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Abstract

Positive Data Clustering Using Finite Inverted Dirichlet Mixture Models
Taoufik BDIRI

In this thesis we present an unsupervised algorithm for learning finite mixture models from multivariate
positive data. Indeed, this kind of data appears naturally in many applications, yet it has not been adequately
addressed in the past. This mixture model is based on the inverted Dirichlet distribution, which offers a

good representation and modeling of positive non gaussian data. The proposed approach for estimating
the parameters of an inverted Dirichlet mixture is based on the maximum likelihood (ML) using Newton
Raphson method. We also develop an approach, based on the Minimum Message Length (MML) criterion,
to select the optimal number of clusters to represent the data using such a mixture. Experimental results
are presented using artificial histograms and real data sets. The challenging problem of software modules
classification is investigated within the proposed statistical framework, also.
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Chapter 1 _^_

Introduction

1.1 Introduction and Related works

Data clustering is an important technique for data analysis, and has been largely studied. Indeed, it has
been shown to be a crucial step in many practical domains such as information retrieval and data min-
ing [I]. Large corporations, hospitals, organizations and companies, all require accurate analysis of their
data. Statistical-based approaches and in particular finite mixture models have long been the workhorse for
data clustering, and have seen a real boost in popularity over the last decade due to the tremendous increase
in available computing power [2, 3]. Its attractiveness lies in its simplicity, flexibility and in its strong sta-
tistical foundations which offer a formal model-based framework for clustering. Moreover, finite mixtures
are a natural choice in many practical situations where the data of interest may be considered to consist of
categories mixed in varying proportions [4]. With the technological and scientific advancement, the nature
of generated data has became more rich and complex which adds more challenges when adopting finite mix-
ture models [5]. Much of the related work, however, does not attempt to provide specific models according
to the nature of the generated data. Indeed, the majority of research works related to finite mixture models
have been based on the Gaussian assumption. Recently, a series of papers have shown that this assumption
is generally inappropriate and that other mixture models can outperform the Gaussian mixture by discover-
ing more efficiently useful patterns and correlations among data features. For instance, recent studies have
shown that finite Dirichlet mixtures are more appropriate for proportional data (or normalized histograms)
clustering and outperform significantly their Gaussian counterpart in several image processing [6], pattern
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recognition [7], and data mining applications [8]. In this thesis, however, we focus on the modeling and
clustering of positive data which despite the fact they occur naturally in many real-life applications, have
not received much attention. We present then a clustering algorithm, based on finite mixtures of inverted
Dirichlet distributions, and demonstrate that it is especially suitable for clustering this kind of data.
To the best of our knowledge finite inverted Dirichlet mixture models have never been considered in the
past. In fact, compared to the Dirichlet, the inverted Dirichlet has received less attention from both a prac-
tical and theoretical point of view. Thus, the main goal of this thesis is to introduce these models and to
show their usefulness in practical settings. The main motivation is the flexibility of the inverted Dirichlet
distribution which, in contrast to the Gaussian, permits multiple symmetric and asymmetric mode, it may
be skewed to the right, skewed to the left or symmetric as we will show in the next chapter. Given unlabeled
samples, an important problem when considering finite mixtures is the learning of the model. By learning,
we mean both the selection of the most optimal number of mixture components to represent the data and
the estimation of the related parameters. One of the most mature approaches for parameters estimation is
the maximum likelihood (ML) [9] performed generally through the expectation-maximization (EM) algo-
rithm [10]. Another considerable part of the unsupervised learning, is to determine the proper number of
clusters that represent the data which can be viewed actually as a model search step. Typical criteria to select
the number of clusters test models by assigning to them values determined by the likelihood associated with
the model, the number of free parameters in the model, the data and prior information about the model's pa-
rameters. Popular criteria include the Akaike information criterion (AIC) [11], Bayes information criterion
(BIC) [12] and minimum description length (MDL) [13]. In a previous work, the authors in [8] have shown
that all these criteria can be viewed as an approximation to the minimum message length criterion which
generally gives the best results. Thus, we develop in this work an expression to represent the message length
of a finite inverted Dirichlet mixture which gives us a statistically founded approach that outputs both the
optimal number of clusters, by minimizing the message length of the data, and their parameters.

1.2 Contributions

The contributions of this thesis are as follows:

2



¦*¦ A Novel finite mixture model for efficient positive non Gaussian data clustering: Our approach sug-
gest a new distribution which, to the extend of our knowledge, hasn't been used before in clustering.
The distribution seems to give good clustering results for positive non Gaussian data. We developed
all the equations related to its parameters estimation and the algorithm to select the optimal number of
clusters to represent and fit a given positive data set. We have proven that the finite inverted Dirichlet
mixture can be a good candidate to cluster positive non Gaussian data.

¦*" Comparison of the inverted Dirichlet mixture model performance with finite Gaussian mixture model:
We compare the performance of our developed model with a finite Gaussian mixture model in terms
of clustering, and the selection of optimal number of clusters. The comparison is based on challenging
applications namely real data clustering and software modules analysis. We show that the inverted
Dirichlet mixture outperforms the Gaussian one, when the data is positive and non gaussian.

1.3 Thesis Overview

The organization of this thesis is as follows:

? Chapter 1 introduces the dilemma of clustering data sets, the major role that finite mixture models
play for data clustering. It also introduces methods for selecting the appropriate number of clusters
for a data set.

? Chapter 2 proposes a new finite multivariate inverted Dirichlet mixture model approach, which is
capable of clustering data sets. Moreover, we develop the message length expression for the inverted
Dirichlet distribution to determine the number of clusters that fits the most a given data set.

D Chapter 3 is devoted to the experimental results of the application of our approach on synthetic and
real data. The obtained results are compared with those of finite Gaussian mixture.

? Chapter 4 gives the summary, conclusion and potential avenues for future research.

D Chapter 5 (Appendices): presents the derivation equations of the finite mixture of multivariate Gaus-
sian distributions, and the expression of the minimum message length in this case.

3



Chapter

Positive Data Clustering Using Finite Inverted
Dirichlet Mixture Models

2.1 Introduction

In the previous chapter, we presented the dilemma of data clustering, and some previous work related to
the use of finite mixture models in different applications that include data clustering and the selection of
the optimal number of clusters for a given data set. In this chapter, we propose a new mixture model
basing on the inverted Dirichlet distribution and we derivate its equations. We establish the maximum
likelihood estimation, basing on the expectation-maximization (EM) algorithm, using Newton Raphson
method. After the presentation of our algorithm for parameters estimation, we define the minimum message
length (MML) for an inverted Dirichlet mixture to determine the number of clusters that fits the most a
given data set.

