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Abstract

Statistical Modeling for Simultaneous Data Clustering,
Features Selection, and Outliers Rejection

Khaled Almakadmeh

Model-based approaches and in particular finite mixture models are widely used for data clustering,
which is a crucial step in several applications of practical importance. Indeed, many pattern recognition,
computer vision, and image processing applications can be approached as feature space clustering problems.
However, the use of these approaches for complex high-dimensional data presents several challenges such

as the presence of many irrelevant features, which may affect the speed, and compromise the accuracy
of the used learning algorithm. Another problem is the presence of outliers which potentially influence
the resulting model parameters. Generally, clustering, features selection, and outliers detection problems
have been approached separately. In this thesis, we propose a unified statistical framework to address the
three problems simultaneously. The proposed statistical model partitions a given data set without a priori
information about the number of clusters, the saliency of the features, or the number of outliers. Weillustrate

the performance of our approach using different applications involving synthetic data, real data, and objects
shape clustering.

in



Acknowledgements

First and foremost, I would like to say that there are no words to express my greatest gratitude to my su-

pervisor Dr. Nizar Bouguila. He has proven to be a very supportive advisor, mentor and motivator. From
his valuable tutoring, I have not only gained technical knowledge, but I have also learned to handle real life
situations. I am grateful to him for his guidance, and persistent confidence in me.

Furthermore, I wish to extend my sincere appreciation to all the professors in CIISE, especially Prof. Mourad
Debbabi and Dr. A. Ben Hamza for their assistance. I was always treated with the type of respect and kind-

ness that I believed could only be offered to one's own son.

Thanks to my colleagues in the lab, for their helpful suggestions during my two years at Concordia Univer-
sity.

Finally, I thank my family, especially my father and mother, for their unconditional support throughout

my studies. Your endless love and care continue to encourage me.

IV



Table of Contents

List of Tables vii

List of Figures ix

1 Introduction 1
1 . 1 Introduction and Related works 1
1.2 Contributions 4
1.3 Thesis Overview 4

2 Finite Mixture Model for Simultaneous Data Clustering, Features Selection, and Outliers
Rejection 6
2.1 Introduction 6
2.2 The Model 6
2.3 Model Learning 9

2.3.1 Maximum Likelihood Estimation 9
2.3.2 Model Selection Based on the Integrated Likelihood Criterion 10
2.3.3 The Expectation Maximization (EM) Algorithm 12

3 Experimental Results 14
3.1 Introduction 14
3.2 Synthetic Data 15
3.3 Real Data 21

3.4 2D Objects Shape Clustering 33

4 Conclusions 46

5 Appendices 48
5.1 Appendix 1: Proof of Equation 7 48
5.2 Appendix 2: Proof of Equation 8 49
5.3 Appendix 3: Proof of Equations 9 and 10 50

?



5.4 Appendix 4: Proof of Equations 20, 21, 22 and 23 50
5.5 Appendix 5: Maximum Likelihood Estimation For Finite Gaussian

Mixture Model 52

List of References 53

vi



List of Tables

3. 1 Parameters used to generate the synthetic data sets (rij represents the number of elements in
clusterj) 15

3.2 Classification results for the three synthetic data sets using localized and globalized feature
selection methods 16

3.3 Classification results for the three synthetic data sets using localized and globalized feature
selection methods, without outliers detection 18

3.4 Classification results of the three synthetic data sets using features selection and outliers
detection 20

3.5 Confusion matrix for the handwritten numerals data set using mixture of Gamma distribu-
tions, without performing features selection nor outliers detection 23

3.6 Confusion matrix for the handwritten numerals data set using mixture of Gaussian distribu-
tions, without performing features selection nor outliers detection 23

3.7 Confusion matrix for the handwritten numerals data set using mixture of Gamma distribu-
tions, and localized feature selection method 24

3.8 Confusion matrix for the handwritten numerals data set using mixture of Gaussian distribu-
tions, and localized feature selection method 25

3.9 Confusion matrix for the handwritten numerals data set using mixture of Gamma distribu-
tions, and globalized feature selection method 27

3.10 Confusion matrix for the handwritten numerals data set using mixture of Gaussian distribu-
tions, and globalized feature selection method 27

3.1 1 Confusion matrix for the handwritten numerals data set using mixture of Gamma distribu-
tions, localized features selection method, and with outliers detection 29

3.12 Confusion matrix for the handwritten numerals data set using mixture of Gaussian distribu-
tions, localized features selection method, and with outliers detection 30

3.13 Confusion matrix for the handwritten numerals data set using mixture of Gamma distribu-
tions, globalized features selection method, and outliers detection 32

3.14 Confusion matrix for the handwritten numerals data set using mixture of Gaussian distribu-
tions, globalized features selection method, and outliers detection 32

3.15 Confusion matrix for MPEG-7 data set using mixture of Gamma distributions without fea-
tures selection nor outliers detection 35

vii



3.16 Confusion matrix for MPEG-7 data set using mixture of Gaussian distributions without
features selection nor outliers detection 35

3.17 Confusion matrix for MPEG-7 data set using mixture of Gamma distributions, localized
feature selection method, and without outliers detection 37

3.18 Confusion matrix for MPEG-7 data set using mixture of Gaussian distributions, localized
feature selection method, and without outliers detection 37

3.19 Confusion matrix for MPEG-7 data set using mixture of Gamma distributions, globalized
features selection method, and without outliers detection 39

3.20 Confusion matrix for MPEG-7 data set using mixture of Gaussian distributions, globalized
features selection method, and without outliers detection 40

3.21 Confusion matrix for MPEG-7 data set using mixture of Gamma distributions, localized
features selection method, and outliers detection 41

3.22 Confusion matrix for MPEG-7 data set using mixture of Gaussian distributions, localized
features selection method, and outliers detection 42

3.23 Confusion matrix for MPEG-7 data set using mixture of Gamma distributions, globalized
features selection, and outliers detection 44

3.24 Confusion matrix for MPEG-7 data set using mixture of Gaussian distributions, globalized
features selection method, and outliers detection 44

VIl]



List of Figures

3.1 Localized features saliency for the synthetic data sets 16
3.2 Globalized features saliency for the synthetic data sets. 17
3.3 Integrated likelihood as a function of the number of clusters for the three synthetic data sets

when relevancy of features is considered. Row 1: using localized feature selection, Row 2:
using globalized feature selection 17

3.4 Localized saliency of features for the synthetic data sets without outliers detection 18
3.5 Globalized saliency of features for the synthetic data sets without outliers detection 19
3.6 Integrated likelihood as a function of the number of clusters for the three synthetic data

sets using feature selection and without outliers detection. Row 1: using localized feature
selection, Row 2: using globalized feature selection 19

3.7 Localized saliency of features for the synthetic data sets with outliers detection 20
3.8 Globalized saliency of features for the synthetic data sets with outliers detection 21
3.9 Integrated likelihood as a function of the number of clusters for the three synthetic data sets

using features selection and outliers detection. Row 1 : using localized feature selection,
Row 2: using globalized feature selection 21

3.10 Sample images from the Vistex data set 22
3.1 1 Integrated likelihood as a function of the number of clusters for the handwritten numerals

data set, without performing features selection nor outliers detection, (a) Using Mixture of
Gamma Distributions, (b) Using Mixture of Gaussian Distributions 24

3.12 Localized saliency of features for the handwritten data set using mixture of Gamma distri-
butions 25

3.13 Localized saliency of features for the handwritten data set using mixture of Gaussian distri-
butions 26

3.14 Integrated likelihood as a function of the number of clusters for the handwritten numerals
data set using localized feature selection method, (a) Using Mixture of Gamma Distribu-
tions, (b) Using Mixture of Gaussian Distributions 26

3.15 Globalized saliency of features for the handwritten numerals data set. (a) Mixture of Gamma
Distributions, (b) Mixture of Gaussian Distributions. . . 28

IX



3.16 Integrated likelihood as a function of the number of clusters for the handwritten numerals
data set using globalized feature selection method, (a) Mixture of Gamma Distributions, (b)
Mixture of Gaussian Distributions 28

3.17 Localized saliency of features for the handwritten numerals data set using mixture of Gamma
distributions, and with outliers detection 30

3.18 Localized saliency of features for the handwritten numerals data set using mixture of Gaus-
sian distributions, and with outliers detection 31

3.19 Integrated likelihood as a function of the number of clusters for the handwritten numerals
data using localized feature selection method, and outliers detection, (a) Mixture of Gamma
Distributions, (b) Mixture of Gaussian Distributions 31

3.20 Globalized saliency of features for the handwritten numerals data set using mixtures of
Gamma and Gaussian distributions with outliers detection, (a) Mixture of Gamma Distribu-
tions, (b) Mixture of Gaussian Distributions 33

3.21 Integrated likelihood as a function of the number of clusters for the handwritten numerals
using globalized feature selection method, and outliers detection, (a) Mixture of Gamma
Distributions, (b) Mixture of Gaussian Distributions. . . 33

3.22 Samples oftheMPEG-7 CE Shape- 1 Part-B data set 34
3.23 Integrated likelihood as a function of the number of clusters for the MPEG-7 data set without

features selection nor outliers detection, (a) Mixture of Gamma Distributions, (b) Mixture
of Gaussian Distributions 36

3.24 Localized saliency of features using mixture of Gamma distributions, and without outliers
detection 38

3.25 Localized saliency of features using mixture of Gaussian distributions, and without outliers
detection ' · . . 38

3.26 Integrated likelihood as a function of the number of clusters for the MPEG-7 data set using
localized feature selection method, and without outliers detection, (a) Mixture of Gamma
Distributions, (b) Mixture of Gaussian Distributions 39

3.27 Globalized saliency of features for the MPEG-7 data set using globalized features selection
method, and without outliers detection, (a) Mixture of Gamma Distributions, (b) Mixture
of Gaussian Distributions 40

3.28 Integrated likelihood as a function of the number of clusters for the MPEG-7 data set using
globalized features selection method, and without outliers detection, (a) Mixture of Gamma
Distributions, (b) Mixture of Gaussian Distributions 41

3.29 Localized saliency of features using mixture of Gamma distributions, and outliers detection. 42
3.30 Localized saliency of features using mixture of Gaussian distributions, and outliers detection 43

3.31 Integrated likelihood as a function of the number of clusters for the MPEG-7 data set using
localized feature selection method, and outliers detection, (a) Mixture of Gamma Distribu-
tions, (b) Mixture of Gaussian Distributions 43

3.32 Globalized saliency of features using globalized features selection method, and outliers de-
tection, (a) Mixture of Gamma Distributions, (b) Mixture of Gaussian Distributions 45

?



