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Abstract 

Myostatin as a regulator of fiber size 

Michal Solecki 

Myostatin is an important negative regulator of muscle mass. Disruption of the myostatin gene 

leads to dramatic increases of skeletal muscle mass. Skeletal muscle is highly plastic and adapts 

in response to changes in workload, activity and pathological conditions. In this thesis, I set out 

to investigate the underlying mechanisms involved in growth in the absence of myostatin. We 

used the myostatin knockout model in combination with synergist ablation or denervation to 

study growth and atrophy. 

During growth induced by functional overload, skeletal muscles increase their mass, midbelly 

and fiber cross-sectional area (CSA), and protein synthesis. The rapid growth also induces the 

activation and proliferation of satellite cells. In skeletal muscle, functional overload in myostatin 

knockout mice led to reduced growth in muscle mass and fiber size and a blunted switch of 

muscle fibers metabolic profile to a slower phenotype compared to their wildtype counterpart. 

Additionally, the distal portion of the plantaris was a region of major remodeling in both groups. 

Denervation through sciatic nerve section is an effective method to induce muscle atrophy. 

Following denervation, a rapid loss in muscle mass and fiber size occurs. Absence of myostatin 

did not prevent muscle mass and CSA loss in response to denervation. Moreover, no changes in 

the expression of MyHC isoforms were found. 

In conclusion, myostatin is not the only regulator skeletal muscle mass. In its absence, 

alternative strategies are employed to reach a different outcome of growth and no protection 

from muscle atrophy was observed suggesting other mechanisms at play. 
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Chapter 1: Introduction 

Myostatin 

The central dogma as enunciated by Crick tells us that all proteins in living cells 

come from DNA[1]. The function of proteins ranges from serving as building blocks to 

regulators and signals of a tight machinery such as myogenesis. Myostatin is such a 

regulatory protein. It was first discovered during a screen for new members of the 

Transforming Growth Factor 3 (TGF-3) superfamily of genes[2]. That same year, it was 

discovered that a mutation in the myostatin gene was causing a dramatic increase in 

muscle mass of cattle[2-4]. Natural mutations in the myostatin gene leading to a 

hypermuscular phenotype have occurred in cattle, sheep and even humans[4-7]. 

Muscles with the mutation have larger myofibers (hypertrophy) and a greater number 

of those muscle cells (hyperplasia). Moreover, animals with a non-functioning or absent 

myostatin gene display a lower fat mass[8, 9]. Gene targeting experiments in mice, 

where the myostatin gene was removed, have led to a similar phenotype[2]. Due to the 

therapeutic potentials, extensive research has focused on myostatin's applications[10-

14]. Thanks to its effects on skeletal muscle, the removal or inhibition of myostatin is an 

effective method to treat many pathological states[10, 12, 13]. It has also been shown 

to be effective in functional improvements in muscular dystrophy[10, 12]. Aged 

myostatin-null mice display no fiber type changes related to ageing[13]. Additionally, 

regeneration is accelerated in the myostatin-null mice when compared to the age-

matched wildtype mice. 
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Member of the TGF-p Family 

Myostatin is similar in structure and functions the same as the rest of the TGF-P 

family (Fig. 2). The family is divided into three subfamilies: TGF-p, bone morphogenic 

protein, and activin[15]. When myostatin is synthesized, it first appears as a precursor 

protein that contains the active ligand and the propeptide[16]. Once processed, mature 

myostatin is secreted[2,16], suggesting a systemic role. The propeptide can bind to the 

mature myostatin producing an inactive complex that is prevented from binding to 

response sites[16,17]. The signaling functions through three main components: the 

ligand, the receptors, and the intracellular mediators (Smads)[18] (Fig. 1). The signaling 

begins with the ligand binding to its type II receptor (Fig. 1-1). The type II receptor binds 

wi th its corresponding type I receptor (Fig. 1-2&3) and will activate the complex (Figl-4) 

and, in turn, activate the Smad protein (Fig. 1-5). The Smad proteins can form a complex 

wi th a common Smad termed Smad4 (Fig. 1-6). The Smad complex can enter the nucleus 

(Fig. 1-7) to regulate transcription in a cell-type-specific manner (Fig. 1-8&9)[19]. 

Another set of Smads, inhibitor Smads (Smad6 and Smad7) serve to stop TGF-P signaling 

by an auto-inhibitory l o o p [ l l ] . In the case of myostatin, the active myostatin ligand 

binds preferentially to Activin Receptor llb[20]. It can also bind, with lower affinity, 

Activin Receptor lla[20]. The type II receptor will bind to either ALK-5 or ALK-4 

receptors[20]. The binding of myostatin to either type II receptors will activate Smad2 

and Smad3, then, will form a complex with Smad4. To counteract the myostatin 

signaling, Smad7 is involved in a negative feedback loop where Smad7 expression is 
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induced by myostatin and the overexpression of Smad7 leads to inhibition of 

myostatin[21]. 

Myostatin's role in myogenesis 

Disruption of myostatin signaling induces hyperplasia. The addition of new muscle cells 

occurs through a process called myogenesis. Myogenesis is involved during 

development and regeneration following a trauma. It is a process that can be separated 

into 2 steps: proliferation of cells and differentiation and maturation of proliferated 
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Figure 1 TGF-0 signaling pathway 
(1) The ligand binds to the type II receptor. (2) The type II receptor associates with the type I receptor. (3) The two 

receptors form a complex. (4) The complex is activated. (5) The Smad protein is activated. (6) The Smad protein forms 

a complex with Smad4. (7) The Smad complex enters the nucleus. (8) The Smad complex with a DNA-bindirig partner 

binds DNA. (9) The complex initiates the transcription of specific genes. Image taken from [19]. 
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cells. This process is under the regulation of a family of proteins called Muscle 

Regulatory Factors (MRFs) (Fig. 2)[22-25]. The MRF family includes Myf5, MyoD, 

myogenin and MRF4[22]. Each of these factors has overlapping but also distinct 

functions in myogenesis. Indeed, it has been reported that Myf5 enhances myoblast 

proliferation, whereas MyoD induces differentiation by cell cycle withdrawal[26]. 

Myogenin is required for the differentiation of myoblasts[27] and MRF4 is thought to be 

important in the maturation of myotubes[28, 29]. 

Satellite cells are adult skeletal muscle stem cells that are involved in myogenesis 

following a trauma[30]. The satellite cells reside beneath the basal lamina juxtaposed to 

muscle fibers[30]. Under normal conditions, satellite cells remain quiescent but can be 

activated due to damage caused by mechanical stress[31-34], chemical injection[34] or 

extreme cold[35]. With a modest stimulus, satellite cells divide, differentiate and can 

fuse with pre-existing myofibers[30, 34]. In more extreme circumstances, the myoblasts 

that form after satellite cell division can fuse together and give rise to a new fiber within 

the basal lamina[32, 33]. 

The quiescence of the satellite cells is controlled by another regulatory protein 

called paired-box 7 (pax7)[36, 37]. The Pax genes have important roles in tissue 

specification and organogenesis such as the central nervous system (Pax2, 3, 5-8), 

kidneys (Pax2 and 8) and skeleton (Paxl and 9)[38]. The different functions of the Pax 

genes include the maintenance of a multipotent state, direction into a differentiation 

program, cell migration, proliferation, and survival[38]. In skeletal muscles, Pax3 and 

Pax7 appear to be implicated in these functions in satellite cells. Pax3 is especially 

4 



important in the embryo for the migration of muscle progenitors from the somite to 

more distant sites of myogenesis. Pax3 is also necessary for the activation of Myf5 

following this migration to activate the myogenic program[39]. Subsequent myogenesis 

depends on Pax3 and Pax7. These new cells provide a source of myogenic progenitors 

for all subsequent muscle growth[38]. During the early postnatal period, approximately 

30-35% of nuclei come from satellite cells [40, 41]. Over time, this proportion falls to 

only l-4%[42].Later on, Pax7 is especially important for satellite cell survival and 

renewal. The removal of Pax7 causes satellite cell death which cannot be substituted by 

Pax3[37]. 

Myf-5 
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Figure 2 Myogenesis and MRFs 
Pax7 maintains satellite cell quiescence, but upon activation, the primary MRFs, Myf5 and MyoD, are required for 

myogenic determination, whereas, the secondary MRFs, myogenin and MRF4, are required for differentiation. Image 

adapted from [43,44]. 
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To understand the mechanism by which myostatin regulates muscle mass, gain 

and loss of function analysis was done in cell culture. Myostatin addition to the cell 

culture inhibits myoblast proliferation and differentiation[45-47]. This inhibition is also 

dose-dependent[45]. Myostatin prevents the progression of myoblasts through the cell 

cycle[45]. Smad3 is known to interfere with MyoD[48], and therefore, the reduction in 

activity of MyoD could interrupt the cycle[47]. 

Myostatin and activation of satellite cells 

Myostatin is present in satellite cells and myoblasts[49]. Not surprisingly, 

increased activation of satellite cells occurs in the absence of myostatin[49]. It is also 

important to note that, in vitro, myoblasts from Mstn-/- mice stopped proliferating and 

differentiated into myoblasts much later than myoblasts taken from wildtype (Mstn+/+) 

mice. In the Mstn-/- myoblasts, myoD is expressed for a longer period of t ime and the 

induction of myogenin is delayed when compared to the wildtype {Mstn+/+) 

counterpart[49]. Additionally, myostatin signals through Pax7 to regulate satellite cell 

renewal[50]. Myostatin addition severely downregulates Pax7 expression and absence 

of myostatin causes an upregulation in Pax7[50]. In vitro, cells from myostatin-null mice 

display higher levels of Pax7[50]. During differentiation, lack of myostatin results in an 

increased pax7 expression and those elevated levels are maintained considerably 

longer[50]. More recently, a controversial study found that the loss of myostatin does 

not lead to increased satellite cell activation and the increased muscle mass is mostly a 

result of hypertrophy[51]. As mentioned previously, myostatin's inhibitory action on 
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satellite cells is dose-dependent; however, the concentration used in the latest study 

was below a concentration where no effect was previously observed[45, 47]. 

Myostatin and growth pathways 

One of the best known growth-promoting factor is the insulin-like growth factor, IGF-I. 

IGF-I is synthesized in the liver under growth hormone (GH) control[52]. The induction 

of hypertrophy by IGF-1 is dependent on a pathway initiated by phosphatidylinositol-3-

kinase (PI3K) which regulates Akt. Targeted activation of Akt also leads to muscle 

growth[53, 54]. Surprisingly, Akt activation does necessarily occur through the IGF 

receptor following increased mechanical loading on skeletal muscle[55]. 

