. Equation (32): Sn = a6n + bSn_1 + ct + £n and equation (35): = a0 + ± + 
Pi^n-i a r e t w o parts of the GARCH model. 6n is the 10 years daily moving average snowfall level for the 
same day. Sn_1 is the lagged snowfall level, t represents time. Enis the error term. The difference between 
Table 4 and Table 6 is that h^ is dynamic rather than constant. 

Parameter Number of 
Observations 

Estimated value 
of the parameter T-statistic P-value 

a 15446 0.383 25.47 0.00 

b 15446 0.617 41.06 0.00 

c 15446 -0.000 -0.07 0.93 

a0 15446 0.224 12.14 0.00 

15446 0.518 38.03 0.00 

Pi 15446 0.416 28.98 0.00 

VI. Simulation 

In the simulation part, both the models from index modeling chapter and from daily 

modeling chapter are tested. The simulation results are compared with the actual price of 

the snowfall futures contract which is trade on the CME. However, as the snowfall 

futures contract is so illiquid that the prices barely change over the period, the 

comparison between the simulated price and the actual price may not give a satisfactory 

evaluation of my models. All simulations are performed using Matlab. 

1. Simulation using index modeling 

In the index modeling chapter, the process used to derive the expected value of the 

index from Generalized Edgeworth expansion with an exponential distribution has been 



discussed. The normal distribution and the Edgeworth adjusted normal distribution are 

compared with the exponential distribution and the Generalized Edgeworth adjusted 

exponential distribution. However, numerical simulation is used to estimate the expected 

value of the underlying monthly index for all four distributions. The numerical formula 

used to calculate the expected value of the index is shown below: 

N 

E(x) = WJM%i f { x d ' X t (42) 

Here xt is the index level for a given contract month, f(xj) is the underlying PDF for that 

month, and N is the number of simulations. It is clear that the numerical method gives a 

specific weight for each xt which is , and = 1 when N approaches 

infinity. For the Generalized Edgeworth adjusted exponential distribution, it is possible to 

find the converged expected snowfall level when N approaches infinity. However, note 

that the snowfall index will never actually equal positive infinity. As a consequence, both 

numerical simulation and expected value of the snowfall index are reported under 

exponential columns in Table 7. 

In Table 7, the results of the numerical simulation of the snowfall index using the 
( 

Normal and Exponential distribution are compared. Column 2 and 4 report the simulated 

expected value of the monthly snowfall index based on the normal distribution and the 

exponential distribution respectively. Column 3 and 5 report the simulated expected 

value of the monthly snowfall index based on the Edgeworth adjusted normal and 

exponential distribution respectively. Equation (42) is used to simulate all these four 

columns. For column 6 and 7, the calculated expected values of monthly snowfall index 
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based on exponential and Generalized Edgeworth adjusted exponential distribution are 

shown. Equation (29) in index modeling chapter is used to calculate those values in 

column 6 and 7. Here, in order to make the column 4 and 5 comparable to column 6 and 

7,1 choose the same X for all these four columns. The X used here are based on the best 

fitting X for the Generalized Edgeworth adjusted exponential distribution. 

Table 7: Results of the simulation of the snowfall index 

Table 7 reports results of the simulation of the snowfall index. Column 2 shows the numerical simulation 
result of the expected value of the index obtained under the normal distribution. Column 3 shows the 
numerical simulation result of the expected value of the index obtained under the Edgeworth adjusted 
normal distribution. Column 4 shows the numerical simulation result of the expected value of the index 
obtained under the exponential distribution. Column 5 shows the numerical simulation result of the 
expected value of the index obtained under the Generalized Edgeworth adjusted exponential distribution. 
Column 6 shows the calculated expected value of the index obtained under exponential distribution. 
Column 7 shows the calculated expected value of index obtained under the Generalized Edgeworth 
adjusted exponential distribution. All numbers are based on 100000 times simulations. 

