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ABSTRACT

A Multi-Frame Super-Resolution Algorithm Using POCS and Wavelet

Chiu-Chih Chen

Super-Resolution (SR) is a generic term, referring to a series of digital image process-

ing techniques in which a high resolution (HR) image is reconstructed from a set of low

resolution (LR) video frames or images. In other words, a HR image is obtained by in-

tegrating several LR frames captured from the same scene within a very short period of

time. Constructing a SR image is a process that may require a lot of computational re-

sources. To solve this problem, the SR reconstruction process involves 3 steps, namely

image registration, degrading function estimation and image restoration.

In this thesis, the fundamental process steps in SR image reconstruction algorithms are

first introduced. Several known SR image reconstruction approaches are then discussed

in detail. These SR reconstruction methods include: (1) traditional interpolation, (2) the

frequency domain approach, (3) the inverse back-projection (IBP), (4) the conventional

projections onto convex sets (POCS) and (5) regularized inverse optimization.

Based on the analysis of some of the existing methods, a Wavelet-based POCS SR

image reconstruction method is proposed. The new method is an extension of the conven-

tional POCS method, that performs some convex projection operations in the Wavelet do-

main. The stochastic Wavelet coefficient refinement technique is used to adjust the Wavelet
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sub-image coefficients of the estimated HR image according to the stochastic F-distribution

in order to eliminate the noisy or wrongly estimated pixels. The proposed SR method en-

hances the resulting quality of the reconstructed HR image, while retaining the simplicity

of the conventional POCS method as well as increasing the convergence speed of POCS

iterations. Simulation results show that the proposed Wavelet-based POCS iterative algo-

rithm has led to some distinct features and performance improvement as compared to some

of the SR approaches reviewed in this thesis.
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Chapter 1

Introduction

1.1 General

Super-resolution (SR) refers to a set of image enhancement algorithms that reconstruct

high resolution (HR), fine detailed, high quality images from a set of degraded, low resolu-
tion (LR), coarse quality images. In most electronic visual applications, clear HR images

are often required. An HR image is one that contains high density pixels within a fixed
area and is able to reveal more details for other visual applications. Thus, the degree of

image detail is important for many other image processes. For instance, in medical image

applications such as tomography images, it is very essential to have high resolution in order

to help doctors make correct decision for patients. Also, for object recognition, detection
and identification applications, the image needs to have clear sharp contour to distinguish

objects within an image or a video frame. When the visual applications are for military or

astronomical purposes, the requirement for image enhancement algorithms is even more

crucial. In many situations, there are some reasons that higher resolution images can not be
achieved, such as limitations of camera sensor or the application budget constraints. How-

ever, those problems can be resolved by applying super-resolution algorithms, which are

inexpensive and can be used even with antiquated equipment.
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Super-resolution algorithms make higher spatial resolution by fusing useful information

from the temporal domain data. In other words, super-resolution algorithms are the pro-

cesses that convert temporal bandwidth into spatial resolution. Consecutive frames from

the same scene provide the required elements to achieve spatial resolution enhancement.

However, it is not guaranteed that all sequences of frames taken from the same scene will

provide the information required to rebuild the high resolution scene. If the camera is fixed

on a platform and there is not even the slightest object motion, the new information ob-

tained from this kind of situation is useless. Therefore, at least slight motion is needed in

order to obtain non-redundant information among consecutive frames. In other words, each

LR frame must provide a different 'view' of the scene. There are two ways to obtain non-

redundant information from the same scene; these are the multi-channel and multi-frame

methods. In the case of multi-channel method for example, we can have multiple cameras

take images by aiming all cameras at the same direction from different positions. The non-

redundant information is then acquired as multi-channel method. The multi-frame method

obtains useful sub-pixels from the same scene by creating frames from the relative motion

of the camera at different time intervals. Examples of this latter method can be seen in the

scanning of some security surveillance cameras as they sweep a still scene or in satellite

cameras taking picture from the earth landscape while orbiting the earth. These two cases

are examples of multi-frame data captured from a single camera.

Super-resolution is not a straightforward signal process. It combines several image

and video signal processing techniques, such as image registration, degrading function es-
timation, image interpolation and image restoration. Each of these techniques is highly

complex and the basics are briefly discussed in this thesis. Obtaining a SR image is a com-

putationally intensive process. In order to manipulate hundreds of thousands of pixel data

efficiently, each step employs outstanding algorithm among the various methods. Thus,
in the future, with optimal high speed SR algorithm, an LR camera may be capturing a
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real scene remotely and viewers could receive its HR version almost simultaneously. In

practice, only few assumptions can be made prior to SR reconstruction process. Thus, the
total amount of process data must be limited to relevant information. To this end, instead of

being slowed by the challenges of SR algorithm such as insufficient information of sensor
noise, motion modeling and camera characteristics, an SR algorithm should rely solely on

the observed frame data and effectively utilize computational resources.

This thesis proposes a rapid and accurate super-resolution algorithm by imposing wavelet

domain constrain using a wavelet sub-image coefficients refinement technique into the con-
ventional POCS SR method. Before going into details of the proposed method, fundamen-

tal steps such as image registration, degrading function estimation, image restoration and

image de-blurring are firstly introduced. Moreover, some well-known SR reconstruction
approaches such as traditional interpolation, frequency domain approach, inverse back-

projection (IBP), conventional projections onto convex sets (POCS) are examined for com-

parison.

1.2 The Super-Resolution Problem

Before formulating the super-resolution problem, some assumptions are made to allow

the SR reconstruction algorithms to focus on the most important calculations and reduce
the computational complexity. It is assumed that all super-resolution problems are under

conditions that objects in LR frames are taken from a conventional orthographic projection
camera, with constant luminous condition, negligible optical distortions, and only affine

translations (only shift and rotate) between acquired frames. Although these assumptions

cause some negligible uncertainties, they meet almost all requirements of super-resolution

applications.

In this thesis, the super-resolution problem is defined as:

Reconstruct a high quality HR image ? = µ?\ ? µ?2, from a set of LR degraded frames
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y¿ (i = 1 , . . . , ?) with UiXn2 pixels in dimension, where µ is the desired enlargement factor.
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Figure 1.1: LR frame pixels projected on high-resolution grids

In Figure 1 . 1 , a typical super-resolution problem model is described. There are four

5x5 pixels LR frames projected onto a 20 ? 20 HR grid. The star, the circle, the filled

triangle and the filled diamond symbols represent pixels in LR frames 1 to 4. In this figure,
the first frame (star) is set as the reference frame. Pixels in frame 2 (circle) shift to right-

down direction from frame 1. Frame 3, and frame 4 motion involves not only simple

translation but also rotation with respect to the reference frame. In some applications,

magnification motion such as camera zoom in and zoom out on input LR frame are also

acceptable in most super-resolution model. The purpose of a super-resolution algorithm is

to fill the unknown pixels value on the HR grids.

Inspired by many conventional image reconstruction problems [1] [2] [3] [4], most

super-resolution problems are formulated as forward relationship. The forward relationship
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means the image capturing process of a original scene in which the image information is

degraded while forward to each step. Figure 1 .2 depicts a situation of forward relationship
between a real object, LR frames and HR images and explains how an ideal HR image of a

real world object captured by an electronic camera is degraded.
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Figure 1.2: Forward relationship of an image capturing system

Figure 1.2 demonstrates a system where a real object is captured by the charge-coupled
device (CCD) camera. The continuous photon energy first passes through the camera lens

while the camera is shaking or moving, this creates a motion blur. The blurred version

of a real object image hits the CCD array and the analog signal is transformed into a two
dimensional discrete image. The density of the CCD array determines the aliasing param-

eter of the image capturing system and each photon charge-coupled device quantizing the

light intensity then determines the quantization error. Moreover, image signals traveling in
electronic camera are usually contaminated by additive noise. In other words, image de-

grading begins with blurring, followed by faulty translation, aliasing (or down-sampling),
quantization and additive noise. The noisy image on the up-right hand side of Figure 1.2,
the LR frame is considered as a blurred, translated, down-sampled and noisy version of



the HR image. The forward relationship can be described by the following mathematical
formula:

y< = DM¡B¡x + ?? \<i<v (1.1)

where D is the down-sampling matrix, M¿'s are the inter-frame motion (affine translation)

matrices; this matrix maps the HR image grid to the individual LR frame grid, B¿'s are

the blurring and degradation matrix, ? is the unknown ideal HR image and t^'s are the

additive noise vectors, each vector element corresponding to noise on each LR frame. y¿

are the given LR frames captured from the same scene in the vector form. In Equation

(1.1) down-sampling operator D is known, since the magnification factor µ can be decided

in SR reconstruction process. Motion operators M¿'s are unknown. Then, the blurring

and degradation operators B,'s in most SR applications are unknown but the characteristic

of blurring operator is assumed to be linear spatial invariant (LSI) in each individual LR

frame. The additive noise ^, the last term in Equation ( 1 . 1 ), is assumed as Gaussian normal
distribution due to the central limit theorem with unknown variance.

Consider a general SR reconstruction case with ? available LR frames, where each
LR frame y¿ contains n\ ? n2 pixels. Applying these into the computer program, when

examining the dimensions of each matrix symbol of Equation (1.1), each given LR frame

y¿ is vectorized into an riin2 x 1 column vector. The desired HR image ? is also written as
a µ2???2 x 1 column vector. The motion operator of each LR frame M¿'s is a (µ2???2)2
square matrix which is used to convert an ideal HR image ? into a shifted and rotated
version of itself. The blurring operator to each LR frame Bj's is also a (µ2???2)2 square
matrix, which degrades ideal HR image ? into its blurred version, and the down-sampling

matrix D is a 7I1U2 ? µ2???2 matrix which decimates the ideal HR image into coarse LR
frame. These operations are usually integrated into one complete system matrix H¿ by
multiplying all operator matrices in the forward process Equation (1.1). It is equivalent to
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y¿ = Hpc + ?7¿ (1.2)

where H¿ = DM1Bi

In Equation (1.2), the size of the LR frame y and the additive noise ? become ^n1 ri2 x 1

because the information of all the available frames are combined. The size of the complete

system matrix H¿ is described as pnin2 x µ2??,^. Note that the dimension of matrix
H¿ relies on the number of available frames, acquired LR frame size and down-sampling

factor, which are typically very large. Therefore, the system of Equation (1.2) is difficult

to solve or even to calculate with a powerful computer. Due to the high complexity of

the SR reconstruction problem, many different approaches have been previously proposed

and most of them were used in attempt to avoid solving the SR reconstruction problems

directly from Equation (1.1) or Equation (1.2). Previous works and the evolution of SR

reconstruction solutions are discussed in the following section.

1.3 Previous Work

Constructing a super-resolution image from multiple LR frames is a relatively new re-

search topic in image processing. Historically, super-resolution techniques is evolved from

image enlargement by simple interpolation methods to enhance high frequency compo-
nents. The earlier approaches of super-resolution have mostly been focused on the fre-

quency spectrum of a single acquired LR frame [5]. By constructing new frequency data

points outside of the known frequency data points, a process known as "extrapolation", the

high frequency information of the desired image can be built. In the 1960-70's, different
methods were suggested, such as by Slepian et al. [6], they suggested obtaining high fre-

quency information by extrapolating frequency information with a wave function in Prolate
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spheroidal coordinates. Also, Papoulis [7] introduced an extrapolation algorithm by reduc-

ing error energy from LR frame spectrum. However, the results of extrapolation are often
less meaningful, and are subject to greater uncertainty.

A multiple frame super-resolution approach was first proposed by Tsai and Huang [8].
In their proposed approach, LR frames are treated as down-sampled, shifted versions of the

continuous ideal HR image, and all the acquired LR frames are converted into a frequency

domain. They also discussed some Fourier transform properties such as shift property and

the aliasing relation between Continuous Fourier Transform (CFT) of ideal HR image and
Discreet Fourier Transform (DFT) of the observed LR frames to achieve super-resolution

image reconstruction. This approach is used as a comparison method and more details will
be described in Section 3.2.

An iterative approach was proposed by Irani and Peleg [9] [10] [1] called "inverse

back-projection" (IBP), where the HR image is estimated by taking back projection of the
simulated LR frames and the acquired LR frames. In this approach, the iteration is run
until the difference between simulated LR frames and the acquired LR frames is less than

a certain acceptable error. More details about this approach discussing how to generate the
simulated LR frames and how a projection is performed will be provided in Section 3.3.

Another iterative approach, originally evolved from an incomplete data recovery tech-

nique known as "Convex Projections" derived by Youla and Webb [11] was used to recover
missing image information. Sezan and Stark [12] further applied the convex projection

technique to restore a single tomography image. Then, Stark and Oskoui [13] first intro-

duced projections onto convex sets (POCS) which is an algebraic data recovery technique
for multi-frame SR image reconstruction. In their work, the unknown ideal HR image is

subject to several constraints, such as image signal being limited in both the frequency

band and the spatial duration. Each constraint is considered as a convex set. By perform-

ing successive projection operations onto convex sets, the result of iterative projection can

8



converge to a data set that satisfies each constraint and gives the desired HR image. The

origination and mathematical explanation of the POCS approach is detailed in Section 3.4.

Some researchers have attempted to solve the SR reconstruction problems by using

linear algebra optimization methods. Elad and Feuer [14] as well as Nguyen et al. [15] pre-

sented a set of comprehensive numerical algorithms for SR reconstruction from motion es-

timation step to de-blurring step. Farsiu et al. [16] inherited the algorithm in [14], [15] and

proposed a fast and robust super-resolution approach which combines previous optimiza-

tion techniques and his own "Shift and Add" technique and produces really good quality

HR images and requires less computational time than other iterative SR approaches.

These techniques and many other SR image reconstruction approaches that are beyond

the scope of this thesis have been reviewed in detail in [17], [18] and [19].

1.4 Research Motivation

In the field of image or video signal processing, there are two methods to increase the

image resolution. One involves increasing the elements of optical sensor of cameras, while

the other involves image interpolation by computer software. The conventional image in-

terpolation method by computer is utilized the most. Various image interpolation methods

such as "near-neighbor interpolation", "bilinear interpolation", "bicubic interpolation" and

"spline interpolation" are well known by many researchers. These traditional image inter-

polation methods simply increase the size of the images without considering the character-

istics of the images. Normally, simple interpolation ignores the variance of the high and

low frequency components of the image. As a result, the image becomes more blurry as the

image increases in size. Therefore, the quality of the simple interpolated image is limited.
In contrast, super-resolution reconstruction extracts the useful pixels from consecutive LR

frames, taking the advantages of the relation of each frame and employs motion estimation

algorithm to calculate spatial differences between each frame in order to reconstruct a HR

9



image.

Normally, the high frequency components of an image are the edges. The human eye

system has higher sensitivity to the high frequency components when viewing an image.

Hence, preserving the edges is very important in order to minimize human eye visual effects

when increasing the image size. Eliminating saw-tooth effect on the edges, blurring and

smoothing the image after increasing the resolution are the key points of developing a SR

algorithm.

After examining some of the existing super-resolution reconstruction methods, we can

conclude that the conventional POCS method is in general a good SR method, but it has

some rooms to be improved. Especially on the subjective visual quality, the result of the

conventional POCS method still has some noisy features such as grid-ish noise present on

the final estimated HR image. These particular types of noise may not be overcame by the

traditional noise reduction methods. Therefore, transforming the LR frame data into some

other data space could be a solution to improve the conventional POCS method.

To date, very limited research in applying wavelet technique to super-resolution has

been published and also wavelet has many beneficial features that are able to reduce the

unwanted components from the image data. Considering the limited amount of research

in this regard and the potential advantages it brings to super-resolution image reconstruc-

tion, the use of wavelet technique in the super-resolution algorithm has became the central

subject of this thesis.