Moreover, IGF-I is thought to induce the activation of satellite cells[56]. Most of 

the data is restricted to cell culture, however, muscle hypertrophy by delivery of IGF-I is 

blocked by irradiating the muscle[57]. Irradiation is thought to prevent satellite cell 

activation, however, little is known about the non-specific effects on other cell types[58, 

59]. A recent study has shown that Akt activation does not lead to satellite cell 

activation[60]. The authors did not, however, label satellite cells to determine the 

amount of growth attributable to satellite cell activation. Myostatin has also been found 

to interact with the IGF pathway (Fig. 3). In vitro, overexpression of myostatin 

attenuates myotube growth and reduced Akt phosphorylation[61, 62], whereas the 

absence of myostatin is sufficient to induce growth[61]. Inhibition of Akt 

phosphorylation also blocks myostube hypertrophy even in the absence of 

myostatin[61]. 
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Protein synthesis Differentiation Protein degradation 

Increased Skeletal muscle size 

Figure 3 Myostatin and IGF signaling interactions 
Many interactions are known to exist between the myostatin and IGF pathways. Redundancies are found at different 

levels and act the pathways in concert to balance the size of skeletal muscle. Image modified from [63], 

Myostatin and atrophy pathways 

Atrophy is defined as a decrease in cell size mainly caused by a loss of organelles, 

cytoplasm and proteins[64]. In the case of skeletal muscle, atrophy occurs when the rate 

of protein degradation exceeds the rate of protein synthesis[65]. Gene expression 

comparison in different models of atrophy shows a subset of genes commonly up- and 

downregulated in muscle. These genes that are common to all atrophy models are 

called atrophy-related genes or atrogenes[66], suggesting a process controlled by 
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specific signaling pathways. The two most induced genes in skeletal muscle specifically 

are responsible for protein degradation: atrogin-1 and MuRFl[67, 68]. 

Atrogin-1 and MuRFl are known to induce protein degradation by using the ubiquitin-

proteasome system[67]. In this system, proteins are tagged and degraded by a 

proteasome[69, 70]. The specificity of the tagging is due to the ubiquitin ligases which 

contain a specific target-recognition subunit[69]. Atrogin-1 and MuRFl are ubiquitin 

ligases. Some of the identified targets of atrogin-1 are MyoD and myogenin[71, 72]. 

Importantly, recent findings suggest MuRFl is involved in the degradation of 

MyHCs[73]. The knockout of either MuRFl or atrogin-1 makes mice partially resistant to 

atrophy. 

Under atrophic conditions, treatment with IGF-I results in reduced activation of MuRFl 

and atrogin-l[74, 75]. Akt can stimulate skeletal muscle hypertrophy but also inhibits 

atrophy. The mechanism by which Akt regulates atrogin-1 and MuRF-1 involves the 

FoxO family of transcriptions factors [74, 75]. Phosphorylation of FoxO proteins 

promotes the export of FoxOs from the nucleus to the cytoplasm. Upon 

dephosphorylation, FoxO proteins translocate to the nucleus[76]. Accordingly, mice 

overexpressing FoxOl show a markedly reduced muscle mass, further supporting the 

role of FoxO In atrophy[77]. 

In many different models of atrophy such as disuse, denervation, disease and 

sarcopenia, myostatin is increased[78-81]. A link between myostatin's function and 

atrophy was found through FoxOl. FoxOl can bind to myostatin's promoter region and 

increase the expression of myostatin[82]. This effect can be potentiated in the presence 
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of Smad proteins[82]. Furthermore, myostatin treatment induces cachexia by inhibiting 

Akt phosphorylation and thereby increasing levels of active Fox01[83]. This suggests 

that myostatin is involved a feed forward mechanism where myostatin increases FoxO's 

activation, which in turn, increases myostatin's expression. 

Metabolic changes in Mstn-/- mice 

Changes in the expression of different isoforms of the major contractile protein of 

skeletal muscles, myosin, have also been observed. Myostatin-null mice have a greater 

proportion of fast glycolytic fibers in all skeletal muscles studied[84-86]. Interestingly, in 

animals expressing normal levels of functioning myostatin, fast muscles express more 

myostatin and this expression is highly correlated with the proportion of fibers 

displaying MyHC llb[81]. MyoD, a muscle regulatory factor, preferentially expresses 

MyHC Mb. In turn, myostatin-null mice express higher levels of MyoD[86]. It has been 

indeed shown that MyoD is one of myostatin's targets[47, 86]. To further support 

myostatin's role in the switch towards a faster glycolytic phenotype, functional 

assessment of ATPase and succinate dehydrogenase (SDH) activity confirms a shift 

towards a faster and more glycolytic phenotype in myostatin-null mice[85]. 

Furthermore, the number of mitochondria is reduced[85]. 

Factors affecting muscle growth 

Functional overload involves surgical removal of synergistic muscles causing a 

rapid growth response that leads to increased muscle mass, greater muscle midbelly 

and fiber cross-sectional area and protein synthesis[87-91]. In two to four weeks of 
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overload, the plantaris mass almost doubles[91]. These changes are also marked by a 

change in myosin heavy chain expression that follows a fast-to-slow transition[89, 90]. 

The time-course of changes following the compensatory response to removal of 

synergistic muscles occurs in two distinct phases: an immediate short-term 

inflammatory reaction and a slower long term adaptation to the elevated demands on 

the muscle[92]. 

The initial phase involves increased water content and invasion of the muscle by 

inflammatory cells[92]. The invasion is very rapid since two hours is sufficient to detect 

significant changes in the population of neutrophils[93]. The peak response occurs 

within the first 24 hours and is maintained up to five days post-surgery, after which the 

response declines[92]. By two weeks after the surgery, the levels of inflammation are 

back to normal. At the same t ime, markers of myogenesis become significantly higher 

after just 12 hours of overload[94]. 

Further on, the anabolic effects of IGF-I are well known. IGF-I can induce 

hypertrophy both in vitro and in v/Vo[95, 96]. Insulin-like growth factor I (IGF-I) is also 

upregulated 3 days following overload[97, 98] and its downstream target Akt becomes 

phosphorylated[54]. This increase in the growth factors is growth-hormone 

independent[98]. However, IGF-I has also been found to be dispensable to induce 

hypertrophy following functional overload[55]. The rapid initial growth has also been 

attributed in part to the proliferation of satellite cells[59]. Following, hypertrophy, the 

ratio of nuclei to cytoplasmic volume is maintained and it would therefore require new 

cells to donate their nuclei[57, 99]. Since muscle is formed of post-mitotic cells, 

11 



hypertrophy is dependent on activation of satellite cells and their fusion into existing 

myofibers[100]. 

Following the acute response to overload, slower adaptations in the 

morphological and biochemical structure will occur. The changes in MyHC expression 

are extensively described with significant differences after only two weeks[89, 91,101]. 

During that time frame, the expression of MyHC lla is already increased and remains 

high. After four weeks, the proportion of fibers expressing MyHC I increases as well. The 

reduction in MyHC lib is apparent after six weeks of overload. Changes in activity of 

different enzymes are coordinated with the expression of distinct MyHC isoforms 

following functional overload. The oxidative enzyme SDH activity increases, whereas the 

glycolytic glycerol-3-phosphate dehydrogenase (GPDH) activity declines[89]. Recently, a 

few studies have tried to determine the capacity of the genetically altered mice to 

perform exercise and to adapt to the functional demands[102-104]. Mstn-/- mice have a 

reduced exercise capacity; however, the amount of daily exercise performed varies 

among the studies[103,104]. More importantly, the muscles of Mstn-/- mice maintain 

their plasticity to meet the functional demands[102, 103]. 

Factors involved in muscle atrophy 

Denervation through sciatic nerve section is an effective method to induce atrophy. 

Similar to all disuse models, 2 weeks of denervation in rodents causes a reduction in 

muscle mass between 30-50% wi th a concordant change in individual fiber size[66, 79, 
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105]. Just as in overload, changes in MyHC expression also occur; however, 

discrepancies exist among the studies as to the direction of the switch[105-108]. 

Denervation atrophy has an initial rapid, then slow phase[66, 79]. During the first two 

weeks, up to 50% of the muscle mass is lost. Longer studies up to eight weeks show no 

additional loss[66, 79]. 

Many genes are differentially expressed during the initial phase. MuRFl and MAFbx are 

among the mRNA most drastically induced by denervation[66, 109, 110]. These 

atrogenes start rising after one day of denervation, reaching their peak at three 

days[66]. The expression of those genes is dependent on the FoxO family of 

transcription factors, FoxOl and Fox03a[74,109, 111]. Fox03a directly binds to the 

MAFbx promoter region and induces its transcription; whereas FoxOl, synergistically 

with the glucocorticoid receptor, induces the expression of MuRFl. Although, the levels 

of MuRFl and MAFbx return to basal levels after 14 days, FoxOl can remain elevated up 

to 28 days following surgery[66]. Besides protein degradation, apoptosis also 

contributes to muscle mass loss[112]; however, the earliest time point where apoptosis 

can be detected is two months[113]. 

Changes in the expression of the different isoforms of MyHCs are well described in 

rats[106, 114]. The direction of the change depends on the predominant fiber type of 

the muscle prior to denervation[106, 115]. Fast muscles develop a tendency towards a 

slower phenotype and slow muscle show a shift towards a fast phenotype. The effect of 

denervation on mice appears to differ f rom rats since mice do not lose MyHC l[105]. 
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However, mice still show a reduced oxidative capacity, typical of denervation-induced 

atrophy. 

In wildtype animals, myostatin expression levels rise very rapidly and peak after three 

days of denervation[79]. The protein levels peak at seven days and remain elevated up 

to 28 days[79]. A similar trend can be seen in myostatin's downstream target, the 

phosphorylated Smad2[79]. As mentioned previously, myostatin's expression is muscle 

specific and its expression correlates with the percentage of MyHC Mb isoforms 

expression[81]. In fact, no myostatin is found in the soleus muscle[81]. It is not 

upregulated in soleus either when atrophy is induced by hindlimb unloading[81] 

suggesting an alternative pathway. Different models of atrophy consistently lead to an 

upregulation of myostatin[78, 81 , 116-120]. 
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Introduction to manuscripts 

The following chapters are manuscript to elucidate myostatin's role in regulating muscle 

fiber size. We used the myostatin knockout model to assess whether absence of 

myostatin 1) enhances muscle growth when forced to hypertrophy and 2) protects 

skeletal muscles from atrophy. 

Myostatin is involved in satellite cell activation and in growth pathways. No study up to 

date has focused on the capacity of myostatin-null mice to activate satellite cells 

following synergist ablation. Myostatin is downregulated following functional 

overload[98]; however, the capacity of these muscles to undergo the changes that occur 

in the absence of myostatin has not been determined. I hypothesize that functional 

overload will induce a potentiated growth in myostatin null mice. This growth would be 

a result mostly due to greater hyperplasia. 

