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ABSTRACT 
Trajectory Tracking and Formation Control of a Platoon of Mobile Robots 

Mahsa Aliakbar Golkar 

This thesis is concerned with controlling a platoon of wheeled mobile robots (WMR), 

where the robots are aimed to follow a trajectory while they maintain their formation in­

tact. The control design is carried out by considering unicycle kinematics for each robot, 

and the leader-follower structure for the formation. It is assumed that every robot except 

the one located at the end of each platoon can potentially be the leader to the one behind it. 

It is also assumed that each follower is capable of sensing its relative distance and relative 

velocity with respect to its preceding robot. The stability of the proposed control law is 

investigated in the case of perfect sensing and in the presence of input saturation. The im­

pact of measurement noise on the followers is then studied assuming that a known upper 

bound exists on the measurement error, and a linear matrix inequality (LMI) methodology 

is proposed to design a control law which minimizes the upper bound on the steady-state 

error. 

The problem is then investigated in a more practical setting, where the control input 

is subject to delay, and that the tracking trajectory can be different in distinct time inter­

vals. It is to be noted that delay often exists in this type of cooperative control system 

due to data transmission and signal processing, and if neglected in the control design, 

can lead to poor closed-loop performance or even instability. Furthermore, switching in 

tracking trajectory can be used as a collision avoidance strategy in the formation control 

problem. Delay dependent stability conditions are derived in the form of LMIs, and the 

free-weighting matrix approach is used to obtain less conservative results. Simulations 

are presented to demonstrate the efficacy of the results obtained in this thesis. 
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Chapter 1 

Introduction 

1.1 Motivation 

Robotics as an engineering field has proved its efficiency in the industrial manufacturing 

world. The advantages of using robots instead of humans for performing some specific 

tasks (e.g., handling hazardous material) have attracted many researchers. This research 

is mainly focused on the mobile robots. 

Mobile robots can move in a number of ways. Walking, jumping, sliding and rolling 

are a few examples. Generally, mobile robots locomate using either wheeled mechanism 

or a number of legs. Legged mobile robots are capable of crossing a hole or chasm and 

manipulating objects. However, compared to the wheeled mobile robots (WMR), this 

type of robot is of greater mechanical complexity, due to its higher degree of freedom. 

Figures 1.1, 1.2, 1.3 and 1.4 show some examples of legged robots with different number 

of legs [1]. 

In contrast to legged mobile robots, on the other hand, WMRs have their own ad­

vantages too. First of all, they have a simpler structure. Furthermore, they are well-suited 

for flat grounds, and are more stable statically. The latter property is due to the fact 

that the minimum number of wheels required for a mobile robot to be statically stable is 
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Figure 1.1: The 2D single bow leg hopper [1]. 

Specifications: 

Weight: 
Height: 
Neck DOF: 
Body DOF: 
Arm DOF: 
Legs DOF: 
Five-finger Hands 

7 kg 
58 cm 
4 
2 
2x5 
2 x 6 

Figure 1.2: The Sony SDR-4XII, Sony Corporation [1]. 
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Stereo microphone: Allows AIBO to pick 
up surrounding sounds. 
Head sensor: Senses when a person taps or 
pets AIBO on the head. 
Mode indicalor: Shows AIBO's operation 
mode. 
Eye lights: These light up in blue-green or 
red to indicate AIBO's emotional state. 
Color camera: Allows AIBO to search for 
objects and recognize them by color and 
movement. 
Speaker: Emits various musical tones and 
sound effects. 
Chin sensor: Senses when a person touches 
AIBO on the chin. 
Pause button: Press to activate AIBO or to 
pause AIBO. 
Chest light: Gives information about the 
status of the robot. 
Paw sensors: Located on the bottom of each 
paw. 
Tail light: Lights up blue or orange to show 
AIBO's emotional state. 
Back sensor: Senses when a person touches 
AIBO on the back. 

Figure 1.3: AIBO, the artificial dog from Sony, Japan [1]. 

Figure 1.4: Genghis, one of the most famous walking robots from MIT, uses hobby servomotors 
as its actuators (http://www.ai.mit.edu/projects/genghis). MIT AI Lab [1]. 
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two [1]. There exist different types of WMRs. For single-body robots, for example, the 

most commonly used ones are known to be differential drive and synchro drive, tricycle 

or car-like drive, and omnidirectional steering. Figures 1.5, 1.6, 1.7, 1.8 and 1.9 show a 

few examples of wheeled mobile robots. 

Figure 1.5: Cye, a commercially available domestic robot that can vacuum and make deliveries in 
the home, is built by Aethon Inc. (http://www.aethon.com) [1]. 

steering pulley. driving pulley 

wheel 

wheel steering axis. •-Mm 
/ ' ' ' o*0 f\steering\ \ "3* 

/ < / /J motor \\% 

"V / (O) 

drive motor rolling axis 

Figure 1.6: Synchro drive. It has the ability to move in any direction [1]. 

There has been a large increase in the use of WMRs in industry in recent years. 

This is more evident for the cases where autonomous motion capabilities are required over 

reasonably smooth grounds and surfaces. The problem of motion planning and control 

of WMRs, which pose several theoretical and practical challenges, have been extensively 

studied in the literature; e.g., see [2-4]. A detailed study on kinematics of WMRs can be 

found in [5]. 
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spheric bearing motor 

Figure 1.7: The Tribolo designed at EPFL (Swiss Federal Institute of Technology, Lausanne, 
Switzerland. Left: arrangement of spheric bearings and motors (bottom view). Right: Picture of 
the robot without the spherical wheels (bottom view) [1]. 
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Figure 1.8: The microrover Nanokhod, developed by von Hoerner and Sulger GmbH and the Max 
Planck Institute, Mainz, for the European Space Agency (ESA) [1]. 
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Figure 1.9: Shrimp, an all-terrain robot with outstanding passive climbing abilities [1]. 

To control a robot, it is required to have specific information about its actuator and 

also some knowledge of its environment and relevant signals. The latter requirement em­

phasizes the importance of studying different types of sensors and choosing the proper 

one based on the specific application and desired performance. Siegwart and Nourbakhsh 

in [1] studied different types of sensors used in mobile robots, and discussed their advan­

tages and disadvantages. A brief description of the different sensors used in mobile robots 

is summarized below. 

1.2 Sensors for Mobile Robots 

There is a wide range of sensors available for robots in industry. Some sensors are used 

for simple measurements such as internal temperature of a robot's electronics or rota­

tional speed of the motor, while others are used for more complex measurements such 

as those involving environment, e.g., robot's global position. A mobile robot is usually 

accompanied with a wide variety of sensors, as depicted in Figure 1.10. 

Nourbakhsh and Siegwart in [1] classified robot sensors as proprioceptive or exte­

roceptive and passive or active, as described below. 

6 



• Proprioceptive/Exteroceptive 

i) Proprioceptive sensors are those which measure values internal to the system 

(robot), such as motor speed and wheel load. 

ii) Exteroceptive sensors are those which measure the information related to the 

environment, such as distance and light intensity. 

• Passive/Active 

i) Passive sensors measure natural ambient energy entering the sensor [6]. Ex­

amples of this type of sensor include temperature probes and microphones. 

ii) Active sensors measure a quantity such as distance by emitting a signal and 

detecting its reflection [6]. Examples of active sensors include laser range-

finders, and ultrasonic sensors used for medical diagnostic. 

Sensors have different levels of performance. Typically, the more expensive the sen­

sor is, the more accurate its measurements are. Hence, the choice of sensor is normally 

made based on the specific application and desired performance. Usually the sensor per­

formance is described by a variety of characteristics, including dynamic range, resolution, 

linearity, sensitivity, cross-sensitivity, accuracy and precision. The most useful sensors for 

mobile robots are briefly discussed below [1]. 

• Wheel/motor Sensors: Wheel/motor sensors are used for measuring the values re­

lated to the internal state and dynamics of the robot. Although they generally have 

high-quality and excellent resolution, they are relatively low-cost. This is because 

of the wide use of such sensors in a broad range of other applications. One example 

of this type of sensor is the optical encoder. 

• Heading Navigation Sensors: Heading sensors are used for determining the robot's 

orientation and inclination. Inertial navigation systems (INS), Gyroscopes, incli­

nometer and compass are a few examples of such sensors. 

7 
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Figure 1.10: Examples of robots with multi-sensor systems: (a) HelpMate from Transition Re­
search Cooperation; (b) B21 from Real World Interface; (c) BIBA robot, BlueBotices SA [1]. 



Figure 1.11: A digital compass as a heading sensor [1]. 

Figure 1.12: (a) Schematic drawing of a laser range sensor with rotating mirror; (b) a scanning 
range sensor from EPS Technologies Inc., and (c) an industrial 180-degree laser range sensor from 
Sick Inc., Germany [1]. 

• Ground-Based Beacons: These sensors are used for identifying the robot's location. 

A well-known example of such beacon systems is the global positioning system 

(GPS). 

• Active Range-Sensors: This is another type of sensor used for determining the 

robot's location. The main advantage of these sensors is their low cost. Active 

range-sensors are the most common type of sensors used in mobile robots. Ul­

trasonic sensors, laser-range finder, laser detection and ranging (LADAR), and the 

optical triangulation sensor are some examples of active range-sensors. 

• Motion/Speed Sensors: These sensors measure the relative motion between the 

robot and its environment. They are used in applications where obstacle avoidance 

is of interest. The pyroelectric sensor is an example of this type of sensor. 

• Vision-Based Sensors: These sensors provide a wide variety of information about 

9 



Figure 1.13: Commercially available charged coupled device (CCD) chips and cameras [1]. 

Figure 1.14: Vision-Based Sensor: The CMUcam sensor consists of three chips: a CMOS imaging 
chip, a SX28 microprocessor, and a Maxim RS232 level shifter [1]. 

the robot's environment. Therefore, these are also commonly used in applications 

where obstacle avoidance is required. 

In Table 1.1, the important characteristics of different types of sensors are summa­

rized. It is to be noted that sensor classes in Table 1.1 are arranged in an ascending order 

of complexity and descending order of technological maturity. 

1.3 Controllability and Stabilizability of Mobile Robots 

Some mobile robots are known to be nonholonomic due to their perfect rolling con­

straint [7]. Let (x,y, 0) represent the generalized coordinates of the system; then this 

constraint can be written as: 

xsinO —ycosQ = 0 (1-1) 
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Representing the state-space as q — [x,y, 9]T, the first-order kinematics of a WMR is given 

by: 

y 

e 

gi(q)v+g2(q)(o = 

cos 8 

sinO 

0 

v + 

0 

0 

1 

which can be expressed in the following general form: 

(O (1.2) 

q = g\U\+giU2 (1-3) 

It is clear from (1.2) that g\ and gi are two linearly independent vector fields. From 

Chow's theorem it is known that this system is controllable and can reach any arbitrary 

configuration in R3. 

