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Abstract

Assessing the Carbon Dynamics in Natural and Human-Perturbed Boreal Aquatic
Systems

Alexandre Ouellet, Ph.D.
Concordia University, 2010

Most lakes and reservoirs worldwide are supersaturated with respect to water

concentrations of carbon dioxide (CO2) and methane (CH4), two potent greenhouse gases

(GHG). Although surface water GHG concentrations have been measured for more than

three decades in lakes and reservoirs around the globe, the mechanisms leading to GHG

supersaturation are still obscure, with the relative contributions of the different GHG

producing processes hotly debated. In this study, we evaluated the terrestrial organic

matter (OM) exports from land to aquatic systems, followed by its degradation and

contribution to the surface freshwaters GHG concentrations.

Natural lakes, reservoirs as well as lakes and reservoirs with a wood harvested

watershed were sampled in the summer of 2007 and analyzed for a broad variety of bulk

water chemical parameters and OM molecular proxies. In order to collect sufficient

quantities of OM for the amino acid (AA) and lipid molecular analyses, a tangential flow

filtration reverse osmosis systems (TFF-RO) was used following the evaluation of its

performance for total OM possible molecular fractionation and recoveries using FTIR,

stable carbon isotope signatures (O13C) and total organic carbon (TOC) concentrations.

No significant sample fractionation or carry over was obtained with recoveries ranging

between 94.6 and 1 06.9 % using the TFF-RO system.

All lakes and reservoirs sampled in this study were supersaturated in CO2 and CH4, with

wood harvested water bodies and the reservoir having significantly higher water surface
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CO2 concentrations and emissions to the atmosphere compared to the natural lakes. The

bulk water and OM chemical and isotopie analyses showed that the increase in terrestrial

dissolved organic carbon and total nitrogen concentrations positively influenced bacterial

OM degradation, which drove CO2 production. Molecular analyses showed a direct

relationship between the increases in bacterial biomarker abundances in the dissolved and

sedimentary OM fractions, and higher water CO2 concentrations. This result suggests that

OM bacterial oxidation is the most important process leading to GHG production in

freshwater aquatic systems.
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Chapter 1

1 The study of aquatic freshwater ecosystems

Freshwater contains less than three grams of salt per liter. Because of its dilute

nature, freshwater is particularly sensitive to natural and anthropogenic stress imposed by

and on surrounding land, which often results in physical, chemical and biological

alteration to freshwater ecosystems. Drainage basins, also referred to as watersheds or

catchments, are defined as the total land area drained by one or several tributary streams

that flow in a lake or a main channel. Watersheds ubiquitously influence freshwater

ecosystems (Cole et al 1994; Wetzel 2001). An environmental biogeochemical study of a

freshwater ecosystem intends to depict the relationships of a water body with the soil,

biota and hydrological characteristics of its watershed. This thesis focuses on the study of

watershed wood harvesting as well as on the long-term effects ofman made reservoirs

operation on the carbon cycle of aquatic systems located in the boreal forest of Quebec,

Canada.

1.1 The carbon cycle in freshwater ecosystems
One of the principal means of studying the health of aquatic ecosystems in

environmental biogeochemistry is to follow organic matter (OM) inputs, exchanges,

degradation and outputs. There are several OM input pathways in lakes and reservoirs

including streams, atmospheric deposition, sediments, and watershed run-offs. As OM

enters water bodies, it is processed based on its quality, reactivity, degree of

complexation with inorganic material, and size (Aufdenkampe et al. 2001; Houe] et al.

2006; Soumis et al. 2007). For example, if a phospholipid is released into open water via
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cell death, it is either biologically utilized, sorbs onto a mineral particle, or is degraded to

carbon dioxide (CO2), phosphate (PO43") and, for nitrogen-containing phospholipids,
nitrate (NO3"). The organo-phosphorus functionality confers hydrophilicity and lability to

phospholipids, which make these compounds easily degradable. Other compounds such

as soot, which is hydrophobic and chemically more refractory owing to its poly-aromatic

nature, are not easily degradable and can thus accumulate in the sediment.

Molecules comprising organic and inorganic carbon are dynamically transported

and (bio)chemically altered within ecosystems following a wealth ofpathways that form

the global carbon cycle. An example of such representation for the terrestrial and aquatic

carbon sub-cycle is shown in Figure 1, in which particulate and dissolved carbon (POC

and DOC, respectively) are considered separately owing to differences in their chemical

and physical behavior in the environment. Although carbon is the currency used to

represent bulk OM in such representation, one needs to keep in mind that other important

elements, such as nitrogen, are also abundant in OM and in this cycle, albeit sometimes in

a disconnected fashion.
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• Algae
• Bacteria

Figure 1-1. A simplified carbon cycle scheme in a typical natural lake
The epilimnion and hypolimnion are water masses of different temperature within a lake, represented here
in light and dark blue, respectively. The black arrows represent the inorganic carbon exchanges while the
red arrows show organic carbon pathways. Large blue arrows represent the groundwater flows.

Terrestrial POC and DOC (photosynthetically produced as well as material altered

by fungi and bacteria) are introduced into streams and water bodies through the erosion
of surface soil and percolation of water through deeper soil layers following precipitation
or snow melting events (Stepanauskas et al. 2000; Kim et al. 2006). Terrestrial POC,

estimated to contribute only one-sixth of total aquatic POC (Cole et al. 2002), adds to the
autochthonous POC pool formed of a mix of algae, macrophyte, bacteria, zooplankton
and non-living material (Planas et al. 2000; McCallister and del Giorgio 2008).
Phytoplankton/algae and macrophytes are primary producers and are at the base of the
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food web (lower trophic level). Heterotrophic bacteria and zooplankton (e.g. copepods, 1-

2 mm long aquatic animals) feed on primary producers and thus belong to the second

trophic level. Fishes (feeding on phyto- and zooplankton) and fish consumers, including

humans, are of higher trophic levels. Thus, aquatic communities from all trophic levels

are affected by changes in terrestrial and aquatic OC inputs and production, respectively

(Pace et al. 2004). Terrestrial OC along with dead organisms of different trophic levels

are continuously degraded by bacterial and photo-oxidative processes to produce small,

generally soluble, organic molecules and CO2 (as well as CH4 in anoxic water columns).

The residual POC eventually sinks to the benthic layer (water-sediment interface) where

extensive bacterial degradation takes place. Dissolved or particulate organic matter

(DOM or POM) escaping water column degradation or bio-utilization is eventually

integrated into the sediment OM pool (SEOM; von Wachenfeldt and Tranvik 2008).

Degradation of the OM in the sediment similarly results in small organic compounds,

CO2 and methane (CH4). Carbon dioxide directly produced through oxic OM degradation

processes or resulting from CH4 oxidation joins the aquatic dissolved inorganic carbon

(DIC) pool (Hélie 2004):

H2O + CO2 <-* H2CO3 ^ HCO3 +H+^ CO32" + H+

In freshwater systems, the ultimate fate of dissolved CO2 is to either be biologically or

chemically precipitated as CaCO3 (e.g. foraminifera or water pH >8.0, respectively),

reused by primary producers in the photic zone or lost to the atmosphere through

diffusion (Lehmann et al. 2004; Soumis et al. 2004; Tremblay et al. 2005). The low ionic

strength and slightly acidic pH of freshwater in boreal ecosystems makes the precipitation

OfCaCO3 unlikely; instead, abalance between primary production (CO2 consumers) and
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bacterial and/or photo oxidation (CO2 producing pathways) is believed to control CO2

exchanges at the air-water interface (Osburn et al. 2001; Marty et al. 2005; Soumis et al.

2007; McCallister and del Giorgio 2008). Organic matter that escapes oxic sediment

degradation eventually accumulates in anoxic sediment, where it can be preserved or

further degraded to CH4, albeit at a much slower rate than in an oxic environment

(Duchemin et al. 1995). As CH4 is produced, it diffuses back into the water column

where it is oxidized into CO2 by methanotrophic bacteria (Striegl and Michmerhuizen

1998; Steinmann et al. 2008) or directly emitted to the atmosphere. Atmospheric fluxes

OfCH4 are small but because CH4 absorbs infrared radiation 23 times more efficiently

compared to CO2 (greater greenhouse effect; Tremblay et al. 2005), they remain

significant. Owing to its hydrophobic nature, significant fluxes of CH4 through bubble

production in sediments are also observed (Duchemin et al. 2000).

1.2 Greenhouse gases supersaturation in lakes
Carbon dioxide and methane are greenhouse gases (GHG) that play a major role

in determining the Earth's climate. The large increase in GHG concentrations in the

atmosphere following industrialization has resulted in a global temperature increase

estimated to be approximately 0.6 ± 0.2 C during the 20th century (IPCC 2001). Cole et
al. (1994) provided the first evidence for worldwide CO2 supersaturation in lakes. In their

study, they showed that 87% of worldwide lakes (n = 1835) sampled in autumn had a

CO2 partial pressure (pC02) that averaged up to three time atmospheric CO2 levels.

Furthermore, they found that the surface waters of arctic, boreal and tropical lakes were

systematically supersaturated with CO2 during the ice-free and stratification periods. As

global oceanic waters represent a net sink for atmospheric CO2, the discovery that global
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freshwater systems were net emitters of GHG was surprising and led to a reassessment of

their importance in the global hydrospheric and atmospheric GHG exchanges. Several

hypotheses were proposed to explain the high/?C02 levels in lakes and reservoirs (Cole et

al. 1994; Osburn et al. 2001; Dubois et al. 2009). To date, the most widely accepted

explanation pertains to the large inputs of terrestrial organic matter (TOM) through DOC

leaching from soils (terrestrial DOC generally accounts for >90% of total DOC in

freshwater systems), and its degradation to CO2 through photochemical or bacterial

processes (Cole et al. 1994, 2002; Prairie et al. 2002; Sobek et al. 2003; McCallister et al.

2008). More specifically, it was also shown that the pC02 measured in boreal lakes was

correlated to DOC concentrations, which in turn, were governed by watershed

characteristics such as the drainage ratio (watershed area vs. lake area) and the wetland

area to total watershed area ratio (Sobek et al. 2003). Others have proposed an alternate

explanation based on metabolic incubations or isotopie studies, which suggests that CO2

supersaturation would be caused by direct inputs of CO2 from external sources (e.g.

groundwater; Carignan et al. 2000a; Dubois et al. 2009). Clearly, there is a need for

studies assessing the major processes controlling CO2 saturation levels using approaches

allowing a mechanistic understanding of the carbon cycle in freshwater aquatic systems.

Diffusion of GHG to the atmosphere is also partially controlled by water column

stratification, which results in a warmer and lighter water mass that is located above a

colder and denser one (called epilimnion and hypolimnion, respectively; Figure 1). The

diffusion of GHG from the bottom to the surface waters is slow owing to a sharp change

in water density at the thermocline (the interface between the two water masses also

called metalimnion). Therefore, because the bottom waters are not in open contact with
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the atmosphere, greater GHG concentrations are found in the hypolimnion compared to

the epilimnion at the beginning of the stratification in spring and until the water turnover

in fall. Kim et al. (2006) have shown that DOC and POC can migrate through the

thermocline. As the thermocline deepens from spring to summer (from ~1 to ~4 m in this

work; data not shown), hypolimnic GHG are transferred to the epilimnion and diffuse to

the atmosphere. Varying quantities of GHG are therefore stored in the hypolimnion

during the stratified period; these accumulations only take place in deeper sections of the

water bodies and therefore do not account for a significant fraction of the total yearly

GHG emissions of the lakes. For example, in this study the hypolimnic GHG

accumulation is estimated to account for less than 1.5 hours of the averaged daily

emissions from the lake surface in the summer, (see Chapter 6, Table 6-1). This clearly

demonstrates that the direct comparison of the summer CO2 fluxes between systems with

or without a thermocline (stratification) is valid and is not biased to a significant extent

owing to GHG accumulation in the hypolimnion.

1 .3 Anthropogenic effects on GHG fluxes
This section consists in an overview of published work on the effect of two

anthropogenic perturbations, hydroelectric reservoir formation and operation as well as

wood harvesting, on the carbon cycling in freshwater aquatic systems. Importantly, the

relationship between the changes in aquatic bioprocesses upon watershed perturbation

and air-water exchanges in GHG has never been directly studied.This is of particular

importance when considering that most major aquatic bioprocesses are affected by

changes in external OM inputs. Typical DOC concentrations in non-perturbed and natural

boreal aquatic systems in Quebec typically range between 0. 1 5 to 1 .7 mmol L"1 (Prairie et
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al. 2002; Houle et al. 1995; del Giorgio and Peters 1994; Chapters 2 and 3), whereas POC

concentrations are about two orders ofmagnitude lower ranging from 10 to 90 µp??? L"1

(Chapters 2 and 3). Given that the/?C02 in surface waters is linked to the degradation of

OM (Sobek et al. 2003), important variations in DOC concentrations are likely to modify

the dissolved CO2 concentrations and atmospheric fluxes. Therefore, anthropogenic

perturbations of the watershed around freshwater systems, which in most cases increase

DOC lixiviation and transfer to aquatic systems, should lead to an increase in GHG

production.

1.3.1 Hydro-electric reservoirs
Reservoir formation and operation in Canada serves two major purposes: water

flow regulation and hydropower production. Dissolved GHG concentrations and

atmospheric emissions from Quebec hydroelectric reservoirs have been extensively

examined in the past (Duchemin et al. 1995; Tremblay et al. 2005; Duchemin et al.

2006). More recently, an intensive GHG monitoring program was initiated by the main

producer of hydroelectricity in Quebec, Hydro-Quebec, to estimate GHG emissions

attributable to the flooding of a watershed upon the formation of new reservoirs (Demarty

et al. 2009; Prairie 2009). It was reported that the dissolved GHG concentrations were

very high during the first three years following impoundment but returned to values

comparable to those measured in natural lakes after a maximum of 10 years (Tadonléké

et al. 2005; Tremblay et al. 2005; Demarty et al. 2009). If true, such a conclusion would

be particularly important in Quebec as it would support Hydro-Quebec's claim that a

reservoir carbon imprint is low and that hydroelectricity is greener than other sources of

energy (Duchemin et al. 1995; Tremblay et al. 2005). However, it is still controversial as
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most direct comparison studies are directly linked to lakes rather than to the preexisting

CO2 balance with the forest before impoundment. Additionally, most studies focus on the

quantification, rather than on the processes leading to, lakes and reservoirs GHG

emissions. Recent studies showed that averaged atmospheric CO2 fluxes are from 1 .5 to

2.0 times higher in reservoirs than in lakes situated in the Canadian boreal forest

(Tremblay et al. 2005; Tadonléké et al. 2005). Because GHG fluxes to the atmosphere are

dependent on dissolved GHG concentrations in surface waters and oft wind speed (which

vary greatly on very short time scales), the standard deviations are often too large to get

statistically significant differences in fluxes between lakes and reservoirs at the 95%

confidence interval (Table 1-1).

Table 1-1: Welch's test investigating for CO2 fluxes differences in lakes and
reservoirs (values taken from Tremblay et al. 2005)

Number „,_ _ ... CO2 fluxes in oldp r-, , LO2 fluxes in lakesProvince of lakes - . _,,_ .2 ,-? reservoirs ? <(mg CO2 m d ) , „^ -2 -,-?reservoirs ? & ' (mg CO2 m d )

Quebec 21-18 109O±1100 1370±970 0.20
Newfoundland 6-8 760 ± 330 2010 ±830 0.0025

Manitoba 12-6 1530 ±2340 3840 ±2760 0.1

Welch's test: Student t-test for groups with differing # of samples and standard deviations

Furthermore, comparisons between natural lakes and reservoirs always include

averaged CO2 fluxes from ice break up in the spring to ice build-up late in the fall.

During this interval, CO2 concentrations can vary from 20 to 70 µ???? L"1 (Tremblay et al.

2005; Demarty et al. 2009); therefore, a year-round average CO2 flux value is obtainable

during constant monitoring. Seasonal variations within one system is the major

contributor to the measured yearly standard deviations, therefore, seasonal rather than
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yearly atmospheric CO2 fluxes should be considered when comparing lakes and

reservoirs.

Despite this controversy, a number ofpublications reporting plankton community

responses upon land flooding and reservoir operation were recently published. It was

shown for instance that recently flooded terrestrial OM was better degraded by bacteria

under oxic conditions and warm temperatures (20 - 22°C) compared to colder

temperatures and/or oxygen-limited conditions (Therrien and Morrison 2005). In

addition, organisms from primary and secondary trophic levels proliferate upon

impoundment owing to high inputs ofphosphorus and labile OM. Upon long-term

reservoir operation, the zooplankton biomass decreases most likely because of the lower

water residence time in reservoirs compared to lakes. An increase in Zooplankton

abundance also appears to have a direct effect on lower plankton communities and on

dissolved CO2 concentrations (Marty et al. 2005). In a different study, bacterial activity

was shown to increase with higher DOC concentrations, which explained, in part, the

variance in CO2 fluxes between the different systems (Tadonléké et al. 2005). Finally,

Planas et al. (2005) have shown that there was no significant difference in phytoplankton

primary production and planktonic respiration between old reservoirs and nearby lakes.

However, planktonic respiration positively correlated the aquatic CO2 fluxes, which

suggests that bacterial activity plays an important role in modulating CO2 concentrations

and fluxes in freshwater aquatic systems. So far, no one has used molecular level

approaches to systematically study the bioprocesses that control atmospheric GHG fluxes

from lakes and reservoirs of the Quebec boreal region. Moreover, little interest has been

given to modifications in sedimentary processes upon long-term reservoir operation,

10



which are key contributors to GHG production (Algesten et al. 2005). In addition, it was

shown that from 1 .5 to 2.0 times more autochthonous OM is delivered to the sediment of

an old reservoir (70 y.o.) compared to lakes (Houel et al. 2006). Reservoirs are

hydrologically more dynamic (Marty et al. 2005), leading to well-mixed water columns

without a distinct thermocline in most locations, higher oxygen levels in the bottom

waters and possibly leads to higher abundance of autochthonous bacteria in the

sediments; these characteristics may be the major force driving atmospheric CO2 fluxes

in reservoirs.

1.3.2 Wood harvesting activities
Despites the importance of wood harvesting for the Canadian economy, little

attention has been paid to the effect of these activities on boreal aquatic systems before

the late 1990s. To date, several studies carried out in Finland and Canada have shown

that forest harvesting leads to direct DOC, dissolved organic nitrogen (DON), total

nitrogen and phosphorus (TN and TP, respectively) inputs from the watershed to the

nearby aquatic systems, which unambiguously affect autochthonous populations

(Ahtiainen and Huttunen 1999; Carignan et al. 2000b Piirainen et al. 2007; Winkler et al.

2009). Through continuous monitoring of algal populations in eleven boreal lakes two

years before and after forest harvesting activities, Prepas et al. (2001) showed that

phytoplankton and bacterial abundances were higher in the shallow zones of the lakes

following wood harvesting. Common studies monitor changes in aquatic fauna

populations upon wood harvesting in comparison to natural lakes within the same region.

For instance, a three-year study showed that chlorophyll A and algal biomass increased

significantly and correlated with TP concentrations following wood harvesting;
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moreover, higher algal abundances were measured in the shallow photic zones of the

perturbed compared to natural lakes (Planas et al. 2000). Wood harvesting also leads to

higher zooplankton abundances with increasing algal populations, and in opoosite, to

lower abundances with increasing cyanobacterial populations (owing to higher food

supply and the presence of neurotoxins, respectively; Rask et al. 1998; Prepas et al.

2001).

When exports of terrestrial humic DOC from the watershed to boreal lakes upon

wood harvesting are important, the thermocline depth decreases following the attenuation

of light penetration which limits algal growth (Schindler et al. 1997; Turkia et al. 1998;

Carignan and Steedman 2000; Karlsson et al. 2009). Although the effects of wood

harvesting on OM cycling in aquatic systems have been extensively studied at the fauna

and bulk level, with only partial success, these profound disturbances were never directly

linked to processes controlling dissolved GHG concentrations and fluxes to the

atmosphere (del Giorgio and Peters 1994; del Giorgio et al. 1999; Carignan et al. 2000a.

For the reason that an increasing number of studies suggest that increases in water DOC

concentrations lead to higher dissolved CO2 concentrations (Sobek et al. 2003; Tadonléké

et al. 2005; Chapter 3), important changes in CO2 production and fluxes are therefore

expected following forest harvesting.

1 .4 Organic matter source studies
Until now, the effects of reservoir operation and wood harvesting on aquatic

systems have only been assessed through biological, water chemical and GHG

measurements. While some work has been done on the changes in OM sources in the

water column and sediments upon long-term reservoir operation (Houel et al. 2006),
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more studies are needed to more precisely apportion water column and sediment OM into

allochthonous and autochthonous sources, as well as to pinpoint the relative importance
of aquatic organisms to OM accumulating in sediments. The changes in the proportion
and composition of terrestrial and aquatic DOM sources upon wood harvesting or
reservoir impoundment, as well as the links between these changes and the resulting

modifications in aquatic biomass populations, were never measured. Such information is

pivotal for determining the controls that link OM composition and dissolved GHG

concentrations and atmospheric fluxes.

The composition of aquatic OM can be assessed in several ways; bulk elemental

(%C, %N, %H, %0) and isotopie (O13C, d 15N, d2?) analysis of the different OM fractions

(DOM, POM and SeOM) are powerful enough to estimate OM sources based on simple
mixing models (Meyers 1997; Perdue and Koprivnjak 2007). Unfortunately, when the

differences in the bulk and isotopie signatures of the end-members are not large enough,
or when there are too many potential sources, quantifying and discriminating between the

different OM sources becomes exceedingly difficult. Then more powerful techniques,
such as the determination of organic biomarkers including compound specific stable
isotope signatures, are needed.

1.4.1 An elemental and isotopie approach
In this study, the elemental and isotopie composition of particulate and dissolved

OM were first measured to evaluate OM sources and cycling, which complement the

usual water chemical parameters (DOC, TN, TP, GHG) routinely measured in the field.

The organic carbon to total nitrogen atomic ratio (C :N) is one of the most widely used
bulk source proxy in organic geochemistry since it is relatively easy to measure and it

13



provides additional information on the whole sample (Perdue and Koprivnjak 2007).

Because of their different growth environments, land plants contain high relative

proportions of cellulose and lignin (C-rich biochemicals) while algae, phytoplankton,

bacteria and zooplankton are enriched in protein (N-rich biochemicals). Therefore, land

plants are characterized by a higher C:N ratio (20 and higher) compared to aquatic

organisms (4 to 12; see Table 1-2). Using pre-determined values of the elemental

composition for different end-members, one can thus evaluate the proportion of

autochthonous and allochthonous OM in a given solid sample. However, the uncertainties

related to such analysis are high and represent at best rough estimates of the relative

contributions, which are dependent on watershed characteristics (e.g. peatland vs. mixed

forest, slope of the drainage area, etc.), aquatic biomass characteristics, OM degradation,

and bacterial contribution to total OM (Meyers 1 997; Chapter 3). It is therefore important

to use C:N ratios determined for end-members specific to the region under study.

Table 1-2: Carbon to nitrogen atomic ratios of different organisms
Organism Atomic C:N References

Bacteria

Zooplankton

Aquatic plants

Terrestrial plants

4-7

5-6

8- 12

>20

Kaiser and Benner 2008
Homblette et al. 2009

del Giorgio and France 1996

Homblette et al. 2009
Chapter 3

Meyers 1997

In freshwater systems, end-members sometimes have similar elemental

composition, the determination of the OM stable carbon and nitrogen isotope ratios for

organic (ô13Corg) carbon and total nitrogen (d15?,0,) can help decipher the OM sources
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(Meyer 2003; Lehmann et al. 2004). Primary producers use either atmospheric CO2 (land

plants) or dissolved inorganic carbon sources (DIC; aquatic organisms) as source material

for the biosynthesis of OM. Because the stable isotope ratio (13C vs. 12C) ofatmospheric
CO2 and DIC are different, OM produced on land and in aquatic systems will bear a

different stable isotope signature. Stable isotope signatures are calculated using the

isotopie ratio of a sample (SMP) compared to that of an international standard, and are

expressed using the delta (d) notation (Equation 1). The Pee Dee Belemnitella (PDB) and

atmospheric N2 standards are the global reference for O13C and d?5? analyses,

respectively:

O13C (SMP/PDB) = [((13O12C)SMP - (13C/12C)PDB)/(,3C/12C)pDB] X K)3

Since the variations in 13C isotope ratios are very small, the calculated difference
between a sample and the standard is multiplied by 1000 and the units are expressed in

parts per thousand, orper mil (%o; Meyer 1997). Using this formula, a sample is said to

be depleted (negative value) or enriched (positive value) compared to the standard.

Fractionation {i.e., depletion or enrichment in the heavy isotope) is a kinetic process that

occurs during enzymatic reactions (McSween et al. 2003). Fractionation is dependent on

the biochemical pathway as well as on the isotopie signature of the substrate used to

synthesize organic molecules. The vast majority of plants found in boreal lake and

reservoir ecosystems exploit the C3 Calvin cycle to synthesize OM. Therefore, because

the substrates are isotopically different, the resulting OM is characterized by contrasting

stable isotope signatures (Meyers 1997; Lehmann et al. 2004; Marty and Planas 2008;

Cole et al. 2002; Chapter 3):
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Table 1-3: Stable isotope signatures of aquatic and terrestrial OM
Plants Substrate Substrate Fractionation OC produced ON produced

____________________________________(%o) (%o) (%o) (%o)

Aquatic DIC "^0"25 "6 to "20 "1^0"45
plantS Aquatic NO3" 7 to 10 O — 7 to 10

Terrestrial C°2^ "8 "20 "28
C3plantS SOiIsNO3- 0.4 0 - 0.4

Freshwater aquatic plants have a wide range ofpossible 513C signatures resulting
from the highly variable Ô13CD]C signature. The variability in the 513CDic is governed by
two major processes, (i) OM respiration (photo and bacterial) introducing depleted CO2

into the DIC pool (from the degradation of 513C depleted OM, ~ -28 %o) and (H) OM
production by primary producers which preferentially use 12C and thus enrich the DIC

pool in O13C. It was recently shown by Cole et al. (2002) that the fractionation induced
by phytoplankton is lower (~ -6%o) than that induced by land plants (~ -20 %o) upon OM

biosynthesis. However, despite the high variability of 5,3CDic in freshwater systems, the
d C signatures of algal biomass isolated from boreal lakes and hydroelectric reservoirs in

the summer were fairly constant at -32.7 ± 1 .0 %o (Marty and Planas 2008). Those of

bacteria and zooplankton vary a lot more and are dependent on the food sources (France

and del Giorgio 1996, Cole et al. 2002).

Bulk elemental and isotopie signatures of a given OM fraction are measured using

an elemental analyzer coupled to an isotopie ratio mass spectrometer (EA-IRMS). While

data acquisition is rather simple, its interpretation is not as straightforward. As discussed

for atomic C:N, isotopie results most often reflect a mix of varying proportions of all

potential sources of OM in a system, with limited discriminating power. To differentiate
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OM sources and alteration processes, complementary organic biomarkers measurements

can be carried out on the same samples.

1.4.2 A biomarker approach
Biomarker measurements in biogeochemistry were initially developed to gain

insight into the sources of OM fuelling sediments and thus being preserved on geological

time scales. Biomarkers have been traditionally defined as molecular fossils of

biochemicals that are specific to one or few living organisms and that are resistant to

degradation {e.g. lignin, fatty acids, alkanes, etc.; Eglinton et al. 1964). Recently, it was

more shown that more labile molecular compounds (e.g. amino acids, carbohydrates)

could also be used as proxies for estimating OM freshness and recent processing (Cowie

and Hedges 1994, Hedges et al. 1994). New biomarkers have been identified and used for

determining the roles that biological organisms play in dissolved and particulate OM

cycling in natural aquatic systems (Wakeham 1999, Meyers 2003, Tremblay and Benner

2009, Chapters 4 and 5).

Proteins and peptides are ubiquitous to all living organisms and comprise

relatively similar proportions of the different amino acid (AA) constituents. Amino acids

(AA) were first exploited by Cowie and Hedges (1992) as a proxy for the extent of OM

degradation. For instance, the percentage of total organic nitrogen in a sample accounted

for by AA is representative of OM freshness (higher percentages mean fresher OM).

Also, several AA were found to be directly linked to bacteria in the environment,

following their production through bacterial reworking of ubiquitous compounds. These

AA are ß-alanine and ?-aminobutyric acid that are derived from aspartic and glutamic

acid, respectively as well as the D isomeric AA (D-AA) that are found mostly in
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peptidoglycan, a major component of the bacterial cell walls (Cowie and Hedges 1994;

Kaiser and Benner 2008). These bacterial biomarkers can therefore be used to monitor

the response of bacterial communities and GHG to the varying conditions existing in

natural lakes and perturbed systems.

The second category ofbiomarkers used in this study are lipids (defined broadly

in this work as the compounds that are soluble in a mixture ofnon-polar solvents); more

specifically, alkanes and fatty acids were used for estimating the relative contributions

from algae, vascular land plants as well as microbial reworking (Meyers 1997). Also GC

analysis of natural samples results in chromatograms that contain a broad peak

corresponding to an unresolved complex mixture (UCM) of highly degraded aliphatic

compounds including straight-chain, unsaturated, branched, alicyclic and aromatic

hydrocarbons, including their numerous isomers. As resolvable biomarkers are indicative

of mostly fresh organic materials from distinct sources, the UCM:biomarkers area ratio

can thus be used as a molecular based biodégradation index of the bulk sample (Jeanneau

2006; Hautevelle et al. 2007).

Gas chromatography coupled to isotope ratio mass spectroscopy (GC-IRMS)

combines the strengths of stable isotope measurements and molecular biomarkers to

pinpoint very subtle changes in OM composition and processing. This approach is not

only used for monitoring changes in the sources of sedimentary OM over time scales of

up to 5,000-10,000 years (Hayes et al. 1990; Filley et al. 2001), but it also provides

unique details on how source information and bioprocesses are linked. For instance,

variations in the stable isotope signature of biomarkers that are specific to the bacterial

biomass will reflect changes in the origin of the OM bio-utilized by the bacterial
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community. As an example, the compound-specific C analysis of anteiso Ci5 branched

fatty acid (a universal bacterial biomarker; Meyers 2003) in a lake with a deforested

watershed would most likely be different from the same analysis in a lake with an

unperturbed watershed.

1.5 Thesis format, connecting text and co-author contributions
This manuscript-based thesis contains six chapters, four of which representing

articles that are already published (Chapter 2), were, or that are to be submitted (Chapters

3, 4 and 5) to high profile scientific journals. Because this is a linear thesis with obvious

relationships between the different chapters, the linking text between each chapter is

recopied in this section.

First, the introduction provides the necessary background information for

understanding the underlying context and scientific rationale of land use changes and

freshwater ecosystems studies.

Chapter 2 (Ouellet, A., D. Catana, J.-B. Plouhinec, M. Lucotte and Y. Gélinas.

2008. Elemental, isotopie and spectroscopic assessment of chemical fractionation of

dissolved organic matter sampled with a portable reverse osmosis system. Environ. Sci.

Technol. 42: 2490-2495) then describes the tangential flow filtration reverse osmosis

system (TFF-RO) used for sampling fine POM (FPOM) and DOM in this study. The

TFF-RO allows the sampling of a large quantity of OM and for the concentration of the

DOM, in preparation for bulk and molecular analyses. Because sample recovery is not

1 00% using this approach, we evaluated OM losses and carry over effects through mass

balance calculations, as well as OM fractionation and composition through spectroscopic

analysis. I ran all the analyses in the laboratory and wrote the publication, with inputs
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from my co-supervisors, Y. Gélinas and M. Lucotte. D. Catana and J.-B. Plouhinec took

part in the sampling field trip and in the on-site OM collection using the TFF-RO system.

In Chapter 3 (Ouellet, A., J.-B. Plouhinec, N. Soumis, M. Lucotte, K. Lalonde and

Y. Gélinas. Assessing the carbon dynamics and greenhouse gases production in natural

and perturbed boreal aquatic systems: A bulk isotopie approach. Submitted to Global

Biogeochemical Cycles), we present a study based on the exploitation of a wide array of

water chemical parameters, as well as elemental and isotopie signatures of OM collected

in the summer of 2007, to understand the main controls on OM cycling in lakes and

reservoirs. We also evaluated how major biogeoprocesses are altered upon

anthropogenic perturbation of the natural environment. I also wrote this publication with

inputs from my co-supervisors, and ran most of the analyses except for the iron (partly

done by Karine Lalonde), total nitrogen and phosphorus (analyzed by a technician,

Sophie Chen, at UQAM). J.-B. Plouhinec and N. Soumis helped with sampling and on-

site analysis (DOM, FPOM, water pH and temperature, nutrients, as well as dissolved

CO2, CH4, and O2 concentrations).