As mentioned previously, myostatin is upregulated in different models of skeletal 

muscle atrophy. Treatments targeting the myostatin pathway can also partially prevent 

atrophy. However, the effects of constituent knockout of myostatin on denervation 

have not been studied so far. I hypothesize that muscles from Mstn-/- mice will be 

spared from atrophy normally observed following denervation. 
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Chapter 2: Myostatin attenuates hyperplasia and is 

important for muscle remodeling during compensatory 

growth 

Manuscript in preliminary phase of preparation 

16 



Abstract 

Myostatin is a negative muscle mass regulator part of the TGF-R family of growth 

factors. The increase in muscle mass is a result of hypertrophy and hyperplasia. To 

investigate the role for myostatin (Mstn) in muscle fiber remodeling, we compared the 

effects of functional muscle overload of the plantaris in Mstn Knockout (Mstn -/-) and 

wildtype {Mstn+/+) mice. The muscle midbelly area of non-overloaded (OV) Mstn-/-

mice was double that of Mstn+/+ counterparts due to a higher number of muscle fibers 

and fibers displaying greater cross sectional size. Six weeks of functional overload led to 

a blunted growth marked by significant differences in the increase in mean midbelly 

area (Mstn+/+: 90%; Mstn-/-: 23%; p<0.05). The blunted growth was concomitant with 

increases in individual fiber sizes (Mstn+/+: 35%; Mstn-/-: 8%; p<0.05). Additionally, 

muscles from Mstn-/- mice maintain the plasticity to adapt to functional demands as 

marked by changes in the expression of the different isoforms of MyHC, however, that 

response was also blunted. Following the surgery, the distal portion of the plantaris 

muscle was a region of major remodeling in both groups. Compared to their wildtype 

{Mstn+/+) counterparts, Mstn-/- mice displayed more damage marked by EBD and more 

regeneration marked by 5-bromo-2'-deoxyuridine (BrdU) and myogenin. This 

differential growth pattern may be of importance when considering Myostatin-related 

therapies in aging and diseases such as muscular dystrophy. Funded by CIHR, NSERC and 

CRC. 
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Introduction 

Myostatin is a negative muscle mass regulator part of the TGF-IS family of growth 

factors[121, 122]. Natural mutations in the myostatin gene leading to a hypermuscular 

phenotype have occurred in cattle, sheep and even humans[4-7]. Mice lacking 

myostatin display a doubling in muscle mass as a result of hyperplasia and 

hypertrophy[122]. By binding to its receptor, activin lib receptor[123], myostatin inhibits 

the proliferation and differentiation of muscle fibers. This effect was also observed in 

vitro using c2cl2 cells[124, 125]. Following the binding of myostatin to its receptor, a 

signaling cascade involving Smad proteins[126, 127] begins and results in the inhibition 

of the growth PKB/AKT pathway and activation of the atrophy pathway through the 

forkhead box O (FOXO) transcription factor and Muscle Ring Finger 1 (MuRFl) / Muscle 

Atrophy F-box (MAFbx) (also known as atrogin-l)[128-131]. 

Plantaris muscle functional overload is a well established model to study muscle 

growth in rodents[88, 132]. It is achieved by removing synergist soleus and 

gastrocnemius muscles. The changes following the surgery occur in two distinct phases. 

The long term changes are well documented and are characterized by increased muscle 

mass, greater midbelly area, an increase in midbelly fiber size as well as protein 

synthesis[133, 134]. The muscle fibers also undergo a transition from fast, glycolytic, to 

slower, more oxidative energy efficient phenotypes. In rodent fast muscle, the myosin 

heavy chain enzyme component of myosin follows a conversion pattern in response to 

overload from the fastest to the slowest isoform in the order: MyHC lib -> llx -> Ha -> 

l/slow[135-137]. In control plantaris muscles, cells expressing the various MyHCs display 
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distinct metabolic profiles[89]. Muscle fibers expressing MyHC Ma have a greater mean 

SDH activity than all other isoforms in the order: Ha -> I -> llx -> lib. As for GPDH 

activity, fibers expressing MyHC Mb and llx have the greatest mean activity followed by 

fibers expressing MyHC Ma and I. Changes in activity of metabolic enzymes are also 

coordinated with the expression of distinct MyHC isoforms following functional 

overload. The oxidative enzyme SDH activity increases, whereas the GPDH activity 

declines[89]. Most recently, studies have demonstrated that Mstn-/- muscles 

maintained the plasticity to increase their oxidative capacity following exercise[102, 

103]. 

The initial phase following the surgical ablation involves increased water content 

and invasion of the muscle by inflammatory cells[92]. The peak response occurs with 

24hrs and is maintained up to five days post surgery. By two weeks, the levels of 

inflammation are back to normal[92]. 

The literature on muscle damage following functional overload is limited due to 

the confounding inflammation, however, unloading/reloading, stretch and eccentric 

contractions are known to cause muscle damage[31, 138, 139]. Most importantly, the 

location of the injury and regeneration remains consistently in the distal portion of the 

plantaris muscle[138]. Interestingly, proliferating cells were found mostly in the distal 

regions of plantaris muscle in overload rats[140]. Muscle regeneration after injury has 

similarities to muscle development during embryogenesis and seems to follow the same 

procedure[141]. Muscle satellite cells, normally located within the basal lamina of the 

muscle, become activated, proliferate and differentiate to become mature muscle 
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fibers. Following differentiation, satellite cells can incorporate their nuclei into pre

existing fibers to repair damaged fibers[142,143]. Interestingly, satellite cells were 

found to be more concentrated at the ends of growing muscle fibers[144]. In their 

quiescent state, satellite cells are found to express Pax7 and/or Myf5[145-148]. The 

population of satellite cells in muscles remains fairly constant throughout adult life 

which requires the satellite cells to possess a self-renewal capacity, a phenomenon still 

poorly understood[149, 150]. One of the stimuli known to activate satellite cells is 

functional overload[151]. 

To better understand Myostatin role in growth, we subjected wildtype (Mstn+/+) 

and Mstn Knock-out mice (Mstn-/-) to functional overload for different periods of t ime. 

We hypothesized the plantaris of OV Mstn -/- mice would have a potentiated growth 

response implicating muscle satellite cells compared to Mstn+/+ OV counterparts. 
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Materials and methods 

Animal care and protocols 

All animal care and experimental procedures were performed in accordance with 

the guidelines established by the Canadian Council of Animal Care. These procedures 

were approved by the University Animal Research Ethics Committee (UAREC) of 

Concordia University. Mstn-/- mice were kindly donated by Dr. S.-J. Lee. (Johns Hopkins 

University School of Medicine, Baltimore, MD) 

Animal surgeries 

All surgical procedures were performed under aseptic conditions on animals 

anesthetized by intramuscular injection (1.2 pl/g) of 100 mg/ml ketamine hydrochloride 

and 10 mg/ml xylazine in a volume ratio of 1.6:1. For OV experiments, compensatory 

hypertrophy of the plantaris was induced in each in limb in Mstn+/+ and Mstn -/- mice 

by surgically ablating the soleus and a major portion of the gastrocnemius muscle. The 

mice were overloaded for periods of 24 hours, 3 days, 7 days, 14 days or 42 days. 

Following the surgeries, the mice were given children's ibuprofen diluted in water for 

the first 3 days. No ibuprofen was added for the rest of the duration of the functional 

overload period. After a period of convalescence (3-7 days), the OV mice were exercised 

daily for 60 minutes by placing them in an exercise ball (12 cm diameter). Plantaris, 

Tibialis anterior, Extensor digitorum longus muscles from control or overloaded mice 

were excised and either frozen directly in liquid nitrogen or embedded in OCT (Tissue-

Tek, Torrance, CA) and frozen in melting isopentane before being put in liquid nitrogen. 

Tissues were stored at -86°C until processed. 
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Cell nuclei labeling 

During cell division, DNA is replicated to generate 2 identical cells. 5-bromo-2'-

deoxyuridine (BrdU), a synthetic nucleoside, can substitute for thymidine during DNA 

replication [152]. The inserted BrdU can then be labeled with a specific antibody, thus 

indicating the nuclei that have undergone DNA replication. The proliferation in the 3-day 

overloaded plantaris muscle was assessed by the uptake of BrdU [91]. Briefly, 50mg/kg 

of body weight was injected daily intraperitoneal^. The first injection was administered 

following the overload surgery; the others were done at 24 hour intervals and the last, 2 

hours prior to extraction. 

Immunohistochemistry 

Antibodies used were: MyHC I: A4.840, (1:25, Developmental study hybridoma bank 

(DSHB), University of Iowa, Iowa city, IA); MyHC lla: SC71 (1:12.5; DSHB); MyHC llx: 6H1 

(undiluted; DSHB); MyHC lib: BF-F3 (1:25; DSHB); MyHC emb I: F1.652 (1:10; DSHB); MyHC emb 

II: 47A (1:10; DSHB); anti-mouse HRP : IgG A8924 (Sigma-Aldrich) or IgM A8786 (Sigma-Aldrich). 

To determine the MyHC isoform expressed by each fiber, cryosections (10 pm) were cut 

from the same anatomical location in each muscle midbelly and recovered onto 

Superfrost Plus microscope slides (Fisher Scientific). First, the sections were blocked in 

5% goat serum in a carrier solution consisting of 0.5% bovine serum albumin (BSA) in 25 

mM phosphate buffer solution (PBS) (pH = 7.4) for 30 minutes. The sections were then 

probed overnight at 4°C in carrier solution with one of the following primary antibodies 

raised against the different MyHC types (I, lla, llx, Mb, Embryonic). After three 10-min 

PBS rinses, sections were then probed at room temperature with either horseradish 

22 



peroxidase-conjugated anti-mouse IgG (MyHCtype lla, 1:25; Embryonic, 1:50) or IgM 

(MyHC type 1, llx, lib; 1:25) (Sigma-Aldrich). The sections were rinsed three times with 

PBS for 10 minutes. The bound antibody complexes were then visualized using 

diaminobenzidinetetrahydrochloride (DAB) as per the manufacturer's instructions (Thermo 

Fisher Scientific, Rockford, IL). DAB makes the bound peroxidase-conjugated antibodies 

turn brown and can be visualized with a light microscope. 

Three to five distinct regions were selected randomly from the midbelly of each 

plantaris muscle. All fibers in those regions were identified across each serial tissue 

section with the aid of a Retiga SRV camera (Qlmaging, Surrey, BC, Canada) mounted on 

an Olympus BX-60 (Olympus, Center Valley, PA) microscope. Each area of interest 

comprised approximately 75 fibers. The images were analyzed using ImagePro Plus 

version 6.2 software (Media Cybernetics, Bethesda, MD). Fibers were classified 

according to their staining profile with the distinct antibodies. For consistency, cell size 

was measured on a single non-stained muscle section fixed with 1% paraformaldehyde 

for 20 minutes in PBS followed by 3 washes in PBS for 5 minutes each. 

For central nucleation, muscles cryosections (10 u.m) were obtained and 

recovered on Superfrost® Plus Slides. The slides were processed for hematoxylin and 

eosin staining, dehydrated and mounted. Images were captured covering the whole 

belly and all muscle fibers were classified according to the number of centrally located 

nuclei. Results were normalized to the belly area. 
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SDH and GPDH activity 

SDH and GPDH activity was measured as described previously[136]. All images were 

captured with the aid of a Retiga SRV camera mounted on an Olympus BX-60 

microscope. OD analysis was completed using ImagePro Plus version 6.2. For SDH, serial 

sections (14u.m) of muscle were cut from the plantaris muscle midbelly and were 

adhered to slides. The slides were placed under a microscope. The tissue was first 

incubated in the dark at 23°C in a substrate-free blank solution consisting of 1 mM 

sodium azide, 1 mM l-methoxyphenazine methosulfate (MPMS), 1.5 mM NBT, and 5 

mM EDTA in 100 mM sodium phosphate buffer (pH 7.6). The reaction was allowed to 

proceed for 10 min to allow for endogenous staining to plateau. The blank was then 

replaced with a substrate solution consisting of the above reagents plus 48 mM succinic 

acid. Images were captured every 2 min for 10 min. During this t ime, increases in optical 

density (OD) are linear (data not shown). 