1.5 Scope and Organization of the Thesis

The main scope of this thesis is to present a wavelet-based POCS SR reconstruction

algorithm. The proposed algorithm manipulates the LR frames data in the wavelet domain

to obtain the HR image. The introduction chapter describes the requirements and appli-
cations of super-resolution techniques and the model of the super-resolution problem is

10



formulateci as a matrix system in Equation (1.1). Subsequent chapters will describe the

super-resolution process step by step. As introduced in Chapter 1, the super-resolution
processes can be broken down into four major steps ,namely (l)image registration ^de-

grading function estimation (3) SR reconstruction and (4) image de-blurring. The first,
second and the last steps are presented in most of the previously proposed approaches and

will be discussed in Chapter 2. The third step which may vary with each of the different

proposed approaches, and will be discussed in Chapter 3. The main contributions of this
thesis will be discussed in more detail in Chapter 4. The comparison and experimental re-

sults of the proposed super-resolution approach and other previously proposed approaches
will be summarized in Chapter 5. The Chapter 6 concludes this thesis and provides some

suggestions for further research. The organization of this thesis and the details are summa-

rized briefly as follows.

In Chapter 2, a general review of the fundamental process steps of super-resolution im-
age reconstruction is provided. It begins from the image registration process which includes

the motion estimation and rotation estimation processes prior to aligning the consecutive

frames with respect to the reference frame for SR process. The implemented image reg-
istration process algorithm will be discussed in detail in the first section. The following

step after image registration is the degrading function estimation which estimates the blur-

ring operator B¡ presented in Equation (1.1). The SR reconstruction step will be briefly
introduced in the third section because this SR reconstruction step varies greatly with each

different approach, which will be particularly discussed in Chapter 3. The last section de-
scribes the method of the de-blurring process which is the last step in the SR reconstruction

process in most of the proposed approaches.

In Chapter 3, five different super-resolution reconstruction approaches are described;
four of them are also being used for simulation and comparison in this thesis. These dif-

ferent SR approaches are presented in chronological order according to their publishing
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date. Section 3.1 presents three types of traditional interpolation methods. Although in-
terpolation methods are not considered as SR approaches, they are, however, preliminary

methods of SR. The nearest-neighbor, bilinear and bicubic interpolation are introduced

in this section. Section 3.2 will present the classic and also the first SR reconstruction
approach proposed by R. Y. Tsai and T. S. Huang in 1984 [8] which considers the recon-

struction step of SR as a de-aliasing process of LR frames in frequency domain. Section
3.3 talks about an iterative SR reconstruction approach, namely "inverse back-projection"

(IBP) which was introduced in [9]. The next approach is the conventional "projections onto

convex sets" (POCS) approach, which is a well-known approach, but that has been rarely
discussed in literatures. Thus, the conventional POCS approach will be reviewed in detail

in Section 3.4, particularly. The fourth type of SR reconstruction approach introduced in

the last section, is a group of regularized optimization approaches, which treat the SR re-

construction step as an inverse optimization problem of recovering missing data from the
observed video frames. Three commonly used regularized SR optimization methods will
be also discussed.

Chapter 4 presents the proposed wavelet-based POCS SR reconstruction approach.
Section 4.1 introduces a framework of the wavelet-based POCS SR reconstruction pro-

cess. Section 4.2 gives a basic presentation of the wavelet analysis of image data and the
derivation of the wavelet domain convex set for wavelet-based POCS process. The wavelet

coefficient refinement process is detailed in Section 4.3, which consists of a number of

sub-processes as described below.

• The method for calculating the variance of wavelet coefficients for stochastic test

• Origination of stochastic F-Distribution

• Detailed information about the wavelet coefficient refinement method

Section 4.4 summarizes the proposed wavelet-based POCS SR reconstruction procedure.
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The process flowchart is shown and explained step by step.

In Chapter 5, the proposed SR method is simulated and compared with some of the
known methods. This chapter begins with the defined simulation environment, the process

of the generating the degraded LR frames and the performance metrics for comparison.
Then, the second section presents some intermediate results from the proposed algorithm.

The last two sections present the subjective and objective simulation results, respectively.

Comprehensive comparisons of both visual and numerical results are shown.

In Chapter 6, the first section summarizes the work of the thesis. Then, some possible
directions for further research are suggested in the second section.
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Chapter 2

The Fundamentals of Super-Resolution

The super-resolution techniques could be categorized under the image restoration class.

However, many image or video signal processing books rarely describe super-resolution as

a single technique, because it actually involves several sub-techniques such as image reg-

istration, degrading function estimation, SR image restoration and image de-blurring. This

chapter details these essential preliminary steps in the super-resolution technique. Section

2.1 will describe the image registration step of the SR reconstruction process. In this step,

the motion estimation and rotation estimation algorithms used in this thesis will be dis-

cussed. In Section 2.2, the algorithm of degrading function estimation which estimates the

kernel of the burring operator, is explained. In Section 2.3, the restoration step of the SR

reconstruction process is introduced. Since, this step varies from different approaches, it

will then be further discussed in detail in Chapter 3. The image de-blurring step of the

SR reconstruction process is introduced in Section 2.4. For a better understanding of these
preliminary steps, Figure 2.1 shows the general steps of super-resolution reconstruction

approach, namely (1) image registration, (2) degrading function estimation, (3) SR recon-

struction and (4) image de-blurring.
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Figure 2. 1 : General steps of super-resolution reconstruction process

2.1 Image Registration

Image registration is a process that aligns two or more images of the same scene. It is
very important to have motion estimation as accurate as possible to achieve image regis-

tration. Usually the image registration process is applied as a first step in super-resolution
processing. Relative rotation angles of all the LR frames with respect to the reference LR

frame are firstly estimated before the affine motion is estimated. A reasonable assumption
is made that most acquired LR frames for SR image reconstruction problems are taken

within very small time interval. Therefore a practical motion estimation algorithm consid-

ers only global motion between consecutive frames. According to the brief introduction of

the image registration conditions mentioned above for SR image reconstruction process, the
main goal of this section is to calculate the relative rotation angle ?T, relative x-direction

motion vector Ax, and relative y-direction motion vector Ay.

2.1.1 Rotation Estimation

The rotation estimation algorithm used in this thesis is a method originated from an

energy correlation. Firstly, vectors through the center of LR frame vary by different angles
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are formed and in order to calculate the average energy from every component in each

vector. Vectors containing average energy at each angle of reference frame and rotated
frame are calculated first. The relative rotation angle between two LR frames can be found

by seeking the maximum correlation of the average energy vectors. The seeking procedure

is that (1) set an average energy vector on the reference frame, (2) set an average energy

vector on the rotated frame, (3) matching these two vectors for a maximum correlation

while changing the angle of the vector on the rotated frame. A graphical illustration of the

relative rotation angle estimation method is shown in Figure 2.2.

Reference LR frame Rotated LR frame

«:»s¦
C

I
?™,»V1* ö, a

!

? ¦

¦

V„„(45) V„rt(90)

Figure 2.2: Relative rotation estimation of two images

rmax = max(Correlation(V;e/(0o), Kot(0i)))
?0 = ?0-?? (2.1)

On the left hand side of Figure 2.2, the maximum correlation seeking task begins from
the vector containing average energy at 0 degrees on the rotated frame. By increasing the

scanning angle by 0.1 degrees or 0.5 degrees, depending on the precision requirement of
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the SR application, the maximum correlation of the average energy vectors between Vre¡
and Vrot can be found. In this example, the maximum correlation happens when ?T = 90 °.

Sometimes multiple vectors are compared across the reference and rotated frames, in order

to guarantee the accuracy of the estimated angle.

2.1.2 Motion Estimation

The motion estimation algorithm implemented in this work is a hierarchical model-

based motion estimation technique [20] [21]. The framework of the hierarchical motion

estimation and its pyramid structure are shown in Figure 2.3 and Figure 2.4, respectively.
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^model parameters

J- I—tjM).
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P3

f

Frame 2

Figure 2.3: Framework of the hierarchical motion estimation
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There are four basic elements in this framework. (1) pyramid decomposition, (2) mo-

tion estimation, (3) image warping and (4) coarse-to-fine refinement. This motion estima-

tion algorithm is capable to estimate global motion and multiple local motions on the con-

secutive frames by choosing different motion models such as "affine flow model", "planar

surface flow model" [22], "rigid body model" and "general flow field model". However, in

the super-resolution process, global motion estimation is sufficient for most cases. In other

words the "affine flow model" will be employed for our motion estimation process.

F

\
\
\
N

Figure 2.4: Pyramid structure of the hierarchical motion estimation

Considering the procedure of this motion estimation algorithm, the reference frame and
the frame to be estimated are first down-sized by the Laplacian pyramid method [23]. The

estimation process starts from the most coarse version of the two frames (see node P0 in

Figure 2.3). Frame 1 in the left hand side, set as a reference frame which is firstly pseudo-

warped. The reason of not preforming the first warping is that in this stage there is no
motion parameters provided from the previous level. Secondly, on the nodes with symbol

M, the motion estimation method is performed according to the "affine flow model", and
in these nodes the sum of squared differences (SSD) minimization is involved. The esti-

mated motion parameters are passed to the finer level for the motion parameter composition

and the warping process. As the frame resolution increases, the coarse-to-fine refinement
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method is implemented by using the Gauss-Newton minimization technique. The estimated
final motion parameters are provided at the node P3 in Figure 2.3.

The mathematical deviation of the second element, motion estimation, usually starts

from the generic image intensity function Ig(x, y, t) in the space and time domain. The
conservation of intensity of video frames can be expressed as follows:

Ig{x, y, t) = f(x + u(x, y)At, y + ?(?, y) At, t + At) (2.2)

where u(x, y) and u(x, y) are the frame velocity which are defined as

u{x, y) = pi + p2x + p3y

v(x, y) =p4+ p5x + pey (2.3)

To describe the affine flow field with respect to frame origin, the Equation (2.3) can be
rewritten in vector form as:

f(x,y)=Ap (2.4)

where

1 ? y 0 0 0

0 0 0 1 ? y

P= {Pl,P2,P3,Pi,P5,Pe, (2.5)

The motion in complete region is specified by the parameter p, which is unknown and
needs to be estimated.

To solve Equation (2.4), the Laplacian pyramid image intensity is applied, Thus,

I(x, y, t) = I[x - u(x, y),y - v{x, y), t - 1)
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where / represents Laplacian pyramid image intensity. Therefore, the flow field in a spe-

cific region is estimated by SSD error minimization.

£({f» = S((7(?> ^ ¿) - 1^ - <x' y^y - <x' y)> l - 1^2 (2·6)
?,y

where {f} = {u(x,y),v(x,y)} denotes the entire flow field within a region specified by
the overall points (x, y) . Practically, in Equation (2.6) the sum of individual error is not

a quadratic function in view of the unknown entire flow field within the region of interest

{f}, and it is a non-linear minimization problem.
This kind of problem in this motion estimation algorithm can be solved by applying the

Gauss-Newton's method. If {f}, denotes the flow field estimated at the ith iteration, the

incremental estimate {of} can be obtained by minimizing the quadratic error function as
given below,

?({d?}) = 5^(?/ + V/ · of)2 (2.7)
?,?

where

??(?, y, t) = I(x, y, t) - I(x - u(x, y)u y - v(x, y)ut - 1)

considering the flow field estimated from each iteration, which is different between the two
frames at corresponding pixels. The minimization problem described in Equation (2.7) can
be reformulated in terms of the unknown incremental affine flow model parameters. Let

Pj denote the current estimated affine flow parameters, then the incremental parameters <5p
of the affine flow model can be achieved by substituting d? in Equation (2.4) by Equation
(2.7), and the error measured is a function of d?.

£({¿p}) = ?(?/ + (v/)Ta¿p)2 (2·8)
x,y
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Minimizing Equation (2.8) with respect to ¿p, we obtain

[]TAT(V/)(V/)TA]5p= -2>t(?/)(?/) (2.9)

The motion parameter ? is obtained from Equation (2.9). Applying the estimated mo-
tion parameter ? back to Equation (2.4), the displacement of frame 2 on both horizontal
and vertical direction can be obtained.

The third element, frame warping, is done by computing a flow field according to the
affine flow model parameters and then based on flow field to warp I(t — 1) toward the

reference frame /(f). The warping algorithm imposes bilinear interpolation to estimate

some missing pixels. The computation of error ?/ is the warped frame. The intensity
gradient V/ is computed from the reference frame.

The last element, coarse-to-fine refinement, generates the estimated motion from one

level to the next, which are then used as an initial frame. For the global motion model,

parameters are directly forwarded to the next level to perform the initial warping.

2.2 Degrading Function Estimation

The purpose of estimating the degrading function of acquired frames is to provide blur-

ring operation information for the SR image reconstruction step. The problem of restoring
a single degraded image to its original version is similar to the SR reconstruction problem

to restore multiple degraded LR frames. The main difference is that restoring a single de-

graded image to its original version is at the same resolution scale, and reconstructing an
SR image from several degraded LR frames is at a higher resolution scale. A single image

degradation model can be mathematically described as follows:

g = Bx + T7 (2.10)
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In Equation (2.10), B is the degrading or blurring matrix which blurs the original image

? into a blurring state and g is an acquired degraded noisy image. In most cases, blurring

is considered as a linear spatial invariant system. The original image ? can be recovered

by taking the "deconvolution" operation of B from the acquired degraded noisy image g.

Comparing Equation (2. 10) and Equation (1.2), it is known that super-resolution is a special

case of image restoration. According to the super-resolution framework, Equation (2.10)
can be rewritten as

y< - DM¡Bx + J74 1 < i < µ2 (2.11)

where µ is an arbitrary scaling factor and the LR frames y¿ are obtained from the original

image ? by shifting from frame to frame motion operator M¿, degraded by the blurring

operator B and down-sampled by a factor µ.

In most degrading function estimation problems, the blurring operator B is unknown or

partially known within a set of parameters. Problems of the estimating degrading function

from observed image with incomplete degraded information are called "blind blur identi-

fication" in some image processing literatures. Similarly, blind blur identification can be

used broadly to handle multiple observed frames and applied on super-resolution problems

to estimate the degrading function on each observed LR frame. To judge the quality of

the degrading function estimator, a good SR blind blur identification method should posses

characteristics such as the ability to suppress the noise, to minimize the edge artifacts and

to prevent degrading function from converging to the trivial delta function.

The method of estimating the degrading function used in this thesis uses N. Nguyen's

[2] "parametric blurring model blind blur identification". The concept of this method is to
formulate the blurring operator B as a function of point spread function(PSF) parameter

set s and reformulate Equation (2.11) to be
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Yi = DB(a)M¿x + ?7¿ l<i<p

= H¿(a)x + ? (2.12)

where B is the blurring operator and it is now a function of SPF parameter set s. Using the

least squares minimization method to solve Equation (2.12), we get

argminx ^ ||y¿ - ?(s)?||2 + AxTQx (2.13)
i=l

where ? is the regularization parameter controling the smoothness and the stabilization of

the solution. The matrix Q is usually a symmetric positive definite matrix, and here Q is set

to be the identity matrix in order to stay for the generality. The minimization of Equation

(2.13) can be expressed in the following format:

?(s, ?) = (?(s)t?(s) + ??)-1?(s)t? (2.14)

y =

Vi

Vp

H

H1

Hn

(2.15)

The goal of the degrading function estimation here is to find the PSF parameters s and

the regularization parameter A. There are some available algorithms such as "precondition-

ing for conjugate gradient" (PCG) and "generalized cross-validation" (GCV), are used to

solve the minimization problem like Equation (2.14). The detailed procedure of solving
Equation (2.14) is beyond the scope of this section. The algorithms of PCG and GCV have
been discussed in detail in [2].
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2.3 SR Image Reconstruction

The SR Image Reconstruction step is the core of the whole super-resolution process.

Researchers try to solve the SR reconstruction problem from different directions, therefore

the algorithms vary with different approaches. In this step, the LR frames are joined to-

gether to contribute certain amount of useful information to build the HR image. In other

words, sub-pixels from each LR frame are fused to provide corresponding HR pixels. Since

there are various SR image reconstruction approaches, each SR image reconstruction ap-

proach will not be specifically discussed in this section. This section is going to provide the

classification of recent existing SR image reconstruction processes and a brief introduction

of each class of the SR image reconstruction approach. A graphic representation of the

classification of SR image reconstruction approaches is shown in following tree graphic:

SR Image Reconstruction

Frequency Domain

De-aliasing Interpolation Based

Spatial Domain
1

Projection Based
X

Optimization Based
I

Non-uniform Uniform POCS IBP Regularized Blind SR

Deterministic Stochastic

Figure 2.5: Classification of SR image reconstruction process

Considering Figure 2.5 from top to bottom, left to right, the SR image reconstruction

processes can be roughly divided into two big classes which are the frequency domain

and the spatial domain reconstruction approaches. Intuitively, frequency domain SR im-

age reconstruction process converts the acquired LR frames into frequency domain and
the approach mainly focuses on the de-aliasing of acquired LR frames by utilizing Fourier

transform shift property. The frequency domain SR image reconstruction was the first
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proposed multi-frame super-resolution approach which has lower computational complex-

ity and is easier to perform parallel processes. However, frequency domain methods are
mostly based on ideal theories; it can only be used when the cases have simple shift motion

and linear spatial invariant (LSI) degrading models. Since they are more difficult to apply

on most applications, no further methods have been extended under this category.