Because of the inherent limitations ofbulk OM analyses, we also exploited the

specificity of organic biomarkers to trace carbon inputs, transformations and sinks in

these aquatic systems. In Chapter 4 (Ouellet, A., L. Tremblay, M. Lucotte and Y.

Gélinas. Assessing carbon and nitrogen dynamics in natural and perturbed boreal aquatic

systems: An amino acids approach. Submitted to Limnology and Oceanography), we

present a study exploiting amino acid biomarkers analyzed in all of the OM fractions

collected in the summer of 2007. Amino acid signatures allowed linking human

perturbations to bacterial and phytoplanktonic responses, as well as bacterial biomass to
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both perturbation and GHG concentrations. The amino acid data presented here were

analyzed by Dr. Luc Tremblay, a collaborator from the Université de Moncton (NB). I

wrote this manuscript with the inputs from the three co-authors.

Amino acids are especially good source indicators for bacterial biomass. In

Chapter 5 (Ouellet, A., M. Lucotte and Y. Gélinas. The modulation of the carbon

dynamics in natural and perturbed boreal aquatic ecosystems: A lipid biomarkers

approach. To be submitted to Limnology and Oceanography), we report an exhaustive

study based on the analysis of a broad series of lipid biomarkers, which were used to

assess how terrestrial OM inputs affects the bacterial and primary producer communities

in these water bodies, and to explain the changes in aquatic bioprocesses linked to GHG

production pathways. I analyzed all the lipids reported in this work and wrote the

manuscript, again with inputs from my co-supervisors.

Finally, an attempt to synthesize the data into presented in Chapters 2-5 is

included in Chapter 6, together with the main conclusions and environmental

implications reached in this study.
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Chapter 2.

2 Elemental, isotopie and spectroscopic assessment of
chemical fractionation of dissolved organic matter sampled
with a portable reverse osmosis system

Published as :

Ouellet, A., D. Catana, J.-B. Plouhinec, M. Lucotte and Y. Gélinas. 2008. Environ. Sci.
Technol. 42: 2490-2495.
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2.1 Abstract
Portable reverse osmosis (RO) systems are increasingly being used for isolating

dissolved organic matter (DOM) from freshwater aquatic systems because of their high

volume processing capacity and high absolute DOM recoveries. However, obtaining

complete recoveries implies the rinsing of the reverse osmosis system with a solution of

dilute NaOH and combining the rinse solution and the DOM concentrate. Because of the

potential chemical alterations that can affect the integrity of the organic pool leached

from the RO system at high pHs, this approach is not compatible with studies based on

the molecular-level analysis of DOM. The potential for elemental, isotopie and chemical

fractionation was thus evaluated on a series of freshwater DOM samples concentrated in

the field with a portable RO system when the concentrate and the rinse solution are not

combined. DOC recoveries in the concentrate varied between 81.6 and 88.8%, while total

balance calculations showed total recoveries of dissolved and particulate organic carbon

ranging between 96.4 and 106.9%. Despite similar d13 C signatures, differences in N

content and FTIR-based chemical composition between the concentrate and rinse DOM

solutions suggest some degree of chemical fractionation.
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2.2 Introduction
Dissolved organic matter (DOM) is one of the largest and most dynamic pools of

organic carbon on Earth (Hansell and Carlson 2002). The number of studies on the bulk

characteristics, chemical composition and biogeochemical cycling of DOM has grown

exponentially in the last decade. With the recent advances in the development of

sophisticated analytical instrumentation to probe the molecular composition of the

complex mixtures of organic macromolecules found in DOM (e.g., electrospray

ionization mass spectrometry (Kujawinski et al. 2002); ion cyclotron resonance mass

spectrometry (Hockaday et al. 2006); liquid chromatography coupled to mass

spectrometry (Dittmar et al. 2007); two-dimentional gas chromatography (Adahcour et al.

2006); multi-dimensional nuclear magnetic resonance (Hertkorn et al. 2006); and others),

an increasing emphasis is now being put on the collection of salt-free, chemically

unaltered, and representative DOM samples. Different methods have been developed for

this purpose, including resin adsorption chromatography (using synthetic polymeric

resins such as polymethylmethacrylate or polyvinylpyrrolidone), tangential ultrafiltration

(Benner et al. 1992), and more recently, solid-phase extraction disk (Kim et al. 2003) and

reverse osmosis coupled to electrodialysis (Koprivnjak et al. 2006, Vetter et al. 2007).

While these methodologies have been applied with varying success in numerous studies,

they are either tedious to use, unsuitable for extracting large quantities of DOM, and/or

lead to chemical fractionation owing to the incomplete recovery of DOM.

Reverse osmosis (RO) is the only method available to rapidly concentrate DOM

from large volumes of water (hundreds of liters) with minimal DOM losses. The

industrial use of reverse osmosis emerged in the early 1970s to produce large volumes of
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clean water at a reasonable cost. Reverse osmosis has been exploited to concentrate

freshwater DOM since the early 1 980s and has since been used routinely in a broad range

of freshwater environments (0degaard and Koottatep 1982, Clair et al. 1991 , among

others). In particular, Serkiz and Perdue (1990) have developed and commercialized a

portable RO system that can be used in the field for concentrating large volumes of

surface and ground water DOM samples. Total dissolved organic carbon (DOC)

recoveries greater 90% are routinely reported with this system (Serkiz and Perdue 1990,

Sun et al. 1995, Kitis et al. 2001, Kilduff et al. 2004, O'Driscoll et al. 2006), which make

this approach the most attractive for the bulk and molecular characterization of

freshwater DOM samples.

Depending on the study, these recoveries either correspond to the DOC recovered

in the concentrate only, or they are calculated by combining the mass of DOC in the

concentrated sample with the mass of carbon recovered upon rinsing the RO membranes

following the concentration step, divided by the total mass of DOC in the initial, non-

treated sample. The rinsing step is necessary because a fraction of the DOC pool,

typically 10-20% of initial DOC, sorbs onto the membranes of the RO system and is not

recovered in the permeate (water passing through the RO membranes) nor in the

concentrate (volume of water containing the compounds rejected by the membrane). To

completely recover this sorbed DOC fraction and eliminate problems associated with

cross contamination of samples from carry over effects, the RO system is usually leached

with a dilute NaOH leaching solution ( 1 0 2 - 1 0"4 M), which is then neutralized and

demineralized using an H+-saturated cation exchange resin (Koprivnjak et al. 2006).
While such harsh chemical treatment might not significantly alter the bulk reactivity
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(Kitis et al. 2001, Kilduff et al. 2004) and trace metal complexation properties (De

Schamphelaere et al. 2005) of the concentrated DOM pool, it might not be suitable when

probing DOM dynamics through the analysis of specific molecular biomarkers. Such

molecular-level studies hinge on the preservation of the chemical integrity of a sample as

the slightest chemical alteration can result in the loss of a target molecule from the

analytical window. It is thus important to evaluate the percentage of bulk DOM that

remains sorbed onto the membranes of the RO system, and to know whether the

composition of the sorbed DOM fraction differs from that ofbulk DOM. Knowing

whether the incomplete recovery of DOM leads to significant chemical fractionation

upon sampling would also be useful in studies where only the DOM concentrate is used

(see Gjessing et al. 1 998 and Vogt et al 2004 for instance). Despite the fact that RO

systems have been exploited for more than 1 5 years to collect and concentrate DOM from

freshwaters, information on chemical fractionation still is not available in the literature.

This study was initiated with this major aim in mind. A commercial RO system

was used to collect a series of samples from lakes and reservoirs of the boreal forest in

Quebec, Canada. The samples were concentrated in the field, where no clean laboratory

and organic-free water source were available, to estimate DOC recoveries of the RO

system during routine field use. A complete carbon mass balance was calculated for each

sample by analyzing the initial water for total organic carbon (TOC, which is the sum of

dissolved and particulate organic carbon, DOC and POC, respectively), the POC fraction

(>0.45 µp?), DOC in the concentrate, DOC in the alkaline rinse solution, and the DOC in

the permeate. Elemental, isotopie and chemical fractionation was assessed through mass

balance calculations and spectroscopic characterization.
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2.3 Materials and Methods

2.3.1 Field sampling
The samples were collected in different lakes and reservoirs of the boreal forest in

the province of Quebec, Canada, at latitudes ranging between 46° 10' and 47°46' N, and

longitudes between 76° 12' and 78°24' W between early spring 2006 and fall 2007. At

each site, equal volumes ofwater sampled at regular intervals in the upper 10m of the

lake or reservoir were collected in 50-L NaIgene carboys (total of 150 to 250 liters) using

a drum transfer pump and pre-filtered online using a 63-µp? nylon filter. The water at

these sites is slightly acidic to slightly alkaline (pH 6.25-7.46), with DOC concentrations

ranging between 2.7 and 7.7 mg C L"1, and low total suspended solids concentration (<3
mg L"1). Water column temperature at the time of sampling varied between 8.2 and
24.00C.

2.3.2 Microfiltration-Reverse Osmosis (MF-RO) unit
The system includes a tangential flow filtration (TFF) unit equipped with a 0.45-

µp? polyvinylidene difluoride (PVDF) Pellicon 2 cassette filter (Millipore) coupled to the

RealSofi PROS/2S RO system described in Serkiz and Perdue (1990) as well as Sun et al.

(1995). A Chelex-100 resin (polystyrene-divinylbenzene iminodiacetate, Biorad) was

installed upstream from the RO system to lower the concentration of dissolved cations in

the feed solution. To separate the POM and DOM fractions, the sample was filtered on

0.45-pm membrane using a peristaltic pump and collected in a 50-L Nalgene® container

while the retentate containing particulate organic matter (POM) was returned to the

original sampling container. The DOM fraction was then concentrated using the approach

described by Serkiz and Perdue (1990), and quantitatively recovered by completely

emptying the RO system at the end of the concentration step. This last step was done by
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applying a positive pressure using the high-pressure pump for air-flushing the system,

and then opening the valve fitted at the bottom of the membrane casing. Because no

organic-free water source was available at the time of sampling, a rinsing water solution

at pH 12 (0.0 IM NaOH) was prepared from the RO permeate water; the dissolved

organic carbon concentration in the permeate was consistently very low, with measured

values ranging between 6.2 and 7.4 µg C L1. RO membranes were rinsed with 2OL of

this alkaline solution to avoid carry over of organic matter from sample to sample. Two

7-mL aliquots each of the 63µ?3-??1?eGea water, RO concentrate, initial and final rinse pH

1 2 water were sub-sampled and acidified to pH <2 with clean 6M HCl for TOC

measurements. Concentrated POM and DOM samples were doped with HgCl2 to quench

bacterial activity. Any residual water remaining in the RO system was then neutralized

with diluted HCl. The TFF unit was then washed with 10 L of a sodium hypochlorite

(Javel®) solution prepared with the RO permeate water and then rinsed once again with

permeate water.

2.3.3 TOC measurement

A Shimadzu Total Organic Carbon (TOC) Analyzer model 5000A TOC-VCsh was

used throughout this work. The concentrated DOM samples were diluted 10-fold with

milli-Q water (Barnstead EASYpure II) prior to analysis. Milli-Q water blanks were

analysed each day to correct for instrumental background contribution to the measured

intensities for the samples and potassium hydrogen phthalate standards. Each aliquot

collected in the field was analysed in triplicate. Using the approach described here the

precision was 3.6%.
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2.3.4 EA-IRMS measurements
Bulk 13C and elemental analyses were carried out on a EuroVector 3028-HT

elemental analyzer coupled to an Isoprime isotope ratio mass spectrometer (EA-IRMS,

GV Instruments, Manchester, England). The EA-IRMS was calibrated with an in-house

pre-calibrated ß-alanine standard (O13C = -25.98 ± 0.23%o and d15? = -2.21 ± 0.24%o, ? =

61), and the certified primary standards IAEA-C6 327 Sucrose (O13C = -10.45 ± 0.03%o)

for both carbon and nitrogen quantitative and stable isotope measurements. Isotopie

fractionation upon sampling was tested on three randomly selected reservoir water

samples. A measured volume of the DOM concentrate and water rinse solutions were

freeze-dried and analyzed in triplicate. Inorganic carbon (i.e., carbonates) was removed

from the freeze-dried samples prior to EA-IRMS measurement by exposing them to

vapor-phase HCl overnight following the method of Hedges and Stem (21).

2.3.5 FTIR measurements
FTIR analyses were carried out on the same freeze-dried DOM concentrates and

the corresponding freeze-dried rinsing solutions. About 0.5 mg of the concentrate and 1.5

mg of the rinse sample were homogenized with -100 mg ofpotassium bromide.

Approximately 50 mg of this homogenate was pressed into a pellet and analyzed using a

N2-purged Nicolet 6700 FTIR spectrophotometer.

2.4 Results and discussion
Working in the field often adds severe constraints on the procedures carefully

developed in the laboratory when collecting high-quality samples from natural

environments. The best compromise was thus established to optimize the number of

DOM samples that could be collected during a sampling campaign without
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compromising the quality of the samples. This was accomplished by systematically

cleaning the RO system with an alkaline solution between samples to avoid carry-over of

DOM from sample to sample, and by using the permeate water as a source of clean water

for preparing the alkaline cleaning, bactericidal, and water rinsing solutions.

2.4.1 Carbon mass balance

Total carbon mass balances were calculated for water samples from nine lakes

and reservoirs collected with the MF-RO system in the spring and summer of 2006, and

in the fall of 2007 (Table 2-1). The initial TOC concentrations (sum ofDOC and POC)

ranged between 2.7 and 7.7 mg C L"1 in the non-treated water samples, while the DOC
concentrations varied between 56 and 144 mg C L"1 in the final concentrates. DOC

concentrations in the permeate were very close to the instrumental blank (and thus not

quantitative at the 3s level); therefore, they were not taken into account when calculating

the total carbon mass balances. Because the initial DOC concentrations prior to RO

concentration are not available (owing to the fact that the samples were water-column

integrated and that the RO concentration step was initiated before the rate-limiting

microfiltration step was completed), the yield of the RO system is calculated as the mass

of DOC in the concentrate divided by the sum of the masses in the concentrate and in the

rinse solution. Note that contrary to the values reported in some studies (Kilduff et al.

2004), these yields do not include the mass of carbon recovered in the alkaline water

rinse, which was not combined in this work to allow assessing chemical fractionation

between the concentrate and the rinse solution. The RO yields listed in Table 2-1 thus

correspond to the true DOC recoveries of the RO system when collecting concentrated

and chemically unaltered DOM from these aquatic systems. In all cases but one (n=8),
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these DOC recoveries varied between 85.0 ± 2.5% and 88.8 ± 1 .7% when consistently

emptying the RO membrane casing, i.e. a volume of about 4 L of retentate, following the

concentration step (Table 2-1). One sample had a slightly lower recovery at 81.6 ± 1 .9%.

The uncertainties associated with the above measurements represent the propagated error

stemming from DOC concentration measurements in the concentrate and the rinsing

solution. Although the small number of samples listed in Table 2-1 precludes the positive
identification of statistically significant correlations, no trend was found between DOC

recoveries and water temperature, pH, or with type of aquatic systems (lake or reservoir).
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A significant fraction of total DOC (1 1 .2 ± 1 .9% to 18.4 ± 2.5%) thus remained

sorbed onto the surface of the membranes during the RO concentration step. Sun et al.

(1995) showed that for samples with very high DOM concentrations, the use of a H+-

saturated cation exchange resin upstream from the membranes might results in the

acidification of the solution followed by the precipitation ofhumic compounds in the RO

system. More likely for our low-DOM samples, a pool of dissolved organic compounds

might have a strong affinity for the functional groups present at the surface of the

aromatic polyamide RO membranes. These two possibilities agree with our data and with

the fact that the mass of DOC lost in the permeate amounted to only 1.1 ± 0.3% of the

total initial mass of carbon.

Total carbon mass balances for each sample were calculated from the mass of the

initial TOC in the unfiltered samples and the sum of the masses of organic carbon in each

fraction (DOC in the concentrate, DOC in the rinse solution, and POC retained by

microfiltration). The total recoveries of initial TOC vary between 96.4 ± 3.7% and 106.9

± 1 .4%, and could be underestimated by about 1% owing to the fact that the mass of

carbon lost in the permeate was not included in this calculation. Mass balances for all

samples are thus near or slightly above 1 00%, suggesting either a slight instrumental

overestimation of the DOC concentrations, a low-level contamination of the vials and

containers used to process and store the water samples, or the leaching of organic carbon

from the RO system (tubing, pump, cation exchange resin and RO membranes) during

the rinsing step at pH 12.

The high absolute carbon recoveries confirm the high potential of RO systems for

collecting freshwater DOC (Serkiz and Perdue 1990). As also suggested by Kilduff et al.
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(2004), systematically rinsing the RO membranes with a 0.01 M NaOH solution

completely eliminates DOC carry-over from sample to sample, which had been identified

as a potential problem with RO systems used in the field (Sun et al. 1995). Without this

rinsing step, cross-contamination between samples is likely given the relative proportion

of initial DOC (between 1 1 and 18% of the initial mass ofcarbon) that sorbs on the

surface of the RO membranes during the concentration step.

2.4.2 Sample fractionation
Sorption of a fraction of the DOM pool on the membranes of the RO system

implies contrasting affinities, and thus contrasting chemical composition, between DOM

sorbed to and DOM passing through the aromatic polyamide membranes. Chemical

fractionation of the initial DOM pool is thus possible using RO systems. Whether such

chemical fractionation is significant and whether chemical fractionation is accompanied

by stable isotope fractionation must therefore be verified to confirm that the DOM

concentrate is truly representative of the initial DOM pool. The DOM concentrate and

alkaline rinse solution of three randomly selected samples were freeze-dried and

quantitatively and isotopically analyzed for organic carbon (OC) and total nitrogen (TN)

by EA-IRMS. These results are summarized in Table 2-2.

The OC concentration in the freeze-dried DOM concentrates reveals that

inorganic materials account for roughly two-thirds of the total mass of the recovered

DOC pool (assuming that 45% of DOM is DOC). Dissolved solids, most likely

monovalent cations and anions as most of the divalent cations are removed by the

Chelex-100 resin, as well as inorganic colloids, likely contribute to the inorganic fraction

in these samples. The TN contents are lower, and the atomic C/N ratios are typical of
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terrestrial DOM samples (Meyers 2003). Note that the contribution of dissolved nitrate

accounts for less than 0.5% of total nitrogen in the freeze-dried concentrates (nitrate is

assumed to behave conservatively during the RO concentration step, i.e., the MV

concentration in the filtrate is roughly the same as in the non-treated water sample; its

contribution to total nitrogen in a freeze-dried filtrate sample can thus easily be

calculated).

Table 2-2: Bulk analysis of a DOM concentrate and corresponding alkaline
rinse solution

OrganicC Total N (C/N)aa O13C
Sample (wt%) (wt%) (%o vs PDB)

Decelles-2 18.11 ±0.34 0.455 ± 0.002 46.5 ±1.1 -27.4 ±0.2

Decelles-2 rinse 0.52 ± 0.03 0.015 ± 0.00O2 39.2 ± 2.5 -27.1 ±0.3

0.52 ±0.03 (0.006) (>100) -27.1 ±0.3
Decelles-2 rinse
(nitrate-corrected)

Decelles-1 16.80 ±0.22 0.598 ±0.028 32.8 ±1.9 -27.2 ±0.1

Decelles-1 rinse 0.73 ±0.05 0.021 ±0.001 40.4±5.0 -27.0±0.04

0.73 ±0.05 (0.003) (>100) -27.0 ± 0.O4
Decelles-1 rinse
(nitrate-corrected)

Decelles-4 18.31 ±0.79 0.655±0.054 32.6 ±4.1 -27.2 ±0.1

Decelles-4 rinse 0.94 ±0.01 0.023 ±0.001 48.6 ±2.8 -27.1 ±0.1

0.94 ±0.01 (0.001) (>100) -27.1 ±0.1
Decelles-4 rinse
(nitrate-corrected)
Atomic C/N ratio

Despite the similarity in 513C composition (Table 2-2), much lower OC
concentrations are measured in the freeze-dried rinse solution. These lower

concentrations reflect the high mass of salts generated when adjusting the pH of the rinse

solution with HCl; -99% of the total mass is inorganic. The atomic C/N ratio measured
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for the rinse solutions are affected by the nitrates present in the water samples. Nitrates

accounts in all cases for more than 60% of total N in the rinse solutions and artificially

decreases the measured ratios; these ratios increase to more than 100 without the NO3"

contribution and indicate that the chemical composition of the DOM fraction sorbed to

the membranes is different from that of the initial DOM pool, at least with respect to N-

containing functionalities.

To probe for chemical fractionation, the nature and relative abundances of the

major chemical functionalities in the concentrated DOM fraction and in the rinse solution

for three randomly selected samples were analyzed by FTIR spectroscopy (González et

al. 2004, Peuravuori et al. 2005, Her et al. 2008). While the spectra collected for the

concentrates are all similar (Figures 2-1 A, -IC and -IE), those of the rinse solutions

reveal important differences between samples (Figures 2-1B, -ID and -IF). The reasons

for these differences could be linked to sample composition and/or working pressure of

the RO system (which varied between 1000 and 1 500 kPa in this work), but they are

beyond the scope of this paper. All spectra show a broad peak between 3000 and 3500

cm" and corresponding to ?-bonded OH stretching derived from a broad range of

molecules, with possibly a small contribution from the N-H stretch absorption band of

amines and amides. This band is sharper and more intense in the rinse solution of the first

sample (Figure 2-1 B) most likely because of the presence of residual water retained by

the hydroscopic salts formed upon neutralization of the rinse solution. The absorption

bands representing C-H stretching of methyl and aldehyde functional groups near 2960,

2920 and 2850 cm"' contribute little to the total signal in most samples, except for the
rinse solution of the last sample (Figure 2-1F). The stretching band of thiol groups (S-H)

36



near 2550 cm" is seen as a weak and broad peak on the spectra of the concentrates and

rinse solutions collected in the fall (Figures 2-1 C-F). Absorption bands for C=O and

C=C functionalities are intense in the 1750 to 1500 cm"1 region, although at varying
relative contributions, in all concentrates and rinse solutions. The wavenumber region

between 1470 and 1380 cm"1 is a significant contributor in all spectra and is attributed to
CH2 and CH3 bending. The C-O stretch bands for the tertiary, secondary and primary

alcohols at about 1 150, 1 120 and 1070 cm"1, respectively, are also present on all spectra,
albeit at a higher relative abundance in the DOM concentrates and in the rinse solution of

the last sample. Other functional groups (Si-O and S=O) are also known to absorb in the

same spectral window but their contribution is assumed to be small, particularly in the

DOM concentrates. Although the series ofpeaks in the 700-1000 cm"1 region of some

spectra (Figures 2-1 C-F) might be indicative of differences in alkene isomers and/or

benzene substitution patterns, the associated alkene C-H stretch absorption normally seen

at 3000-3 1 00 cm" is absent from all spectra most likely because of the intensity of the O-

H stretch band. A contribution from different mineral species also cannot be ruled out
below 1000 cm"1.
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Figure 2-1. FTIR absorbance spectra of the lyophilized DOM concentrate and the rinse solutions
from the DeceIIes Reservoir (Quebec, Canada).
(A) and (B) are the concentrate and rinse from station Decelles-2 (summer 2006); (C) and (D) are the
concentrate and rinse from station Decelles- 1 (fall 2007); and (E) and (F) are the concentrate and rinse from
station Decelles-4 (fall 2007).

Important differences can be seen between the spectra of the concentrates and the

rinse solutions, particularly for the first two samples (Figures 2-1 A-D). However, these

differences are mostly linked to variations in the relative contributions from the four

major regions of the spectrum, namely, (/) O-H/N-H stretching between 3000 and 3500

cm"1, (H) C=O and C=C stretching between 1500 and 1700 cm"1, (Ui) C-H bending

between 1470 and 1380 cm"1, and (iv) C-O stretching between 1 170 and 1000 cm"1.

Within each one of these major groups, the relative intensities of the different

contributing functionalities sometimes also varies between the concentrates and the rinse

solutions. As an example, in the Decelle-2 DOM concentrate (Figure 2-1 A), a broad band

is observed between 1500-1700 cm"1, flanked by a shoulder at 1750 cm"1, indicating a

combination of alkenes, aromatic C=C and amides C=O stretching, while the shoulder is

assigned to ester C=O stretching. In the same spectral region, only a sharp band is

observed at 1630 cm"1 for the rinse solution of the same sample (Figure 2- IB). This band

could be associated to C=O stretching in amides, but given the low abundance of organic

nitrogen in the rinse solution, it more likely corresponds to conjugated C=C with a ketone

functional group. Coordination of the C=O functional groups with calcium or aluminum

could also contribute to the signal at 1630 cm'1. Bands indicative of methyl bending

(1400 and 1383 cm"1) and C=C stretching (1475 cm"1) are present in the RO concentrate

while only the C=C stretch can be observed in the rinse solution along with a new band

occurring at 1425 cm'1.
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These differences between the concentrate and rinse solution for each sample

indicate some degree of chemical fractionation upon concentrating DOM by RO, most

likely stemming from differences in affinity of the sorbed DOM fraction for the aromatic

polyamide membranes of the RO system through Van Der Walls interactions. However,

the absence of a repeating pattern in the FTIR-based compositional differences between

the concentrates and the rinse solutions prevents the confirmation of this hypothesis. The

contribution of organic material leached from the RO system as the cause for these

differences can be ruled out based on the variations in the chemical composition of the

three rinse solutions and the OC recoveries of 96.4 to 99.5% measured for the samples
analyzed by FTIR.

Given the fact that the DOC recovered in the rinse solution accounts for only 1 1

to 1 8% of the initial DOC pool, the impact of this fractionation on the bulk chemical

characteristics of DOM is most likely small and could probably be neglected. Chemical

fractionation could however introduce a bias in the results when targeting specific
molecules present the DOM pool, as done in studies exploiting organic biomarkers.

Owing to the composition of the ROM membranes, aromatic and aliphatic materials may
preferentially be removed from the concentrate through sorption onto the membranes of

the RO system. Such affinity-based fractionation could have an impact on the distribution

of several families of aliphatic (lipids) and aromatic (lignin) biomarkers between the

concentrates and the rinse solutions. This appears to have been the case with the last

sample (Figures 2- IE and -IF) for which the relative abundance of the C-H stretching
band, indicative of aliphatic molecules, is higher in the rinse solution than in the

concentrate. Furthermore, the biogeochemical message carried by each biomarker or
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family of biomarkers could be modified through the chemical alteration of individual

molecules. As an example, fatty acids originating from neutral lipids (mostly di- or tri-

glycerides) are often separated from those included in the polar lipids fraction (mostly

phospholipids) as the latter originate mostly from living cells or from very recently living

cells; the ratio between fatty acids from the two pools is thus an indicator for the living

biomass. Raising the pH of the solution to 12 leads to the partial saponification (base

hydrolysis) of the fatty acids from the parent molecule and thus, to a loss of information.

A series ofprecautions must thus be taken when collecting DOM samples from

natural aquatic systems using the MF-RO system described above, particularly when

working in the field. First, the system should systematically be rinsed with NaOH

between each sample to eliminate sample-to-sample carry over effects. A significant

fraction of the initial DOM pool is found in the rinse solution (1 1 to 18% in this study),

but it can be recovered following the procedure outlined in Koprivnjak et al. (2006).

Special care must be taken to completely empty the RO system when recovering the

concentrate or the rinse solution. In previous work (Sun et al. 1995, Kilduff et al. 2004),

this was done by flushing the system with permeate water, thus diluting the RO

concentrate with ~4 L of flush water (void volume of the RO system; Sun et al. 1995).

We took a different approach by applying a positive pressure using the high-pressure

pump to avoid diluting the DOM concentrate, and obtained total recoveries ranging

between 96.4 and 106.9%. Only about 1% of the initial DOC was not retained by the RO

system and was thus lost in the permeate. As suggested previously (Sun et al. 1995),

DOM lost in the permeate most likely comprised low molecular weight organic acids.

Given the high DOC-based yield of the RO system (between 81 .6 and 88.8% of the initial
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DOC pool, Table 2-1) and the fact that the chemical composition of DOM in the

concentrate and the rinse solutions are fairly similar, the bulk characteristics of the DOM

concentrate are most likely very close to those of the non-treated initial DOM sample

suggesting limited fractionation. Molecular-level fractionation modulated by contrasting

affinities for the aromatic polyamide membranes exhibited by the range of dissolved

compounds found in DOM could be an issue when carrying out studies exploiting

organic biomarkers and should be thoroughly tested for each class of biomarker

compounds before deciding whether the DOM sorbing onto the membranes should be

recovered. Furthermore, chemical alteration of the targeted biomarkers at high pH, and

thus of the biogeochemical message that they carry, should also be verified to ensure that

information drawn from such studies is accurate. The extent to which each family of

biochemicals routinely used in biomarker studies is affected by such fractionation and
chemical alteration should be further studied.
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Chapter 3.

3 Assessing the carbon dynamics and greenhouse gases
production in natural and perturbed boreal aquatic
systems: A bulk isotopie approach

Submitted to Global Biogeochemical Cycles as:

Alexandre Ouellet, Jean-Baptiste Plouhinec, Nicolas Soumis, Marc Lucotte, Karine
Lalonde and Yves Gélinas
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3.1 Abstract

Carbon (C) cycling in freshwater aquatic systems has high natural variability

within a narrow range of chemical and biological conditions, which makes the

understanding of the processes that control C dynamics and carbon dioxide (CO2)

exchanges with the atmosphere extremely difficult. Human perturbations such as

watershed wood harvesting and long term reservoir impoundment lead to profound

alterations in C dynamics and result in a more extensive range of chemical and biological

conditions when both perturbed and natural systems are examined together. We exploited

these anthropogenic alterations to assess the controls on C cycling in five lakes and two

reservoirs from the southern Canadian boreal forest during the spring and Summer of

2007. Several bulk analytical techniques were used, including the measurement of

dissolved greenhouse gases (CO2 and methane, CH4), oxygen (O2), dissolved organic

carbon (DOC), as well as total nitrogen and phosphorus (TN and TP). Dissolved and fine

particulate organic matter integrated over the whole water column, as well as dissolved

inorganic carbon (DIC) and total particulate organic carbon (POC) above and below the

thermocline were analyzed for elemental and stable isotopie compositions (atomic C:N

ratios, d Corg, d C^g and ö15Ntot). While the number of water bodies studied in this
work does not allow a systematic comparison of C cycling and greenhouse gases between

perturbed and natural aquatic systems, general trends emerged which are presented and

discussed. Based on the six systems studied, it appears that human perturbations lead to

higher concentrations of DOC, TN and CO2 in the water column, as well as higher CO2

fluxes to the atmosphere and lower oxygen saturation levels. These differences are all

related to the increased export of terrestrial organic matter and nutrients which, as
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supported by the ô13Cdic and 513CPoc results, leads to enhanced bacterial activities in the
water bodies.

3.2 Introduction
Surface waters of most lakes worldwide are supersaturated in carbon dioxide

(CO2), with partial pressures (/7CO2) that can be as high as three times the equilibrium

concentration (Kling et al. 1990; Cole et al. 1994). Several potential sources of carbon

(C) are fuelling dissolved CO2 supersaturations have been identified, such as ground

water dissolved inorganic carbon (DIC), terrigenous DIC runoffs, as well as

remineralization of dissolved and particulate organic carbon (DOC and POC) through

photo-oxidation and bacterial decomposition (McCallister and del Giorgio 2008, Dubois

et al. 2009, and references therein). Growing evidence suggests that terrigenous organic

matter (OM) inputs followed by photo-oxidation and/or respiration are the major drivers

ofpC02 supersaturation (del Giorgio et al. 1997; Sobek et al. 2003; McCallister and del

Giorgio 2008) in most freshwater systems. Terrigenous OM inputs in lakes are mainly

controlled by rivers and watershed runoffs (Schindler et al. 1997), and help sustain the

aquatic food web through incorporation of DOC into bacterial biomass and/or respiration

by heterotrophic bacteria (Pace et al. 2004; Berggren et al. 2007; McCallister and del

Giorgio 2008). Indeed, lakes with DOC concentrations higher than 0.42 - 0.50 mmol L/1

are likely to behave as net heterotrophic systems (Prairie et al. 2002), leading to the

observed /7CO2 supersaturation levels. Increases in the inputs of terrigenous OM to

aquatic systems through flooding (e.g. reservoirs, beaver dams) or watershed wood

harvesting are thus likely to affect C cycling in aquatic systems.
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Reservoirs are typically created for water flow regulation or hydro power

production. Just like natural lakes, reservoirs are net sources of GHG to the atmosphere

(Duchemin et al. 1995; St-Louis et al. 2000; Tremblay et al. 2005). Greenhouse gases

emissions from new reservoirs are very high during the first 3 years following

impoundment and return to constant values within 10 years (Tremblay et al. 2005).