For measurement of single fiber GPDH activity, serial sections (14 pm) were cut, 

adhered to slides, and distributed between two coplin jars kept at -20°C. A blank 

solution consisting of 1 mM sodium azide, 1 mM MPMS, 1.2 mM NBT in 100 mM sodium 

phosphate buffer (pH 7.4, 37°C) was added to one jar while a solution of the above 

reagents plus 9.3 mM a-glycerophosphate was introduced into the other for the 

substrate reaction. Tissue sections were incubated in the dark for 24 min at 37°C. The 

reactions were then stopped by extensive rinsing with distilled water (5 times plus 3 x 1 

min). Sections were air-dried and mounted with glycerine (Sigma). Images of the blank 

and end-point substrate reactions were captured and processed for OD analysis. 
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The average grayness for all pixels within this traced area was determined across all 

saved sequential images and converted to an OD value. The enzyme specific activities 

were expressed as the change of OD over t ime (OD/min; average r2 > 0.99). The cross-

sectional area of each traced cell was also determined from these images. The total 

enzyme activity within each cellular tissue section was calculated by multiplying the CSA 

of each fiber by its specific enzyme activity. The CSA of each whole midbelly section was 

also determined using this same system for comparison among groups. 

Evans Blue Dye staining 

To visualize muscle fibers that sustained injury following overload, Evans blue dye was 

injected as described previously[93]. Briefly, 24 hours prior to muscle extraction, 

animals were injected intraperitoneal^ with 100 mg/kg body weight of Evans Blue Dye 

(5% w/v of Evans Blue in PBS, pH = 7.4). Evans blue binds to albumin and other serum 

proteins which normally are impermeable to cell membranes. Muscle fibers that 

sustained damage to their membrane will absorb the albumin bound to the dye[153], 

where it can be visualized by fluorescence microscopy at an emission of 515 nm. To 

determine the location of the damage, thick sections (20 urn) were obtained at the 

midbelly and 2 mm distal from the midbelly close to the Achilles tendon. For 

longitudinal sections, the plantaris muscle was oriented to obtain sagittal sections. Once 

recovered on a slide, each muscle section was quickly covered with cold EDTA (4°C, 

0.5M, pH 8.0) for 30 seconds. Following abundant washes (10x30seconds), the slides 

were dried and covered with glycerine. As control for EBD staining, we injected mdx 

mice displaying a similar but less severe phenotype of Duchenne muscular dystrophy. 
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Protein extraction and immunoblotting 

Antibodies used were: Pax7,1:10: PAX7 (DSHB); Myogenin, 1:10: F5D (DSHB); MyoD, 

1:1000: C-20 (Santa Cruz Biotechnology); alpha tubulin, 1:2000: 2125 (Cell Signaling 

Technology); anti-mouse HRP, 1:1000: A8924 (Sigma-Aldrich); anti-rabbit HRP, 1:1000: 7074 

(Cell Signaling Technology). Muscles were homogenized in RIPA buffer [PBS (pH 7.4), 1% 

Igepal, 0,5% Sodium deoxycholate, 0,1% SDS, 10 u.g/ml leupeptin, 10 u.g/ml aprotinin, 1 

mM 4-(2-aminoethyl)benzenesulfonyl fluoride, 10 m M NaF, and 1 mM sodium ortho 

vanadate] using a TissueTearor homogenizer (ColeParmer, Montreal, QC) at low speed 

for 45 seconds. Homogenates were centrifuged at 13 000 x g for 30 min at 4°C to pellet 

cell debris. The supernatant was quantified using the QuickStart Bradford dye reagent 

(Bio-Rad, Mississauga, Ontario, Canada). For protein analysis, 150 u.g protein were 

resolved by SDS-PAG, transferred to a PVDF membrane (Millipore). The protein/antibody 

complex was revealed by chemiluminescence using the Immobilon Western kit 

(Millipore). 

Immunofluorescence 

Antibodies used were: Myogenin, 1:50: G20 (Santa Cruz Biotechnology Inc, santa Cruz, CA); 

BrdU, 1:50, 250563 (Abbiotec, San Diego, CA); anti-goat Alexa488, 1:100, A11055 (Invitrogen, 

Burlington, ON); anti-rabbit Alexa546,1:100, A11010 (Invitrogen). 10 u.m sections of plantaris 

muscles were recovered onto Superfrost Plus microscope slides (Fisher Scientific). The 

tissue sections were then fixed with 2% paraformaldehyde for 20 minutes (Sigma-

Aldrich) and washed 3 times (5 minutes each) with PBS. Sections were blocked and 
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permeabilized with 2% normal goat serum (Sigma-Aldrich) and 0.2% Triton X-100 

(Sigma-Aldrich) for 1 hour. Sections were then incubated overnight at 4°C with the 

antibodies listed previously in PBS containing 1% normal goat serum and 0.05% Triton X-

100. Slides were then washed 3 times with PBS and secondary antibodies as listed 

previously were applied for 1 hour at room temperature in PBS containing 1% normal 

goat serum and 0.05% Triton X-100. Slides were washed 5 minutes 3 times and air-dried. 

Sections were mounted in Vectashield containing 1.43nM DAPI (Vector Laboratories, 

Burlington, ON). Control experiments omitt ing primary antibodies revealed absent or 

very low-level background staining. Images were acquired on an Olympus BX-60 

fluorescent microscope (Olympus) using Image-pro 6.2 software (Olympus). 

Statistical analytsis 

The data was tested for homogeneity of variance, and in the case where homogeneity 

was found, a two-way ANOVA was used. LSD was used as a post hoc test when 

appropriate. When the variance between the groups was not homogenous, the Kruskal-

Wallis test was performed. The statistics were done with computer assistance using 

SPSS Statistics GradPack version 17.0. 
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Results 

Comparison of control phenotypes 

The muscle midbelly area and muscle weight of the control Mstn-/- plantaris muscle was 

significantly greater when compared to the Mstn+/+ mice (Fig. 4A & C) (midbelly area: 

67% and muscle weight: 76%; p<0.05). Even when controlled for the greater body 

weight, the relative muscle weight of the Mstn-/- was still significantly higher (Fig. 4C) 

(55%; p<0.05). This was due to a greater number of muscle fibers (30%) and also larger 

individual cross-sectional areas (29%) (Fig. 4D). Additionally, the proportion of muscle 
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Figure 4 Morphological changes upon overload 
A) Absolute muscle weight over the time-course in MSTN+/+ (open bars) and Mstn-/- (closed bars) mice. B) Plantaris 

absolute muscle weight relative to body weight. C) Mean midbelly area. D) Mean cross-sectional size of individual 

fibers irrespective of the MyHC expressed. Values for all graphs are means + S.E. n=4-7 per treatment group. * 

different (p<0.05) from wildtype (Mstn+/+) counterpart, ¥ different (p<0.05) from non-overloaded control, n different 

from 3-day overloaded muscles, § different (p<0.05)from 2-week overloaded groups. 
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fibers expressing MyHC lla (42%; p<0.05) compared to wildtype (Mstn+/+ mice (Fig. 5). 

fibers expressing MyHC lib was greater in Mstn-/- (42%; p<0.05) and less of the smaller 

Mstn-/- plantaris muscles did not show any fibers expressing MyHC type I. 

Muscle morphological changes 

The results of the statistical analysis related to the changes observed can be found in 

table 2. As expected, 2 and 6 weeks of functional overload resulted in significant 

increases in absolute plantaris muscle mass (Fig. 4A) for both groups with no significant 

differences between the groups (Mstn+/+: 82-105%; Mstn-/-: 25-42%; p<0.05). After 

controlling for the body weights, a tendency for Mstn-/- to grow less in relative muscle 

mass was observed (Fig. 4B). The changes in relative muscle weight corresponded to 

increases in the mean cross-sectional size of all plantaris MyHC-typed fibers (Fig. 4D). 

Table 1 Statistical analysis results of morphological changes 
p-values for the main effects and interactions of each variable. Asterisks denote significance (p<0.05) 

Variable KO effect OV effect Interaction 

Muscle mass: 

Absolute <0.001* 

Relative 0.004* 

CSA of fibers expressing: 

All fibers combined <0.001* 

MyHC I 0.306 

MyHC lla 0.196 

MyHCIIx 0.371 

MyHC lib 0.497 

Midbel lyArea <0.001* 

Cell Count O . 0 0 1 * 

29 

<0.001* 

<0.001* 

0.001* 

0.011* 

<0.001* 

<0.001* 

0.005* 

0.004* 

0.008* 

0.529 

0.084 

0.044* 

0.604 

0.018* 

0.026* 

0.130 

0.001* 

0.003* 



Significant interactions were found in the growth response where the mean CSA of 

fibers in Mstn-/- mice did not increase as much as the wildtype (Mstn+/+) counterparts. 

Further on, differences in the individual fiber type classifications varied depending on 

the major MyHC expressed (Fig. 5). Significant increases in CSA were found in all fiber 

types; however, only fibers expressing MyHC lla and llx displayed a blunted growth 

response in the Mstn-/- group. Differences in size of fibers expressing MyHC lib were 

more modest and therefore no significant interaction was found. The comparison of the 

CSA of fibers expressing MyHC I could not be completed between the Mstn-/- and 

Mstn+/+ mice since no fibers were present in the Mstn-/- mice at 0 and 3 days. Two 

weeks after the surgery, only one mouse was found to have fibers expressing MyHC I. 

For the mean midbelly area (Fig. 4C), significant interactions were found (p<0.05). Mean 

midbelly area grew by 112% (p<0.05) in the wildtype (Mstn+/+), whereas the Mstn -/-

only grew by 23%. A drastic increase in midbelly area (46%; p<0.05) was observed in 

Mstn-/- mice 3 days following surgery most likely due to some inflammatory response in 

this group. To evaluate hyperplasia, the estimated cell count was obtained by dividing 

the mean midbelly area by its corresponding mean cross-sectional size of the individual 

fibers. The number of fibers increased significantly only after 6 weeks of overload in the 

' wildtype (Mstn+/+) mice. In Mstn-/-, a smaller non-significant increase was found. The 

large increase at 3 days in the Mstn-/- group most likely reflects the inflammation due to 

the surgery. 
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A) B) 
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Figure 5 Cross-sectional area of muscle fibers according to major MyHC expression 
Attenutation of fiber growth in Mstn-/- mice (closed bars) of fibers expressing A) MyHC I, B) MyHC lla, C) MyHC llx, D) 

MyHC lib compared to Mstn+/+ (open bars). Values for all graphs are means ± S.E. n=4-7 per treatment group. * 

different (p<0.05) from wildtype (Mstn+/+) counterpart, ¥ different (p<0.05) from non-overloaded control, H different 

from 3-day overloaded muscles, § different (p<0.05)from 2-week overloaded groups. 