The spatial domain SR image reconstruction approaches can accommodate more spatial
constraints and have more variations. There are three sub-classes classified under spatial

domain SR image reconstruction process, (i) Interpolation based SR image reconstruction

processes consume less computational resources and are fast enough to apply for real-time

SR applications, however they are hard to apply with priori knowledge for a better degra-
dation effects removal, (ii) The projection based SR image reconstruction processes are

iterative processes. Both POCS and IBP SR Image reconstruction processes allow users

to add priori knowledge to ensure that the final SR image has the desired characteristics.
The proposed SR image reconstruction process is categorized under POCS approach and is

extended from conventional POCS by adding a wavelet domain convex set and a wavelet

coefficient refinement process to improve the final HR image quality, (iii) The optimiza-
tion based SR image reconstruction processes treat the SR image reconstruction problems

as ill-pose or ill-conditioned problem, which estimates the desired HR image by imposing

various engineering inverse optimization algorithms such as the least square minimization.
These inverse optimization algorithms can be further classified into regularized optimiza-

tion and blind SR optimization [24] approaches. Regularized optimization approaches re-

duce the computational complexity of the optimization problems. There are two types of
regularized optimization methods. (1) The deterministic types of regularization methods,

which optimize the solution by using pre-determined unknown parameters according to

priori knowledge such as constrained least square (CLS) method. (2) The stochastic type
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of regularization methods apply stochastic estimator methods such as the maximum a pos-

teriori (MAP) estimator to solve the objective function. The other inverse optimization SR
image reconstruction approach, the Blind SR Optimization, uses almost only acquired LR

frames information without additional assumptions to recover original SR image.

Some of the previously mentioned SR image reconstruction approaches such as uni-

form interpolation, frequency domain method, IBP, conventional POCS, and regularized

optimization SR image reconstruction approaches will be further discussed in detail in

Chapter 3.

2.4 Image De-blurring

Image de-blurring is usually classified under image restoration process in most image

processing textbooks and is defined as a process that removes the degrading effects; The

task to "remove" usually refers to filtering or compensating the unwanted operation. In

some SR reconstruction approaches, the de-blurring process is separated from the SR image

reconstruction step in order to reduce the computational complexity and the loading in one

step. It was found that performing the de-blurring process prior to presenting the final

HR image improves most SR image reconstruction algorithms. However, performing the

de-blurring process at the last step of super-resolution algorithm is optional.

There are many factors that could cause image blurring or image degradation. The most

common reason of blurring is when the camera uses long exposure time when capturing

moving objects or capturing steady object while camera is in motion. In super-resolution
applications, normally consecutive LR frames are usually taken within very short period of

time. As a result, motion blurring can be prevented or minimized by taking high capturing

rate. Other factors that cause degradation of images such as out-of-focus optics, air turbu-
lence or lack of exposure time causes insufficient photons to be captured, these conditions

of degradation can be treated as blurring images.
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Considering the image degradation model described in Equation (2.10), the concept

of removing blurring is intuitively simple, and can be treated as a filtering process. The

difficult step is to identify the blurring matrix B which has been discussed in detail in

Section 3.2. Once the blurring matrix B is estimated by blur identification methods, the

operation ? = B_1g — ? brings back the original image x.
To date, the de-blurring technology is relatively advanced compared to other image

processing problems. The simulation program Matlab includes many reliable de-blurring

tools such as "Wiener filtering", "regularized filtering" and "recursive Kaiman filtering".

Among these de-blurring methods, the proposed SR algorithm uses the Matlab function

DECONVWNR0 which implements the Wiener filtering technique [25] [26], to de-blur

the estimated HR image.

The program statement "g = DECONVWNR(x,PSF)", deconvolves image ? using the

Wiener filtering algorithm, returning a deblurred image g. The assumption is that the image

? was created by convolving a true image with a point-spread function (PSF) and possibly

by adding noise. The algorithm is optimal in the sense of least mean square errors between

the estimated and the true images, and utilizes the correlation matrices of image and noise.

If there is no noise present, the Wiener filter is reduced to the ideal inverse filter.

2.5 Conclusion

In this chapter, four fundamental SR reconstruction steps are independently explained.

The first step, image registration process, is described by explaining rotation estimation and

frame to frame motion estimation methods. In the motion estimation method, the Pyramid

motion estimation model is discussed in detail. The second step, the degrading function

estimation process uses the parametric blurring model to identify the blurring point spread

function (PSF) kernel. The third step, different types of SR image reconstruction process
are classified by their approach. In the classification, SR image reconstruction processes
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are roughly classified into two big classes which are frequency domain and spatial domain

approaches. The spatial domain approaches can be further categorized into several sub-
classes. The proposed SR reconstruction algorithm falls into the projection based spatial

domain approach. The last step of SR reconstruction process is the image de-blurring

process. The de-blurring process is optional in some other SR reconstruction approaches.

The proposed SR reconstruction algorithm uses the Wiener filtering method to remove the
blurring effects on the estimated HR image.
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Chapter 3

Super-Resolution Reconstruction

Approaches

There are various types of SR reconstruction algorithms. With reference to the classifi-

cation of different SR reconstruction approaches shown in Figure 2.5, this chapter discusses
in detail some well-known interpolation methods, namely, the "nearest-neighborhood", "bi-

linear", and "bicubic interpolation". As well, the "frequency domain approach", IBP, "con-

ventional POCS" and the "regularized inverse optimization" will be discussed.

3.1 Traditional Image Interpolation

To obtain a visually clearer image, a very fundamental process is to increase the total

number of pixels. The image interpolation process does the work. Image interpolation
is a very basic process that almost all SR reconstruction approaches perform during the

SR reconstruction procedure. However, image interpolation alone is not considered as

a super-resolution technique. This section introduces three commonly used interpolation
methods; one of them, the bilinear interpolation method will be employed in the proposed

SR reconstruction algorithm.
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3.1.1 Nearest-neighborhood Interpolation

When increasing the size of an image, some new unknown pixels may appear on non-
integer coordinates, due to the various incremental ratios. Therefore, it is necessary to

insert new pixel values, according to neighbor pixels' value. There are many interpolation

methods which use neighboring pixels to interpolate new pixel values, in which the simplest

one is the nearest-neighborhood interpolation [27]. Its main idea is to find the known
integer pixel which has the shortest distance to the unknown non-integer new pixel. The

value of each non-integer's new pixels duplicates from its nearest known neighbor pixels.
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y(ni ,n2)
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Figure 3.1: Illustration of nearest-neighborhood interpolation

In Figure 3.1, pixel S in the magnified image x(mi, m2) is located between pixels b,
e, e and f. The nearest-neighborhood interpolation algorithm estimates the distance from

the pixel S to its neighbor pixels and chooses the pixel with shortest distance to the pixel
S which is pixel e in this case. Then the value of pixel S is assigned by copying the value

from the pixel e.

The nearest-neighborhood interpolation algorithm is the simplest, and most efficient
and computationally frugal image magnification method. However, images interpolated
by nearest-neighborhood interpolation are of low quality because the jagged and blocky
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effects are usually noticeable.

3.1.2 Bilinear Interpolation

Bilinear interpolation is a similar idea to nearest-neighborhood interpolation. It esti-
mates new unknown pixels by referencing its four known neighboring pixels. According

to the distance ratio of the new unknown pixels to its four known neighboring pixels, each

neighboring pixel obtains a weighing factor which is larger when the neighboring pixel
is closer to the unknown pixel, in contrast, the further neighboring pixel receives smaller

weighing factor. Figure 3.2 and Equation (3.1) describe how an unknown pixel value is
determined by bilinear interpolation.

Pa;

Pc !

Pb

? drrii
?

— -èdm2 x(mi ,ITi2)

Pd

Figure 3.2: Illustration of bilinear interpolation

x(mi, Ui2) = {l-dmi)(l-dm2)PA+dm2(l-dmi)PB+{l-dm2)dmiPc+dmidm2PD (3.1)

In Figure 3.2, x(mi, m2) is the pixel to be interpolated, PA, Pb, Pc and PD are the

values of four known neighboring pixels of x(mi , m2). The known neighboring pixel with

shorter distance to the unknown pixel x(mi,m2) means that the pixel has greater influence
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to the new pixel and vice versa.

The images interpolated by the bilinear interpolation method show better continuity

and smoother quality compared to the nearest-neighborhood interpolation. There are some

enhanced versions of bilinear interpolation [28] which extend the reference pixels from 4

points to 8 points or more. Those enhanced bilinear interpolation methods provide sharper
edges presentation, but the complexity of the algorithms are dramatically increased.

In the simulation experiment of this work, bilinear interpolation is included as one of
the reference SR approach for comparison. In the SR reconstruction experiment, all the

acquired LR frames are first interpolated by bilinear interpolation according to the required

enlargement factor. Then, all the interpolated images are aligned by the image registration

process introduced in Section 2.1. Finally, the SR image is generated by averaging the
sum of each interpolated frame. The purpose of using bilinear interpolation is to build a

comparison case and show that the interpolation alone can not reconstruct a good quality

SR image, specially when the enlargement factor is big.

3.1.3 Bicubic Interpolation

Bicubic interpolation [29] is also a well known interpolation method. Because of its
transfer function, it has a better approximation method to the Sine function and to any

previously mentioned interpolation methods. Hence, the images interpolated by bicubic

interpolation have very good quality. The origination of bicubic interpolation is derived

from cubic polynomial which is shown in Equation (3.2)

cubic (d)
(a + 2)|d|3-(a + 3)|d|2 + l, 0 < \d\ < 1
a|d|3-5a|d|2 + 8a|d|-4a, 1 < \d\ < 2 (3.2)
0, elsewhere
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where d is the pixel distance, and a is a parameter that controls the quality of the inter-

polation. The range of variable a is typically (-0.5,-1) , and in many bicubic interpolation
applications a is set to be -1. Therefore, the coefficient of bicubic interpolation is formu-

lated by substituting a=-l into Equation (3.2) then

|d|3-2|d|2 + l, 0<|d|<l
C(d)=\ -\d\3 + 5\d\2 - 8\d\ + 4, l<|d|<2 (3.3)

0, elsewhere

In Figure 3.3, the mechanism of bicubic interpolation is shown. It requires 16 neigh-

boring pixels to estimate one new unknown pixel by a convolution operation. During the

convolution operation, the 16 neighboring pixels need to multiply by two interpolation
coefficients individually. The interpolation coefficients are obtained by substituting the

distance between neighboring pixels and the new unknown pixel into Equation (3.3). The
value of the new unknown pixel is then obtained by performing the convolution operation
as shown below,

2 2

S = S S P(i+m,j+n)C(n - x)C(m - y) (3.4)
m=— 1 n=— 1

where S is the value of the unknown pixel, P(i+mj+n) represents the value of 16 neigh-
boring pixels, C(n — x) and C(m — y) are the convolution coefficients calculated from
Equation (3.3).

The bicubic interpolation method produces a smoother texture and causes much less

interpolation artifacts on interpolated images than the bilinear interpolation method does.
However, it takes longer computational time to complete the same amount of work. This

method is often chosen when speed is not an issue.
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Figure 3.3: Illustration of bicubic interpolation

3.2 Frequency-Domain Approach

The frequency domain approach for super-resolution image reconstruction is a de-

aliasing process. An assumption is made that in each acquired LR frame, there is alias-

ing. The algorithm and system equation were first derived by Tsai and Huang [8]. In
their published paper, the relationship between the LR frames and the desired HR image

is described. The achievement of the frequency domain approach is based on three basic

principles. 1) the original HR image is bandlimited, 2) the shifting properties of Fourier
transform, 3) the aliasing relationship between the discrete Fourier transform (DFT) of the

acquired LR frames and the continuous Fourier transform (CFT) of the original HR image.

These properties relate the aliased DFT coefficients of the acquired LR frames to a sam-

ple of the CFT of an unknown HR image. For instance, let two 1-D signals represent an

under-sampled LR frame and one of the 1-D signals is transformed into frequency domain.
According to the principles described above, the relation between the DFT coefficients of
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the aliased LR frame and the CFT samples of the desired HR image can be depicted as the

frequency domain signals shown in Figure 3.4.

Aliasing Aliasing

*· f

Aliased LR signal (discrete Fourier transform)

Dealiasing Dealiasing

Desired HR signal (continuous Fourier transform)

Figure 3.4: Relationship of LR frame and HR image

In Figure 3.4, the waveform at the top is the DFT coefficient of the aliased LR frame and

the bottom waveform is the CFT sample of the desired HR image. The goal of the frequency

domain approach is to remove the aliasing from the DFT coefficients of the aliased LR
frame and to obtain information in the high frequency portion. The mathematical derivation
of this method is described in detail as follows. First, the notation of each of the variables

maintains the same as those used in the original paper and these notations are valid only in
this section.

Variable notations:

(x,y) = real-space coordinates

(u, ?) = frequency-space coordinates
f(x,y) = ideal image
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fk(x, y) = ideal image shifted by (Sk,x, ôk,y) = f(x + ôk>y, y + ôk,y)
? = number of available LR frames

{fi,jk} = (i, j)th sample in the feth frame; fitjk = f(iTx + Sk)X,jTy + 6k,y)
M = number of pixels in LR frame in x-direction

N = number of pixels in LR frame in y-direction

Tx = sampling interval in x-direction

Ty = sampling interval in y-direction
Sk,x = spatial offset of kth frame in x-direction

Skty = spatial offset of kth frame in y-direction
F(u, v) = Continuous Fourier Transform (CFT) of continuous signal f(x, y)
Fk(u, v) = CFT of shifted continuous signal fk(x, y)
?3? = sampling frequency in x-direction = ^
usy = sampling frequency in y-direction = ^
^t?,? = (TO> n)th component of DFT of feth frame (fk(x, y)).
Lu = resolution improvement factor in u

Lv = resolution improvement factor in ?

J = complex number \/—Î

Note that the LR frame counter k is defined as k G [0,p — I]. Then, the Oth frame
is defined as the reference frame without shifting in both ? and y directions. Therefore

¿o,x = S0iy = 0. The pixel's counter (i, j) is defined as i e [0, M - 1] and j € [0, N - I].
According to the continuous Fourier transform theory, the relation between the shifted

and non-shifted ideal images can be described as

Fk(u, v) = F{u, v) * ß?*(?«..?«?.»") (3.5)
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where F(u, ?) is the continuous Fourier transform of the continuous signal f(x, y). Relat-
ing Equation (3.5) to the discrete space by discrete Fourier transform, then

M-I JV-I

t=0 J=O

(3.6)

There are ? number of available LR frames, thus there are ? DFT matrices of size M ?

N. Relating DFT Equation (3.6) to the CFT Equation (3.5) by the "aliasing relationship",
the DFT of kth frame becomes

Fkm'n = tvE S S F^Wrx +y a—— ex) o=— oo
mus NT,, + nuisy) (3.7)

Equation (3.7) relates the shifted (m, n)th frequency component of Fkm>n, and the rep-
resentation of the shifted continuous signal. According to the first basic principle, the

F(u, v) is assumed to be bandlimited in both directions. Therefore, F(u, v) — O for all ?
satisfies |u| > Lu * usx and \v\ > Lv * u>sy. This enables another matrix equation to be
formulated.

t-Jmn — ^mn * "mn (3.8)

where Gmn is defined as

^???

F0¦* 771,71

F11 m,n

pkm,n

pp-1

(3.9)

thus, the components inside the vector Gmn are the known DFT of fk(x, y) described in

37



Equation (3.7) and it has ? components.

$mn =

(Wl1I {Ft??)2,1

(Ft??)?,2

{4>mn)\

(Ft??)?,?

