
Hierarchical Robust Supervisory Control
of Discrete-Event Systems

Mohsen Zamani Fekri

A Thesis

in

The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy at

Concordia University
Montreal, Quebec, Canada

© Mohsen Zamani Fekri, March 2010

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliothèque et
Archives Canada

Direction du
Patrimoine de l'édition

395, rue Wellington
Ottawa ON K1 A 0N4
Canada

Your file Votre référence
ISBN: 978-0-494-67355-3
Our file Notre référence
ISBN: 978-0-494-67355-3

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

AVIS:

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans le
monde, à des fins commerciales ou autres, sur
support microforme, papier, électronique et/ou
autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse. Ni
la thèse ni des extraits substantiels de celle-ci
ne doivent être imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformément à la loi canadienne sur la
protection de la vie privée, quelques
formulaires secondaires ont été enlevés de
cette thèse.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

Abstract

Hierarchical Robust Supervisory Control of Discrete-Event Systems

Mohsen Zamani Fekri, PhD

Concordia University, 2010

The problem of Robust Supervisory Control (RSC) of Discrete-Event Sys-
tems (DES) is concerned with situations in which the DES plant model has
dynamics uncertainty. A main challenge in the development of solutions for

supervisory control problems (including RSC) is the issue of complexity of
resulting solutions. Hierarchical approaches to supervision have been found

to be effective in mitigating the above issue. In hierarchical control, a high-

level supervisor designed based on a simplified high-level model of the plant,

receives information about important events in the plant and issues high-level

supervisory commands.

In this thesis, the problem of hierarchical robust supervisory control under

partial observation is studied. First, the setup of Zhong-Wonham for hier-

archical control is extended to the case of control under partial observation.

A Factorization property is derived that the reporting map must satisfy so

that the reports sent to the high-level supervisor rely only on the low-level

observable sequences. Furthermore, the three properties of Unobservable-and-

Unique-Controllability (UUC), U ?observable-and-Uncontrollable-Prefixes- for-
Observability (UUPO) and Partially-Observable-Strict-Output-Control-Consis
tency (PO-SOCC) are introduced and showed to ensure hierarchical consis-
tency. Algorithms for modification of the plant model and reporting map (if
necessary) to satisfy the Factorization, UUC, UUPO and PO-SOCC proper-

ties have also been developed.

iii

Next, the problem of robust supervisory control of a finite family of discrete-

event plants is studied. Each plant has a separate closed specification lan-

guage. A hierarchical solution is developed assuming full observation and

then extended to the case of partial observation, following the approach in the

thesis for hierarchical control under partial observation.

Finally, a case study involving a flexible manufacturing system production

line is studied where a machine is prone to failure. Following the approach
developed in this thesis, a hierarchical robust supervisory control is designed

to solve the control problem.

IV

Acknowledgements

I would like to express my heartfelt gratitude to my supervisor, Dr. Shahin
Hashtrudi Zad, whose vision and knowledge in systems and control theory
guided me throughout this work. This thesis would not have been possible
if he had not thoroughly reviewed every part of it and had not given me his
helpful suggestions. I am extremely grateful for having his support and will
never forget the knowledge, humbleness and patience he displayed throughout
the course of this research.

It is an honor for me to thank all of my previous teachers and friends who have

supported and encouraged me to continue my studies. Special thanks go to
Siamak whose definite comments and suggestions served to rule out any further

discussion on subjects. I would also like to express my sincere and respectful
thanks to Amin and Elham for their true friendship and the support they have

had for me in different ways during these years.

I am deeply indebted to my family who have always supported me. I owe my
deepest gratitude to my wife and best friend, Fatemeh, for the love she has
for me and the hope she has given me from the day she has entered my life.

?