MyHC expression in response to overload 

The statistical analysis of the overload-induced changes is presented in Table 2. In 

Mstn+/+ mice, a significant three-fold increase was found 2 weeks following surgery in 

the proportion of fibers expressing MyHC I (Fig. 6A). This proportion continued to 

increase over 7 times the initial level reaching 12%. Mstn-/- mice did not show the same 

response as there was a blunting in fiber type remodeling and only one mouse had 

MyHC I fibers 2 weeks post-surgery. After 6 weeks, less than 1% of all fibers were 

expressing MyHC I. At each t ime point in Mstn-/- mice, the proportion of fibers 

expressing MyHC lla fibers was significantly lower than Mstn+/+ mice (Fig. 6B). Both 
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groups showed a slight increase in the expression of MyHC Ha, however, the difference 

was not statistically significant. We observed only a tendency towards a greater 

proportion of fibers expressing MyHC llx in the Mstn-/- group (14%; p=0.051) (Fig. 6C). 

Mstn-/- mice had a larger proportion of fibers expressing MyHC lib and this difference 

was maintained throughout the time-course (Fig. 6D). Additionally, a substantial and 

significant loss in the proportions of MyHC Mb fibers (44%; p<0.05) was also observed in 

wildtype (Mstn+/+) animals only after 6 weeks. A different response was observed in 

Mstn -/- mice where the proportion was maintained, however, statistical analysis did 

not reveal any significant interactions. From these observations, the decrease in fibers 

expressing lib fibers in wildtype {Mstn+/+) mice corresponded to a concomitant increase 

in cells displaying MyHC I. Despite the initial high levels of expression of fast isoforms of 

MyHC in Mstn-/- muscles, these mice still maintained a capacity of the plantaris muscle 

to undergo the changes normally observed following functional overload. However, the 

response was blunted. 

Table 2 Statistical analysis results of MyHC expression 
p-values for the main effects and interactions of each variable. Asterisks denote significance (p<0.05) 

Variable KO effect OV effect Interaction 

Proportion of fibers 

expressing: 

MyHC I <0.001* <0.001* 0.002* 

MyHCIIa <0.001* 0.120 0.504 

MyHC llx 0.768 0.017* 0.153 

MyHC lib <0.001* 0.002* 0.335 
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Effects of overload on single fiber metabolic enzyme activity 

The amount of each enzyme per unit cross-sectional area (OD unit / min • urn2) 

of SDH and GPDH and total activities per cell (OD unit / min) were measured in control 

and 6 weeks overloaded mice (Fig. 7). There was a reduced amount of SDH activity per 

area (Fig. 7B) and total activity (Fig. 7C) in Mstn -/- mice compared to Mstn+/+ mice, 

however, only the amount of SDH activity per area was found to be significantly lower 

than its wildtype (Mstn+/+) counterpart. After 6 weeks of overload, the SDH rate per 

unit area was decreased non-significantly in Mstn+/+ but the total SDH rate was 

increased 
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Figure 6 Changes in expression of major MyHC isoforms 
Changes in the expression of myosin heavy chain isoforms display a blunting of transition from fast-to-slow as Mstn-/-

mice (closed bars) compared to their wildtype (Mstn+/+) counterpart (open bars). Values for all graphs are means ± 

S.E. n=4-7 per treatment group. * different (p<0.05) from wildtype (Mstn+/+) counterpart, ¥ different (p<0.05) from 

non-overloaded control, a different from 3-day overloaded muscles, § different (p<0.05)from 2-week overloaded 

groups. 
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Figure 7 Staining for metabolic enzymes SDH and GPDH (Preliminary) 
Reprensentative images of staining for A) SDH and D) GPDH. Quantification of staining of B) SDH activity per 

unit area of each cell, C) Total SDH activity per cell, E) GPDH activity of staining per unit area of each cell and 

F) Total GPDH actiivity per cell. Open bars: wildtype (Mstn+/+), closed bars: Mstn-/-. Values for all graphs are 

means + S.E. n=l per non-OV group; n=2-3animals per OV group. * different (p<0.05) from wildtype [Mstn+/+) 

counterpart, T different (p<0.05) from non-overloaded control. Scale bar: 100u.m 
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reflecting the larger cross-sectional area. The differences in the rates of activity in the 

Mstn+/+ mice were however not significant. On the other hand, in Mstn-/- mice, the 

rate of SDH activity per area and the total SDH activity was greater following 6 weeks of 

overload. With respect to GPDH rates in non-OV Mstn-/- muscle fibers, we observed 

60% (p<0.05) more activity per area and a doubling (p<0.05) of total activity when 

compared to its wildtype [Mstn+/+) counterpart. Following 6 weeks of overload, muscle 

fibers from Mstn+/+ animals showed an increase in GPDH activity per area and total 

activity with significant differences for the total activity. Fibers from Mstn-/- mice 

maintained their GPDH activity. 

Muscle damage and remodeling is more apparent in the distal portion of the plantaris 

Previous literature of ablation surgery performed on Mstn+/+ rodents shows 

very little or no inflammation at the midbelly. However, in our case, Mstn-/- mice 

display a very pronounced inflammatory response 3 days post-surgery marked by 

increased interstitial space, most likely due to edema and macrophage infiltration. 

When damage to muscle cells occurs, Evans blue dye (EBD) bound to albumin can enter 

those cells and the dye can be detected using a fluorescent microscope. Additionally, 

unspecific staining is detectable when staining only with a secondary Ig antibody. The 

unspecific staining found at the 3 day time point corresponded to labeling with EBD 

(data not shown). To further assess muscle damage after three days of overload, we 

obtained cross-sections of muscles stained with EBD at different levels in the belly of the 

muscle (Fig. 8A). As can be seen, only a very few cells are permeable to the dye in the 
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Mstn+/+ mice at the midbelly, whereas staining is visible in a good portion of cells in the 

whole midbelly of the Mstn-/- muscle. At each level, Mstn -/- mice consistently display a 

larger area of cells positive for EBD. The plantaris muscle is pennate and curiously, the 

uptake of EBD was mostly located in the belly region away from the tendon. 

Additionally, longitudinal sections were obtained which confirmed our findings (Fig. 8B); 

following overload, both groups displayed damage in the distal portion of the muscle, 

however, the insult was greater in Mstn-/- plantaris muscle. 

A) Mstn+/+ Mstn-/-

Figure 8 EBD uptake in 3-day overloaded muscles (Preliminary) 
Representative images of the uptake of EBD in muscle overloaded for 3 days. EBD uptake shows more damage in the 

Mstn-/- mice at A) midbelly, distal and +distal sections. +distal sections from non-overloaded mice were added as 

control to show absence of fluorescence in cells. n=2-3 per overload group; n=l per control group. B) Longitudinal 

sections reveal extent of damage in the whole muscle. n=2 for Mstn+/+ group; n=l for Mstn-/- group. White arrows 

show location of distal tendon on cross-sections and longitudinal sections. Scale bar in A) 200u.m and B) 500um. 
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Myogcnin BrdU DAPI Merge 

Figure 9 Immufluorescent images of 1-week overloaded muscles (Preliminary) 
Representative images of staining for myogenin (green), BrdU (red) and nuclei with DAPI (blue). Images from 

Mstn+/+ and Mstn-/- muscles reveal a greater colocalization in areas with more damage. n=2 per wildtype(M5tn+/+) 

group; n=l per Mstn-/- group. 

The distal portion of the plantaris was also a region of major remodeling. 

Immunofluorescence images from distal sections of plantaris muscles overloaded for 

one week are found in figure 9. In non-damaged areas of both groups, little or no BrdU 

was found indicating no regeneration in those regions. On the other hand, we observed 

a high concentration of nuclei colocalized with BrdU and myogenin in damaged areas. In 

the areas with larger interstitial space, many nuclei were found positive for BrdU, 

however, most were not expressing myogenin and were therefore not included in the 

analysis. Moreover, the one week time point corresponded to the appearance of cells 
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Figure 10 Embryonic cells after 1 week of overload 
A) Representative images of staining for embryonic MyHC isoform. Image of unspecific staining was used to identify 

cells cells expressing the embryonic MyHC. B and C) Quantification of embryonic cells. Values for both graphs are 

means ± S.E. n=4 per wildtype (Mstn+/+) group; n=2 per Mstn-/- group. Scale bar 200u.m. 
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expressing embryonic MyHC (Fig.lOA). The count of embryonic cells (Fig. 10B) was 

greater in the Mstn-/-, however, not significantly different. Additionally, no difference 

was found when normalizing the data to the distal belly area (Fig. IOC). 

To find more evidence of hyperplasia, we analyzed distal sections stained with 

hematoxylin and eosin. Cells wi th central nucleation were already present after one 

week of overload (Fig. 11). One week post-surgery, major remodelling, marked by small 

centrally nucleated cells and many nuclei located interstitially can be observed. The 

large intact cells found in the muscles of Mstn-/- plantaris muscles are mostly likely a 

result of remaining inflammation. After 2 weeks of overload, no more inflammation is 

seen. Both groups showed central nucleation, with some cells containing multiple 

nuclei. In fact, a few cells in Mstn-/- muscles contained up to 6 nuclei. Muscles from 

those displayed more cells with at least one central nucleus (Fig. 11B), more nuclei 

located centrally (Fig. 11D) and a greater proportion of all cells were centrally nucleated 

(Fig. 11C), however, only the total number of centrally located nuclei showed a 

tendency for significance. To find out whether the muscles had returned to their pre-

overloaded state, we stained and analyzed the muscles of mice overloaded for 6 weeks. 

To our surprise, centrally nucleated cells were still present (Fig. 11A & E-G).Mstn-/- mice 

showed significantly more cells with at least on central nucleus, more nuclei located 

centrally, and a greater proportion of centrally nucleated cells than their wildtype 

counterparts. 
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Figure 11 Central nucleation 
A) Representative images of H&E in non-OV, 1- 2- and 6-week overloaded muscles. Scale bar 50 u.m 
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Figure 11 (cont'd) 

Central nucleation after B-E) 2weeks and E-G) 6 weeks of overload. Values are means ± S.E. n=2-5 animals per 

treatment group. * different from wildtype (Mstn+/+) group. 

Western blots show activation of satellite cells 

Protein levels of pax7, myoD and myogenin reflect activation of satellite cells (Fig. 12). 

Under control conditions, pax7 protein levels are similar in wildtype (Mstn+/+) and 

Mstn-/- mice. Following the surgery, we observed an increase in pax7 protein levels in 

both groups (3.5 fold in both groups). In non-overloaded mice, a greater non-significant 

myoD level was observed (44%; p>0.05) in Mstn-/- mice. Following overload, myoD 

levels rise significantly after 1 day in Mstn+/+ mice (3.4 fold increase; p<0.05). After 3 

days, myoD in wildtype (Mstn+/+) remained slightly elevated (2.3 fold), however, not 

significantly different from its non-overloaded control. In Mstn-/- mice, myoD protein 
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levels were elevated only at 1 day post-OV (2.8 fold), after which they return to its 

control value. 