Stability is the most important issue in the control of a WMR. The problem of sta­

bilization of WMRs as nonholonomic systems is concerned with obtaining feedback laws 

which guarantee that an equilibrium of the closed-loop system is asymptotically stable. 

From the Brockett's necessary condition for feedback stabilization [8], it is known that 

there exists no smooth or continuous time-invariant static state feedback for this type 

of system to locally asymptotically stabilize any equilibrium point. In general, a non­

holonomic system cannot be stabilized to an equilibrium using feedback linearization or 

any other control design approach that employs smooth time-invariant feedback. Non-

smooth or discontinuous time-invariant stabilization, time-varying stabilization and hy­

brid stabilization are the methods introduced in the literature to overcome this shortcom­

ing of smooth time-invariant controllers. An extensive research on posture stabilization 

of nonholonomic systems using these methods can be found in [9-24]. 
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1.4 Trajectory Tracking by Mobile Robots 

Considering the nonholonomic dynamics of the system and difficulties in finding control 

input for posture stabilization of the system, it is often desirable to design control laws 

under which the system variables converge to a trajectory, rather than to a point. In this 

type of problem, the desired trajectory is predefined and the robot is to be controlled so 

that it asymptotically converges to the desired path. Various trajectory tracking methods 

are given in the literature. This includes using nonlinear feedback laws, dynamic feedback 

linearization, and backstepping approach, to name only a few. Extensive publication on 

trajectory tracking of nonholonomic systems such as mobile robots can be found in the 

literature (see e.g., [25-34]). 

1.5 Formation Control of Mobile Robots 

The earlier studies in the field of cooperative robots dates back to the 1980's. Since 

then, extensive research has been undertaken in this area, and a wide variety of related 

topics has been addressed. Coordination of multiple mobile robots, on the other hand, 

has attracted much interest recently. Exploiting a group of robots instead of a single robot 

or human for performing a prescribed spatially distributed task has significant advantages 

in various applications [3]. Some advantages and remarkable properties of multi-robot 

systems are [35]: 

• higher efficiency; 

• better performance; 

• fault tolerance; 

• wide range of application; 

• robustness, and 

12 



• reduced cost. 

Formation control is one of the most challenging research problems in cooperative 

mobile robots. This problem is concerned with a group of robots moving in formation and 

performing a single mission in a cooperative fashion. It is desired in this type of problem 

to control the relative position and orientation of the robots with respect to each other. 

Applications of formation control of cooperative robots include simultaneous localization 

and mapping, RoboCup (which is designed to play soccer and perform search and rescue), 

exploration of an unknown environment, and transportation of large objects, to name only 

a few [36-45]. The most effective techniques proposed in the literature for formation 

control of mobile robots are behavior-based, virtual-structure, and leader-follower. 

1.5.1 Behavior-Based Approach 

In the behavior-based approach, different possible behaviors are assigned to each robot 

[46], [47]. Based on the relative importance of each behavior, a weighting function is as­

signed to it [4]. This approach may be suitable for designing control strategies for robots 

with multiple competing objectives. Moreover, due to the decentralized structure of the 

control, it is a proper choice for systems with a large group of robots [3]. As a result, 

compared to other methods, a behavior-based approach may be implemented with sig­

nificantly reduced communication requirement [48]. More precisely, the virtual-structure 

and leader-follower approaches (which will be described in the following subsections), re­

quire that the full state of the leader or virtual-structure be communicated to each member 

of the formation. A disadvantage of this approach, on the other hand, is the complexity 

of the mathematical stability analysis [3]. 

13 



1.5.2 Virtual-Structure Approach 

In the virtual-structure approach, the robot formation is considered as a single virtual rigid 

structure [49]. Desired trajectories are assigned to the entire formation as a whole instead 

of being assigned to each robot separately. Unlike the behavior-based approach, in this 

technique the behavior of the whole group is totally predictable and the formation may 

be maintained precisely; however, it requires heavier inter-robot communication [4]. An 

advantage of this method is known to be the possibility of attaining a certain degree of 

robustness of the formation to perturbations on the robots. 

1.5.3 Leader-Follower Approach 

In the leader-follower approach, a particular robot is assigned to be the leader, and all other 

robots are followers [50-52]. A predefined trajectory is to be tracked by the leader while 

the followers are supposed to follow the leader and keep a desired relative pose (distance 

and angle) from it. This approach is of particular interest because of its simplicity and 

modularity, specially for the cases where new robots are to join the formation [4]. Lack 

of feedback from the followers to the leader, however, is known to be a disadvantage of 

this approach. This is apparent when a follower is perturbed, and as a result the formation 

cannot be maintained due to the weak robustness [3]. Furthermore, the leader is a single 

point of failure for the formation [48]. Formation control for the leader-follower structure 

is extensively investigated in the control literature; see, e.g. [4], [50], [53-57]. 

1.6 Thesis Contributions 

Formation control of mobile robots is studied extensively in the literature. However, most 

of the existing results rely on the relative distance and bearing of every pair of robots in 

the formation, for obtaining the control input. This leads to a system with complex for­

mulation, especially when the number of robots in the formation is to be increased. In this 
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thesis, the control of a group of robots with a leader-follower structure is investigated. It is 

assumed that the robots have a chain configuration, and hence for controlling each robot 

only its relative distance and velocity with respect to its preceding robot is required. Using 

this technique, adding a new robot to the system will not require a new reformulation for 

obtaining the state-space representation of the system. The linear matrix inequality (LMI) 

technique is used for the stability analysis of the system. The stability of the formation 

with time-varying delay in the measurement signal is also studied and the dwell time be­

tween consecutive switches is obtained to ensure a prescribed steady-state performance. 

To the best of the author's knowledge, two problems of trajectory switching and delay in 

control input for the formation control system have never been studied concurrently in the 

literature. 

The objectives of this thesis are listed below: 

• Derive a control law for a single robot, so that system remains stable while tracking 

a trajectory 

• Design a controller for the leader-follower formation problem so that the system is 

stable in the cases of perfect sensing and perfect sensing with input constraint 

• Obtain upper bounds for the steady-state position and velocity errors in the presence 

of measurement noise 

• Study the stability of system with time-varying delay in the measurement signal 

• Derive a sufficient condition on the size of the time interval between consecutive 

switches by each robot so that the system remains exponentially convergent to a 

ball with a prescribed radius 
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1.7 Thesis Outline 

This thesis is divided into five chapters that are described in the sequel. 

In Chapter 2, the problem of trajectory tracking for a single WMR is studied. The 

state-space representation of the system is given, and a control input is then designed 

such that it stabilizes the trajectory tracking system. Input saturation is also addressed 

by imposing a constraint on the WMR control input. In addition, the steady-state perfor­

mance of a single WMR is studied in the presence of measurement noise. Finally, some 

simulations are presented to demonstrate the efficiency of the developed results. 

In Chapter 3, the formation control of a group of mobile robots with leader-follower 

structure is studied. Similar to Chapter 2, after deriving the state-space representation 

of the overall system, a control input is designed which guarantees the stability of the 

system in three cases of perfect sensing, perfect sensing with input constraint, and noisy 

measurements. Moreover, upper bounds for the steady-state position and velocity errors 

are obtained. Simulations are provided to validate the results obtained. 

In Chapter 4, the stability of a platoon of WMRs with leader-follower structure 

is studied in the presence of input delay and switching in trajectories. An LMI-based 

approach is proposed to obtain the convergence properties for the tracking problem. Using 

the concepts of dwell time and average dwell time in switched systems, some bounds on 

the steady-state position and velocity errors are derived. Simulations are provided to show 

the effectiveness of the results. 

Finally, Chapter 5 concludes the thesis with a general discussion highlighting the 

contributions of this research. Open problems and suggestions for future research work is 

also addressed in this chapter. 
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Table 1.1: Classification of sensors used in mobile robotics applications [1], 

General classification Sensor PC or EC A or P 

(typical use) Sensor System 

Tactile Sensors Contact switches, bumpers EC P 
(detection of physical contact or Optical barriers EC A 
closeness; security switches) Noncontact proximity sensor EC A 
Wheel/motor sensors Brush encoders PC P 
(wheel/motor speed and position) Potentiometers PC P 

Synchros, resolvers PC A 
Optical encoders PC A 
Magnetic encoders PC A 
Inductive encoders PC A 
Capacitive encoders PC A 

Heading Sensors 
(orientation of the robot in relation to 
a fixed reference frame) 
Ground-based beacons 
(localization in a fixed reference 
frame) 

Compass 
Gyroscopes 
Inclinometers 
GPS 
Active optical or RF beacons 
Active ultrasonic beacons 
Reflective beacons 

EC 
PC 
EC 
EC 
EC 
EC 
EC 

P 
P 

A/P 
A 
A 
A 
A 

Active ranging Reflectivity sensors EC A 
(reflectivity, time-of-flight, and Ultrasonic sensor EC A 
geometric triangulation) Laser rangefinder EC A 

Optical triangulation (ID) EC A 
Structured Light (2D) EC A 

Motion/speed sensors 
(speed relative to fixed or moving 
objects) 
Vision-based sensors 
(visual ranging, whole-image analysis, 
segmentation, object recognition) 

Doppler radar 
Doppler sound 

CCD/CMOS camera(s) 
Visual ranging packages 
Object tracking packages 

EC 
EC 

EC 

A 
A 

P 

A, active; P, passive; P/A, passive/active; PC, proprioceptive; EC, exteroceptive. 
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Chapter 2 

Trajectory Tracking by a Single 

Wheeled Mobile Robot 

2.1 Introduction 

Generally, there are two basic motion tasks [2] for wheeled mobile robots (Figure 2.1) as 

follows: 

• Trajectory following: In this method, a point in the robot body is defined as the 

reference point. Given an initial configuration, robot's reference point is to track 

a geometric path in Cartesian space. To measure the tracking performance, an er­

ror function is defined. The error function has the same dimension as the input. 

: # 
I 

o -• X-

Figure 2.1: Wheeled mobile robot top view. 
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Trajed 

Initial Posture 

Goal Posture 

<*> 

Goal Posture 

Initial Posture 

(b) 

Figure 2.2: Wheeled mobile robot basic motion task: (a) trajectory tracking; (b) point-to-point 
motion [2]. 

Therefore, controlling the motion is easier than controlling the point-to-point mo­

tion which has less input commands (v and (0) than the variables (x, y, G). 

• Point-to-point motion: In this method, given an initial configuration for the mobile 

robot, a predefined configuration (as the mission objective) needs to be obtained. 