2.2 Finite Inverted Dirichlet Mixture Model

If a D-dimensional vector positive vector X — (Xi, X2, ¦··, Xd) follows an inverted Dirichlet distribution,
the joint density function is given by [14]

Hd=I "(Oy)1J=I d=1

4
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where X¿ > O, d = 1, 2, . . . , Z?, a = (a?, ... , a?+?) is the vector of parameters and \a\ = S®=? ad,
a^ > 0,d — 1, 2, . . . , D + 1. The inverted Dirichlet distribution was introduced for the first time in

[14] where the authors derived it from the Dirichlet distribution. Another derivation based on the Gamma

distribution was proposed also in [15]. It is noteworthy that like the Dirichlet, the inverted Dirichlet permits
multiple symmetric and asymmetric modes and it may be skewed.to the right, skewed to the left or symmetric
(see Figure 2.1). Several interesting properties of the inverted Dirichlet can be found in [16]. The mean and
the variance of the inverted Dirichlet distribution are given by [14]

E(Xd) = ad (2)OLD+l - 1

Var{Xd) - (aD+1- I)Han+1 -2) (3)

Let X = {X\ tX2,..., Xn} be a data set of N .D-dimensional positive vectors with a common, but un-
known, probability density function ?(?\T). Generally X is composed of different, say M, clusters, thus
?(?\?) may be approximated with sufficient accuracy by a finite M-components mixture model:

M

?(?\?) = S?(?\?3)?? (4)
J = I

where the pj are the mixing proportions which are positive and sum to one, and p(X\Sj) is the inverted
Dirichlet distribution. The symbol ? refers to the entire set ofparameters to be estimated ? = {a? , â*2, . . . , 3m,
Pi, P2, ¦ ¦ ¦ ,Pm] with aj = (aji,aj2,- ¦ ¦ , cxjd+i) and represents the parameter vector for the jth popula-
tion. Figure 2.2 displays examples of finite inverted Dirichlet mixtures with different parameters. In the
following sections, we shall tackle the problems of estimating ? and also selecting the number of clusters
M.

2.3 Finite Inverted Dirichlet Mixture Model Estimation

In this section, we first develop the maximum likelihood estimates of the parameters of a finite inverted
Dirichlet mixture. Then, we give the complete estimation algorithm.



(a) Qi = 3.5, a2 = 3.5, 0:3 = 3.5 (b) ai = 10, Q2 = 3.5, Q3 = 3.5

(c)qi =3.5, Q2 = 10, Q3 = 3.5 (d) Qi = 3.5, Q2 = 3.5, Q3 = 10

Figure 2.1: Bivariate inverted Dirichlet distributions with different parameters.

2.3.1 Maximum Likelihood Estimation

The estimation of finite mixture models has been the subject of many studies especially in the case of
Gaussian data (see, for instance, [17]). The maximum likelihood approach remains, however, the most
popular technique. The maximum likelihood estimate, associated with a sample of observations, is a choice
of parameters which maximizes the probability density function of the sample, ma,xep(X\€>), taking into
account the constraints about the mixing parameters mentioned in the previous section. For convenience,
the log-likelihood is generally maximized instead of the likelihood:

TV NM

F(?"|T) = logp(#|0) = log ????T) = £>g {S?(??\a3)??) (5)
n=l 71=1 j= l



(a) (b)

Figure 2.2: Two-dimensional inverted Dirichlet mixtures with different parameters, (a) A three-components
uiih nuramptpr« n, = Q. 33, CKn = 10, »12 = 40, «13 = 4, p2 — 0.33, Q2I = 20, «22 = 30,mixture model with parameters p\

c*23 = 5, p3 = 0.33, «31 = 30, »32 = 20, «33 — 5. (b) A four-components mixture
= 40,

model with parameters
= 14, ai3 = 70, P2 = 0.4, a2? = 2, a22 = 4, a23 = 17, P3 = 0.2, a3iPi = 0.2, an = 18, ol\i

azi = 5, a33 = 40, p4 = 0.2, a4i = 5, a42 = 40, a43 = 60.

The maximization of the previous equation is generally performed within the EM framework where each
Xn is supposed to have arisen from one the M clusters. Thus, let Z = {Z\, . . . , Zn) denote the missing
group-indicator vectors where the jth element of Zn, Znj, is equal to one if Xn belongs to cluster j and
zero, otherwise. The complete data in this case are (?", Z) and the associated complete-data log-likelihood
is given by

MN, s

"~™ * (6)
IVl JV s ?

*C(X, ?\?) = S? Zn3 ( 1?e^' + logp(X„|aj) J7 = 1 n=l ^ '
The EM algorithm proceeds iteratively in two steps, The expectation (E) step and the maximization (M) step.
In the ?-step, we compute the conditional expectation of ^0(X1 ?\?) which is reduced to the computation
of the posterior probabilities (i.e. the probability that a vector Xn is assigned to a cluster j):

PjP(XnISj)p(j\Xn,aj) = .M

Then, the conditional expectation of the complete-data log likelihood given by
M N

Q(X, T) = S S>??> «i) ( 1OgPi + logp(Xn\äj) J7=1 p=1 ^ '

(7)

(8)



is maximized in the M-step. To resolve this optimization problem, we must determine the solution to

0^Q(X, T) = 0. Calculating the derivative with to respect ctjd, d = 1, . . . , D, we obtain
N

nil I }f_ rv/,
da-i

dQ(X,Q)- v- mv ^ d ? ^v-I -^
n=l

JV

= ¿???^?,5,·)(f(|5,·|)-F(a^)+1?6( ^ v )
where ?(.) is the digamma function. The derivative with to respect qjd+i is given by

d§^ = S,??\??,af(\^\) - 9{ajD+1) +log ( * )

(9)

(10)

According to the previous two equations, it is clear that a closed-form solution to estimate S.j does not exist.
Thus, we will use an iterative approach namely the Newton-Raphson method expressed as

êq™ = äfd - H^1Gj J = 1,2,..., M (H)

Where Hj is the Hessian matrix associated with Q(X, T) and Gj is the first derivatives vector, Gj =
( g ' \ ... , Q1J. ' ')T. To calculate the Hessian OfQ(A", T) we have to compute the second and mixed
derivatives:

N

(12)
O2Q(XM

d2oijd

82Q(XM

(F'(|^·|) - *'(ajd)) J2p(J\Xn,Sj) d=l,...,D + l
n= 1

TV

*'(|äjl)&C7l^T.."j) di^d2 di,d2 = l,...,-D + ldajdldajd2 n=i
where F'(.) is the trigamma function. Thus,

fn\Sj\)-n«ji) mi)
„ ^n (,y ^ *'(ftl)' F'(|5,-|)-F'(a,·2^ = S?=????-??,a;)