A) B) 

i * 

C) 
MOV 1<l.iy 3d.iys 1-litoys 42el,Tys NOV 1<l.iy 3d.iys 14<lays 42d.iys 

rl 1 n.j*t 
MOV liiay 3 days 14 days 42 days 

Figure 12 Pax7, myoD and myogenin relative protein levels 
Quantification of A) pax7 B) myoD and C) myogenin protein levels in Mstn+/+ (open bars) and Mstn-/- (closed bars). 

Values are relative to the Mstn+/+ non-overloaded control. Values are means ± S.E. n=2-3 per treatment group. * 

different from respective Mstn+/+ (p<0.05). ¥ Different from non-overloaded control (p<0.05). § Different from 1 day 

overloaded (p<0.05). H Different from 3 day overloaded (p<0.05). 

As for myogenin, a different pattern of expression was observed, however, no significant 

interactions were found. In the control group, no significant difference was found in the protein 

level (23% higher, p>0.05). After 1 day, myogenin levels were significantly higher in Mstn+/+ 

mice (4.1 fold; p<0.05) and remained elevated up to 3 days following overload (4.4 fold; p<0.05). 

Interestingly, myogenin protein levels increase after 1 day (4.2 fold; p<0.05), but return to their 

non-overloaded level after 3 days. These data show that satellite cells are activated and have 

committed to the myogenic lineage. 
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Discussion 

We used the functional overload model to examine differences in the growth 

response between Mstn-/- and Mstn+/+ mice. Contrary to our hypothesis, the growth in 

Mstn-/- mice was not potentiated but in fact blunted. With the exception of absolute 

muscle mass and cross-sectional size of Mb fibers, all variables measuring size show a 

significant or a tendency (P<0.06) towards a significant interaction where the muscles of 

Mstn-/- mice did not grow to the same extent as their wildtype [Mstn-/-) counterparts. 

Following 2 and 6 week of overload, the cross-sectional area of muscle fibers of all 

individual fiber types from Mstn+/+ mice exceeded that of Mstn-/- mice. On the other 

hand, the overall cross-sectional area of fibers irrespective of their MyHC type was still 

greater in Mstn-/- compared to wildtype (Mstn+/+) counterparts. This could be 

explained by the greater proportion of the larger MHC Mb fibers in Mstn-/-. The 

proportion of those larger fibers was also maintained after 2 and 6 weeks in Mstn-/-. In 

non-overloaded animals, the absence of myostatin leads to significant muscle size, 

however, the improved strength is not proportional to the greater muscle mass [154]. 

This could partially explain the lack of growth seen in our Mstn-/- mice following 

overload suggesting the plantaris muscle was not stressed enough to induce growth. 

Recent evidence suggests endurance exercise alone does not induce hypertrophy, but 

rather a switch towards a more oxidative phenotype[102, 103]. In those studies, muscle 

fiber size was maintained or slightly reduced following endurance exercise suggesting 

hypertrophy is a result of the increased load on the plantaris muscles rather than a 

response to exercise. Another possible explanation could be that these mice might have 
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potentially reached their maximal size. This is highly unlikely, since targeting other 

ligands in addition to myostatin quadruples muscle mass in mice[155]. Our results then 

suggest that other pathways are able to compensate for the lack of myostatin, namely 

activin orfol l istatin. 

We replicated previous results showing a greater proportion of fibers expressing MyHC 

llb[137, 156]. We also displayed a blunted capacity for Mstn-/- to adapt to increased 

load which concords with previous findings[102,103]. The absence of fibers expressing 

MyHC lib could stem from a reduced fatigue-resistance to exercise[102], however, our 

data (not shown) supports similar levels of daily volunteer running. This would suggest 

myostatin would be important in the expression of slow MyHC isoforms. Interestingly, 

myostatin is found more abundantly in fast muscles[157]. Calcineurin is an important 

regulator of the fast to slow fiber conversions that occur during overload[135]. 

Myostatin could act in cooperation with calcineurin in fiber type remodeling[158, 159]. 

In agreement with previous reports, we found lower SDH activity in Mstn-/- mice which 

also matches the absence of the fibers expressing the MyHC I isoform[160]. To further 

characterize the capacity of skeletal muscles in Mstn-/- mice to adapt to the functional 

demands of overload, we assessed SDH and GPDH activity. Endurance exercise induced 

an increase in SDH activity in both Mstn-/- and wildtype (Mstn+/+) mice. Strangely, 

functional overload led to a greater increase of SDH activity in Mstn-/- mice. The 

increase in oxidative capacity did not concord with the blunted response in the different 

MyHC isoforms. Moreover, the final SDH activities were similar in both groups. This 
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would suggest a great capacity of muscle fibers to adapt to increased demands 

irrespective of the contractile properties of their MyHC isoforms. On the other hand, as 

expected, GPDH activity was significantly higher in Mstn-/- control mice. Additionally, 

the increase in GPDH activity in Mstn+/+ mice matched previous findings from our 

laboratory[136]. Overloaded Mstn-/- muscles maintained their GPDH activity and final 

levels were similar to the wildtype (Mstn+/+) group. Possibly, muscles from Mstn-/-

mice could retain their levels of GPDH activity since they do not follow the traditional 

fiber remodeling towards slower, more energy efficient phenotypes. GPDH activity 

would reflect the load requirements and not the muscle recruitment frequency. 

The uptake of EBD clearly shows more damage in overloaded Mstn-/- muscles. To 

explain the greater damage found in Mstn-/- mice, myostatin increases the expression 

of collagen genes and promotes collagen formation[161, 162]. Myostatin-deficient mice 

also have smaller and brittle tendons making the tendons more susceptible to 

damage[163]. This aspect becomes particularly important for the populations that might 

benefit from treatment through the inhibition of the myostatin pathway. Elderly people 

have altered tendon mechanical properties[164], and if myostatin is required for 

collagen expression, such a therapy could be devastating. With training, tendon 

mechanical properties such as cross-sectional area, length and stiffness can be 

improved[165, 166]. Since disuse can lead to the opposite effect[166], it would be 

interesting to see whether the reduced collagen expression is a result of the genetic 

mutation or a consequence of abnormally large muscles not used to their full extent. 

Another explanation for the greater damage includes a greater angle of pennation 
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leading to differences in the biomechanical force transmission through the muscle fiber. 

Interestingly, myostatin is located at the myotendinous junctions possibly providing 

protective effects[167]. Body weight could also play a factor, however, Mstn+/+ mice 

with similar body weights to Mstn-/- mice were overloaded and the Mstn-/- mice still 

displayed more muscle damage (data not shown). Whether damage is necessary for 

remodeling is still uncertain. Intuitively, more damaged areas would trigger more 

regeneration and our findings support this idea. 

Inflammation is an important process in early regeneration which facilitates myogenesis 

via phagocytosis of cellular debris and the release of growth factors[141, 168-170]. 

Ibuprofen, a non-steroidal anti-inflammatory and analgesic drug, is a selective inhibitor 

of the cyclooxygenase (COX) pathway[171] involved in skeletal muscle 

regeneration[172]. The treatment with COX inhibitors does not affect the weight of non-

injured muscles[172], and therefore, our control non-overloaded animals were not 

given any ibuprofen. Since it is not involved in muscle damage, it would not affect the 

absorption of EBD in overloaded muscles. Additionally, daily treatment with COX 

inhibitors can block skeletal muscle hypertrophy induced by functional overload[173]. In 

our study, ibuprofen was removed after 3 days when no differences in macrophage 

accumulation have been previously observed[173]. 

Since the plantaris muscle of Mstn-/- mice did not grow as much as those of their 

wildtype counterparts {Mstn+/+) after 2 and 6 weeks of overload, we looked at earlier 

t ime points to determine satellite cell activation. Previous studies have shown an 
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upregulation in myogenic markers after just 1 day and started to decline only after 7 

days[174]. Distally, more nuclei were labeled with BrdU and more labeled nuclei 

colocalized with myogenin. Our findings concur with previous findings observing 

myogenin localized in the nuclei after 7 days of overload[175,176]. The same group also 

found myoD and myogenin to be expressed before PCNA, an indicator of proliferation, 

could be observed. The early expression of those MRFs suggests that a first of wave 

myogenic precursor cells can differentiate into myotubes without proliferating. If more 

extensive damage occurs, the remaining satellite cells can divide to provide the 

necessary cells to complete the regeneration. The regions surrounding the damage were 

filled with cells staining for the embryonic isoform of myosin indicating new cell 

formation. Despite the greater number of cells expressing embryonic MyHC, the value 

normalized to the belly area revealed no difference from control. More damaged areas 

were found in the overloaded muscles of Mstn-/- mice and therefore secondary binding 

could potentially hide some embryonic cells. Additionally, one of our wildtype mice 

(Mstn+/+) showed more embryonic cells than its Mstn-/- counterpart, suggesting a great 

amount of variability in the response. Moreover, larger areas of fiber regeneration were 

found in the muscles overloaded for 1 week in Mstn-/- animals. 

An analogy to muscle regeneration can be made with the mdx mouse. The mdx mouse, 

a genetic ortholog of Duchenne and Becker muscular dystrophies, provides a model 

system for repetitive muscle degeneration and regeneration. In the mdx mouse, a 

mutation in the gene for dystrophin results in absence of the protein from the 

sarcolemma and muscle fiber necrosis[177]. Satellite cells are involved in the 
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regeneration of muscles affected by muscular dystrophy; however, the progressive 

degeneration leads to a decrease in satellite cell number and proliferative 

potential[178]. Beneficial effects from myostatin absence or blockade have been 

reported possibly due to increased proliferation of satellite cells[10,179]. 

The requirement for satellite cell activity in muscle hypertrophy is still debated[57, 60, 

176, 180]. Most studies opposing the addition of new cells looked at the role of the Akt 

pathway in muscle growth. On the other hand, studies using the functional overload 

model support the idea of hyperplasia. The most convincing evidence supporting 

hyperplasia comes from studies using irradiation to suppress the mitotic capability of 

satellite cells. Since mature skeletal muscle fibers are post-mitotic, lack of growth 

following overload clearly demonstrates the importance of satellite cells in hypertrophy 

[58,180, 181]. To further support the requirement of satellite cells for hypertrophy, 

inhibition of satellite cell activation has also blocked overload-induced growth[182]. 