Contents

1 Introduction 1

1.1 Supervisory Control of Discrete-Event Systems 2

1.2 Robust Supervisory Control 4

1.3 Hierarchical Supervisory Control 6

1.4 A Motivational Example 10

1.5 Complexity Issues 11

1.6 Thesis Objectives 12

1.7 Thesis Outline and Contributions 13

2 Background 17

2.1 Algebra 18

2.2 Automata Theory 20

2.3 Supervisory control of Discrete-Event Systems 28

2.4 Robust Supervisory Control (RSC) Problem 33
2.5 Hierarchical Supervisory Control (HSC) 36
2.6 Conclusion 44

3 Hierarchical Supervisory Control under Partial Observation 45

3.1 Problem Formulation and Reporting Map 45

3.2 Vocalizing Observer Automaton . 50

3.3 Output Map Properties 53

vi

3.4 Supervision Implementation At The Low-level 56

3.4.1 UUC Property 56

3.4.2 UUPO Property 58

3.4.3 PO-SOCC Property 60

3.4.4 Hierarchical Consistency under Partial Observation . . 68

3.5 Comparison with H-observability 75

3.6 Conclusion 77

3.7 Appendix 78

3.7.1 Necessary and Sufficient Conditions for the Satisfaction

of the Factorization Property 78

3.7.2 Initialization Procedure 82

3.7.3 FP Test: ES Algorithm 85

3.7.4 FP Test: MSPSS Algorithm 89

3.7.5 Convergence of MSPSS Algorithm 95

3.7.6 SCE and UET Algorithms 97

3.7.7 PO-SOCC Algorithm 99

3.7.8 An Illustrative Example 105

4 Hierarchical Robust Supervisory Control 109

4.1 Proposed Control Structure 109

4.2 Information Mapping Ill

4.3 Joint-OCC Property 114

4.4 Supervision Implementation at the Low-level 117

4.4.1 Supervision Implementation 117

4.4.2 Robust Hierarchical Consistency 120

4.5 Conclusion 128

4.6 Appendix 129

vii

5 Hierarchical Robust Supervisory Control under Partial Ob-

servation 131

5.1 Proposed Control Structure 132

5.2 Information Mapping 133

5.3 Joint-OCC and Joint-OOC Properties 135

5.4 Supervision Implementation At The Low-Level 139

5.4.1 Joint-UUC Property 141

5.4.2 Joint-UUPO Property 143

5.4.3 Joint-PO-SOCC Property 145

5.4.4 Robust Hierarchical Consistency under Partial Observa-

tion 149

5.5 Conclusion 152

5.6 Appendix 152

6 Case Study 155

6.1 Problem Statement 156

6.2 Modeling 158

6.2.1 Normal Mode . 158

6.2.2 Faulty Mode 166

6.2.3 High-level Models 171

6.2.4 High-level Specifications 174

6.3 Hierarchical Robust Supervisory Control 175

6.4 Conclusion and Extensions 177

7 Conclusions and Future Work 179

7.1 Conclusions 179

7.2 Future Work 181

viii

List of Abbreviations

DES
ES Algorithm
FP Procedure

FP Test

FMS
HRSC
HRSCPO

HSC
Joint-OCC
Joint-OOC
Joint-PO-SOCC

Joint-SOCC
Joint-UUC
Joint-UUPO

MSPSS
NRSC
NRSC
OCC
0OC
PO-SOCC
RSC
RT

RW

SCE Algorithm
SOCC
SSPSS

UET Algorithm
UUC
UUPO

Discrete-Event Systems
Event-Split Algorithm
Factorization Property Procedure
Factorization Property Test
Flexible Manufacturing Systems
Hierarchical Robust Supervisory Control
Hierarchical Robust Supervisory Control under Partial
Observation

Hierarchical Supervisory Control
Joint-Output-Control-Consistency
Joint-Output-Observation-Consistency
Joint-Partially-Observable-Strict-Output-Control-
Consistency
Joint-Strict-Output-Control-Consistency
Joint-Unobservability-and-Unique-Controllability
Joint-Unobservable-Uncontrollable-Prefixes-of-
Observability
Multi State Projected String Split
Nonblocking Robust Supervisory Control
Nonblocking Robust Supervisory Control
Output-Control-Consistency
Output- Observation-Consistency
Partially-Observable-Strict-Output-Control-Consistency
Robust Supervisory Control
Reachability Tree
Ramadge-Wonham
Single-Control-Event Algorithm
Strict-Output-Control-Consistency
Single State Projected String Split
Uncontrollable-Exiting-Transitions Algorithm
Unobservability-and-Unique-Controllability
Unobservable-Uncontrollable-Prefixes-of-Observability

IX

List of Figures

1.1 A flexible manufacturing system, consisting of two machines

and two buffers 11

2.1 If ker g < ker f, a unique map h : Z ?—> Y exists and / is said

to factor through g 20

2.2 An automaton G with unobservable transitions denoted by dashed

lines 27

2.3 Observer automaton G for model G in Fig. 2.2 28

2.4 General overview of a hierarchical supervisory control system . 37

2.5 OCC property is violated at state 3; silent paths d.a.b and c.b

which reach the vocal state 3 and generate the same output r

are respectively controllable and uncontrollable 40

2.6 OCC property holds by splitting state 3 and generating control-

lable (rc) and uncontrollable (ruc) copies of the output r. . . . 40
2.7 Nodes 5 and 6 are partners and thus disabling T1 and T2 are not

independent from each other 43

3.1 If ker (Pio) < ker(Phl ° ?), then map ? exists 47
3.2 (a) Factorization Property (3.1) does not hold and Proposition

3.3 is not ensured; (b) Factorization Property (3.1) and Propo-
sition 3.3 both hold. 49