I *'(ß|)
Thus, ííj can be written as follows:

Hj = Dj^1JAjAj

(13)

F'(?a,-?)
n\Sj\)

niäjD-ncjD+i))

(14)

(15)



where Dj = diag[-£)£Li p(j\Xn, Sj)V (aUX), . . . , - £^=1 p(j\Xn, aj)9'(ajD+1)] is a diagonal matrix,
7j = Hn=iP(J\xn,<Xj)y(\àj\), and Aj = (a?,a2, . . . ,a/?+?) with a¿ = 1 Vi. Then, by the theorem of
matrix inverse given by Graybill [18, Theorem 8.3.3], we have:

Hf= Df+1*AfA* (16)
where Df can be easily computed and

A' = ELiP(j\Xn,áJ){ñ^y''',n«JD+1)) (17)
D+l 1 JV

Tl= [(F'(|5„|) ?) ?t^t)- IMiSi])Y1PU^Sj) (18)d=l ^ -^ n=l
Once we have Ü"-1 and Gj we can apply the Newton Raphson step in Eq. 11 to update the parameters
estimation of the inverted Dirichlet mixture. Concerning the parameters pj, it is straightforward to show
that a closed-form solution does exist and is given by :

_ _ S?=1 P(J\Xn, S3)
Pj - N uy;

2.3.2 Initialization and Complete Estimation Algorithm

The EM algorithm needs initial estimates as starting values which have crucial importance for successful
mixture estimation. Our initialization scheme is based on both the well-known K-Means algorithm and the
method of moments. The method of moments relies on low order statistics of the inverted Dirichlet namely
the mean and the variance given by Eqs. 2 and 3, respectively, from which can straightforwardly find the
following initial estimates for each mixture component j:

E{Xdf+E{Xd)
a>D+l = Var{Xd) + 2 (20)

ajd = E(Xd)(UjD+1 - 1) d=l,...,D + l ¦ (21)

The initialization algorithm can be described as follows:

Initialization Algorithm

9



1. Apply the k-means on the N D-dimensional vectors to obtain initial M clusters.

2 Calculate ? Number of elements in calss j

3. Apply the moments method for each component j to obtain a vector of parameter Sj using Eqs. 20 and
21.

Then, the algorithm of the inverted Dirichlet mixture estimation can be summarized as follows

Estimation Algorithm

1. INPUT: .D-dimensional data Xn, ? = ?,.,.,? and a specified number of clusters M.

2. Initialization algorithm

3. ?-Step: Compute the posterior probabilities p(j\Xn, &j) using Eq. 5.

4. M-Step:

• Update the d} using Eq. ll,j = l,...,M.
• Update pj using Eq. I9,j — 1,...,M.

5. Ifpj < e, discard component j go to 3.

6. If the convergence test (? exp(Q(X, T)) < e) is passed terminate, else go to 3.

2.4 MML for Inverted Dirichlet Mixture

The goal of this section is to develop a criterion that automatically determines the number of components
of an inverted Dirichlet mixture given a data set of positive vectors. Previous studies (see, for instance, [8])
have shown that the MML criterion allows principled model selection and that it generalizes many other
criteria. The MML method codes at the same time the model and its associated parameters, and the data
given the model. The message length for a mixture of distributions is given by [19]

1 N

MessLen ~ - log(/i(0)) - 1?6(?(*|?)) + - 1Og(IF(O)I) + -^(1 - log(12)) (22)
10



where /?(T) is the prior probability, ?(?\T) is the likelihood, F(Q) is the expected Fisher information
matrix, |F(6)| is its determinant, and Np is the number of free parameters to be estimated which is equal to
M(D + 2) - 1. The selection of the number of clusters is carried out by finding the minimum with regards
to T of the message length Messlen. In the following, we first develop the Fisher information for a mixture
of inverted Dirichlet distribution and then we propose a prior distribution.
The expected Fisher information matrix is generally approximated by complete-data Fisher information
matrix in the case of finite mixture models [20]. The complete-data Fisher information matrix has block-
diagonal structure and then:

M

]F(Q)\^\F(Pi,...,pm)]1[\F(Sj)\ (23)
J=I

where ]F(pi, . . . ,Pm)] is the Fisher information with regards to the mixing parameters vector and we can
show that [8]:

\F(pi,... ,Pm)I=* =m (24)
NM-1

M
¿=i Pi-

ana \F(âj)\ the Fisher information with regards to Sj of a single inverted Dirichlet distribution. For F(Sj),
let us consider the jth cluster of the mixture Xj = (Xi, ... , Xi+71-^i), where I < N and rij is the number of
elements in cluster j, with parameter Sj. We can write the negative of the log-likelihood function as follows

l+nj — 1 l+Tij — 1

-1Og(P(Xj]Sj)) = -log( ? P(Xn]Sj)) = - ¿ ìog(p(Xn]Sj)) (25)
n=l ?—I

We have

dlQg(p(Xj]Sj)) _ ^ ?????^ ?? ^ u . ^1 , . Xnd
doijd

dMp(Xj\Sj)) ,„„,_,, ???, „ ?,„, 1

(26)

Then,

d0íjD+l

d2 IQg(P(Xj]S,))
dajdldajd2

d2\og(p(X3]a,))

?3·(F(|a,·|)-F(a^))-?;??6( "d ) <?=1,...,?>. n=l * + 1^d=I Xrid

N 1(F(|a,-|) - F(a??+1)) - £l0g(-—_—) (27)n=l * + ¿^d=l ""*"<*

?5-F'(|a5-|) di.ífc = !,...,£> + 1 di ^ d2 (28)

d2O-jd
= -nj(*' (\Sj\)-¥(ajd)) d=l,...,D+l (29)

11



We remark that F(dj) can be written as

F{aj)=Dj + 1ÂÂr (30)

where Dj = diag\rij^'(aji), ...,njW(aj(D+1))], jj = -njW(\dj\), AT = (a?,a2, . . .,aD+1) with a¿ =
1 Vi, then we have [18, Theorem 8.4.3]:

D+l 2 d+\

\F{a3)\ = (I+7E-^-) ? Dääd=i Udd d=l
D+l D+l

= (1-f'(?«??)Sf^?)»?+1?f,(^) ?»)d=l 1^' d=l
By substituting the previous equation and Eq. 24 into Eq. 23, we obtain

?? M D+l D+l

1 Ij=I Pj j=i d=i ? ^k) d=l

Regarding /?(T), we make a common assumption in the case of finite mixture models by supposing that dj
and the vector (pi , . . . , Pm ) are independent:

M

h(e) = h(p1,...,pM)1[[h(aj) (33)
J = I

We will now define the densities h(Sj) and h(pi, . . . ,Pm)- We know that the vector h(jp\, . . . ,pm) is
defined on the simplex {pi, . . . ,pm\ Z^=T1 Pj < 1}> men a natural choice, as a prior, for this vector is a
symmetric Dirichlet Distribution

%i,-..,PM) = Y^ripJ J- (34)
The choice of ? = 1 gives a uniform prior:

h(p1,...,pM) = {M-l)\ (35)

As for h(dj) and in the absence of other knowledge about the o^, d = 1, .... Z) + 1, we choose the
following uniform prior, which has been found appropriate according to our experimental results, over the
range [0, e6\àj\/âjk] where âj is the estimated vector:

h(ajk) = ^^ (36)
a,·

12



By substituting Eqs. 36 and 35 in Eq. 33, we obtain the following:
M-I M M D+l

1Og(Z1(O)) = £ log(j) - 6M(Z? + I)-(D + 1) J>g(|â,|) + ^ S 1^M <37)
J = I 3 = 1 J = I d=\

The expression of the message length for a finite mixture of inverted Dirichlet distributions is obtained by
substituting Eqs. 37 and 32 into Eq. 22. Having this expression in hand, the complete learning algorithm is
then as follows:

Complete Learning Algorithm
For each candidate value of M

1. Estimate the parameters of the inverted Dirichlet Distribution using estimation algorithm in the previ-
ous subsection.

2. Calculate the associated criterion MML(M) using Eq. 22.

3. Select the optimal model M* such that M* = argminM MML(M).

13



Chapter D I

Experimental Results

3.1 Introduction

In this section, we first validate our algorithm using synthetic data. The second subsection is intended to
show how our model performs on some widely used real data sets. A real-life application which concerns
the challenging problem of software modules categorization is investigated in the third subsection.

3.2 Synthetic Data

In this subsection, we report on experiments using one-dimensional and multi-dimensional synthetic data.
In [15], a method has been proposed to generate inverted Dirichlet data. Let X1, X2, ¦ . . , Xd+i be inde-
pendent variables which follow Gamma distributions having the same scale but with different parameters
a? , oc, . . . , a£)+?, respectively. Let Yd = ??? , d — 1. 2, .... D, then the vector Y — (Y1, Y2,..., Yd)
has a .D-variate inverted Dirichlet distribution with parameter vector a = (Ca1, a2, ¦ ¦ ¦ , a?+?)· Using this
property we can generate M clusters having each n¡¡ ö-dimensional vectors which follow inverted Dirichlet
distribution with parameter vector O3 = (aj1;aj2, ¦ ¦ ¦ , oljd+i). In the following we use this approach to
generate both artificial histograms (one-dimensional data) and multi-dimensional data that we shall use to

investigate our learning algorithm capabilities.

14



One-Dimensional Data

We generated artificial histograms from artificial inverted Beta ' mixture models. Then, we tried to learn
the parameters of these artificial histograms (i.e. estimate the parameters of the mixture components and
select the number of modes). Figures 3.1 and 3.2 show examples of these artificial histograms. The first
histogram represents an inverted Beta mixture of three well separated components while the second one dis-
plays overlapped inverted Beta components. The real and estimated parameters of both artificial histograms
are shown in tables 3.1 and 3.2. Figure 3.3 shows the number of clusters selected by our algorithm for both
histograms and we can observe that in both cases the exact number of clusters (M = 3) was favored. For
these examples, we can conclude that our algorithm performs well on synthetic data, as there is not a huge
difference between real and estimated histograms and their respective parameters, whether the distributions
are overlapped or well separated.

25 3 0 05 1 15 2 25 3

(a) Different inverted Beta components. (b) Inverted Beta mixture.

Figure 3.1: First artificial histogram.

Multi-Dimensional Data

We also tested our algorithm on generated multi-dimensional data. In the following, we show some examples
of two-dimensional data sets that we have generated to investigate our approach. We use D — 2 only for

The inverted Beta is the one-dimensional special case of the inverted Dirichlet obtained when D = I.

15



.W3r-^

— Real
Estimated

(a) Different inverted Beta components. (b) Inverted Beta mixture.

Figure 3.2: Second artificial histogram.

Table 3.1: Real an estimated parameters of the first artificial histogram (see Figure 3.1) where the mixture
components are well separated. The hat denotes the estimated parameters.

Mode 1

Mode 2

Mode 3

Real parameters Estimated parameters
P1 = 0.33

an = 10

CÏ12 = 2

P2 = 0.33

Ö21 = 20

a22 = 20

P3 = 0.34

Ct31 = 2

«32 = 10

Pi = 0.33

ap = 10.32

âi2 = 2.03

p2 = 0.33
â21 = 19.22

Ol22 = 19.28

P3 = 0.34

â3i = 1.92

â32 = 9.70

ease of representation. In the first example, data were generated from three inverted Dirichlet densities (see
Figure 3.4.a) with different parameters as shown in table 3.3. A total of 100 samples for each of the two
first densities and a total of 50 samples for the third distribution were taken. The message length values
as a function of the number of clusters are presented in table 3.4, where we can see clearly that the MML

16



Table 3.2: Real an estimated parameters ofthe second artificial histogram (see Figure 3.2) where the mixture
components are overlapped.

Mode 1

Mode 2

Mode 3

Real parameters Estimated parameters
P1 = 0.33

an = 3

a12 = 23

P2 = 0.33

«2i = 43

a22 = 108

P3 = 0.34

¦«31 = 2

«32 = 3

P1 = 0.33

an =3.12

à12 = 24.24

p2 = 0.34

Ol21 = 39.19

?22 = 99.70

P3 = 0.33

?3? = 2.15

»32 = 3.01

criterion found the exact number of clusters. In the second example, data were generated from five inverted

Table 3.3: Real and estimated mixture parameters for the first two-dimensional generated data set.
Cluster 1

Cluster 2

Cluster 3

P1 = 0.4 an = 15 a21 = 65 «31 = 30

Pi = 0.4 an = 14.83 à21 = 64.38 â31 = 29.58

p2 — 0.4 a12 — 65 Cü22 = 15 «32 = 30

P2 = 0.4 âi2 = 64.06 â22 = 14.90 â32 = 29.69

P3 = 0.2 a?3 = 30 a23 = 34 a33 = 35

P3 = 0.2 ??3 = 30.54 ?23 = 34.32 a33 = 35.51

Dirichlet densities (see Figure 3.4.b) with different parameters as shown in table 3.5. A total of 100 samples
for each of densities were taken. According to table 3.6, we can see that the MML found the exact number of

clusters. In the third example, data were generated from six inverted Dirichlet densities (see Figure 3.4.c)
with different parameters as shown in table 3.7. A total of 100 samples were taken from the four first
densities and 50 samples from the two last densities. Again the MML criterion was able to find the exact

17



(a) (b)

Figure 3.3: Number of clusters automatically selected using MML criterion for the: (a) first artificial his-
togram and (b) second artificial histogram.