Following overload, muscle mass can double within 2-4 weeks, however, in our lab, 

proliferation of satellite cells has not been found to a be major contributor to the rapid 

growth[91]. Most recently, a contradicting study involving myostatin signaling refuted 

hyperplasia as a major contributor to the larger muscle mass observed in Mstn-/-

mice[51]. The authors of the study used lower concentrations of myostatin to inhibit 

satellite cell proliferation. Additionally, they used aged mdx animals to demonstrate that 

myostatin absence does not rescue the dystrophic phenotype. Therefore, we still 

believe that myostatin is still involved in satellite cell activation and proliferation. Our 

findings of satellite cell activity might explain why little evidence has been found of 
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newly formed cells in the midbelly region of overloaded muscles. In vitro, lack of 

myostatin in the differentiation medium delays the differentiation process and would 

therefore allow to prolong the proliferation of myoblasts[49]. Closer to the 

myotendinous junction, after one week, the appearance of cells expressing the 

embryonic isoform of MyHC, followed by central nucleation after 2 weeks of overload 

provide some evidence of hyperplasia. Supporting this idea, in Mstn-/- mice, we 

observed a greater number of centrally nucleated cells per mm2 and a greater number 

of nuclei located centrally at the distal ends of the plantaris muscle after 2 and 6 weeks 

of overload. Despite the lack of significance between the groups at 2 weeks, combining 

results at the midbelly and distal sections would most likely show a greater propensity 

for Mstn-/- muscles to grow through hyperplasia. Moreover, no differences in the 

estimated cell count were observed at the midbelly area after 6 weeks suggesting an 

important role for growth in the distal portion of the muscle. Our data obtained at the 

midbelly of muscle mass, cross sectional area and proportions match previous findings. 

Thus changes observed at the midbelly do not reflect the remodelling in the distal 

portion of the muscle. In light of the regeneration occurring in the distal portion of the 

plantiaris muscle, further characterization is necessary to assess the changes associated 

with functional overload. 

The IGF/Akt pathway might also be involved in the hypertrophic response resulting from 

functional overload. However, some studies suggest a limited role. By inhibiting IGF, 

hypertrophy was not blocked following synergist ablation[55]. Although IGF and Akt can 

induce hypertrophy in vivo, they have a limited role in satellite cell activation[60, 183]. 
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To further support this, irradiated muscles still grow when treated with IGF-I although to 

a lesser extent[57]. This suggests the IGF-I pathway induces hypertrophy through 

increased protein synthesis. 

Moreover, our preliminary western blots did not show any differences between 

Mstn+/+ and Mstn-/- mice. Our results showed a peak in the regulatory proteins after 1 

day of overload, and returning to basal levels after 3 days, earlier than previously 

found[87]. Differences among species could explain the differences in the response. 

Myogenin levels were maintained up to 3 days in wildtype mice; however, the 

difference was not significant. If proliferation only begins after 3 days marked by an 

upregulation of PCNA[174], a second peak could be seen at later time points explaining 

the presence of myogenin in the nuclei found with our immunofluorescence. 

Our study not only shows hyperplasia as a major contributor to growth in Mstn-/- mice, 

but it also calls us to revisit the current notion about muscle growth in general. 
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Abstract 

Myostatin is a member of the TGF-R family of growth factors and a negative regulator of 

muscle mass. Myostatin has been proposed a therapeutic agent to prevent atrophy. To 

investigate the role for Mstn in muscle fiber atrophy, we compared the effects of 

denervation in Mstn Knockout (Mstn -/-) and wildtype (Mstn+/+) mice. Two weeks of 

denervation led to significant and comparable loss in muscle mass of the soleus and 

plantaris of the wildtype (Mstn+/+) and Mstn-/- mice. The comparably lower mass was 

concomitant with reduction of the cross-sectional area of individual fibers in the 

plantaris and soleus muscle in both sets of mice. During the same time frame, no 

significant changes in myosin heavy chain type profiles of Mstn+/+ and Mstn-/- muscles 

were found. This study shows no sparing effect of the absence of myostatin during 

skeletal muscle atrophy following denervation suggesting an alternative pathway for 

nerve-mediated atrophy. Funded by CIHR, NSERC and CRC. 
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Introduction 

Muscle atrophy in animal models is regulated in response to changes in workload, 

activity and in the presence of pathological conditions [66,184]. Muscle degeneration 

may lead to a debilitating condition which is often seen in disuse, aging, and muscular 

dystrophy. Despite the importance and impact of losing muscle mass, the mechanisms 

leading to atrophy are still poorly understood. The same biochemical and chemical 

changes are believed to occur in muscles during the various types of atrophy [185]. 

Myostatin, an important regulator of skeletal muscle mass, is increased in many 

different models of atrophy[78-81]. Myostatin is expressed in skeletal muscle and in 

heart[2,186]. Once synthesized, myostatin is processed and secreted into the blood 

stream[2, 16]. 

Myostatin inhibition, for instance via the administration of antibodies against this 

protein, has been proposed as a method to limit muscle atrophy after paralysis since the 

disruption of its gene expression leads to dramatic increases of skeletal muscle mass[2]. 

Loss of myostatin results in a combined effect of muscle fiber hypertrophy and 

hyperplasia[2]. Myostatin loss in dystrophic mice through its inhibition by injection or 

gene deletion results in increased muscle mass and muscle strength[12]. Also, removal 

of myostatin improves the sarcopenic phenotype [13]. To date, the only studies looking 

at the rescuing effects of skeletal muscle atrophy have used glucocorticoid 

administration or hindlimb unloading to induce muscle atrophy[187,188]. 

Denervation requires the removal of a portion of a nerve which leads to complete loss 

of neural input and muscle activity. Atrophy varies greatly due to the function of the 
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different muscles (weight bearing versus non-weight bearing; fast versus slow). Changes 

in the expression of the different isoforms of MyHCs are also observed following 

denervation[106,114]. The direction of the change depends on the predominant fiber 

type of the muscle prior to denervation[106,115]. Fast muscles develop a tendency 

towards a slower phenotype and slow muscle show a shift towards a faster phenotype. 

Additionally, many genes are differentially expressed during denervation. MuRFl and 

MAFbx are among the mRNA most drastically induced by denervation[66, 109,110]. The 

expression of those genes is dependent on the FoxO family of transcription factors, 

FoxOl and Fox03a[74, 109, 111]. 

Myostatin knockout has led to amelioration in muscle phenotype after injection of 

glucocorticoids[187]. However, the myostatin knockout muscles were not spared fom 

atrophy when subjected to gravitational unloading[188]. Therefore, in our study, we set 

to assess the effects of denervation-induced atrophy on weight bearing muscles when 

myostatin is not present. 
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Materials and methods 

Animal care and protocols 

All animal care and experimental procedures were performed in accordance with 

the guidelines established by the Canadian Councilof Animal Care. These procedures 

were approved by the University Animal Research Ethics Committee (UAREC) of 

Concordia University. Mstn-/- mice were kindly donated by Dr. S.-J. Lee. (Johns Hopkins 

University School of Medicine, Baltimore, MD) 

Animal surgeries 

All surgical procedures were performed under aseptic conditions on animals 

anesthetized by intramuscular injection (1.2 pl/g) of 100 mg/ml ketamine hydrochloride 

and 10 mg/ml xylazine in a volume ratio of 1.6:1. Under sterile conditions, the sciatic 

nerve was exposed at the level of the sciatic notch. A segment of 4-5 mm of the sciatic 

nerve was excised just below the sciatic notch. The contralateral limb was left 

untouched. Additionally, non-operated mice were used as control. The mice were kept 

denervated for 3, 7 or 14 days. To ensure full denervation, neurological tests were 

performed as described previously[189]. Following the treatment period, the animals 

were deeply anesthesized again and the soleus, plantaris, gastrocnemius, plantaris and 

tibialis anterior were excised, embedded in OCT (Tissue-Tek, Torrance, CA) and frozen in 

melting isopentane before being put in liquid nitrogen. Tissues were stored at -86°C 

until processed. 
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Immunohistochemistry 

Antibodies used were as follows: MyHC I: A4.840, Developmental study hybridoma 

bank (DSHB, University of Iowa, Iowa city, IA); MyHC lla : SC71 (DSHB); MyHC llx : 6H1 (DSHB); 

MyHC Mb : BF-F3 (DSHB); anti-mouse HRP : IgG A8924 (Sigma-Aldrich) or IgM A8786 (Sigma-

Aldrich). To determine the MyHC isoform expressed by each fiber, cryosections (10 u.m) 

were cut from the same anatomical location in each muscle midbelly and recovered 

onto Superfrost Plus microscope slides (Fisher Scientific). First, the sections were 

blocked in 5% goat serum in a carrier solution consisting of 0.5% bovine serum albumin 

(BSA) in 25 mM PBS (pH = 7.4) for 30 minutes. The sections were then probed overnight 

at 4°C in carrier solution with one of the following primary antibodies raised against the 

different MyHC types (I 1:25; lla 1:12.5; llx undiluted; Mb 1:25). After three 10-min PBS 

rinses, sections were then probed at room temperature with either horseradish 

peroxidase-conjugated anti-mouse IgG (MyHC type lla 1:25) or IgM (MyHC type I, llx, lib. 

The sections were rinsed three times with PBS for 10 minutes. The bound antibody 

complexes were then visualized using DAB as per the manufacturer's instructions. DAB 

makes the bound peroxidase-conjugated antibodies turn brown and can be visualized 

with a light microscope. 

Three to four distinct regions were selected randomly from the midbelly of each 

plantaris and soleus muscle. All fibers in those regions were identified across each serial 

tissue section with the aid of a Retiga SRV camera (Qlmaging, Surrey, BC, Canada) 

mounted on an Olympus BX-60 (Olympus, Center Valley, PA) microscope. Each area of 

interest comprised approximately 75 fibers. The images were analyzed using ImagePro 
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Plus version 6.2 software (Olympus). Fibers were classified according to their staining 

profile with the distinct antibodies. For consistency, cell size was measured on a single 

non-stained muscle section fixed with 1% paraformaldehyde for 20 minutes in PBS 

followed by 3 washes in PBS for 5 minutes each. 

Protein extraction and immunoblotting 

The antibodies used were: Myostatin : AB3239,1:750 (Millipore, Bedford, MA); alpha 

tubulin : 2125,1:2000 (Cell Signaling Technology); anti-rabbit HRP : 7074,1:2000 (Cell Signaling 

Technology). Muscles were homogenized in RIPA buffer [PBS (pH 7.4), 1% Igepal, 0,5% 

Sodium deoxycholate, 0,1% SDS, 10 u.g/ml leupeptin, 10 u.g/ml aprotinin, 1 mM 4-(2-

aminoethyl)benzenesulfonyl fluoride, 10 mM NaF, and 1 mM sodi um ortho vanadate] 

using a TissueTearor homogenizer (ColeParmer, Montreal, OX) at low speed for 45 

seconds. Homogenateswere centrifuged at 13 000 x g for 30 min at 4 C to pellet cell 

debris. The supernatant was quantified using the QuickStart Bradford dye reagent (Bio-

Rad, Mississauga, Ontario, Canada). For protein analysis, 150 ug protein were resolved 

by SDS-PAG, transferred to a PVDF membrane (Millipore). The protein/antibody complex 

was revealed by chemiluminescence using the Immobilon Western kit (Millipore). 