3.3 Motivational example for UUC property: Event a cannot be

disabled independently. 56

3.4 Motivational example for UUPO property: Event a cannot be

disabled independently 58

3.5 Motivational example for PO-SOCC property: Event a cannot

be disabled independently 59

3.6 PO-SOCC property inspiration, (a): two branches in reacha-
bility tree of Gi0, (b): corresponding projected branches with
common segments in reachability tree of Gi0 60

3.7 Proposition 3.26: if (a): states n\ and n<¿ are partners, (b):
states C1 and q<i will be P-partners 62

3.8 Automaton G¡0 with unobservable transitions denoted by dashed
lines and outputs A and B 63

3.9 States enclosed in shaded area should be vocal so that Gi0 is

UUC, UUPO and PO-SOCC 65

3.10 Proposition 3.29: S1 and S1 are the largest vocal prefixes respec-

tively of s and s' whose natural projections P/0(si) = Pio(s[) =
S' are the same. If (Gi0, P¡0, #)-observability is violated, then
nodes corresponding to saS3 and s!as3 must be P-partners. . . 66

3.11 Final model Gi0 after satisfying properties UUC, UUPO and
PO-SOCC. Colored states have been assigned ?ß?? outputs. . . 73

3.12 Final high-level model Ghl 73

3.13 Controllable and observable specification Ehi at the high-level 74
3.14 Si01 Gi0: System under supervision which is hierarchically con-

sistent with Ehi in Fig. 3.13 74

3.15 Gh is UUC, UUPO and PO-SOCC , . 74

Xl

3.16 High-level model Ghi which corresponds to model Gi0 in Fig.
3.15 74

3.17 Model Gi0 which violates the Factorization Property in Case
(3): The shaded areas are vocalized such that unobservable-
controllable transitions are isolated 89

3.18 The shaded area in Fig. 3.17 has been assigned proper outputs. 89
3.19 High-level model Ghi which is obtained from Fig. 3.18 90
3.20 Logical ordering for satisfying Factorization Property and PO-

SOCC property 102

3.21 Low-level model GÎO: Shaded states are vocal 104

3.22 Observer automaton Gi0: Shaded states are P-vocal 104

3.23 High-level model Ghi 104

3.24 PO-SOCC(C0) satisfies the PO-SOCC property. Shaded states
have been vocalized by the PO-SOCC algorithm 106

3.25 FPoPO-SOCC(Q0) satisfies the PO-SOCC property and Fac-
torization Property. Shaded states have been vocalized by the
FP Procedure 107

3.26 SCEoUEToFPoPO-SOCC(G;o) satisfies the PO-SOCC prop-
erty, Factorization Property, UUC and UUPO properties. Shaded

states have been vocalized by the SCE and UET algorithms. . 108
3.27 Final high-level model Ghi. Unobservable events are shown by

dashed lines 108

4.1 HRSC problem configuration with two models 110

4.2 Gu and G;,2 satisfy the SOCC condition individually but the
model Gi0, which describes the union of them, does not 119

4.3 Moore automata models (a): Gi and (b): G2 which are neither
Jointly-SOCC nor Jointly-OCC 125

xii

4.4 G10 = G1 U G2 which is neither SOCC nor OCC 125

4.5 Gi0 = G1 U G2 has been modified to be SOCC 126

4.6 Modified Moore automata Gi = Gi0 x G\ (a) and G2 = Gi0 ? G2
(b) are Jointly-SOCC. . 126

4.7 High-level models (a) Gh,i and (b) Ght2 127
4.8 High-level system under supervision (a) E^x and Cb)Eh2 ¦ ¦ ¦ 127
4.9 The systems under supervision at the low-level (a) Si0 /G\, (b)