(a) (b) (e)

Figure 3.4: Three two-dimensional artificial mixture models with: (a) three, (b) five and (c) six components.

number of clusters as shown in table 3.8.

Finally table 3.9 shows an example of real and estimated parameters in the case of a 4-dimensional data set
generated from a 3-compönents finite inverted Dirichlet mixture. Again our algorithm was able to estimate
accurately the parameters and to select the exact number of clusters (see table 3.10). In the next section we
validate our algorithm with real data.
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Table 3.4: Message length values as a function of the number of clusters for the first two-dimensional
generated data set.

M

1

2

3

4

5

6

7

8

9

10

Message Length
716.51

440.24

333.05

347.61

360.78

371.36

381.71

393.98

390.93

400.61

Table 3.5: Real and estimated mixture parameters for the second two-dimensional generated data set.
Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Pi = 0.2 an = 30 a2? =4 o¿zi = 50

pi = 0.2 an = 28.84 â2i = 4.00 â3i = 48.50

P2 = 0.2 Qi2 — 2 a22 = 40 032 = 34

P2 = 0.2 â12 = 2.08 â22 = 41.10 â32 = 34.84

P3 = 0.2 ai3 = 15 a23 = 20 »33 = 40

p3 = 0.2 âi3 = 15.54 â23 = 20.87 â33 = 41.17

Pi = 0.2 au = 10 «24 = 40 «34 = 60

P4 = 0.2 âu = 10.28 â24 = 41.17 â34 = 62.11

P5 = 0.2 aïs = 20 a25 = 10 a35 = 50

P5 = 0.2 aïs = 19.32 â25 = 9.93 â35 = 48.51

3.3 Real Data

In this section we investigate the performance of our algorithm and compare the modeling capabilities of
inverted Dirichlet and Gaussian mixtures using two well-known data sets. The classification was performed
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Table 3.6: Message length values as a function of the number of clusters for the second two-dimensional
generated data set.

M

1

2

3

4

5

6

7

8

9

10

Message Length
258.10

-13.72

-115.70

-157.76

-174.47

-165.64
-148.34

-84.08

-70.12

-66.17

Table 3.7: Real and estimated mixture parameters for the third two-dimensional generated data set.
Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

P1 = 0.2 ap = 20 osi = 30 a31 = 10

Pi = 0.2 On = 20.01 ?2? = 30.20 ?3? = 10.15

p2 = 0.2 a?2 = 10 c*22 = 2 a32 = 3

P2 = 0.2 Q12 = 9.99 â22 = 2.00 â32 = 3.06

P3 = 0.2 a?3 = 2 a23 = 10 a33 = 3
p3 = 0.1.9 Qi3 = 2.05 â23 ^ 10.69 â33 = 3.08

P4 = 0.2 au = 30 a24 = 20 a34 = 10

P4 = 0.21 âu = 30.10 ?24 = 20.17 ?34 = 10.01

P5 = 0.1 a15 = 70 Ce25 = 6 a35 = 7
P5 = O-Il ??5 = 71.85 025 = 6.11 ?35 = 7.18

?ß = 0.1 aie = 6 a26 = 70 a36 = 7

P6 = 0.09 ??6 = 6.45 ?26 = 74.07 ?36 = 7.14
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Table 3.8: Message length values as a function of the number of clusters for the third two-dimensional
generated data set.

M

1

2

3

4

5

6

7

8

9

10

Message Length
24839

23077

2298

2289

2290

2284

•2299

2324

2340

2370

using the Bayesian decision rule after the classes densities were estimated and the number of clusters was
selected.

The Haberman dataset

The first data set, called Haberman dataset [21], contains cases from a study that was conducted between
1958 and 1970 at the University of Chicago's Billings Hospital on the survival ofpatients who had undergone
surgery for breast cancer. The dataset contains 306 instances, and four attributes including the class attribute.
These attributes are: age of patient at time of operation, patient's year of operation, number of positive
axillary nodes detected, survival status (1 = the patient survived 5 years or longer, 2 = the patient died within
5 year). It has 225 instances from class 1, and 81 instances from class 2. By applying our algorithm to this
dataset, the MML criterion found that M = 2 leads us to the minimum message length. So we have two
classes, which meets the specification of our dataset (see table 3.11). Using Gaussian mixture, however, we
failed to obtain the exact number of clusters (i.e. M = 3 was wrongly favored) as shown in table 3.12.
In our classification, we consider a true positive a patient who survived 5 years or longer attributed to class 1 ,
a false negative a patient who died within 5 years attributed to class 1 , a false positive a patient who survived
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Table 3.9: Real and estimated parameters in the case of a 4-dimensional data set generated from a 3-com-
ponents finite inverted Dirichlet mixture

Cluster 1

Cluster 2

Cluster 3

Real parameters

P1 = 0.33

«p =3

a12 = 23

a13 = 98
«14 — 23

«15 = 199

?2 = 0.33
«2? = 43

a22 = 108

«23 = 23

a24 = 34

a25 = 92

Ps = 0.34

«3? = 2

»32 = 3

«33 = 9

«34 = 90'
«35 = 23

Estimated parameters
P1 = 0.33

an =3.12

??2 = 23.29

??3 = 100.59
âu = 23.51

«is = 203.46

V2

«21

«22 =

«23

«24

«25

= 0.33

= 43.63

108.69

'-- 23.38
-- 34.28

-- 93.27

P3 =

«31

«32

«33

«34 :

«35 z

0.34

= 2.02

= 3.00

= 9.02

91.13

23.52

5 years or longer attributed to class 2, a true negative a patient who died within 5 years attributed to class 2.

In this case, there are two types ofmisclassification type I and type II. Type II misclassification occurs when
a patient who survived 5 years or longer is wrongly classified as a patient who died within 5 years and type
II misclassification occurs when a patient who died within 5 years is mistakenly classified as a patient who
survived 5 years or longer (see table 3.13). The classification was performed using the Bayesian decision
rule after the classes densities were estimated. Table 3.14 displays the confusion matrices for Haberman
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Table 3.10: Message length values as a function of the number ofclusters for the four-dimensional generated
data set.