(Ft??)4LuLv,l

\?t?? ) 4Ln Lv ,?

(3.10)

with

where 7 = i mod (2LU) - Ln and s = ^- — Lv. The matrix <J>m„ is of size ? ? 4LULV. The
Equation (3.9) and Equation (3.10) can be calculated at this stage. However, it is best to
avoid the direct calculation of both matrices Gmn and <£m„ because direct calculations are

computationally expensive. Hence, it is desirable to find the value of (Fm„)¿ first, which
can be obtained easier by noting symmetries of the vector Gmn and the matrix F„p.

The unknown vector Fmn at the last term of Equation (3.8) is defined as
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{Fmn)2

(3.11)

where

{Fmn)4LuLv

, -, ,_,. t? ?(Fmn)i = Fi1--- + ??3?, —— + susy)MTx NTn

where 7 = i mod (2LU) - Ln and s = ìjj*- - Lv. The vector Fmn is noted as the relation
between the CfT at a given point in continuous space and values from the DFT. The vector

Fmn contains ALULV components and now each value (Fmn)¿ located in the continuous

(it, v) coordinate can be exactly calculated.
Once Equation (3.8) is solved, it means the values in vector Fmn are available and those

are the values of the continuous Fourier transform at a given (u, v) point. Assigning (u, v)
coordinates to the ALnLx, values in the frequency domain as sample point of the frequency

representation of the continuous ideal image, then

. m ? .
(u> v) = (tt^t + I^ax, -^r + su*v)'??? NT,

The matrix Equation (3.8) considers only the (m, n)th component of all the available
LR frames ? of the DFTs. There are totally NxM samples in each frame, thus we have

(TV - I)(M - 1) more matrix equations to solve. Between each sample, we want to insert
ALnLv new samples, therefore there are ALULV(N — I)(M — 1) more points to add to the

frequency representation of the continuous ideal image. In total, there will be ALnLnMN

points in the representation, whereas if it starts with MN, then the most points could be
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obtained from any image. Hence, the resolution is improved by a factor of 4LULV. If the
desired image resolution improvement factor is 2 in each direction (ie: 4 in total), then let

Ln = Lv = 1. In general, the values of Ln and Lv state small values in the frequency

domain approach.

In order to recover the HR image as perfect as possible, sufficient points are needed to

get beyond the Nyquist sampling frequency with respect to different types of the real scene.
There is no doubt that the more points added to the band-limited frequency representation,

the more accurate the signal is obtained in the space domain. Finally, the HR image is

obtained by taking the 2-D inverse Fourier transform after all points from each (m, n) have
been mapped into the frequency space.

The major advantage of the frequency domain approach is the simplicity of its theory,

in which the relationship between the LR and the HR images is clearly defined in the

frequency domain. Its frequency domain operations are also not difficult to implement
either by software or hardware. However, the degrading model of this approach is restricted

to only global frame to frame motion. Moreover, the linear spatial invariant (LSI) blurring
model is restricted due to the difficulty of applying the spatial domain data correlation and

priori knowledge constraint processes.

3.3 Inverse Back-Projection (IBP)

Inverse back-projection (IBP) is an iterative SR reconstruction method proposed by M.

Irani and S. Peleg in the early 1990's. In this approach, the HR image is obtained through

iteratively reducing the difference of the simulated LR frames and the observed LR frames.
The concept of the IBP approach is the basis of many different iterative image reconstruc-

tion algorithms, for instance the idea of POCS was inspired from the IBP concept. In the

recent years, many SR reconstruction algorithms have been developed by referencing the

back-projection related concepts.
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The IBP SR reconstruction is an efficient and simple SR reconstruction method. The

HR image is reconstructed by minimizing the errors between the simulated LR frames and
the acquired LR frames during the iteration. This method can be combined with the desired

constraints such as smoothness of HR image or specific characteristic of other restrictive
conditions.

The mathematical derivation is described in detail in the following by assuming that

there are ? available LR frames yi, y2, · · ¦ , yP, each of which has ?? ? n2 pixels in dimen-

sion, and the desired HR image ? has mi ? m2 pixels in dimension. Let the magnification

factor be µ, then the HR image size can be obtained by extending the LR frame y both in

horizontal and vertical direction by µ times. Thus, mi ? m-i = µ?? ? µ?2. The degrading
model of the IBP SR reconstruction is described as

Yi = (M¿Bx + n¿) i µ l<i<p (3.12)

where M¿ is the frame to frame relative motion transfer function, B is the blurring or de-

grading transfer function, n¡ is the additive noise, and \, µ is the down-sampling operation.
Assuming that the effects of the motion transfer function can be compensated by im-

age registration and the blurring or degrading transfer function can be estimated, then the

estimated "LR" frame y can be described by

y? = (MiB(X?) + rn) i µ 1<?<? (3.13)

where y" is the estimated LR frame generated from the ¿th frame at nth iteration, x™ is the

estimated HR image simulated from the ¿th frame at the nth iteration.

According to the IBP SR reconstruction algorithm, the estimated HR image can be

presented as

^n+I =? + iy Mr1^y? - y¿) t µ) * O (3.14)
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where Mj-1 is the motion compensation operation, | ß is the up-sampling operation and
hBP is the inverse projection transfer function, hBP can be chosen arbitrarily and the choice
of hBP affects the characteristics of the reconstructed HR image. Therefore, hBP can be
utilized as an additional constraint which represents the desired properties of the solution.

For a better explanation, the process of the IBP SR reconstruction method is shown in

Figure 3.5.

Projection:
Produces simulated LR images Hx

\

Hx (y-Hx)

Simulated LR Acquired LR
images frames

Back-projection:
Update HR image by
adding hBP(y-Hx)

® hB \

Additional constraint hBP
(desire property of solution)

Figure 3.5: The framework of inverse back-projection of SR image reconstruction

In Figure 3.5, H represents the complete degrading operation which includes motion

operation, blurring operation, and down-sampling operation.

The advantage of IBP is that it can be intuitively understood. The disadvantage, how-
ever, is that this method does not guarantee a unique solution because of the nature of

ill-posed inverse problems. Therefore, in some situations it is diffcult to choose the inverse

projection kernel hBP.
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3.4 Projections onto Convex Sets (POCS)

In many super-resolution research literatures, the technical term "Projection onto Con-
vex Sets" (POCS) is also frequently encountered. POCS is a method that can be applied

to different signal recovery applications. This section provides the basics of the POCS

method, introduces the commonly used signals that can be formulated as convex sets and

explains the conventional POCS SR reconstruction algorithm. The proposed SR recon-
struction algorithm is an extended version of this conventional POCS approach, therefore

some procedures explained in this section will be used in the proposed SR reconstruction
algorithm in the next chapter.

3.4.1 Basics of POCS

Iterative projections onto convex sets (POCS) [30] is a useful tool for image recovery
and restoration. The basic idea behind this is that the desired incomplete image can be

defined by several convex signal sets and these convex sets work as constraint parameters.

A signal to be recovered that contains all the desired properties can be reconstructed by

iteratively projecting onto these convex constraint sets. Practically, some convex constraint

parameter sets are commonly used in image reconstruction. Those convex constraint sets
include the sets of band-limited signals, duration-limited signals, the signals that are the

same (e.g., zero) on some given interval, bounded signals, signals of a given area, and
complex signals with a specified phase. More information about signal convexity properties

will be provided in sub-section 3.4.2.

POCS was first proposed by Bregman [31] and Gubin et al. [32] and was later popular-
ized by Youla and Webb [H]. However, Sezan and Stark [12] initialized the application of

POCS on image signal recovery. There have been a big variety of applications imposing the

POCS method such as sampling theory, signal recovery, deconvolution and extrapolation,

tomography, and time-frequency analysis.
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To understand projections onto convex spaces, first, the concept and the definition of

convex sets have to be explained. A convex set is defined simply as a bounded space where

any points on a straight line between any two points in this space is always within this

bounded space. In other words, any point in a convex set can be seen by other points

without any obstacle in between including the set boundary. A geometric demonstration of

convex sets and none-convex sets are shown in Figure 3.6.

Convex Sets

O
? O

None-convex Sets

@
Ou

Figure 3.6: An example of convex sets and none-convex sets

Examples of convex sets and non-convex sets are separated by the central dash-line

in Figure 3.6. In a 1-D scenario, points in a straight line are considered as a convex set.,

In contrast, points in a curve line are not. In a 2-D scenario, every point in the filled

circle, rectangle, triangle and pentagon are convex sets. However the shape of the ring,

the crescent moon, star and cross shapes are non-convex sets, due to there being points in

these shapes that can not be seen by some other points. The same method can be applied
to examine data sets in 3-D objects. For the elements in multi-dimensional objects, it is

difficult to identify the convexity visually. Therefore, the convexity must be examined by
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the convexity definition which is described by Equation (3.15) in Section 3.4.2.

Convex set has an interesting property in that the projection of a given vector V onto a
convex set denoted A, results in a unique point which is the closest, and most importantly

projects V on A, as shown in Figure 3.7.

mmm
wmmmm

V-

Figure 3.7: Vector V projected onto convex set A

There are three cases of operating projections onto convex sets. The first case is that

of POCS convergence to a point, meaning that convex sets have an intersection. Figure
3.8 illustrates the first case of convex set projection, where the convex set A is a straight

line and the other convex set B is the shaded area. In this case a given starting point O^
consecutively projects onto the convex sets and results in a point which is the intersection
of convex sets. This case is desired when employ POCS to solve SR problems, because it

means the process is convergence. In other word, the unknown HR image can be found.

Figure 3.9 illustrates the second case of convex set projection which the POCS solves for
the unique shortest distance between the two sets for the two convex sets do not have an

intersection. In the third case, three independent convex sets are subject to the projection

operation which does not have an intersection. In this case, the projection operation can
not convergence. However, this case is rarely encountered in super-resolution applications,

where the POCS solution will oscillate among the respective nearest distances between

each set when there is no intersection among multiple convex sets and this case is geomet-

rically displayed in Figure 3.10.

These geometrical illustrations briefly explain the properties of convex sets and POCS.
However, POCS does not seem to be a simple tool for signal processing. In fact, the

45



oí")

o<°>

Figure 3.8: Case 1: An intersection of convex sets
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Figure 3.9: Case 2: An unique shortest distance between the two sets

most simple case of POCS application is signal filtering. For example, a low-pass filtering

process where the filtered signal denotes one convex set (B) and the input signal denotes
another convex set (A) are defined. The POCS method projects set (A) onto set (B) re-

sulting simply in set (B) being included in set (A). Another early application of POCS was

the recovering of a random 1-D phase-only (not zero-phase) signal [33]. This is done by

calculating the Fourier transform of the acquired signal, and setting some specific interval

of the amplitude spectrum to a constant. In this case, the constraint convex sets are the
phase spectrum in the frequency domain and the signal series length in the time domain.

During the recovery procedure, successive Fourier transforms/inverse Fourier transform

are performed, then the subsequent projections will converge to the point of intersection of
those sets. As a result, a close form of the original signal can be obtained.
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Figure 3.10: Case 3: No intersection in the POCS solution

3.4.2 Commonly Used Signals as Convex Sets

In the video and image signal processing, it is very common to deal with different types

of signals. In order to impose the POCS technique for the signal recovery processes, it is
very important to know the definition of convex signal and understand the convex properties

of signals. Hence, the test of the convexity of different types of signals is explained in the

following.

A set, A, is a convex set if for every vector u G A and every ? e A, it follows that

Xu + (I — ?)? G A for all O < ? < 1. According to the statement above, the convexity test
for a set is defined as

[XS1 + (1 - X)S2] e S V(0<A<1) (3.15)

where S is the set to be tested, Si and52 denote arbitrary sub-sets in S. Then S is said to

be a convex set if for all O < ? < 1 the corresponding sub-sets are in the set S.

The following list of signals have been proved to possess convex properties [34].

1. Band-limited signals
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2. Signals with limited duration

3. Signals with real and positive Fourier transform

4. The constant area of a signal

5. Signals with bounded energy

6. Signals with constant phase

7. Signal bounded by a real function

The above-listed signals can be treated as a priori knowledge when recovering a partially-

known signal. In the POCS process, a priori knowledge can be defined as a convex set when

the desired signal has the properties listed above.

The POCS method is not only used for 1-D signal recovery; the same manner can also

be applied on 2-D image recovery. The conventional POCS algorithm for super-resolution

image reconstruction is provided in Sub-section 3.4.3

3.4.3 Conventional POCS Super-Resolution Algorithm

The POCS method is an iterative approach combining priori knowledge about the de-

sired high quality image into the reconstruction process. When converting priori knowledge

to the convex constraint sets, the POCS method can estimate the SR image by performing

restoration and interpolation simultaneously.

Stark and Oskoui [13] initially formulated the SR reconstruction by using POCS method.

After Stark and Oskoui's first publication, Tekalp et al. [3] extended their formulation by

including additive noise. According to the method of POCS [35], a SR image ? is as-

sumed to have m cases of priori knowledge, then it reflects that the m cases of priori

knowledge in Hilbert space exists m constraint sets Ci, C2, . . . , Cm, we denote that C8 is
the intersection of these constraint sets. Combining those priori knowledge into the POCS
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process can be explained as constraining the SR result to be a member of a closed con-

vex set Ck(k = 1, 2, . . . , m) that is defined as a set of vectors which satisfies a particular
property. If all the constraint sets have an intersection, then a SR result that belongs to the

intersection set C3 — HJL1CJt, and is also a convex set, which can be found by iteratively
projecting onto these convex sets. The resulting SR image is a feasible solution, since

any SR estimated image in the intersection of all the constraint sets is consistent with the

prior constraints. Therefore, the POCS can be applied to find a vector that belongs to the
intersection by iterating the projection process.

X"+1 = PmPm-l... PlPlXn (3.16)

The POCS method starts with an arbitrary initial HR image x° in the Hilbert space.
Pk (k — 1, 2, . . . , m) are the projection operators. Each of them projects signal ? onto a
corresponding convex set Ck {k = 1,2, ... , m). Assuming that the motion information is
accurate, the constraint set of a data consistency based on the observation model shown in

Equation (1.2) is formulated to represent each pixel in the LR images Yi(U1, n2). The data
consistency constraint is given by

CD{ni,n2) = {x(w,l,m2) : \r(x)(n1,n2)\ < <$¿(ni,n2)} (3.17)

Where the To1 and m2 are the pixel indexes of HR image, that are defined as To1 = /Xn1,

Ui2 = µ?2, and the associated residual r^x\ni,n2) is defined as: [36]

r{x){ni,n2) = yi(nl5n2) - Hi(Ti1, U2]Tn1, m2)x(mi,m2) + ^(nx,n2) (3.18)

is bounded in the magnitude of Oi(Ti11Ti2). The ideal image ? (mi, m2) is a number of the

sets that satisfy a certain statistical confidence, where the boundary S^ (Ti1 , n2) is determined

49



by the statistics of noise. For example, the additive Gaussian noise t)¿ in the observation

model has a standard deviation s?, then <5¿(ni, n2) = Can, C > 0 that is determined by an
appropriate statistical confidence bound so that ¿i(ni, n2) is large enough to guarantee that

the intersection of the solution sets with respect to different constraints is not empty. The

projector Pd projects an initial estimated HR image x°(mi,m2) onto convex set Cd that is
defined by [3]

xn+1(mi, IJi2) = Pz3i[xn(mi,m2)] = xn(m1,m2) +

' (^("i. "2) - Sjjni, Ua))H^m1, m2; Tt11H2) {x)-------------—————g- , rw > OjInI1Ti2;, x<p<^dE01 Eo2 H¿ (OuO2-UUn2)
k(x)| < 0^(Ti11Ti2), ? e CD

, r^ < -í¿(ni,n2), ? £ CD(r^irii, n2) + 5¿(ni, n2))H¿(mi, m2; nun2)
S0?S02?? (??, O2; UuU2)

(3.19)

where ? represents the number of iterations and i represents the counter of available LR

frames. H, is the degradation function defined in Equation (1.2). The projection operation
shown in Equation (3.19) is successively performed until the information of all available

LR frames have been used. A single convex constraint projection operation is not enough to

reconstruct a good quality HR image. Typically, a conventional POCS SR reconstruction
algorithm consists of at least two convex set projections. Hence, it is necessary to add

another constraint, which is the amplitude constraint Ca- For a 8-bit gray level image

system, the amplitude constraint Ca is defined as

CU(tii, TI2) = {x(m,i,m2) : O < x(m-i,m2) < 255} (3.20)

The projector Pa projects an estimated HR image ??(p??, m2) onto the convex set Ca
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is defined by

xn+1(mi,m2) = PA[xn(mx,m2)} = <
O, x(mi,m2)<0, x <£ CA

£(7711,7712), 0 > x(mi,77i2) < 255, ? € Ca
255, X(Tn11Tn2) > 255, x £ Ca

(3.21)

According to the multiple projection operation described in Equation (3.16), the final

estimated HR image ?(p??, m2) is obtained by combining the two projection operators Pd
and Pa-

xn+l = PA[PDi[xn]] (3.22)

3.5 Regularized Inverse Optimization Problem

Thanks to the high computational ability of the state of the art computers, solving huge

data set and complicated engineering inverse optimization problems, such as SR image
reconstruction problem, is becoming more and more achievable. Conventionally, solving

an inverse optimization problem usually starts with firstly determining the cost function

(objective function), then minimizing the error of the cost function to get the optimal result.
However, most practical inverse optimization problems are not that simple to solve. Inverse

problems typically lead to mathematical models that are ill-posed. Specially, their solution

is unstable due to the data perturbations, so that special numerical methods that can be
overcomed with these instabilities, so-called "regularization", need to be applied.