However, because of the very high spatial and temporal variability in GHG fluxes

between the water surface and the atmosphere in lakes and reservoirs, it is still unclear

whether GHG emissions from mature reservoirs stabilize at levels higher than those

measured for nearby natural water bodies following the first 10-15 years after

impoundment. Discrepancies exist in the literature about yearly averaged CO2 and

methane (CH4) emissions from mature Quebec reservoirs compared to neighboring lakes

(Duchemin et al. 1995, 1999; Tremblay et al. 2005). These differences can be partly

explained by inconsistencies in GHG flux measurements using the most common

methods, i.e., thin boundary layer equations and floating chambers and by the naturally

large variations in GHG fluxes from season to season (Duchemin et al. 1 999; Lambert

and Frechette 2005; Soumis et al. 2008). Furthermore, most comparisons of GHG fluxes

between lakes and reservoirs have been carried out during summer when lakes are

stratified while most reservoirs are well mixed (Marty et al. 2005). Therefore very little

consideration is given to the summer accumulation of GHG in hypolimnetic lake waters,

which are released upon water turnover in the fall; in addition, the water column is well-

mixed over most of the reservoir area throughout the year, this leads to increased oxygen

levels in the deeper parts of the reservoir and to enhanced bacterial OM degradation that

contributes to the total atmospheric GHG emissions.
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Wood harvesting in the boreal forest leads to higher DOC, total nitrogen and

phosphorus (TN and TP, respectively) exports from land to lakes (Carignan et al. 2000b;

Lamontagne et al. 2000), and to increased benthic algal and bacterial biomass (Planas et

al. 2000). High inputs of terrigenous and colored DOC in water bodies might also

attenuate light penetration and decrease the activity and biomass ofprimary producers

(Schindler et al. 1997; Planas et al. 2000; Karlsson et al. 2009). Only small variations in

bacterial respiration (BR, CO2 production) have been observed despite the large

variations in net primary production (NPP, CO2 fixation; del Giorgio et al. 1997). Prairie

et al. (2002) have shown that BR is lower than NPP in lakes with low DOC

concentrations and exceeds NPP in high DOC lakes. Additional inputs of DOC resulting

from wood harvesting attenuates light penetration, which could inhibit NPP and promote

BR and GHG emissions to the atmosphere, whereas increases in exports of TN and TP

from land to aquatic systems could increase NPP (Schindler et al. 1997; Carignan and

Steedman 2000; Prepas et al. 2001 ; Karsson et al. 2009). While wood harvesting

enhances the inputs of nutrients and carbon into aquatic systems, to our knowledge no

one has assessed the impact of such increased inputs on the aquatic C cycle and on the

concentrations of dissolved CO2 and methane (CH4) and their fluxes to the atmosphere.

Carbon cycling in boreal freshwater aquatic systems is characterized by high

variability within a fairly narrow range ofnatural chemical and biological conditions,

which makes the understanding of the processes that control C dynamics and CO2

exchanges with the atmosphere extremely difficult. In this study, we exploited the impact

on C cycling ofhuman perturbations such as long-term reservoir impoundment and

watershed wood harvesting to assess C dynamics in freshwater systems. Our working
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hypothesis is that the trends found when including both natural and perturbed systems

reflect those in natural systems, although over a much wider range of chemical and

biological conditions, and thus that they will not be masked by the random variability

inherent to aquatic environments. The underlying assumption is that the major players

controlling C cycling are the same in perturbed and natural systems, although their

relative importance likely differs. We thus used a wide array of bulk water chemical

proxies"measured on samples collected in the summer of 2007 to assess C dynamics in

freshwater systems with a natural or perturbed watershed (lakes and reservoirs with a

natural or wood harvested watershed). In particular, we tried to assess how natural

systems respond to human perturbation, and how this response affects GHG fluxes at the

air-water interface. To minimize the extent of random variability, we collected our

samples during a season when in-lake physico-chemical conditions are fairly stable

(Summer), and we selected water bodies with similar characteristics in the southeastern

Canadian boreal region, thus facilitating comparison of the aquatic C cycle between the

different systems.

3.3 Materials and methods

3.3.1 Study sites
Two hydroelectric reservoirs and five natural lakes situated in the boreal forest of

the Province of Quebec (Canada; 46° 10' to 47°46' N; 76° 12' to 78°24' W) were sampled

for short periods (3 to 7 days spent at each site, with several daily GHG measurements) in

May (for water DIC and total POC samples only) and July of 2007.
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Figure 3-1. Map of eastern Canada and selected sampling sites. Exact coordinates are listed in Table 3-1.

An extended report of seasonal variations in bulk water chemical parameters (e.g. DOC,

GHG) in these aquatic systems will be published elsewhere. Our sampling strategy,

dictated by logistic and financial considerations, only captures a snapshot picture of

systems that are highly variable; it is however suitable since our main goal is not a

systematic comparison of natural and perturbed systems. The watershed of one reservoir

(Decelles) and two lakes (Clair and Bouleau) were wood harvested less than 2 years
before sampling, whereas the watersheds of the remaining water bodies were not

exploited. While wood harvesting activities represented only about 1 to 5% of the total

watershed drainage area, they were located in the direct vicinity of the water bodies, with

non-harvested protection bands of about 20-m along brooks and water bodies. We
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estimated conservatively from satellite pictures the percentage of the near lake/reservoir

shoreline (within 2-km from shore) directly affected by the harvested land at about 10-

25% for lakes, and about 5% for the Decelles Reservoir.

The Cabonga and Decelles reservoirs were impounded in 1928 and 1938,

respectively. Both are thus representative cases of mature hydroelectric reservoirs. All

lakes and reservoirs had watersheds with 42-74% tree coverage (conifers - mostly

spruce, and broad-leaf deciduous species such as maple, white birch and yellow birch)

and 5 to 32% peatland coverage, with the rest mainly being moist soils with less than 1%

ofuncovered bedrock; additional details on these water bodies are listed in Table 3-1.

For normalizing spatial and depth variability, DOM, POM, nutrients and

dissolved GHG (CO2 and CH4) were sampled at four stations within each lake, while nine

and eleven stations were sampled in the Cabonga and Decelles reservoirs, respectively.

Each sampling station was selected randomly at pelagic or littoral locations most

representative of the lake/reservoir, and visited more than once and up to eight different
occasions.
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3.3.2 Field sampling
Carbon dioxide and CH4 concentrations and fluxes were obtained using the method and

equations of Soumis et al. (2008), based on the work of Cole and Caraco (1998). Briefly,

four 30-mL samples of surface water were collected with 60-mL syringes. Upon return to

the laboratory, 30-mL of ultrapure nitrogen (N) gas were added to each one to create an

inert gas headspace. The syringes were hand-shaken for exactly one minute and seated

horizontally for phase equilibration for two minutes. The water was then slowly expelled

from the syringes and its temperature recorded for equilibrium calculations. The

concentration of the gas samples were measured with a Varian-Star 3400 gas

Chromatograph fitted with flame ionization and thermal conductivity detectors for CH4

and CO2 analysis, respectively. All GC analyses were performed within four hours of

sampling. Water temperature and wind speed one meter above water level were recorded

on site; wind speed was extrapolated to 10 meters using the method described in Soumis

et al. (2008). Quantification was done using a certified external gas standard of CO2 and

CH4, each at a concentration of 1.01 % (Scotty 48, Mix 218, Supelco); details of the

GHG flux calculation are available in Appendix A.

Water for nutrient analyses was sampled in acid rinsed 60-mL HDPE bottles and

kept frozen until analysis. Two 4-mL samples for DOC analysis were collected at each

site, doped using mercury dichloride (HgCl2) and kept at 4°C until analysis. Water

column GHG, DOC and nutrients profiles were also performed at 0.5 to 5 meters interval

using a 1 2-V submersible pump. Preliminary comparison of profiles acquired using a

pump and a Kemmerer sampler showed that more reproducible results were obtained for

GHG using the pump while obtaining the same level of accuracy (data not shown). Water
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temperature, dissolved oxygen and pH profiles were recorded using a YSI 6600

multiprobe system.

Large volumes (200-250 L) of water (integrating the entire water column down to

a maximum depth of 10 meters) were collected at each sampling site in 50-L pre-rinsed

Nalgene containers. The water was passed through a 70-µp? nylon mesh filter upon

collection. DOM (< 0.45 µ??) and FPOM (0.45 - 70 µ??) were separated using a

tangential flow filtration (TFF) system fitted with a 0.45-µp? polyvinylidene difluoride

cartridge filter. The TFF system was coupled to a RealSoft PROS/2S reverse osmosis

(RO) system to concentrate DOM as described by Ouellet et al. (2008). Briefly, upon

feeding the TFF with bulk water using a peristaltic pump, the retentate (containing

FPOM) was returned to the original container while the permeate was fed to the RO

system for DOM concentration. Dilute NaOH rinses of the RO membranes was done

between each sample to limit carry over between samples. Carbon mass balance

calculations showed that the mean DOC recoveries of the system were of 86.9 ± 2.4 %,

while the mean total OC recoveries (FPOC + DOC) were of 90.4 ± 3.5 % (Ouellet et al.

2008). The POM and DOM samples were doped with HgCl2 (~ 0.3 mM final

concentration) and freeze-dried in preparation for elemental (C, N and Fe) and isotopie

analysis (513Corg and ô,5Ntot)·
Water for DIC and POC analyses was sampled every 1 to 5 meters over the entire

water column to a maximum of20 meters in each water body in spring and summer of

2007. Water samples for DIC analysis were stored in air-tight 500-mL amber glass

bottles (no head space), preserved with HgCl2 and kept at 4 0C until analysis. The
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corresponding POC samples were collected on combusted GF/F filters (0.7-µ?? nominal

pore size) and freeze-dried.

3.3.3 Soil leaching experiment
Humus-free soil litter and sliced soil cores (1-cm resolution) collected around the

water bodies under study in May and July 2007 were freeze-dried and homogenized in

preparation for elemental and isotopie analysis. Additionally, three non-freeze-dried

representative boreal forest soil litters (O horizon) as well as the organic, sub-organic and

inorganic soil layers (A, B and C horizons) of each core were mixed in a 35-mL Teflon

tube with milli-Q water (1:1 v/v) and extracted three times. Volume aliquots of the

extracts were filtered using 0.7-µ?ta GF/F filters and freeze-dried for elemental and

isotopie analysis while the remaining aliquots were analyzed for inorganic N content

using a TRAACS 800 AutoAnalyser system.

3.3.4 DOC, total nitrogen and total phosphate measurements
Dissolved organic carbon analysis was done in duplicate or triplicate using a

Shimadzu 5000A Total Carbon Analyzer, with a reproducibility of ± 5%. TN (dissolved

organic nitrogen plus nitrate and nitrite) and TP (organic phosphorus plus phosphate)

were analyzed using standard NaOH/K2S208-based methods (818-47 and 812-86T

respectively) from Bran Luebbe Analyzing Technologies on a TRAACS 800

AutoAnalyser.

3.3.5 Elemental and isotopie measurements
The C and N concentrations as well as O13C and d 15N compositions were acquired

on all integrated DOM and FPOM samples as well as on the soil and soil leachate

samples using an EuroVector 3028-HT elemental analyzer coupled to an Isoprime GV
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Instruments isotope ratio mass spectrometer (EA-IRMS). Elemental and isotopie

calibration was done using IAEA-C6 sucrose standard (O13C = -10.45 ± 0.03%o; C =
42.1 1%, Copien et al. 2006), IAEA-Nl ammonium sulfate (d15? = 0.43 ± 0.07%o; N =
10.60%, Böhlke and Copien 1995) and ß-alanine, a pre-calibrated in-lab standard (513C =
-25.98 ± 0.23%o; C = 40.45% and d15? = -2.21 ± 0.24%o; N = 15.72%). The samples were

decarbonated using HCl fumigation prior to C analysis (Hedges and Stern 1984); OC

(with acidification) and TN (no acidification) concentrations and stable isotope

compositions are thus reported here. Reproducibility for the elemental and isotopie

analyses was < 1 % and < 0.3 %o, respectively.

Dissolved organic carbon concentrations and isotopie ratios were acquired with an

Isoprime Multiflow instrument and using two pre-calibrated in-house CaCC»3 powders

(O13C = -3.91 ± 0.08 %o and 9.58 ± 0.08 %o, respectively). Standards were accurately

weighed to obtain final C concentrations ranging between 1 and 10 mg L"1. Degassed

deionized water was added to the powder and quickly transferred to air-tight vials for

quantitative analysis. Between 0.5 and 1.5 mL of standard or sample was transferred

through the septum of an air-tight and helium-purged 4-mL vial containing 50 µ?. of

phosphoric acid. The vials were mixed and digested for 60 minutes at 60 0C prior to

analysis. Standard water blanks and vial blanks were also analyzed to correct for water

and air contamination.

3.3.6 DOM-complexed iron
The iron content of the concentrated DOM samples collected with the reverse

osmosis system were analyzed for iron by direct injection using an Agilent 7500 series

ICP-MS following acidification with nitric acid and internal standard addition
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(scandium). Quantification was done through external calibration with a Certipur ferric

nitrate standard. Five replicate measurements were acquired for each sample, with a

precision and accuracy better than 3%.

3.3.7 Statistical analyses
Greenhouse gases, DOC and nutrient measurements were first averaged for each

sampling station independently of the number of samples analyzed. Average values for

entire water bodies were then calculated using the values obtained from each sampling

stations, and standard deviations were propagated using the pooled standard deviations

(Harris 1999). This method prevented the over-representation of the stations with higher

sampling frequencies; our results thus integrate spatial and temporal (i.e. daily) variations

over the short period spent at each site. Where applicable, the significance of the

observed trends was tested using the Welch's t test, which allows the evaluation of

parameters having unequal data variance and replicates.

3.4 Results

3.4.1 Greenhouse gases
Averaged CO2 and CH4 concentrations in surface waters for the four scenarios

studied in this work are presented in Table 3-2. The non-harvested Lake Brock and Lake

Jean had significantly lower (p < 0.0005) averaged dissolved CO2 concentrations (21.4 ±

6.0 and 26.7 ± 8.6 pmol L"1, respectively) compared to the non-harvested Reservoir

Cabonga (38.8 ± 9.2 µp??? L"1). The wood harvested Lake Bouleau, which was recently
flooded following the erection of a beaver dam, had very high dissolved CO2

concentrations (80.4 ± 13.0 µ???? L"1).
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A comparison of the non-harvested lakes and reservoirs with their wood harvested

counterparts (the recently flooded Lake Bouleau excluded) shows that the latter had

significantly higher surface water CO2 concentrations (reservoirs: ? < 0.025; lakes:/» <

0.1). Surface water CH4 concentrations were about three orders of magnitudes lower than

those OfCO2 (10.7 to 106.4 µ???? L"1) and varied widely (from 10.7 to 218.9 nmol L"1),
with no clear relationship with reservoir operation, wood harvesting, water column depth

and oxygen level; the only noticeable trend was that sites sampled under low wind

conditions had higher surface CH4 concentrations.

The diffusive CO2 and CH4 fluxes to the atmosphere calculated using the BLE

equations are presented in Table 3-2. In our study, the two natural lakes monitored for

GHG had significantly lower CO2 fluxes than the non-harvested Reservoir Cabonga (p <

0.0005), the flooded Lake Bouleau (? < 0.0005), and wood harvested lakes (p < 0.1); the

Cabonga Reservoir also emitted significantly less CO2 to the atmosphere (p < 0.01)

compared to the wood harvested Decelles Reservoir. The methane concentrations and

fluxes measured in Lake Brock were obtained in periods of low wind, which explains the

high water concentration levels and low fluxes recorded for this lake. Independently of

the year of impoundment, flooded systems (Lake Bouleau and both reservoirs) were

emitting significantly more methane {p < 0.0005) to the atmosphere suggesting higher

anaerobic OM degradation in the sediment (Striegl and Michmerhuizen 1998; Steinmann

et al. 2008). Although this hypothesis should be verified, methane found in the pelagic

zones (Table 3-2) likely originated from diffusion through the thermocline as very little

hypolimnetic accumulation was observed (equivalent to less than 0.2 and 7 % of the daily
CH4 and CO2 atmospheric emissions respectively, data not shown).
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The CO2 fluxes measured in the Cabonga Reservoir (average of 28.7 mmol m"2 d"
1 9 1

; range of 7.7 to 54.1 mmol m" d" ) are similar to values reported in other studies for the

same reservoir during periods of no ice cover (31.8 and 31.4 mmol m"2 d"1, St-Louis et al.

(2000) and Tremblay et al. (2005) respectively). Diffusive CH4 fluxes measured in the

Cabonga Reservoir in this study are about half (434 µp??? m"2 d"1) those reported by
Tremblay et al. (2005), which used floating chambers that capture both bubbling and

diffusive GHG emissions. Bubbling fluxes were previously estimated to account for 36%

of the total yearly CH4 emissions in boreal reservoirs whereas they are not significant for

CO2, representing less than 0.1 % of the total yearly CO2 emissions (Duchemin et al.,

2000).

3.4.2 Water chemistry
The concentration of DOC, TN and TP, as well as pH in the surface waters of the

natural and perturbed aquatic systems are presented in Table 3-3. Averaged water pH and

DOC concentrations co-varied (Table 3-3 and Figure 3-2A; r = 0.55) with more acidic,

DOC-rich waters observed in the perturbed systems. The non-harvested reservoir and the

wood harvested systems had significantly lower pH values (p < 0.0005 and < 0.01 ,

respectively).
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Table 3-3. Water chemistry variables measured in this project

[DOC] pH * , ? , ,Water # of (mmol U1) P (^° ft1
body stations

N, [TN] [TP]
'µp??? (µ???:

Average a Average ? Average Average^b ? b ab b
a

Brock 4 7 0.217 7.83 10.1 0.34
(0.010) (0.20) (0.6) (0.02)

., , , 0.394 ?t/? ??/? , 15.7 0.40Mary 1 1 ?,t/?? n/a n/a 1 ,J (N/A) (N/A) (N/A)
T 0.326 7.31 12.1 0.27(0.048) * (0.31) [Z (1.2) (0.03)
r1 . , 0.505 6.73 16.0 0.241U (0.099) 7 (0.26) 1U (1.2) (0.06)

D , , 10 0.699 _ 6.55 in 21.3 0.39Bouleau 4 18 {Q Q96) 8 (()J6) 19 (2 5) (Q J2)
Cabonga 9 33 ^415 19 6 98 3Q 13.0 0.24(0.072) (0.22) (1.2) (0.06)

0.633 6.68 19.0 0.33
(0.079) (0.37) (0.6) (0.05)

n „ 1A ,- 0.633 .. 6.68 „ 19.0 0.33Decelles 10 37 ,~ ~„™ 13

a Total number of measurements evenly distributed within the number of sampling stations. b Standard
deviations are shown between parentheses (details in materials and methods section).

Lower averaged DOC concentrations were found in water bodies with an

unperturbed watershed (0.217 to 0.415 mmol L"1) compared to systems with a harvested

watershed (0.505 to 0.699 mmol L'];p < 0.0005). The same was observed for TN (9.3-

17.5 µt??? L"1 vs. 13.1-30.6 µp??? L"1;/? < 0.0005). Including all systems, there was a

strong positive linear relationship between DOC and TN concentrations (r2 = 0.86, Figure
3-2B).
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Figure 3-2. Relationship between measured bulk water parameters and dissolved organic carbon
(DOC). In A) pH, B) total nitrogen (TN), C) carbon dioxide (CO2), and D) total phosphorus (TP).

When considering only the perturbed systems, correlations between DOC and TP

(r2 = 0.64; Figure 3-2D) and CO2 and TP (r2 = 0.65, not shown, in agreement with Sobek
et al. 2003) stand out with TP concentrations in natural lakes that are significantly higher

than in the non-harvested Cabonga Reservoir (p < 0.0005).

To gain information on the balance and extent ofnet heterotrophy (CO2 producing

bioprocesses) and net autotrophy (CO2 consuming bioprocesses) in our systems, CO2

concentrations and oxygen percentage saturation levels (% O2) were grouped by zones

corresponding to contrasting physico-chemical characteristics within lakes and reservoirs

(epi/hypolimnion, photic, and aphotic; Figure 3-3). In lakes with wood harvested

watersheds, the thermocline was always positioned at a depth corresponding to the
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bottom of the photic zone (Table 3-1). A strong correlation (r2 = 0.80) between CO2
concentrations and % O2 ofhypolimnetic lake water was observed (Figure 3-3A).

W · .

600 ·;

500 i
i ¦

400 ì

300 H »

200 -i © Lakes Non-Harvested
• Lakes Harvested

100 ' :~ Reservoir Non-Harvested
¦ Reservoir Harvested

0

0 20 40

140

120

100

80

60

40

20

A) Aphotic

® V

60 80

C) Aphotic

H

ill

0 -1—
70

100

80 90 100 110 120

140

120

100

80

60

40

20

B) Photic

oc0o

·%?'
o —

80

80

70

60

50

40

30

20

10

90 100 110 120

a D) Photic

80 90 100 HO 120

X-Axis: O2 (% saturation)

Figure 3-3. Relationship between carbon dioxide (CO2) and dissolved oxygen (O2) saturation levels.
In A) the aphotic hypolimnetic zone (lakes), B) the photic epilimnetic zone (foil circles, lakes) and the
photic hypolimnetic zone (empty circles, natural lakes only), C) the aphotic epilimnetic zone (reservoirs),
and D) the photic epilimnetic zone (reservoirs).

Generally, higher % O2 were found in the photic epilimnetic and/or compared to

the aphotic hypolimnetic water masses in lakes (Figure 3-3B). Reservoirs are

hydrologically distinct from lakes, with dynamic changes in water level (filling in the

spring and early summer, and draining during the winter) and water circulation, which

both efficiently mix water columns preventing thenriocline formation at most sampling

sites (Marty et al. 2005). As shown in Figure 3-3C (aphotic epilimnion in reservoirs) and

-3D (photic epilimnion in reservoirs), CO2 concentrations were negatively correlated to
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% C>2 in the Decelles Reservoir, with greater correlation in the aphotic compared to the

photic zone (r = 0.57 and 0.28, respectively). These results suggest that epilimnetic CO2

production through heterotrophy (and photo-oxidation in the photic zone) was greater

than primary O2 production through autotrophy whereas no definitive trend emerged for

the Cabonga Reservoir.

3.4.3 Terrestrial and aquatic bulk organic matter analyses
To estimate the importance of terrestrial litter and soil as OM sources in the

aquatic cycle of C, a DOM leaching experiment was carried out on samples collected in

the vicinity of the water systems. The litter samples had 813C, d15? and (C:N)
compositions of -27.2 ± 1.1 %o, -1.0 ± 0.9 %o, and 35.1 ±2.0, respectively, while soil OM

from deeper horizons was generally more enriched in O13C, d15? and had higher (C:N)
ratios (Table 3-4).
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Table 3-4. Bulk organic carbon and nitrogen analyses for soils and their dissolved
organic matter extracts.

Soil Soil Soil extract
Sample depth OC ÌFc O15N (CrN)8 ~OC O71C d^? (C:N)a(cm) (o/0)a (%0)b (%0)b (%)a (%o)b (%o)b

Boreal
soil litter surface 41.2 -27.2 -1.0 35.1 38.2 -26.0 0.7 21.6

1-2 37.9 -27.1 0.8 20.7 22.3 -25.2 4.8 9.5
Mary 7-9 30.3 -25.8 6.3 22.9 22.9 -24.2 11.2 8.4

12-15 5.4 -24.9 5.5 35.9 22.8 -24.5 9.5 9.4

1-2 50.5 -26.7 -0.7 30.7 36.4 -25.0 2.4 16.3
Jean 9-12 22.9 -25.4 3.1 66.8 42.6 -23.8 5.4 21.3

15-20 2.8 -25.1 ?/? ?/? 18.1 -23.9 4.9 20.1

1-2 47.4 -26.2 1.6 36.6 46.9 -26.2 4.2 17.6
Cabonga 7-9 8.5 -26.4 3.0 44.0 34.3 -24.1 4.3 25.7

12-15 4.0 -25.5 4.4 35.6 25.4 -25.3 7.1 18.4

1-2 49.2 -27.9 -3.4 53.4 41.8 -26.5 -0.7 28.5
Decelles 12-15 21.4 -26.3 0.6 115.7 40.9 -25.7 2.5 38.6

__________15-20 4.4 -26.2 -2.0 251.9 37.7 -25.6 -0.4 77.0
'" Analytical uncertainties of 1%(3) and 0.2%olb).

Litter and soil leached significant quantities of water soluble OC and organic N (>

99% of leached TN was organic N; results not shown). The low (C:N) ratios measured

for the leached material thus suggest that it is composed ofN-rich, most likely

hydrophilic labile OM. In most cases, the 513C signatures of the soil leachates were

enriched by 1 to 2 %o compared to those of the initial bulk material (Table 4-4), while the

enrichment was even greater for O15N (1 to 5 %o). Soil leachates (C:N) ratios were also
much lower than those of bulk OM (difference ranging between 1 1 and 175). Such

elemental and isotopie fractionation suggests that a compositionally different pool of OM

was released upon extraction of the soil OM with distilled water.
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The bulk results obtained from the water column depth-integrated DOM and

FPOM samples are shown in Table 4-5. For DOM, only small variations in 513C and 515N

compositions were observed between water bodies, in agreement with data reported for

different Quebec lakes and reservoirs (Hélie 2004; McCallister and del Giorgio 2008;

Dubois et al. 2009). These small variations in stable isotope signatures were accompanied

by increases in %OC and C:N of DOM, as well as increases in the concentration of

DOM-complexed iron, highlighting the increased terrestrial inputs of disturbed system

(Table 3-5, Figure 3-4A).
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Figure 3-4. Relationships between dissolved or particulate OM collected by tangential flow filtration
- reverse osmosis and key parameters from the water column. (A) DOM-associated iron vs. DOC
concentrations; (B) FPOC vs. DOC; and CO2 vs. atomic N:C ratio of (C) DOM and (D) POM.

In boreal systems, FPOM can be supplied to water bodies through two major

sources, namely soil litter and autochthonous derived matter (phytoplankton, bacteria and

debris). Terrestrial C3 plants have traditionally been assigned 513C and d)5? compositions
of -27%o and 0.4%o, respectively (Meyers 1997). Similar O13C values were found in this

work for boreal forest soil litter and top soil layer (-27.2 ±1.1 and -26.1 ± 0.9 %o for the

O and A horizons, respectively; Table 3-4). The O13C composition ofphytoplankton
measured by Marty and Planas (2008) during the summer in different boreal lakes and

reservoirs of Quebec averaged -32.7 ± 1 .7 %o. In agreement with above values, the
¦13

d Cppor signatures measured m this study ranged between -27.7 and -30.4 %o, likely
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reflecting a mix of the terrestrial (litter and soil) and algal end-members. This result is

supported by the measured atomic (C:N)FPOm (Table 3-5), which falls between the values

obtained for the two end-members analyzed in this study (terrestrial litter: 35.1 ± 2.0,

Table 3-4; and cultivated algae: 9.7 ±0.1, data not shown). Higher (C:N)FPOm values

were found for perturbed water bodies (as high as 3 1 .2 in the Decelles reservoir), and

suggest greater inputs of terrestrial OM in these systems. FPOC and DOC concentrations

were linearly correlated, although with contrasting slopes for non-harvested and

harvested systems (positive and negative correlation, respectively, Figure 3-4B), which

suggests that reservoir operation and wood harvesting both had an effect on FPOC
concentrations.

Perdue and Koprivnjak (2000) reported on the non linear relationships in mixing

models where (C:N) ratios were plotted against stable C isotopie compositions. It was

mathematically shown that scatter plots reflect relationships between the denominators

rather than the numerators. In Figures 3-4C and -4D the (N :C) ratio plotted as a function

of [CO2]" concentrations show that in surface water, CO2 concentrations were correlated

with the (N:C) ratio of depth integrated DOM and POM (both with r2 = 0.50); weaker

correlation were found with the (C:N) ratio (r2 of 0.30 and 0.31, respectively; not
shown).

3.4.4 Dissolved inorganic carbon (DIC)
The d C signatures of DIC (ô!3CD]C) are useful for constraining the sources and

sinks of C in aquatic systems. Plots of ô13CDic vs. [DIC]"1 are used to gain insight on the
mixing behaviour (heterotrophic vs. autotrophic activity) of the DIC pool through

seasonal variations in ôl3CDic signatures. The spring and summer ô'3CDic depth profiles
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were compiled and plotted on Figure 3-5. Independently ofwood harvesting, lakes often

exhibited lower 513CDIC values (as low as -41 %o, Figures 3-5A and -5B) compared to
reservoirs (Figures 3-5C and -5D).
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Figure 3-5. Relationship between the Ô13C signature of DIC and the inverse of DIC concentrations in
the water column. (A) natural lakes (Brock and Jean), (B) non-harvested reservoir (Cabonga). (C)
harvested lakes (Clair and Bouleau) and (D) harvested reservoir (Decelles).

Such low C isotopie values indicate that a significant fraction ofhighly depleted

CH4 originating from methanotrophic activity is oxidized and contributes to the total DIC

pool. Because sedimentary methane 513C compositions fluctuate by as much as 16 %o
within periods as short as 24 hours (Jedrysek 1995), its contribution to total 613CDic

cannot be calculated with accuracy. Isotopie evidence of methane contribution to the DJC
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pool was observed independently of the lake but only for high DIC concentration samples

within or just below the thermocline. Substantial seasonal ô13CDic differences were

measured in natural lakes; in the spring of 2007, Lake Brock and Lake Jean were

characterized by higher concentrations and a l3C-enriched DIC pool (-3.9 to -18.7 %o),
while DIC concentrations and 13CDIC compositions were lower in the summer (-13.9 to -
41.3 %o). Such seasonal variation was also observed in perturbed lakes although the DIC

was generally more ôI3C-depleted in these water bodies. This suggests that in addition to
methane oxidation, photo- and bacterial oxidation of the reactive and 613C depleted DOC
pool was probably contributing to the ô13CDiC depletion (Osburn et al. 2001 ; McCallister
and del Giorgio 2008).

3.4.5 POC isotopie variations
To identify POC sources and to document their relationship to DIC (Lehmann et

al. 2004; Cole et al. 2002), ô13CD]C was plotted against ôI3CPOc for samples collected at
different depths in each water body (Figure 3-6). Both parameters were correlated in the

spring for harvested systems (Figures 3-6C, r2 = 0.44 and -6D, r2 = 0.60) suggesting high
primary production (enriched ô,3CDic) following the melting of the ice cover. In summer,
only the wood harvested Reservoir Decelles exhibited a moderate correlation between

d Cdic and d CPOc (Figure 3-6D, r2 = 0.43), which likely reflects high heterotrophic
activities (depleted ô13CDiC, see discussion).
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Figure 3-6. Relationship between the 513C signatures of DIC and POC. Both fractions were sampled at
same depths in the water column of (A) natural lakes (Brock and Jean), (B) non-harvested reservoir
(Cabonga), (C) harvested and flooded lakes (Clair and Bouleau) and (D) harvested reservoir (Decelles).

Spring d Cpoc results presented in Figures 3-6A and -6B show that water bodies

with an unperturbed watershed are dominated by algae-derived POM (d 13C signature of

algae, 613Ca,gae, equal to -32.7 ± 1 .0 %o, as per Marty and Planas, (2008) and (C:N) ratios
that ranged between 9.2 and 1 1.8 (results not shown)). Wood harvested lakes and

reservoirs (Figures 3-6C and -6D, respectively) were characterized by a higher relative

proportion of terrestrial POM in the spring, as shown by their O13C signature and (C:N)

ratios closer to those of litter (-27.2 ± 1.1 %o, and 1 1 .3 to 23.5, respectively; Table 3-4).

In summer, we observed an enrichment in ôl3CPoc for systems with a natural watershed,
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which contrasts with the small summer 613Cpoc depletion relative to spring values in
wood harvested lakes. 513CPoc depletions in summer generally coincided with lower
(C:N)pom ratios (results not shown), which are explained by a higher relative abundance

ofphytoplankton, zooplankton and/or bacteria (with atomic C:N ratios varying from 8 to

12, 5 to 6, and 4 to 7, respectively; (del Giorgio and France 1996; Kaiser and Benner

2008; K. Homblette et al. 2009)).