3.33 Integrated likelihood as a function of the number of clusters for the MPEG-7 data set using
globalized feature selection method, and outliers detection, (a) Mixture of Gamma Distri-
butions, (b) Mixture of Gaussian Distributions 45

Xl



Chapter ± . I

Introduction

1.1 Introduction and Related works

A recurring subject in pattern recognition and computer vision applications is the separation of data (images,
videos, objects, etc.) into homogeneous clusters [1,2]. This topic has been extensively studied and different

approaches and algorithms have been proposed and applied to several problems. Generally, an important
step in these problems is the representation of a given image by a vector of features which is generally high-
dimensional [3]. Although different, the majority of approaches agree that a good clustering model should
be sensitive to the extracted features but not to the noise (i.e. outliers) which may be present.

A challenging problem in this case is to determine if all the features are necessary, and relevant for the
clustering task [4, 5]. Many methods have been developed to estimate the usefulness of features for cluster-
ing and prediction. Reducing the number of features not only speeds up the learning and training process,
but also prevents over-fitting; allowing the generation of the most optimal model to represent the data and to
reflect its regularities [6]. Feature selection is sensitive to the choice of the number of clusters describing the
data. Indeed, if the selected number of clusters is very incorrect; the feature selection may be inaccurate as

well. Moreover, it is often the case that some of the data is not representative, and may deteriorate clustering

performance [7]. Thus, it is crucial to automatically detect these data commonly called "outliers", and which
can be described ' as the observations that do not come from the model [9].

'There are many other definitions that have been discussed, for instance, in [8].
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To achieve maximum utility and flexibility, finite mixture models are widely used and are well-known for
their efficiency in clustering heterogenous data sets. In mixture models, data is supposed to be described by

a number of distributions mixed in varying proportions. A fundamental element when using finite mixture
models is then the choice of the components densities, which has to take into account the characteristics of
the data. Works dealing with finite mixtures vary in the assumptions that they make about the mixture distri-

butions. Generally, data is assumed to be normally distributed [10]. However, the normal distribution isn't
always appropriate in pattern recognition, signal and image processing applications 2. One of the drawbacks
is the rigidity of its shape; which prevents it from yielding a good modeling and adequate representation of
actual data [12]. Thus, it is important to take into account the underlying structural characteristics of the
data domain, and the nature of the patterns that we would like to discover.

This thesis addresses unsupervised learning of data defined over the positive interval [0, co), which nat-
urally appear in several image processing, pattern recognition and computer vision applications, in which
the Gamma distribution is known to be a good flexible choice, and an accurate alternative to the Gaussian
distribution [13-19]. Hence, we propose a novel statistical mixture model based on the Gamma distribu-

tion 3, which simultaneously select features by explicitly introducing a common background distribution
to explain non-salient features, and detect outliers, by explicitly introducing a new class to model outliers.
The background distribution, the outlier component, and their respective weights are repeatedly adjusted to
maximize the total integrated likelihood of the model.

Determining the relevant features is one of the central problems in machine learning and pattern recognition,
and several approaches have been proposed in the past. However, most of the approaches have focused on

the supervised case, which is justified by the difficulty to assess feature relevancy without resorting class la-
bels, and more challenge is added when the number of clusters is unknown. The literature about supervised
feature selection is considerable (see, for instance, [21]).

2For instance, previous studies of natural images have revealed that their statistics are not Gaussian. Such studies suggest the
use of more flexible models (see, for example, [H]).

3This distribution has a long history. For instance, in 1 895, Karl Pearson directed attention to the Gamma as a model for skewed
data [20].
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Recently there has been some renewed interest in the problem of selecting features when data are unlabeled,
and arise from sampling a mixture of distributions. For instance, the authors in [22] proposed a simultaneous
feature selection and clustering algorithm using finite Gaussian mixture model that assume independence of
features, and minimum message length (MML) criterion. The MML criterion was used also in [23] where
the authors proposed an unsupervised approach for feature selection and extraction to model non-Gaussian
data. The author in [24] proposed a probabilistic approach that assigns relevancy weights to discrete features
that are considered as random variables modeled by finite discrete mixture models learned using stochastic

complexity. In [25] an algorithm for subspace clustering based on expectation-maximization and using a
minimum description length {MDL) criterion was proposed to select the relevant features subset and the
number of clusters which best describe a continuous Gaussian or discrete data set. All the aforementioned

approaches are based on global selection of features (i.e. produce a common feature subset for all the mix-
ture components). Recently, a localized variational feature selection approach has been proposed in [26]
for finite Gaussian mixtures, where different feature subsets are associated to the different mixture com-

ponents, and has been shown to generally outperform global feature selection approach. The effectiveness
of these feature selection techniques can be compromised by the presence of outliers. Removing outliers
often enhances the generalization ability of the learning algorithms, since it is well-known that even a few
outliers can have a dramatic negative effect on estimation [27]. Detection of outliers and the development

of approaches insensitive to their presence is an old problem 4, and also has been the goal of much re-
search [32-34]. In particular, in recent years, there has been considerable interest in the effect of outlying
observations in finite mixture models. In [35], for instance, a novel statistical mixture model has been pro-

posed to reject outliers in the case of mixed labeled/unlabeled samples. In [36] a robust method that reduces
the effect of statistical outliers for parameters estimation under the Gaussian mixture model has been pro-

posed and implemented to classify multi-spectral data. A sequential algorithm for fitting mixture models
using an outlier component has been proposed in [37].
It is clear that both problems (feature selection and outlier rejection) have a long history, but have been
addressed separately in the past. To the best of our knowledge no models, based on mixture of distributions,

4For instance, criteria for the rejection of outliers have been proposed when dealing with univariate Gaussian observations
in [28-30]. Also, an approach in the case of univariate Gamma samples has been proposed in [31].
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have been proposed to tackle at the same time the problems of feature selection and outlier rejection, which
are closely and intimately inter-related in unsupervised settings 5.

1.2 Contributions

The contributions of this thesis are as follows:

ca° A Novel approach for robust high-dimensional data clustering: Our approach is simultaneously ca-
pable of clustering high-dimensional data sets, by considering the relevancy of features, and the pres-
ence of outlier data. Our approach is applied mainly using localized feature selection, and then using
globalized feature selection for the purpose of comparison. The integrated likelihood criterion is used
to estimate the number of clusters.

"3° Shape modeling and representation: We propose a new approach for accurate shape modeling and
representation, which is considered as an important step in several applications such as content-based
image retrieval, indexing, and segmentation using Zernike Moments Magnitudes (ZMMs). Indeed,
it allows invariant (i.e. regardless of the position, size, and orientation) recognition of objects.

er Comparison of our approach performance with finite Gaussian mixture model: We compare the
performance of our approach with a finite Gaussian mixture model in terms of clustering, selection of
relevant features, and detection of outliers, through applying localized and globalized feature selection
methods.

1.3 Thesis Overview

The organization of this thesis is as follows:

? Chapter 1 introduces the dilemma of clustering high-dimensional data sets, methods for selecting
relevant features, and the presence/effect of outlying data in the model selection process.

3It is noteworthy that some techniques have been proposed in the case of subspace clustering and feature extraction (see, for
instance, [38,39])
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Q Chapter 2 proposes a new finite multivariate Gamma mixture model-based approach, which is si-
multaneously capable of clustering high-dimensional data sets, select relevant features, and remove
outlying data.

? Chapter 3 presents the experimental results using synthetic and real data sets. We investigate also the
problem of 2D shape modeling and clustering.

O Chapter 4 summarizes our contributions.

? Chapter 5 (Appendices): presents the derivation equations of the proposed model using multivariate
mixtures of Gamma and Gaussian distributions. Further, the derivation equations for the integrated

likelihood criterion are developed.
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Chapter Z/ I

Finite Mixture Model for Simultaneous Data

Clustering, Features Selection, and Outliers
Rejection

2.1 Introduction

In the previous chapter, we presented the dilemma of high-dimensional data clustering, and the difficulties
related to this issue, such as determining the relevant features, and the effect of outliers presence on the

model selection process. In this chapter, we propose a novel approach for simultaneous high-dimensional
data clustering, localized feature selection, and outlier rejection using finite multivariate Gamma mixture

model. We present the model learning, maximum likelihood estimation, and model selection based on
the integrated likelihood criterion. Finally, we present the expectation-maximization (EM) algorithm, and
define the outlier distribution that will detect the outlying data.