In order to stabilize the inversion and reduce the computational complexity, regulariza-

tion methods such as Tikhonov regularization, constrained least square (CLS), probability

regularization estimator, maximum a posteriori (MAP) and maximum likely-hood (ML)
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estimator are commonly used to solve an inverse optimization problems. The following

sub-sections provide the derivation of each of the above mentioned regularization methods

for the super-resolution inverse problems.

3.5.1 Tikhonov Regularization

Recall the complete system of super-resolution problem y¿ = H¿x + ??9 where ? is

the desired unknown HR image. y¿ represents the acquired LR frames, and H¿ is the ill-

conditioned complete degrading function.

If the SR problem is an over-determined system, the standard approach to solve the

linear equations is given as

H,x = yi (3.23)

The method to solve Equation (3.23) is known as linear least squares and its solution is to

seek the minimum residual of following equation:

P G
S HH. x-y¿ll2 (3.24)
?=1

where || · || represents the Euclidean norm. However, in practice the SR complete degrading

function H¿ is an ill-conditioned matrix. Therefore, when solving Equation (3.24) directly,

even a small change in y¿ can result in big oscillations when approximating x. In order

to obtain a reasonable estimate for x, the regularization term is added in this minimization

problem:

¿[||H¿x-y¿||2 + ||ry¿ (3.25)i||xa¿Jt - y,|| -r||iy¿||2
= 1

where G is Tikhonov's matrix, which serves as a stabilization matrix. In many cases, this

matrix is chosen as the identity matrix G — I. However, G can also incorporate some

priori knowledge of the problem such as the degree of smoothness. This regularization also
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improves the conditioning of the problem, thus enabling a numerical solution. Minimizing
Equation (3.25), the relation of ? and y¿ can be derived as: [37]

S [(HfH1+^n]X= £ [Hfy;
t=l i=l

Then, an explicit solution of the estimated HR image x, is given by

? = £ [(HfH, + ^Iy1HfV, (3.26)

The Tikhonov regularization is the most commonly used method in many engineer-

ing inverse optimization problems. The algorithm is very simple and easy to implement.

However, in its approximation, the process very often encounters huge matrix inversion

operation. Consequently, the result will either not be found if the matrix inverse does not
exist, or consumes longer computational time.

3.5.2 Constrained Least Squares

The constrained least squares (CLS) regularization method shares a very similar scheme

idea with the Tikhonov's regularization method. The goal of applying CLS regulariza-

tion to solve an ill-conditioned system is also to stabilize the inversion of the optimization

problem. Therefore, the inverse problem in Equation (3.23) can be reformulated by the

constrained least squares regularization as:

¿[||???-?,||2 + ?||??,
»=i

(3.27)

where ? is the Lagrange multiplier serving as a regularization parameter, and C is the sta-

bilization matrix. Generally, C represents the desired properties and a priori knowledge of

the HR image usually, a high-pass filter function is used because most images are naturally
smooth. The regularization parameter ? controls the tradeoff of the HR image to be more
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depending on the acquired data or higher smoothness. A smaller value of ? relatively in-

creases the portion of the term ||H¿x — y¿||2 which makes the result more dependent on
the acquired data. In contrast, a larger value of ? weighs more on the term HCyJI2 which
increases the effects of the high-pass operation, so that the result becomes smoother. By

minimizing the cost function described in Equation (3.28), a basic deterministic iterative

technique is used , hance, the Equation (3.28) is reformulated as

[£ (h^H, + ÀCTC)]X = ¿ (H¿ry¿)
z=l i=l

Then, an unique solution of ? can be found as given below,

P

5P+1 = jn + ß Jj- (H¿T(y¿ - H4X")) - ACTCx"
t'=l

(3.28)

where ß is a convergence parameter, and the transpose of the complete degrading function

H,T represents an up-sampling operation and a type of blurring and motion operation.

3.5.3 Bayesian Maximum a Posteriori (MAP)

In Bayesian statistics, a maximum a posteriori (MAP) [38] probability estimation is a

statistic mode of the posterior distribution. In SR image reconstruction applications, the

MAP can be used to obtain unobserved pixels based on acquired LR frames. The MAP

estimation method is closely related to another probability estimation method known as

maximum likelihood (ML). An ML estimation is a special case of MAP estimation with no

priori item. The MAP probability estimation is more favored than the ML estimation to be

used for stochastic regularization on SR image reconstruction.

The SR image reconstruction methods of this family consider the HR image ? and

degrading parameter h as random fields described by the joint priori probability density

function (PDF) P(x, h). The Bayesian MAP estimation methods are used when a posteriori
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PDF of the desired HR image can be established. The procedure of a typical Bayesian MAP

reconstruction method [39] is described below.

The first step is to form a joint MAP estimation of the HR image ? and the degrading

parameter h given by the observed LR frames y, thus the joint posterior probability of ?

and h are P(x, h|y¿) conditioned on the observed y. Then the estimation can be computed
as:

x = argmaxP(x,h|y1,y2,··· ,yP) (3.29)

Applying the Bayes theorem on Equation (3.29), the estimation of ? and h can be
rewritten as:

x.ii^gn.axP^y") (3.30)
Since ? and h are statistically independent, P(x, h) can be separated as P(x)P(h).

Moreover, P(y) is not a function of ? or h , so it could be omitted from the optimiza-
tion process with respect to ? and h . Therefore, the estimation is given by:

?, ?? = arg max P(P(y|x, h)P(x)P(h)) (3.31)
Taking the natural logarithmic function of Equation (3.31) and minimizing the negative

logarithm of Equation (3.31), the MAP optimization problem can be expressed as:

x, h = arg min P( - In[P(y|x, h)] - ln[P(x)] - ln[P(h)]) (3.32)

In Equation (3.32), P(y |x, h) is the PDF of the prior image. P(h) is the PDF of the prior de-

grading parameter, and the conditional PDF is P(y |x, h). These three PDFs will be defined
by a priori knowledge according to the HR image ? and the noise statistical information.
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The priori model for the degrading parameters h is highly application specific. In gen-

eral, P(h) may be dropped from the cost function, implying that we do not have any priori
knowledge about the degrading parameters.

A stable and effective solution to the regularized SR inverse problem can be estimated

accurately because of the MAP optimization in Equation (3.32) which includes priori
knowledge represented by P(x). By using Bayesian MAP estimation method, possible

solutions can be distinguished either using a priori image or Markov random fields (MRF)

priors [40]. The MRF priors [41] [42] are often adopted in order to provide mighty meth-
ods for image prior modeling. Utilizing the MRF prior, the PDF of the prior image P(x)

is described by a Gibbs prior [43] [44], so the prior image PDF which preserves convexity

can be expressed as:

P(x) = ie-a/(x) = ie-^s^W (3.33)
where C is a normalizing constant ensures that P(x) is a probability, a is a positive constant,

and /(x) is a function of the HR image x. This function is usually called energy function
and may be chosen to encourage the neighboring pixels to have similar values so that the

first derivative of the HR image function is continuous, <^s(x) is a potential function of

the derivative of the image, g is the pixel group and S is the set of group g. The result of

function fg (?) only depends on the value of pixels located within the group g. Normally, an
image is assumed to be globally smooth, therefore, the estimation problem is incorporated

into a Gaussian prior.

If the noise elements of r?» in Equation (1.2) are assumed to be independent and identi-

cally distributed (iid), Gaussian distribution with zero mean, and the error between each LR

frame is assumed to be independent. Then, the optimization problem can then be expressed
as:
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? = arg min
i=\ geS

(3.34)

where ? is the regularization parameter.

Compared to other regularized optimization methods, the Bayesian Maximum a Priori
estimation is more convenient to control the use of priori knowledge such as Gaussian

prior, MRF prior, and edge-preserving image prior. However, this method heavily relies on

probability theories, thus the implementation has more challenges.

3.6 Conclusion

Five different types of SR reconstruction approaches have been discussed in this chap-

ter. The first type is the uniform image interpolation method such as nearest- neighborhood,

bilinear and bicubic interpolation. Although, interpolation methods are not considered as
SR reconstruction approaches, the interpolation methods still play an important role in SR

reconstruction process. This is because most SR reconstructions perform interpolation dur-

ing the reconstruction process. The second SR reconstruction approach is the frequency do-

main approach which was firstly introduced as a multi-frame SR reconstruction approach.
The frequency domain approach is explained and will be employed as one of the com-

parison algorithms. The third SR reconstruction approach is the inverse back-projection

approach, and its framework and mathematical derivation are provided. The fourth type of
the SR reconstruction approach is the conventional projections onto convex sets approach.

This approach is the foundation of the proposed SR reconstruction approach. There are
two constraint sets employed as part of the proposed SR reconstruction process. The basic

concept of convex sets and its projection operations are clearly explained. The fifth type of

SR reconstruction approach is the regularized inverse optimization approach. This type of
SR reconstruction approach can be further classified into deterministic regularization and
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stochastic regularization processes. Two deterministic methods: Tikhonov's regulariza-

tion and constrained least squares, and one stochastic regularization method, the Bayesian

maximum a posteriori (MAP), have been briefly introduced.
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Chapter 4

Wavelet-based POCS and Stochastic

Refinement Process for

Super-Resolution

Compared to "Fourier" signal analysis, "wavelet" analysis is a relatively new tool in

the video and image signal processing areas. Also, there is no doubt that many signal

processing methods strongly rely on various stochastic concepts. This chapter proposes

a wavelet-based POCS super-resolution algorithm which formulates a wavelet convex set

and uses the stochastic process in the conventional POCS approach for wavelet coefficient

sub-image refinement. This chapter first addresses the framework of the proposed algo-
rithm in Section 4.1. Then, in Section 4.2 the wavelet analysis of the estimated HR image

and how wavelet transformation is used to form a convex set in POCS process, are in-

troduced. Section 4.3 explains the stochastic refinement process which corrects wavelet

coefficients according to a stochastic distribution in order to distinguish useful and faulty

estimated pixels. The complete procedure of the proposed wavelet-based POCS algorithm
is summarized in Section 4.4.
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4.1 The Framework of Wavelet-Based POCS

The proposed SR reconstruction approach is based on the conventional POCS discussed

in Section 3.4. According to the result of the conventional POCS SR method, we want to

improve its quality and reduced the particular noise. Also, based on the concept of the
POCS process, if we can use more priori knowledge to form a convex set into the POCS

process, the final result of the estimated HR image would be very close to the original

scene. As a result, a new wavelet-based convex set and a wavelet domain coefficient sub-

images modification process are added into the POCS iterative process, in order to produce

a better HR image and rapidly remove the noise. For a better understanding of the proposed

approach, a graphical illustration of it is provided in Figure 4. 1 to show the block diagram

of the proposed wavelet-based POCS SR image reconstruction.

Wavelet Domain

Spatial Domain ?—

Projections
onto Cd

b.

Projections
onto Cw

—¦> Spatial Domain
c.

Wavelet coeff.

refinement

Process

Projections
onto Ca

Error< e

Figure 4.1: Framework of proposed wavelet-based POCS SR image reconstruction steps

From the left hand side of Figure 4.1, the LR frames y¿ are input to first projection pro-
cess onto the constraint set Cd by performing the projection operation described in Equa-

tion (3.19). After projection onto Cd convex set, the estimated HR image is forwarded to

the next projection operation. In the second block (b.), the estimated HR image is projected
onto wavelet constraint Cw In this block, the previously estimated HR image is trans-

formed into the wavelet domain. After the wavelet convex set projection, the continuing

process (block c.) is a wavelet coefficient refinement process. The detailed operation of
the wavelet domain projection and wavelet coefficient refinement process will be detailed
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in Section 4.2 and Section 4.3, respectively. The last projection process of the proposed

POCS SR image reconstruction is the projection onto amplitude constraint Ca convex set
which has been described in Equation (3.21). It can be clearly seen that the proposed SR

image reconstruction is an iterative process. The estimated HR image at each iteration is
compared to the previous one to make sure the difference from each estimated HR image

converges under a certain pre-determined error criterion, e. If the error of the estimated

HR image is less than the preset error criterion e, according to the major SR process steps

shown in Figure 2. 1 , the reconstructed HR image is further de-blurred by Wiener filtering

process to generate the final estimated HR image.

4.2 Wavelet Domain Convex Set for POCS

There are a larger number of data/signal transforms were invented by mathematicians.

Among those transformation methods, "Fourier transform" is the most commonly used one

in signal processing research. However, the wavelet transform has powerful analysis abil-

ity for data compression and signal recovery applications. This section introduces wavelet

analysis and defines the wavelet convex set for the proposed wavelet-based POCS SR re-

construction approach.

4.2.1 Wavelet for Super-Resolution

For one-dimensional cases, "Fourier transform" converts time domain signals into the

frequency domain. In contrast, the result of the wavelet transform is the product of the time
domain signal and a wavelet function. After the transformation, the wavelet coefficients of

a time domain signal are still in the time domain. In the case of two dimensional signal, the

wavelet coefficient sub-images of an image can be treated as spatial domain data.

A major advantage of the wavelet analysis in image processing is the ability to perform
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lAflA) Fourier
Transform Frequency

???) = ]nt)é~Jtatdt

? A
\..? / -?.\/ ?/ Wavelet

Transform Time
Wavelet Analysis

Císcale, position) = J f(f)ì\f(scale, position, t)dt
Figure 4.2: Comparison of Fourier transform and wavelet transform

local analysis; meaning that it can analyze a localized area of a larger image, wavelet anal-

ysis is capable of discovering the image piece wise regions, edges and textures that other

signal analysis techniques cannot. A simple example is illustrated in Figure 4.3 where a
one-dimensional sinusoid waveform with a very short period of discontinuity is separately

transformed by Fourier and wavelet transform. The results clearly show that wavelet co-

efficient presents the discontinuity duration, while "Fourier transform" does not provide
information about the discontinuity.

Sinusoid with a small discontinuity

Fourier Coefficients Wavelet Coefficients

Figure 4.3: Sinusoid waveform transformed by Fourier and wavelet transforms

In order to perform the POCS process in the wavelet basis, it is essential to represent
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an image in wavelet domain. Basically, wavelets are functions, in which their dilations

and translations form a basis of L2(R). More specifically, there is a function f(?), namely
"mother wavelet", which defines a set of wavelet functions.

^,n(0 = 2m^(2mi-n) (4.1)

There is a function f(?), namely, "scaling function", which is defined as

JV

4>{t) = S ?/2?(2? - k) (4.2)
fc=0

where hk, 0 < k < N are coefficients of the low-pass filter. For orthonormal wavelet

function, f and its dual pair f can be derived from Equation (4.1)

JV

f(?) = S V2gk<i>{2t - k) (4.3)
Ai=O

JV

f(?) = S ^?F& - k) (4.4)
fc=0

where g and ~g are the corresponding high-pass filter coefficients of f and f, respectively.
In the 2-D case, the components of the wavelet approximation to an image, can be

separated into one scaling function and three wavelet functions

f{?,8) = f{1)f{8) (4.5)

1>h{t,s) = WKs) (4-6)

f?(?,8) = f(?)f(3) (4.7)

f%8) = f(?)f(3) (4.8)

where f?(?, s) , f?(?, s) and f?(?, s) are the 2-D wavelet functions which retain the detailed
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information of input image in horizontal, vertical and diagonal directions, respectively.