Moreover, the controller needs to be either discontinuous or time-varying due to 

non-holonomic constraint of the system. This is deduced from a necessary condi­

tion due to Brockett [8] which is: "for a smooth stabilization of a driftless regular 

system, it is necessary to have the same number of inputs as states" (see Figure 2.2). 

The objective of this chapter is to control a single wheeled mobile robot (WMR), assum­

ing there is no obstacle present in the environment. Trajectory following is used for the 

WMR motion. 
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This Chapter is organized as follows. The problem is formulated first and the main ob­

jective is presented in Section 2.2. Stability of the system will then be investigated in 3 

different cases of perfect sensing, perfect sensing with input constraint, and perfect sens­

ing with noisy measurement in Section 2.3. Simulations are provided in Section 2.4 to 

support the theoretical results obtained. 

2.2 Problem Formulation 

Let z € M" denote the set of all n-vectors of generalized coordinates for a wheeled mobile 

robot. This type of robot is often modeled as a single upright wheel. This model, which 

is also referred to as the unicycle model, is used to describe the behavior of the robot. 

The generalized coordinates for a unicycle are z = (x,y, G), where (x,y) represents the 

Cartesian coordinates and 0 is the angular orientation with respect to the x-axis in an 

inertial reference frame. The objective here is to control the robot in such a way that it 

follows a certain trajectory with a desired velocity. Let the inertial reference frame be 

centered at the origin O of the plane (see Figure 2.1), the differential equations describing 

the motion of the robot with respect to this frame are: 

x = vcos0 

y = vsinQ 
(2.1) 

v = a 

where the acceleration a (which is directly related to force) is treated as the input variable. 

The error vector is subsequently defined as: 

ep (2.2) 
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where ep and ev are the position and velocity error of the robot, respectively, and are 

defined by: 

ep:= 
'Px 

-Py J 

and 

'Vx 

L evy 

y-yr 

VCOS0 — Vr 

(2.3) 

vsinfl — v yr 

(2.4) 

where (xr, yr) is the reference value (set point) for the position of the robot, and (vXr, vyr) 

is the reference value for the velocity of the robot. It is assumed that the robot is equipped 

with the proper sensors to measure its relative position and velocity (with respect to the 

desired set points). Thus, the error vector e can be used in constructing the control input. 

Now, using equations (2.3) and (2.4) one can find: 

and similarly: 

ev = 

where: 

and: 

p 

*vx 

Jvy 

hx 

*Py . 

VCOS0 — VXr 

vsinfl — Vyr 

vcos 0 — vd sin 0 — aXr 

v sin 9 + v9 cos 9 — ayr 

Uxr = dt ^Vxr ^ 

ayr 
d 

~ dt MO] 

By rewriting the above equations and using the relations (2.1), it can be shown that: 

ev = 
evx 

ev,. 

cos9 —vsin9 

sin 9 vcos0 

a 

(0 

(2.5) 
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Define: 
U] 

U2 

cos 9 — vsinfl 

sin0 vcos0 

a 

(0 

Hence, (2.5) can be expressed as: 

= 
«2 

— 

Combining the differential equations for the position and velocity errors, the state space 

representation of the system can be written as: 

0 0 1 0 

0 0 0 1 

0 0 0 0 

0 0 0 0 

ep* 

ePy 

. e v y . 

+ 

0 0 

0 0 

1 0 

0 1 

U2 

— 

0 0 

0 0 

1 0 

0 1 

. a y r . 

or equivalently: 

B 

e = Ae + Bu — Bar 

B 

(2.6) 

where ar is the reference value for the acceleration of the robot in the x and v directions, 

and is expressed as: 

ar := 
ax 

*yr 

It is desired to design a control law of the following form: 

u = Ke + ar := a + ar (2.7) 

to regulate the error defined by (2.2), where K e Mr is a constant matrix 
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2.3 Main Results 

2.3.1 Perfect Sensing without Input Constraint 

In this section, it is desired to investigate the stability of system (2.6) under the controller 

of the form (2.7), assuming that no error exists in sensor measurements. 

Theorem 2.1. Consider a mobile robot following a desired trajectory, where the error 

dynamics of the robot is governed by (2.6). Given a > 0, suppose that there exist R > 0 

and S satisfying the following LMI: 

RAT +AR + STBT +BS + CCR < 0 (2.8) 

Apply the controller (2.7) with K — SR~l to the robot; then \\e(t)\\ is exponentially de­

caying (where \\.\\ denotes the 2-norm). 

Proof: The error dynamics (2.6) under controller (2.7) can be described by: 

e = (A + BK)e 

Let V = eTPe; then 

V + aV = 2eTP(A + BK)e + aeTPe 

Now, if: 

(A + BK)TP + P(A + BK) + aP<0 (2.9) 

then it follows that: 

V + aV<0 (2.10) 

which implies that V(t) and e(t) are also exponentially decaying. Choose P = R~~x and 

K = SP; then (2.9) becomes equivalent to (2.8). This completes the proof. • 
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2.3.2 Perfect Sensing with Input Constraint 

Theorem 2.2. Consider the system described in Theorem 2.1 and let pi\= max j|e^11 = 

max 11gp || and H2= max||eV;c|| = max||eVv||. Given the design parameters a > 0, r\ > 0, 

solve the following LMIs 

RAT +AR + STBT +BS + aR<0 (2.11) 

and 

T]2R ST 

S h 
> 0 

R>4 

(2.12) 

(2.13) 
V\2h 0 

0 M22/2 

where h is the 2 x 2 identity matrix. Assume the problem has a feasible solution; then: 

i) If the controller (2.7) with K = SR~l is applied to the robot, then \\e(t)\\ is expo­

nentially decaying, and 

ii) \\u\\ < Tj. 

Proof: According to Theorem 2.1, (2.11) implies that \\e(t)\\ is exponentially de-

R-1 0 
caying. Multiplying (2.12) by 

0 I2 

> 0 from left and right yields: 

r]2/?-1 KT 

K I2 

> 0 (2.14) 

Using the Schur complement theorem [58] and choosing P = R ' , inequality (2.14) can 

be expressed as: 

KTK<r]2P (2.15) 
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On the other hand: 

\Ke\\2 = eTKTKe < T)2eTPe (2.16) 

To make ||w|| < 77, it is sufficient to have: 

eTPe < 1 (2.17) 

for all t > tQ. Consider the following ellipsoid e centered at the origin: 

E = {eeRn\e1Pe<\} 

Since ||e(f)|| is exponentially decaying, e is an invariant ellipsoid [58]. Thus, if: 

eT(tQ)Pe(to) < 1 (2.18) 

then (2.17) is satisfied. Choose R such that: 

^_1<4 
\ix~2h 0 

0 \ii~2h 

to obtain: 

e(t0)
TR-le(t0) < i [Hi-2\\ePx(to)f + ^-2\\ePy(t0)\\

2 

+»2-2\\eVx(t0)\\
2 + V2-2\\eVy(to)\\2} < 1 (2.19) 

which yields (2.18). The proof follows from the above inequalities. • 
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2.3.3 Noisy Measurements 

In order to take into account the effect of measurement noise on the robot's motion, the 

control law (2.7) is modified as: 

u = Ke + ar (2.20) 

where e = e + 8e, and 8e is the measurement noise which is assumed to have a known 

bound represented by: 

Ae := max||5e||
2 

t>t0 

In this subsection, an upper bound on the steady-state error is obtained and an algorithm 

is proposed to design K such that this upper bound is minimized. 

Lemma 2.1. Given a positive scalar a, let the following inequality hold: 

V + aV-b8e
TQ8e<0 (2.21) 

where b is a positive constant and Q is a symmetric positive definite matrix. Then: 

V(oo)<-max[5/(0Q5 e(0] (2-22) 

(X t>to 

Proof: Multiply (2.21) by em', to obtain: 

jt[eatV]<b8e{t)TQ8e{t)eat 

Integrating from to to t yields: 

t 

eatV(t)-eat°V(to) < J[b8e
T{z)Q8e{x)]ea'dx 

to 
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Multiplying again by e at results in: 

V(t) < -max[5e
T{t)Q8e(t){eat -eat0)]e-at + e-ai'-to)V(t0) 

<x t>t0 

Now, (2.22) is obtained for t —> °°. 

Consider now the system described in Theorem 2.1. Assume R has a lower bound 

Ri and an upper bound Rr given below: 

Rl = 

ft 0 0 0 

0 ft 0 0 

0 0 ft 0 

0 0 0 f t 

(2.23a) 

Rr = 

yx 0 0 0 

0 7i 0 0 

0 0 f 0 

0 0 0 f 

(2.23b) 

where j3i and ft are weighting factors corresponding to the position and velocity error, 

respectively. Furthermore, j \ > 0 is another weighting factor, and £Q is a sufficiently small 

positive number. 

Let the design parameters a > 0 and bf > 0 be given. For any scalar 0 < b < bf, 
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solve the following optimization problem: 

< 0 

min [ a ^ j 3 i + % j 8 2 + r2 r iri] 

subject to 

RAT +AR + STBT +BS + CCR BS 

STBT -bR 

and 

Ri<R< Rr 

w.r.t. 

ft >0, ft > 0, fl > 0 

where Qp1, Q.^ < 0 and Q.ri > 0, are weighting coefficients. It is to be noted that the 

matrix constraint in the above optimization problem is in the form of LMI. If the above 

problem is feasible, calculate: 

- 2 bYi * , bK A 

where Ae := max,>,0 | |5 e ||2 and Aev := maxf>,0 | |4 V | | 2 . Define also 

F' 0<b<bf ' 

In the next theorem, upper bounds on the steady state position error and steady-state 

velocity error are obtained. 