The ô13CFpoc isotopie composition (0.45 to 70-µ?? size fraction; Table 3-5) did
not vary much between systems (-27.7 to -30.4 %o); however generally more depleted

values were measured for total POC (> 0.70-µ?t?; -28.2 to -34.5 %o) suggesting that the

larger phytoplankton and zooplankton cells removed during the collection of FPOC are

substantially depleted in 513C relative to terrestrial and bacterial POM. The most depleted
d Cpoc values (-34.4 ± 0. 1 %o, Figure 3-6C, harvested or flooded lakes) were measured

for samples collected within the photic zone of Lake Bouleau and, as suggested by

(C:N)pom ratios of 9.29 ± 0.56 (n = 3), were mainly ofphytoplanktonic origin. Samples

with O13Cp0C compositions of -32.5 ± 0.3 %o and (C:N)P0M ratios of 5.88 ± 1.41 (n = 3)
were found below the photic zone and in the bottom waters of the same lake, suggesting

zooplankton- and/or bacteria-dominated POM. Contrary to Lake Bouleau, Lake Clair

d Cpoc composition varied less, ranging between -29.6 and -31.3 %o. In general, samples
collected in the photic zone of disturbed lakes had similar (C:N)POm signatures (8.97 ±

0.54, ? = 7) that corresponded to phytoplankton-dominated POM. The higher variability

in d Cpoc compared to ô13CFpoc in lakes agrees with published data (del Giorgio and
France 1996; McCallister and del Giorgio 2008; Marty and Planas 2008). In this study,

d Cpoc results obtained for Lake Bouleau suggest that the aphotic POM samples and
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POM samples collected right above the sediment were a mix of secondary producer

communities that feed on both phytoplanktonic and terrestrial sources (Montgomery et al.

2000). Similar d CPOc results were found in natural lakes and could be explained in the

same way (Figure 3-6A). Although, such ôl3CPOc patterns were not found in reservoirs, a
result that likely reflects lower variability in the relative contributions from main POM

sources (phyto- and zooplankton, terrestrial OM and bacteria) and more dynamic mixing
of the water column.

3.5 Discussion

3.5.1 Using water chemistry and bulk analyses to study carbon cycling
Although the information obtained from water chemistry parameters and bulk OM

analysis ofparticulate and dissolved samples is much less detailed than that obtained

through more advanced spectroscopic or molecular-level analyses, it can provide a

general picture of the differences in C cycling between natural aquatic systems and those
affected by human perturbations.

In our sample set, Lake Bouleau represents the most heavily impacted water body

with wood harvesting activities on its watershed and the presence of a recently erected

beaver dam that led to local flooding of the surrounding vegetation. Much higher surface

water CO2 and CH4 concentrations were measured in this system compared to other lakes
and reservoirs (Table 3-2). Very low dissolved O2 concentrations were also recorded in

the water column of this lake (saturation level of only -3% near the sediment-water

interface) suggesting important OM degradation or CH4 oxidation to CO2 in the generally
shallow water column of this dendritic lake (Steinmann et al. 2008). The specific physical
characteristics of Lake Bouleau and the much higher GHG concentrations measured in
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this system (Figures 3-2 and 3-4) make it more comparable to a recently flooded, rather

than a stabilized reservoir and as a result this lake was considered to be in a transient

phase with respect to water column and sediment C dynamics. Because its carbon

dynamics are not in equilibrium with the environmental conditions, Lake Bouleau cannot

always be directly compared to the other systems. However, we decided to retain it in our

sample set as it still sometimes falls within the correlations found for other systems.

Several authors have found a positive relationship between allochthonous OM

inputs in a water body and the watershed-to-lake area ratio (Carignan and Steedman

2000; Larson et al. 2007). We tested whether the differences in CO2 concentrations

measured in the different systems could be explained by differences in OM inputs caused

by different watersheds size. Plotting these two variables for lakes and reservoirs with a

natural watershed reveals that they were entirely decoupled (slope of -0.06 and r2 of

0.08), thus suggesting that the size of the watershed was not the main driver of CO2

concentrations in the surface waters. When including the systems with a wood-harvested

watershed, a weak positive linear correlation was found (r2 = 0.32; not shown), however,
the correlation may be due to the fact that the natural lakes had the smallest watershed-to-

area ratios. These results suggest that the high dissolved CO2 concentrations were more

closely coupled to the additional inputs of allochthonous OM caused by increased erosion

in the wood harvested systems rather than to natural OM inputs from a large watershed

(Sobek et al. 2003). While other factors such as primary production and ground water

inputs can also influence the dissolved CO2 concentrations, allochthonous DOC exports

to water bodies followed by biological and/or photochemical degradation most likely was

the primary driver of CO2 supersaturation in these lakes.
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The inputs of terrestrial dissolved organic acids were also the most probably cause

for the increased acidity of wood harvested systems (Figure 3-2A). Because the aquatic

systems in this study were all located within the same geological region, variations in

dissolved bicarbonate concentrations are not likely to have caused important pH changes

(Soumis et al. 2004). Interestingly, DOC concentrations were strongly correlated to both

Fe and TN when all systems are considered (Figures 3-2B and -4A, respectively). As iron

originates mainly from land, the DOC-Fe covariation suggests that the increases in DOC

and TN in wood harvested systems were due to increased inputs ofterrestrial OM.

Because a significant fraction of the water column DOM in perturbed water

bodies was derived from land, it is surprising to measure much higher DOM (C:N) ratios

in aquatic systems with wood harvested watersheds when compared to DOM that leaches

from litters and soils. Litter and soil leachates were characterized by (i) a relatively large

polar (N-rich and water soluble and therefore assumed to be bio-available) DOM

fraction, and (ii) an isotopically and compositionally different signature, both for C and

N, compared to bulk OM from soil samples. Litters and soils represent an important

source of labile and readily available N (Stepanauskas et al. 2000), most likely in the

form of proteins, amino acids and amino sugars (which are characterized by low (C:N)

ratios and 13C-enriched OC (Galimov 2006)). The (C:N) ratios and O13C signatures for
DOM from the lakes and reservoirs studied here were all higher (21.3 to 41.6) and more

depleted (-26.3 to -28.0 %o) than the corresponding leachates from the litter and organic

soil layers (9.5 to 28.5 and -25.0 to -26.0 %o, respectively). Therefore, DOM found in

these systems likely consisted of a mix of water-soluble material (or bacteria smaller than

0.45µ?t?) either leached from the surficial soil layers, or derived from in-lake OM
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production and/or reutilization (Schiffet al 1997; Stepanauskas et al. 2000; McCallister
and del Giorgio 2008).

Surprisingly, high dissolved CO2 concentrations were measured for systems in

which DOM and FPOM was N-depleted (low (N:C) ratios; Figures 3-4C and -4D),
suggesting either that CO2 concentrations were higher when the dominant OM sources in

the system were terrestrially-derived (C-rich compounds) or when N-containing
compounds of the DOM pool were preferentially degraded, leaving behind C-rich

compounds (Table 3-5). We propose that bacterial remineralization of allochthonous N-

rich organic compounds into nitrates fuelled the N requirements of aquatic organisms. As
reported elsewhere (del Giorgio and Cole 1998), the quality, or lability, of OM positively
affects bacterial growth efficiency; we thus interpret the low (N:C)dom ratio as the result

of heterotrophic processes in these water bodies. Indeed, significantly lower (N:C)doM
were found in reservoirs and wood harvested systems compared to natural lakes (p <
0.005).

3.5.2 Linking heterotrophy and primary productivity to DIC
Several studies report attempts to identify the sources and variations in ô,3CDIC in

lakes (Lehmann et al. 2004; McCallister and del Giorgio 2008; Dubois et al. 2009). In our
study, spring d CDic values were substantially enriched in natural and wood harvested

lakes (Figures 3-5A and -5C). Lehmann et al. (2004) observed an enrichment in ô!3CDiC

owing to the preferential fixation of 12CO2 by primary producers. In contrast, Dubois et
al. (2009) concluded that primary productivity, DIC-rich groundwater preferentially
degassing enriched ô13CDic, and littoral methanotrophic activity could explain the
enriched d CD|C compositions in C02-saturated lake waters. The relationships between
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[DIC]" and ô13CDic shown for lakes in Figure 3-5C (spring [r = 0.34]) and for reservoirs
in Figure 3-5D (spring and summer [r = 0.81 and r2 = 0.50], respectively) suggest that
the concentration and stable isotope composition of the DIC pool were mostly controlled

by the combined influence of DOM degradation (causing low [DIC]"1 and a depletetion
d Cdic) and photosynthesis (causing high [DIC]"1 and an enrichment 513CDic) in
harvested systems. Other sources might also have contributed to the concentrations and

signatures measured in these systems which could explain the absence of these

correlations for lakes during the summer.

Our GHG emissions measurements (Table 3-2) suggest that bubbling accounted

for about half of the CH4 emissions in boreal reservoirs during the summer; ô13CDic

enrichment could therefore be explained by the splitting of acetate into CO2 and CH4

(resulting in ,3C-enriched CO2 and 13C-depleted CH4, respectively; Steinmann et al.
2008). However, the DIC samples that were collected in the oxygen-rich hypolimnetic

zone of the lakes were Ô13C-depleted (Figures 3-5A and -5C) whereas more enriched
d Cdic values were obtained when DIC concentrations are low. This result suggests that

the processes leading to depleted ô13CDic signatures were predominantly, although not
exclusively, microbial degradation of DOM (producing O13Cc02 from -26.3 to -28.0 %o,

Table 3-5) and CH4 oxidation. Alternatively, the enriched ô13CDlc and low DIC samples
found in photic zones probably reflected preferential 12C fixation through primary
production.

3.5.3 In-lake bioprocesses affected by DOM cycling
Most of the water chemistry parameters measured in this study co-varied with

DOC, suggesting that DOC plays a major role in modulating bioprocesses controlling the
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global carbon cycle in aquatic systems. For example, the increase in allochthonous DOC

inputs associated with wood harvesting caused a decrease in light penetration (Table 3-1

and light absorption spectroscopic data to be published elsewhere) which, in turn, likely

inhibited hypolimnetic photosynthesis (in agreement with recent findings by Karlsson et

al. 2009) and lead to higher CO2 accumulation and fluxes (Figures 3-2C, -3A and Table

3-2). In our study, hypolimnetic photosynthesis occurred only in unperturbed lakes owing

to the greater light penetration depths resulting from the lower DOC concentrations

(Figure 3-3B empty circles, Table 3-1). Dissolved O2 production (autotrophic activity)

sometimes even surpasses bacterial O2 utilization in these systems, resulting in O2

supersaturation. Epilimnetic oxygen saturation levels in natural lakes (as opposed to

perturbed lakes) were also in most cases >100 %, again suggesting that autotrophy played

an important role in lower GHG supersaturation levels. Epilimnetic CO2 concentrations

were for the most part decoupled from O2 saturation levels; this phenomenon was mostly

observed in non harvested systems and suggests that processes other than heterotrophy,

most likely photo-oxidation, were significant CO2 production pathways. Net heterotrophy

was observed in aphotic hypolimnetic lake water where a strong correlation between CO2

and O2 was measured (r2 = 0.80; Figure 3-3A); this result suggests that dissolved O2 in
aphotic hypolimnetic waters was mainly consumed via bacterial OC degradation and

methanotrophic CH4 oxidation.

The hypothesis of a decrease in autotrophic activity with higher DOM

concentrations is supported by the positive correlation (r = 0.59) found between FPOC

and DOC in systems with DOC concentrations lower than -0.4 mmol L"1, which becomes

negative (r = 0.85) in wood harvested systems with DOC levels higher than -0.4 mmol
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L"1 (Figure 3-4B). These results suggest that the lower FPOC concentrations were
modulated by the higher DOC inputs derived from wood harvesting (as for the Decelles

Reservoir). Although FPOM abundance is not the best proxy for estimating primary

production (chlorophyll a data unfortunately is not available), its low abundance,

depleted isotopie composition (~ 29.1 %o) and high (C:N)a ratios (~ 21.3), combined with

the depleted ô13CDic (-11-4 to -24.9 %o) and high [CO2] found in Decelles Reservoir
suggest low primary production, higher bacterial/terrestrial OM sources and

predominance of heterotrophic processes over autotrophy (Figures 3-3D and -6D, Table

3-2 and -5).

The same is true for all wood harvested systems in which the increase in DOC

concentrations following wood harvesting disturbed the heterotrophic-autotrophic

balance such that higher CO2 concentrations and atmospheric fluxes were measured in

these systems compared to water bodies with lower DOC concentrations. Similar

conclusions were reached by Prairie et al. (2002), who reported that the epilimnetic C

fluxes are positively correlated with DOC concentrations. They concluded that lakes with

low epilimnetic DOC concentrations (< 0.420 mmol L"1) are net autotrophic systems

while lakes with higher DOC concentrations are net heterotrophic systems.

Higher FPOC concentrations were measured in samples with lower DOC

concentrations (as in natural lakes and Cabonga Reservoir), which were associated with

more enriched d Cdic compositions, likely because of greater primary productivity. The

lakes summer d1 Cpoc data suggest important bacterial activity with stratification (ô13Cdic

values ranging between -14.4 and -41.3 %o, Figures 3-6A and -6C). Reservoir Cabonga

summer DOC concentrations likely were not high enough to limit primary productivity,
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as suggested by the absence of a significant correlation in Figures 3-3C, -3D (CO2 vs O2)

and -6B (ô13CDiC vs ô13CPOc). Together, the 513CDic and POC data suggest that natural
lakes were more oligotrophic than reservoirs which, owing to large differences in their

hydrologie regime, were characterized by different proportions of primary producers and

heterotrophic bacteria (also observed by Houel et al. (2006)).

3.6 Summary and implications
Although the small number of water bodies studied in this work does not allow a

rigorous comparison of C cycling and GHG exchanges at the air-water interface for the

unperturtubed and perturbed scenarios considered here, general trends emerge that

provide a framework for further studies.

3.6.1 Effects of mature reservoir operation on C cycling
Natural systems were characterized by intense primary production and bacterial

respiration, as suggested by the high dissolved O2 saturation levels and CO2

concentrations (Figures 3-3B and -3D), as well as by the generally low DIC

concentrations of relatively enriched ô13Cdic compared to perturbed systems (Figures 3-

5A and -5B). The Cabonga Reservoir (mature reservoir with a natural watershed) was on

average emitting significantly more CO2 to the atmosphere (p < 0.0005) and displayed

significantly higher dissolved CO2 concentrations in the boundary layer (p < 0.0005)

compared to natural lakes. While it is true that reservoirs are greater GHG emitters during

the summer, lakes accumulate GHG in the hypolimnion during the stratified period,

which leads to delayed emissions upon mixing of the water column in the fall (lake

turnover). A preliminary estimate of the total mass of CO2 accumulated in the

hypolimnion of the studied lakes just before the fall water turnover event however
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represented a very small fraction of daily atmospheric CO2 fluxes (less than 7%,

calculated for each lake during the summer of 2007; results not shown). The difference in

CO2 fluxes between lakes and reservoirs measured in this study therefore cannot be

explained by summer hypolimnetic CO2 accumulation alone. Groundwork using lipid

biomarkers suggest that the higher epilimnetic CO2 concentrations and atmospheric

fluxes in reservoirs could simply be due to the fact that the water column and sediment

surface remains oxic throughout the summer, thus enhancing OM degradation and GHG

production through heterotrophy (results to be published elsewhere).

3.6.2 Effects of wood harvesting on the aquatic cycle of carbon
Oxygen saturation levels as well as CO2 concentrations and fluxes to the

atmosphere provide insights into the effect of wood harvesting on the C cycle in aquatic

systems. In lakes, during the stratified period, GHG production and oxygen depletion in

the hypolimnion were for the most part decoupled from the processes affecting C cycling

in the epilimnion (Kim et al. 2006). As shown in this study, greater hypolimnetic CO2

accumulation and oxygen depletion is observed in wood harvested lakes, most likely due

to enhanced OM degradation but also to the absence ofprimary productivity in the

hypolimnion. All perturbed systems in our study were greater GHG emitters than their

non-harvested counterparts during the stratified period. Emissions were most likely

regulated through the enhancement of bacterial degradation to the detriment of primary

productivity, which varied greatly with light penetration depth. The correlation between

allochtonous inputs of DOC, TN and dissolved CO2 concentrations suggest that the

additional inputs of terrestrial OM and nutrients upon wood harvesting plays an important

role in shifting the balance between autotrophy and heterotrophy in favour of the latter.
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The conclusions of several other studies (e.g. Peters and del Giorgio 1994; Sobek et al.

2003; McCallister and del Giorgio 2008) also support the idea that lake heterotrophy is

fuelled by allochtonous inputs; this study agrees with others and shows that wood

harvesting around lakes and reservoirs modify the aquatic cycle of C through the increase

in DOC concentrations which, through bacterial and photo-oxidation, leads to visible

increases in GHG emissions (16.5 to 45.3 %,p< 0.1 and 7.0%,/? < 0.01 for non-flooded

lakes and reservoirs respectively). It is noteworthy that these effects were observed even

though only a small proportion of the watershed was affected by wood harvesting

activities.

3.6.3 General Implications
Only a limited number of studies have focused on the modifications in the aquatic

cycle of C upon changes in land exploitation. Although we observed differences in the

processes leading to higher GHG emissions with reservoir operation and wood

harvesting, more work should be done to better understand their controls and rates.

Amongst other things, the gradual transfer of hypolimnetic GHG to the epilimnion as the

thermocline deepens during the summer should be assessed, together with its contribution

to the yearly GHG emissions following lake turnover in the fall. To efficiently compare

yearly GHG fluxes in lakes and mature reservoirs located in a natural watershed, year

round monitoring efforts should be initiated in water bodies with similar

geo/physico/ecological characteristics to assess seasonal and year-to-year variability, and

to include non-linear events (such as ice breakup in the spring and water turnover in the

fall) that are severely underrepresented in the literature. The causes and significance of

the differences in the C cycle and CO2 emissions between natural lakes and non-
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harvested reservoirs still are not fully understood. Further studies should target the role of

the contrasting redox conditions prevailing in the water column and surface sediments of

reservoirs (oxic) and lakes (hypolimnion of stratified lakes becoming increasingly O2-

depleted during the summer), and how they affect OM degradation rates in sediments.

Wood harvesting more profoundly affects C cycling than mature reservoir

operation because it leads to the export of fresh, and thus more reactive, terrestrial OM to

aquatic systems. Its effects however, should decrease rapidly with forest re-growth.

Recent forest cutting favors heterotrophy over autotrophy, which results in the gradual

depletion of O2 and potential loss of animal and fish populations. The recovery period

needed for aquatic systems to return to their pre-harvesting conditions should thus be

evaluated carefully through long-term biogeochemical monitoring. Our findings also

show that wood harvesting history should be documented when selecting water bodies for

large scale GHG emission studies, particularly in cases where the emissions from mature

reservoirs and natural lakes are compared. Much higher variability and important biases

may be introduced if significant portions of the watersheds are exploited for wood

harvesting. Finally, our results further suggest that the current Canadian regulations

prescribing non-harvested buffer strips of only 20 m between water bodies/streams and

harvested areas is not sufficient as they could not prevent large quantities of DOM and

nutrients to leach into the water bodies and alter the biogeochemical processes controlling

C cycling in these systems.

The complexity and interdependence of the different processes that modulate C

cycling in lakes and reservoirs, combined with their inherently high spatial and temporal

variability, makes it exceedingly difficult to identify the major players controlling C
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pathways and fluxes in these systems. The differences in C cycling between natural water

bodies may be subtle, yet they reflect the biogeochemical and climatic alterations that

determine the relative importance of the different processes affecting C sources and fate.

By extending the range of aquatic biogeochemical conditions beyond those normally

found in non-perturbed systems, human perturbations amplify these differences and help

documenting how aquatic systems react and adjust to the added stress. The same

mechanisms control C dynamics in natural and perturbed systems, although at a varying

relative importance, which determine the resulting biogeochemical conditions existing in

the water bodies. Lakes and reservoirs are thus in a perpetual state of steady-state pseudo-

equilibrium, continuously adjusting to change on a multitude of spatial and time scales.

One of the major challenges in these types of studies is thus to identify links between a

specific source of stress and the biogeochemical response of the aquatic system.
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Chapter 4

4 Assessing carbon and nitrogen dynamics in natural and
perturbed boreal aquatic systems: An amino acid approach

Submitted to the Limnology and Oceanography as:

Alexandre Ouellet, Luc Tremblay, Marc Lucotte and Yves Gélinas.
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4.1 Abstract

Aquatic systems of the boreal forest are supersaturated in dissolved greenhouse

gases (GHG) and are considered natural GHG emitters. The goal of this study was to

better understand the cycling of carbon (C) and nitrogen (N) in these systems, their direct

link with GHG production, as well as the effect ofhuman perturbations (reservoir

operation and wood harvesting) on these processes. Greenhouse gases concentrations,

buík elemental and isotopie (%C, %N, ô]3Corg and ô15Ntot) compositions, and D- and L-
amino acid (D-AA and L-AA) yields were analyzed in the dissolved and particulate

fractions from the water column as well as in the sediments from a series of boreal lakes

and reservoirs. Dissolved organic matter (DOM) and fine particulate organic matter

(FPOM) C:N atomic ratios, stable isotopie signatures, and relative abundances of AA

confirm the major role played by bacteria in these systems and suggest that human

perturbations lead to increased exports of terrestrial DOM, which result in higher surface

water CO2 and CH4 concentrations compared to natural systems. Concentrations of

bacterial D-AA in DOM were positively correlated with surface water concentrations of

GHG, whereas a negative correlation was found between D-AA and GHG in the

sedimentary organic matter (SEOM). Principal component analysis showed that the AA

composition of the DOM pool was, to some extent, modulated by leaching of terrestrial

material from the surrounding soils, whereas that of the FPOM pool was influenced by

variations in the relative abundances ofphytoplanktonic- and bacterially-derived

material. Low D-Asx:D-Ala ratios were measured in the FPOM of perturbed systems and

might reflect a shift in the type of bacteria contributing to FPOM. While the effect of

reservoirs leaves a microbial and molecular imprint on the aquatic cycle of carbon for
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more than half a century after impoundment, wood harvesting results in transient changes

that might be important in the first few years, but that are likely to decrease with forest

re-growth. Amino acids are proving to be an extremely valuable tool for broadly

characterizing the major pathways and players that control the fate of C and N in aquatic

systems, and their link to GHG concentrations and fluxes.
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4.2 Introduction
Worldwide lakes and reservoirs are typically supersaturated with greenhouse

gases (GHG, namely CO2 and CH4 in this work; Kling et al. 1990; Cole et al. 1994;

Duchemin et al. 2000). Although processes such as GHG-saturated ground water

discharges could explain the high dissolved GHG concentrations in surface waters,

increasing evidence suggests that the bacterial and photochemical degradation of

terrigenous organic matter (OM), mostly dissolved (DOM), could be the primary cause

for the observed supersaturation (Sobek et al. 2003; McCallister and del Giorgio 2008;

Chapter 3). Carbon cycling in freshwater aquatic systems is however characterized by

high random variability, which makes understanding of the subtle processes that control

C dynamics and GHG exchanges with the atmosphere extremely difficult. By stressing

the systems in ways that lead to changes in biogeochemical conditions that go beyond the

range of natural variability, human perturbations such as reservoir operation and wood

harvesting can help to identify the major controls on the aquatic cycle of C. Our working

hypothesis is that the trends found when comparing natural and perturbed systems reflect

those in natural systems, although over a much wider range, and thus that they are not

masked by the random variability inherent to aquatic environments. We also assume that

the major players controlling C cycling are the same in perturbed and natural systems,

although their relative importance likely differs.

Watershed wood harvesting and reservoir impoundment/operation lead to

increased exports of dissolved organic carbon (DOC), nitrogen and phosphorus from

terrestrial systems to the water bodies and severely alter the aquatic C cycle, resulting in

an enhancement of algal and bacterial biomass, as well as to higher dissolved GHG
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concentrations (Carignan et al. 2000b; Planas et al. 2000; Chapter 3). The amplitude of

these changes depend on several factors including the characteristics of the watershed

affected by flooding or wood harvesting activities, the pre-harvesting of wood before

flooding, the harvesting method and mitigation measures such as non-harvested

protection bands around water bodies (Chapter 3). The return to normal biogeochemical

conditions likely takes place only with forest re-growth for wood harvested systems,

while reservoirs remain greater emitters (compared to lakes) for at least 10-15 years

(Tremblay et al. 2005), and maybe for much longer (Duchemin et al. 2005; Chapter 3).

Recent efforts to quantify GHG emissions generated from reservoir operation however

have not been accompanied by an assessment of the dominant hydrological, physical and

biological processes responsible for the production and consumption of GHG in the water

column. To the best of our knowledge, no study has successfully identified changes in

OM processing and sources, including bacterial, in relation with dissolved GHG

concentrations in response to anthropogenic forcing associated to land use.

The anthropogenic exploitation of a watershed alters aquatic OM sources,

quantity and processing, which can be effectively evaluated through a combination of

bulk and molecular biomarker analyses (e.g. Simoneit 2005; Volkman et al. 2007).

Amino acids (AA) are relatively labile and are characterized by contrasting degradation

rates. AA yields and relative abundances have thus been frequently exploited to evaluate

OM freshness (Cowie and Hedges 1994; Dauwe et al. 1999; Tremblay and Benner 2009).

In addition, Cowie and Hedges (1992) have measured AA in different vascular plants,

tree leaves, phytoplankton, macrophytes, zooplankton and bacteria, and found that AA

represented >50% of total N in the samples (%TAaN), with little variability among source

89



organisms. In contrast, AA represented a larger portion of total organic carbon (%TAaC)

in plankton or bacteria (> 25%) compared to vascular plants (< 1 0%). These yields can

thus provide clues on the origin of OM; samples exhibiting high %TAaN but low %TAaC

can be associated with relatively fresh vascular plant contributions (Bourgoin and

Tremblay in press).

The D-isomers of AA (D-AA) are also exploited as OM source indicators because

of their much higher relative abundance in bacteria compared to other living organisms.

D-AA are found mostly in bacterial macromolecules such as peptidoglycan, teichoic acid,

lipopolysaccharides, polypeptides, lipopeptides and siderophores (McCarthy et al. 1998;

Kaiser and Benner 2008). Their abundance differs among bacteria species; for instance,

Kaiser and Benner (2008) measured no D-aspartic acid and D-serine in aquatic

phototrophic bacteria and highly variable yields among heterotrophic bacteria. In

addition, Gram positive (G+) and negative (G-) bacteria are composed of less than 10%

and between 30 and 70% by mass, respectively, of the structural macromolecule

peptidoglygan, which generates different yields in D-AA upon hydrolysis (Schleifer and

Kandier 1972; Kaiser and Benner 2008). D-amino-acid yields have been used for

estimating the bacterial contributions to different OM fractions in freshwater and marine

environments (e.g., Tremblay and Benner 2009; Lomstein et al. 2009; Bourgoin and

Tremblay in press). To our knowledge, total hydrolyzable amino acids (THAA) and D-

AA have never been employed for the study of the aquatic C cycle of forested freshwater

ecosystems, and for assessing the effect of human activities on C dynamics in these

systems.
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The main objective of this work was to assess C dynamics in freshwater systems

with a natural or perturbed watershed using AA measurements on a series of samples

collected in lakes and reservoirs during the summer of 2007. In particular, we tried to

assess how natural systems respond to human perturbation, and how this response affects

GHG fluxes at the air-water interface. To minimize the extent of random variability, we

collected our samples during the summer season when in-Iake physico-chemical

conditions are fairly stable, and we selected water bodies with similar characteristics in

the southeastern Canadian boreal region, thus facilitating comparison of the aquatic C

cycle between the different systems.

Nutrients, GHG as well as stable isotopes of dissolved organic carbon (DOC),

dissolved inorganic carbon (DIC), and particulate organic carbon (POC) were measured

in a parallel study in the same water bodies (Chapter 3). The results obtained highlighted

the delicate balance between CO2 production through bacterial/photochemical OM

degradation and CO2 fixation by primary producers, and how biogeochemical changes in

the water bodies caused by human perturbations influence dissolved GHG concentrations

and fluxes to the atmosphere. In the present study, THAA and D-AA measurements were

coupled to elemental and isotopie analyses of dissolved, fine particulate, flocculate and

sedimentary OM (DOM, FPOM, FLOM and SEOM respectively) to link GHG

supersaturation in surface waters to bacterial biogeochemical processes controlling

carbon dynamics in freshwater systems.
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4.3 Materials and Methods

4.3.1 Study sites
Two hydroelectric reservoirs and five lakes situated in the boreal forest of the

Province of Quebec (Canada; 46° 10' to 47°46' N; 76° 12' to 78°24' W) were sampled in

summer of 2007 (Figure 4-1, Table 4-1). The Cabonga and Decelles reservoirs were

impounded in 1928 and 1938, respectively, and are thus representative of mature

hydroelectric reservoirs. Portions of the watershed of one reservoir (Decelles) and two

lakes (Clair and Bouleau) were recently wood harvested (between 2004 and 2007),

whereas the watersheds of the remaining water bodies were not exploited. While wood-

harvesting activities represented only about 1 to 5% of the total watershed drainage area,

they were located in the direct vicinity of the water bodies, with non-harvested protection

bands of about 20 m along brooks and water bodies. We conservatively estimate the

percentage of the lake/reservoir shoreline directly affected by at least a 2-km wide strip of

harvested land at about 1 0-25% for lakes, and about 5% for the Decelles Reservoir. All

lakes and reservoirs had watersheds with more than 70% tree coverage (conifers - mostly

spruce, and the broad-leaf deciduous species maple, white birch and yellow birch);

additional details on the studied water bodies are listed in Table 4-1 .
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For normalizing spatial and depth variability, water DOM, POM, nutrients and

dissolved GHG (CO2 and CH4) were sampled at four stations within each lake, nine
stations in the Cabonga Reservoir, and eleven stations in the Decelles Reservoir. In this

manuscript, only the results corresponding to the deepest station of the lakes and two

stations of the reservoirs are presented; a systematic integration of all stations and

associated uncertainties for the same sampling sites are available in Chapter 3.

4.3.2 Field sampling
Concentrations of carbon dioxide (CO2) and methane (CH4) were measured using

the method reported in Soumis et al. (2008). Exactly 30-mL of water from the top 20-cm
surface water layer was sampled in a 60-mL syringe in which 30-mL of ultrapure N2 was

added (n = 4 per sampling event). The syringes were shaken for one minute followed by a
two minute equilibration period with the syringes resting horizontally. The water was

removed and the gaseous samples was injected within 4 hours of sampling in a Varian-

Star 3400 gas Chromatograph (GC) coupled to flame ionization and thermal conductivity

detectors for CH4 and CO2 measurement, respectively. The GC was calibrated using a

certified gas standard containing 1.01 % of CO2 and CH4 (Scotty48, mix 218). Two

surface water aliquots were collected in high density polyethylene bottles and frozen for
total nitrogen (TN) analysis. Lake sampling for GHG was carried out above the

thermocline that forms in the summer and is considered representative of the whole lake

as GHG accumulation in the hypolimnion represented less than 7% of the total daily
emissions in the studied lakes (Chapter 3).

For OM analysis, a large quantity (200-250-L) of water from each sampling site,

integrated over the entire water column or the first 10-m, was sampled in 50-L NaI gene
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Containers using a submersible pump and pre-filtered with a 70-µp? nylon mesh filter.

From 25 to 50-L of water were collected at each 0.5 to 1-m depth interval, depending on

the water column depth. FPOM and DOM fractions were isolated by a tangential flow

filtration device using a 0.45-µp? polyvinylidene difluoride (PVDF) filter coupled to a

RealSoft PROS/2S reverse osmosis (TFF-RO) system following the method described in

Ouellet et al. (2008). Briefly, a peristaltic pump introduced the pre-filtered (< 70-µp?)

water sample into the TFF unit, which redirected the FPOM fraction (0.45 - 70-µp?) into

the original container while the permeate (DOM) was collected in a second 50-L Nalgene

container. The DOM permeate was concentrated 15-20 times using the RO system, which

was carefully flushed and rinsed between sample runs (Ouellet et al. 2008). Total DOM

recoveries approached 90% using this method. The FPOM and DOM samples were

bacterially quenched with mercury (II) chloride and kept in the dark at 4°C until analysis.

Flocculate material, which formed a highly dynamic and unstable layer just above

the sediment-water interface, was gently collected by a SCUBA diver using 60-mL

polyethylene (PE) syringes, while sediments were sampled using a Mackereth corer

(Mackereth 1 958) or by a SCUBA diver using 7.5-cm diameter Plexiglas tubing. The

sediment was sliced at 1 -cm intervals from 0 to 5 cm. Both FLOM and SEOM fractions

were transferred to 50-mL polypropylene centrifuge tubes and freeze dried. Equal masses

of the three first centimeters of each sediment core were freeze dried and were combined

prior to analysis. Because of diving limitations, flocculates and sediments from LCLA

and RCAB-6 were not sampled in the exact same location as the water samples, and

might be subject to spatial variability.
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4.3.3 Elemental and isotopie measurements
Samples for TN measurements were reacted with NaOH-K2S2Og and analyzed

using a standard colorimetrie method (#818-47) from Bran Luebbe Analyzing

Technologies on a TRAACS 800 AutoAnalyser. Carbon and nitrogen elemental and

isotopie compositions (%C, %N, ô13Corg and ôI5Ntot, respectively) for DOM, FPOM,
FLOM and SEOM samples were obtained using an EuroVector 3028-HT elemental

analyzer coupled to an Isoprime GV Instrument stable isotope ratio mass spectrometer

(EA-IRMS). Elemental and isotopie standardizations as well as the instrumental linear

response changes with intensities were done using the VPDB-calibrated standards IAEA-

CO Sucrose (O13C = -10.45 ± 0.03%o; %C = 42.1 1) and IAEA Nl Ammonium sulfate

(d!5? - 0.43 ± 0.07%o; %N = 10.60%) as well as ß-alanine, a pre-calibrated in-house
standard (O13C = -25.98 ± 0.23%o; %C = 40.45 and O15N = -2.21 ± 0.24%o; %N = 15.72).