Sio/G2 : 128

5.1 Two models G/,i (a) and G/)2 (b) which are individually PO-
SOCC 148

5.2 Union model Glo = Gu U Gu which is not PO-SOCC 148
5.3 Observer automaton G;0 which corresponds to Gi0 148

6.1 A flexible manufacturing system, consisting of two machines
and two buffers 156

6.2 Master controller vs. recipe controllers 157

6.3 General performance of Adachine 1 without considering the in-
teractions within the FMS 158

6.4 Ml: Machine 1 behavior in Normal mode 159

6.5 M2: Machine 2 behavior in Normal mode 160

6.6 General performance of a Buffer without considering the inter-
actions within the FMS 161

6.7 BufA handles product A transfers. . . .- 163

6.8 BufB handles product B transfers 163

6.9 SpecA: product A recipe in Normal mode 164

6.10 SpecB: product B recipe in Normal mode 164

xiii

6.11 EnbA: Permitted events for product A in Normal mode; EnbA =

S - {Feed-A-M2} 164
6.12 EnbB: Permitted events for product B in Normal mode; EnbB =

S - {Feed-B-Ml, BOI} . 164
6.13 Ml Fault: Machine 1 behavior in Faulty mode; dashed lines

indicate the occurrence of the fault 167

6.14 SpecAFault: product A recipe in Faulty mode. Dashed lines

indicate the occurrence of the fault 168

6.15 SpecBFault: product B recipe in Faulty mode. Dashed lines

indicate the occurrence of the fault 169

6.16 EnbAFault: Permitted events for product A in Faulty mode;

EnbAFault=S - {Feed-A-M2} 169
6.17 EnbBFault: Permitted events for product B in Faulty mode;

EnbBFault=E - {Feed-B-Ml, BOI} 169
6.18 Ghi^normai- High-level model at Normal mode 173
6.19 Ghi jauit'- High-level model at Faulty mode 173
6.20 Ehi,normal· High-level specification at Normal mode 174
6.21 Ehi, fault'· High-level specification at Faulty mode 174

XlV

List of Tables

6.1 Event Definition and Tasks of the system 162
6.2 Change of controllability of events in HRSC problem 172
6.3 The number of the states and transitions for the implementation

of low-level and high-level supervisors 176

6.4 The number of the states and transitions in low-level and high-
level models 177

xv

Chapter 1

Introduction

Discrete-event systems (DES) represent an abstract level of modeling in which
instead of the continuous-variable dynamics of the interactions among the com-

ponents in the system, a simplified form of dynamics dealing with the order of

occurrence of such interactions is of importance. In other words, the order of

occurrence of actions (events), regardless of the continuous-variable dynamics
with which they happen, and the state to which the system reaches as a result

of each action, regardless of how long the system stays there, are the two main

characteristics of DES models. Therefore, in a DES model the state of system

evolves to another state following the occurrence of an event.

Different methodologies for DES modeling and its related supervision issues

have been suggested in the literature. In particular, robust supervisory control

(RSC) has been studied for dealing with cases in which the plant model or the
specification change due to the conditions under which the plant is operated

or due to the existence of uncertainty in the models.

The computational complexity of supervisor synthesis is polynomial in the

number of system states which in turn increase exponentially with the number

of the components of system. Gohari and Wonham [18] showed that the prob-

1

lem of supervisor synthesis is NP-hard and it is unlikely that any algorithm
can be found to circumvent state space explosion (which is exponential in the
number of system components). Therefore, structured frameworks in which

supervisor synthesis is performed in a horizontal or vertical fashion rather

than in a central fashion, have gained considerable attention in the literature.

Modular (also decentralized) and hierarchical supervisory control methodolo-
gies exercise horizontal and vertical modularity in supervisor synthesis. Two

important advantages to be gained by exploiting such structured supervisor

synthesis are reduced computational complexity in supervisor synthesis and a

more manageable and transparent design and interface. In this thesis, which

is built on the Ramadge-Wonham (RW) supervisory control theory of DES,
we solve an RSC problem in a hierarchical framework. A review of the related
works follows.