Numerical simulation 
result of Expected 
Value of snowfall 

index 

Numerical simulation result 
of Expected Value of snowfall 

index 

Calculated result of 
Expected Value of snowfall 

index 

Month Normal Edgeworth 
Normal Exponential Edgeworth 

Exponential Exponential Edgeworth 
Exponential 

Nov 0.53 0.73 0.96 0.99 2.0 0.95 
Dec 5.04 4.07 5.45 5.58 11.1 4.51 
J a n 7.08 6.18 9.90 10.10 20.0 7.39 
Feb 8.24 7.46 8.02 8.29 16.7 7.78 
M a r 4.69 3.79 5.23 5.55 11.1 4.39 
Apr 0.90 1.08 1.00 1.00 2.0 0.99 

The expected values of the monthly snowfall index under the normal distribution are 

very close to the sample mean. Statistically, because I set the normal distribution to have 

the same mean and standard deviation as the sample mean and sample standard deviation, 

the expected value of the monthly snowfall index from the simulation must converge to 

the sample mean if the number of simulations approaches infinity. The expected value of 



the monthly snowfall index under the normal distribution with Edgeworth expansion is 

higher than that without an Edgeworth expansion in November and April when the level 

of snowfall is low, lower than under the normal distribution without Edgeworth 

expansion in December, January, February and March when snowfall levels are relatively 

higher. In the case of the exponential distribution, the expected value of the snowfall 

index based on simulation is higher after the Edgeworth expansion than before the 

Edgeworth expansion. The calculated expected value of monthly snowfall index based on 

exponential distribution in column 6 is mcuh higher than the rest because the X used here 

is based on the best fit of the Generalized Edgeworth adjusted exponential distribution 

rather than the that of the exponential distribution. 

2. Simulation using the daily snowfall model 

Referring to the daily snowfall simulation, I compare the simulated snowfall indices 

using models described in the modeling of the daily snowfall. Specifically, the models 

described in Table 4, Table5 and Table 6 are used to simulate the daily snowfall. Since 

the influence of global warming was found to be insignificant, I exclude the time variable 

t from the equations to simulate the daily snowfall. 

DIOLS column in Table 8 is simply the D1 model estimated by the traditional OLS 

method. The error term follows a standard normal distribution. Then based on the 

recurrence equation (31), the daily snowfall for a given month is calculated and the 

monthly snowfall index as well. However, if the simulated value of the error term is a 

large negative number, then the daily snowfall could be negative. I restrict the index level 

to non-negative rather than put the same restrict on daily snowfall levels, because if the 



daily snow constraint to be strictly positive, the index will be artificially increased. 

Moreover, the snowfall index is more directly related with the future price. 

DINT column in Table 8 is the Dl model with normal transformed variables. DINT 

model should give normal distributed error term and free of heteroscedasticity. Therefore, 

the OLS estimation is robust here compared to the DIOLS model. The treatment for 

negative snowfall level and index values is the same to the DIOLS simulations. The only 

difference between the simulation process of DIOLS and DINT are the different values 

for the coefficients a and b. 

Dl GARCH column in Table 8 complements the GARCH variance into the mean 

model which follows Dl model again. The two equations (32) and (35) in daily 

modeling chapter represent the mean model and the variance model respectively. To 

simulate the evolution of the variance, the mean reversion continuous Brownian process 

is used. 

dV = T(VL - V)dt + pVdz (43) 

dV is variance changes between two time points, dt measures the time change between 

two time points, r = 1 — a^ — = y. The meaning of ax, fix and y have been explained 

in equation (35) in daily modeling chapter. VL is the long run average variance. V is the 

observed variance level, which is a recurrence variable in this equation. p=a1V2 .dz is an 

Brownian random variable. The above stochastic process for the volatility of the daily 

snowfall index is consistent with the GARCH model. In this process, the variance tends 

to get pulled back to the long-run average level ofVL. Parameters in the process are 

available from the GARCH model: r = 1 — ax- fi1 = y and p is axV2 . Because 
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snowfall data is available daily, the discrete form of the model is more suitable for 

simulation purpose. 

AV = T(Vl - V)At + pVcp^AT (44) 

As At = 1 and (p~N(0,1), the formula can be further simplified to 

AV = T(Vl - V ) + pVcp (45) 

The dynamic process for the conditional variance could be derived by using an initial 

value of V which is equal to the historical variance. Based on the variance simulation 

model, equation (45), simulation of the mean model with the dynamic variance, which is 

equation (32), can be performed. 

In Table 8, D1 GARCH models have the smallest simulated daily snowfall levels. 