An HR image x(mi,m2) is represented in wavelet domain as a sum of the wavelet

approximation component in the LL band and three detailed components in the LH, HL
and HH bands:

x(mi,m2) = Y^ ak,i4>k,Ámumi) + S b>lk·1^ fc,/(mi>m2) +
k,iez k,iez

S 6\i^\j(mi,m2) + S 1^k$ k,i(mi>m*) (4-9)
k,iez k,iez

where ^,i(mi,m2) is the (k, I) coarse scaling function; ^\pl(mi,m2), V>\/(mii m2) and
i)dk /(mii m2) ^e wavelets at the next coarse level that retain the detailed information in
the horizontal, vertical and diagonal directions, respectively. The top bar on each function

denotes their corresponding inverse functions used to reconstruct the image back to spatial

domain. The approximation component and the detailed wavelet coefficients are given by

CLk1I= X^ z(mi,m2)<^,( (mi, TTi2) (4.10)
mi,tTi2

bhk,i= S x(mi'm2)í/'\,i(mi,m2) (4.11)

bvk,i= S x(mí^rn2)^vk,i(mi'rri2"> (???>
mi,rri2

bdk,i= ^ ï(m1,m2)/feiÎ(m1,m2) (4.13)
mi,1712

In view of the above mathematical operations, we can treat the process of 2-D wavelet

transformation as a filtering process. An image is filtered and split into four sub-images in

wavelet domain. Figure 4.4 shows a block diagram of a one-level wavelet decomposition

of an image.

Practically, the wavelet image decomposition can be further divided into several levels
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Figure 4.4: A filter bank block diagram for 2-D wavelet transform of image

of wavelet coefficient sub-images; the first level, wavelet coefficient sub-images have the

same size as the original image. The second level refers to wavelet coefficient sub-images

that are down-sampled by a factor of 2. Since, an SR image reconstruction procedure does

not requare an image compression process, wavelet coefficients do not need to be down-

sampled. Therefore, the wavelet transform used in the proposed algorithm is set on the first
level.

LL2

LH,

HL;

HH.
HL1

HBH

Figure 4.5: A two-level wavelet transform result of an image
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4.2.2 Projections onto Wavelet Convex Set

A wavelet image decomposition described in Equation (4.9) contains both high and low

frequency information separately. According to the idea of wavelet multi-resolution anal-

ysis (MRA), to meet the requirements of SR applications, the high frequency information

preserved in the detailed coefficients should be extended. In contrast, the low frequency in-

formation contained in the approximation coefficients should be also preserved. In order to

formulate the wavelet convex set, the spatial domain of the SR image reconstruction model

described in Equation (1.2) is re-formulated by using the wavelet domain representation.

y¿ = S(afcii(mi,m2)) + 77i = SÍ ]P x(mi,m2)^,¡ (mi,m2) J + í?¿ (4.14)^ mi,1712

where SQ is a function that generates appropriate scaling factor and converts the wavelet

domain coefficient to the spatial domain; the a^j, are the approximation coefficients of

the desired HR image described in Equation (4.10). Therefore S(akti(mi,m2)) represents
the appropriate scaled approximation coefficients of the desired HR image which is made
equivalent to LR frames. The degrading function H¿ in Equation (1.2) is now represented

by hk shown in Equation (4.2). According to the SR image reconstruction model in Equa-

tion (4.14), the LR frames are obtained from the down scaled wavelet approximation coef-

ficients of the idea HR image.

Based on the wavelet domain representation of the SR image reconstruction model, the

convex set of the estimated HR image x(mi , m2) in POCS process is then defined as:

Cw = |x"+1(m1,m2) : ]T xn(mi,m2)0fc,¡(mi,m2) = Sfreni, n2))j (4.15)
m\,m,2

By simply applying Equation (3.15), it can be shown that set Cw is a convex set. The

projection operation of the estimated HR image x(mi, m2) onto Cw is defined as [45]
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xn+1(mi,m2) = Pw[xn(m1,m2)] = S,^e? s(yÁni> ^!^,¡(mi, m2)
+ ?^?ß?^??F fc,i(ml'm2)

+ Efc,l6Ä%i^*,l(ml'm2) (4·16>

Note that the equivalently scaled LR frame 5(y¿(ni, n2)) instead of the LL band scaling

coefficients fly(mi,m2) is used in the POCS iteration.

4.3 Stochastic Wavelet Coefficient Refinement Process

The stochastic wavelet coefficient refinement process is performed after the wavelet

convex set projection operation. This section explains the wavelet coefficient refinement

process for the purpose of eliminating noisy components, adjusting wrongly estimated pix-

els and refining the estimated HR image. This process is a variance dependent processing.

A general framework of the wavelet coefficient refinement process is provided first. The
process framework is depicted in Figure 4.6 and the procedure and image data flow is de-

tailed step by step in the following sub-sections.

In Figure 4.6, a previously estimated HR image is first decomposed by wavelet trans-

formation. The approximation component of the HR image contained in the LL band is re-

tained without any modification. Secondly, the variance of each of the three high frequency

sub-images is computed. Thirdly, three variances for LH,HL,HH sub-images are cross-

referenced to determine whether the wavelet coefficient sub-images should be changed

or preserved according to the stochastic F-distribution. Finally, the refined HR image is
reconstructed from the modified three high frequency sub-images and the LL band approx-

imation sub-image by the inverse wavelet transformation.
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Figure 4.6: Framework of stochastic wavelet coefficient refinement process

4.3.1 Estimating the Variance of Wavelet Coefficients

Variance estimation is very important for the wavelet coefficient refinement process.

Accurate variance estimation would yield better refinement and noise reduction results.

This step estimates the variance of wavelet coefficient sub-images. The input of variance

estimation is generated from step 1 wavelet decomposition of the HR image. It is shown

as an d ? ci 2-D window on a wavelet coefficient sub-image where d is an odd integer in

Figure 4.7. To estimate the variance of the coefficient at sub-image location (i,j), the largest

and smallest coefficient in the window is first eliminated. In this case, coefficient values 20

and O are eliminated. The variance at location (i,j) is then calculated from the remaining

coefficients within d ? d window using Equation (4.17).

8 20

(M)

Figure 4.7: 2-D variance calculation window
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^= ^eW.)]2 (4.17)
1=2

In Equation (4.17), d is the window size , W^) is the wavelet coefficient at the loca-
tion(i.j). The summation counter I starts at "2", since the largest and smallest coefficients

have already been eliminated. In practice, a one-dimensional window is used instead of
a two-dimensional window; therefore this operation is processed only in one dimension.

Note that for an one dimensional window, the window size d should be an odd integer

and at least 5 because two wavelet coefficients have to be eliminated before calculating the

variance. The windows corresponding to each wavelet coefficient sub-image is shown in

Figure 4.8.

(a) (b)

Figure 4.8: 1-D windows for variance estimation (a) LH wavelet coefficient sub-image, (b)
HL sub-image, (c) and (d) HH sub-image

The result of variance estimation of three coefficient sub-images is called "variance sub-

images". For example, the LH variance sub-image contains horizontal variances which
are estimated from the LH wavelet coefficient sub-image. All variance sub-images are

prepared for the next step to enhance the noisy wavelet coefficient sub-images by applying

an appropriate stochastic threshold determination.

4.3.2 F-Distribution

The F-distribution is a continuous probability distribution and it is used frequently as

the null distribution of a test statistic, especially in the analysis of variance. A random
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variable which has F-distribution can also be seen as the ratio of two Chi-squared random

variables [46].

F-distribution random variable C1Zd1
C2Id2 (4.18)

In Equation (4.18), Ci and C2 have Chi-square distributions with d\ and d2 degree

of freedom, respectively. The cumulative distribution function (CDF) curve of the F-

distribution is determined by degrees of freedom d\ and d2. Figure 4.9 shows the CDF

curves, and Equation (4.19) describes the CDF of the F-distribution.
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Figure 4.9: Cumulative distribution function of F-distribution

G(x) = I_d^_(-^,-^) (4.19)

where G(x) is the CDF of the F-distribution and / is the regularized incomplete beta func-
tion.

The reason for introducing F-distribution is to impose the F-test as a tool to determine
a critical value which serves as a threshold to examine the variance of wavelet coefficients.

Before explaining the F-test, some assumptions are made to model the outcome from each
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step. Firstly, suppose that each wavelet coefficient W¿.¿ generated from the wavelet de-

composition has Gaussian distribution with zero mean and variance ct2¿j-, although some
researches declared that the wavelet coefficient follows the "generalized Gaussian distribu-

tion", however, the reason is that one could use regular Gaussian distribution to approxi-

mate the generalized Gaussian distribution. Therefore, we still can declare that the variance
of wavelet coefficients estimated by taking its local neighborhood within a 1-D window fol-

lows a Chi-square distribution. From the probability theory, we know that the F-distribution
is formed by a ratio of two Chi-square distribution random variables. Therefore, the ratio

of two variance coefficients R from the variance sub-images will follow the F-distribution.

The stochastic assumptions described above can be rewritten by the following notations for

better understanding.

Wi,j ~ N(O, Ct2Jj): Wavelet coefficient follows the Gaussian distribution (4.20)

CT2J ~ X2(d2): Variance of wavelet coefficient follows the Chi-square distribution
(4.21)

—2

R = ^- ~ F(d2, d2): Ratio of two variance coefficients follows the F-distribution
(4.22)

In the F-Test and the coefficient modification step, the F-Test results in a critical value

C which is determined by two parameters, here we use d2 for both parameters. Thus, d in
Equation (4.22) is the size of the window for variance evaluation. The critical value C will
be detailed in Section 4.3.3.
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4.3.3 F-Test and Coefficient Modification

Since the ratio of two variances of wavelet coefficients follows the F-distribution, the

very useful variance analysis technique, it can be imposed to determine an appropriate

threshold for the wavelet coefficient refinement process. The value of the ratio of two vari-

ance coefficients R represents the difference of any two neighboring variances caused by

the randomness of the wavelet coefficient or caused by different image feature distribution.

If the value of R is close to unity, it means that the two variance coefficients are more likely

to be in the same smooth region. Otherwise, the variance coefficient reflects an image fea-

ture. However, only considering the value R is not enough for us to distinguish the features

from the noisy image. We need to employ the F-test to verify whether any two variance

coefficients are statistically different.

In order to distinguish the image features and preserve edges, the F-test processing also

uses the 1-D window, which is orthogonal with respect to the window used in step 2. Hence,

a vertical window is used to apply the F-test on the LH variance sub-image; a horizontal

window is used to apply the F-test on the HL variance sub-image and the window for HH

F-testing should use another orthogonal diagonal direction. The windows used for F-test

are shown in Figure 4.10 which can be compared to Figure 4.8 for better understanding.

(a) (b) (e) (d)

Figure 4.10: 1-D windows for F-Test. (a) LH variance sub-image, (b) HL variance sub-
image, (c) and (d) HH variance sub-image

The detailed procedure of the F-test is described as follows: first, the center variance
coefficient is compared to the maximum of its two touching neighbors. If the comparison

according to the F-distribution indicates that variance coefficients are statistically different
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then the corresponding feature is preserved. Otherwise, the center variance coefficient
needs to be compared again with the minimum of the median of variance coefficients in

the two neighboring sub-windows and checked again. If the F-test indicates that the center

variance coefficient is different from this minimum of medians, then the corresponding

feature is preserved; otherwise that feature should be modified. Figure 4.1 1 gives a graphic

representation of the above explanation.

1. Center variance coefficient

compare with maximum of this
two variance

2. Center variance coefficient

compare with minimum of
median of this two sub-window

Figure 4.11: Graphical presentation of F-test comparison

In practice, the critical value C of the F-test function provided in Matlab needs three

parameters to determine whether another comparison is needed or not. The first parameter

is the level of confidence 7 which is a real value between zero and one 0 < 7 < 1. Any

7 determines an F-test look-up table according to F-distribution CDF. The other parameter

is the degree of freedom d which is the size of the window in this refinement process, as

previously mentioned. The mathematical notation for the F-test can be written as:

Critical Value C = F(j, d2, d2)
or

Critical Value C = Fy{d2, d2) (4.23)
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By comparing the ratio of two variances R, with the critical value C, it can be deter-
mined whether the wavelet coefficient is mainly contributed by the noise or image feature.

If the comparison indicates that the variance is due to noise, the corresponding wavelet

coefficient is modified by multiplying an attenuating factor a. The following paragraphs

explain in detail the wavelet coefficient modification scheme, the purpose of attenuating
the noisy wavelet coefficients, and correcting wrongly estimated pixels.

The third step of the stochastic refinement process framework in Figure 4.6 modifies the

noisy and wrongly estimated wavelet coefficients after the F-Test identifies which wavelet
coefficient should be suppressed. According to [46], the wavelet coefficient modification

scheme namely "variance dependent attenuation" uses the attenuating factor a. This atten-

uating factor a is set to be adaptive, and its value is determined by Equation (4.24) and

Equation (4.25).

a=l, if R < F11(^d)
Wij = aWij; {

Il \

a = ß, if R > Fy2(d,d) (4.24)
a = f ( F71 , F72 ) , otherwise

where

/(F711F72) = /3 + (l-/?)| j—^ J (4.25)
Note that in the wavelet coefficient modification scheme in Equation (4.24), two differ-

ent levels of confidence 71 and 72 are used. Also the degree of freedom here is d, not d2, ß
is a predetermined attenuating factor which modifies wavelet coefficients when the F-test
indicates the variance coefficient is due to the noise. Typically, ß is set to be 0.5 but it can

be adjusted to obtain a better PSNR compared to the original HR image. Two parameters

of the function / are critical values obtained from F-test Equation (4.23) by choosing two
different values for the levels of confidence 7, ? is an integer weighting factor between the

-5 and +5. Function / provides more weights toward preserving features when ?=-5 ;in
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contrast, function / provides more weights toward smoothing wavelet coefficients when

This variance dependent attenuating scheme divides the attenuating factor a into three
threshold regions. Figure 4.12 represents a better visual description to the three threshold

regions of attenuating factor a where the horizontal axis is the ratio R of two variances.

Wavelet
coefficient
preserved

Wavelet coefficient
adjusted by

adaptive factor

Wavelet coefficient
adjusted by fixed

factor

a = 1 ? — / (**7i' *"?-?) a = ß

F~n(d,d) Fyì(d,d)
Figure 4.12: Three threshold regions of attenuating factor a

Examining the ratio of the wavelet coefficient variance s£ , and crf¿, R by providing
2 different levels of confidence 71 and 72 to the F-test function, the value of R can be

separated into 3 different regions. The value of R. is located at the region in the most left

hand side of Figure 4.12 meaning that the wavelet coefficient should be kept unchanged;

thus, the attenuating factor a is set to be 1 . Then, if the value of R is located at the region

between critical value F71 (gì, d) and F72 (d, d), it means that the wavelet coefficients need
to be adaptively attenuated by the factor a determined by Equation (4.25). Moreover, if the

value of R is located at the region greater than the critical value F12(d, d), the attenuating
factor a is set to a pre-determined attenuating factor.

To summarize this stochastic refinement process (please refer to Figure 4.6), firstly, the

estimated HR image from the wavelet projection process is decomposed by wavelet trans-
formation into LL, LH, HL, and HH bands. Secondly, the LL band approximation data is

kept unchanged. The Variance coefficients of LH band wavelet coefficient sub-image are
calculated by using 1-D window as shown in Figure 4.8(a). Thirdly, F-Test is performed to
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examine LH band variance coefficients by using the orthogonal window as shown in Fig-

ure 4.10(a). According to the the result of the F-test, the coefficients of LH band wavelet

coefficient sub-image is modified by using Equation (4.24). The same procedures apply

on HL.and HH band wavelet coefficient sub-images with corresponding variance estima-
tion window and F-Test examination window to obtain the smoothed version of LH, HL,

and HH wavelet coefficient sub-images. Finally, The refined HR image is obtained by an
inverse wavelet transformation from the LL band and the three modified LH, HL, and HH

band sub-images.