Organic C and total N percentages in the samples were obtained through multipoint

calibration of the IRMS response using sucrose and alanine for %C, as well as alanine

and ammonium sulfate for %N. Before ôl3Corg analysis, samples were decarbonated using
vapor-phase HCl (Hedges and Stern 1984); %N and ô15Ntot were analyzed separately on

non-acidified aliquots to avoid N loss during acidification.

4.3.4 Iron associated to DOM
Following DOM isolation by RO, the analysis of iron complexed to DOM

(FeDoivi) was carried using an Agilent 7500 series ICP-MS following acidification with

nitric acid and addition of an internal standard (scandium). Quantification was achieved

through external calibration with a Certipur ferric nitrate standard. Five replicate

measurements were acquired for each sample.
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4.3.5 Sedimentation rates
Sediment accumulation rates were determined through the analysis Of210Pb and

its radioisotope daughter 210Po using an alpha spectrometer, as described in Houel et al.
(2006). Briefly, 0.5-g sediment aliquots were spiked with a recovery standard (209Po),
reacted in Teflon beakers with a 5:3 mixture of HCl (12 N) and HNO3 (15 N) and

evaporated to dryness on a hot plate. This step was repeated twice. A 2:2:1 mixture of

HCl (6 N), HNO3 (15 N) and HF (24 N) was then added to the sample and evaporated to

dryness on a hot plate. The residual material was dissolved using 0.5 N HCl (< 100 mL)

to which 0.2 g of ascorbic acid was added. Upon mixing, a silver disk was introduced

into the solution, onto which the polonium deposited. Prior to the sedimentation rate

calculation, the supported lead activity that was determined from the deeper sediment

signal was subtracted from the upper core samples; then, sedimentation rates were

calculated using the negative value of ? (0.0448) for 210Pb divided by the slope of a
In210Pb vs. depth plot, as described by Ghaleb (2009). We attempted to determine the
sedimentation rate in Reservoir Decelles but sediment bio- and hydroturbation likely

skewed Pb depth profiles, making it impossible to obtain accurate measurements.

4.3.6 Amino acids measurements
The D/L-AA methodology used in this work is described in Kaiser and Benner

(2005). Briefly, hydrolysis of the DOM, FPOM, FLOM and SEOM fractions (5 to 200

mg of sample, or 2 to 3 mg of OC) was done using 6 N HCl in a sealed ampoule

containing 0.12 µ? ascorbic acid placed at 1 100C for 2Oh. Removal of HCl was done by

drying under a N2 stream followed by two water addition and drying steps. On-line high

performance liquid chromatography (HPLC) precolumn derivatization was done using o-

phthaldialdehyde with either N-isobutyryl-L-cysteine or N-isobutyryl-D-cysteine in a pH
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9.5 borate buffer. The addition of the L- conformational reagent results in D-L and L-L

diastereomers, from D-AA and L-AA respectively, which are separated using an achiral

stationary phase. The absence of co-elution and proper quantification of the AA were

verified in a second run using the D-reagent producing D-D and L-D diastereomers.

The HPLC analysis was carried out using an Agilent 1200 system and a C- 18

LiChrospher 100 RP- 18 column (4 ? 250 mm, 5 µ?a beads) protected by a 4 ? 4 mm

LiChrospher guard column. The separation was done under isothermal condition (200C)

and at a flow rate of 0.8 mL min"1. A segmented linear mobile phase gradient was used,

beginning with 100 % 40 mM aqueous KH2PO4 (pH 6.2) and reaching 39, 54 and 60 %

MeOH/ACN (13:1 v/v) mix after 50, 72 and 80 min, respectively. Detection was done by

fluorescence with excitation and detection wavelengths set to 330 nm and 450 nm,

respectively. External standard solutions of 23 AA were used for the calibration. These

AA were: L- and D-aspartic acid (Asp), L- and D-glutamic acid (GIu), L- and D-serine

(Ser), L-histidine (His), L-threonine (Thr), L-and D-alanine (Ala), L-arginine (Arg), L-

tyrosine (Tyr), L-methionine (Met), L- and D-valine (Val), L-phenylalanine (Phe), L-

isoleucine (He), L-and D-leucine (Leu), L-lysine (Lys), glycine (GIy), ß-alanine (ß-Ala),

?-aminobutyric acid (?-Aba).

Chemical racemization during hydrolysis was corrected by using the mean

racemization rates for free and protein amino acids reported by Kaiser and Benner

(2005). Negative or zero D-AA peaks after correction were considered as hydrolysis

artefacts and were rejected. D-AA showing more than 15 % peak area difference with the

L- and D-reagent runs were also discarded. Such variability indicated coelution problems.

Hydrolysis converted asparagine (Asn) and glutamine (GIn) to aspartic acid (Asp) and
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glutamic acid (Glu), respectively. As a result, the terms Asx and GIx were used for these

AA. The relative standard deviation was evaluated at 5-12 % (n = 3) for individual AA

with slightly higher values measured for less abundant AA such as D-AA (Kaiser and

Benner, 2005). No flocculate material was sampled for Lake Mary, and the Lake Bouleau

THAA sediment data were discarded due to untraceable manipulation errors which

resulted in large numerical inconsistencies.

4.3.7 Statistical Analysis
Where applicable, the significance of the observed trends was tested using the

Welch's t-test, which allows evaluating parameters having unequal data variance and

replicates. Between system comparisons of DOC, dissolved nitrogen (DN), FPOC and

fine particulate nitrogen (FPN) concentrations were based on the combined average

values for the different sampling sites. Standard deviations were propagated using the

pooled standard deviations (Harris, 1 999). This analysis prevented the over-

representation of systems with a higher number of sampling locations.

A principal components analysis (PCA) was carried out with mole percentages of

the AA as the main variables using Matlab 7.0 software (The Mathworks). The PCA is

applied to large data sets and extracts new vectors called principal components (PC),

which explain varying proportions of the variability of the data set. There are as many PC

outputs as there are variable inputs. In this study, we ran separate PCA on DOM or

FPOM samples for which 23 L- and D-AA were used as input variables. PC generates

both scores and loadings. Scores are defined as positions within the PC space and

loadings are defined as the contribution of individual variables to the PC. Thus higher

loading values in the first two PC vectors (above 0.30 and 0.25 for DOM and FPOM
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respectively) represent variables that are prone to change with land utilization and were

thus employed in the second PCA analysis, as explained in the discussion below.

4.4 Results

4.4.1 Greenhouse gases and bulk organic matter analyses
Surface concentrations of dissolved carbon dioxide and methane, as well as DOC,

dissolved nitrogen (DN), FPOC and fine particulate nitrogen (FPN) concentrations at all

stations that were analyzed for AA are summarized in Table 4-2. Dissolved CO2 and CH4

concentrations at the stations selected for AA analysis were within the standard deviation

of the average values reported for the entire water bodies. Natural lakes exhibited lower

dissolved CO2 concentrations compared to perturbed systems. Water bodies with

harvested watersheds were generally associated with high water dissolved CO2

concentrations; even though these latter systems had higher watershed surface area (SA)

to water SA ratios. The fact that no SA ratio relationship to dissolved CO2 concentration

was observed for water bodies with a forested watershed (Chapter 3) suggests that CO2

concentrations were controlled by factors other than lake or watershed areas. The effect

of small water temperature variations between the different systems was negligible as the

same conclusions and level of significance (p < 0.05 or 0.1) are reached when expressing

GHG concentrations in partial pressures or percentages of saturation. Independently of

reservoir operation, harvested systems had significantly higher DOC (p < 0.0005), DN (p

< 0.0025) and FPOC (p < 0.0025) concentrations compared to natural ones (Table 4-2).
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The elemental and stable isotope signatures ofthe water column integrated DOM

and FPOM samples from all stations, as well as the corresponding FLOM and SEOM

values are shown in Table 4-3. Water column particles were relatively enriched in OC (>

25.6%) compared to underlying flocculates and sediments (1.7-23.1%), indicative of

important OM removal with sedimentation. ôI3Corg and ô15Ntot values within each fraction
exhibited little variability. The most important differences measured were between

fractions. ô15Ntot values were higher in FLOM and SEOM than in the water column DOM

and FPOM samples indicating more extensively processed OM fractions (Anova single

factor:/? < 0.0001; Meyers 1997).

Higher concentrations of iron specifically associated with DOM (FeDoM), which

originates almost exclusively from land, were found in perturbed systems compared to

natural ones. Compared to natural lakes, reservoirs had about 1 .5 time more FeDoM, while

wood harvested systems contained more than 4 times FeooM (Table 4-3). Higher DOM

atomic C:N ratios were measured in perturbed systems (32.0 to 56.1) compared to natural

lakes (21.6 to 29.8). Higher FPOM (C:N)a ratios were also found in wood harvested

systems (18.7 to 31.2) compared to non-harvested lakes and reservoirs (1 1.8 to 16.5;

Table 4-3) indicating greater terrestrial FPOM inputs. FLOM and SEOM (C:N)a ratios

varied between 1 1.4 and 25.5 with a general trend towards higher values in the sediments

from perturbed systems. Flooded systems (Lake Bouleau and both reservoirs) contained

N-poor FPOM, (high (C:N)a ratio), FLOM with a lower (C:N)a ratios, which increased

again in SEOM. The opposite trend with depth was measured for the other systems (non-

flooded lakes). In non-flooded systems, it appears that a preferential degradation ofN
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(high (C:N)a ratios in FLOM) was followed by an enrichment in N in sediments

exhibiting the lowest (C:N)a ratios among all the fractions.

Lakes were characterized by large variations in sedimentation rates, which were

not linked to wood harvesting (Table 4-3). The measured sedimentation rates were lower

in lakes than what was measured in the Cabonga Reservoir (Houel et al., 2006). The

integrated age of the 0-3 cm sediment layer used in this study ranged between 5.5 and 88

years. Noteworthy, the biogeochemical signal attributable to short-time perturbations

such as recent wood harvesting might not be perceptible in the SEOM fraction since it

integrates information from several pre-harvesting years in addition to the few years

following wood harvesting.
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4.4.2 L- and D-Amino acid analyses
The relative abundances of AA in the DOM, FPOM, FLOM and SEOM fractions

from the different water bodies are listed in Table 4-4. THAA accounted only for < 2% of

total DOC (%TAAC) and for 5 to 19 % of FPOC. The %TAAC measured for FPOM were

higher in natural lakes, with percentages greater than 14 %, than in reservoirs and

systems with a wood harvested watershed (5.1 to 10.7 %). No clear trend emerged in the

FLOM and SEOM fractions but %TAAC generally increased with depth, from FPOM to

FLOM to SEOM, in perturbed water bodies.

The percentage of total N included in AA (%TAAN) was lower in the dissolved

phase (10.2 to 17.9 %) than in the other fractions (17.2 to 63.0 %). The %TAAN of DOM

in natural and wood harvested lakes (10.6 ± 0.5 %) was significantly lower than in

reservoirs (14.7 ± 2.2 %,p < 0.0005). The opposite trend was obtained for FPOM with

much higher %TAAN in lakes (52.1 ± 5.6 %) than in reservoirs (28.6 ± 9.1 %,p

< 0.0005). Amino-acid constitutes the major N pool in the FLOM and SEOM fractions,

accounting for 45.1 ± 6.6 % and 53.9 ± 7.9 % of total N, respectively, with no significant

difference between the different systems.

The relative abundances of the different AA change significantly upon OM

degradation and can thus be used as indicators for the diagenetic state of OM.

Degradation indices (DI) exploiting these changes (Dauwe et al. 1999) were calculated

for our data set (Table 4-4). High DI values, suggestive of relatively fresh OM, were

obtained for FPOM in reservoirs (0.223 to 0.458) and in the natural Lake Mary (0.671).

In contrast, reservoir DOM DI values were generally lower than those recorded in lakes,

suggesting that reservoir DOM was more degraded than in lakes. Degradation index
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values are however affected by sorption/desorption processes that influence partitioning

of the different AA between the dissolved and solid phases (Aufdenkampe et al. 2001);

comparisons of DI across the dissolved and particulate phases are thus not

straightforward (see discussion below). The DI values calculated for SEOM varied

between -0.537 and 0.31 1, with slightly higher values for lakes with low sediment

accumulation rates (Lake Jean and Lake Clair; Table 4-4), suggesting that water bodies

with greater sédimentation rates accumulated OM that was generally more altered.
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Table 4-4. Carbon and nitrogen normalized
total hydrolysable amino acids (THAA) yields
and degradation indices

Station
THAA

%TAAC a %TAAN a DI b
DOM
LMAR 1.8 11.3 0.107
LJEA 1.2 10.3 -0.138
LCLA 1.1 10.2 -0.061
LBOU 1.1 10.5 -0.196

RCAB-6 1.3 13.6 -0.712
RCAB- 10 1.9 17.9 -0.437
RDEC-I 0.9 13.8 -0.187
RDEC-2 L2 13.3 -0.640
FPOM
LMAR 19.1 59.2 0.671
LJEA 14.1 51.4 -0.501
LCLA 10.0 52.2 -0.194
LBOU 6.9 45.5 -0.111

RCAB-6 5.6 17.2 0.458
RCAB-10 10.7 38.7 0.362
RDEC-I 5.4 26.4 0.223
RDEC-2 5? 32.0 0.389
FLOM
LMAR -
LJEA 5.1 32.4 -0.105
LCLA 6.6 49.4 -0.456
LBOU 12.1 45.7 -0.424

RCAB-6 8.6 47.0 -0.481
RCAB-10 11.0 44.8 -0.371
RDEC-I 8.5 43.0 -0.963
RDEC-2 12.2 53.6 -0.192
SEOM
LMAR 16.9 50.3 -0.537
LJEA 16.8 58.6 -0.148
LCLA 17.6 63.0 0.311
LBOU - - -

RCAB-6 13.1 51.6 -0.459
RCAB-10 8.7 39.1 -0.880
RDEC-I 16.0 55.0 -0.501
RDEC-2 11.1 59.8 -0.139

3 Percentage of total organic carbon (OC) and nitrogen (TN)
included in amino acid structures. b Degradation index
calculated as in Dauwe et al. (1999).



Amino-acids distributions, expressed in mole percentages (mol%) of THAA (sum

of D and L isomers) and grouped according to the chemical nature of their side chain, are

presented in Figure 4-1 . Glycine (GIy) was the most abundant AA in most samples. In

addition to the diagenetic trends illustrated by the DI, hydrophilicity dictates THAA

relative abundances in the different OM fractions. In contrast to the solid phases, the

relative contribution of histidine (His) to THAA was high in DOM probably owing to the

hydrophilic nature of its side-chain. The opposite trend was observed for lysine (Lys) and

arginine (Arg) having hydrophobic side-chains. Mole percentages of His in DOM were

lower in reservoirs compared to lakes, with levels almost two times higher in the latter.

The occurrence of other AA seemed to be influenced by wood harvesting. For instance,

GIy, leucine (Leu) and methionine (Met) accounted for a greater mol% of THAA in

DOM from wood harvested water bodies, while the relative contribution of alanine (Ala)

was smaller in these systems.
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Figure 4-1. Sum of the mole percentages total hydrolysable amino acids. D + L amino acids isomers
found in the (A) DOM, (B) FPOM, (C) FLOM, and (D) SEOM fractions of the different water bodies, and
classified according to the chemical characteristics of their side chain: Acidic (Asx, GIx), hydroxilic (Ser,
Thr), neutral (GIy, Ala, Val. Leu, lieu). .Aromatic (Phe, Tyr). Sulfuric (Met), Basic (Lys, His, Arg) and non
protein (ß-Ala, y-Aba).
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The non-protein amino acids ß-Ala and y-Aba, which are formed through the

partial decarboxylation of aspartic and glutamic acids, respectively, are exploited as

diagenetic proxies since their relative abundance increases with more advanced OM

degradation (Cowie and Hedges 1994). The sum of the relative abundances measured for

the two non-protein AA (%[ß-Ala + y-Aba], Figure 4-1) in POM, FLOM and SEOM

samples averaged 1.6 ± 0.6 %, 1.5 ± 0.3 %, and 1 .6 ± 0.4 %, respectively, and were

within the range normally found for fresh OM (O - 3 %; Cowie and Hedges 1994). ß-Ala

and y-Aba were more abundant in DOM, averaging 4.5 ± 0.5 %. y-Aba was enriched in

the DOM and FPOM fractions of wood harvested lakes and reservoirs compared to

natural lakes and non-harvested reservoirs (Figure 4-1), in agreement with other results

that reveal larger inputs of reworked soil-derived OM upon wood harvesting (Chapter 3).

Expressing THAA concentrations per volume of water rather than per mass of

freeze-dried material allows comparing the abundance ofpeptide/protein material in

systems with widely different carbon dynamics. Such normalization highlights higher

volume-normalized THAA concentrations in the dissolved phase of disturbed systems

(flooded/wood-harvested lakes and reservoirs) paralleled by higher volume-normalized

THAA levels in the particulate phase of lakes (independent of wood harvesting; Table 4-

5). We attribute the higher volume-normalized THAA in the DOM of perturbed systems

to larger inputs of soil DOM (Table 4-2; Stepanauskas et al. 2000), which comprises only

a small but significant proportion of nitrogen-containing molecules (derived mostly from

bacteria and their remains). In contrast, the higher volume-normalized D-AA and THAA

of FPOM in lakes compared to reservoirs is attributed to greater relative proportion of

plankton and bacterial cells against the N-depleted terrestrial FPOM inputs (Table 4-5).
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Table 4-5. Volume-normalized total
hydrolysable amino acids and D-
amino acids concentrations

Station THAA D-AA
(pmol L"1) (nmol L" )

DOM
LMAR 0.806 53.7
LJEA 0.647 33.3
LCLA 1.150 46.2
LBOU 1.357 75.5

RCAB-6 0.974 76.7
RCAB-IO 1.251 77.8
RDEC-I 1.076 75.6
RDEC-2 1.460 99.0
FPOM
LMAR 1.051 45.9
LJEA 1.171 53.2
LCLA 1.868 118.2
LBOU 1.235 67.8

RCAB-6 0.772 42.2
RCAB-IO 0.732 34.7
RDEC-I 0.763 36.5

RDEC-2 0.721 39.0

The relative abundances of D-AA measured in the different samples are shown in

Table 4-6. As observed for THAA yields, DOM had the lowest C- and N-normalized

yields of D-AA. However, the highest % D-AA (sum of D-AA vs. THAA) were found in

DOM and FPOM, with lower values measured in FLOM and SEOM. D-Asx was

generally the most abundant D-AA (120 to 883 nmol mol C"1 and 3.06 to 1 1 .9 µp??? mol

N"1; Table 4-6), especially in FPOM and SEOM, followed by D-AIa and D-GIx (78.5 to

449 nmol mol C"1 and 1.75 to 6.01 µ???? mol N"1). D-Ser yields were similar in all the

particulate fractions (19.8 to 57.7 nmol mol C1 and 0.36 to 0.78 µp??? mol N"1), with

slightly lower relative abundances in DOM. D-AIa yields were significantly lower in the

DOM of wood harvested systems (33.6 ± 3.8 nmol mol O1) relative to the non-harvested

ones (70.9 ± 10.5 nmol mol C1; ? < 0.0005).
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Table 4-6. Relative abundances of D-amino acids in all fractions

%D- D"Asx D-GIx D-Ser D-AIa D-Asx D-GIx D-Ser D-AIa D-Asx'
Station a — — „ . cAA nmol mol OC1 b µp??? mol TN1 b D"Ala
DOM

LMAR 6.67 66.2 56.3 27.5 77.1 1.43 1.21 0.59 1.66 0.86
LJEA 5.15 40.6 25.9 11.3 55.0 1.21 0.77 0.34 1.64 0.74
LCLA 4.02 31.1 20.3 15.5 29.9 1.00 0.65 0.49 0.96 1.04
LBOU 5.56 42.8 27.4 21.1 38.8 1.42 0.91 0.70 1.29 1.10

RCAB-6 7.88 69.6 22.7 26.8 77.1 2.53 0.83 0.98 2.81 0.90
RCAB-10 6.22 75.6 31.8 24.0 74.6 2.47 1.04 0.78 2.44 1.01
RDEC-I 7.03 50.7 24.1 6.5 30.7 2.84 1.35 0.37 1.72 1.65
RDEC-2 6.78 58.8 26.8 10.2 35.0 2.39 1.09 0.42 1.42 1.68
FPOM

LMAR 4.37 883 449 38.9 234 10.4 5.31 0.46 2.77 3.77
LJEA 4.55 655 365 39.5 190 9.19 5.12 0.55 2.67 3.44
LCLA 6.33 634 320 30.3 321 ?.9 5.99 0.57 6.01 1.98
LBOU 5.49 376 205 22.1 186 8.92 4.86 0.53 4.42 2.02

RCAB-6 5.46 278 143 22.2 159 4.54 2.34 0.36 2.60 1.74
RCAB-10 4.74 465 254 25.8 256 7.65 . 4.18 0.42 4.21 1.82
RDEC-I 4.79 242 122 19.8 140 6.28 3.18 0.51 3.63 1.73

RDEC-2 5.40 253 134 22.8 139 7.88 4.18 0.71 4.34 1.82
FLOM
LMAR - ____ ____

LJEA 3.42 142 78.5 24.9 133 3.17 1.75 0.56 2.96 1.07
LCLA 2.77 120 87.8 22.7 156 3.06 2.24 0.58 3.99 0.77
LBOU 3.18 345 186 49.7 249 4.50 2.42 0.65 3.25 1.38

RCAB-6 3.43 183 161 41.3 227 3.45 3.03 0.78 4.28 0.81
RCAB-10 3.47 335 222 49.4 218 4.88 3.23 0.72 3.18 1.54
RDEC-I 2.73 188 145 27.1 145 3.42 2.63 0.49 2.63 1.30

RDEC-2 2.36 251 184 29.3 156 3.93 2.88 0.46 2.44 1.61
SEOM

LMAR 3.22 541 231 36.0 319 6.12 2.62 0.41 3.61 1.69
LJEA 3.53 580 281 55.2 343 7.61 3.69 0.72 4.50 1.69
LCLA 2.97 404 257 57.7 395 5.36 3.41 0.77 5.25 1.02
LBOU - _____ _ . _ _ _

RCAB-6 3.19 375 277 51.2 248 5.44 4.01 0.74 3.50 1.55
RCAB-10 2.75 185 140 26.4 158 3.07 2.32 0.44 2.63 1.17
RDEC-I 2.35 320 228 36.3 231 4.15 2.95 0.47 2.99 1.39
RDEC-2 2.43 245 156 28.1 150 4.67 2.97 0.54 2.86 1.63

3 Sum of the D-AA mole percentages in THAA pool. Molar concentrations of the D-AA normalized to moles of
OC and TN; Asx, Aspartic acid and Asparagine; GIx, Glutamic acid and Glutamine; Ser. Serine; Ala, Alanine. c D-
Asx to D-AIa molar ratio.
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Calculated D-Asx to D-AIa ratios appeared influenced by human perturbations (Table 4-

6). In DOM, these perturbations led to an increase in D-Asx:D-Ala ratios compared to

natural systems, with wood harvesting having the greatest impact on the ratio. The

opposite trend was found for FPOM with higher D-Asx:D-Ala ratios measured in the

natural lakes.

Total dissolved D-AA concentrations (nmol L"1) were positively correlated to

dissolved CO2 and CH4 concentrations with coefficients of 0.55 and 0.70, respectively

(Figures 4-2A and -2B) but with low significance (p < 0. 1) due in part to the small

number of samples available for this study. Lake Bouleau was not included in the

regression analysis because of the very high measured CO2 concentrations measured in

this lake, which resulted from the local flooding of land caused by a dam recently erected

by beavers (Chapter 3). A negative correlation was found between dissolved CO2 and

CH4 concentrations and %D-AA (with r2 = 0.85,/? < 0.005 and r2 = 0.65, ? < 0.001 ;
Figures 4-2C and -2D).
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Figure 4-2. Relationship between surface water GHG and D-amino acids. D-AA concentrations in
DOM (panel A, B) and % D-AA in SEOM (panel C, D) against dissolved CO2 and CH4 concentrations.

4.5 Discussion

4.5.1 Sources of lacustrine OM
Bulk measurements performed on DOM, FPOM, FLOM and SEOM were used to

evaluate the natural sources of OM in these systems, as well as those associated with

anthropogenic perturbations. The quantitatively important sources of OM in lakes and

reservoirs are either allochfhonous (terrestrially-derived OM) or autochthonous (OM

produced within the water column or in the sediment). Groundwater DOM input could

also contribute, although to a much lesser extent, and thus was not considered further in

this work.
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Higher DOC and FPOC concentrations were measured in perturbed system

compared to natural lakes, with wood harvesting having a greater impact than reservoir

operation (Table 4-2). Wood harvesting was also associated with higher DN

concentrations, particularly in lakes. Such increases and proxies of OM sources suggest

that human perturbation leads to the export of terrestrial OM from land into water bodies.

For DOM, this hypothesis is supported by higher concentrations of iron specifically

associated to DOM (FeDoM) measured in perturbed systems. As iron present in aquatic

systems originates almost exclusively from land, the strong association of DOM and iron

(r2 = 0.86, ? < 0.001) suggests that a considerable fraction of total DOM is derived from
soils in these systems. Although less striking, the higher (C:N)a ratios obtained for DOM

from perturbed systems (Table 4-3) also suggest that a greater fraction of water column

DOM in these systems originated from the leaching of N-poor superficial soils

(Stepanauskas et al. 2000). Using the C and N stable isotope signatures to discriminate

between sources of DOM is difficult since DOM 513Corg values are fairly invariant at
around -27%o, while DOM 515Ntot values are modulated by the signature of the Nin0rg

pool. Based on these values, the major DOM source in aquatic systems is frequently

attributed to higher plants (Meyers 2003; Lehmann et al. 2004; McCallister et al. 2004).

However, other sources must be considered; in a recent study, DOM leached from .

superficial soils and litter was isotopically distinct from water column DOM, with carbon

and nitrogen stable isotope signatures of -25.0 to -26.5 %o and -0.7 to 4.8 %o, respectively

(Chapter 3). Water column O13C DOM signatures measured in our systems were also
invariant, although with slightly more depleted signatures (Table 4-3), suggesting a
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mixture of surfícial soil leachate with small contributions from the more depleted

autochtonous DOM exudates (phytoplankton: -32.7 %o ± 1.7 %o; Marty and Planas 2008).

The absolute values and the significant differences in FPOM (C:N)a ratios and D-

AA yields between the harvested and non-harvested water bodies provide clues on the

source ofparticulate OM found in these systems. The lower (C:N)a ratios but higher

%TaaC (>14%) of the FPOM from natural lakes agree with the hypothesis of a greater

terrestrial contribution to the FPOM fraction ofperturbed systems. The range of O13C
signatures measured for FPOM in this study reflects a mix of sources likely dominated by

phytoplankton (-32.7 ± 1 .7 %o; Marty and Planas 2008), forest litter (O13C = -27.2 ±1.1

%o, Chapter 3), and bacterial cells and their remains (variable signatures).

The FPOM d Ntot signature were in most cases comparable to those of the boreal

forest soil litter (-1 .0 ± 0.9 %o; Chapter 3). Because ô15Ntot signatures are affected by a

larger number of sources and processing pathways (Lehmann et al. 2004), constraining

TN sources using ô15Ntot is more difficult. The more depleted 5,5Ntot signatures of DOM
compared to soil litter leachates (0.7 %o; Chapter 3) possibly result from the selective

utilization ofN by primary producers and bacteria, from isotopie fractionation through

sorption/desorption exchanges with the particulate fraction and/or through DOM

percolation in soils (Aufdenkampe et al. 2001).

A significant bacterial contribution to the solid phases of the water column and

the sediment is likely what causes the important decrease in (C:N)a ratios measured with

sedimentation. This relative enrichment in N was measured in the FLOM samples of

flooded systems and in the SEOM samples of non-flooded lakes. A decrease in (C:N)a

ratios suggests an increasing contribution from bacterial cells and their remains (enriched
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in N). N-immobilization has been reported in N-depleted detritus where most of the

nitrogen fixed by attached microorganisms was inorganic (Melillo et al. 1984; Tremblay

and Benner 2006). Moreover, the 513C isotopie compositions of flocculate material and
sediments were slightly enriched compared to the FPOM counterparts, reflecting

microbial reworking of OM in the former. The d15? signature became generally more
depleted after sedimentation suggesting either denitrifi cation, incorporation into bacterial

biomass or degradation and loss of organic nitrogen.

4.5.2 Changes in OM diagenetic state
Assessing the freshness of OM in the different fractions sampled in these systems

also provides clues on the dynamics of C and N in aquatic environments. Although

directly comparing dissolved and particulate samples is risky (Aufdenkampe et al. 2001),

the much lower %TAaC and %TaaN, as well as generally lower DI values (especially in

reservoirs), measured in DOM likely reflects the highly reworked nature of DOM

compared to FPOM in freshwater systems (Cowie and Hedges 1994; Tremblay and

Benner 2009). The relative abundances of ß-Ala and y-Aba were higher in DOM and

provide additional support to this conclusion (Amon and Benner 1 996).

The generally lower FPOM %TAaC and %TAaN in reservoirs again is attributed

to higher inputs of vascular plants and biologically altered debris upon reservoir

operation. This finding indicates that FPOM is less diagenetically altered in lakes than in

reservoirs. In addition, the waters of natural lakes receive lower quantities of light-

absorbing terrestrial DOM allowing greater production of fresh particulate material

through photosynthetic activity as terrestrial DOM as been shown to decrease light

penetration depth (Schindler et al. 1997; Karlsson et al. 2009; Chapter 3).
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The high %TAaN values measured for FLOM and SEOM suggest relatively fresh

organic N near the sediment-water interface in all systems. The presence of fresh N-

containing compounds in these fractions can be attributed to autochthonous OM

production through bacterial reworking and production. Phytoplanktonic OM produced in

surface waters is also believed to contribute to the FLOM and SEOM fractions, although

the relative importance of the two sources is difficult to estimate. Significant bacterial

contribution during OM diagenesis would also explain why the %TAaC generally

increased with depth (and thus with time) from FPOM to FLOM to SEOM in perturbed

water bodies, especially since the starting material in these systems is characterized by

low %TAaC and a strong vascular plant signature (Tremblay and Benner 2006). This

bacterial contribution near the sediment-water interface is consistent with the decrease in

(C:N)a ratios observed in FPOM or SEOM.

The percentage of carbon or nitrogen accounted for by AA (%TAaC and %TAaN,

respectively) and the DI are commonly used as indicators of OM freshness, although over

different time scales. THAA yields are considered indicators of the first stage of

diagenesis whereas DI better reflect more advanced degradation and are less sensitive to

the subtle changes occurring over short time scales following the death of living

organisms (Davis et al. 2009; Bourgoin and Tremblay in press). These proxies exhibited

opposite trends in DOM and FPOM samples, with higher reservoir DOM %TAaN values

corresponding to lower DI values and lower reservoir FPOM %TAAN (and %TAaC in this

case) values corresponding to higher DI values (Table 4-4). The opposite trends were

found in lakes. These contrasting trends likely reflect changes occurring over different

time scales and thus affecting different pools of OM. As reservoirs are not flow-through
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systems, the continual addition of fresh OM sources in these systems makes the

interpretation of these proxies difficult. When fresh OM is incorporated into a pool of

altered OM, AA yields can increase while the DI values calculated from the total AA

pool remain low. This hypothesis is supported by data obtained in the water column of

the St. Lawrence Estuary where deep water POM exhibited low %TaaN associated with

high DI values, while underlying sediments had higher %TAaN associated with lower DI

values (Bourgoin and Tremblay, in press). Such results can be explained by the recycling

of POM by sedimentary bacteria that add fresh AA to a relatively altered OM pool as

they grow. The contrasting trends between %TAaN and DI cannot be explained by

variations in inorganic N (nitrates) content in the DOM concentrates as inorganic N in the

original samples (measured nitrate concentrations; Chapter 3), never exceeded 8% of the

total amount of organic N recovered in the DOM concentrate. Furthermore, nitrate

concentrations were very similar in all water bodies and thus could not have given rise to

the observed trend in %TAaN.

4.5.3 Changes in bacterial abundance
The relative contributions of D-AA vs. THAA (% D-AA) often co-vary with

several independent indicators of diagenetic state (Tremblay and Benner 2009)

supporting the idea that molecules rich in D-AA exhibit lower degradation rates than

those composed exclusively of the L-isomer (e.g., proteins) (Jorgensen et al. 2003;

Nagata et al. 2003). High % D-AA in DOM are also promoted by preferential release of

some D-AA during bacterial growth (Bjornsen 1988; Kawasaki and Benner 2006). These

processes explain the high % D-AA measured in DOM compared to the other fractions.