Theorem 2.3. If the controller (2.20) is applied to the robot described by (2.1) with 

K = SR~l, where S and R are given in the above optimization problem, then: 

i) \\e{t)\\ is exponentially decaying for Ae — 0. 
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ii) lim,_»oo ||ep | | < e p,mm-

Proof: The closed-loop system under controller (2.20) can be represented by: 

e = {A + BK)e + BK8e (2.24) 

Let V(t) in (2.21) be equal to eTR le, and choose Q= R l. It can be shown (similarly 

to the proof of Theorem 2.1) that: 

TATD~~1„ I „TD-l A „ , „T vTuTr>-\ „ , s T VTDTD-l. V + aV-bSe1 Q8e Ke'A'R'^e + e1 R~lAe + e1K'BlR~le + 8/ K1 B'R~le 

J T D - I + e1 R~[BKe + e1 R~lBKSe + aelR~ye- b8e
l R'l8t 

T°~l- -\TR~\e 

(2.25) 

Let the right-hand side expression in (2.25) be negative. This condition can now be rewrit­

ten in the following matrix form: 

lT 

eT 5/ 
ATR-1+R-lA + KTBTR-1+R-1BK + aR~1 R~XBK 

KTBTR-X -bR~l 

e 

5, 

<0 

(2.26) 

Relation (2.26) holds for every e and 8e ([e 8e] ^ 0) if and only if the following inequality 

is satisfied: 

ATR-l+R-lA + KTBTR-l+R-lBK + aR~1 R~lBK 

KTBTR-X -bR~l 
< 0 (2.27) 

Pre and post-multiplying (2.27) by 
R 0 

0 R 
and defining KR = S leads to: 

RAT+AR + STBT + BS+aR BS 

STBT -bR 
< 0 (2.28) 
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Now, if (2.28) holds, it is concluded from Lemma 2.1 that: 

Tf.W-l. eWR-le(oo) < - m a x [ 5 / (t)R-l8e(t)} 
CC t>to 

(2.29) 

In order to find an upper bound for the steady-state error, one can use (2.23a) to obtain: 

^ - 0 0 0 Pi 

5/(0*^(0 < &_ 8P 

0 i o o 
0 0 ^ 0 

0 ° ° i 
Jev 

(2.30) 

4"*'l|2+511* 
On the other hand, the following inequality results from (2.23b) for the lower bound: 

eT(t)RTle{t) > Sp 6\> 

k ° ° ° 
0 ^ 0 0 

0 0 eo 0 

0 0 0 eo 
1 

^ - I k p l l + e o l k v l 

or equivalently: 

ji\\ep\\
2<^\\ep\\

2 + e0\\ev\\
2<eT(t)R-1e(t) (2.31) 

Thus, using (2.29), it follows that: 

7i en t>tQ 
(2.32) 

Substituting the upper limits for the position and velocity measured noise from (2.30) and 
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(2.32), an upper bound on the steady-state position error is obtained as follows: 

M - J I I 1 ^ - - ^ (2.33) 

The parameters /?i, fc and J\ can be regarded as the free variables of a minimization 

problem. In addition, note that a necessary condition for (2.28) to hold is: 

RAT + AR + STBT + BS + aR < 0 

which implies that e(t) is exponentially decaying for Ae — 0, according to Theorem 2.1. • 

Remark 2.1. A similar approach can be used to obtain an upper bound on the steady-

state velocity error. To this end, Rr needs to be replaced by: 

Rr 

i ° ° ° 
0 ± 0 0 

0 0 7i 0 

0 0 0 7i 

which leads to the following upper bound: 

\evH\\2< 
bjx A.„ + 
ah"" 

bj\_ 

ccfc 
Aev 

Remark 2.2. It is to be noted that the condition (2.21) becomes relaxed when the mea­

surement error 8e is larger. Thus, smaller values could be found for the ratios Yl/Pl and 

Yl/Pl in such cases. This concludes that the upper bound introduced in (2.33) is not 

directly proportional to Aep and Aev. 
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2.4 Simulation Results 

In Example 2.1 the results obtained for the tracking problem in the presence of input 

constraint are examined by simulations. Example 2.2 is presented to verify the results 

associated with the maximum bound on steady-state error. 

Example 2.1. Consider a WMR, and let the desired trajectory to be followed by the robot 

be a path given by, 

a) xr = 2 cos 0.025?, yr = 2 sin0.025? (circular trajectory) 

b) xr = sinO.lf, yr = sin0.2r (eight-shaped trajectory) 

It is desired to obtain a control input of the form (2.7) in which the magnitude of a is less 

than 77 at all times, while the tracking objective described above is achieved. 

Assume that the experiment is to be performed in a 4x4 m environment; hence, 

max \\ePx\\ = max | \ep \ \ = jUi = 4. Furthermore, let the maximum speed of the robot be 

0.3 m/sec, i.e., max||eVjt|| = max| |evJ| = \X2 — 0.3. Let also T]=0.04; one can then use 

Theorem 2.2 with a = 0.04 and EQ — 2 x 10~9 to obtain the gain matrix K in (2.7) as: 

K = 
-0.0007 0 -0.0469 0 

0 -0.0007 0 -0.0469 
(2.34) 

• Case (a): 

In Figure 2.3, the robot's trajectory in the x-axis is compared with the desired circu­

lar trajectory. A similar comparison is made in the y direction in Figure 2.4. These 

two figures demonstrate that the position tracking objective is achieved here. 

Figure 2.5 shows that the velocity regulation error ev approaches zero in both x 

and y directions. Figure 2.6 shows the trajectory of the robot moving toward the 

circular path from its initial position (1.9,0.1). The norm of the control input for the 
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Figure 2.3: The robot's trajectory tracking along the x-axis for the circular reference signal in 
Example 2.1(a). 

1 

! 

2.5 

2 

1.5 

1 

0.5 

0 

-0.5 

-1 

-1.5 

-2 

I 1 1 1 1 1 1 

if V f \ 

f / \ 1 li \ / '/ \ / 
'/ \ / 
'/ \ / 
J \ / 

\ / \J 

—I 

y • 

\ 

\ 

\ 

\ -

' 
50 100 150 200 250 300 350 400 

time (sec) 

Figure 2.4: The robot's trajectory tracking along the y-axis for the circular reference signal in 
Example 2.1(a). 
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Figure 2.5: The velocity error of the robot for the circular reference signal in Example 2.1(a). 
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Figure 2.6: The robot's trajectory in the 2-D plane for the circular reference signal in Exam­
ple 2.1(a). 
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Figure 2.7: The norm of the control input (| \u\ |) for the circular reference signal in Example 2.1 (a). 

robot is depicted in Figure 2.7, which confirms that the input constraint is satisfied. 

• Case (b): 

In Figure 2.8, the robot's trajectory in the x-axis is compared with the desired eight-

shaped trajectory. A similar comparison is made in the y direction in Figure 2.9. 

Again, the simulations demonstrate that the tracking objective is achieved. Fig­

ure 2.10 shows that the velocity regulation error ev approaches zero in both direc­

tions x and y. Figure 2.11 shows the trajectory of the robot moving toward the 

eight-shaped path from its initial position (-0.1,0.1). The norm of the control input 

for the robot is depicted in Figure 2.12, which shows that the input constraint is 

fulfilled. 
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Figure 2.8: The robot's trajectory tracking along the jc-axis for the eight-shaped reference signal 
in Example 2.1(b). 
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Figure 2.9: The robot's trajectory tracking along the >>-axis for the eight-shaped reference signal 
in Example 2.1(b). 
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Figure 2.10: The velocity error of the robot for the eight-shaped reference signal in Exam­
ple 2.1(b). 
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Figure 2.11: The robot's trajectory in the 2-D plane for the eight-shaped reference signal in Ex­
ample 2.1(b). 
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Figure 2.12: The norm of the control input (| j M j |) for the eight-shaped reference signal in Exam­
ple 2.1(b). 

Example 2.2. In this Example, it is assumed that the robot is to follow a linear path (ramp 

reference tracking) is characterized by: 

Xr=yr = 0.4? (2.35) 

Let a = 0.04, £1^ = — 1, Q.^ = —2, and £lyx = 1. Assume that the measurement noise is a 

random process which is uniformly distributed in the intervals (0,2 x 10 - 5) and (0,10~3) 

for position and velocity measurements, respectively. Using Theorem 2.3 with b = 1.55, 

the gain matrix given below is obtained: 

K = 
•1.6724 0 -0.7615 0 

0 -1.6724 0 -0.7615 

It also results from Theorem 2.3 that an upper bound for the steady-state position error 

is 9.7 x 10 - 3 . The value of the maximum error obtained by simulation is approximately 
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I 

10 15 
time (sec) 

Figure 2.13: The position error along the x and y axes for the linear trajectory tracking of Exam­
ple 2.2. 

equal to 5 x 10~3, which complies with the above result. Figure 2.13 depicts the relative 

position of robot with respect to its desired value in both x andy directions. The velocity 

errors of the robot along the x and y axes are plotted in Figure 2.14, which both converge 

to zero. The planar motion of the formation is sketched in Figure 2.15. 
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Figure 2.14: The velocity error for the linear trajectory tracking of Example 2.2. 
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Chapter 3 

Formation Control of a Platoon of 

Wheeled Mobile Robots Subject to 

Input Constraint and Measurement 

Noise 

3.1 Introduction 

In this chapter, the problem of controlling a group of mobile robots following a trajectory 

while maintaining their formation intact is considered. The control design is carried out 

for the case of unicycle kinematics, which is the most common among wheeled mobile 

robots (WMR). It is assumed that every robot except the leader and the one located at the 

end of each platoon may potentially be a follower with respect to the one immediately 

in front of it, or a leader with respect to the one behind it (see Figure 3.1). The desired 

relative position of each follower with respect to its corresponding leader is assumed to 

be known by that follower. It is assumed also that each follower is capable of sensing its 

relative distance and relative velocity with respect to its preceding robot. 
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Platoon 3 * 

Figure 3.1: Platoon of Mobile Robots. 

First, the stability of the system is investigated in the case of perfect sensing. A feedback 

control law is subsequently proposed to satisfy the design specifications. The impact of 

measurement noise on the followers' motion is then studied, and a control design method­

ology is introduced using linear matrix inequalities (LMI) to minimize the effect of noise. 

This chapter is organized as follows. The problem is formulated in Section 3.1, 

where the main objectives of the work are also presented. In Section 3.2, control strate­

gies are proposed which take the input constraint into account, and suppress the effect 

of measurement noise. Section 3.3 presents simulations to validate the theoretical results 

obtained in this chapter. 

3.2 Problem Formulation 

Let z G l " denote the set of all ^-vectors of generalized coordinates for a WMR. The gen­

eralized coordinates for a unicycle are z = (x,y,Q), where (x,y) represents the Cartesian 

coordinates and 6 is the angular orientation with respect to the jc-axis in an inertial refer­

ence frame. It is desired to control the followers in such a way that they follow the leader 

with a desired accuracy, while the leader follows an unknown trajectory. Let the inertial 

reference frame be centered at the origin O of the plane (see Figure 2.1), the differential 

equations describing the motion of the i-th robot, i e n : = {l,...,n}, with respect to this 
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frame are: 
i* = v? cos 0* 

y' = v' sin 6' 

el = co' 

v' = a' 

(3.1) 

where the acceleration a is the input variable. By assumption, robot 1 is the leader, and 

its dynamic equations is expressed as: 

*' 

yl 

el 

vl 

= vl cos 9l 

= v'sin0' 

= (Dl 

= al 

(3.2) 

The error vector for the i-th follower, i e {2, ...,n}, is subsequently defined as: 

e = (3.3) 

where el
p and e\ are position and velocity error of the j'-th follower, respectively, and are 

defined by: 

^ • • = 

e' 
L ePy J 

S-x1'1 
•4(0 

and 

y-y-'-dttt) 

i ' -x '-1 

yi-yi-l 

(3.4) 

(3.5) 

where d'x(t) and dl
y (t) represent the desired relative position between the i-th and (i — l)-th 

robots in the platoon in the x and y directions, respectively. The objective here is to make 

the position and velocity errors as close as possible to zero. It is to be noted that if e\ and 
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e'v tend to zero, then Gl —> Ql . This means that if the velocity error approaches zero by 

time, then the orientation alignment of all robots in the platoon is guaranteed in the steady 

state. 