2.2 The Model

Let us consider a data set of N vectors X = {Xi, ¦ ¦ ¦ ,Xn}, where each Xi = (Xu, ¦ . . ,Xìd) is a D-
dimensional vector of features representing a given image. Set of vectors generally contains examples that

6



belong to many clusters and can be modeled by a finite mixture of distributions:
M

P(X1IQm) = Y1PjP(XiWj) (D
J = I

where p, > 0, are the mixing proportions, M is the number of mixture components, and ?µ = {? =
(p\. . . . ,Pm)- ? = (?\, . . . , ?µ)} is the set of parameters in the mixture model. Eq. 1 constitutes actually a
family of models which can be viewed as additive models in statistics [40]. A critical problem in this case
is the choice of the probability density function to represent each component. In several applications, the
vectors' elements Xi¿, d — 1, .... D are positive. In this case one of the most useful probability density
functions is the multivariate Gamma. A simple multivariate widely used form assuming independence of

variables is given as the following [41,42] ' :

D D X^exp/^)
Pizie,) = ??^?µ = ? ''o3drf :]d (2)d=\ d=l P3d L \°jd)

where 9j = (6j\ , . . . , 9jo)>p(Xid\Sjd) is the univariate Gamma distribution, and 6j¿ = (a-jd, ßjd)< ajd > 0,
ßjd > 0, d = 1, . . . , D represent shape and scale parameters, respectively. Also G(.) denotes the Gamma
function.

As we have mentioned in chapter 1, an important step in pattern recognition applications in general is

clustering, and in particular is feature selection. The main objective is to choose only those features which
are better suited and relevant for the problem under study (i.e. features should be selected according to their

discrimination power). As a classic problem, feature selection has been defined in different ways in the
literature (see, for instance, [44, 45]). A widely used approach to perform feature selection, in order to take
into account the fact that different features may have different weights, in the case of finite mixture models

is to approximate Eq. 1 as following: [22, 23, 25,46]
M D

p(Xi\Q) = Y1Pj H (pdP(Xid\0jd) + (1 - Pd)p(Xid\Xd)) (3)
J=I d=\

where ? = {Tµ, {pd}-, {^d}} is the set of. all the model parameters, p¿ represents the probability that
the dth feature is relevant for clustering, and p(X%d\^d) is an univariate Gamma with parameters ?^ =

'Many parameterizations do exist for the Gamma distribution [43]. In this thesis, we consider the parametrization given in Eq. 2.
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iax\d; ß\\d) and can be viewed as a common background distribution to explain nonsalient features. Notice
that if pd = 0,d = 1, .... Z), the model in Eq. 3 is reduced to the one in Eq. 1 . Notice also that feature
saliency is defined globally (i.e. a given feature is relevant or not to all the mixture components), which can
be an invalid assumption in practical clustering problems as shown in [26]. A better approach to take into
account the local intrinsic property of the data, which plays an important role [47], by assuming that the
relevancy of features is different for different classes which can be modeled as following [26]:

M D

P(X1]Q) = £>¿ ? (pMxid\eJd) + (1 - Pjd)p(Xid\*jd)) (4)
j=l d=l

where ? = [Qm-, {Pjd}, {^jd}}, and pj¡¡ denotes the weight of the dth feature on clustery and p(Xid\Xjd),
Xjd = (ax^d, ß\\jd), is the Gamma distribution from which the feature is drawn if it is irrelevant. Notice
that the previous model is reduced to the one in Eq. 3 when pj¿ = p¿ and Xjd = ^d, j = I1 ¦ · · ; M,
d = l,...,D.
Generally no knowledge is available as to which vector Xi is not representative and then is not really
generated from our assumed statistical model. Outliers do not only make the model learning more complex,
but also corrupt the parameters estimates, hence, compromise the performance of the final model. Classic
outliers identification methods have been generally based on the sample mean and covariance matrix which

are themselves compromised by the outliers as shown in [48], especially in the case of high-dimensional
non-Gaussian data. A better technique is to approach the problem by incorporating an auxiliary outlier
component to which we associate a uniform density 2 [37, 38, 50, 51] into the model:

MD

?(?,]?) = 5Zpj ? (pjMXidWjd) + (1 - Pjd)p(Xid\*jd)) + PM+MXi) (5)

where pM+\ = 1 — S??? Pj 's tne probability that Xi was not generated by the central mixture model
and U(Xi) is a uniform distribution common for all data to model isolated vectors, which are not in any
of the M clusters, and which show significantly less differentiation among clusters. The previous model
can be viewed as a way to robustify unsupervised feature selection to learn the right meaning from the right
observations (i.e. inliers). Notice that when pm+i = 0 the outlier component is removed and the previous

equation is reduced to Eq. 4.
2Some researchers have proposed nonuniform outlier distributions, also (see, for instance, [49]).
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2.3 Model Learning

2.3.1 Maximum Likelihood Estimation

A well-known approach for unknown parameters estimation is the technique of maximum likelihood (ML),
which properties have been extensively examined in the past (see, for instance, [52]). Using ML the param-
eters are estimated by maximizing the log-likelihood function as following:

G N r M , D ?? = argmax \ \ogp{X\Q) = ^log ^ (p3 JJ {pjdP{Xid\ejd)+Ci-Pjd)p(Xid\^jd))}+PM+iU(Xi)
*- ¿=1 *-j=l ^ d=l '

(6)

which gives us (See Appendices 1, 2, 3):
^N

?3 = S1=??1 J = 1,...,M + i

a jd = F"

_ S?=? p(j\xi)f(pjd, ojd, Xjd)

ß = Ef=i p(J\Xj)f(Pjd: Qjd, Xjd)Xjd
a'jd Ef=Ll P(J\Xi)f(Pjd, (>jd, ^Jd)

j = l,..., M d=l,...,D

j = l,..., M d=l, D

(7)

(8)

(9)

? ( Ef=i p(J\Xi)f(Pjd, ?úd, AjdXlogXtd - log ^d)
^?G

J\\]d

YZiPUÌXimpjd^jdAjd)
Ef=IiOI^)ZX1 - Pjd, Qjd, ?Jd)Xi,id

a\\]d Ei=I pU\Xi)f(l - p3d, o,d, ^jd)

j = l,..., M d=l,...,D (10)

j = l,·. .,M d=l,...,D (11)

«A|jd F" i(Y^=iP{J\Xi)f{1 - Pjd,Gjd, \jd)(logXid - log ^A|jd)
^NE¿=i p(J\Xi)f(l - Pjd, Qjd, hd)

j = l,..., M d=l,...,D
(12)

where F 1O is the inverse digamma function.

Pj ?£=? {pjdP(xtd\ejd)+(i-Pjd)p(Xid\ijd))

P(J]Xi
S,??? ( PjUd=I {p]d.p(Xrd\0jd) + ^-f>]d)p{X,.d\^3d))\+PM+iU(X,.)
_________________________PM + IU(X.)

S"? ( PjUd=I (pidAXidWjd)+(i-PjdMx,d\ì]d))j +pM+iU(x,)

ifj = l,...,M

if j = M + 1
(13)
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is the posterior probability that a vector Xi will be considered as an inlier and then assigned to a cluster
j.j = 1, . . . , M, or as an outlier and then affected to cluster M + 1 which allows to safeguard against
erroneous feature selection, and:

,, a ? ? _ PjdP{Xjd\6jd) ???J{P3d, »3d, ???) - pjdp{Xidìe.d) + {1_ pjd)p{Xid\Xjd) U >
fn . a ? , (i - Pjd)p{.Xid\*jd) n_./U - Pjd,Ujd,*jd) — lv ? -,—TTTt \ iv W—Â *¦ 'PjdP(Xid\Vjd) + (1 - Pjd)P{Xid\Ajd)

It is noteworthy that p(j\Xi)f(Pjd, Ojd, ^jd) (p{j\Xi)f{l - Pjd, Vjd, ^Jd)) can be viewed as the posterior
probability that a given feature d is relevant (irrelevant) for a cluster j.

2.3.2 Model Selection Based on the Integrated Likelihood Criterion

It is desirable to determine the simplest model that can explain the data accurately 3. It is noteworthy that
the simplicity is measured in our case by the number of mixture components, and the number of relevant
features. The simplest model can be viewed as the one that maximizes the integrated (or marginal) like-
lihood, to reach an acceptable balance between model complexity and goodness of fit, given as following

when approximated using Laplace's method [53]:

1?e?(^)~1?6?(?·|?)+1?e?(?)-^1?6(|??(?)|) + ^1?6(2p) (16)
where ? is the posterior mode, ?(?) is the prior density for T, H(Q) is the negative Hessian matrix eval-
uated at ? and \?(T)\ is its determinant, and Np is the number of free parameters to be estimated which
is equal to M(5D + 1) in our case. More details and discussions about the integrated likelihood can be
found in [53-55] and references therein. In the following, we develop the required terms to determine the

integrated likelihood of our model; namely the prior density and the determinant of the Hessian matrix.
Concerning the prior density ?(T), in the absence of knowledge about the parameters (or complete igno-
rance), a widely applied reasonable assumption is to consider that the mixture parameters are independent:

MD

?(?) = ?(??, . . . ,pm+i) ~[[Y[p(Pjd)p(ßjd)p(<Xjd)p(ß\\jd)p(<x\\jd) O7)
J = I d=l

^Generally it is easier to understand simple models which are often the best solutions in accordance with Occam's Razor
philosophy.
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It is common to assume a symmetric Dirichlet distribution with parameters r/ as a prior for the mixing

parameters, since they are defined on the simplex (p\, . . . ,pm : J2j=iPj < -O- Generally ? is set to 1
which gives the following prior p{pi, ¦ ¦ ¦ ,Pm+i) = M\. We know also that each pjd is defined in the
compact support [0,1]; thus a common widely used prior is the Beta distribution. Taking a symmetric
Beta with parameters set to 1 gives us a uniform prior p(pjd) = ^[o.i]· F°r tne scale parameters p(ßjd)
and ß\\?d> we consider p(ßjd) = J-. and p(ß\\jd) = j^— as priors, respectively. Moreover, we consider
exponential priors with parameters set to 10~2. For the shape parameters: p(ctjd) = 1O-2 exp(— 1O-2O^)
and p{a\\jd) = 10_2ß??(-10~2a?|^). Notice that these specific choices of priors express actually our
uncertainty about the model's parameters and were found convenient according to our experiments. By

substituting all these priors into Eq. 17 we obtain:

? p l(r4exp(- 10-2(aid + aXud))P(Q)=MlHIl K VJ b"
J = I rf=l ßjdß\\3d

(18)

Concerning the determinant of the Hessian matrix it is common to assume in the case of finite mixture
models that the components decouple [56], thus we may write \H{&)\ as:

M ? M

|JT(©)| = |ff(pi, . - - ,PM+i)l ? \H{e3)\\H{^)\ ? IH(P1O
3 = 1 L d=l

(19)

where \H{p\, . . . ,pm+i)|> \H(0j)\, \H(Xj)\ and \H(pjd)\ are the determinants of the Hessians with respect
to the mixing parameters, Bj, Xj and (pjd), respectively, and are given by (See Appendix 4):

j- =1 ??[ V PM+1 pi
N

\H(P]d)\ = Sp(ä
i=l

/(I - Pjd, 6jd; ^Jd) f(Pjd, Sjd, Xjd)
Pjd Pjd

(20)

(21)

D IY N X \ ( NH^)\ '= ? S?(3\??)?(?^, 9jd, ?]?)(? - -£¦) F'(a^) Y^p(JlX1) f(pjd, 6jd, Xjd]
i=l ßfä ßjd ¿=1

? ?Gr- ^P(J\^i)f(Pjd, ?jd, Aßid 3d, (22)



D N ? \ /JVa\\]d Xid\?^\ = ? S,??&?1 - ?*> ?& M(^ - W^) f'(«??^) I>c?i*i)/(i - ?*> ?& ??,.= 1 PA¡jd P\\jd / V ,;=? 'd=\

{ ? ?-?— y2pü\Xi)f(^ - Pjd, Ojd, Xjd)

2.3.3 The Expectation Maximization (EM) Algorithm

Having all the estimation equations and the integrated likelihood expression in hand, our model learning
will be performed under the standard two-phase paradigm employed by the expectation maximization (EM)
framework as follows:

For each candidate value of M:

1 . Set pjd <— 0.5, d = 1. . . . , D, j = 1, . . . , M and initialization of the rest of parameters 4.

2. Iterate the two following steps until convergence:

(a) ?-Step: Update p(j\Xn) using Eq. 13 and f(pjd, 6jd, ^jd) using Eq. 14

(b) M-Step: Update the pj, pjd, ßjd, cc^d-, ß\\jd ar,d aA|jd using Eqs. 7, 8, 9, 10, 1 1 and 12, respec-
tively.

3. Calculate the associated integrated likelihood using Eq. 16.

4. Select the optimal model that yields the largest integrated likelihood.

The previous algorithm is based on the EM approach and both E- and M-steps have a complexity of
0[NAdD). According to our operational definition of outliers, they should have a uniform distribution,
since they do not follow the pattern of the majority of the data. A common approach, to define this uniform
distribution, is to suppose that the data follow a single component model averaged over all the observa-
tion [37]. Thus, in our case, we choose the following 5 U(X) = -fa S?=? EId=I {ßdP(Xid\^d) + (1 -

4The initialization is based on the K-Means algorithm and the method of moments by considering that M + 1 clusters are present
in the data.

5Of course other choices are possible, but in our case this specific choice was found appropriate according to our experimental
results.

(23)
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Pd)p(Xid\^d)) , where the parameters p, 0¿ and \¿ are estimated using ML technique, which takes into ac-
count the fact that outliers should be sparsely distributed. It is noteworthy that the previous algorithm allows

to first detect outlying data. Then, the remaining ones (i.e. inliers) are used to idenlil'y the optimal clustering
structure in terms of number of clusters, relevant features and optimal parameters.

13



Chapter D : 1

Experimental Results

3.1 Introduction

In this chapter, experiments are carried out to evaluate the usefulness of our model. The experiments are
performed on both synthetic and real data. Also, we investigate our model on a challenging problem namely;
objects shape clustering. For the purpose of comparison, we have implemented our model with Gaussian
distributions (see appendix 5 for the derivation equations of the maximum likelihood estimation), and using
localized and globalized feature selection methods, as well. In all our experiments, we investigate the
advantages of performing simultaneous feature selection and outliers detection. Moreover, all results are
averaged over 10 runs of the algorithm. The experimental framework is defined by the following:

? First, we compare the performance of these finite mixtures without taking into consideration the rele-
vancy of features nor the presence of outlier data.

? Then, we consider the relevancy of features for both mixtures. Hence, we got better partitioning and
model selection for the tested data sets.

? Finally, we consider the relevancy of features, and the presence of outlier data.
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3.2 Synthetic Data

The first application evaluates the performance of the proposed model using three 2D synthetic data sets
generated from 2- 3- and 4-components bivariate Gamma mixture models. The parameters used to generate
these data sets are given in table 3.1.

Table 3.1: Parameters used to generate the synthetic data sets (iij represents the number of elements in
cluster/). ¦

Data set j O7- 1 ßji a3 2 ßj2 ^
1 18 4 13 6 100

Data set 1
2 6 3 5 4 100

1 18 4 13 6 100

Data set 2 2 6 3. 5 4 100

3 38 7 39 6 100

1 18 4 13 6 100

2 6 3 5 4 100
Data set 3

3 38 7 39 6 100

4 49 9 46 8 100

Experiment 1

The first experiment is conducted by appending eight "noisy" features to the generated data sets which
increases the dimensionality of the data to 10. The goal of this experiment is to evaluate the ability of the
algorithm in selecting features when no outliers are present. Table 3.2 contains the classification results for
the three synthetic data sets using the localized and globalized feature selection methods. The results in this
table show that the localized feature selection method improves significantly the classification accuracy for

the three generated data sets compared to the globalized one. Figures 3.1 and 3.2 show the localized and
the globalized saliency of features using our approach for the three generated data sets. According to these
figures, we can see that the localized feature selection method gives higher weights to the first two features

15



Table 3.2: Classification results for the three synthetic data sets using localized and globalized feature
selection methods.

Data Set J Localized feature selection: n.j Accuracy Globalized feature selection: n.j Accuracy

Data set 1
86

114
93.00%

79

121
89.50%

Data set 2

111

89

100

96.30%

100

124

76

92.00%

Data set 3

99

112

82

107

95.25%

84

100

86

130

92.50%

(i.e. the relevant features). Figure 3.3 shows the number of clusters selected for each data set using the
integrated likelihood criterion using localized and globalized feature selection methods. According to these
figures, it is clear that our algorithm is able to select the correct number of clusters in both cases.

0123466769 ID
Feature Numbe -eaUire Kumbe

3 4 5 B 7 8 9 10
Fea'.ure Number

O 1 2 3 4 S 5 f S 9 E
Feslü'R Number

H H H

0 1 7 -3 A 5 E ? B 9 ìD
Feature Nambei

s p ë ? e = io
Feature Number

Figure 3.1: Localized features saliency for the synthetic data sets.
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3 4 5 6
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t » » ?
? 8 910

S 0,4

0 12 3 4 5 6 7
Feature Number

Figure 3.2: Globalized features saliency for the synthetic data sets.

Oaît Numb«-

Figure 3.3: Integrated likelihood as a function of the number of clusters for the three synthetic data sets
when relevancy of features is considered. Row 1 : using localized feature selection, Row 2: using globalized
feature selection.

Experiment 2

The second experiment is conducted to evaluate the presence of outlying data in the model selection process;
through the introduction of 5, 10 and 15 outlying 10-dimensional vectors into the first, second, and third

generated data sets, respectively. Table 3.3 contains the classification results for the three synthetic data
sets using the localized and globalized feature selection methods. It is clear that the presence of outliers
compromises the feature selection process by affecting high weights to some irrelevant features and by
decreasing the relevancy weights of the two first features as shown in figures 3.4 and 3.5. Figure 3.6 shows
the number of clusters found using the integrated likelihood criterion after performing feature selection by

considering that all the vectors are actually inliers (i.e. without performing outliers detection). According to
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this figure, the algorithm is unable to determine the exact number of clusters only for the third data set when
performing globalized feature selection.

Table 3.3: Classification results for the three synthetic data sets using localized and globalized feature

selection methods, without outliers detection.
Data Set Localized feature selection: n3 Accuracy Globalized feature selection: rij Accuracy

Data set
129

76
85.85%

66

139
80.97%

Data set 2

107

115

92.90%

62

116

132

84.51%

Data set 3

123

100

108

82

93.97%

121

80

99

115

91.32%

Dataseli J ? E ft i I

I] ? : ? 5 6 ; 6 ? 13

1*. h,
Hf

C ?3< SE7S910

e os
? 0.6 I "'? } t

MO 0 ! ¡ 5 < ? E ? f ? 13

Figure 3?: Localized salieney of features for the synthetic data sets without outliers detection.
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Figure 3.5: Globalized saliency of features for the synthetic data sets without outliers detection.

Figure 3.6: Integrated likelihood as a function of the number of clusters for the three synthetic data sets
using feature selection and without outliers detection. Row 1: using localized feature selection, Row 2:
using globalized feature selection.