According to Table 4 to Table 6, DIGARCh has the lowest weight of 0nand the highest 

weight of Sn_±. And in fact, more than 90% of the dates in my sample do not have snow. 

Moreover, snowfall is not distributed equally across the sample period, which means a 

long consecutive period without a snowfall is possible. Therefore, if the weight is higher 

on lagged snowfall 5 n _ 1 by definition conditional variance is changing, the DIGARCH 

model must have the smallest simulated snowfall level and must fit the actual futures 

price better. 
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Table 8: Simulation of the monthly snowfall index using the daily snowfall 

D1 model using OLS, OLS with transformation and GARCH 

In Table 8, results of the simulation of the monthly snowfall index using the daily snowfall D1 model 
estimated by OLS, OLS with transformation and GARCH are listed respectively in DIOLS, DINT and 
D1GARCH. The 'actual value' is the actual snowfall index value for these calendar months which are 
obtained from NCDC as well. The actual futures price as reported by Bloomberg for the MB1 ticker 
symbol is reported in the last column. All models are based on 10000 times simulations. 

Monthly snowfall index 
Month DIOLS DINT D1 GARCH Actual value Futures Price 

January2006 9.60 9.42 8.96 2.0 -

February2006 8.68 8.72 8.28 26.9 -

March2006 5.05 4.87 4.21 1.3 6.2 

April2006 2.63 2.24 0.98 0.1 0.7 

November2006 2.32 1.95 0.21 0.0 NA 

December2006 6.10 6.05 5.54 0.0 11.2 

January2007 9.45 7.20 6.80 2.6 9.6 

February2007 7.29 8.82 8.55 3.8 8.2 

March2007 4.07 3.67 2.82 6.0 0.4 

April2007 2.65 2.28 0.68 0.0 6 

November2007 2.21 1.95 0.32 0.0 6 

December2007 6.08 6.00 5.12 2.9 6 

January2008 7.08 7.05 6.60 0.0 6 

February2008 9.00 9.01 8.62 9.0 6 

March2008 4.28 4.03 3.38 0.0 8.2 

April2008 2.65 2.27 0.71 0.0 8.2 

November2008 2.36 1.99 0.19 0.0 8.2 

December2008 6.40 6.18 5.69 6.0 8.2 

January2009 7.22 6.96 6.65 9.0 7.5 

February2009 9.70 9.80 9.04 4.3 8.6 

March2009 3.97 3.68 3.05 8.3 4.3 

April2009 2.62 2.26 0.66 0.0 0.5 

November2009 2.39 1.98 0.47 0.0 -



3. Model comparison 

In this part, all simulation results are compared to the actual MB1 snowfall futures 

price and actual monthly snowfall index value. Note that the futures price (quoted as 

index) is the market expectation of the actual snowfall index. However, they are not 

necessarily equal especially when the market is very illiquid. In these illiquid markets, 

trades with a large volume will tend to dominate the market price, which rarely happens 

in a liquid market with sufficient market depth. The simple statistical criterion, mean 

squared error (MSE), is used here to find the best possible model. MSE could be 

calculated by the equation: 

MSE(0) = E[{9-9)2] 

Here, 9 is the predicted snowfall index and 9 is the actual futures price (quoted as index). 

In Table 9, all models discussed in both index modeling and daily modeling chapters are 

compared to each other. The comparisons are based on differences of the prediction from 

the futures price and actual index from January 2006 to November 2009. The difference 

from the futures price is used as the criterion in Panel A and the difference from the 

actual index is used as the criterion in Panel B. In the model column and the numerical 

simulation rows, Normal refers to index modeling using numerical simulation of normal 

density; Edgeworth Normal refers index modeling using numerical simulation of 

Edgeworth adjusted normal density; Exponential refers to index modeling using 

numerical simulation of exponential density; Edgeworth Exponential refers to index 

modeling using numerical simulation of Generalized Edgeworth adjusted exponential 

density. In the model column and the calculated result rows, Expo refers to index 
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Table 9: Model comparison 