Statistical analytsis 

The data was tested for homogeneity of variance, and in the case where homogeneity 

was found, a two-way ANOVA was used. LSD was used as a post hoc test when 

appropriate. When the variance between the groups was not homogenous, the Kruskal-

Wallis test was performed. The statistics were done with computer assistance using 

SPSS Statistics GradPack version 17.0. 

58 



Results 

Myostatin protein is found in muscles and serum 

To confirm the presence of of myostatin protein, we immunoblotted 150|ig of protein 

from skeletal muscle, heart and blood serum of wildtype (Mstn+/+) mice (Fig. 13). We 

used the Mstn-/- mouse as a control for the antibody. The data show that myostatin 

protein is easily detected as the precursor form in skeletal muscle of wildtype (Mstn+/+) 

mice. A very faint band at 13kDa can be seen in the skeletal muscle of Mstn+/+ mice. 

Since active myostatin is secreted into the blood stream, only the active portion (13kDa) 

is visible in plasma of Mstn+/+ mice. Myostatin was, however, not detectable in the 

heart. The absence of bands at the corresponding height of 13 and 55kDa in the lanes 

containing Mstn-/- samples confirms the specificity of the myostatin antibody. 

Figure 13 Myostatin protein in skeletal muscle, heart and blood serum (Preliminary) 
Western blot for myostatin protein in skeletal muscle (lanes 1&2), heart (lanes 3&4) and blood serum (lanes 5-8). 

Myostatin'is present in Mstn+/+ mice (lanes 1,3,5,6) and absent in Mstn-/- mice (lanes 2,4,7,8). Myostatin is detected 

as the precursor protein in skeletal muscle and as the active protein in blood serum. Myostatin was not found at 

detectable levels in the heart. Quantity loaded: 150p.g in each lane. n=l for skeletal muscle and heart; n=2 for serum 
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Muscle mass loss is not different in Mstn-/- mice 

Absolute muscle mass is displayed in Figure 14 (A-C). Additionally, to control for the 

difference in body weight, we divided the absolute muscle weight by the animal's body 

weight to obtain the relative muscle mass (Fig. 14D-F). A significant denervation effect 

was observed in all weight bearing muscles of both wildtype {Mstn+/+) and Mstn-/-

mice. In Mstn+/+ mice, denervation induced a significant reduction in absolute and 

relative muscle mass of 25 to 40% in the soleus, plantaris and gastrocnemius muscles. 

Similar results were observed in the Mstn-/- muscles. These data show no sparing effect 

of muscle mass in the absence of myostatin. 
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Figure 14 Muscle weights 
Absolute (A-C) and relative (D-F) muscle mass of soleus (A,D),plantaris (B,E) and gastrocnemius (C,F). Open bars: Non-

denervated controls; black bars: Contralateral limb to denervated side; gray bars: Denervated limb. Values are means 

+ S.E. n=3-4 per treatment group. * Different from wildtype (Mstn+/+) (p<0.05); ¥ Different from non-denervated 

control (p<0.05); § Different from contralateral limb (p<0.05). 
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Changes in CSA are similar in Mstn+/+ and Mstn-/- mice 

We used fiber CSA as another measure of atrophy (Fig. 15). In plantaris, fibers 

expressing the different MyHC isoforms displayed different sensitivities with respect to 

size in response to denervation (Fig. 15A). More specifically, only fibers expressing 

MyHC Mb showed atrophy compared to fibers in the contralateral limb and the non-

denervated muscles. The size difference was similar in wildtype (Mstn+/+) and Mstn-/-

mice. No difference in size was apparent in fibers expressing other MyHC isoforms. 

In contrast to the plantaris, with the exception of MyHC lib fibers, all myofibers displayed a 

smaller CSA following denervation (Fig. 15B). The changes in CSA in both wildtype (Mstn+/+) and 

Mstn-/- mice correspond to the muscle mass lost in the soleus. 

Expression of MyHC isoforms 

We assessed changes in the expression of the major isoforms of MyHC in plantaris and 

soleus muscle fibers after 14 days of denervation (Fig. 16). In order to eliminate 

discrepancies due to the coexpression of different isoforms of MyHC in a single fiber, 

the proportion of the fibers were pooled into their major isoforms. Detectable changes 

in plantaris major MyHC profiles were not apparent after 14 days of denervation in both 

groups (Fig. 16A). In contrast to the plantaris, subtle transitions in Mstn+/+ mice in adult 

MyHC expression were observed within this same time frame under certain conditions 

in the soleus, such that the lla MyHC isoform was expressed in a greater proportion of 

cells, whereas some cells were no longer expressing MyHC I (Fig. 16B). In Mstn-/- mice, 

changes in MyHC expression were prevented in the denervated limb. 
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Figure 15 CSA of muscle fibers following 2 weeks of denervation 
Fiber CSA in A) plantaris and B) soleus muscles. Values are means ± S.E. n=3-4 per treatment group. H different from 
wildtype {Mstn+/+) (p<0.05). * Different from non-denervated control (p<0.05). ¥ Different from contralateral limb 
(p<0.05). 

62 



A) 

nEw. 

B) 

lis 

• Mstn+/+N-DEN 

• Mstn+/+cDEN 

• Mstn+/+DEN 

• Mstn-/- N-DEN 

• Mstn-/- cDEN 

• Mstn-/- DEN 

40 4 

IIS 

r*wji f'' 

ill--

ft 

Figure 16 Expression of major MyHC isoforms after 2 weeks of denervation 
Major MyHC expression in A) plantaris and B) soleus muscles. Values are means ±S.E. n=3-4 per treatment group. 
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Discussion 

In the present study, we compared the atrophic response of plantaris and soleus muscle 

fibers in wildtype (Mstn+/+) and Mstn-/- mice. Treatments inhibiting the myostatin 

pathway have previously been successfully used in muscular dystrophy and 

sarcopenia[12,13]. Myostatin also interacts with Akt and FoxO to modulate 

hypertrophy and atrophy. Therefore, we speculated that Mstn-/- mice would not lose as 

much muscle mass as Mstn+/+ mice. 

To date, the only studies looking at the rescuing effects of skeletal muscle atrophy have 

used the glucocorticoid or unloading model[187,188]. When treated with 

glucocorticoids, the removal of myostatin was effective at preserving muscle mass 

[187]. Opposing this study, disuse atrophy was not prevented by myostatin deficiency 

[188]. In fact, more muscle mass was lost in mice lacking myostatin. Interestingly, 

hindlimb suspension did not cause any atrophy in the soleus muscle of Mstn+/+ 

mice[188]. We report that the absence of myostatin does not prevent atrophy induced 

by denervation. This was supported by the similar response in wildtype [Mstn+/+) and 

Mstn -/- mice of muscle mass loss and decrease in CSA of individual fibers. 

Additionally, the proportions of the different isoforms of MyHCs did not change 

significantly after the experimental period in both plantaris and soleus muscles. Our 

findings match a recent study where changes in MyHC I were not observed following 1 

month of denervation in mice[105]. The half-life of MyHCs is approximately two 

weeks[190] and, therefore, changes in the MyHC expression might not have been 
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detectable within our experimental design. The soleus muscle did, however, show a 

trend towards a faster phenotype. 

The absence of myostatin in the soleus muscle could explain our results[81]. The plantaris 

does have myostatin, however, atrophy in Mstn-/- mice was not spared either. Furthermore, 

myostatin mRNA was found to be upregulated after 1 day of hindlimb suspension but 

returned to basal levels on the 3r day despite progressive atrophy of hindlimb 

muscles[81]. 

The secretion of myostatin into the bloodstream suggests that myostatin could 

potentially have a systemic role in signaling. Serum levels of myostatin have been 

assessed in heart dysfunction[191,192]. The Western presented in this manuscript To 

date, no study has looked at serum levels of myostatin induced by atrophy in skeletal 

muscle. Therefore, it would be very important to assess changes of myostatin levels in 

both skeletal muscles and serum. Additionally, activin Mb receptor have been located on 

different organs including brain, adipose tissue, ovaries and testis[193,194]. Whether 

myostatin signals through these receptors is still unknown, however, future studies 

could reveal novel roles of myostatin. 

In light of these results, we suspect another signaling pathway might take precedence 

over the myostatin pathway, possibly the activin or 1GF-I/Akt pathway. 

To properly understand the mechanisms by which myostatin mediates atrophy, further 

experiments are needed. First, whether similar levels of atrogenes are induced by 

denervation, immunoblots against MuRFland MAFbx should be determined. The 
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induction of MAFbx and MuRFl are mediated by FoxO proteins and therefore, 

antibodies for the FoxOs and their phosphorylated forms may provide evidence for their 

involvement. 

Just as myostatin, activin is known to bind to activin receptor lib and activate the same 

signaling cascade through Smad2 and Smad3[18]. Activin is involved in muscle growth 

and can partially replace myostatin's function in its absence[187]. Thus, whether activin 

or another ligand is activating the atrophy pathway through the Smad proteins needs to 

be determined. 
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Chapter 4: Conclusion 

In this thesis, I presented two preliminary manuscripts to elucidate myostatin's role on 

determining fiber size under conditions that either induce adult muscle growth or 

atrophy. In the absence of myostatin, muscle mass is greater. Knowledge about the 

regulatory processes involving myostatin is progressing, however, due to other 

pathways' involvement during growth a full understanding of these processes is lacking. 

In response to functional overload, we were expecting more muscle growth to occur in 

Mstn-/- mice, but surprisingly, we found that the absence of myostatin leads to a 

different strategy being employed to achieve growth. We observed a blunted muscle 

growth in Mstn-/- mice compared to wildtype counterparts. Mstn-/- mice displayed 

more muscle damage in response to functional overload which resulted in a greater 

hyperplasia response through satellite cell activation and proliferation. 

On the other hand, we thought myostatin might save muscles from denervation-

induced atrophy, but unfortunately muscles from Mstn-/- mice were not spared with 

similar losses of muscle mass and cross-sectional area in both wildtype and Mstn-/-

mice. This suggests other regulatory processes are in place to compensate for the lack of 

myostatin. Further experiments are required to discover which pathway took 

precedence over myostatin. These findings have implications in nerve-mediated atrophy 

and paralysis in humans where myostatin treatment might not be beneficial. 

Further on, recent findings about myostatin therapy have raised interest in sports. 

Besides the doping issue, the potential muscle growth could improve sports 

performances. Unfortunately, the highly regenerative potential of satellite cells could 
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eventually be depleted after increased proliferation due to myostatin removal[13]. 

Although aged mice lacking myostatin display a greater number of satellite cells and 

their regenerative capacity is better than their age-matched wild type coun te rpa r t s^ ] , 

little is known about long term effect on satellite cell population in humans. 

In conclusion, this thesis shows that myostatin is not the only regulator of adult skeletal 

muscle mass in both growth and atrophy. Other pathways or regulatory protein must 

function in synergy or in parallel with myostatin to control muscle mass. This type of 

redundancy is very common in biology and serves to compensate for the absence or 

malfunction of a specific gene[195]. 
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Appendix B: Summary of values used for denervation: 
Soleus muscle 
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