Experiment 3

When performing outliers detection, our algorithm is able to detect all the outlying data for the three gener-
ated data sets and to select the relevant features necessary for model selection process as shown in table 3.4,

and in figures 3.7 and 3.8. Also, figure 3.9 shows thai our algorithm is able to delect the exact number of
clusters in all cases using the integrated likelihood criterion.
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Table 3.4: Classification results of the three synthetic data sets using features selection and outliers detec-
tion.

Data Set J Localized feature selection: n7 Accuracy Globalized feature selection: n.¡ Accuracy

Data set

1

2

Outlier

105

95

5

97.56%

80

120

5

90.24%

Data set 2

1

2

3

Outlier

100

92

108

10

97.41%

87

122

91

10

92.90%

Data set 3

1

2

3

4

Outlier

94

117

91

100

13

95.90%

82

96

133

89

15

92.04%

H H

! 5 e 7 8 3 ìC I 5 E- ? g 3 IG

H M * i

5 b 7 li 9 IC 0 ' 0 1 2 3 ? S I

Dota Set 3 ? G.6
H il

Û 1 : 3 ? 5 É, 7 Ë S IC 0 12: 2 3 T 4*6 7 6 9 je"

H

Figure 3.7: Localized saliency of features for the synthetic data sets with outliers detection.
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Figure 3.8: Globalized saliency of features for the synthetic data sets with outliers detection.

Localized
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Figure 3.9: Integrated likelihood as a function of the number of clusters for the three synthetic data sets
using features selection and outliers detection. Row 1: using localized feature selection, Row 2: using
globalized feature selection.

3.3 Real Data

The second application concerns the classification of handwritten numerals using a data set composed of
10 classes ("0"-"9") obtained from [57]. Each class contains 200 patterns where each pattern is represented

by a 47-dimensional positive vector describing extracted Zernike moments magnitudes features. We add to
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this data set 20 47-dimensiona! vectors, representing Zernike moments magnitudes features, extracted from
20 textural images from the MIT Vistex gray level texture database ' (see figure 3.10). These 20 added
vectors are considered as our outlier data. The main goal of this application is to compare the performance

of Gamma and Gaussian mixture models when dealing with features defined over the positive reals.
s

I
Wi

-ÄK^HeSjWrf-

tai» »~*^

¦¦ «??

Figure 3.10: Sample images from the Vistex data set.

Experiment 1

The first experiment is conducted to compare mixtures of Gamma and Gaussian distributions without taking
into consideration the relevancy of features nor the presence of outlier data. Table 3.5 shows the confusion

matrix when applying mixture of Gamma distributions; the number of miss-classified shapes is 281 which

represents an accuracy of 86.08%. On the other hand, table 3.6 shows the confusion matrix using mixture of
Gaussian distributions; the number of miss-classified shapes is 389 which represents an accuracy of 80.74%.
In both cases, we are unable to detect the outlier data as a different class. Indeed, all outliers are affected

to the 10 selected classes. Figure 3.1 1 shows the number of clusters found using the integrated likelihood
criterion.

Experiment 2

The second experiment is conducted to compare mixtures of Gamma and Gaussian distributions through
considering the relevancy of features using localized feature selection method. Table 3.7 shows the con-
fusion matrix when applying mixture of Gamma distributions; the number of miss-classified shapes is 195

which represents an accuracy of 90.3%. On the other hand, table 3.8 shows the confusion matrix when
applying mixture of Gaussian distributions; the number of miss-classified shapes is 31 1 which represents an

1 http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex. htm]
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Table 3.5: Confusion matrix for the handwritten numerals data set using mixture of Gamma distributions,

without performing features selection nor outliers detection.
Classified as : 0 1

Outlier Class

183

0

0

0

0

0

0

0

0

6

0

198

0

0

9

0

0

3

0

0

14

0

0

143

0

0

12

0

0

0

0

0

0

0

8

175

0

0

0

0

21

0

0

0

0

0

0

132

0

0

0

0

0

3

0

0

49

0

59

186

0

0

0

0

0

13

0

0

0

0

2

191

0

0

0

0

0

2

0

0

0

0

0

158

0

0

2

0

0

0

23

0

0

0

0

179

0

0

¦4

0

0

2

0

0

9

39

0

194

0

Table 3.6: Confusion matrix for the handwritten numerals data set using mixture of Gaussian distributions,

without performing features selection nor outliers detection.
Classified as : 0 1

Outlier Class

152

0

0

0

3

0

0

8

6

0

0

0

187

42

0

0

0

0

18

0

0

0

0

0

147

0

0

5

0

0

0

0

0

5

0

0

163

0

1

0

0

12

39

0

8

0

0

197

6

3

0

0

0

0

0

0

0

0

0

125

46

0

0

0

0

9

0

0

0

0

63

151

0

0

0

12

0

5

0

0

0

0

0

174

0

0

0

34

0

11

31

0

0

0

0

182

0

0

0

6

0

0

0

0

0

153

0
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Figure 3.11: Integrated likelihood as a function of the number of clusters for the handwritten numerals data
set, without performing features selection nor outliers detection, (a) Using Mixture of Gamma Distributions,
(b) Using Mixture of Gaussian Distributions.

accuracy of 84.6%, which show that the classification accuracy has increased using both mixtures with the
effect of outliers presence. Figure 3.12 and 3.13 shows the localized saliency of features for the classified

shapes for both mixtures. Figure 3.14 shows the number of clusters found using the integrated likelihood
criterion.

Table 3.7: Confusion matrix for the handwritten numerals data set using mixture of Gamma distributions,
and localized feature selection method.

Classified as : 0

Outlier Class

193

0

0

0

0

0

0

0

29

0

0

0

181

0

0

0

0

0

12

0

0

0

0

0

166

0

6

0

0

0

0

0

4

0

0

26

184

6

0

0

0

0

4

0

0

0

8

0

0

181

11

0

8

0

0

0

0

0

0

0

15

189

0

0

0

9

0

10

0

0

0

0

0

184

0

0

0

7

0

0

16

0

4

0

0

163

0

4

0

0

0

0

0

0

0

4

0

196

0

24



Table 3.8: Confusion matrix for the handwritten numerals data set using mixture of Gaussian distributions,
and localized feature selection method.

Classified as ¦ 0 3

Outlier Class

199

0

0

0

0

0

0

0

0

0

15

0

122

6

0

11

0

0

6

0

0

0

0

0

194

0

0

2

0

0

13

13

2

0

0

0

119

0

0

0

0

0

0

0

0

0

0

0

184

0

0

0

0

0

0

0

0

0

0

0

167

19

0

0

0

3

0

24

0

0

0

28

177

0

0

0

0

0

0

0

5

0

0

181

0

0

0

0

38

0

55

0

3

4

0

187

0

16

0

26

0

0

0

13

0

179

0

Ili
;m

WJ
fuH.V

Figure 3.12: Localized saliency of features for the handwritten data set using mixture of Gamma distribu-
tions.

Experiment 3

The third experiment is conducted to compare mixtures of Gamma and Gaussian distributions using glob-
alized feature selection method. Table 3.9 shows the confusion matrix when applying mixture of Gamma
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Figure 3.13: Localized saliency of features for the handwritten data set using mixture of Gaussian distribu-
tions.

¦ßUGDr

10 11 12 13
Class Number Class Number

Figure 3.14: Integrated likelihood as a function of the number of clusters for the handwritten numerals data
set using localized feature selection method, (a) Using Mixture of Gamma Distributions, (b) Using Mixture
of Gaussian Distributions.

distributions; the number of miss-classified shapes is 213 which represents an accuracy of 89.4%. On the

other hand, table 3.10 shows the confusion matrix when applying mixture of Gaussian distributions; the
number of miss-classified shapes is 337 which represents an accuracy of 83.3%, which show that the clas-

sification accuracy is lower using the globalized feature selection method comparably to localized feature
selection in the previous experiment. Figure 3.15 shows the globalized saliency of features for the classified
shapes for both mixtures, and figure 3.16 shows the number of clusters found using the integrated likelihood
criterion.
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Table 3.9: Confusion matrix for the handwritten numerals data set using mixture of Gamma distributions,
and globalized feature selection method.

Classified as ¦ 0 1 7

Outlier Class

178

0

0

0

0

0

0

0

0

0

4

0

192

.5

0

26

0

0

6

0

0

0

0

8

158

9

0

0

0

0

7

12

7

0

0

37

184

0

0

0

0

0

0

0

0

0

0

0

166

0

0

0

0

0

6

0

0

0

0

0

184

11

0

0

0

0

0

0

0

8

16

189

0

0

0

2

0

0

0

0

0

0

0

175

0

0

0

22

0

0

7

0

0

0

0

193

0

0

0

0

0

0

0

0

0

19

0

Table 3.10: Confusion matrix for the handwritten numerals data set using mixture of Gaussian distributions,

and globalized feature selection method.
Classified as : 0 1

Outlier Class

118

0

0

0

0

0

0

0

6

0

2

0

167

9

0

19

0

0

0

0

0

0

33

191

0

0

Ò
0

0

0

0

0

0

0

0

176

0

0

0

0

0

21

0

0

0

0

0

0

119

13

0

0

0

3

0

0

0

0

0

81

187

0

0

0

0

0

0

0

0

0

0

0

171

0

0

1

82

0

0

24

0

0

0

0

194

0

0

0

0

0

0

0

0

0

29

0

179
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Figure 3.15: Globalized saliency of features for the handwritten numerals data set. (a) Mixture of Gamma
Distributions, (b) Mixture of Gaussian Distributions.

Class Number

Figure 3.16: Integrated likelihood as a function of the number of clusters for the handwritten numerals data
set using globalized feature selection method, (a) Mixture of Gamma Distributions, (b) Mixture of Gaussian
Distributions.