The generally lower % D-AA found in lake DOM compared to reservoir DOM could
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reflect contrasting inputs of terrigenous D-AA stemming from the differences in

hydrology between the two types of water bodies. The percentage ofD-AA in FPOM

increases slightly with reservoir operation and wood harvesting, consistent with a more

advanced degradation state of FPOM in perturbed systems.

Carbon- and nitrogen-normalized yields of D-AIa and D-GIx have been used as

indicators ofbacterial· contribution to bulk C and N (Tremblay and Benner 2006; 2009;

Kaiser and Benner 2008). Unlike % D-AA, they appear to be relatively insensitive to

diagenesis and thus are representative ofbacterial C and N content in a sample. In

particular, D-AIa has been shown to be representative ofbulk bacterial OM in vascular

plant detritus (Tremblay and Benner 2006). In agreement with the bulk data presented

above, the negative correlation (r2 = 0J4;p < 0.005; not shown) found in this work

between C-normalized D-AIa abundances and DOC concentrations suggests that non-

bacterial sources, most likely terrigenous plants and soil litter, predominantly fuel the

high DOC concentrations in perturbed systems. In contrast, the relationships between D-

Asx, D-GIx and D-Ser with DOC were much weaker (r2 < 0.32, not shown), suggesting

that the variations in the relative abundance of each D-AA were driven by different

factors. In general, higher carbon- and nitrogen-normalized D-Asx yields were observed

in the DOM ofreservoirs compared to lakes, while D-AIa prevailed in all non-harvested

systems. These shifts in concentrations possibly reflect additional inputs from soil DOM

during reservoir operation. This is in agreement with Stepanauskas et al. (2000) who have

shown that D-Asx is a major constituent of the terrestrially-leached D-AA pool (as much

as 38 % of total D-AA yields). Noteworthy, the D-Asx to D-AIa ratios calculated for this

data set seem to reflect the contribution of soil-derived terrigenous OM to the DOM pool
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of aquatic systems (Table 4-6). Human perturbation leads to an increase in D-Asx:D-Ala

ratios compared to natural systems, with wood harvesting having the greatest impact on

the ratio. Although a lot more work must be carried out to evaluate its validity and

robustness, this ratio could be used as a proxy, in combination with other markers, to

estimate the contribution of terrestrial OM to the DOM pool in boreal aquatic systems.

We found the opposite trend for FPOM with higher D-Asx:D-Ala ratios measured

in the natural lakes. The magnitude of the differences argues against pH-driven

preferential adsorption of D-Asx to particles (Hedges et al. 1994; Aufdenkampe et al.

2001) as a major driver of the measured ratios. The most probable explanation for the

steep changes in the D-Asx:D-Ala ratios most likely is a change in the bacterial

assemblages contributing to FPOM. The D-Asx:D-Ala ratios are highly variable in

bacteria; for instance, D-Asx is not found in phototrophic bacteria (cyanobacteria) and

G+ bacteria are generally enriched in D-AIa due to their much thicker peptidoglycan

structure (Schleifer and Kandier 1972, Kaiser and Benner, 2008). Greater proportion of

cyanobacteria or G+ bacteria could thus have caused the lower D-Asx :D-Al a ratios

measured in the perturbed systems. In agreement, Prepas et al. (2001) have shown that

higher and lower amounts of cyanobacteria and phytoplankton were measured after wood

harvesting. Consistantly, G+ bacteria are expected to thrive in the water columns of

reservoirs (well oxygenated and warm, with temperature from 17.9 to 23.00C and O2

saturation levels > 87.5 %) and harvested lakes (presence of a thermocline and oxygen

depletion near the sediment with temperature < 5. 60C and O2 saturation levels < 25.8 %)

while G- bacteria should predominate in cold water columns with high O2 saturation

levels in natural lakes (< 8.80C and > 93 % O2; Leduc and Ferroni 1 979; Halda-Alija and
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Johnson 1999). FPOM bacterial communities within reservoirs appear independent of

wood harvesting as the measured FPOM D-Asx:D-Ala ratios do not change significantly

between natural and harvested systems. While more work should be carried out to

confirm that variations in D-Asx:D-Ala ratios accurately reflects differences in bacterial

communities, the preliminary results obtained here appear promising.

Several lines of evidence suggest that bacteria play a key role in the production of

GHG in these systems. In this study, D-AA concentrations are associated with the

abundance ofbacterially-derived material and a parallel is drawn between the abundance

of D-AA in DOM or SEOM and the dissolved GHG concentrations (Figure 4-2).

Although bacterial activities were not determined in this work, the stronger negative

correlation found between surface GHG concentrations and % D-AA in SEOM (r =

0.85, ? < 0.01, and r2 = 0.65, ? < 0.05, for CO2 and CH4, respectively; Figures 4-2C and -
2D) support the hypothesis of a link between heterotrophic activity in the water column

and the AA composition of OM depositing in the sediment. In systems with higher

concentrations of dissolved GHG, the L-AA containing macromolecules in the SEOM

fraction, which are more labile than the D-AA rich ones (Stepanauskas et al. 2000),

would be preferentially degraded while the more recalcitrant D-AA containing

macromolecules would accumulate in the DOM fraction since peptidoglycan in G- is

more recalcitrant than in G+ bacteria (Jorgensen et al. 2003). This hypothesis is

supported by the volume normalized D-AA concentrations results (Table 4-5), which

suggest that perturbed systems, particularly reservoirs, contain higher proportions of G+

bacteria. The trends highlighted in Figure 4-2 also suggest that the bacterial contribution

to total DOM is enhanced as a result of reservoir operation, wood harvesting or flooding,
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and that this increase is linked to the high CO2 and CH4 concentrations in surface waters

(Figures 4-2A and 2B).

4.5.4 Principal component analysis
To identify more complex relationships between parameters and subtle

differences between natural and perturbed water bodies, we applied a principal

component analysis (PCA) to the relative abundances of AA (in mol % vs. THAA, and

considering D- and L-AA as separate input variables) in DOM and FPOM. Loading

values, corresponding to the contribution of individual variables contained in a PC, were

first attributed to each AA through a first PCA run. To reduce the number ofvariables in

the system, only AA with loadings values above 0.30 and 0.25 for DOM and FPOM,

respectively, were then used in a second analysis. The two first principal components

(PC) of the latter analysis are represented graphically in Figure 4-3 and comprise 1 1 (D-

Asx, L-Asx, GIy, D-VaI, D-Leu, L-Leu, L-Tyr, L-Lys, L-His, ß-Ala and y-Aba) and 12

(L-GIx, D-Ser, L-Thr, GIy, D-AIa, L-AIa, L-Ileu, L-Phe, L-Lys, L-His, L-Arg, and y-

Aba) AA for DOM and FPOM, respectively. Interestingly, the four different scenarios

(natural lake, wood-harvested lake, reservoir, wood-harvested reservoir) are well

separated in the space represented by the first two components and occupy a distinct

quadrant when only considering variations in the relative abundances of AA in these

samples (Figure 4-3). The variations in AA distribution in the DOM and FPOM fractions

are thus coupled to the changes occurring in the aquatic cycle of carbon upon reservoir

operation and wood harvesting. As shown above, these perturbations affect the relative

importance of DOM exports from land to the water bodies, primary production and

bacterial activity in the water column and the sediment. Noteworthy, most AA found in
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G+ bacterial peptidoglycan (GIy, D- and L- conformations ofAla, Asp, Glu and Ser as

well as L-Lys and L-Thr) had high loading values and thus were thus a major

determinant in the PCA analyses.

A)DOM

© Lakes Non-Harvested
• Lakes Harvested
0 Reservoir Non-Harvested
¦ Reservoir Harvested
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Figure 4-3. Graphical representation of the first two
principal components (PC) for relative abundance (mol %)
of amino acids. In (A) DOM (D-Asx, L-Asx, GIy, D-VaI, D-
Leu, L-Leu, L-Tyr, L-Lys, L-His, ß-Ala, and y-Aba) and (B)
FPOM (L-GIx, L-Thr, D-Ser, GIy, D-AIa, L-AIa, L-Ileu, L-
Phe, L-Lys, L-His, L-Arg and )'-Aba). See text for
explanations.
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The first PC (PCl) of the second DOM PCA analysis (Figure 4-3A), which

accounts for 54.1 % of the total variability and results in scores that are positive for

reservoirs and negative for lakes, suggests that reservoir operation exerts a strong

influence on the dissolved THAA composition. The second PC (PC2; 31.6 % of the total

variability) separates harvested from non-harvested systems. These PC2 scores suggest

that the effect of wood-harvesting on DOM composition was more perceptible in the

reservoirs than in lakes studied in this work. The scores generated for the PCl of the

DOM dataset were strongly correlated to the % D-AA in dissolved THAA of the lakes (r2

of 0.99, ? < 0.005, and 0.66,/? < 0.35, for lakes and reservoirs samples, respectively;

results not shown), which suggests that the AA composition of lake DOM was mostly

modulated by bacterial activity and contributions. In contrast, the reservoir DOM AA

composition appeared to be controlled not only by bacteria but also by other DOM

inputs, such as soil leachates and autochthonous exudates.

A different PCA-based separation pattern was obtained for the FPOM dataset

(Figure 4-3B). Principal component 1 accounts for 42.1 % of the total variability and

separates harvested from non-harvested water bodies while PC2, accounting for 40 % of

the variability, differentiates lakes and reservoirs. As for DOM, FPOM PCl scores were

correlated to D-AA mole percentages in particulate THAA (r2 of 0.61,/? < 0.05 including

all systems; results not shown), which also argues for a FPOM AA composition that is

strongly affected by bacterial inputs. These statistical patterns suggest that bacterial

communities and/or contributions to OM are sensitive to changes in the magnitude and

composition of OM inputs as well as to changes in the hydrologie regime of aquatic

systems.
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Variations in AA relative and absolute abundances offers insight into the

dynamics of carbon and nitrogen in aquatic systems, in particular with respect to the role

ofbacteria in the processing of organic compounds, and to predicting how these systems

react to anthropogenic perturbations. They thus offer complementary diagnostic

information to bulk analyses (Chapter 3), as well as to other organic biomarkers such as

lipids and lignin (results to be published elsewhere). Our AA analyses have shown that

the effect of reservoir operation on aquatic systems is not only visible at the macroscopic

level but can leave a microbial and molecular imprint on the aquatic cycle of carbon and

nitrogen for more than half a century after impoundment. The effect of wood harvesting

on the other hand, while important in the first few years, is likely to decrease with forest

re-growth. Reservoir operation and wood harvesting result in the export of a substantial

quantity of terrestrial DOM into water systems and lead to changes in bacterial dynamics

and populations as monitored through the analysis of the D-AA pool. The increase in

DOM export is the major cause for the higher surface water concentrations of CO2 and

CH4. In agreement with our previous study (Chapter 3), AA dynamics support the

hypothesis of modifications in the balance between heterotrophic and autotrophic

processes as being the main cause for the observed differences in dissolved GHG upon

reservoir operation or wood harvesting. Amino-acids are proving to be an extremely

valuable tool for broadly characterizing the major pathways and players that control the

fate of C and N in aquatic systems, and their link to GHG concentrations and fluxes.
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Chapter 5.

5 The modulation of the carbon cycling in natural and
perturbed boreal aquatic ecosystems: A lipid biomarkers
approach

To be submitted to Limnology and Oceanography as:

Alexandre Ouellet, Marc Lucotte and Yves Gélinas
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5.1 Abstract
Most worldwide lakes are supersaturated in dissolved carbon dioxide (CO2)

concentrations. Allochthonous organic matter (OM) inputs in aquatic systems are

believed to drive the carbon (C) cycle biochemical reactions that lead to greenhouse gas

(GHG) production. To better understand the controls on the mechanisms leading to

surface water GHG supersaturation, we analyzed fatty acids (FA) and alkanes, including

their compound-specific O13C signatures, in the dissolved, fine particulate and

sedimentary organic matter fractions (DOM, FPOM and SEOM, respectively) from

natural lakes, old reservoirs, as well as lakes and reservoirs with a wood harvested

watershed. The FA composition in the FPOM fraction suggests that bacteria dominated

autochthonous OM production. Phospholipid FA concentrations and d C signatures

suggest that a large fraction of the fresh OM biomass originated from prokaryotic

bacteria. The composition of the alkane fraction in SEOM suggests higher bacterial

biomass in reservoirs compared to lakes, which would lead to lower abundances of

terrestrial OM and higher surface water CO2 concentrations. Our results show that CO2

production in boreal freshwater systems is largely derived from bacteria mediated

terrigenous OM degradation.
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5.2 Introduction
Greenhouse gases (GHG), most importantly carbon dioxide (CO2) and methane

(CH4), are believed to be the main drivers of global warming (IPCC 2007). Lakes and

reservoirs, as opposed to marine ecosystems, are generally supersaturated with GHG

(Cole et al. 1994; St-Louis et al. 2000). Freshwater lakes and reservoirs are very dynamic

ecosystems in which the main forces driving carbon dynamics are profoundly influenced

by aquatic organic matter (OM) source, i.e. the primary production within the aquatic

system (autochthonous source) and terrestrial material exported from surrounding soils

and litter (allochthonous source).

Greenhouse gases concentrations in most natural aquatic ecosystems are

controlled by similar processes, namely photo- and bacterial oxidation of OM, as well as

groundwater and terrestrial inorganic carbon inputs. Although still debated, bacterial OM

degradation (heterotrophy) is generally believed to be the major force driving CO2

supersaturation in boreal lakes and reservoirs (del Giorgio et al. 1997; Carignan et al.

2000a; Prairie et al. 2002; Dubois et al. 2009). Indeed, data from recent studies strongly

suggest that allochthonous OM and nutrient inputs followed by OM degradation are the

main source of GHG water supersaturation (Sobek et al. 2003; McCallister and del

Giorgio 2008). Part of this controversy persists however because natural lakes are

characterized by highly variable relative contributions from autotrophic and heterotrophic

processes, both in time and space.

Anthropogenic perturbations of watersheds surrounding aquatic systems lead to

the additional transfer of high quantities of OM and nutrients to the water bodies

(Carignan et al. 2000b; Lamontagne et al. 2000). These additional inputs cause broad
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shifts in aquatic biogeochemical conditions that go beyond the natural variability of the

systems and that can then be used to better constrain the processes (and their controls)

leading to GHG production in freshwater systems. In this study, we exploited the

perturbations following long-term reservoir impoundment and operation, and wood

harvesting to study carbon dynamics in water bodies of the boreal forest.

A few studies have been carried out to compare GHG supersaturation levels and

emissions in old boreal reservoirs (15 years after impoundment) with those of natural

lakes. However, there is currently no agreement as to whether both types of system are

similar carbon emitters (Duchemin et al. 1995; Tremblay et al. 2005; Chapter 3).

Although a considerable number of studies focus on the optimization and comparison of

methods to accurately measure GHG concentrations and atmospheric fluxes (Cole and

Caraco 1998; Duchemin et al. 1999; Soumis et al. 2008), only a few studies have

addressed the long-term effect of increased terrestrial OM loadings on the production of

GHG in freshwater systems (Houel et al. 2006; Soumis et al. 2007; Chapter 4). It has

been shown, for instance, that watershed wood harvesting increase the transfer of

nutrients such as dissolved organic carbon (DOC), total nitrogen and phosphorus (TN and

TP) from soils and litter to the water bodies, which stimulates aquatic algal and bacterial

populations (Carignan et al. 2000b; Planas et al. 2000, Prepas et al. 2001). Moreover,

these studies have also shown that the effects of wood harvesting on aquatic bioprocesses

slowly dissipate with forest re-growth. The consequences of terrestrial nutrient inputs on

the normal aquatic GHG cycle and production have only recently been measured

(Chapter 3, Chapter 4). Forest cutting significantly increases the aquatic production and

emission of CO2 into the atmosphere. Yet, only little information exists on how the
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processing of the additional allochthonous OM inputs following anthropogenic

perturbations translates into additional dissolved CO2 levels.

The OM derived from primary production and terrestrial inputs sinks through the

water column and into the sediment where it is substantially reworked and degraded to

CO2 in oxic systems, and to CH4 under anoxic conditions. Terrestrial export of OM to

aquatic systems, mostly as dissolved, and in situ particulate and sedimentary organic

matter (DOM,POM and SEOM, respectively) production are closely linked as watersheds

are a source of essential nutrients (e.g. nitrogen and phosphorus) that ultimately influence

in-lake production (Planas et al. 2000). The study of DOM, POM and SEOM is therefore

essential for understanding the processes leading to GHG production, saturation levels

and emissions to the atmosphere from freshwater ecosystems (Kling et al. 1990, Cole et

al. 1994). Organic matter from the different sources undergoes degradation at contrasting

rates based on the reactivity of the different compounds; as a result the more refractory

organic molecules are preferentially preserved in the sediments. These resistant

molecules reflect the conditions and processes that existed at the time of their synthesis

and thus constitute a rich record of the life of an ecosystem. Lipids for instance are

resistant biochemicals that are routinely used as biomarkers for identifying sedimentary

OM sources and pathways in freshwater, estuarine and marine ecosystems (Cranwell et

al. 1987; Zimmerman and Canuel 2001; Arzayus and Canuel 2004). As an example,

phospholipid fatty acids (PLFA), which are embedded in the cell membrane of living

organisms, have been used extensively as biomarkers for fresh OM as they are quickly

mineralized when released upon cell death. PLFA are therefore exquisite proxies for

'living', or very recently living, biomass while the glycolipid derived fatty acids (GCFA)
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more closely trace non living remains ofbiota as they are more resistant to degradation

(Rindelberg et al. 1997; Bouillon et al. 2004; Li et al. 2007). Furthermore, because

intense bacterial OM reworking in the sediment quickly results in the degradation ofmost

PLFA depositing from the water column, sedimentary PLFA are often considered as a

tracer for bacteria in marine sediments. Although less diversified than fatty acids (FA),

alkanes are also widely used in the identification of OM sources in the sediments. Their

well-known resistance to microbial degradation makes them ideal tools for evaluating

OM sources over geological time scales (Eglinton and Hamilton 1967; Hautevelle et al.

2007; Hu et al. 2009).

Traditionally applied to sediments, biomarker analyses have been more recently

used on POM and the high molecular weight fraction of DOM (McCallister et al. 2006;

Loh et al. 2008). This approach allows for the simultaneous evaluation of recent and

historic changes in OM production, loading to, and diagenetic state of the sediment. In

this study, FA and alkane biomarkers were analyzed in the DOM, fine POM (FPOM, <

70µ??) as well as SEOM, and were used to trace OM production, inputs and degradation

processes leading to GHG production and consumption in natural and perturbed systems.

5.3 Methods

5.3.1 Study sites and sampling
Two hydroelectric reservoirs (Cabonga and Decelles) as well as four lakes were

sampled during the summer of 2007 in the Abitibi region of the Canadian boreal forest.
Three water bodies (Decelles Reservoir, Lake Clair, and Lake Bouleau) were wood

harvested to differing degrees within two years of sampling (1 to 5% of their total

watershed; Chapter 4, Table 4-1). Both reservoirs have very different morphologies
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(Chapter 3, Figure 3-1): Decelles Reservoir is a rather small (237 km ) but very long and

dendritic water body while Cabonga Reservoir is wider and larger (434 km2), with
numerous islands of varying sizes. All the lakes sampled in this work were small, with

areas ranging from 0.34 to 1 .88 km2.

In order to evaluate the carbon cycling in the different systems, we sampled

DOM, POM and SEOM at the deepest location of the lakes and at two chosen sites in the

reservoirs (within a morphologically representative zone and near the river output (details

are available in Chapter 4, Table 4-1)). Details on the methodology adopted for the

surface GHG sampling can be found in Chapter 3. Briefly, exactly 30 mL of the surface

water layer was sampled in four 60-mL syringes in which an additional ultra pure 30 mL

of nitrogen was added. The syringes were shaken for 60 seconds and were then allowed

to rest horizontally for 2 minutes. The water was removed, its temperature was recorded

and the gaseous samples were analyzed with a 3400 Varían gas Chromatograph (GC)

coupled to a flame ionization detector (FID) and a thermal conductivity detector for CH4

and CO2 analyses, respectively. Sample quantification was done through the analysis of a

certified gas standard (Scotty 48, mix 218) and the concentrations were corrected

following Soumis et al. (2008).

In order to collect sufficient amounts of integrated DOM and fine POM (FPOM),

200 to 250 L of pre-filtered water (70-µp? nylon mesh), 12V submersible pumps were

used. All samples were integrated over the entire water column by 0.5 to 1-m increments

to a maximum of 1 0 meters and were collected in pre-rinsed 50-L Nalgene containers.

Following water collection, both DOM and FPOM fractions were separated using a

tangential flow filtration reverse osmosis (TFF-RO) system (as described in Chapter 2)
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and were doped with HgCl2 (-0.3 mM final concentration). Three liters of the

concentrated DOM and all the FPOM samples were freeze-dried and kept in glass

containers for further analysis. The sediments were sampled at or near a sediment-

accumulating zone using a Mackerefh corer system (Mackereth 1958) or scuba divers

equipped with 3-cm wide and 1-m long plexiglass cylinders. The sediments were sliced at

each centimeter from O to 5 cm, frozen and freeze-dried in PE 50-mL centrifuge tubes.

Equal quantities of the first three cm of the sediment cores were pooled prior to the

analyses. Sedimentation rates for all lakes were determined using the Pb method

described in Chapter 4. Sedimentation rates for Reservoir Decelles were impossible to

obtain most likely because of large bio- and hydroturbation.

5.3.2 Biomarker analysis

5.3.2.1 Lipid extraction
Prior to the lipid extraction, 0.1 mg of fully deuteurated internal standards,

namely n-docosane, pentadecanoic acid and n-octadecyl alcohol, were added to the

DOM, FPOM and SEOM samples. Lipids were extracted 3 times using a 2:1:0.8 mixture

of chloroform, methanol and water. The lipid fractions were combined and evaporated

using a rotary evaporator or under a gentle stream ofpure nitrogen. Lipids were

redissolved in hexane and separated by polarity (using deactivated silica) into

hydrocarbons (Fl; 10 mL of 25% toluene in hexane), glycolipids (F2; 10 mL of 20%

ethyl acetate in hexane) and phospholipids (F3; 12 mL of methanol) fractions that were

collected in 24-mL vials. The hydrocarbon fraction was gently evaporated to decrease

sample volume, quantitatively transferred into 2-mL vials, further reduced to 200 µ? and

directly analyzed by GC-FID. Both the glycolipids and phospholipid fractions (F2 and

134



F3) were saponified using 5 mL of 0.5 M KOH in methanol in capped 24-mL vials for 2

hours in a sand bath maintained at a temperature of 1000C. Following the reaction, 1 .5

mL of 5% NaCl was added and the alcohols were extracted 3 times with 3 mL OfCH2Cl2

(F2 and F3 neutral lipids). The remaining basic aqueous solutions F2 and F3 (methanol -

water) were acidified to pH 2 with 6N HCl and the FA that they contained were extracted

3 times with 3 mL OfCH2Cl2. The FA (F2 and F3 acidic lipids) were dried using

combusted (4500C, 4h) Na2SO4.

5.3.2.2 Gas chromatography analysis
Fatty acids from both glycolipids and phospholipids (F2A and F3A) were gently

N2-evaporated to dryness and esterified using 1 mL 10% BF3 in methanol for 2 hours at

1000C. Following the esterification, 2 mL of 5% NaCl was added and the fatty acids

methyl esters (FAME) were extracted 3 times with 2 mL of hexane. The fatty acids

FAME were subsequently dried using Na2SO4. Alkanes (Fl) and FAME (F2A and F3A)

were quantified and molecularly characterized using gas chromatography systems

coupled to flame ionization and mass spectrometer detectors. (GC-FID/MS). The

quantification of FA was made against external standards (Supelco D2887 alkane and

Supelco37 FAME mixes, respectively) using a 6890 Agilent GC-FID equipped with a

0.25-mm wide, 30-m long DB-5 column that contained a 0.25-µp? thick stationary phase.

Gas chromatography oven temperatures were programmed from 700C (hold 1 min) to

2300C (16°C/min) and then to 3 1 00C (10°C/min, hold 1 9 min) at a helium flow of 2

mL/min for alkanes. The ramp program for the FAME fractions was from 45°C (hold 1

min) to 140°C (15°C/min), 214 (4°C/min), 216 (0.5°C/min), 219 (4°C/min), 223

(0.5°C/min) and to 3100C (10°C/min, hold 1 5 min) at a helium flow of 1.5 mL/min. The
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alkanes and fatty acid identification was done relative to the retention times of external

standards and using a Varían 3800 GC equipped with the same chromatography column

as the one used for quantification. The Varían 3800 GC was coupled to a Saturn ion trap

mass spectrometer model 2000.

5.3.3 Elemental and isotopie measurements

5.3.3.1 Bulk organic matter analysis
Carbon and nitrogen elemental and isotopie compositions (%C, %N and d Corg

respectively) for DOM, FPOM and SEOM samples were obtained using an EuroVector

3028-HT elemental analyzer coupled to an Isoprime GV Instrument stable isotope ratio

mass spectrometer (EA-IRMS). Isotopie standardization as well as instrumental linear

response changes with intensities were measured using the VPDB-calibrated standards

IAEA-C6 Sucrose (513C = -10.45 ± 0.03 %o, %C = 42.1 1 ; Copien et al., 2006) as well as

ß-alanine (a pre-calibrated in house standard (O13C = -25.98 ± 0.23 %o; %C = 40.45 and
%N = 15.72)). Carbon and nitrogen percentages of the samples were obtained against

wide range calibration curves which were obtained from sucrose and alanine for %C as

well as from alanine and ammonium sulfate for %N. Before EA-IRMS d Corg analysis,

samples were decarbonated using vapor-phase HCl (Hedges and Stern 1984). Percent N

were analyzed separately on non-acidified aliquots to avoid nitrogen loss during

acidification. Method reproducibility was determined with one triplicate analysis in each

sample set.

5.3.3.2 Biomarker d C signature analysis
In-house ôljC calibration of a series of alkane standards (Ch, C]6, Cis, C21, C23

and C26; >95 % purity) was carried out using the EA-IRMS. Isotopie calibration was
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done using the IAEA-C6 sucrose standard and ß-alanine described above. The isotopie

compositions of the alkane in-house standards are, from C)4 to C26: -34.37 ± 0.07 %o, -

34.07 ± 0.05 %o, -33.43 ± 0.06 %o, -30.09 ± 0.04 %o, -28.34 ± 0.03 %o and -29.78 ± 0.03

%o, respectively (n = 6). These in-house standard isotopie signatures were verified against

a certified C36 standard (-30.00 ± 0.04 %o; Indiana University) using an Agilent GC

coupled to an Isoprime (Elementar Americas Inc.) stable isotope ratio mass spectrometer

(GC-IRMS). AU carbon isotopie signatures were standardized to the international VPDB

limestone standard (Chapter 1).

Alkanes (Fl of FPOM and SEOM) and phospholipids FAME (F3 of DOM,

FPOM and SEOM) were analyzed on the GC-IRMS. The precision of the isotopie

analyses was better than ± 0.6 %o. The methanol-BF3 solutions from the kits that were

used for the fatty acid derivatizations were also analyzed to subsequently correct the

measured 513C isotopie ratio for all measurements according to this equation:

d Cfame = [d CFA (fFA) + d CM (fjvi)]

where ô13CFAme is the is the measured FAME isotopie signatures, 513CFA is the original
and unknown isotopie signature of a given FA before the derivatization reaction, fFA is

the fraction of carbon from this same FA before reaction, d1 Cm is the isotopie signature

of methanol used in the esterification reaction, and fM the fraction of total carbon in the

derivatized molecule which represents the added methoxy group to the FA.

5.3.3.3 Fatty acid and alkane nomenclature
The FA presented in this chapter as well as in Appendix B are listed by carbon

length (prior to derivatization) followed by the number of carbon double bounds starting

from the aliphatic chain (?), and by whether it is a eis- (c) or trans- (t) conformation (e.g.
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C16:lco7c). In this study, the sum of the branched (br) lipids is used (e.g. brC15:0 or

brC15 for FA and alkanes, respectively). When they were sufficiently abundant, the 513C
of the iso and anteiso branched FA, which are defined as methyl branched FA at the ?2

and co3 aliphatic positions (e.g. a-C15:0), are also presented.

5.4 Results

5.4.1 Bulk organic matter and greenhouse gases
The bulk carbon (C) percentages, the stable C isotope signatures and the atomic C

to nitrogen (N) ratio (C:N)a for the DOM, FPOM and SEOM fractions, as well as the

dissolved and fine particulate organic carbon (DOC and FPOC respectively) and the

surface water GHG concentrations are summarized for each sampling site in Table 5-1 .

The assessment ofbulk OM sources though elemental and isotopie analysis was not

within the scope of this study as these results were presented and discussed elsewhere

(see results and discussion sections, Chapter 4). However, these results are needed to

support the biomarker discussion presented below.

Significantly higher water dissolved CO2 concentrations were obtained in

Reservoir Cabonga and the wood harvested systems compared to natural ones [p <

0.0005 and ? < 0.1, respectively). In addition, significantly higher DOC concentrations

were measured in wood harvested systems (p < 0.0005) while generally higher FPOC

concentrations were obtained in all perturbed systems. Higher (C:N)a ratios were also

measured in the DOM and FPOM fractions of perturbed systems. As discussed in

Chapter 4, these results show that additional terrestrial OM is introduced in aquatic

systems upon wood harvesting or reservoir operation.
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5.4.2 Total lipids
Complete alleane and FA biomarker identifications, relative mole percentages

(mol%) and compound-specific isotopie signatures analyzed in the DOM, FPOM and

SEOM fractions are presented in Appendix B (Tables B-I to B-8). Alkanes in DOM were

also analyzed but are not reported due to their very low abundance and highly variable

recoveries from DOM. Fatty acid proxies presented in section 5.4.2.1 were generated

using the sum of glyco- and phospholipids fatty acids (GLFA and PLFA; fractions F2A

and F3A, respectively), while the compound-specific isotopie signatures presented in

section 5.4.2.3 are derived from the PLFA fraction only.

5.4.2.1 Fatty acids
Generally, lower abundances of organic carbon (OC) normalized FA (µp??? FA

mol OC"1) were observed in the DOM than in the FPOM and SEOM fractions (10 to 39.6,

8.2 to 374 and 1 17 to 392 µp??? FA mol OC"1, respectively). Significantly higher (Welch
t-test;/? < 0.001) and lower (p < 0.005) carbon normalized concentrations of FA were

recorded in the DOM and FPOM fractions of the natural lakes compared to perturbed

systems (Tables B- 1 and B-2). The natural Lake Mary had a lower relative contribution

of PLFA (fraction F3A) to total FA (fractions F2A + F3A) in DOM and FPOM (48.0 and

67.2 %) whereas all other samples had a higher relative PLFA content (greater than 80

%).

In DOM, the sum of monounsaturated and polyunsaturated FA (MUFA + PUFA)

was highly correlated (r = 0.93, ? < 0.001 ; not shown) to the sum of even-numbered

carbon atom short chain FA (ESCFA, which are considered biomarkers for

autochthonous aquatic OM; sum of C!2, C]4 and C] 6; Canuel and Martens, 1993;
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McCallister et al. 2006). This result suggests that a significant portion of the fresh DOM

originates from autochthonous production. Very weak correlations were obtained in

similar scatter plots using the sum of the bacterial biomarker over the ESCFA and the

sum MUFA and PUFA. Higher concentrations of the DOC normalized ESCFA (2.5 to 8

times more; Table B-4) were found in the natural lakes compared to perturbed systems,

while an identical range of concentrations was found for bacterial biomarkers in both

types of systems. DOM from natural lakes thus contained a higher relative contribution of

exudates or very recent cell remains from autotrophic primary producers compared to the

perturbed systems.

The fatty acid biomarkers of the FPOM (< 70-µp?) fraction are useful for

obtaining additional information on the carbon cycling in the systems under study. The

OC normalized bacterial FA (sum of all branched and odd straight chain FA from Cn to

Cig) was highly correlated with the aquatic FA (ESCFA; Figure 5-1A) in this fraction.

Lower bacterial relative abundances were found in FPOM sampled in lakes compared to

the two sampled reservoirs, whereas wood harvesting positively influenced bacterial

production only in lakes. This result suggests that a major fraction of the aquatic biomass

in FPOM was ofbacterial origin. A significant correlation was also observed between

bacterial FA and even long-chain fatty acids (ELCFA, sum of C22, C24, C26 and C2S),

which are considered terrestrial markers (Canuel and Martens, 1993; Meyers 1997;

McCallister et al. 2006; Figure 5-1B). We believe that a significant fraction of the

particulate OM pool was of terrestrial origin and constituted a food source for bacteria.