Assumption 3.1. The desired relative positions dl
x(t) and d'(t) are either constant or the 

outputs of an autonomous system represented by 

q(t) = Tq(t) 

4(0 = Uxq{t) 

4(0 = nyq(t) 

where q EM.K. Note that all the eigenvalues of the T lie in the open left half-plane except 

one which is located in the origin. Denote with —X the rightmost non-zero eigenvalues of 

r. 

It is supposed that each follower is equipped with the proper sensors to measure its 

relative position and velocity (with respect to its preceding robot). Thus, the error vector 

el can be used in constructing the control input. Now, using equations (3.4) and (3.5), one 

can write: 

t-4(0 4 = 
el 

e' 
L ePy J 

= 

and similarly: 

<-4(0 

v'cose'-v'e'sine'-jc'"-1 

v' sin 0' + v' 6' cos 6' - f~l 

By rewriting the above equations and using the relations 9l — (O and vl = a1, it can 

be shown that: 

4 = "4/ 
. 4 y . 

= 
cos0' — v'sinG' 

sin0' v'cos0' 

a' 

(a1 

•j-\ 

:.-i-l 
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Define: 

cosd1 — v'sin0' 

sin0' v'cos0' 

a' 

00' 

Then: 

Ay. 
= 

. U2 . 

— 

Combining the two equations, the error dynamics can be expressed as: 

"Px 

ePy 

0 0 1 

0 0 0 

0 0 0 

0 0 0 

0 

1 

0 

0 

e' 

eit> 
Py 

4 
vx 

e' 
. vy . 

+ 

0 

0 

1 

0 

0 

0 

0 

1 

u\ 

«2 

0 

0 

1 

0 

0 

0 

0 

1 

jp'-1 

. t~l. 
+ 

-4(0 
-4(0 

0 

0 

or equivalently: 

e'=Ae'+Bu'-Bs'-l-\-<l)(t) 

where u' denotes the control input and sl is defined as 

m (3.6) 

(3.7) 

r«-» — 
l r f - 1 

;;/-! 

Note that Assumption 3.1 implies ||0(f)|| is an exponentially decaying signal, where ||.|| 

denotes the 2-norm. 

Assumption 3.2. It is assumed that each robot's acceleration is uniformly bounded; i.e., 

Ik ' - 1 II < P for' € {2, ...,ft}, where p is a known constant. 

A control law of the following form is proposed for the followers: 

ul = Klel BTPiei 

\\BTPle 
jj-p , i e {2,...,/!} (3.8) 
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to regulate the position and velocity errors for each follower, where Kl € ]R2x4 is a con­

stant matrix and Pl e JR4x4 is a symmetric positive definite matrix. 

Remark 3.1. In the case when | |5 r .PV|| in (3.8) is "close" to zero, the control input can 

be modified as follows: 

u'={ *BTp'e'^ " " , i e{2 , . . . , n} 
Klel + $ \\BTP'el\\<$ 

where & is a sufficiently small positive constant. 

It is desired to design the control law for the followers such that the steady-state 

error is as close to zero as possible in the following three scenarios: 

• Perfect sensing without input constraint 

• Perfect sensing with input constraint 

• Noisy measurements 

3.3 Main Results 

3.3.1 Perfect Sensing without Input Constraint 

Theorem 3.1. Consider a platoon of WMRs moving in formation with leader-follower 

structure, where the dynamics of the followers obey equation (3.7), and suppose the condi­

tions of Assumptions 3.1 and 3.2 hold. Given CL > 0, assume also that there exist matrices 

R' > 0 and Sl satisfying the following LMI: 

RlAT +AR1 + SiTBT + BSl + aRl < 0 (3.9) 

If the controller (3.8) with Kl = S'R1 andP1— R! is applied to follower i, then \\el (t)\\ 

decays exponentially. 
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Proof: It is straight forward to show that (3.7) under controller (3.8) can be de­

scribed by: 

t = (A + BKY - p ^ P -Bs!-1 + Ht) 

Let V1 = e 'VV; then: 

Vi + %Vi = 2eiTPei + $eiTPei 

T pi* pijiliTPpi T T T 
= 2e> P\A + Btfy - 2 „ T .„ P - 2e' P W " 1 + lJ /*>(*) + & / V 

\Bl Ple'\\ 
= 2eiTPi{A + BKl)ei - 2\\BTPiei\\p - 2eiTPiBsi~1 + 2e'V>(r) + $eiTPiei 

(3.10) 

where E, is chosen as: 

0<<^ =min{a,2A}-eo (3.11) 

and £Q is a sufficiently small positive number. In (3.10), it is required to have 

-2\\BTPiei\\p-2eiTPiBsi-1 <0 

or equivalently: 

\eiTPiBsi-1\<\\BTPiei\\p 

which is known to be valid because: 

UT\ 

2\\AxB\\ < ||A||2x||fi||2 

On the other hand, using: 

2AB< ||A||2 + | |5| |2 
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'T 

the term 2el Pl<j>(t) can be rewritten as: 

2<?''7>>(f) = — x 2eiTPl(t>(t) = 2 x (VoeiT) x ( -L/*>(0) 

^Hv^^f+il-^p'Xoil2 

<a||e'||
2 + i||^(0H2 

where a is an arbitrary positive constant. Thus, (3.10) can be modified as: 

V1 + $Vl <2eiTPi(A + BKi)ei + oV'V' + -HP'XOII2 + &iTPiei (3.12) 

•T • • 

By adding and subtracting ael Ple' from both side of (3.12), one can conclude that: 

v' + iv'^nA + BK'y + a/^ + ̂ m'W-ia-V/p-e' + ofe' 
Choose: 

so that: 

Now, if: 

then it follows that: 

a<(a-^)Xmin(Pi) (3.13) 

- (a - £ ) />V + oV'V < 0 

(A + BK'fP1 + P\A + BKl) + aPl < 0 (3.14) 

y ' + ̂ V ' - - | | P ' > ( 0 | | 2 < 0 (3.15) 

Multiplying (3.15) by e^' yields: 

| [ ^y]< i | | p 'X0l l 2 ^ 
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Integrating from to to t, one arrives at: 

e^V(t)-e^V(t0) < / " - | | P « > ( T ) | | V T < / T 

'o 

or equivalently: 

to 

Since ||0(f)|| is an exponentially decaying signal and ||0(f)||2 n a s decay rate 2A, choosing 

£, < 2X in (3.11) results in: 

t 

lim / | | P ; ' < K T ) | | V ^ ' - ^ T - ^ 0 , 
(-><*• J 

It is implied from (3.15) that V'(t) and el(t) are also exponentially decaying signals. Now, 

let P* = Rl~l and K[ = SlPL, then (3.14) is equivalent to (3.9). • 

Remark 3.2. It is to be noted that the design parameter a in (3.9) can be chosen properly 

such that the underlying LMI conditions are feasible. A similar comment can be made on 

the LMI conditions given in the theorems presented in the sequel. 

3.3.2 Perfect Sensing with Input Constraint 

Theorem 3.2. Consider the system described in Theorem 3.1. Define ji\= max||ePjt'|| = 

max | \ep ' 11 and (X2= max | \eVx'\ \ = max \\eVy'\ \, and let the design parameters a > 0, r\ > 0 

be given. Solve the following LMIs 

R'AT + AR' + S'TBT + BS' + aRl < 0 (3.16a) 
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r}2Rl SiT 

Sl h 
> 0 

Rl>4 

(3.16b) 

(3.16c) 
Hi2h 0 

0 jU2
2/2 

where I2 is the 2 x 2 identity matrix. If the problem has a feasible solution, then: 

i) If the controller (3.8) with Kl = S'R1 and P' = Rl is applied to follower i, then 

\\el(t)\\ is an exponentially decaying signal, and 

ii) \\u'\\ < 77 + p . 

Proof: The proof is omitted due to its similarity to that of Theorem 2.2. • 

3.3.3 Noisy Measurements 

The control law (3.8) in the presence of measurement noise on the follower's motion can 

be written as: 
5 rP !e' 

ul = Klel - „_T „.._.„ p (3.17) 
H^P^'lf 

where el = el + 8l
e, and 5l

e is the measurement noise, which is assumed to have a known 

bound represented by: 

Ai:= maxllSJII2 

/>?o 

In this subsection, an upper bound on the steady-state error is obtained and an algorithm 

is proposed to design Kl and P' > 0 such that this upper bound is minimized. To this end, 

the following lemma is presented. 

Lemma 3.1. Assume that g(t) is an exponentially decaying signal. Given E, > 0, let the 

following inequality hold: 

;iT 

V + ?;V-bS?Q5<-\\g(t)\\2<0 (3.18) 

50 



where b is a positive constant and Q is a symmetric positive definite matrix. Then: 

V H < £ m a x [ 5 f ( r ) e S J ( 0 ] (3.19) 

C, t>to 

Proof: Multiplying (3.18) by e$! leads to: 

jt\e^V] < b8i(t)TQ8i(t)et< + \\g(t)\\2e^, V* > t0 

Integrating both sides from to to t, one arrives at: 

t 

e$<v{t) _ e S ' o V { t o ) < J [b5iJ\x)Q8i{x) + \\g{x)\\2\e^dx 

to 

or equivalently: 

t 

V(0 < | m a x [ 5 f ( O e 5 i ( 0 ( ^ - ^ ' o ) ] e - ^ + ^ ( ' o - O v ( r o ) + / ' | | g ( T ) | | V ^ ' - T ^ T 
<jj t>to J 

Since 

lim / | | s ( T ) | | V - ^ ' - T > d T - > 0 , 

to 

hence (3.19) is deduced for t —* °°. 

Remark 3.3. Consider the system described in Theorem 3.1. Let Rl = P' , and assume 

Rl has a lower bound Ri and an upper bound Rr given in (2.23a) and (2.23b), respec­

tively. Using the result of Theorem 2.3 for each follower, it can be concluded that, if the 

controller (3.17) with Kl = SlRl and Pl = Rl is applied to the follower i, then: 

0 lk '(0 II " • a n exponentially decaying signal for A'e = 0. 

ii) lim^ooHe'|| < epMn. 
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An upper bound on the steady-state position error is obtained as (2.33) and Remark 2.2 

holds. This is can be proved by choosing Q— Rl , g(t) = -y^Pl(j>(t), and a selected as 

(3.13). 