4.4 The Wavelet-Based POCS Iterative Algorithm

The overall procedure of the proposed wavelet-based POCS plus stochastic wavelet

coefficient refinement process for SR image reconstruction is explained as follows.

By referencing Figure 4.13, the process starts from the top of the flow chart, and the
acquired LR frames are input after the simulation program is initialized. The following

gives the step-by-step procedure.

• Step 1. Image registration: Firstly, a LR frame is set as reference frame and all other

consecutive LR frames are compared to the reference frame. The rotation and mo-

tion estimation algorithm discussed in Section 2.1 is applied to obtain global motion

vector of each LR frame. According to the motion vector of the LR frames, the al-

gorithm aligns all the LR frames to the reference frame. Then the aligned LR frames
are passed to the next step.

• Step 2. Degrading function estimation: The degrading function is usually an image

blurring effect on each LR frame which is estimated in this step. The blind blur

identification algorithm discussed in Section 2.2 is used to find the kernel of the
blurring filter B of each LR frame. The blurring filter B is one of the degrading
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Figure 4.13: Proposed wavelet-Based POCS SR reconstruction procedure

components needed to form the complete degrading function H¿ defined in Equation

(1.2). This Equation (3.19) will be used in the first POCS convex set projection.

• Step 3. Projections on to Cd'. The iteration of the proposed wavelet-based POCS

starts at this point. The first LR frame is scaled by down-sampling factor µ. The

bilinear interpolation method is used as the first initial guess of HR source image

x°(mi,m2) and then the residual r^x\ni,n2) is computed according to Equation
(3.18). Followed by the data consistency constraint CD, the projection operation is

then performed to update the estimated HR image ? according to Equation (3.19).
Residual calculation and CD projection operation is repeated until all LR frames are

used. The estimated HR image is then passed to the wavelet convex set projection.
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• Step 4. Projections on to CV: This step performs wavelet convex set projection.
The estimated HR image from Step 3 is decomposed by wavelet transform. Then the

wavelet convex set projection Pw is performed by replacing scaling coefficients with

LR frames y¿(mi, 7712) as given in Equation (4.16).

• Step 5. Wavelet sub-image coefficient refinement process: This step refines wavelet

sub-image coefficients by applying stochastic F-distribution. Four wavelet coefficient

sub-images of an estimated HR image received from Step 4 is refined according to

the proposed algorithm detailed in Section 4.3 (See refinement process framework in

Figure 4.6).

• Step 6. Projections on to Ca'- The pixel value of an estimated HR image ? from

Step 5 is then restricted by the amplitude constraint Ca according to Equation (3.21).

After performing at least three times of POCS iterations, the estimated HR image

from the previous iteration is then subtracted from the current estimated HR image

to check the convergence, and the difference of these two estimated HR images is

then compared to the previous difference in the sense of Ii norm by a pre-determined

convergence criterion (typical value 1O-4). If the difference of two estimated HR
images is greater than the pre-determined criterion, then the current estimated HR

image is passed on to Step 3 as a new initial HR image and the POCS process is

repeated until the convergence criterion is achieved.

• Step 7. De-blurring process: This step performs the De-blurring process to remove

blurring effects either originally acquired from LR frames, or caused by the artifacts

from previous steps. The de-blurring method introduced in Section 2.4 is used. After

the de-blurring process, the final SR image is reconstructed.
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4.5 Conclusion

The proposed SR image reconstruction algorithm is explained in detailed in this chap-

ter. The framework of the proposed algorithm is firstly addressed by extending the con-

ventional POCS SR reconstruction algorithm. The properties of the wavelet transformation

and the basics of wavelet analysis are briefly discussed. The new idea, wavelet convex set is

derived by replacing the LL band approximation coefficient with properly scaled and accu-

mulated LF frames. The procedure of stochastic wavelet coefficient refinement process is

also explained from the coefficient variance calculation to the F-distribution derivation and

the wavelet coefficient attenuation scheme. An overall process of the proposed SR image

reconstruction algorithm has been step-by-step explained.
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Chapter 5

Experimental Results

Several experiments have been done to show the performance of the proposed wavelet-

based POCS SR reconstruction algorithm. This chapter presents the complete experimental

and simulation work. The setup of the simulation environment is provided in Section 5.1,

in which the degrading procedure of the LR frames, the sample HR images used for sim-

ulation and the methods for the objective performance evaluation are presented. Some

intermediate results of the proposed SR algorithm are provided in Section 5.2 to show how

the frame data is manipulated. In the Section 5.3, experimental results of the proposed

SR algorithm and some other SR approaches with respect to different types of image are

compared subjectively. In Section 5.4, numerical experimental results such as the PSNR
measurement and the convergence speed of the proposed SR algorithm and other SR ap-

proaches are compared objectively. Later in this section, the HR images reconstructed by

the proposed method with different parameter setups are presented.
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5.1 Simulation Environment

5.1.1 Simulation Setup

Hardware and Software Setup:

• Hardware: Desktop PC, Intel CPU 1.8GHz, 2GB RAM

• Software: Microsoft Windows XP professional SP2, Mathworks Matlab Version:
2007b

Generating the degraded LR frames:

In the experiments, a separate program is developed to generate the degraded LR frames.
Several LR frames were obtained by degrading the original HR images according to Equa-

tion (1.1). A graphical presentation of the degrading procedure is shown in Figure 5.1.

In Figure 5.1, the HR image is used as the desired HR image. Ten LR frames are

generated from the corresponding HR image. The original HR image is firstly blurred by
a Gaussian low-pass filter with size 4x4 and a standard deviation of 1. The nine randomly

generated motion vectors are applied to all the frames except the first one. The motion
vector does not apply on the first frame in order to use it as a reference frame for the

image registration process. These 10 degraded frames were then down-sampled in both the
horizontal and vertical directions with a factor of 4, and in the end a Gaussian noise was

then added on these LR frames.

5.1.2 Performance Evaluation

To evaluate the performance of the proposed algorithm for SR image reconstruction

algorithm, the HR image resulting from the proposed method are simulated and compared

subjectively and objectively with those obtained from the bilinear interpolation, T. Tsai
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Figure 5.1 : Degrading procedure of LR frames

and R. Huang's frequency domain method [8], M. Irani's IBP method [9] and A. Tekalp's

conventional POCS [3].

The parameters selected in each experiment for different algorithms were chosen to

produce the most visually appealing results. For a fair evaluation, the algorithms in com-

panion are performed several times with different parameters in order to obtain the best
result of each algorithm for the same experiment.

Method for Objective Comparison:

The 2-D peak signal to noise ratio (PSNR) defined in Equation (5.1) is used for objec-

tive comparison.

PSNR = IOlOgJp-^ J (dB) (5.1)
where ? is the estimated HR image, ? is the original HR image.

The final estimated HR images may appear as black pixels on each side of the esti-

mated HR image edges, due to the motion compensation process filling up the unknown

pixels with black pixels on each degraded LR frames. In order to obtain fair PSNR mea-
surements, the pixels close to the image edges are trimmed off, therefore only the center
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Figure 5.2: Image edges removal manner of PSNR measurement

part of the original HR image and the estimated HR image are taken to the PSNR calcula-
tion. Figure 5.2 presents the manner of PSNR measurement and it shows that pixels outside

of the square frame are not included for PSNR calculation. The number of pixels m to be
trimmed off is determined by the biggest displacement of the inter-frame motion.

Method for the Convergence Comparison:

During the of iterative process of the SR reconstruction algorithm, the HR image ob-

tained from the previous iteration is subtracted from the current estimated HR image to
check the convergence. The difference of each two consecutive estimated HR images is

compared in the sense of l\ norm by a pre-determined convergence criterion e, as shown in

the following equation.

_ ||?"-?"-?||
1 1 xn 1 1

where x" is the HR image estimated at the current iteration and x™

(5.2)

1 is the HR image from
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the last iteration.

A typical value of the convergence criterion e is set to 1O-4. The iteration stops when
the difference of two consecutive estimated HR images is less than 10~4. The improvement
is considered not significant to the human visual system if the difference of the consecutive

estimated HR images is less than the convergence criterion.

5.1.3 Sample Images for Experiments

For the experimental study of the proposed SR algorithm, four typical 256-gray-level

HR images, i.e., Lena, Baboon, Chart, and Letters, are selected to show both subjective and
objective performance evaluation.
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The four chosen HR images contain different characteristics of image features. The

image Lena represents the typical natural real scene which contains a mix of low, medium

and high frequency image components. The image Baboon represents a scene that mostly

contains high frequency components. The image Chart represents the pictures that contain

artificial textures and small font words. The image Letters represent the images with sharp

contour objects and strong contrastive transitions.

5.2 Intermediate Results of Proposed SR Reconstruction

Algorithm

This section provides the intermediate results of two important processes of the pro-

posed SR reconstruction algorithm. These two important processes are the projections

onto wavelet constraint set process and the stochastic wavelet coefficient refinement pro-

cess. The intermediate results of these two processes are shown individually and the visual
results will show their effectiveness.

5.2.1 Intermediate Result of Projections onto Wavelet Constraint Set

This sub-section presents the intermediate result of the projections onto the wavelet

constraint set which was explained in Section 4.2. The type of the chosen wavelet trans-

formation is introduced and the demonstration of this projection process will be visually

presented.

There are many different types of wavelet functions such as "Haar", "Daubechies" and

"Biorthogonal" wavelet. Among those wavelets, the Daubechies wavelet function is em-

ployed for the decomposition of the estimated HR image. The reason is that the "compactly
supported orthogonal wavelets" invented by Dr. Ingrid Daubechies makes discrete wavelet
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analysis practicable. Therefore, Daubechies wavelet is much appropriate for image pro-

cessing. The names of the Daubechies family wavelets are written as dbN, where N is the
order of wavelet function, and db is the "nickname" of the wavelet. The proposed algorithm

mainly uses db2 or db3 of the Daubechies wavelet function.

Four wavelet coefficient sub-images will be obtained by decomposing an estimated HR

image by the Daubechies db2 wavelet. The LL band approximation is one of the four
wavelet coefficient sub-images which will be replaced by the scaled acquired LR frames

in this projection process. The mathematical expression of this process was previously

given in Equation (4.16). The other three sub-images, the LH, HL and HH band wavelet
coefficients, are unchanged during this wavelet constraint set projection process. A visual

example of projections onto wavelet constraint set process is shown in Figure 5.4.
In Figure 5.4, the image on the left hand side is the temporary HR image estimated by

projections onto data consistency constraint Cd- By carefully checking this image, there

is a grid-ish horizontal and vertical artifact present. This particular type of noise is not
an additive noise, and it can not be easily removed by simple noise reduction methods.

The images on the right hand side are the wavelet components decomposed by Daubechies

db2 wavelet from the temporary estimated HR image. From the top to the bottom, they
are the LL approximation and the LH, HL and HH wavelet coefficients. The LL band

approximation image, which contains low frequency components of the original scene,

will be replaced by the scaled and accumulated acquired LR frames. The non-redundant
information contained in each different LR frame contributes certain useful features to the

new estimated HR image. This process is done when all available LR frames are used, then

the four wavelet components are forwarded to the stochastic wavelet coefficient refinement

process.
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5.2.2 Intermediate Result of Stochastic Wavelet Coefficient Refine-

ment Process

This sub-section provides the demonstration of the stochastic wavelet coefficient re-

finement process which was explained in Section 4.3. The outcome of each step of this
refinement process is shown in sequential order.

In this stochastic wavelet coefficient refinement process, there are four wavelet coef-

ficient sub-images received from the previous process. They are the LL band approxi-

mation sub-image and the LH, HL and HH band wavelet sub-image coefficients. In this

process, the LL band sub-image remains unchanged. The other three wavelet coefficient

sub-images, are modified according to the stochastic wavelet coefficient refinement algo-
rithm. The visual demonstration of this refinement process is presented in Figure 5.5.

Figure 5.5 contains four columns of images and the images on the most left hand side



are considered as the first column. The images on the second column are the variances

of the wavelet coefficient sub-images which were calculated according to the correspond-

ing 1-D window on their left hand side. The images on the third column are the refined

wavelet coefficient sub-images. The refinement process modifies the wavelet coefficient

sub-images regarding the F-test thresholds applied on their coefficient variance on the sec-

ond column. The refined LH, HL and HH band wavelet coefficient sub-images and the LL

band approximation, which is not shown in Figure 5.5, are then synthesized by the inverse

wavelet conversion to reconstruct the estimated HR image. The comparison of the tempo-

rary estimated HR image shown in Figure 5.4 and the refined HR image shown in Figure

5.5, show that the horizontal and vertical grid-ish artifact appearing on the temporary esti-

mated HR image has been removed by the refinement process.

According to the wavelet coefficient attenuation scheme described in Equation (4.24)

and Equation (4.25), the simulation parameters for this coefficient refinement process is

given as

Wavelet Type=c?62 : Daubechies wavelet type for wavelet transform.

d\ = 5 : window size for wavelet coefficient variance estimation.

d2 = 7 : window size for F-distribution test.

7i = 0.01 : level of confidence 1.

72 = 0.05 : level of confidence 2.

ß = 0.5 : predetermined attenuating factor.

? = 5 : integer weighting factor.
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5.3 Subjective Experimental Results

This section presents the simulation work by evaluating four different types of still im-

ages. The HR images reconstructed by Bilinear interpolation, frequency domain approach,

IBP approach, conventional POCS approach and the proposed wavelet-based POCS plus
wavelet coefficient refinement SR reconstruction algorithm are presented subjectively.

Figure 5.6 shows the SR reconstruction results based on the proposed algorithm as

well as various existing algorithms. Figure 5.6(a) shows the original HR image Lena of

size 256x256. Figure 5.6(b) shows one of the LR frames of size 64x64. There are 10 LR

frames in total, which are generated by degrading the HR image with 9 randomly generated

motion vectors and blurred by a Gaussian low-pass filter with size 4x4 and a standard

deviation of 1. These 10 degraded images were then down-sampled both horizontally and

vertically with a factor of 4. Gaussian noise was then added to these LR frames. In order

to have a better visual comparison, the LR frame show in Figure 5.6(b) is magnified by

nearest-neighborhood interpolation. In the actual SR reconstruction process however, the

LR frames are in the size of 64x64. Figure 5.6(c) shows the SR image reconstructed by

using the bilinear interpolation. Figure 5.6(d) gives the result obtained from the frequency

domain method. Figure 5.6(e) shows the result obtained by using the IBP method. Figure

5.6(f) is from the conventional POCS and Figure 5.6(g) shows the SR image reconstructed

by the proposed wavelet-based POCS method. The HR images reconstructed by different
SR approaches are all of the same size as the original HR image.

In Figure 5.6,it is clearly seen that the proposed SR reconstruction presents more de-
tailed features such as "lips and feathers" textures than other SR reconstruction approaches.

The features contained in HR image Lena are mixed with middle and low frequency

components. Figure 5.7 presents the results of image Baboon which contain mostly high
frequency texture components. Figure 5.7(a) shows the original HR image Baboon with
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Figure 5.6: Super-resolution HR image reconstruction: Lena
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size 256x256. Figure 5.7(b) shows one of the LR frames with size 64x64. Figure 5.7(c)-
(g) show the SR images reconstructed by using the Bilinear interpolation, the frequency

domain method, the IBP method, the conventional POCS and the proposed wavelet-based

POCS method, respectively. Again, the estimated HR images reconstructed by different SR
approaches all have the same size as the original Baboon HR image. It is seen that the HR

image reconstructed by the frequency domain approach has fairly good subjective results,

but the proposed SR reconstruction process shows improvements on both image contrasty
and the resolution.

The HR image Lena and Baboon are natural images. Normally, the human eye has
similar perception to natural images. Therefore, an artificial HR image is used as a differ-

ent type of image for comparison. In the following SR simulation, the HR image Chart

is employed. This image contains small font size numbers and different texture charts.