As shown in Figures 5- IC and -ID, the sum of all monounsaturated and polyunsaturated

FA (MUFA + PUFA) was highly correlated to the sum of aquatic and bacterial
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biomarkers, which suggests little contribution from allochthonous matter to the total

MUFA-PUFA biomarker pool. The lower bacterial abundance found for the wood

harvested Reservoir Decelles- 1 sampling site showed a higher relative contribution of

primary producers to the FPOM fraction at this site (Figures 5- IA and -ID). Indeed, the

highest mole percentages (mol%) measured for a specific algal biomarker, C16:loo7c,

was found in the FPOM of the Decelles- 1 site (Table B-2), which supports this

conclusion (Arzayus and Canuel 2004).
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Figure 5-1 : Fatty acids (FA) correlations in FPOM. Between the sum of bacterial FA (odd branched
and normal C13-Ci7 as well as even branched C)4-C18) and the sum of (A) aquatic (nCl2, nC]4,nC16) FA, (B)
terrestrial (nC22, nC?4r nC2c,. nC2s) FA; as well as mono and polyunsaturated FA (MUFA+PUFA) over (C)
aquatic and (D) bacterial FA. The/? value corresponds to the significance of the regression.
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In the sediment, ECSFA were predominant with relative abundances between

19.4 to 43.5 mol % followed by the bacterial biomarkers (20. 1 to 35.4 mol %) and

terrestrial ELCFA (2. 1 to 7.3 mol %). No clear relationship was observed using the same

calculated FA proxies as above. Because of the contrasting sedimentation rates for the

different systems studied here (Chapter 4, Table 4-3), the SEOM from the O to 3 cm

sediment layers used in this work corresponds to different age averages varying between

5 and 88 years). The FA biomarkers are known to be more sensitive to degradation than

alkanes and therefore the absence of FA trends in this fraction can be explained by

differences in the sedimentary diagenetic state.

5.4.2.2 Alkanes

The sum of alkanes normalized to total OC varied considerably more in FPOM

(3.97 to 15.03 µ???? Alk mol OC1) than in SEOM (10.94 to 23.21 µp??? Alk mol OC1).

A significantly higher alkane contribution was obtained in the FPOM of natural lakes

compared to the perturbed systems (Welch's t-test: ? < 0.01). The alkane relative

abundances correlated positively (not shown) with the sum of the terrestrial land plant

biomarkers (C27, C29 and C31, r2 = 0.88 and/? < 0.005) and with the sum of autochthonous

biomarkers (Ci5, C]7 and Cj9, r2 = 0.68 and/» < 0.05; Meyers 1997). These relationships
suggest that a predominant fraction of the FPOM was dominated by non-degraded

terrestrial matter. Even though fairly large contributions from terrestrial biomarkers were

measured in natural lakes, higher contributions from aquatic alkanes (> 30 mol% of C!7)

were obtained; as a result, the terrestrial to aquatic ratio (TAR) calculated for FPOM

(Table 5-1 ) was lower for non-harvested systems. Such results suggest that

autochthonous matter governs the FPOM in natural systems whereas allochthonous OM
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inputs caused by wood harvesting and reservoir operation decreased the relative

importance of autochthonous OM production. In contrast, the TAR values measured for

the SEOM fraction in reservoirs were generally smaller and were paralleled by a larger

percentage ofbacteria-specific branched alkanes (% bacterial, Table 5-1) compared to

lake sediments. High amounts of nCj6, known to mainly derive from bacterial biomass,

were also measured in both the FPOM and SEOM fractions (Tables B-6 and B-7; Al-

Mutlaq et al. 2008).

Table 5-2 : Alkane indexes in FPOM and SEOM
Scenario TAR CAR % Bacterial CPI UCM/Alk

FPOM
L, Mary
L. Jean
L. Clair
L. Bouleau
R. Cabonga 6
R. Cabonga 1 0
R. Decelles 1

0.23
0.37
1.27
1.52
0.71
0.91
2.31

0.28
0.41
0.96
0.87
0.67
0.91
1.19

11.47
14.22
22.51
15.10
16.81
16.71
12.66

4.62
2.42
0.93
4.21
1.14
0.99
0.76

4.36
6.03
7.20
4.46
3.74
5.86
6.37

SEOM
L. Mary
L. Jean
L. Clair
L. Bouleau
R. Cabonga 6
R. Cabonga 10
R. Decelles 1
R. Decelles 2

9.47
9.02
8.00
10.61
5.55
4.53
3.20
8.31

2.40
1.58
2.00
2.93
2.11
1.70
1.55
2.30

9.04
4.84
16.21
15.82
26.42
32.63
32.20
22.81

3.68
2.00
3.68
4.92
3.84
3.25
2.86
3.89

0.41
0.77
0.48
0.38
0.56
0.40
0.38
0.31

TAR: Terrigenous vs. aquatic ratio described as E(C?7+ C29+ C31 )/S( Qs+ Cn+ C19), Meyers
(1997).

CAR: Continental vs. aquatic ratio described as E(n-C+25)/T(n-C.24), Hautevelle et al. (2007).
% Bacterial: percentage of branched alkanes, this study
CPI: Odd-over-even carbon preference index described as the ratio of odd vs. even alkanes

from C16 to C35, Al-Mutlaq et al. (2008).
UCM/Alk: Ratio of the total intensity of unresolved complex mixture over the sum of the

intensities for all resolved alkanes within the same range, Hautevelle et al. (2007).

The continental to aquatic ratio (CAR; Table 5-1) includes all alkanes originating

from plants, bacterial and planktonic matter (ratio of the sum of all alkanes longer than
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C24 to that of alkanes shorter or equal to C24; Hautevelle et al. 2007). Using this index,

CAR values similar to the TAR index were found for the FPOM whereas they differed

considerably for the sediment, which showed comparable inputs ofboth terrestrial and

aquatic alkanes. The FPOM carbon preferential indexes (CPI: odd over even from C16 to

C35) were higher in natural lakes (maxima at Cn) and in the recently flooded Lake

Bouleau (maxima at C29; Table B6) and are interpreted as reflecting high inputs of

autochthonous and allochthonous plants. The lower CPI indexes measured in these

systems were found in samples with high nC]6 bacterial alkane concentrations. Finally,

the ratio of unresolved complex mixture (UCM), which is due to the presence of a large

number of alkane isomers that cannot be resolved chromatographically, to the sum of the

resolved alkanes is an indicator of the extent of degradation/alteration of the OM, or of

algal/bacterial inputs (Hautevelle et al. 2007). All FPOM samples have higher UCM to

alkane ratios compared to the SEOM fractions, however with no clear trend between

natural and perturbed systems.

Scatter plots of the bacterial (sum of all branched) over straight chain aquatic (<

C]2-24) and terrestrial (> C24-40) derived alkanes are shown in Figure 5-2. Unlike for the

FA, higher bacterial alkanes were measured in the FPOM of natural lakes.

Surprisingly, no clear or direct relationship was observed between the bacterial,

autochthonous and allochthonous carbon normalized biomarkers in SEOM (µ???? Alk

mol OC"1; not shown) . This lack of relationship is attributed to the integration of the first

3-cm layer of sediment, which corresponds to different ages. To neglect the different

sample age, the percentages of bacterial, aquatic and tenigenous alkanes relative to the

total alkanes were used (see discussion). Scatter plots of normalized bacterial against
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aquatic and terrestrial alkanes are presented in Figures 5-2C and -2D. Noteworthy, the

reservoirs had higher relative bacterial contributions to the total alkanes compared to

lakes. A clear and significant negative correlation (slope = - 0.97) was obtained between

the bacterial and terrestrial biomarkers; this and previous results show that the bacterial

biomass is intimately coupled to terrestrial OM and suggest that terrestrial OM plays a

major role in bacterial proliferation.
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Figure 5-2: Alkane correlations in FPOM and SEOM. Between the sum of bacteria] alkanes (AIk; odd
and all branched from Ci3 to Ci?) and the sum of (A) aquatic (X < nC24) ?-Alk as well as (B) terrestrial (X
> nC24) ?-Alk in FPOM. Between the relative contribution (in %) of (A) of bacterial AIk and (A) aquatic n-
AIk as well as (B) of terrestrial AIk in SEOM. The/? value corresponds to the significance of the
regression.
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Figures 5-3A and -3B present plots of surface water CO2 concentrations against

the relative proportion of bacterial and terrestrial alkane biomarkers. These show that

higher surface water CO2 concentrations were coupled to higher and lower percentages of

bacterial and terrestrial biomarkers, respectively. Because GHG concentrations were not

measured in Lake Mary during the 2007 summer sampling campaign and also because

Lake Bouleau exhibited exceptional CO2 concentrations (due to recent flooding), both

samples were not included in these figures.
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Figure 5-3: Surface water carbon dioxide concentrations correlations with alkane biomarkers.
Between water CO2 concentrations and the relative contribution (in %) of (A) of bacterial alkanes (AIk; odd
and all branched from CB to Qg) and (B) of terrestrial alkanes (> C24) SEOM. The/? value corresponds to
the significance of the regression.

5.4.2.3 Compound-specific stable isotope signatures
The d C stable isotope signatures that were measured in this study are listed in

Tables B-4, B-5 and B-8. This study is, to our knowledge, the first to exploit compound-

specific stable 513C isotopes of different lipid compounds to assess carbon cycling in the

DOM, FPOM and SEOM fractions of water bodies. The total lipid fraction extracted

from the samples was always depleted compared to total organic carbon (TOC) (Table 5-

1 Appendix B). In general, FA were increasingly depleted in 13C isotopes from DOM, to

FPOM and SEOM (range of -17.1 to -76.6 %o). The stable isotope signatures of the FA
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C18:lco7c, known as abacterial biomarker, were positively correlated with those of

C14:0, C16:0 and C18:0 (r2 = 0.80, 0.85 and 0.61, respectively; Bouillon et al. 2004),

which suggests that, although ubiquitous to autochthonous production, C 14:0, Cl 6:0 and

Cl 8:0 are effectively incorporated into the bacterial biomass or directly derived from

bacterial matter. Despite some disagreement on the source of the C16:lco7c biomarker in

the literature (Arzayus and Canuel 2004; Li et al. 2007), its O13C signature was also

closely linked to C18:loo7c (r2 = 0.87), suggesting that both biomakers originate from a
common bacterial source. Very broad variations in the 513C signature of the C16:1cû7c

biomarkers (up to 50%o) between the different fractions (DOM: -19.7 to -27.0%o; FPOM:-

32.8 to -43.4%o; SEOM: -48.4 to -66.7%o) suggest either a dramatic change in the

biomass or food sources.

In general, odd and even alkanes in SEOM display a narrower range of stable

isotope signatures throughout the data set (-27.4 to -41.2%o; Table B8). Even numbered

alkane chains are generally enriched compared to their odd alkane neighbors. The d C

isotope signatures of nC17:0 and nC21 :0, which display more depleted values compared

to their homologues in the sediment, are the only molecules for which a stable isotope

signature could be measured in FPOM owing to their high abundances. No significant

compound-specific O13C depletion or enrichment was associated with reservoir operation
and wood harvesting.

5.5 Discussion

5.5.1 Lipids as indicators of organic matter sources
In this work, fatty acids have proven useful in the determination of different

sources for autochthonous and allochthonous OM in DOM, FPOM and SEOM. For

148



instance, the higher carbon normalized FA concentrations measured in the DOM of

natural lakes, supported by the higher relative contributions from ESCFA as well as

lower DOC and FPOC concentrations (Table 5-1), suggest that the DOM fraction was

mainly composed of the living or dead biomass and/or exudates ofprimary producer and

bacteria. However, the DOM from perturbed systems comprised a higher proportion of

degraded terrigenous sources (interpretation supported by Fe measurements, Chapter 3

Figure 3-4A). In addition, the higher FPOM (C:N)a ratios and FPOC concentrations

generally measured in the perturbed systems likely were a result ofhigher terrestrial

matter and nutrient exports from land to the water bodies (Table 5-1 ; also supported by

Chapter 3, Figures 3-2A and -2B). This result agrees with the higher allochthonous FA

contributions found in the FPOM fraction of perturbed systems (Figure 5-1).

The contradictory high alkane and low FA bacterial biomarkers abundances

obtained in the FPOM of natural lakes (Figures 5-1 and -2) shows that conclusions

supported by only one type of lipid biomarker could be biased due to contrasting

degradation rates of the individual compounds, and argues for the design of multi-proxy

studies to assess carbon cycling in complex systems such as these ones. Contrary to the

message obtained from the interpretation of the FA biomarker data, FPOM in natural

lakes displayed higher carbon normalized aquatic and terrestrial plant derived alkanes for

similar levels of bacterial biomarkers. Such disagreement is similar to the conclusions

reached using two amino acid biomarker proxies (%TAaN and DI, Chapter 4 Table 4-4).

Our results, along with the low (C:N)a ratios measured for this fraction, suggest that the

FPOM samples were composed of a mixture of fresh and more degraded OM. Since

alkanes are more recalcitrant than FA (Meyers 1 993), we tentatively propose that the high
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bacterial and terrestrial alkane signatures in the FPOM ofnatural lakes reflect bacterially

processed terrestrial inputs as would be found in soils. In contrast, the FPOM fraction

from perturbed systems was mostly composed of fresher, less altered terrestrial OM,

which lead to an enhanced production of autochthonous bacteria.

5.5.2 Lipids as indicators of organic matter cycling
Estimations of the living and dead biomass in all samples were done through the

analysis ofphospholipids and glycolipids FA (Guckert et al. 1985; Ringleberg et al.

1997; Bouillon et al. 2004a, 2004b). In all three analyzed OM fractions, phospholipids

dominated the total FA content. Dissolved organic matter was dominated by PLFA (>

94% of total FA, except in Lake Mary). This result suggests that the FA found in this

fraction either originated from living nanoplanktonic biomass (< 0.45 pm, porosity of the

filters used to separate DOM from FPOM), remains of very recently deceased plankton

and bacteria cells, or from planktonic and bacterial exudates. In the FPOM and SEOM

fractions, > 80% of the total FA were composed of PLFA, also suggesting fresh OM

inputs. The very low abundance of terrestrial FA (C22, C24, C26, C28) and high relative

contributions from aquatic FA (Ci2, C14, C]6) measured for the PLFA of DOM, FPOM

and SEOM fractions suggest that allochthonous OM inputs accounted for little of the

fresh matter in these systems. The PLFA O13C signatures in the FPOM fraction suggest
that most of the living biomass was governed by bacterial communities (Figure 5-1).

Furthermore, the low abundances of PUFA in all fractions show that our aquatic

systems were dominated by prokaryotic biomass (Guckert et al. 1985). Contrary to

similar studies carried out in marine systems, algal PUFA (e.g. C20:5(u3; Azarus and

Canuel, 2004) were not found in the FPOM and SEOM of the lacustrine systems
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indicating that the contribution of algal biomass to both fractions was low. This suggests

that the relative proportion of the coarse particulate OM fraction, which contains more

algae (> 70-µ??; not sampled in this study), was small compared the total POM fraction

or that the algal biomass was actively degraded in the sediment. These results, as well as

others presented in Chapter 3 (Figure 3-4B), suggest that the bacterial population

dynamics and abundance are closely coupled to the algal biomass, whose growth is

dependant on nutrients and light availability (Planas et al. 2000; Prepas et al. 2001 ;

Karlsson et al. 2009, Chapter 3).

In lakes, the abundances ofbacterial alkanes in the SEOM fraction were similar to

those measured in the FPOM fraction (1 to 2.2 µ???? mol OC"1) and lower than those

measured in the reservoirs (2.8 to 5 µ???? mol OC"1). Reservoirs thus appeared to harbour

greater populations ofbacteria in sediments compared to lakes. As previously reported

(Chapter 4) the effects of wood harvesting did not translate into significantly higher

bacterial proliferation in the sediment (Figures 5-2C and -2D). A considerable difference

between reservoirs and lakes was also highlighted by the TAR index calculated for the

SEOM fraction, which unambiguously shows higher autochthonous material inputs into

the sediment. These findings are also supported by the lower lignin biomarker

abundances measured in the sediments of reservoirs (Plouhinec et al. In preparation).

Because only four sampling sites in two reservoirs were analyzed for lipid biomarkers,

more samples from reservoirs must be analyzed before drawing broad conclusions on the

higher bacterial biomass in sediments of old boreal reservoirs compared to those of

natural lakes. We hypothesize here that the more dynamic hydrology in reservoirs

(currents and water drawdown) results in the deepening or the absence of a clear
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thermocline, which leads to a larger fraction of the sediment being in contact with warm

and oxygen-rich epilimnetic water (Chapter 3 Table 3-1, Figure 3-3). Higher

temperatures and oxic conditions would then translate into an increased bacterial

proliferation and CO2 production as shown in Figure 5-3 and Table 5-1.

Because the top three centimeters of the sediments were integrated before the

lipid biomarker analysis, the SEOM samples analyzed in this work correspond to

different average ages (see Chapter 4, Table 4-3 for sedimentation rates). When
sedimentation rates cannot be measured because of hydroturbation (as for Decelles-1 and

-2 cores), alkane biomarkers can still be elegantly used for understanding bioprocesses

involved in the production of carbon dioxide. Alkane degradation rates, although slightly

different between odd short and long-chain n-alkanes, are assumed to be consistent with

the extent of bacterial respiration within an ecosystem (Yunker et al. 2005). For example,

the lake sediments analyzed were between 7.7 and 88 years in age; Chapter 4 Table 4-3);

however they were characterized by comparable relative biomarker distributions (Figures

5-2 and -3). Therefore, the relative contribution of specific alkanes relative to the total

alkane fraction can still be exploited despite differences in sediment age. Sediments are

integrators of past and present biomass inputs, therefore their link with CO2 production

also reflect longer time scales. Because factors other than total bacterial abundances are

involved in methane cycling (O2 depletion, T° and CH4 oxidation to CO2) and also

because the differences in hydrology between reservoirs and lakes alter these water

chemical properties, the methane concentrations measured in the surface waters could not

be directly linked to bacterial biomarkers in the SEOM fraction. Results shown in Figures

5-3A and -3B suggest that greater bacterial biomass likely resulted in a more effective
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degradation of terrestrially derived matter in the reservoirs, leading to higher CO2

concentrations in the water column. While the causes and sources of carbon dioxide

supersaruration in freshwater systems remain hotly debated (Del Giorgio and Peters,

1994; Carignan et al. 2000a; Dubois et al. 2009), our study strongly suggests that

bacterial degradation of terrestrial OM is the major source of carbon dioxide production

in boreal freshwater systems, along with DOM UV oxidation (which accounts for

roughly 20-30% of total CO2 production in the summer; Plouhinec et al. In preparation).

Whether this finding applies to different seasons and to other regions remains to be

investigated.
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Chapter 6.

6 The processing of organic matter in freshwater aquatic
systems: Looking inside the black box.

6.1 The carbon cycle in freshwater environments

This study aimed to understand the chemical, physical and biological processes

controlling carbon (C) cycling in freshwater lakes. Anthropogenic perturbations such as

long-term reservoir impoundment and wood harvesting were also studied to understand

the effects of additional of organic matter (OM) inputs, degradation and sedimentation in

freshwater ecosystems. Finally, we attempted to unravel the relationships between

terrestrial carbon inputs and outputs, notably through the emission of greenhouse gases

(GHG). To do this, a wide array of bulk water chemical parameters were analyzed along

with the molecular characterization of amino acids (AA) and lipids from dissolved, fine

particulate, and sedimentary OM (DOM, FPOM and SEOM, respectively) sampled in

natural and perturbed systems. As part of this study, a team of collaborators based at the

Université du Québec à Montréal (UQAM) assessed the bacterio- and photo-oxidation

that take place in the photic zone of the same freshwater systems through in situ

incubations of water samples in large quartz cells. This group also performed the analysis

of lignin derivatives (terrestrial biomarkers) in all OM fractions from the same lakes and

reservoirs; once fully integrated, their results and ours will offer a complete picture and

contribute extensively to the understanding of the mechanisms controlling carbon cycling

in freshwater environments. We briefly summarize in this section the major conclusions

and scientific advancements derived from this research project.
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6.1.1 Sample representativity
The study of the carbon cycle in freshwater systems is carried out using a variety

of sampling device and analytical instruments. A tangential flow filtration reverse

osmosis (TFF-RO) system allowed the sampling of the large quantity of DOM and

FPOM necessary for the bulk and molecular analyses. While the calibration of some

instruments is straightforward (e.g. pH meter, oxygen sensor), assessing the TFF-RO

system for the representativity of the collected OM and for possible molecular or

biochemical fractionation is essential; this was addressed in Chapter 2 (Ouellet et al.

2008). A multi-point sampling strategy was adopted and a high temperature catalytic

oxidation total carbon analyzer was used to calculate the mass balance of the entire

system, which is fitted with 0.45-µ?? (TFF) and 300-Dalton (RO) filters. By designing a

meticulous method for rinsing both filters and the instrumental dead space, most of the

sample carry-over was eliminated with total recoveries ranging between 96.4 and

106.9%. In addition, Fourier transform infrared spectroscopy (FTIR) and stable carbon

isotope ratio mass spectrometry (IRMS) were used to evaluate sample fractionation

during sampling. It was shown that using the TFF-RO systems, minimal sample

fractionation occurred and the concentrated samples collected were representative of the

initial material.

6.1.2 Organic matter sources in lakes and reservoirs
In most traditional limnology studies, a large number of water and OM chemical

analyses are carried out to collect basic information on the studied systems. The results

for the bulk chemical parameters presented in Chapter 3 are representative of such

preliminary, yet essential data. Within the five lakes and two reservoirs sampled in this

study, two lakes and one reservoir were partially wood harvested. Altogether, the non-
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harvested systems displayed significantly lower levels of surface water dissolved organic

carbon (DOC), total nitrogen (TN), and iron (Fe) complexed DOC compared to the

perturbed systems. Bulk elemental and isotopie analyses of DOM, FPOM and SEOM as

well as for the soil extracts and the dissolved inorganic carbon (DIC) provided additional

clues that perturbed systems are characterized by higher inputs and degradation of

terrestrial OM.

Although not usually used as proxies for OM sources, amino acids (AA) (Chapter

4) have revealed interesting trends with respect to OM diagenetic state which, in our case,

is ultimately linked to its source. The relative contribution of AA to the total organic

carbon (%TAaC) and total nitrogen (%TAaN) in DOM was low indicating that this

fraction was more degraded than FPOM in all water bodies. This suggests that the

majority of the terrestrial OM inputs were in the dissolved form while the FPOM fraction

was composed of fresher, partly autochthonous, material. Higher and lower amounts of

bacterial AA (D-AA) with respect to perturbation were measured in DOM and SEOM,

respectively. This result, along with the output from a principal component analysis,

showed that a strong relationship exists between OM sources and the extent of

perturbation through reservoir operation or wood harvesting. Independently of wood

harvesting, the reservoirs were characterized by more degraded (allochthonous) FPOM

and fresher (autochthnous) SEOM fractions. This was later confirmed through lipid

biomarker analyses.

Lipid biomarker (the fatty acids (FA) and the alkanes) data presented in Chapter 5

were used to pinpoint OM sources in all sampled water bodies. It was shown that higher

quantities of terrigenous DOM are exported to the aquatic systems when they are
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perturbed. In the FPOM fraction, the biomarker analyses suggested larger contributions

from bacterially processed material in natural lakes whereas higher relative contributions

from fresh bacterial biomass were observed along with greater inputs of fresh terrestrial

OM in the perturbed systems. Little contribution from algal biomarkers was found in the

FPOM and in the accumulating SEOM fractions suggesting that algae played a minor

role in OM autochthonous production, or that the algal material is quickly degraded in the

particulate fractions.

6.1.3 Organic matter cycling: Linking bacteria and GHG
Despite the small number of aquatic systems sampled in this study, the higher

CO2 concentrations and atmospheric fluxes measured in wood harvested freshwater

systems demonstrate, for the first time, the direct relationship between terrestrial organic

matter inputs and CO2 production following wood harvesting. To a lower extent, similar

results were obtained for the non-harvested Cabonga Reservoir, with higher terrestrial

inputs resulting in greater CO2 supersaturation levels compared to natural lakes. The

results presented in Chapter 3 suggest that DOC and TN inputs are the major bacterial

CO2 production driving forces in the studied systems. In the wood harvested water

bodies, a relationship between the DIC concentration and its stable carbon isotope

signature (613C) suggests that terrestrial OM is more extensively degraded in these

systems. Similarly, the bacterial AA and alkane biomarkers in DOM and SEOM,

respectively, were related to the surface water GHG and showed that bacterial activity in

freshwater systems is driving GHG production.

The extent ofbacterial activity depends on several factors, most importantly

nutrients availability. Higher terrestrial OM inputs coincided with greater relative
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abundance ofbacterially-derived biomarkers in FPOM. Furthermore, the SEOM fraction

from reservoirs displayed lower abundances of terrestrially-derived biomarkers with
systematically greater relative contributions from bacterial biomarkers. We believe that
the higher water currents and drawdown in the reservoirs cause the epilimnetic layer to be
deeper and sometimes missing, which results in warmer and more oxygenated waters just
above the sediments. Higher temperatures and more oxic conditions would then increase

bacteriological activity and GHG production. While such link still has to be
unambiguously demonstrated, this data suggests that the degradation of terrestrial derived
OM is ultimately linked to GHG production.

6.2 Forecoming contributions and future work
6.2.1 Articles in preparation

The full integration of the biomarker data presented in this study with the lignin

biomarkers analyzed by our colleagues at UQAM is the main remaining task to fully

exploit the huge dataset generated in this study. First, the lipid biomarker data must be
better exploited and presented; as these results were compiled a few weeks prior to the
first submission of this thesis, little time could be spent on the interpretation, including

through advanced statistical methods, of the differences in the relative contributions from
individual and families of lipid biomarkers. Only then will we be able to couple the lipid

to the lignin dataseis. Lignin is only found in terrestrial plants and represents the ultimate

biomarker for land plants (Houel et al. 2006). The lignin oxidation analysis method

produces 1 2 compounds that are also used to evaluate, among other things, the sources
and freshness of terrestrial OM which, combined with our AA data, is essential to

understand the effects of OM freshness on the dynamics of carbon and GHG production.
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A manuscript presenting the integration of the lignin and lipid biomarkers will be
prepared rapidly following the publication of individual results from both groups.

A few other manuscripts are being considered for publication using the data that

has been accumulated during the seven consecutive seasonal sampling missions. In this

thesis, very little water column chemistry data were presented (only those relevant to the
biomarker analyses, e.g., one out of the seven sampling missions). In fact, no

limnological publication has ever reported the dynamics of GHG accumulation in the
hypolimnion and their transfer to the epilimnion. Kim et al. (2006) suggested that the
thermocline was permeable to DOC as increased hypolimnetic DOC concentrations were

observed during the summer. In lakes such as those studied here, the thermocline deepens

from the spring to late summer with little GHG accumulation in the hypolimnion.

Significant CH4 water surface concentrations were also observed at stations that
contained a thermocline. Since lateral water currents in lakes are small (Marty et al.

2005) and because CH4 is produced in anoxic conditions, the presence of CH4 in the

epilimnion suggests a constant transfer of GHG from the hypolimnion to the surface
waters. This transfer would be driven by the deepening of the metalimnion combined

with the accumulation and increase in GHG partial pressure in the hypolimnion (Âberg et

al. 2010). As a constant flux of GHG was observed between the surface water and the

atmosphere (characterized by contrasting densities and temperatures), we believe that a

similar process occurs between the hypolimnion and the epilimnion. Calculating this

process from our dataset is feasible and would help assessing the percentage of the

atmospheric GHG fluxes that can be attributed to hypolimnetic GHG production

processes. Noteworthy, we roughly estimated that hypolimnetic CO2 accumulations
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represented less than 7 % of the daily CO2 atmospheric emissions (Chapter 3 and Table

6-1).

Table 6-1: Estimated hypolimnetic CO2 storage in lakes (this study, Summer 2007)
Mean CO2 Hypolimnetic Hypolimnetic Surface area Equivalent

a e emissions a volume CO2 storage of the lake CO2 storage t
Units mmol CO2 m2 d'1 Liters mmol CO2 m^ days

Brock 4.0(0.9-8.9) 4.3 ? 1 06 21IxIO3 0.82 ? IO6 0.064
Jean 13.0(2.9-55.0) 10.4?106 672?103 1.72 ? IO6 0.030
Clair 17.0(5.8-30.2) 3.8 ? IO6 679 ? IO3 1.75 ? IO6 0.023

a Ranges of values in parenthesis. Estimate based on the mean daily CO2 emissions.

As the GHG transfer to the epilimnion would depend on its accumulation in the

hypolimnion, such a low percentage fraction would not significantly influence the total

GHG atmospheric fluxes presented in Chapter 3. Rather, very high flux events of a

limited amount of GHG would be observed in the fall with lake water turnover and in the

spring upon ice breakup. This publication will be prepared in fall 2010.

Finally, the last publication that will be generated through in this study will

integrate the AA and lipids biomarkers from this project and from a sister project

currently carried out in the St. Lawrence Estuary and Gulfby Karine Lalonde, a Ph.D.

student from our laboratory. Because both types ofbiomarkers have very different

reactivity, complementary information and corroboration of interpretation could be

obtained by coupling both data sets. In this study alone, no conclusive trend was found

between the AA and lipids biomarkers. More advanced statistical methods, principal

component analysis and possibly self-organizing maps, should therefore be used to

unravel and understand the relationships between both groups ofbiomarkers.

Noteworthy, our sampling effort has resulted in the collection of an impressive

number of samples that will be exploited by other students in the close future. This bank
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of samples will be used to assess seasonal variations in carbon cycling in natural and
perturbed systems, which should nicely complement the current studies and address
issues that could not be answered with the current dataset.

6.2.2 Future directions and environmental implications
The seasonal variations in bulk chemical parameters (water column and OM

fractions) and lipid biomarkers (FA, alkanes and alcohols/sterols) in DOM and FPOM
should be assessed to obtain additional information on the year-round carbon dynamics in

freshwater ecosystems. By acquiring this data, changes in algal, bacterial and terrestrial
sources and relative contributions could be monitored through time and specific seasonal

events (e.g. ice breakup, algal blooms, water turnover, etc.). Using the already available
data bank on water chemistry and the bulk OM characteristics (not exploited here except

for the summer of 2007) will help understanding the controls on the bioprocesses

responsible for GHG production. As seasonal sampling is often very difficult in northern
boreal aquatic systems, most studies have been carried out during the summer; the
samples collected as part of this study could help partly correct this bias.

In light of our findings, more work is needed to verify whether the contrasting
results observed between lakes, reservoirs and the wood harvested systems are truly

representative of the most of the water bodies from the boreal forest. Because only two
reservoirs were visited in this study, additional sampling of old, stable and larger

reservoirs (e.g. La Grande 2) should be targeted. Sampling prior to and for several years
after wood harvesting events (during forest re-growth) should also be considered for
estimating the total allochthonous OM loss as GHG to the atmosphere, which could be
attributed to the perturbation. In addition to DOM, FPOM and SEOM, the sampling and
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identification of the primary and secondary producers is essential to determine the

biomass proportions and types (e.g. Gram positive and Gram negative bacteria) and how

this translates to the AA and lipids biomarkers abundances. In freshwater aquatic

systems, GHG measurements are rarely complemented with biomarker measurements

and assessments ofbiological populations. Such diverse and complementary analyses are

essential as GHG production in water bodies is closely linked to the aquatic algal,
bacterial and terrestrial biomasses.

In this study, it was shown that anthropogenic perturbation, and more specifically

wood harvesting, leads to greater GHG emissions to the atmosphere compared to natural

lakes. This conclusion clearly indicates that the current forest management regulations

are inappropriate; the forested protection bands around water bodies are too narrow (20

m) to buffer the export of large quantities of terrestrial OM to the aquatic systems. Based

on a visual inspection of the sampling sites, we believe that a three fold increase in the

width of the protective bands would substantially diminish the effects of wood harvesting

practices on the aquatic system. A recent study carried out in Finland, where protective

bands are 50-m wide, reported only modest differences in the aquatic bacterial

populations between harvested and natural systems (Rask et al. 1 998). Finally, the

evaluation of OM degradation, reutilization and sedimentation following reservoir

impoundment and wood harvesting is necessary to quantify the additional terrestrial

carbon that is emitted to the atmosphere as GHG following anthropogenic perturbations.

Such analysis becomes particularly important in the calculation of human GHG footprint

upon perturbations of natural aquatic systems and for the development of sustainable

environmental practices.
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Appendix A. Supplementary information to Chapter 1

Dissolved greenhouse gases concentrations and atmospheric fluxes calculations.

The GHG concentrations and fluxes calculations are fully described in Soumis et al.
(2008). For information regarding the instrumental analysis, see the methods section in
Chapter 3.