Experiment 4

The fourth experiment is conducted using mixtures of Gamma and Gaussian distributions using localized
features selection method, and with outliers detection. Table 3.11 shows the confusion matrix for the mix-

ture of Gamma distributions; the number of miss-classified shapes is 104 which represents an accuracy of
94.85%. On the other hand, table 3.12 shows the confusion matrix for mixture of Gaussian distributions;

the number of miss-classified shapes is 241 which represents an accuracy of 88.06%. It is noteworthy that
using our approach applied with the Gamma mixture we are able to detect all the outliers which is not the
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case with the Gaussian mixture (2 outliers are assigned to class 9). Figures 3.17 and 3.18 show the local-
ized saliency of features for both mixtures, and figure 3.19 shows the number of clusters found using the

integrated likelihood criterion.

Table 3.11: Confusion matrix for the handwritten numerals data set using mixture of Gamma distributions,

localized features selection method, and with outliers detection.
Classified as =^> 0123456789 Outlier Class

0 186 00000000 14 0

1 0 192 80000000 0

2 0 0 179 0 3 18 0 0 0 0 0

3 000 200 000000 0

4 0200 198 00000 0

5 00000 200 0000 0

6 000000 182 099 0

7 0 5110 0 0 01 84 0 0 0

8 00060000 194 0 0

9 00000000 19 181 0

Outlier Class 0000000000 20

Experiment 5

The fifth experiment is conducted using mixtures of Gamma and Gaussian distributions using globalized
features selection method, and with outliers detection. Table 3.13 shows the confusion matrix for the mix-

ture of Gamma distributions; the number of miss-classified shapes is 124 which represents an accuracy of
93.8%. On the other hand, table 3.14 shows the confusion matrix for mixture of Gaussian distributions; the

number of miss-classified shapes is 257 which represents an accuracy of 87.2%. It is noteworthy that using
our approach applied with the Gamma mixture we are able to detect all the outliers which is not the case with
the Gaussian mixture (1 outlier is assigned to class 7). Figures 3.20 and 3.21 show the globalized saliency
of features for both mixtures, and the number of clusters found using the integrated likelihood criterion.
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Table 3.12: Confusion matrix for the handwritten numerals data set using mixture of Gaussian distributions,

localized features selection method, and with outliers detection.
Classified as => 0123456789 Outlier Class

0 161 00000000 39 0

1 0 189 110000000 0

2 04 129 00 67 0000 0

3 000 172 00000 28 0

4 0 15 00 185 00000 0

5 0 0 0 0 0 162 19 0 0 19 0

6 000006 194 000 0

7 0 2 16 0 0 0 0 182 0 0 0

8 000 13 0000187 0 0

9 000000000 200 0

Outlier Class 0000000002 18
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Figure 3.17: Localized saliency of features for the handwritten numerals data set using mixture of Gamma
distributions, and with outliers detection.
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Figure 3.18: Localized saliency of features for the handwritten numerals data set using mixture of Gaussian
distributions, and with outliers detection.

Class Nien&er
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Class Number

Figure 3.19: Integrated likelihood as a function of the number of clusters for the handwritten numerals data
using localized feature selection method, and outliers detection, (a) Mixture of Gamma Distributions, (b)
Mixture of Gaussian Distributions.
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Table 3.13: Confusion matrix for the handwritten numerals data set using mixture of Gamma distributions,
globalized features selection method, and outliers detection.

Classified as ¦ 0 7 Outlier Class

Outlier Class

200

0

0

0

0

0

0

0

0

0

0

0

192

0

0

17

0

0

0

0

0

0

174

0

0

0

0

0

0

0

0

0

0

26

192

0

0

0

0

14

2

0

0

0

0

0

183

0

0

0

0

0

0

0

0

0

0

0

182

10

0

0

0

0

0

0

0

0

0

18

190

0

0

0

0

0

0

0

0

0

0

0

179

0

0

0

0

0

0

8

0

0

0

0

186

0

0

0

0

0

0

0

0

0

21

0

198

0

0

0

0

0

0

0

0

0

0

0

20

Table 3.14: Confusion matrix for the handwritten numerals data set using mixture of Gaussian distributions,
globalized features selection method, and outliers detection.

Classified as : 0 1 7 Outlier Class

Outlier Class

134

0

0

0

0

0

0

0

13

0

0

0

189

0

0

0

0

0

0

0

0

0

0

11

200

0

0

0

0

0

0

0

0

0

0

0

157

0

0

0

0

0

36

0

0

0

0

0

185

0.

0

0

0

0

0

0

0

0

0

0

152

6

0

0

0

0

0

0

0

0

0

48

194

0

0

0

0

0

0

0

0

6

0

0

182

0

0

66

0

0

43.

0

0

0

0

187

0

0

0

0

0

0

9

0

0

18

0

164

0

0

0

0

0

0

0

0

0

0

0

19
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Figure 3.20: Globalized saliency of features for the handwritten numerals data set using mixtures of Gamma
and Gaussian distributions with outliers detection, (a) Mixture of Gamma Distributions, (b) Mixture of
Gaussian Distributions.
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ID 1! 12 Î3
Class Number

Cb)

Figure 3.21: Integrated likelihood as a function of the number of clusters for the handwritten numerals

using globalized feature selection method, and outliers detection, (a) Mixture of Gamma Distributions, (b)
Mixture of Gaussian Distributions.

3.4 2D Objects Shape Clustering

Shape modeling and representation is an important step in several applications such as content-based im-
age retrieval, indexing, and image segmentation [58]. Zernike Moments Magnitudes (ZMMs), which have

been the subject of extensive theoretical and experimental research in the past [59-61], are known to be

very effective to model objects shapes. Indeed, they allow invariant (i.e. regardless the position, size and
orientation) recognition of objects [62]. Moreover, the Gamma distribution was found suitable to model
ZMMs [63]. Thus, we present in the following results of applying our model on the clustering of shape
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images represented by ZMMs. The data set used is a subset of the MPEG-7 CE Shape- 1 Part-B data set
that consists of seven classes, where each class includes 20 shape samples 2. Figure 3.22 shows examples
of images from this data set. We also add to this data set 5 textural images from the MIT Vistex gray

tttttttttttttttttt??

Figure 3.22: Samples of the MPEG-7 CE Shape- 1 Part-B data set.

level database as outliers. After normalizing all the images [64, 65], the vector of characteristics (ZMMs) is

computed for each image (shape) using the method proposed in [63]. Thus, each image is represented by a
36-dimensional vector.

Experiment 1

The first experiment is conducted using mixtures of Gamma and Gaussian distributions without performing
nor feature selection neither outliers detection. Table 3.15 shows the confusion matrix for mixture of Gamma

distributions; the number of miss-classified shapes is 29 which represents an accuracy of 80.0%. On the
other hand, table 3.16 shows the confusion matrix for mixture of Gaussian distributions; the number of

miss-classified shapes is 50 which represents an accuracy of 65.5%. For both mixtures, the number of

clusters selected by the integrated likelihood criterion is 7 as shown in figure 3.23.
2 http://www.cis. temple.edu/latecki/TestData/mpeg7shapeB.tar.gz
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Table 3.15: Confusion matrix for MPEG-7 data set using mixture of Gamma distributions without features
selection nor outliers detection.

Classified as =4> Bone Heart Glass Fountain Key Fork Hummer
Bone

Heart

Glass

Fountain

Key
Fork

Hummer

Outlier Class

17

0

0

0

0

0

4

0

3

0

19

9

0

0

0

5

0

0

1

11

0

0

0

0

0

1

0

0

0

20

0

0

0

4

0

0

2

0

16

0

Table 3.16: Confusion matrix for MPEG-7 data set using mixture of Gaussian distributions without features
selection nor outliers detection.

Classified as -

Bone

Heart

Glass

Fountain

Key
Fork

Hummer

Outlier Class

Bone Heart Glass Fountain Key Fork Hummer
19

4

0

0

5

1

12

3

0

0

0

14

0

0

0

1

0

0

0

0

15

0

0

1

0

0

2

3

0

13

0

0

Experiment 2

The second experiment is conducted using mixtures of Gamma and Gaussian distributions by performing
localized feature selection, and without outliers detection. Tables 3.17 and 3.18 show the confusion matrices

for both mixtures in this case. The number of miss-classified shapes using mixture of Gamma is 22 which

represents an accuracy of 84.82%. On the other hand, the number of miss-classified shapes using mixture of
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Figure 3.23: Integrated likelihood as a function of the number of clusters for the MPEG-7 data set without
features selection nor outliers detection, (a) Mixture of Gamma Distributions, (b) Mixture of Gaussian
Distributions.

Gaussian is 40 which represents an accuracy of 72.41%. Figures 3.24 and 3.25 show the localized saliency
of features of the classified shapes using both mixtures. Comparing the first and second experiments, we can

deduce that the feature selection process improves significantly the clustering of shapes accuracy. However,
as 7 is considered as the optimal number of clusters for both mixtures as shown in figure 3.26. The outliers
are mixed with the inliers and affected to these clusters.

Experiment 3

The third experiment is conducted using mixtures of Gamma and Gaussian distributions by performing glob-
alized feature selection, and without outliers detection. Tables 3.19 and 3.20 show the confusion matrices

for both mixtures in this case. The number of miss-classified shapes using mixture of Gamma is 33 which

represents an accuracy of 77.2%. On the other hand, the number of miss-classified shapes using mixture of
Gaussian is 46 which represents an accuracy of 68.2%. Figures 3.27 and 3.28 show the globalized saliency

of features of the classified shapes using both mixtures, and number of clusters found using the integrated
likelihood criterion. Comparing the second and the third experiments; we can deduce that the localized

features selection process improves the clustering of shapes accuracy compared to the globalized one.
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Table 3.17: Confusion matrix for MPEG-7 data set using mixture of Gamma distributions, localized feature
selection method, and without outliers detection.