Thus, a different visual perception is provided by this type of image. Figure 5.8(a) shows

the original HR image Chart which contains artificial textures of size 256x320. Figure
5.8(b) shows one of the LR frames with size 64x80. Figure 5.8(c) shows the SR image

reconstructed by using the Bilinear interpolation. Figure 5.8(d)-(g) show the results ob-

tained from the frequency domain method, the IBP method, the conventional POCS and

the proposed wavelet-based POCS approach, respectively. The HR images reconstructed

by different SR approaches all have the same size as the original HR image.
From Figure 5.8, the IBP approach seen to have better than the frequency domain and

the conventional POCS approaches. The HR image reconstructed by the IBP approach

presents more information on numbers such as character "2" in the middle bottom and
shows more textures on the vertical chart in the middle of the image. But overall, the HR

image reconstructed by the proposed algorithm has a better quality.

An image with only letters is also used to test the performance of the different SR
reconstruction approaches on a class of images that have sharp transition edges. In the
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HR image, letters with different font sizes are shown, hence the limitation of each SR
reconstruction approach can be presented. Figure 5.9(a) shows the original HR image

Letters which contains only white background color and black English characters with size

256x256. Figure 5.9(b) shows one of the LR frames with size 128x 128. Different from
the previous three experiments, the LR frames in the experiment are down-sampled from

the original HR image in both horizontal and vertical directions with only a factor of 2.

Figures 5.9(c)-(g) show the SR images reconstructed by using the bilinear interpolation,
the frequency domain method, the IBP method, the conventional POCS and the proposed

method, respectively. It is noted that the estimated HR images have the same size as the

original HR image, the smallest words in the picture are hardly recognizable from the
images reconstructed by the frequency domain and the conventional POCS approaches.

However, most characters still can be easily read in the images constructed by the IBP

approach and the proposed SR reconstruction algorithm.

5.4 Objective Experimental Results

From the subjective comparison of the five different SR reconstruction approaches in

Figure 5.6- Figure 5.9 it is seen that the HR images reconstructed by the proposed SR algo-

rithm has a better visual appearance. In the following sub-section the objective numerical
results on the proposed SR method in comparison with other SR methods are shown. Also,

the results of the proposed SR reconstruction method are compared to itself with different

parameter setups.
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Table 1: PSNR comparison of different SR approaches (Unit:dB)
Bilinear Freq. Domain IBP conv.POCS Proposed

Lena Il 22.5875 21.6269 17.9043 22.2776 22.1960
Baboon 18.1108 16.7039 16.0115 17.5673 17.5065
Chart 13.8239 12.4857 11.0832 13.3915 13.3675

Letters 14.0205 13.1972 13.7533 13.0228 12.8450

5.4.1 Results of Standard Parameters Setup

The objective comparison is conducted by measuring the peak signal to noise ratio

(PSNR) of each HR image reconstructed by different SR approaches. The PSNR measure-

ments of four HR images obtained by the five SR approached are shown in Table 1 .

By looking at the PSNR values shown in Table 1, most SR reconstruction approaches

provide better measurement on the reconstructed image Lena but poor PSNR measurement

on image Chart. By comparing each individual SR reconstruction approach, the Bilinear

interpolation approach provides better PSNR measurement on most images. In contrast,

the proposed algorithm provides lower PSNR values on most images. By looking at the

subjective and objective comparison results, it can be concluded that a higher PSNR value

does not necessarily mean a better SR reconstruction result. For example, the HR image

Baboon reconstructed by the bilinear interpolation has the highest PSNR measurement.

However, in Figure 5.7(b) the visual quality is not the best. A brief conclusion can be

drawn that the PSNR is a very good measurement for image de-noising and single image

restoration but it may not properly reflect SR reconstruction performance due to the nature

of SR reconstruction process.

The convergence speed is an important index for determining whether a SR recon-

struction algorithm can be performed rapidly or not. The IBP and conventional POCS

approaches are used as reference algorithms to compare with the proposed wavelet-based

POCS in the convergence performance. The reason is that, the IBP, conventional POCS

and the proposed wavelet-based POCS SR algorithms are classified as projection-based SR
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Table 2: Convergence comparison of different iterative SR approaches (Unit:Iterations)Il IBP conv.POCS Proposed

Lena Il 29 49 20
Baboon 28 49 25
Chart 33 49 16

Letters 34 33 18

approaches. Also IBP, conventional POCS and the proposed SR are iterative algorithms.

The convergence scheme is defined in Equation (5.2). Figure 5.10 and Figure 5.10 show

the convergence speed comparison of IBP, conventional POCS and the proposed SR recon-

struction algorithm.

In each plot of Figure 5.10, the value on the x-axis is the mean error, and the value on

the axis y is the number of iterations. Figure 5. 10(a)-(d) gives the convergence plots for im-
ages Lena, Baboon, Chart and Letters, respectively. It is seen that the conventional POCS

needs more iterations to reach the preset convergence criterion e, because conventional
POCS does not have strong sensitivity on distinguishing the noise pixels and useful pixels.

In contrast, the convergence speed drops significantly in the proposed wavelet-based POCS

SR reconstruction algorithm. The reason is that the wavelet coefficient refinement process

has the ability of removing the noise much faster that the projection operation in the con-
vectional POCS algorithm. In Figure 5.10, we can notice that the convergence plots of
the IBP method do not have a smooth convergence curve because the HR image estimated

from each iteration of the IBP method is degraded again as compared to the acquired LR

frames. During some of the iterations, the estimated complete degrading function H¿ in the

back-projection process (see Figure 3.5) may not be very accurate. Therefore, we can see
the error value increases at some iterations. Table 2 summarizes the convergence plot by

recording the number of iterations for different approaches.

It is to be noted that the proposed SR reconstruction algorithm consists of more pro-
cesses than the IBP and the conventional POCS approaches, thus the execution time for
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Table 3: Execution time comparison of different iterative SR approaches (Unit:Seconds)
IBP conv.POCS Proposed

Average time
for 1 iteration

Lena
Baboon
Chart

Letters

2.76 1.73 5.31
80.04 84.77 106.2
77.28 84.77 132.75
91.08 84.77 84.96
93.84 57.09 95.58

every iteration is relatively longer than the IBP and conventional POCS approaches. It is

true that convergence speed is an important index for rating a processing speed. However,

the execution time for each iteration of each different iterative SR algorithm also needs to

be taken into account to judge the judge speed. The reason is that the actual total process-

ing time is the number of iterations multiplied by the average executing time of one single

iteration. In Table 3, it calculates the total processing time of a complete SR reconstruction

of different approaches.

From Table 3, it can be seen that the proposed SR reconstruction algorithm takes longer

total execution time when compared with other iterative approaches. However, in terms of

the quality of the reconstructed HR image in Figure 5.6- Figure 5.9, a 60% more execution

time to achieve a better quality might be acceptable and worthy.

5.4.2 Comparisons of Different Parameters Setup

In Section 5.3 and Sub-section 5.4.1 the subjective and objective experimental results

of different RS reconstruction approaches have been presented. The parameters of the

proposed SR algorithm used in therein are selected to produce most visually apparent HR

images. In this sub-section, the simulation parameters of the proposed SR algorithm are set
differently in order to show the effects of these parameters.

There are many parameters that control the quality of final HR image. In order to

focus on the major process, the parameters to be modified are mainly the parameters of the
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Table 4: The list of different settings of the simulation parameters
Setting 1 Setting 2 Setting 3 Setting 4

Daubechies wavelet type
window size for variance

window size for F-test
level of confidence 1 .
level of confidence 2.

predetermined attenuating factor
integer weighting factor

db2 db3 db2 db2
d2 = 5 d2 = 5 (¿2 = 7 £¿2 = 5
¿2 = 7 d2 = 7 d2 = 9 d2 = l
7i = 0.01 7i = 0.01 7i = 0.01 71 = 0.05
72 = 0.05 72 = 0.05 72 = 0.05 72 = 0.1
/9 = 0.5 0 = 0.5 /3 = 0.5 0 = 0.5
? = 5 ? = 5 £ = 5 ? = 5

wavelet coefficient refinement process.

There are four different parameter settings used in this sub-section. The first setting is

the original setting which was used in previous simulations. The second setting is the order

of Daubechies wavelet function. The third setting are the window sizes d\ and d2. The

fourth setting has both levels of confidence 71 and 72. The list of different settings of the

simulation parameters for comparison is given in Table 4.

The HR images reconstructed by the proposed SR algorithm with four different param-

eter settings are shown in Figure 5.11. The images at the most left hand side column (al),

(bl), (cl) and (dl)are the reconstructed HR images with "Setting 1" which has the same

parameters setting as the HR images shown in Figure 5.6(g)- Figure 5.9(g). The images at

the second column (a2), (b2), (c2) and (d2) are the HR images reconstructed by replacing

the order of Daubechies wavelet function with 'db3'. The images at the third column (a3),

(b3), (c3) and (d3) are the HR images reconstructed by changing the size of variance es-

timation window d\ and F-distribution test window d2. The images at the fourth column

(a4), (b4), (c4) and (d4) are the HR images reconstructed by changing the value of level

of confidence parameters 71 and 72. From Figure 5.1 lit is clear that changing the wavelet
function order from 'db2' to 'db3' does not affect the final result a lot. In contrast, changing

the value of level of confidence 71 and 72 parameters makes the estimated HR images more
blur.

The PSNR measurements of the HR images shown in Figure 5.11 are listed in Table
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Figure 5.1 1: HR images reconstructed by four different parameter settings
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Table 5: PSNR comparison of different parameter settings (Unit:dB)I Setting 1 Setting 2 Setting 3 Setting 4

Lena Il 22.1960 22.1470 20.9985 18.5020
Baboon 17.5065 17.1655 16.5690 15.9525
Chart 13.3675 12.9430 12.1430 11.9950

Letters 12.8450 12.1100 12.2100 11.9590

5. This table provides an numerical comparison on the different parameter settings. It is

seen that the PSNR value drops a little bit while changing of the order of wavelet func-

tion. However, changing the value of level of confidence parameters affects the PSNR

significantly.

The comparison of convergence speed on different parameter settings is presented

graphically in Figure 5.12. The convergence plots of the four reconstructed images, Lena,

Baboon, Chart and Letters, with respect to the four different settings are shown in Figure

5.12(a), (b), (c) and (d), respectively. By observing the convergence plots in each figure,

it can be summarized that (1) changing the order of wavelet function keeps the conver-

gence speed unchange, (2) changing the size of the estimation windows could cause the

convergence a little slower, and (3) changing the value of level of confidence causes the

convergence much slower by at least two or more iterations.

5.5 Conclusion

Extensive simulation studies on the proposed wavelet-based SR approach in compar-

ison with some existing methods have been conducted. The experimental setups and the

comparison criteria are provided in Section 5.1 of this chapter. The intermediate result of

two processes of the proposed SR algorithm, the "Projections onto wavelet constraint" and

the "wavelet coefficient refinement" process, are firstly presented. A subjective comparison

shows that the HR images reconstructed by the proposed algorithm have better appearance

and quality. The numerical PSNR comparison reveals that a higher PSNR measurement
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does not truly suggest a good SR algorithm because the PSNR can not show whether the

reconstructed HR image has better resolution or not. After the PSNR comparison, the pro-

cessing time of the proposed method is considered and compared with other methods. By

considering the total execution time and subjective HR image results, we have found that

when the speed and the quality can not be perfectly optimized, it is worthy to have a better

HR image but fairly long computational time. In the end of this chapter, the comprehensive

comparisons of the proposed SR method with different parameter setups is given to show

the effects of changing parameters.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, several SR reconstruction approaches such as the bilinear interpolation,

frequency domain approach, IBP and the conventional POCS method have been investi-

gated and evaluated. The thesis mainly focuses on the improvement of the conventional

POCS method by introducing wavelet constraint projection and the wavelet coefficients re-

finement process. The proposed SR reconstruction is designed algorithm in Chapter 4 and

the simulation work is presented in Chapter 5, which constitute the major contributions of

the thesis. The simulation result has demonstrated that the proposed algorithm produces

better images as perceived by the human eye. The overall content of the thesis can be
summarized as follows:

• Super-resolution refers to a set of image enhancement algorithms that reconstruct

high resolution image from a sequence of degraded, low resolution frames. The

forward observation model of the SR reconstruction problems described in Equation

(1.1) serves as a foundation of SR reconstruction research.

• The general steps of an SR reconstruction approach shown in Figure 2. 1 divide the
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complicated SR reconstruction process into four simpler procedures. First, the mo-

tion registration step aligns the acquired consecutive LR frames. Second, the de-

grading function estimation step estimates the kernel of the blurring function of LR

frames. Third, the SR reconstruction step fuses acquired frames into one HR image

and last, the de-blurring step removes the blurring effects from the estimated HR

image.

• The POCS is a method that is used to recover incomplete signals by performing the

convex set projection operation. The conventional POCS SR reconstruction approach

uses data consistency constraint Cd and amplitude constraint Ca as the convex sets

for the projection operation. Based on the POCS method, the more the convex sets

have been used, the better the SR image quality obtained. Therefore, in this thesis,

one more constraint ,namely, the wavelet domain constraint Cw described in Equa-

tion (4.15) is introduced.

• In order to further remove the noise and the wrongly estimated pixels, the thesis

introduces the stochastic wavelet coefficient refinement process. In the refinement

process, the wavelet coefficient sub-images are modified according to the distribu-
tion of their variances. The variance estimation scheme applies 1-D orthogonal win-

dows with respect to the detailed features to each wavelet coefficient sub-image. The

coefficient modification scheme employs the F-distribution test to judge whether a

wavelet coefficient should be preserved or modified.

• The complete procedure of the proposed SR image reconstruction algorithm shown

in Figure 4.13 explains the process flow and the domain space of the input data.

• It is shown that the HR images reconstructed by the proposed SR reconstruction

method does not have superior PSNR values as compared to other existing methods.

However, the HR images from the proposed SR reconstruction method have a better
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visual quality and higher resolution.

6.2 Future Work

Among many image and video signal processing studies, super-resolution is a spot-

lighted research area. The following points out some possible research directions and ap-

plications where the proposed SR reconstruction algorithm could be employed to improve

high definition visual systems.

• The SR observation model described in this thesis considers a simple frame to frame

motion model. To make a broad use of the proposed SR algorithm, a more com-

plicated motion model such as allowing multiple local motions between LR frames,

or considering a various zooming ratios of consecutive frames, could be further dis-
cussed as new research directions.

• In the proposed SR reconstruction method, most adjustable parameters are in the

wavelet coefficients refinement process. To achieve the best HR image quality, pa-

rameters may need to be independently fine tuned for different types of video scenes.

An investigation on parameter adjustment for various types of LR image sequences

would make the proposed SR reconstruction method more useful.

• The two extended processes in the proposed SR reconstruction method mainly use

wavelet techniques. Recently, there are some new data transform techniques such as

curvelet and bandlet which inherit the analysis capabilities of wavelet transform and

have their own advantages in image processing research area. Therefore, the curvelet

and bandlet could be valuable techniques to replace the wavelet used in the proposed
SR method..
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• The proposed SR reconstruction algorithm mainly considers reconstructing HR im-
ages from the luminance portion of the LR frames. Additionally, this algorithm

can be further applied to color SR image reconstruction by considering chromi-
nance components and the color CCD's Bayer pattern [47] . The Bayer pattern is

a digital color image acquisition pattern. To compensate the effect of the Bayer

pattern, color super-resolution research is usually combinesd with the demosaicing

techniques [48] [49]. The application of the proposed algorithm may bring certain
advantages to adapt to demosaicing techniques.

• There are many image and video compression and coding algorithms that use wavelet

analysis and related techniques. The proposed wavelet-based POCS SR reconstruc-
tion algorithm provides the opportunity to combine other wavelet related techniques,

since the proposed algorithm operates the frame data in the wavelet domain. There-
fore, adopting wavelet based compression algorithms or transmission coding tech-

niques to the proposed SR algorithm would lead to further development in the field
of SR.

• To reduce the processing time of an SR algorithm, one possible solution is to build

a hardware chip to perform the data processing. The proposed SR algorithm is a

wavelet-based iterative algorithm; some steps of the algorithm such as wavelet trans-

formation and coefficient variance calculation can be easily replaced by hardware

circuits. Therefore, converting the proposed algorithm into a hardware chipset and

estimating the real-time SR reconstruction performance can be a very good extension
of this work.

The proposed SR reconstruction algorithm and the simulation work presented in this thesis
can serve as a reference to further researches.
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