M

1

2

3

4

5

6

7

8

9

10

Message Length
3810.5

-1130.5

-8933

N/A
N/A
N/A
N/A
N/A
N/A
N/A

Table 3.11: The message length as a function of the number of cluster in the case of the Haberman dataset
when using inverted Dirichlet mixture.

M

1

'2
3

4

5

6
7

8

9

10

Message Length
5297.5

3645.6

6480.6

5791.3

5234.1

6851.5

6640.4

N/A
N/A
N/A

dataset classification when using both the inverted Dirichlet mixture and the Gaussian mixture which we
have forced to consider M = 2. Having these confusion matrices in hand, we can use them to compute
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Table 3.12: The message length as a function of the number of cluster in the case of the Haberman dataset
when using Gaussian mixture.

M

1

2

3

4

5

6

7

8

9

10

Message Length
2604.7

2407.4

2372.6

2492.9

2529.8

2627.0

2773.2

2860.3

2572.7

N/A

Table 3.13: Confusion matrix representation for the Haberman dataset. S: patient who survived 5 years or
longer, D: patient who died within 5 years.

D

True positive (TP)
False negative (FN)

D

False positive (FP)
True negative (TN)

widely used measures such as the accuracy, precision, false positive rate, false negative rate, specificity, and
sensitivity as we can see in table 3.15. From this table we notice that the classification based on the inverted

Dirichlet mixture is significantly more accurate and precise than the one based on the Gaussian mixture.
Let ? (positive) stands for a patient who survived for 5 years or longer, and ? (negative) stands for a patient
who died within 5 years. Let + be the test event of a patient who survived 5 years or longer, and — be the
test event a patient who died within 5 years. We need to know the following:

• P(p), or the probability that the patient survived 5 years or longer regardless of any other
information. In our case this is 0.7353.

• P(n), or the probability that the patient died within 5 years. This is 1 - P(p) or 0.2647.

24



Table 3.14: Confusion matrices for Haberman dataset classification using both the inverted Dirichlet and
the Gaussian mixture models.

inverted Dirichlet Gaussian

D

195

51

D

30

30 D

150

27

D

75

54

Table 3.15: Test results of inverted Dirichlet and Gaussian mixtures for Haberman dataset classification.

Accuracy
Precision

False positive rate

False negative rate
specificity
sensitivity

Expression
TP+TN

TP+FP+TN+FN
TP

TP+FP
FP

TN+FP
FN

TP+FN

TN
TN+FP

TP
TP+FN

Inverted Dirichlet

0.74

0.87

0.50

0.21

0.50

0.79

Gaussian

0.66

0.66

0.58

0.15

0.41

0.84

• P(+|p), or the probability that the test is positive, given that the patient survived 5 years or
longer. This is equal to the sensitivity of our test.

• P(—\p), or the probability that the test is negative, given that the patient survived 5 years or
longer. This is equal to Type I error of our test.

• P(+\n), or the probability that the test is positive, given that the patient died within 5 years.
This is equal to Type II error of our test.

• P(—\n), or the probability that the test is negative, given that the patient died within 5 years.
This is equal to the specificity of our test.

Let us now compute the following probabilities:
• P(p\+), or the probability that the patient survived 5 years or longer, given that the test is

positive.

• P{p\—), or the probability that the patient survived 5 years or longer, given that the test is

25



negative.

• P(n\ -), or the probability that the patient died within 5 years, given that the test is negative.
• P(n\+), or the probability that the patient died within 5 years, given that the test is positive.

From table 3. 16 we notice that the inverted Dirichlet mixture significantly outperforms the Gaussian mixture
in its credibility while giving a negative test result, telling that the patient died within 5 years. Concerning
the positive test result event telling the patient survived 5 years or longer, inverted Dirichlet mixture and
Gaussian mixture give close results.

Table 3.16: Posterior results of inverted Dirichlet and Gaussian mixtures for Haberman dataset classification

problem.

p(p\+)
p(pH
P(n\
P{n\+)

Expression
p(+\p)P(p)

P(+\p)P(p)+P(+\n)P(n)
p(-\p)p(p)

P(-\p)P(p)+P(-\n)P(u)
P(-|n)f(n)

P(-\n)P{n)+P(-\p)P{p)
P(+\n)P(n)

P(+\n)P(n)+P(+\p)P(p)

Inverted Dirichlet

0.91

0.73

0.26

0.08

Gaussian

0.93

0.79

0.20

0.06

Iris Dataset

The second dataset, called Iris data set [21], contains 3 classes having 50 instances each, where each class
refers to a type of Iris plant (Iris setosa, Iris virginica and Iris versicolor). One class is linearly separable
from the other two; the latter are not linearly separable from each other. For each instance we have four
attributes: sepal length in cm, sepal width in cm, petal length in cm, and petal width in cm. By applying our
algorithm to the Iris dataset, the MML criterion found the exact number of clusters (i.e. M = 3 as shown
in table 3.17) which was not the case when using Gaussian mixtures since M — 2 was favored as shown
in table 3.18. The confusion matrices for Iris dataset classification using inverted Dirichlet and Gaussian,
forced to consider 3 clusters, mixtures are given in tables 3.19 and 3.20, respectively. In this confusion
matrices, the cell (classi, classj) represents the number of instances from classj which are classified as
classi. We notice that the two mixture give similar results. We can see that the errors are generated in
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Table 3.17: The message length as a function of the number of cluster in the case of the Iris dataset using
inverted Dirichlet mixture.

M

1

2

3

4

5

6

7

8

9

10

Message Length
1416.3

442.5

389.1

404.5

451.2

459.7

486.4

563.4

59.3.2
499.4

Table 3.18: The message length as a function of the number of cluster in the case of the Iris dataset using
using Gaussian Mixture.

M

1

2

3

4

5

6

7

8

9

10

Message Length
1536.3

1510.6

1535.4

1565.6

1655.6

1791.3

1873.8

2040.9

2182.6

2132.6

the second class classification whose density is overlapping with the third class density, and then we had a
misclassification of 6 and 5 plants from the second class, classified as being from the third class, respectively
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Table 3.19: Confusion matrix for Iris Dataset using Inverted Dirichet Mixture.

Classi Class2 Class3

Classi 50 0 0

Class2 0 44 0

Class3 0 6 50

Table 3.20: Confusion matrix for Iris Dataset using Gaussian Mixture.

Classi Class2 Class3

Classi 50 0 0 ¦

Class2 0 45 0

Class3 0 5 50

for the inverted Dirichlet and gaussian mixtures.