3.4 Simulation Results 

Example 3.1. Consider two mobile robots, one leader and one follower, and assume the 

leader moves on a circular track given by: 

x'r = 2cos0.025f 

yr = 2sin0.025f 

The follower is to follow the leader with the following desired distance: 

d(t) 
dx{t) 

dy(t) 
l - 2 ( l - « r ' ) 

Similar to Example 2.1, the experiment is to be performed in a Ax A m environment; thus, 

max| |epj | = max||ep || = jUi = 4. Furthermore, let the maximum speed of the robot be 

0.3 m/sec, i.e., max| |evJ| = max||ev || = \it — 0.3. Consider a control input of the form 

(3.8), and choose r\ — 0.04. Now, one can use Theorem 3.2 with a — 0.04 to obtain the 

control parameters. In this case, the gain matrix K in (3.8) will be: 

K = 
-0.0007 0 

0 -0.0007 

-0.0420 0 

0 -0.0420 

In Figure 3.2, the relative position of the follower with respect to the leader along the 

x-axis is compared with its desired trajectory dx. A similar comparison is made in the y 

direction in Figure 3.3. These figures demonstrate that the desired position tracking is 

achieved asymptotically. Furthermore, Figure 3.4 shows that the velocity regulation error 
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Figure 3.2: Relative position of the follower with respect to the leader along the jc-axis for the 
leader-follower circular trajectory tracking of Example 3.1. 
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Figure 3.3: Relative position of the follower with respect to the leader along the y-axis for the 
leader-follower circular trajectory tracking of Example 3.1. 
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Figure 3.4: The velocity error of the follower for the leader-follower circular trajectory tracking 
of Example 3.1. 

ev approaches zero in both directions x andy. Figure 3.5 shows the trajectory of the leader 

and follower moving toward the circular path from their initial positions (1.9,0.1) and 

(2.8,-0.8), respectively. The norm of the control inputs applied to the follower and leader, 

\\ul\\ and |\uf\\, are depicted in Figure 3.6, which demonstrate that the input constraint is 

satisfied. 

Example 3.2. Consider a multi-agent system, where 2 followers are to follow a leader in 

a linear path. Suppose that the leader and followers are initially located on an equilateral 

triangle with the length of the sides equal to 2 m. The final desired formation is another 

equilateral triangle with the length of the sides equal to 1 m, while the leader is tracking 

a ramp reference signal along both axes, characterized by: 

4(0=>i(0=0.4r 
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Figure 3.7: Relative position of follower 1 with respect to the leader along the x and y axes for the 
leader-follower trajectory tracking of Example 3.2. 

Let a = 0.04, Q.p} = — 1, Clfc = —2, and Q.yl = 1. Assume that the measurement noise is a 

random process which is uniformly distributed in the intervals (0,2 x 10~5) and (0,10~3) 

for position and velocity measurements, respectively. Using Remark 3.3 with b — 1.55, 

the gain matrix given below is obtained for both followers: 

K = 
-1.6724 0 -0.7615 0 

0 -1.6724 0 -0.7615 

It results from Remark 3.3 that an upper bound for the steady-state position error is 

9.7 x 10 . In fact, the steady-state position error obtained from simulation is approxi­

mately equal to 3 x 10~3 which confirms the theoretical development. Figure 3.7 depicts 

the relative position of follower 1 with respect to the leader in both directions. The ve­

locity regulation error of follower 1 along the x and y axes is plotted in Figure 3.8. This 

figure shows that the error approaches zero in both directions. The planar motion of the 

formation is sketched Figure 3.9. 
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Figure 3.8: The velocity of follower 1 for the leader-follower trajectory tracking of Example 3.2. 
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ample 3.2. 
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Chapter 4 

Convergence Analysis for a Platoon of 

Wheeled Mobile Robots Subject to 

Delay in Control Input and Trajectory 

Switching 

4.1 Introduction 

In many real-world applications of the formation control in wheeled mobile robots (WMR), 

the robots are required to switch between different tracking trajectories. Some examples 

of this type of strategy include obstacle avoidance in rescue missions, or collision avoid­

ance in autonomous highway systems [59]. While switching in the parameters of the sys­

tem has been well-investigated in the literature, the problem described above is concerned 

with switching in the reference input not the system parameters. Nevertheless, some of 

the important concepts in the stability analysis of switched systems will be borrowed in 

this chapter to find an error bound in the underlying problem. 

On the other hand, a multi-agent system is usually subject to delay in the state, 
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input or output, due, for example, to communication between agents and control com­

putation. Stability of linear time-delay systems has been extensively studied in the past 

three decades. In [60], [61] linear matrix inequality (LMI) based approaches are used 

to find stability conditions for this type of system. LMI-based techniques are also pro­

posed recently for asymptotic and exponential stability of time-delay systems [62]. There 

are two main approaches to study the stability of time-delay systems: delay-dependent 

analysis and delay-independent analysis. The stability criteria obtained by using the 

delay-dependent approach are, in general, less conservative than the ones obtained by the 

delay-independent approach (note that both methods provide only sufficient conditions 

for stability). 

4.2 Preliminaries 

In the analysis of switched systems, it is well-known that if switching between the sys­

tems occurs too frequently, the overall system can be unstable even if each individual 

systems are stable. The notion of dwell time was introduced in [63] to provide a suffi­

cient condition for the stability of switched systems in terms of switching speed. In other 

words, a system which switches between a set of stable systems is stable if the time in­

terval between the consecutive switchings is greater than a certain value, denoted by T^. 

Different techniques are provided to find the value of 7^ in terms of system parameters 

(e.g., see [64], [65]). 

The stability criterion presented in [63] can be too conservative, in general. The 

notion of average dwell time was then introduced in [66] to remedy this shortcoming 

of dwell time based stability criterion, by allowing fast switchings provided they will 

be compensated for by sufficiently slow switchings throughout the process. While these 

notions are mainly introduced for the stability of systems with parameter jump, they will 

be used to find an error bound for the tracking problem investigated in this chapter. The 
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following definition is borrowed from [66]. 

Definition 4.1. (Average-dwell time) Denote with N(T, t) the number of discontinuities on 

the interval (t, T). The average dwell time Ta is defined to be the time between consecutive 

switches, and is given by: 

Ta > KJ
 T~! VT>t>0. (4.1) 

N0-N{T,t) 

where NQ > 0 is called the chatter bound. 

In this chapter an obstacle-free environment is used, and is assumed that the desired 

tracking trajectories of the robots are known a priori. The robots are required to follow 

a trajectory in this known set, in any given time interval, and this trajectory can change 

instantaneously at the switching instants (which are not necessarily known a priori). The 

convergence properties of the tracking error will then be analyzed by using the Lyapunov 

technique. 

4.3 Main Results 

Consider a platoon of mobile robots, and let the set of possible trajectories for robot i be 

denoted by {0{, . . . , ty'm}, \/i G {2 , . . . , r} where r is the number of followers in the platoon. 

The lemma presented below will prove useful in deriving the main results of this chapter. 

Lemma 4.1. Suppose that the conditions given in Assumptions 3.1 and 3.2 hold. Given 

the strictly positive real parameters £,, X, e and o, let the following inequality hold for a 

Lyapunov function V(e(t)): 

V"' + ̂ i ' -^l l0J(OH2<y, Vie{2,...,r}, ;6{1 m} (4.2) 
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where (j>':(t) represents the j-th trajectory which the i-th robot is to follow. Then: 

V\e{t)) <g-^- f°V'( g ( r 0 ) ) + ( *2 ){e-S(<-'o)-e-2X^} + ^ll-e-^-^} 
a{2X-t,) gg 

(4.3) 

Proof: From Assumption 3.1, it is known that 0j(f) is exponentially decaying. As­

suming that (jfUt) has a decay rate Ay and a gain £,-, then 0'(r) = maxye{] mj <j)lj(t) satis­

fies the following relation: 

f (0 < ee-X{'-'o) (4.4) 

where: 

£ = max {Ej} (4.5a) 
je{l,...,m} 

A = min {A,} (4.5b) 
;e{l,...,m} 

Inequality (4.2) can then be written as: 

V' + SV,<hl>,{t)\\2 + £ (4.6) 

Using (4.4), multiplying (4.6) by e&, and then integrating both sides from to to t results 

in: 

['±[e^V\e(s))]ds < - fte^e2e-n^-^ds+^- f e^ds 
Jt0 ds a Jto g Jt0 

e<V(e(0)-^°V' '(e(f0)) < (-e2e2kt0) [' e-W-S)'ds+ £*[€*' -eto] 

CT(2A-§) gg 

(4.7) 

Multiplying both sides of the above relation by e~^1 yields: 

V(g(0)<g~g(r~fo)y(g(fo)) + ( ,„f2
 e J { g - ^ f - f » ) - e - 2 A ( f - ^ } + 4 [ l - g ^ ( f " f o ) ] 

<7(2A — g) gg 
(4.8) 
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This completes the proof. 

4.3.1 Delay in Sensors 

In this subsection, the trajectory tracking problem in a platoon of WMRs subject to the 

measurement delay is formulated in the framework of time-delay systems, and the stabil­

ity analysis is presented accordingly. 

The error dynamics of a platoon of WMRs in a leader-follower structure was ob­

tained in Chapter 3 as: 

e\t) =Aei{t) + Bui(t)-Bsi-\t) + ty){t) (4.9) 

Now, let the output measurement in the feedback control structure be subject to unknown 

delay. The resultant closed-loop system can then be modeled as follows: 

4{t)=AJ{t)+Bvl{t)-BJ-\t) + 4ij{t) 

M' = ^'V(r-T(0) 

where %(t) is the time-varying delay which is assumed to be a continuous function of 

times satisfying the following conditions: 

\\x(t)\\<h (4.11a) 

| | f(OII<* < 4- l l b) 

where h > 0 and 0 < b < 1 are known values. The following theorem provides conditions 

under which the time-delay system (4.10) is exponentially stable. 

Theorem 4.1. Consider closed-loop system (4.10), and assume the time-delay satisfies 

the conditions in (4.11). Let the conditions of Assumptions 3.1 and 3.2 hold. Assume also 
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that for any given constants a > 0, 0 < £ < a, the gain matrix Kl, there exist symmetric 

matrices Pl > 0, Ql > 0, Z' > 0, i = 1,2, constants 8\ > 0, 52 > 0, gi > 0, and a matrix 

N — [Ni N2] such that the following LMI holds: 

where 

S 
P'A+A'P' + Q' + aP1 

KiT
BTpi 

<? + h 
7' 

0 

0 

Z\ 

+ 
Ni+Nf 

-Nf+N2 

* 

* 

* 

* 

-Ni+N^ 

-N2- -Nl_ 
hN[A BK!] 