Classified as ¦

Bone

Heart

Glass

Fountain

Key
Fork

Hummer

Outlier Class

Bone Heart Glass Fountain Key Fork Hummer
18

0

0

0

0

0

0

0

2

17

0

2

0

0

0

0

0

0

19

0

2

0

0

0

0

0

0

0

16

5

0

3

0

0

0

0

0

15

0

0

0

3

0

0

2

0

20

2

Table 3.18: Confusion matrix for MPEG-7 data set using mixture of Gaussian distributions, localized feature

selection method, and without outliers detection.
Classified as : Bone Heart Glass Fountain Key Fork Hummer

Bone

Heart

Glass

Fountain

Key
Fork

Hummer

Outlier Class

14

0

0

0

0

0

2

0

0

19

0

8

0

0

0

0

0

0

16

0

0

0

0

0

1

0

0

12

3

0

0

0

0

1

0

0

17

2

5

4

Experiment 4

The fourth experiment is conducted by taking into consideration both the relevancy of features and the
presence of outlier data using localized feature selection method. Both mixtures are able to detect the outlier
data (in the case of the Gaussian, however, one outlier was considered as an inlier); hence, the classification

accuracy has increased. Tables 3.21 and 3.22 show the confusion matrices for both mixtures. The number
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Figure 3.24: Localized saliency of features using mixture of Gamma distributions, and without outliers
detection.
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Figure 3.25: Localized saliency of features using mixture of Gaussian distributions, and without outliers
detection.

of miss-classified shapes are 9 and 21 which represent accuracies of 93.7% and 85.5% when using Gamma
and Gaussian mixtures, respectively. Figures 3.29 and 3.30 show the localized saliency of features for both

mixtures. Figure 3.31 shows the number of clusters found using the integrated likelihood criterion.
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Figure 3.26: Integrated likelihood as a function of the number of clusters for the MPEG-7 data set using
localized feature selection method, and without outliers detection, (a) Mixture of Gamma Distributions, (b)

Mixture of Gaussian Distributions.

Table 3.19: Confusion matrix for MPEG-7 data set using mixture of Gamma distributions, globalized fea-
tures selection method, and without outliers detection.

Classified as : Bone Heart Glass Fountain Key Fork Hummer
Bone

Heart

Glass

Fountain

Key
Fork

Hummer

Outlier Class

19

0

3

0

0

0

0

0

0

0

14

0

0

0

0

2

0

1

0

0

15

3

0

0

3

0

0

0

17

7

0

0

0

0

0

5

0

13

0

Experiment 5

The fifth experiment is conducted by taking into consideration both the relevancy of features and the pres-

ence of outlier data using globalized feature selection method. Both mixtures are able to detect the outlier
data (in the case of the Gaussian, however, two outliers were considered as an inliers); hence, the classifi-

cation accuracy has increased. Tables 3.23 and 3.24 show the confusion matrices for both mixtures. The
numbers of miss-classified shapes is 9 and 23 which represent accuracies of 93.7% and 83.4% percent when
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Table 3.20: Confusion matrix for MPEG-7 data set using mixture of Gaussian distributions, globalized
features selection method, and without outliers detection.

Classified as

Bone

Heart

Glass

Fountain

Key
Fork

Hummer

Outlier Class

Bone Heart Glass Fountain Key Fork Hummer
0

0

0

0

19

0

3

4

12

0

0

0

0

14

0

0

3

0

0

11

0

6

16

1

10 20 30
Feature Number

(a!

10 23 30
Feature Number

(t>)

Figure 3.27: Globalized saliency of features for the MPEG-7 data set using globalized features selection
method, and without outliers detection, (a) Mixture of Gamma Distributions, (b) Mixture of Gaussian
Distributions.

using Gamma and Gaussian mixtures, respectively. Figures 3.32 and 3.33 show the globalized saliency of
features for both mixtures, and the number of clusters found using the integrated likelihood criterion.
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Class Number

Figure 3.28: Integrated likelihood as a function of the number of clusters for the MPEG-7 data set using
globalized features selection method, and without outliers detection, (a) Mixture of Gamma Distributions,
(b) Mixture of Gaussian Distributions.

Table 3.21: Confusion matrix for MPEG-7 data set using mixture of Gamma distributions, localized features
selection method, and outliers detection.

Classified as => Bone Heart Glass Fountain Key Fork Hummer Outlier Class
Bone

Heart

Glass

Fountain

Key
Fork

Hummer

Outlier Class

19

0

0

0

0

0

0

0

0

20

0

1

0

0

0

0

0

0

0

19

0

0

0

0

0

0

2

0

19

0

0

0
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Table 3.22: Confusion matrix for MPEG-7 data set using mixture of Gaussian distributions, localized fea-
tures selection method, and outliers detection.

Classified as :

Bone

Heart

Glass

Fountain

Key
Fork

Hummer

Outlier Class

Bone Heart Glass Fountain Key Fork Hummer Outlier Class
13

0

0

0

0

0

0

0

0

2

19

3

0

0

0

0

0

0

0

17

0

0

0

0

0

0

0

0

0

16

7

0

0

0

2

0

19

0
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Figure 3.29: Localized saliency of features using mixture of Gamma distributions, and outliers detection.
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Figure 3.30: Localized saliency of features using mixture of Gaussian distributions, and outliers detection .
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Figure 3.31: Integrated likelihood as a function of the number of clusters for the MPEG-7 data set using
localized feature selection method, and outliers detection, (a) Mixture of Gamma Distributions, (b) Mixture

of Gaussian Distributions.
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Table 3.23: Confusion matrix for MPEG-7 data set using mixture of Gamma distributions, globalized fea-
tures selection, and outliers detection.

Classified as -

Bone

Heart

Glass

Fountain

Key
Fork

Hummer

Outlier Class

Bone Heart Glass Fountain Key Fork Hummer Outlier Class
20

0

0

0

0

0

0

0

0 0

0

0

19

0

0

0

0

0

0

0

0

0

19

0

0

0

0

2

1

19

0

Table 3.24: Confusion matrix for MPEG-7 data set using mixture of Gaussian distributions, globalized
features selection method, and outliers detection.

Classified as ¦ Bone Heart Glass Fountain Key Fork Hummer Outlier Class
Bone

Heart

Glass

Fountain

Key
Fork

Hummer

Outlier Class

19

3

0

0

0

2

0

0

0

16

0

0

0

0

0

0

0

1

2

13

0

0

3

0

0

0

0

0

19

0

1

0
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Figure 3.32: Globalized saliency of features using globalized features selection method, and outliers detec-
tion, (a) Mixture of Gamma Distributions, (b) Mixture of Gaussian Distributions.
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Figure 3.33: Integrated likelihood as a function of the number of clusters for the MPEG-7 data set us-

ing globalized feature selection method, and outliers detection, (a) Mixture of Gamma Distributions, (b)
Mixture of Gaussian Distributions.
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Chapter *~t I

Conclusions

Recently, there has been increased number of unlabeled databases, this is due to the large amount of data
generated by human activities and scientific disciplines, which make a challenge for humans to assign (i.e.
manually label) each instance into its category. Such a process is a subjective and expensive one. More chal-
lenge is added when each element of these databases is high-dimensional (text, images, etc). Typically, some
features used to describe each element are not relevant for classification, or are "noisy" features. Hence, the

process of selecting the most appropriate features to represent such an element becomes a necessary task,
in order to remove noisy features and keep the most discriminating ones. Another more challenging issue
is the presence of outlier data; which makes its difficult even for the most efficient learning algorithms to

accurately identify the natural groupings of these databases.

In this thesis, we have presented a principled unsupervised generative model-based approach, for simul-

taneous clustering feature selection and outlier detection, to achieve robust data modeling using finite mul-
tivariate Gamma mixture model. Our proposal was to use a statistical model that makes explicit what data
or features have to be ignored and what information has to be retained.

Our work is mainly driven by the increased collection of high-dimensional non-Gaussian data in various

domains, and by the complexity of both feature selection and outlier detection problems in such domains. It
has been shown through extensive experiments involving synthetic and real data that the proposed approach
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Chapter 4. Conclusions

has excellent modeling capabilities and that feature selection mixed with outliers detection influences sig-
nificantly the clustering performance.

Future works can be devoted to extend the proposed model to online settings using a variational approach,
for instance, since we generally deal with dynamically changing environments; the proposed model can be

extended to the semi-supervised case, such a model will use both labeled and unlabeled data for training.
The main motivation toward moving to semi-supervised learning model is the difficulty of acquiring labeled

data for learning. Such a process, is hard, expensive and subjective for a human being to assign each ele-
ment of the data sets into its category. On the other hand, acquiring unlabeled data is an inexpensive and
more feasible process. Hence, semi-supervised approaches use a limited amount of labeled data and a large
amount of unlabeled data, and seem to provide more support in such a demanding environment.
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Chapter 5
Appendices

5.1 Appendix 1: Proof of Equation 7

Note that we have to introduce a lagrange multiplier ? to incorporate the constraint Tj=i Pj = 1. Com-
puting the derivative of 1Og])(A^e) w.r.tpj, j = 1, . . . , M + 1, we obtain

d S;=? log ( EL· ( Vi Oil {???????a) + (i - Mp(^IM) ) + pm+iU(x„) ) + ?(? - S-?? ?,)

r ?G

S

dpj

ïld=i (PjdP(Xid\6jd) + (1 - Pjd)p(Xid\*jd))
':=1 S"1? U nil {PjdP(Xîd\ejd) + (1 - ^)p(Xld|Ajd)) ) +pM+i EZ(^i)

ZiLiPUlXi)

A

A = O
P;

where

P] ??=? (pjdPC-yJdl^jiij + Cl-PjdlP^idl^d))

POI**) = <
ZfLi PjYlS=I (pjdP(Xid\ejd) + ^-Pjd)p(Xid\^d)) +PM + IU(X,)

PM + 1U(X,.)