An example of carbon dioxide atmospheric fluxes calculation:

In this project, the boundary layer equation was used. It assumes the air-water interface
behaves as a thin two-layer film. Each gaseous and aquatic phase is assumed to be well
mixed so that the resistance to CO2 flux from one phase to another is only the molecular
diffusion. Therefore, Fick's law applies:

./CO2 = kC02x ([CO2W- 0?CO2atmx KH)) (1)

where./CO2 is the atmospheric CO2 flux which depends on the water surface CO2
concentration ([C02]surf) and the water CO2 concentration at equilibrium with the
atmosphere (pC02atmx ^h)- jPC02atm is the atmospheric CO2 partial pressure and Kh is
Henry's law constant corrected for the water temperature. kC02is the gas exchange
coefficient and corresponds to the rate of the gas exchange through the air-water
interface:

kC02 = ¿600 x (600 / Secos)0'67 (2)

The gas exchange coefficient is normalized to the Schmidt number (Sc) of 600 (À^oo):

Scco2= 1911.1 - (1 1 8. 117w°) + (3-45277V2) -(0.04 1327V3) (3)
¿600 = 2.07 + (0.215 x¡71(,]·7) (4)

Where 7V is the water temperature and U\q is the wind speed 10 meters above the water
surface. The wind speed 1 meter above the water surface (Ui) was use in this study:

t/,o=C/, xiZjo/Z,)"1 (5)

Where Z\ and Z1O are the distances to the water surface in meters and m corresponds to
the vertical extrapolation factor for wind speed, which depends on the terrain relief. In
this case avalué of 0.167 (1/6) was used.
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Appendix B. Supplementary information to Chapter 5: Fatty
acids and alkanes lipid biomarker data
Table B-I. Relative contribution (in mole percentages(br), unsaturated and straight chain fatty acids to the

Compound L Mary L Jean L.Clair L. Bouleau R. Cab. 6(mol%)

of total FA) of the branched
total DOM fraction

R. Cab. 10 R. Dec. 1

C8:0
C10:0
Cll:l
C11:0
9-oxo-C9:0
C12:0
brC13:0
C13:l
C13:0
brC14:0
C14:l
C14:0
brC15:0
C15:l
C15:0
brC16
C16:lw9c
C16:lo7c
C16:lco7t
C16:lco?
C 16:0
brC17:0
C17-.1
C17:0
brC18:0
C18:2cû6,9
C18:lo¡>9c
C18:lco7c
C18:l(u9t
C18:lo¡>7t
C18:0
C20:Xa
C20:0

0.60
0.76
0.53
0.19
7.29
0.57
0.61
2.16
0.74
0.45
19.27
4.59

3.01
1.29
0.85
14.57
0.33
0.10

25.23
1.43
0.16
0.56
0.98
1.00
1.86

5.79

0.32
4.55
0.20
0.18

3.14
5.68
0.80
2.35

26.21
0.59
0.54
1.32
0.75
0.00
15.63
3.60

1.80
1.01
1.29
2.03
0.22
0.05
15.04
0.52
0.14
0.42
0.68
1.44
1.67

2.64

0.07
9.66
0.65
0.05

17.46
2.16
1.88
2.24
1.25

13.25
1.97

1.24
3.23
2.08
5.16
4.66

3.42
7.26
2.41
3.65
1.53
4.56
6.16
4.07

0.20

1.96
2.68

3.97

0.07
1.49

Sum (µ?t???
FA mol OC" 39.6 37.5
')
Phospholipid
derived (%)

18.6

98.6

8.15
1.42
1.06
0.81

3.42
2.11

1.59
1.65

12.89
1.66

2.05
2.12
0.13
17.75
0.08
0.00
19.46

0.55
1.34
2.12
1.11

15.08

0.06
3.38

10.0

97.9

5.49
0.83
1.05
1.19
0.60
8.86
1.82
0.56
1.04
0.35
0.09
10.16
4.55

1.76
3.34
1.11
3.40
0.93
1.71

22.02
1.10
0.27
0.57
0.49
1.45
1.16

18.37

5.63

0.10

19.7

94.3

6.44
1.07
1.07
1.35

7.18
0.28

1.00
0.41
0.18
8.88
9.41

2.14
4.96

16.04

19.40
1.67
0.68
0.09
0.81
2.06
2.12

10.03

0.13
2.49

0.11

18.0

96.0

7.11
1.93
1.82
1.94
0.53
7.94
2.23
0.45
1.33
0.52
0.54
15.22
4.43
0.31
1.73
4.23

6.31
1.14
4.24
16.37
0.72
0.00
0.76
1.28
1.61
1.45

6.57

0.08
7.17

0.06

11.5

97.2

R. Dec. 2

21.78
1.52
2.05
1.22
0.58
4.41
1.89
0.66
1.36
1.42
0.96
7.08
12.73
0.23
1.78
4.37
1.86
1.74
0.36
1.67

12.30
2.67
0.39
0.68
1.46
0.91
0.55

8.00

0.11
3.22

0.03

10.7

97.1

' X corresponds to the sum of single and doubly unsaturated FA
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Table B-2. Relative contribution (in mole percentages of total FA) of branched (br),
unsaturated and straight chain fatty acids in the total FPOM fraction

Compound LM L.Jean L.Clair L. Bouleau R. Cab. 6 R. Cab. 10 R. Dec. 1
(mol%)
C10:0 0.02 0.67 0.93 1.68 0.43
Cl 1:1 0.31 0.41 0.33 0.35 0.06
C11:0 0.68 1.10 0.69 0.89 0.37
9-oxo-C9:0 0.78 0.59 0.32 0.46
C12:0 1.76 2.34 4.17 3.19 2.84 2.14
brC13:0 2.65 0.50 0.43 0.46 0.53 0.40 0.30
C13:l 0.05 0.14 0.06
C13:0 2.28 0.94 0.69 1.06 0.80 1.00 0.85
brC14:0 1.43 2.38 1.60 2.93 2.21 1.06
C14:l 0.17 2.02 1.70 1.58 0.31
C14:0 10.97 29.68 22.17 12.88 28.00 28.23 24.64
brC15:0 6.61 6.67 7.54 6.16 5.68 6.52 3.87
C15:l 0.22
C15:0 3.19 3.31 1.54 2.07 1.57 1.44 1.52
brC16 6.43 1.42 1.21 1.09 1.17 1.50 1.21
C16:1cû9c 1.88 2.26 2.86 1.12 1.39 0.99
C16:lco7c 7.00 7.34 12.20 9.89 12.70 14.63 21.10
C16:l(o7t 1.93 1.12 0.74 1.48 1.29 3.41 1.01
C16:lco? 4.42 3.00 3.08 0.35 1.52
C16:0 5.18 28.36 21.35 31.10 21.98 19.37 26.07
brC17:0 1.98 1.56 1.58 1.66 1.68 1.33
C17:l 0.54 0.43 0.45 0.45 0.36 0.21
C17:0 2.18 0.73 0.53 0.55 0.42 0.34 0.37
brC18:0 12.17 0.76 1.63 1.73 0.86 1.19 1.20
C18:2co6,9 2.74 0.59 0.68 1.06 0.48 0.80 0.66
C18:lco9c 8.98 4.02 4.72 8.26 2.87 3.28 4.41
C18:loo7c 15.01 .2.59 3.88 2.47 2.65 3.13 2.13
C18:l(o7t 5.31 1.35 0.15 0.09
C18:0 0.83 1.36 1.19 1.08 1.15 1.36
C20:Xa 5.03 1.22 0.35 0.52 0.35 0.48 0.29
C20.0 2.35 0.54 0.28 0.27 0.26 0.29 0.20
C21:0 0.14 0.09 0.07 0.04
C22:0 0.24 0.48 0.49 0.22 0.21 0.24
C24:0 0.11 0.13 0.06 0.09 0.06
C26:0 0.03

Sum (µp???
FA mol OC" 8.2 61.1 146.3 203.7 290.6 374.1 278.6
')
Phospholipid ^1 g2 6 gg ß gp j g? 2 9] 4 g2 6
derived (%)

aX corresponds to the sum of single and doubly unsaturated FA



Table B-3. Relative contribution of the branched (br), unsaturated and straight
______chain fatty acids to the total SEOM fraction
Compound
(mol%) L.Mary L.Jean L.Clair L. Bouleau R. Cab. 6 R. Cab. 10 R. Dec. 1 R. Dec. 2

C8:0
C10:0
Cll:l
C11:0
9-oxo-C9:0
C 12:0
brC13:0
C13:l
C13:0
brC14:0
C14:l
C 14:0
brC15:0
C15:l
C15:0
brC16
C16:lw9c
C16:lü)7c
C16:lco9t
C16:l<ö7t
C16:lto?
C16:0
brC17:0
C17:l
C 17:0
brC18:0
C18:2cû6,9
C18:lco9c
C18:l(o7c
C18:lœ9t
C18:lco7t
C18:0
C19:0
C20:X
C20:0
C21:0
C22:X
C22:0
C23:0
C24:l
C24:0
C25:0
C26:0
C27:0
C28:0
C29:0

1.59
0.87
2.88
0.73
9.31
1.48
0.32
2.81
4.58
0.25
12.59
9.29
0.60
2.91
2.03
1.11

9.28

2.83
2.78
14.74
2.94
0.66
1.29
0.97
0.34
2.13

1.71

1.80

0.12
0.15
0.15
0.02
0.92
0.12
0.04
0.79
0.17
1.17
0.19
0.93
0.11

3.05
2.11
0.58
1.34
0.47
6.18
0.99
0.61
0.91
1.38
0.14
12.20
7.66
2.58
2.78
1.96
0.36

8.41

0.91
0.69

22.27
3.11
0.33
1.41
1.49
0.54
2.20

1.47

2.74
0.12
0.20
0.34
0.85
0.06
1.71
0.25
0.14
1.65
0.24
1.29
0.29
1.23
0.18

0.19
5.81
0.41
5.37
0.23
19.23
2.51
4.06
1.05
2.57
0.04
8.46
7.72
0.29
2.94
4.59
0.30

1.41

0.34
0.38
14.22
4.25
0.39
2.06
1.72
0.16
0.48

1.38

0.23
1.45
0.27
0.61
0.55
0.24

0.99
0.20
0.93
0.06
0.15
0.71
0.11
0.57
0.08

1.14
5.38
0.54
2.81
0.59
11.51
1.29
0.26
2.22
2.49
0.24
17.63
7.24
0.24
2.64
3.12
0.25

3.81

0.93
0.68
15.78
2.70
0.25
0.74
1.54
0.38
1.38

2.09

1.45
0.07
0.21
0.43
1.33
0.06
1.30
0.17
0.02
1.28
0.18
1.15
0.19
1.39
0.15

0.15
0.75
0.15
1.47
0.15
6.99
1.28

1.63
2.20
2.89
7.14
11.79
0.35
2.96
5.62
0.31

1.47

0.11
0.15
18.83
6.36
1.07
1.40
2.66
0.48
0.86

2.16

0.41
4.06
1.42
1.31
1.14
0.59

2.21
0.64

2.31
0.50
1.72
0.28
1.18
0,22

2.04
1.03
0.70
1.08
0.94
5.58
1.10
0.63
0.99
1.49
0.04
9.12
10.87
0.62
2.38
2.70
1.15

6.17

0.94
1.57

15.43
4.93
0.53
0.87
0.73
6.36
3.93

3.33

2.45

0.39
0.35
0.38
0.14
1.98
0.46
0.06
2.35
0.57
1.63
0.28
1.05
0.20

1.51
0.90
0.63
0.98
1.20
4.93
1.16
0.21
0.68
1.61

7.65
10.85
0.54
2.40
1.94
0.61

9.25

1.77
2.74
18.81
4.28
0.55
0.73
0.85
0.94
3.22

3.02

2.82
0.73
1.31
1.15
0.25
1.55
3.01
0.46

2.48
0.37
0.86
0.13
0.60
0.11

0.41
0.44
0.78
1.11
7.69
1.11
0.74
0.89
1.44
0.21
10.00
10.20
1.08
2.42
2.54
0.74

8.33

1.30
1.88

23.20
3.59
0.49
0.88
1.17
1.25
3.41

2.48

2.64

0.63
0.36
0.26
0.27
2.00
0.29

1.45
0.26
0.80
0.16
0.70
0.12
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C30:0 0.30 0.60 0.28 0.75 0.62 0.46 0.19 0.28

Sum (µp???
FA mol OC 167.6 117.3 392.3 218.4 139.0 127.8 132.8 165.0
')
Phospholipid 743 866 468 832 798 8L2 85 2 65.3
derived (%)

X corresponds to the sum ofsingle and doubly unsaturated FA
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Table B-4. Compound-specific stable carbon isotope signatures for PLFA from the
DOM and FPOM fractions

DOM
C14:0
a-C15:0
C15:0
C16:1ü)7c
C 16:0
C18:lü)9c
C18:lco7c
C18:0

-23.8

-22.4
-23.9
-17.7
-26.8
-25.7

-25.1

-26.8
-22.3
-25.3
-24.8
-28.6
-26.1

-21.5

-23.2

-25.2
-20.0
-27.2
-23.7
-24.3
-20.4
-26.8
-25.7

-24.4
-17.1

-20.9
-22.9
-19.2
-25.2
-24.0

-24.8

-19.7
-24.1
-19.2
-24.5
-24.7

-25.8

-27.0
-26.2
-24.2
-26.4
-25.9

Compound L. Mary L. Jean L. Clair L. Bouleau R. Cab. 6 R. Cab. 10 R. Dec. 1 R. Dec. 2

-23.3
-18.7

-20.6
-23.1

-26.8
-24.9

LE
TOC

FPOM
C14:0
i-C15:0
a-C15:0
C15
C16
C16
C16
C18
C18
C18
C18

0
lü)9c
lü)7c
0
2?6,9
1(û9c
lco7c
0

-27.9
-26.3

-23.0

-23.2

-24.3

-25.4

-26.7
-26.8

-28.4

-26.2

-23.1
-29.1
-28.1

-28.8
-27.1

-31.8
-23.8
-23.8
-27.1
-30.9
-32.8
-33.3

-27.3
-34.7
-31.1

-28.7
-27.5

-36.0
-26.5
-19.3
-34.4
-35.9
-35.5
-42.0

-37.5
-32.4
-33.4

-28.7
-27.1

-28.6
-26.9

-35.0
-24.6
-16.4
-27.6
-31.5
-37.6
-34.3
-28.9
-30.1
-35.8
-29.5

-33.7
-25.1

-31.0
-31.0
-34.6
-33.0
-23.2
-27.1
-35.8
-28.5

-28.6
-27.2

-40.1
-26.1

-29.8
-38.4
-43.4
-38.8
-31.3
-32.9
-39.8
-28.0

-28.7
-27.0

LE
TOC

-29.9
-27.7

-31.8
-28.6

-30.6
-28.6

-33.1
-30.4

-31.6
-29.4

-31.1
-29.0

-32.2
-28.3

LE and TOC correspond to the total lipid extract and the total organic carbon isotopie signatures, respectively
i- and a- are the iso and anteiso branched FA
* A very high baseline (higher amounts unresolved complex mixture) at the end of the L. Clair sample GC-
IRMS run have produced unreliable isotopie ratios which were not included in the trends discussed in the
text.
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Table B-5. Compound-specific stable carbon isotope signatures for PLFA from the
SEOM fractions

Compound L. Mary L. Jean L. Clair L. Bouleau R. Cab. 6 R. Cab. 10 R. Dec. 1 R. Dec. 2
C10:i
CIl:
CIl:
C12:
i-C13:0
a-C13:0
C13:l
C13:0
i-C14:0
C14:0
brC15:0
i-C15:0
a-C15:0
C15:l
C15:0
i-C16:0
C16:lio9c
C16:l(o7c
C16:lco7t
C16:0
brC17:0
i-C17:0
a-C17:0
C17:l
C17:0
C18:2(û6,9
C18:l(u9c
C18:lo/7c
C18:0
C19:0
C20:0
C21:0
C22:0
C24:0
C25:0
C26:0
C27:0
C28:0
C29:0
C30:0

-30.1

-31.6
-30.9
-34.4
-24.8
-41.2
-33.0
-32.0
-35.2
-35.6
-35.5
-34.3
-46.2
-35.6
-34.6
-49.9
-66.7
-72.7
-35.9
-38.3
-46.2
-31.9
-36.4
-30.1
-22.3
-32.3
-46.0
-29.4

-31.1

-33.7
-29.3
-32.2
-29.4
-29.7
-27.5

-28.2

-26.0
-23.0
-30.0
-28.4

-28.6
-29.2
-36.6
-31.9
-30.3
-32.2
-11.7
-33.9
-19.5
-38.9
-48.4

-35.8
-32.5
-26.8
-45.3
-29.6
-35.0
-32.1
-32.9
-42.0
-29.3
-19.9
-24.7
-20.0
-32.7
-29.2
-22.0
-30.1
-26.9
-29.3

-31.1

-30.8

-33.9
-32.9
-31.8

-29.1
-31.3
-37.9

-31.8
-32.9
-46.4
-37.9
-41.8

-38.7
-32.3
-29.7
-30.4
-36.6
-34.5

-25.8
-51.2
-31.6

-31.9

-29.8
-30.1
-29.2
-31.8
-31.4
-31.9
-32.8
-30.0

-30.4
-24.0
-31.9
-33.4
-33.9
-26.3
-39.2
-35.5
-32.3
-47.4

-32.9
-32.2

-36.3
-32.7
-47.3
-59.7

-40.6
-35.3
-35.7
-31.6

-31.3

-34.0
-46.2
-30.5

-28.5
-25.7
-30.3
-29.9
-35.1
-32.7
-32.8
-30.5
-30.7
-31.6

-26.7
-34.7
-28.7

-26.4
-30.3
-33.8
-31.7
-29.9
-30.4

-29.7
-36.0

-31.7
-29.1
-28.4
-28.2
-34.3
-23.6

-24.7
-43.2
-28.6
-27.9
-26.4

-30.4
-30.4
-30.7
-31.6
-30.8
-32.3
-29.4
-30.5

-29.7
-24.7
-33.9
-29.2
-27.9
-17.0
-34.2
-33.2
-31.9
-33.4

-28.3
-27.2
-45.3
-30.5
-31.9
-36.5
-42.5

-31.5
-28.8
-34.6
-27.1
-29.0
-30.1
-24.4
-30.0
-39.8
-29.7
-33.6
-37.4
-25.7
-32.3
-23.3
-27.3
-27.9
-30.3
-31.5
-33.2
-31.3

-28.4
-24.6

-28.0
-28.4
-32.0
-29.7
-32.0
-29.3
-34.7

-29.0
-28.1
-76.1
-30.0
-26.5
-45.1
-54.8

-32.1
-29.6
-38.3
-22.9
-26.6
-23.5
-20.5
-27.0
-37.7
-26.9

-29.9
-27.7
-25.2
-32.3

-31.7

-28.8

-30.6
-32.1
-33.6
-34.0

-30.7
-30.6
-42.4
-30.6
-33.2
-43.4
-55.3

-32.6
-30.9
-32.9
-28.3
-31.6
-36.0
-24.0
-28.7
-37.4
-23.4
-24.7
-32.3
-25.8
-31.6
-29.7

-31.4

-31.1

-33.1

LE
TOC

-33.2
-28.1

-31.6
-25.4

-33.5
-29.2

-32.9
-29.1

-31.7
-27.6

-31.2
-28.2

-30.5
-28.0

-3.1.5
-27.5

LE and TOC correspond to the total lipid extract and the total organic carbon isotopie signatures, respectively.
i- and a- are the iso and anteiso branched FA
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Table B-6. Relative contributions (in mole percentages of total alkanes) of branched
(br) and straight chain (?) alkanes to the FPOM fraction

Compound LM L Jean L. clair L. Bouleau R. Cab. 6 R. Cab. 10 R. Dec. 1
mol%

nC12:0
nC13
nC14
2brC16:0
brC15:0
nC15:0
nC16:0
brC18:0
nC17:0
Pristane
nC18:0

Phytan
nC19:0
nC20:0
nC21:0
nC22:0
nC23:0
nC24:0
nC25:0
nC26:0
nC27:0
nC29:0
nC31:0
nC32:0
nC33:0
nC34:0
nC35:0
nC37:0
nC38:0
nC39:0

0.93
0.29
4.21

2.32
11.46
9.40

44.62
0.32
0.63
0.38
0.80

0.73
0.43
1.64

1.32

2.02
7.46
1.35
0.60
0.73

3.02
2.87
2.48

0.84
0.29
12.18
0.11
2.38

20.49
1.65

31.57.

0.47
0.28

3.05
0.82
3.08

2.54

2.67
7.65
2.09
0.53
0.64

0.66
2.18
2.06
1.78

0.54
0.48
18.47

32.44
4.04
9.49

0.67

0.85
3.85
0.94
2.18

2.89

2.69
7.95
1.44

1.25
1.13
1.65
5.04
0.00
1.99

3.49
0.62
4.12

1.38
5.57
10.98
10.70

2.10

2.12
2.78
7.85
2.37
4.91

4.45

5.34
13.93
2.31
0.78
1.81

3.83
3.34
2.70
2.52

0.64

3.99
0.10

27.00
12.23
15.48

0.48
0.48
0.97

2.85
1.42
3.44
4.75
3.78

3.42
6.36
1.98
1.46
1.60
1.24
1.47
1.66
1.78
1.42

2.07
0.37
6.78

1.81
30.67
9.61
11.73

0.46
0.32

1.78
1.47
2.70

2.11

1.51
8.84
1.94
0.73
1.33

0.88
6.29
3.60
3.01

3.55
1.51
0.35
6.29

37.48
5.93
5.44

0.71
0.44

3.79
1.84
3.70

3.31
0.88
2.86
8.39
1.34
0.47
1.16

1.59
3.34
3.01
2.63

Sum
(µ???? Alk
mol OC1)

15.03 7.15 3.97 7.92 11.57 6.89



Table B-7. Relative contributions (in mole percentages of total alkanes) of branched
(br) and straight chain (?) alkanes to the SEOM fraction

Compound
mol% L.Mary L.Jean L.Clair L. Bouleau R. Cab. 6 R. Cab. 10 R. Dec. 1 R. Dec. 2
nC12:0
brC13:0
nC13
nC14
2brC16:0
brC15:0
nC15:0
nC16:0
brC18:0
nC17:0
Pristane
(br)
nC18:0
Phytan (br)
nC19:0
nC20:0
nC21:0
nC22:0
nC23:0
nC24:0
nC25:0
nC26:0
nC27:0
nC28:0
nC29:0
nC30:0
nC31:0
nC32:0
nC33:0
nC34:0
nC35:0
nC38:0
nC39:0
nC40:0

0.10
0.02
0.17
0.37
0.09
0.17
0.10
7.76-
2.15

0.03

0.36
0.70
1.39
1.30
6.21
2.33
9.08
3.36
13.40
3.90
17.71
2.32
12.54
1.21
4.91
1.79
2.50
2.69
1.29
0.06

0.08
0.18
0.53
0.15
0.35
0.38
3.39·
1.46

0.12

0.68
0.65
1.73

11.00
5.45
2.74
8.53
4.74
11.00
4.98
15.76
3.07
10.45
1.81
5.73
0.92
2.47
1.17
0.37
0.10

1.29
0.43
0.61
3.66
0.68
0.59
0.33
10.06
1.87

0.28

0.63
0.23
1.57
2.51
6.18
3.08
8.45
2.30
8.97
2.46
13.84
1.98

12.59
1.03
5.77
0.69
3.30
2.49
1.75
0.03

0.33

0.11
0.06
0.28
0.43
0.06
0.32
0.23
14.46
1.79

0.11

0.58
0.66
1.66
1.37
3.96
1.65
7.77
2.04
9.75
2.56
16.16
1.96

16.33
1.07
7.45
0.94
3.01
1.72
1.51
0.03

0.66
2.06
0.90
0.77
4.81
0.94
1.22
0.49
17.98
1.61

0.36

0.58
0.27
1.46
1.48
4.58
2.04
7.34
2.48
8.40
2.50
9.47
2.04
8.10
1.23
6.20
0.00
5.98
1.58
2.31
0.03
0.03
0.10

1.76
1.29
0.64
7.21

0.99
0.51

22.59
1.70

0.87

0.62
0.21
1.70
1.89
5.08
2.43
7.20
2.31
6.97
1.98
7.74
1.91
6.87
1.07
5.27
0.86
4.71
1.58
2.01
0.02

0.78
2.12
1.29
0.64
12.31
2.14
2.35
0.72
15.07
1.49

0.38

0.57
0.18
1.69
1.80
3.82
1.45

10.80
2.20
6.74
2.03
9.05
1.89
5.12
1.65
3.53
1.95
3.04
2.00
1.19
0.01

0.23
1.28
0.63
2.39
0.25
0.49
0.20
19.32
1.17

0.23

0.66
0.40
1.68
1.87
4.59
1.69
8.32
2.24
11.70
2.29
14.85
1.67
7.68
0.88
5.23
1.72
3.04
2.09
1.18
0.04

Sum (µp???
Alk mol
OC1)

23.21 16.58 10.94 13.82 18.52 12.79 13.23 12.69
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Table B-8. Compound-specific stable carbon isotope signatures for alkanes from the
FPOM and SEOM fractions

Compound L. Mary L. Jean L. Clair L. Bouleau R. Cab. 6 R. Cab. 10 R. Dec. 1 R. Dec. 2
FPOM
nC17:0
nC21:0

LE
TOC

SEOM
nC17:0
nC19:0
nC20:0
nC21:0
nC22:0
nC23:0
nC24:0
nC25:0
nC26:0
nC27:0
nC28:0
nC29:0
nC30:0
nC31:0
nC32:0
nC33:0
nC34:0
nC35:0

LE
TOC

-38.9

-29.9
-27.7

-27.8
-35.2
-35.6
-38.3
-31.9
-31.5
-31.9
-31.1
-30.9
-30.3
-29.0
-30.2
-28.9
-36.5

-30.9
-35.5

-33.2
-28.1

-38.4
-38.5

-31.8
-28.6

-27.4
-31.3
-32.3
-32.3
-27.2
-31.3
-27.3
-31.6
-28.4
-32.0
-29.1
-32.0
-28.5
-30.9
-27.1
-31.8

-28.7

-31.6
-25.4

-36.5
-41.2

-30.6
-28.6

-31.1
-33.4
-33.3
-35.0
-31.8
-34:9
-31.8
-33.9
-32.5
-32.3
-32.3
-32.4
-32.4
-32.2
-33.5
-28.6
-35.3
-30.1

-33.5
-29.2

-40.3
-35.5

-33.1
-30.4

-32.7
-35.0
-31.1
-31.4
-28.8
-31.1
-28.7
-32.6
-29.5
-33.9
-29.6
-34.5
-29.5
-32.9
-27.3
-27.8
-33.9
-27.7

-32.9
-29.1

-36.0
-34.8

-33.9

-31.6
-29.4

-31.1
-29.0

-27.9
-30.3
-31.0
-32.5
-31.5
-35.1
-31.3
-34.3
-31.7
-32.6
-30.8
-32.9
-31.1
-31.7
-34.9
-32.0
-35.6
-28.4

-26.8
-28.3
-31.6
-33.5
-30.1
-33.4
-30.8
-33.7
-30.7
-32.3
-31.3
-32.5
-30.5
-31.3
-31.2
-30.4
-33.9
-29.4

-31.7
-27.6

-31.2
-28.2

-34.9
-37.4

-32.2
-28.3

-28.1

-34.4

-34.4

-33.7

-32.5
-32.4
-33.0

-33.4

-27.4

-29.4

-30.5
-28.0

-28.2
-30.7
-30.3
-31.6
-30.7
-34.1
-29.5
-32.4
-30.6
-31.3
-32.5
-33.1
-31.2
-33.1
-29.1
-28.0

-31.5
-27.5

LE and TOC correspond to the total lipid extract and the total organic carbon isotopie signatures,
respectively.
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Portable reverse osmosis (RO) systems are increasingly
being used for isolating dissolved organic matter (DOM) from
freshwater aquatic systems because of their high volume
processing capacity and high absolute DOM recoveries. However,
obtaining complete recoveries implies the nnsing of the
reverse osmosis system with a solution of dilute NaOH and
combining the rinse solution and the DOM concentrate. Because
of the potential chemical alterations that can affect the
integrity of the organic poo! leached from the RO system at
high pHs, this approach is not compatible with studies based
on the molecular-level analysis of DOM. The potential for elemental,
isotopie, and chemical fractionation was thus evaluated on a
series of freshwater DOM samples concentrated in the field with
a portable RO system when the concentrate and the rinse
solution are not combined, DOC recoveries in the concentrate
varied between 8Î.6 and 88.8%, and total balance calculations
showed total recoveries of dissolved and particulate organic
carbon ranging between 96.4 and 106.9%. Despite similar ôi3C
signatures, differences in H content and FTtR-based chemical
composition between the concentrate and the rinse DOM solutions
suggest some degree of chemical fractionation.

Introduction
Dissolved organic matter (DOM) is one of the largest and
most dynamic pools of organic carbon on Earth (J). The
number of studies on the bulk characteristics, chemical
composition, and biogeochemical cycling of LK)M has grown
exponentially in the past decade. With the recent advances
in the development of sophisticated analytical instrumenta-
tion io probe the molecular composition of the complex
mixtures of organic macromolecules found in DOM ¿e.g.,
electrospray ionization mass spectrometry ( 2) . ion cyclotron
resonance mass spectrometry \3). liquid chromatography
coupled to mass spectrometry (-?:». two-dimentional gas

* Corresponding aiiihor phone: l)li-fíiB-Z'i2i- extension.} í37; ï,îx:
514-848-2858; e-mail: ygeiirKt^'-akoi .concordia ta.

' Concordia University.
f Université du Quebec ? Montreal
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chromatography (5), multidimensional nuclear magnetic
resonance (6). and others), an increasing emphasis is now
being put on thecoflection ofsalt-free, chemically unaltered,
and representative DOM samples. Different methods have
been developed for this purpose, including resin adsorption
chromatography (using synthetic polymeric resins such as
polymethylmethacrylate or polyvinylpyrrolidone), tangential
ultrafiltration (7), and more recently, solid-phase extraction
disk (S) and reverse osmosis coupled to electrodialysis (9, HD.
Although these methodologieshavebeen applied with varying
successili numerous studies, they are either tedious to use,
unsuitable for extracting large quantities of DOM. and/or
lead to chemical fractionation owing to the incomplete
recovery of DOM.

Reverse osmosis (RO) is the only method available to
rapidly concentrate DOM from large volumes of water
(hundreds ofliters) with minimal DOM losses, '!"he industrial
use of reverse osmosis emerged in the early Î 970s to produce
large volumes of clean water at a reasonable cost. Reverse
osmosis has been exploited to concentrate freshwater DOM
since the early 1980s and has since been routinely used in
a broad range of freshwater environments {11—20). in
particular. Serkiz and Perdue ( /2) have developed and
commercialized a portable RO system that can be used in
the field for concentrating large volumes of surface and
groundwater DOjM samples. Total dissolved organic carbon
?, DOC) recoveries greater than 90% are routinely reported
with this system {12, 14, ¡ß, 17,20), which make this approach
the most attractive for the bulk and molecular characteriza-
tion of freshwater DOM samples.

Depending on the study, these recoveries either cor-
respond to the DOC recovered in the concentrate only or
they are calculated by combining the mass of DOC in the
concentrated sample with the massofcarbon recovered upon
rinsing the RO membranes following the concentration step,
divided by the total mass of DOC in the initial, nontreated
sample. The rinsing step is necessary because a fraction of
the DOC pool, typically 10-20% of initial DOC, sorbs onto
the membranes of the RO system and is not recovered in the
permeate (water passing through the RO membranes) nor
in the concentrate (volume of water containing the com-
pounds rejected by the membrane). To completely recover
this sorted DOC fraction and to eliminate problems associ-
ated with cross contamination of samples from carry-over
effects, the RO system is usually leached with a dilute NaOH
leaching solution (10 2— 10 ! M), which is then neutralized
and demiiieralized using a ?G-saturated cation exchange
resin (9) . Although such harsh chemical treatment might not
significantlv alter the bulk reactivity ; Ì 6, ! 7) and trace metal
complexation properties (J .9} ofthe concentrated DOM pool,
it might not be suitable when probing IX)M dynamics
through the analysis of specific molecular biomarkers. Such
molecular-level studies hinge on the preservation of the
chemical integrity of a sample, as the slightest chemical
alteration can result in the loss ofa target molecule from the
analytical window. H is, thus, important to evaluate the
percentage ofbulk DOM that remains sorbed onto the mem-
branes of the RO system and to know whether the com-
position of the sorbed DO M fraction differs from that of bulk
DOM Knowing whether the incomplete recovery of DOM
leads it? significant chemical fractionation upon sampling
would also be useful in studies where onlv tile DOM
concerniate is used (see for instance reís Í/5Í and ilH}).
Despite the fact that RO systems have been exploited for
mote than 15 years to collect ami concentrate DOM from
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