-h 
Z\ 0 

0 Zj 
e 

* 

* 

* 

-{* 

hNB 

0 

-hSi 

* 

* 

hN 

0 

0 

-h&i 

* 

P'l 

0 

0 

0 

0 

- 5 

<0 

(4.12) 

(4.13) 
P'BK' 

-(l-b)&eSh 

and * denotes the symmetric terms in a symmetric matrix. Then, under the controller 

(4.10) the solution of the system (4.9) is exponentially convergent to the ball £$(r) with 

the rate X = \%, where r is defined as follows: 

^min{Pl) 
(4.14) 

and 

1 
S\+h8i 
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Proof: Define the positive-defintie Lyapunov-Krasovskii functional as follows: 

V' = e ' V V + f /{q)Qie^q-^ei{q)dq 
Jt-r(t) 

+/° /' 
J-h Jt-\ 

e\q) 

el(q-r(q))_ 

T 
Z\ 0 

o 4_ 
eS(«-0 el(q) 

e^q-^q)) 

(4.15) 

dqdQ 

where P' is a symmetric positive-definite matrix, and Ql, Z\, Z\ are symmetric positive 

semi-definite matrices. 

The derivative of the Lyapunov-Krasovskii functional (4.15) along the trajectories 

of system (4.10) with the given controller, is obtained as: 

V1 + ty'1 <JT{P*A+ATPi)J + ifFBtfeXt - T ( 0 ) + e' rfiV 

- (1 - b)eiT(t - x{t))Qe-ShJ{t - T(r)) + ^ ' V V - 2efTPiBsi-1 + 2e ' 'Vf ' (0 

+ h 

•,T 

el{t) 

el{t-T(t)) 

Z\ 0 

Jt-z(t 

e\q) 

_e\q-x{q))_ 

l 

Z\ 0 

0 Z'2 

e^h e>(q) 

/{q-x{q)) -v(t) 

Note that always exist strictly positive constants c,\, <7i such that 

-l^PBs'-' < l | g ' V f i " 2 -t-p'fl 

2«'V^(0<ai||e'||2 + i-||^'(0l|2 

01 

dg 

(4.16) 
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Thus, (4.16) can be rewritten as follows: 

V1 + £V1 < JT{I*A +ATPi)ei + 2eiTPiBKiei(t - z(t)) + ox<?V + <?Qe1 + J j e 'VV 

( l _ & y y
( r _ T W ) e ^ V > - T ( 0 ) + 

|e'TP ! '5||2 

Si 
. p 2 g i + l | | P y ( 0 | | 2 

<7i 

+ /i 
e*(0 

e\t-x(t))_ 

T 
Z\ 0 

. ° Z2. 

, '(r) 

e ' ( r - T ( 0 ) 

Jt-x(t) 

«*(*) 

*''(?-*(?)) 

Z'J 0 

o zi 
, - « * Jg 

(4.17) 

& DlJ Now, by adding and subtracting cce' P'e1 one can conclude that: 

V"' + <§ V* < e< V ' A + A r P ' > ' + 2eiTPiBKiei(t - r{t)) + a e ' V V + / " Q ' V 

EN Fr* i iT i ^PBEfFe1 

-(a-Z)e' P'e' + Oie1 e' + -

+ h 

Si 

(1 _ hy
T(t _ T(r))G«-e-«V(r - T(0) +P25i + — IIWOII2 

oi 
7- . -, r- n (4.18) 

e\t-x(t)) 

Z\ 0 

o 4 e<(/-T(0) 

Jt-x(t) 

el{q) 

J{q-T(q)) 

T 
Z'j 0 

L° z d 
*-** 

«*(*) 

«' '(?-*($)) 

d<7 

Choose <7i < (a - ^)An,in(P') and substitute (4.13) in (4.18) to obtain: 
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V' + ^ ' < eKt) 

el{t-x(t)) 
g + h 

Z\ 0 

o zi, + 
0 

-f 
Jt-T(t) 

e\q) 
T _ _ 

z[ o 

0 Z< 
e-«* 

ft 

0 0 

el{q-T:{q)) 

e>(t) 

_ei(t-x(t)) 

dq 

+p2Q+^r'f(oii2 

According to the Leibnitz-Newton formula: 

(4.19) 

;{t)-e(t-T(t))- [' e(q)dq = 0 

Using (4.20) and considering an appropriately dimensioned matrix N = 

arrives at: 

Ni N2 

(4.20) 

one 

el{t) 
N ?(0 - e(t - T ( 0 ) - / tAq)dq = 0 (4.21) 

Substituting e from (4.10) in (4.21) one can obtain: 

e'(t) 

e'(t-T(t)) 
N (t)-e(t-x(t))- f {Aei{q)+BKiei(q-z{q))-B^\q) + ^{q))dq 

Jt-x(t) 
:0 (4.22) 
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Adding (4.22) to the right-hand side of (4.19) yields: 

v' + ̂ v' < 
el(t) 

T / 
( 
s+h 

V 

A 

0 

0 

7' 
2. 

+ 
FBBTPi 

Si 

0 

0 

0 
+ 

f e!(q) 

«''(<?- *(?))_ 

r 
7' 

0 

0 

7' 2. 

«-«* + 

r -, 
«'(/) 

/ ( ' - t ( r ) ) _ 

N, + W,r - t y + Wj 

•Wf+tf2 -N2-N{ 

T \ 

e'U 

AfU fl/d 
z; o 

0 Z, 

«'('-T(0) 

,e* 

z; o 

0 Zi 

-«A 
*'(<?) 

* ' ' (?-* (?) ) 

A BK1 '•]V «'(0 

e'( (-TW) 
\dq 

+ h 

y(*-t(o)_ 

«'(0 

y(f-t(r))_ 

^1 

N\A BK' 
Z\ 0 

0 Zi 

e^U S '̂1 Afr 

NB5^BTNT 
e>{t) 

e>(t-x(t)) 

+ hp28x 

+ h N8^XNT 
e:(t) 

e'(t-T(t)) 

•h\\t'(t)\\% 

Suppose that there exist strictly positive constants a and g such that: 

^-Il^(0ll2+*ll^(0ll2ft<illf'(0ll2 

CTl (7 

(4.23) 

2* / P ' p*gx+hpz8x< 

which yields: 

( 7 > 
o-i 

1 
? > Q+/Z5] 

(4.24a) 

(4.24b) 
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From the Schur complement, (4.23) can be written as: 

1 o2 

V' + ^ V ' < S + - | | f ( 0 | | 2 + — (4.25) 

Therefore, if (4.12) holds, it can be concluded that: 

V"' + £ V ( ' - - | | f ' ( 0 | | 2 < £ - (4.26) 

Now, using Lemma 4.1 and on noting that Amin(P
!)||e(r)||2 < V, one arrives at: 

where y/ is a positive constant and X = j%. This completes the proof. • 

Remark 4.1. 77ie control gain K' here is chosen in such a way that it stabilizes the system 

without delay, i.e., the eigenvalues ofA + BK' are located in the open left-half. 

4.3.2 Switching Trajectories 

It is desired in the sequel to find the dwell time between the consecutive switchings for 

each robot in the presence of delay in control input, such that the system remains expo­

nentially convergent to a ball with a specific radius. 

For simplicity, the Lyapunov function V'(e(t)) found in Lemma 4.1 will hereafter 

be represented in the following from: 

V /(e(r))<e-^ /-'0)v''(e(ro)) + 7 { ^ ( t - ^ - e - 2 A ( ' - ' ° ) } + ^ - [ l - e - ^ ' - r o ) ] 

where: 
E 2 

r=l&rT) (4'28) 
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Since the robots switch between different formations, the desired relative position 

between any pair of neighboring robots iandi — 1 ( i e {2,. . . , r}) defined by (dx(t),dy(t)), 

might follow different set points in different time intervals. It is desired now to find out 

how fast these trajectories can switch such that system (4.10) is guaranteed to remains 

stable. It is assumed that the trajectories (d'x(t),dy(t)), i e {2,...,r}, are continuous at 

switching times. The extension of the results obtained here to the case where the tra­

jectories are not continuous at the switching instants straightforward. The following two 

theorems show that system (4.10) is exponentially convergent to a specific ball under the 

dwell time or average dwell time conditions. 

4.3.2.1 Dwell Time 

Theorem 4.2. Suppose that the conditions of Assumptions 3.1 and 3.2 are satisfied with 

the parameters given in (4.4). Denote with T^ the dwell time between two consecutive 

switchings of the relative position of robot i with respect to robot i—\. Then, the error 

signal e(t) in (4.10) exponentially converges to the ball 38(f), where the radius r is given 

by: 

r=\kr{&)^-&)&} + £){——-^ jf-} (4-29) 

The constants <7 and g in the above equation are chosen such that the relations (4.24) are 

satisfied for G\ < (a — %)hnin(P')> where a > 0, 0 < E, < a. Furthermore, the matrix P' 

and scalars £i, 8\ and b\ are found by solving the LMI (4.12) in Theorem 4.1. 

Proof: Denote the switching instants with {^}, i s Z . From (4.3), the quantities 

Vl(e(t\)), Vl(e(t2)), ..., Vl(e(tu)) satisfy the relations given below: 

V'ieih)) < e-«fo-'oV(e(fo)) + y{e-^-^ - ^ d " ' < > ) } + P[\ .g-Sfo- 'o)], 

V* e[*o,fi) 
(4.30a) 
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+ e-^t2-ii)yre-^(ti-to)_e-2k(ti-to)y + y(e-^t2-ii)_e-2X(t2-ti)y 

+ e-Ut2-n)Pln_e-^,-toh + Pl[l_e-^2-'i)] 

< g - « f e - ' o ) V ( e ( f o ) ) + y £ {g-«('2-t*)(g-«(**-»*-i) _ e-mk-tk-i))} 
k=\ 

p 2 2 

(4.30b) 

I 
k=\ 

V\e(tN)) < g - ^ ^ - ' o ) V ' ( e ( / o ) ) + r £ {g-«(*-ft)(e-«to-'*-i) -e-mk-tk-ti)} ( 4 ^ 

Note that: 

where: 

' £ - 2 A 

On the other hand, since: 

AT N 

Ye-$(tN-tk)(i_e-Z(tk-tk-i)\ < y g-^('w-'t) 
Jfc=l k = \ 

therefore, (4.30c) can be rewritten as: 

V'(<to)) <«~*('w~*V>(f0)) + y{e-§,; -e-2Af.*} £c-«('"-'*) + /L £«,-«(*-*) 
Jfc=l " * = i 

(4.31) 

Define now: 

C/ = r { ( | ; )^ -4) *> 
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and let: 

Hence, (4.31) reduces to: 

V\e(tN)) < e-N^iVl{e{tQ)) + (£> + 4 ) E e ^ ^ (4.32) 
$$ k=\ 

or equivalently: 

V'(e(tN)) < e-N^iVi(e(tQ)) + (i;f + £) x \ (4.33) 
gq i _ e s'4 

which means that the system error converges to the ball 3§(r), with r given by (4.29). • 

4.3.2.2 Average Dwell Time 

As discussed earlier in this chapter, the dwell time condition can be too restrictive in 

practice. Thus, as a more relaxed alternative to the dwell time condition, in this subsection 

the average dwell time condition will be derived for the trajectory switching 

In the following theorem, the radius of the ball to which the tracking error exponen­

tially converges, will be obtained in terms of the average dwell time. 