3.4 Complexity-Based Classification of Software Modules

There is currently much interest in the problem of providing good data-based models for quality improve-
ment in systems engineering. The problem has been the subject of extensive research in the past (see, for
instance, [22]) and has been extended to the important domain of software engineering [23]. Indeed, proba-
bility models and statistical methods are now a popular technique for evaluating the reliability of computer
software and quantifying its performance before its release into the marketplace. Developing and maintain-
ing a given software system is a challenging problem that has a lot of difficulties. Software is composed of
a great number of relatively independent units called modules (i.e. a set of source-code files) which perform
certain functions. One way to test software quality is to determine the number of faults in each module.
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These faults may be related, for instance, to changes 2 to source code happening while the software is ex-
ecuting [25] and are in general in a small portion 3 of the modules [27]. Most of the time, people are not
concerned about the exact number of changes, rather than setting a threshold. If the number of faults (i.e.
defects in a program that can cause incorrect execution [28]) found in certain module exceeds this previ-
ously set criterion, it is regarded as fault-prone, otherwise non fault-prone [29]. For example, if a threshold
of two faults is set, each module having two or more changes will be assigned to the fault-prone group and
considered unstable, with high-risk and might cause failure. A software prediction model is viewed as an
empirical tool using a certain algorithm to forecast modules types (i.e fault-prone or non fault-prone) and
should be easy to interpret. A key common characteristic of these prediction models is that they establish a
relationship between the measures of modules attributes and the types [30]. The fundamental construction
of the predictive models is based upon the faults and corresponding measures collected from past similar
program development and maintenance scenarios. When the model is built, we can determine the quality
and reliability of new modules, if the measures of their attributes are in hand. The understanding of the
modules through prediction models helps to target high-risk modules which need priority attention, exten-
sive testing, redesign and improvement in early life cycle [31], which is very valuable, cost-effective, and
improve the efficiency of inspection efforts.
In this section, we investigate our algorithm on the well-known MIS data set [28]. MIS is a widely used
commercial software system consisting of about 4500 routines written in approximate 400,000 lines of Pas-
cal, FORTRAN, and PL/M assembly code. The practical number of changes (faults) as well as 1 1 software
complexity metrics of each module in this program were determined during three-years system testing and
maintenance. Basically, the MIS data set used in this paper, is composed of 390 modules and each module
is described by 1 1 complexity metrics acting as variables:

• LOC is the number of lines of code, including comments.
• CL is the number of lines of code, excluding comments.
• TChar is the number of characters

• TComm is the number of comments.

See [24] for a discussion about the types and classes of changes that may occur.
'According to the 80/20 rule (i.e Pareto rule), about 20 percent of a software system is responsible for 80 percent of its errors,

costs and rework [26].

29



• MChar is the number of comment characters.

• DChar is the number of code characters

• TV = N1 + N2 is the program length, where JVi is the total number of operators and N2 is the
total number of operands.

• N = T]1 log2 771 + 772 log2 T]2 is an estimated program length, where 771 is the number of unique
operators and 772 is the number of unique operands.

• Np = (log2 771)! + (log2 772)! is Jensen's estimator of program length.
• V(G), McCabe's cyclomatic number, is one more than the number of decision nodes in the

control flow graph.

• BW is Belady's bandwidth metric, where BW = ^ J2i ^i and Li represents the number of
nodes at level i in a nested control flow graph of ? nodes. This metric indicates the average
level of nesting or width of the control flow graph representation of the program.

In documented MIS data set, modules 1 to 114 are regarded as non fault-prone (number of faults less than
2), and the others 276 instances are considered to be fault-prone. In our classification, we consider a true
positive a non fault-prone module classified as a non fault prone module, a true negative a fault-prone
module classified as a fault-prone module, a false negative a fault-prone module classified as a non fault-
prone module, and a false positive a non fault-prone module classified as a fault-prone module. In the case
of our problem, there are two types of misclassification, type I and type II. Type II misclassification occurs
when a non fault-prone module is wrongly classified as fault-prone and type II misclassification occurs
when a fault-prone modules is mistakenly classified as non fault-prone (see table 3.21). The main goal of

Table 3.21: Confusion Matrix Representation for the Software Modules
Non fault-prone (NF) Fault-prone (F)

Non fault-prone (NF) True Positive (TP) False positive (FP)
Fault-prone (F) False negative (FN) True negative (TN)

this application is to compare the performances of inverted Dirichlet and Gaussian mixtures. The confusion
matrices computed for both mixtures are shown in table 3.22. These confusion matrices were used then

to compute the accuracy, precision, false positive rate, false negative rate, specificity, and sensitivity (see
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Table 3.22: Confusion matrices for the software modules classification problem.
Inverted Dirichlet

NF

NF 91

85

23

191

Gaussian

NF

NF 104

160

10

116

table 3.23). From table 3.23 we notice that the classification based on the inverted Dirichlet mixture is

significantly more accurate but a little bit less precise than the classification based on the Gaussian mixture.

Table 3.23: Test results of inverted Dirichlet and Gaussian mixtures for the software modules classification.

Accuracy
Precision

False Positive rate

False Negative rate
Specificity

Sensitivity

Inverted Dirichlet

0.7231

0.7982

0.1075

0.4830

0.8925

0.5170

Gaussian

0.5641

0.9123

0.0794

0.6061

0.9206

0.3939

We can use the Bayes 's theorem to analyze our results basing on the samples of data that we have. Let ?
(positive) stands for being non fault prone module, and ? (negative) stands for being fault prone module.
Let + be the event of a non fault prone module test, and - be the event a fault prone module test. We need
to know the following:

• P[p), or the probability that the software is non fault prone regardless of any other information.
In our case this is 0.2923.

• P(n), or the probability that the software is a fault prone. This is 1 - P(p) or 0.7077
• P(+/p), or the probability that the test is positive, given that the module is non fault prone.
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This is equal to the sensitivity of our test.

• P(-/p), or the probability that the test is negative, given that the module is non fault prone.
This is equal to Type I error of our test.

• P(+/n), or the probability that the test is positive, given that the module is fault prone. This is
equal to Type II error of our test.

• P(-/n), or the probability that the test is negative, given that the module is fault prone. This
is equal to the specificity of our test.

Let us now compute the following probabilities:
• P{p/+), or the probability that the module is non fault prone, given that the test is positive.
• P(p/—), or the probability that the module is non fault prone, given that the test is negative.
• P(n/— ), or the probability that the module is fault prone, given that the test is negative.
• P(n/+), or the probability that the module is fault prone, given that the test is positive.

Table 3.24: Posterior results of inverted Dirichlet and Gaussian mixture for the software modules classifi-

cation problem.