1.1 Supervisory Control of Discrete-Event Sys-

tems

Discrete-event systems represent a wide range of systems in which the dynam-
ics of the system is discrete in time and value and the system is event-deriven.
Consequently dynamics of DES systems can be described by the sequences of
events which are generated asynchronously. Examples of DES systems can
be found in automation and management systems including manufacturing
systems, chemical plants, power plants and transportation systems. The man-
agement of such systems requires the knowledge of the state of system and the
next set of possible actions at each state. Petri nets [24, 34] and Automata
[41, 57] are among the favorite DES models. Max-Plus Algebra [2, 14] is also
another methodology for modeling a type of DES. In this thesis we have chosen

2

automata to model DES. Two types of actions (events) are defined in DES:
events which can be disabled and are called controllable (e.g. firing an engine),
and events which cannot be disabled and are called uncontrollable (e.g. a sen-

sor measurement output). It is usually desired to restrict the system behavior
through disabling controllable events so that the dynamics of system remains
within certain patterns of event evolution. In Automata Theory, the behav-
ior of system is represented by the language of an automaton consisting of the
sequences of events generated by the system. Therefore, controlling or restrict-
ing the behavior of the system means to requiring the system to talk a specific
language. In such framework, specifications which are the requirements for or
the demands from the system, are expressed in terms of languages over the
event set of the system. To meet the specifications, controllable events in the
system should be disabled (whenever necessary) so that the behavior of the
system under supervision is restricted to either the specification language or
a subset of it. The task described here is simply referred to as supervisory

control.

The RW supervisory control theory [41] was the first control theory for DES,
modeled by Automata Theory. The supervisory control problem defined in [57]
is optimal in the sense that the supervisor is minimally restrictive. In other
words, the controlled system is the largest possible sublanguage of the spec-
ification which can be achieved under supervision. The original supervisory

control problem in [41, 57] is a centralized problem. Nevertheless, numerous
extensions of [57] which deal with uncertainty, exponential state explosion and
partial observation have been studied in the literature. We will review some
of these extensions here.

3

1.2 Robust Supervisory Control
A system whose dynamics change due to the occurrence of fault or due to new
conditions it is operated under which, requires a supervisor which is robust

with respect to the model uncertainty or changes. Fault recovery [44] is a
problem that can be dealt with using robust supervisory control. In a fault re-
covery problem, the system has a normal mode and several faulty modes, and

in each mode a certain set of requirements are expected from the system (e.g.
being deadlock free). Then, the main goal will be to have a single supervisor

that regardless of the current mode of the system (i.e. normal or faulty) can
ensure the operation of the system satisfies all the requirements.
Different approaches to robust control problems have been explored. Few re-
search has been done on robust supervisory control in Petri net framework.
[10] presents a robust supervisory control for production systems in Petri net
framework to avoid deadlock and achieve liveness in the presence of multiple
resource failures. In the framework of finite state machines represented with
automata, robust supervisory control has extensively been studied. In one
category of RSC problems, the robustness is defined in terms of the ability
to reach a set of states [11, 35, 36]. There, the RSC problem focuses on re-
silience or error recovery properties of the (fault-tolerant) system. Specifically,
the controlled system should return to a specified set of states E after being
subjected to failure or error (E-stability). A second approach to robustness
was initiated by Lin [30] in which a supervisory control problem is solved for
a finite set of plants Gi (i — 1, · · · , n). [30] considers a case that the exact
model of the plant is not known precisely; however, it is kno\vn that the plant
model is among a finite set of possibilities. The problem in [30] specifies that
whatever the plant is, the behavior of the system under supervision should not
change, i.e. the specification is the same for all of the plants G,. Furthermore,

4

nonblocking is not considered. Takai [48] extends [30] to the case that the
specification for a plant Gi (i = 1, · ¦ · , n) is obtained as a subset of Gj 's closed
behavior and another unique language E. Bourdon et al. extends [30, 48] even
further and presents an RSC problem [4] for a finite set of plants where each
plant is required to satisfy its own specification. Within the aforementioned

category, [4] solves a nonblocking RSC (NRSC) problem in its most general
form, i.e. an NRSC problem for a finite set of pairs (plantfi], specificationfi])

(¡i = 1 . · · n). [4] also gives an algorithm for finding the maximally permissible
solution of the NRSC problem. However, all events are assumed to be ob-

servable in [4]. Saboori and Hashtrudi-Zad [45] extend [4] to include partial
observation. The authors in [45] also showed the necessary and sufficient con-
ditions that guarantee nonblocking in RSC problem.

Cury and Krogh [12, 13] initiated another type of RSC problem where for a
given nominal model of the system dynamics, a controller is synthesized that
maximizes the set of plants for which the closed-loop behavior is within speci-
fied bounds. This family of plants should necessarily include the nominal plant
model. Other RSC problems in DES framework which more or less fall in the
above categories include the works of [22, 47, 26, 39, 37]. The uncertainty in

[47] has been associated with the internal and unobservable events denoted by
¿^-transitions. This is comparable with the results in [4, 45] where uncertainty
results from the different modes under which the system operates. In this the-

sis we have chosen the RSC problem of [4, 45] as the basis for our Hierarchical
RSC problem. We will show how the RSC problem of [4, 45] can be solved in
a hierarchical framework. Next, we review hierarchical supervisory control.