S"? (?.??=1 (?^?(-^?^a)+(1"?^.)?(?^|?^)) j +PAZ+ICZ(Xi)

ifj = l,... ,M

if j =M + 1

p? = S,:=????-- »^ Taking (J16 derivative w.r.t ?, we obtain 1 — S?=? Pi = 0 which gives us S7=î P? = 1·
Thus,

¿- ? ?
.7 = 1
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since S^?? p(j\Xt) = 1, we obtain L = N, then p} = S^, -Y'>

5.2 Appendix 2: Proof of Equation 8

Let pjd = pjd.i and 1 — Pjd = Pjd.2- By computing the derivative w.r.t Pjd,i,j = 1, · · ¦ ¦ M, d = 1. .... D
and introducing the lagrange multiplier ? to take into account the fact that pjdt\ + Pjd,2 = 1, we obtain

d Ef=i log Eti P3 YlZi (Pjd,iP(Xid\ejd) + PjdMXidìXjd)) + PM+iU(Xt) + ?(1 - ^1 - pjd,2)
OpJd11Jd1I

V ilXif P(^lM ^-A=O

Multiplying by ?^,?, we obtain

?- rir*/ Pjd,ip{Xid\0jd) "\_??^m ^{p^MXiäie^ + PjäMXiäi^ä)) -1d'\
By computing the derivative w.r.t pjd,2, we obtain ^1 p{j\Xi) ( Pjd,lP(xtd£)+^L(.Y,d|AJd)

(1)

A = O.

Multiplying by Pjd,2< we obtain
TV Pjd,2P(Xjd\^jd)S,-\?\ Pjd,2P\^id\*jd) \ ? p rn\

Summing equations 1 and 2, we obtain ??;=???'?^:) = ?, then according to equation 1, we have

Ef=i PÜ\X¿ f PiaMXiaWja)
P.Ti,l = ^Ar __,_., ^n (3)

Pjd,lP(XidM>jd)+Pjd,2P(Xid\^jd)

ZLpUIX
and

VA' ?(?\?,?' Pjd.2P(Xid\*jd)Pjd,ip{XidWjd)+Pjd.2P{Xid\^jd)

EliPUÌXi)PMa = Vn ,,v, W
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5.3 Appendix 3: Proof of Equations 9 and 10

Computing the derivative of \ogp(X\0) w.r.t ßjd, we obtain

dlogp{X\e) A - d
dßjd (Pjdp(Xid\öjd) + (l - Pjd)p(Xidi^jd))

N d(pjdP{Xid\f>jd)+(ï-f>jd)p(.^id\^jd))
J2p(j\Xì. dß;,d

N

PjdP(Xid\Sjd) + (i - Pjd)p{Xi.d\^jd) Y,p(j\Xi. P]dP{Xid\Sjd)-^-d^ogp{Xid\6]d)
PidPiXidWjd) + (i - Pjd)p{Xid\>^jd)

we have ^ logp(X¿d|0jd) = gj^ [(<*jd - 1) log Xld - jfd ~ aJ(/ log /3J(i - log T(c ^d i

Then.
•?* N nfjlY ) PjdP(xìd\l>}d)x,.d

ÊHj**m = o gives us ß,d = ^"=l(V '}',*«?«^->??^<<> ,Mid b H]d ?,.,^?? (-|? -, PjdP^idWjd)

-y,d a.ld
ß]d ßi'-

Computing the derivative of logp^l©) w.r.t ajd, we obtain
?'dlogp(X\e) _^ . - P]dP{Xi,d\e3d)-Q¿-d \ogp{Xid\0jd)

9a'jd »:=? PjdP(.Xid\Ojd) + (1 - Pjd)p(^idlAjd)

we have ^ logp(Xid|0jd) = ^ [(<*jd - l)logX,;d -^- ajdlogßjd - logr(a;d)] = log X^ -
log ßjd — ^(<y.jd), where F() is the digamma function. Thus

ajd = F I ——J J ? p{x \ß ) > where F () is the inverse digamma
V E^lPOI-Y-Op^ptA-^le^J + d-p^ìptA^IA^) /

function. Notice that it is possible also to use a Newton-Raphson method to estimate a7-¿:

xjd
old d logp(X\e) f&logj>(X\Q)\ -1
jd do.jd V d2ajd

It is straightforward to determine a\\j¿ and ß\\jd following the same development as above.

(5)

5.4 Appendix 4: Proof of Equations 20, 21, 22 and 23

The Hessian matrix is defined as, H(Q) ¿>2-logp(Aie)
?2?

t M

Its determinant can be defined as follows:

Let's start by the Hessian matrix\?(T)\ = IfT(Pi,..., PM+OI ??£? [\H(6J)\ÏH(XJ)\UT=i\H(p]d)
with respect to the mixing parameters \H(pi, . . . ,pm+i)\ which should take into account the fact that
PM+I = 1 - Ejii Pr We have
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a- log ?(??T)
dp.

lid=! (PjdP(X,.d\Ojd) + (1 - P.7dM*«i|A,d)) - E/(X¿)_
-Mi=1 S"1? (ft nii (/vp^jM + (i - Mp(X1^))J + (i - EfL1PjW(X,

= El1 p(m + i\xt) El1 PUlXi)J _ ? ^ } M
PM+l Pj

By approximating the Hessian, with respect to the mixing parameters, from its diagonal components only,
it is possible to show that [56]

,„, ? ^r ^fP(M +I]X1) p(j\x,y2
f=\ tí V ??+?

As for the Hessian, with respect to the pj¿ parameters, we have
Pj

(6)

El1 log EfL1 [Pj nii (PjdP(Xid\Ojd) + (i - PJd)p(xtd|Ajd)) +m+1c/(xi:)

¿pC/i*)
dpjd

p(Xid\^jd) -?(???\?3?)
pjdP(Xid\Ojd) + (i - Pjd)p(^id^jd)

?'

S>0?^
?;=i

/(I - PjdJjchXjd) f(Pjd, Ojd, Xjd)
1 - Pjd Pjd

An the determinant of the Hessian can be approximated as
N

\H(Pjd)\ = Y^p(3\XÙ /(I _ Pjd, Qjd-, ^jd) f{Pjd,Qjd,^jd)
1 - Pjd

According to the previous appendix, it is easy to show that:

d2 - \ogp(X\Q) N

= -^p(j\Xz)f(Pjd, ?Jd, x3d){

Pjd

Xid ajd ?d2ß]d -^-"'"^^^V ß2-J
d2-logp(X\B) d2-\ogp(X\e) 1

dßjddajd dajdf)ßjd ßjd ~{
d2-\ogp(X\B)

= * yujd) ¿_
¿=1

^P(j\XÙf(Pjd;d]d^,Jd)

9'(ajd) Y^p(JiXi)HpJd, Ojd, A70-)d2o.jd
where F'() is the trigamma function. Then,

D r , N ? \ ( Nlff(M = ? Y^pU\Xi)f(Pjd, ejd, x:id)Q± - -#) *'(<**) S>0?*?)/(^> ejd, x]d)d=l L V »=1 P3d Pjd

(7)

(8)

(9)

(10)

?:=i

1 N— X^P(/l^:)/(Pjd, O7Ci, Ajd;&<* ?
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Using the same approach, we can show also that
D r , N a\\jd Xid

d=l L x 1-1
N

ß2 ß3 '

N

)W{oxljd)(Y^p{j\X)}{l Pjd,
?.=i

¦ 5Z p (j'l ^¿)/(i - Pjd, ?jd, Xjd)Jx\.jd fri'

5.5 Appendix 5: Maximum Likelihood Estimation For Finite Gaussian
Mixture Model

The parameters are estimated by maximizing the log-likelihood function using the maximum likelihood
approach as following:

( Nr-MsD ' X
? = arg max i logp(X\Q) = ^ log ^ Ipj JJ (pjdP{Xid\ftjd)+(l-Pjd)p{Xid\X]d)) J +PM+iU(Xi)*· ¿=1 L 7 = 1 ^ d=l '¦

(12)

where ?}? = {µ??, a2d}, Xjd = {/¿Ajjd, al\jd}> and

p{Xid\Pjd^2d) --
-(xid~fjd)~

l™%
(13)

is the Gaussian probability density function. ßjd and a2d are mean and variance, which gives us:

Pj N j = l,...,M + l

Pjd
S*=? p(j\Xj)f(Pjd,ejdAjd)

^?'E^pUlXi)
j = l,..., M d=l,...,D

P]d
E)=i p{j\Xj)f(pjd, ejd, Xjd)Xid

EiIi p(J\X)f(Pjd, Ojd, Xjd) j = l,. ...M d = l,...,I>

'jrf

^AlJd

Et=i p(J\xi)f(Pjd, Qjd, x3d){Xid - Pjd)
EiIi p{j\X)f{pjd, Ujd, Xjd)

EiIl PQI^O/C1 - Pja!» fljrf. Xjd)Xid
EtiPUi^f^-PM^jd.Xjd)

j = l,..., M d=l,...,D

(14)

(15)

(16)

(17)

(18)

'X\jd
Ei=i PÜ\Xi)f(i - Pjrf. ^jd. *jd)(Xid ^- P\\3d)

ElMj\xôf(i-PjdJjd.,Xjd) j = l,..., M cf =1,...,D (19)
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