P(p/+)
PiP/-)
P(n/-)
PH+)

Inverted Dirichlet

0.3065

0.0474

0.9526

0.6935

Gaussian

0.2116

0.0344

0.9656

0.7884

From table 3.24 we notice that inverted Dirichlet mixture significantly outperforms the Gaussian mixture in
its credibility while giving a positive test result, telling that a module is non fault-prone. Concerning the
negative test result event telling the module is fault-prone, inverted Dirichlet mixture and Gaussian mixture
provide comparable good results.
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Chapter H- |

Conclusions

The main goal of this work is to find meaningful structure in a set of unlabeled non Gaussian positive
vectors through inverted Dirichlet mixture-based modeling. The specific choice of the inverted Dirichlet is
motivated by its excellent properties namely its flexibility to approximate many shapes since, in contrast
to the Gaussian, it can be symmetric, skewed to the right or skewed to the left. Given unlabeled data that
is generated from this mixture we have two related tasks, one is to estimate the parameters of the mixture
distribution, and the other usually referred as mixture selection, is to determine the appropriate number of
clusters. For the first task we have used the maximum likelihood approach performed via a hybrid of EM and
Newton Raphson. The second task has been based on the MML criterion that we have developed for inverted
Dirichlet mixture. Through extensive experiments involving synthetic data, real data and the challenging
problem of software modules categorization we have shown that our unsupervised learning algorithm leads
us to promising results by searching efficiently the space of cluster locations and the number of clusters
and by optimizing the message length of the data. The key to the success of the MML criterion is the
introduction of prior information about the mixture model's parameters. Moreover, we have proved that the
inverted Dirichlet distribution can be a powerful tool to analyze non gaussian data. There are many avenues
for future work. We believe that the integration of feature selection, using for instance a similar approach
as in [32], could improve fürther the accuracy of the model learning, indeed, when there are too many
features, recent studies have shown that it is highly desirable to discard weak irrelevant features which may
compromise the classification results. A promising extension of this work that we intend to pursue would
be also the investigation of online learning techniques and Bayesian approaches as done previously, in the
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Chapter 4. Conclusions

case of Dirichlet mixtures, in [33] and [34], respectively. Finally, and most importantly, it must be stressed
that the model that we proposed may have many other potential applications since positive data are naturally
generated in many other domains such as computer vision, image processing, bioinformatics and natural
language processing.
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Chapter 5

Appendices

5.1 Finite Gaussian Mixture Model

The multivariate Gaussian probability density function is the common assumption when using finite mixture
models and is given by

?{????^ = (2p)"/2|S,> (1)
Thus, in the case of a finite Gaussian mixture model, we have 0,- = (fij, V) with /Z7- the dim-

dimensional mean vector, and ^- the dim ? dim covariance matrix. The estimation of these parameters is
done through the maximum likelihood (ML) estimate:

?ml — arg max S(?\T) (2)

where L{X\Q) is the log-likelihood corresponding to a M-components and TV vectors:
NNM

L(X\e) = log ?[?(??\?) = J]log (5>(??|0,-)?,-) (3)
Ti=I n=l j= l

The maximization defining the ML estimates is subject to the constraints over the mixing parameters and
cannot be found analytically. Typically the the ML estimates of the mixture parameters can be obtained using
expectation maximization (EM) and related techniques. The maximization of Eq. 3 is generally performed
within the EM framework where each Xn is supposed to have arisen from one the M clusters. Thus, let
Z= {??,.,.,??} denote the missing group-indicator vectors where the jth element of Zn, Znj, is equal
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to one if Xn belongs to cluster j and zero, otherwise. The complete data in this case are (X, Z) and the
associated complete-data log likelihood is given by

MN, .

<S>C(X, ?\?) = SS ?^ ( 10SPi + loëP(Xn\0j) ) (4)j=l ?=1 \ /

The EM algorithm proceeds iteratively in two steps, The expectation (E) step and the maximization (M) step.
In the ?-step, we compute the conditional expectation of F0(?", ?\?) which is reduced to the computation
of the posterior probabilities (i.e. the probability that a vector Xn is assigned to a cluster j):

P(J[Xn, Qj) - ~m ~ (5)
E¿=lPjP(-^n|oj)

Then, the conditional expectation of the complete-data log-likelihood given by
MN, ,

Q(X, ?) = SS,?????'??) ìom + \???(??\?5) (6)j=l n=l ^ '
is maximized in the M-step. To resolve this optimization problem, we must determine the solution to
¿|j<3(A\ T) = 0. The EM algorithm produces a sequence of estimates Q4, t — 0, 1, 2... by applying two
steps in alternation until some convergence criterion is satisfied:

1. ?-Step : Compute p(j\Xn, 0¿) given the parameter estimates from the initialization

Ej= I PjP(Xn Wj)

2. M-Step : Update the parameter estimates according to Qml = argmaxe L(X\<ô)
? NPf+1)' = IT,*®**'*)N

71=1

7(?+1) _ YIn=I P(J\Xn, ??)??

(8)

µ) ' = "-1 Z^ (9)Np3

y. (t+1) = S':=??\??,???? - AT)[Xn - ffT]
j

(10)
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5.2 MML for Gaussian Mixture

The message length for a mixture of distributions is given by [19]

MessLen^-log(h(e))-L(X\e) + ±log(\F(e)\) + ^{l-log{12)) (11)
where /?(?) is the prior probability, ?(?\?) is the likelihood, F(©) is the expected Fisher information
matrix, |F(0)| is its determinant, and Np is the number of free parameters to be estimated. To use Eq. 11
for a gaussian mixture, we must first choose a prior distribution /?(?) and derive an expression for the
determinant of Fisher Information matrix, F(Q). Olivier, Baxter and Wallace [35], demonstrated that a
convenient prior for the gaussian mixture is :

^ fc=1 °popk

where s??? = (s???1, s???2, ¦..., opop¿im) is the standard deviation of the entire population. The determi-
nant of the Fisher Information matrix is

1 dim M /?/? ? ? M- log(|F(0)|) ~ SS 10S ^2 + Ö 1?§(^) - i S losfe) (13>
with

and

fc=l j=l 17J*: j= l

Nj= Pj* N (14)

^ - y jy- (is)
By substituting Eq. 12 and Eq. 13 in Eq. 1 1 we have :

(M--\\\dirn 1 dim M /ON 1 1 M ?7"

fe=1 Pop's fc=lj=l jfc j'=l
(16)

Complete Learning Algorithm
For each candidate value of M
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1. Estimate the parameters of the Gaussian mixture using the estimation algorithm in the previous sub-
section.

.2. Calculate the associated criterion MML(M) using Eq. 16.

3. Select the optimal model M* such that M* = argminM MML(M).
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