In Table 9, simulation or calculated results for all the models described in both index and daily modeling 
chapters are compared to the futures price (quoted as index) and to the actual index. In the model column 
and the numerical simulation rows, Normal refers to index modeling using normal density; Edgeworth 
Normal refers to index modeling using Edgeworth adjusted normal density; Exponential refers to index 
modeling using numerical simulation of exponential density; Edgeworth Exponential refers to index 
modeling using numerical simulation of Generalized Edgeworth adjusted exponential density. In the model 
column and the calculated result rows, Exponential refers to index modeling using the expected index of 
exponential density; Edgeworth Exponential refers to index modeling using the expected index of the 
Generalized Edgeworth adjusted exponential density. In the model column and the numerical simulations 
rows, DIOLS refers to daily modeling using the OLS estimated Dl model; DINT refers to daily modeling 
using the OLS with transformation Dl model; and Dl GARCH refers to daily modeling using the GARCH 
model. Additionally, Panel A reports MSE between simulation results from each model and futures prices 
listed in Table 8. Panel B reports MSE between simulation results from each model and the actual snowfall 
index from Jan 2006 to Nov 2009. 

Panel A: MSE based on futures price 

Model Sum of 
Squared Errors N MSE 

Numerical simulation result 
of Expected Value of snowfall 

index 

Normal 
Edgeworth Normal 

Exponential 
Edgeworth Exponential 

263.10 
285.03 
255.39 
257.59 

19 
19 
19 
19 

13.85 
15.00 
13.44 
13.56 

Calculated result of Expected 
Value of snowfall index 

Exponential 
Edgeworth Exponential 

1053.16 
260.54 

19 
19 

55.43 
13.71 

Numerical simulation result 
of daily snowfall 

DIOLS 
DINT 

Dl GARCH 

170.54 
188.32 
270.75 

19 
19 
19 

8.98 
9.91 
14.31 

Panel B: MSE based on actual index 

Model Sum of 
Squared Errors N MSE 

Numerical simulation result Normal 567.03 23 24.65 
of Expected Value of snowfall 

index 
Edgeworth Normal 

Exponential 
554.14 
700.40 

23 
23 

24.09 
30.45 

Calculated result of Expected 
Value of snowfall index 

Edgeworth Exponential 
Exponential 

Edgeworth Exponential 

907.48 
2132.43 
583.57 

23 
23 
23 

39.46 
92.71 
25.37 

Numerical simulation result 
of daily snowfall 

DIOLS 
DINT 

Dl GARCH 

682.48 
653.57 
602.91 

23 
23 
23 

29.67 
28.42 
26.21 

modeling using expected index of exponential density; Edgeworth Exponential refers to 

index modeling using expected index of Generalized Edgeworth adjusted exponential 



density. In the model column and the numerical simulation rows, DIOLS refers to daily 

modeling using OLS estimated D1 model; DINT refers to daily modeling using OLS 

with transformation using the D1 model; and D1 GARCH refers to daily modeling using 

the GARCH model. 

My expectation of the best index model is the calculated expected value of the 

Generalized Edgeworth adjusted exponential distribution, and the best daily model is the 

D1 GARCH model. The explanations of the superiority of these two models have been 

discussed in index modeling and daily modeling chapters. 

When using the difference from the futures price as criterion, the best fit index model 

is the exponential density and the best daily model is the DIOLS. Those models with high 

ability to fit the historical data on snowfall underperform in their ability to predict the 

future price. DIOLS is better than is exponential density as it has lower MSE. However, 

if we go back to check the futures price in Table 8, it is pretty clear that the market is 

highly illiquid and the futures price does not change much from April 2007 to February 

2008. 

When using the difference from the actual index as the criterion, the best fit index 

model is the Edgeworth adjusted normal density. The best fit daily model is the 

D1 GARCH model. Here my expected best index model, calculated expected value of the 

Generalized Edgeworth adjusted exponential distribution, is very close to the Edgeworth 

adjusted normal density, Edgeworth Normal. The best daily model is consistent with my 

expectation. However, the sample size is quite small, and contains many outliers. 



4. Multi-Core Parallel Speedup 

Simulation is the most popular way to price derivative when statistical models are 

used. The acuracy of simulation depend on the times of simulation we used, and it is 

reasonable to include million times of simulation. Moreover, if derivative models are 

used for real time decision making, the simulation efficiency is also an issue. Investors 

will have sufficient time to react against any market changes and capture any profit 

opportunity. 