Theorem 4.3. Assume that the reference trajectory (vx,vy) of the i-th robot in t^, k e Z, 

and that the conditions in Assumptions 3.1 and 3.2 hold with the parameters given in 

(4.4). Denote with Tai the average dwell time for N consecutive switchings of the rela­

tive position of robot i with respect to robot i — 1. Then, the error signal e(t) in (4.10) 

exponentially converges to the ball 38(r), where the radius r is given by: 

'-Jw^^&Hfaij^+KUlj^} (434) 

The constants o and q in the above equation are chosen such that the relations (4.24) are 
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satisfied for G\ <(<X — £, )Xmin(P
l), where a > 0, 0 < E, < a. Furtheremore, the matrix Pl 

and scalars q\, 5\ and b\ are found by solving the LMI (4.12) in Theorem 4.1, and NQ is 

a positive constant given in the definition of average dwell time(4.1). 

Proof: The following upper bound we obtained in Theorem 4.2 for a system with 

N consecutive trajectory switchings: 

V , ' ( c ( r A r ) )<H^-^V' ' (« ( r 0 ) ) + (C/ + ^ r ) E ^ ( " v - r * ) (4.35) 

S* k=\ 

For any N > No + 1, the above relation can be rewritten as: 

2 N-No-l N 

Vi(e(tN))<e~^-^Vi(e(t0)) + ^f + ̂ ){ £ *-«('"-'*)+ £ eS(tN-tk)} 
$$ k=l k=N~NQ 

(4.36) 
Let k < N — No; by definition: 

tN — h 
N(tN,tk)-N0< 

Since N(^v,^) = N — k, this implies that, 

Tai 

Tai{N-No-k)<tN-tk (4.37) 

Using (4.37), the relation (4.36) can be expressed as: 

V'(efar)) < e-«^-^ r-»V«(e(r0)) + (C/ + %){~ ~ ^ f + 1 +M>} 
5? 1 — e hai 

Now, as N —> 00: 

V'(*H) < (fr + ^ H , ^ + *o} (4.38) 

£<•> 1 — e s "t 

This means that the error e(t) exponentially converges to the ball S8{r), where r is given 

by (4.34). • 
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4.4 Simulation Results 

In this section, some simulations are presented to demonstrate the efficiency of the results 

obtained. In the first example, a trajectory tracking system with time varying delay is 

studies. Example 2 presents a time-delay leader-follower system with switching between 

tracking trajectories. 

Example 4.1. Consider a leader-follower system consisting of two agents subject to time 

delay in the error measurement. Assume that the error dynamics and control input are 

governed by (4.10), where : 

A = 

0 0 1 0 

0 0 0 1 

0 0 0 0 

0 0 0 0 

, B = 

0 0 

0 0 

1 0 

0 1 

(4.39a) 

T ( 0 = 0 . 1 5 + 0.1sin2r 

K = 
-4.0000 0 -3.0000 0 

0 -4.0000 0 -3.0000 

Assume also that the leader is supposed to track a circular path given by: 

(4.39b) 

4 = 2 cos 0.025/ 

y£ = 2sin0.025f 

The follower, on the other hand, is to follow the leader with the following desired distance: 

d{t) = 
dx{t) 

dy{t) 
l - 2 ( l - e - ' ) 

1 

- 1 

It is straightforward to find the bounds in (4.11) as h = 0.25 and b = 0.2. Now, using 
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Theorem 4.1, and solving (4.12) with the parameters a = 0.2 and £ = 0 . 1 one arrives at: 

P = 

227.3297 0 71.2285 0 

0 2213291 0 71.2285 

71.2285 0 78.0058 0 

0 71.2285 0 78.0058 

ft = 1.7269 x lO 3 , Si= 3.4201 x 103, p =0.0013 

(4.40) 

Now, it results from Theorem 4.1 that X — 0.05 and r = 0.0286, and hence: 

\e{t)\| < <r0-05(<-'°V + 0.0286. 

In Figure 4.1, the relative position of the follower with respect to the leader along the 

x-axis is compared with its desired trajectory dx. A similar comparison is made in the y 

direction in Figure 4.2. 

2.5r 

2 

£ 

X 

-1 

10 20 30 
time (sec) 

40 50 

Figure 4.1: The relative position of the follower with respect to the leader along the *-axis for the 
leader-follower circular trajectory tracking of Example 4.1. 
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20 30 
time (sec) 

50 

Figure 4.2: The relative position of the follower with respect to the leader along the y-axis for the 
leader-follower circular trajectory tracking of Example 4.1. 

Figure 4.3 depicts the trajectory of the leader together with the follower, and demon­

strates that the agents track their desired path asymptotically. Furthermore, simulations 

were carried out and it was observed that the closed-loop system becomes unstable for 

| |T ( / ) | | > 0.3 (note that a delay of this size violates the sufficient conditions for stability). 

Example 4.2. In this example, it is assumed that the desired trajectory of the follower 

switches between three different functions in equidistance time intervals as drawn in Fig­

ure 4.4 and Figure 4.5. 

Assume T(t) = 0.15 + 0.lsin2t; in this case, h — 0.25 and b = 0.2. Now, using 

Theorem 4.1 with a — 0.2 and E, — 0.1 and the same control gain as (4.39b) yields: 
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Leader 
• Follower 

Figure 4.3: The trajectories of the leader and follower in the 2-D plane for the circular trajectory 
tracking of Example 4.1. 

P = 

227.3297 0 71.2285 0 

0 227.3297 0 71.2285 

71.2285 0 78.0058 0 

0 71.2285 0 78.0058 

XminiP) = 49.4791, Si = 3.4201 x 103, 52 = 9, g = 3.8730 x 10"4 

Q = 1.7269 x lO 3 , (7 = 0.5789, p = 0.0013 

For Tj = 20 sec, the values e and A are chosen to be 3 and 1, respectively. Thus, using 

Theorem 4.2: 

/ 0.1350 
r _ V l - e - ° - l f 

For instance, t = 20 sec, /ea<is to r = 0.3951; i.e. //?£ error converges to the ball 

76 



^(0.3951) if the tracking trajectory switches every 20 sec. Figure 4.4 shows the rela­

tive position of the follower with respect to the leader in this case, along the x-axis. The 

desired trajectory dx is also sketched in this figure for comparison. The trajectories in the 

y direction are shown analogously in Figure 4.5. 

7 

f6 
X 

is 

h 

I2 

1 

dx. 

dx. 
Trajectoryl 

Trajectory2 

Trajectory3 

- x ' - x l Trajectoryl] 

y l - l 

-x1-
Trajectory2 

Trajectory3 

10 20 30 40 
time (sec) 

50 60 

Figure 4.4: The relative position of the follower with respect to the leader along the x-axis for the 
leader-follower system of Example 4.2 with circular trajectory tracking. 

In Figure 4.6, the trajectories of the leader and follower moving toward their de­

sired path are drawn. This figure demonstrates that the agents track their desired path 

precisely. 

11 



1 

E 0 

>< 
(0 
I 
i s 
.c 
c .o 
55 o a 

e; _4 

-dy 

-dy. 

-dy. 

- y - / T 

Trajectoryl 

Trajectory2 

Trajectory3 

Trajectoryl 
---J-J 

' } Trajectory2 

— / • / Trajectory3\ 

10 20 30 40 
time (sec) 

50 60 

Figure 4.5: The relative position of the follower with respect to the leader along the y-axis for the 
leader-follower system of Example 4.2 with circular trajectory tracking. 

E, 

- * 

-4 

-0-
- Leader 

— Follower_{Trajectory1} 
- Follower_{Trajectory2} 

Follower_{Trajectory3} 

-2 4 
x(m) 

8 10 

Figure 4.6: The trajectories of the leader and follower in the 2-D plane for the leader-follower of 
Example 4.2 circular trajectory tracking. 

78 



Chapter 5 

Conclusions 

5.1 Summary 

Mobile robots have a wide variety of applications in industry. In this thesis, the trajectory 

tracking problem using wheeled mobile robots (WMR) is studied. The developed results 

can be summarized as follows: 

In Chapter 2, trajectory tracking by a single WMR is studied. Using linear matrix 

inequalities (LMI), a proper controller is designed to stabilize the system under different 

conditions. Input saturation is also addressed by imposing a proper constraint on robot's 

input. Moreover, upper bounds for the steady-state position and velocity errors are found. 

Formation control for a group of mobile unicycle robots is then studied in Chapter 3. 

Input saturation is also addressed by imposing a proper constraint on the followers' input 

in the formulation. Stability analysis is provided, and a controller is designed using LMIs 

to minimize the upper bound of the steady-state errors. Two examples of path following 

are examined by simulation, which demonstrate the efficacy of the proposed methods. 

In Chapter 4, the effect of time delay in formation control with leader-follower 

structure (studied in Chapter 3) is investigated. Using LMIs, stability criteria for the 

system with time-varying delay is obtained and upper bounds on the radii of the balls to 
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which position and velocity errors exponentially converge are given. The result is then 

extended to the case where the trajectories switch. Using the concepts of dwell time and 

average dwell time, upper bounds are obtained for the steady-state position and velocity 

errors in the formation. Simulations show the effectiveness of the results obtained. 

5.2 Future Work 

In what follows, some of the possible extensions to the results obtained in this thesis as 

well as some relevant problems for future study are presented. 

• Obstacle in the environment: In the present work, an obstacle free environment is 

considered. However, in real environments there often exist obstacles which need 

to be considered in designing the controller. 

• Collision avoidance: Another issue which can be considered as future work is col­

lision avoidance. The controller needs to be equipped with a proper emergency 

strategy to maintain a sufficiently large distance between any pair of robots. 

• Adaptive Controller: In Chapter 3, it is assumed that each robot's acceleration 

bound is known. However, this is not a practical assumption in some applications. 

One can use an adaptive control scheme to relax this condition. For instance, an 

adaptive control law of the following form can be used instead of (3.8) for this 

purpose: 

<=>(r) = ||e''V'fl|| 

In this case, it is only required to assume that there exists a bound on each robot's 

acceleration (which could be unknown). 
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