Parallel computation system is mostly useful when the a parallel algorithm could be 

applied. Like Yamamoto (2006), he introduced a parallel algorithm to improve the daily 

simulation efficiency for temperature derivative. However, his methodology could not be 

implemented here because the way that snowfall index is calculated is different from the 

way that CDD or HDD are calculated. In my case, either index model or daily involve 

any parallel components. The algorithm is highly sequential. Therefore, I simply 

distribute simulations to different processors in my case. 

In order to improve the simulation efficiency, I use MPI to distribute processes (here 

in my situation, these processes are simulations) to different processors. Matlab is not 

compatible with MPI. However, Matlab enables users to convert a Matlab application to 

a shared library which can be called by C++, and MPI also supports C++. Therefore, C++ 

is used to link MPI with Matlab. Because Matlab is more efficient to program the 

scientific computation process, all calculations are programmed in Matlab rather than 

C++. As a consequence, C++ communicates with Matlab modules - requesting 

calculation requests and receiving calculation results from Matlab modules, and it also 

communicates with MPI to distribute different tasks to different processors. The 



computer used in this part is a four core Dell desktop installed with Matlab, MPI and C++ 

in a Linux system. 

I will describe the simulation process for D1 GARCH as an example. First, one of the 

cores is chosen to be the control processor. This control processor requires certain inputs 

to start the simulation. In this case, starting date and ending date of the calendar month, 

starting snowfall level, starting conditional variance value, number of replications and the 

moving average snowfall for each day of this calendar month. Second, all simulations are 

equally distributed to all processors including the control processor. Each processor will 

call the Matlab D1 GARCH function to simulate daily snowfall based on the D1 GARCH 

model. Third, each processor returns the simulation result to the control processor and the 

control processor calculate the mean of the combined simulation result, which is the final 

output. The other three models are similar. 

The speedups of the multi-core simulations for each model are shown in the Figure 2 

and Figure 3. In Figure 2, 100,000 times simulations are used for the Generalized 

Edgeworth adjusted distribution based on different number of processes. It is clear that 

the simulation efficiency increases as the number of processes increases until the number 

equals the number of processors. Then if the number of processes exceeds the number of 

the processors, the simulation efficiency will decrease. The reason for this phenomenon is 

that some processes must wait in such situation. The same conclusion and reason could 

be drawn from Figure 3, where 100,000 times simulations are used for January, 2009. 

The starting snowfall level for this month is 0 and the starting conditional variance equals 

0.8. The conclusion for this speedup test is that the optimum number of processes should 

equal to the number of processors in my thesis. 
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Figure 2: Speedup of index modeling 

The x axis represents number of processes. The y axis represents the seconds used to run the simulation for 
the corresponding number of processes. The index model used here is the Generalized Edgeworth adjusted 
exponential distribution. 100000 times simulations are used here. 

Number of processes 

Figure 3: Speedup of daily modeling 

The x axis represents the number of processes. The y axis represents the seconds used to run the simulation 
for the corresponding number of processes. Three daily simulation models are used here. 10000 times 
simulations are used here for January 2009. The starting snowfall level is 0 and the starting conditional 
variance level is 0.8. 

200.0 

-DIN 
•D1GARCH 
-DINT 

4 6 
Number of processes 
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VII. Conclusion 

In pricing snowfall futures contracts, statistical models are preferred to economic 

models, because it is impossible to construct risk-free portfolios of the futures contract 

and its underlying and because utility maximization models require too many 

assumptions. 

In this thesis, I use statistical modeling method including both index and daily 

snowfall modeling and compare the two. The index model with the best fit is the 

Generalized Edgeworth Expansion adjusted exponential distribution. As we can see in 

chapter 4, this distribution gives the lowest chi-squared statistic. For daily snowfall 

modeling, the model that explains the daily snowfall pattern best is D1 GARCH model. 

Lastly, the simulation chapter provides the simulation evaluation of all the models 

discussed in both index modeling and daily modeling chapters. The comparison of my 

estimates with the futures price suggests using DIOLS to price the snowfall future. The 

comparison of my estimates with the actual index suggests using Edgeworth adjusted 

normal density to price the snowfall futures contract. The comparison of the model 

estimates with the actual futures price is limited by the illiquidity of the futures market. 

When the snowfall futures market becomes sufficiently liquid and has more data 

(currently only 19 index points are available), better validation of my models may be 

achieved. 
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