5

1.3 Hierarchical Supervisory Control
To mitigate exponential state explosion in DES, and hence decrease the com-
putational complexity of supervisor synthesis, and to construct a consistent
design structure that captures the component-based structure or modular as-

pect of the system, modular [43, 58, 55, 23] and hierarchical supervisory control
[5, 7, 27, 28, 29, 52, 59, 49, 20] have been widely studied in the literature.
Supervisor synthesis in both of modular and hierarchical approaches is done
in a structural fashion rather than in a simply centralized fashion. In brief,

in structural supervisor synthesis, a system is broken into several modules (in
modular control) or levels (in hierarchical control) which interact with each
other. Then, supervisor synthesis is performed in modules or certain levels

where later a coordinator or a translation map relates different supervisors in
different modules or levels with each other to yield a overall consistency in the
system. In this thesis, we have shown how an RSC problem can be solved in

a hierarchical framework. Namely, we have used the hierarchical approach to
solve a robust supervisor synthesis problem. A review of different hierarchical

approaches follows.

[49] and [20] have studied hierarchical supervisory control in Petri nets. [49]
proposes a hierarchical modeling in which the assembly planning level rep-

resents the high-level and the control planning level represents the low-level.

The tasks at the high-level are defined in terms of assembly parts while they
are defined in terms of production system resources at the low-level. [49] gives
the condition that should be satisfied so that the hierarchical system achieves
liveness, however it has not addressed the control and resource allocation prob-

lems. The modeling in [49] is, in part, comparable to the work of [59] in au-
tomata theory, although that of [59] has been given in a more general frame-
work and addresses supervision. In [20], ICs (Integrated Components) which

6

consist of sensors and actuators form the low-level and agents which consist

of a number of ICs, have their own controller and have communication units

form the high-level (e.g. robots and automated guided vehicles). Component
assembly modeling has been studied with Object Oriented (00) techniques.
Two perspectives have been studied: static plant modeling and dynamic plant

modeling. Class diagram from Unified Modeling Language (UML) has been
employed for static modeling. On the other hand, dynamic plant modeling

describes the internal behavior of components which is represented by Petri

nets. Functional logic issue has been addressed by using predicate logic and

control synthesis has been discussed for both the low-level and high-level. The

agents communicate with each other (if necessary) through the input and out-
put places which are added to the model and the the conditions for achieving
liveness at the high-level and low-level have been derived. The work of [20] is
developed for manufacturing systems and uses a hierarchical modular design
comparable to those based on automata theory [46, 15].
Hierarchical supervisory control (HSC) has been studied using finite-state au-
tomata from different viewpoints: top-down design, bottom-up design, state

aggregation and recently interfaced-based design. The first category of hier-
archical frameworks is the top-down design which is largely influenced by the
Statecharts proposed by Harel [21]. A statechart is a medium for state aggrega-
tion in which a finite state machine is characterized with two main capabilities:

orthogonality (concurrency) and hierarchy. A key concept is superstate which
is a state that consists of substates. The relation between a superstate and its

substates defines a hierarchy in the system. Furthermore, the concurrency is

modeled using superstate that are formed from parallel product of a number of
components. In this top-do\vn design, the system model is recursively defined
from the top (highest level) to the bottom (lowest level). Brave and Heymann

7

[5] proposed a hierarchical supervisory control in this setup. Marchand and
Gaudin [16, 33, 17] and Ma and Wonham [32, 31] later continued this work.
Wang [50] introduced the state-tree structure (STS). A STS is a tree of states
where each superstate is expanded in either AND or OR substates.

In the context of RW supervisory control theory, [59] proposes a bottom-up
hierarchical approach in which the low-level behavior is summarized and re-

ported to the high-level through a causal reporting map. Here, it is assumed

all plant events are observable. A procedure is also proposed to refine (if
necessary) the information sent to the high-level so that the plant satisfies a
Strict-Output-Control-Consistency (SOCC) property. It is shown that SOCC
guarantees hierarchical consistency. Loosely speaking, hierarchical consistency
means that the behavior of the plant under supervision, as reported to the
high-level, matches the expectation of the high-level supervisor.
Extensions of the results of [59] especially to include nonblocking property and
time are discussed in [52, 53]. The authors in [52], in a more general framework,
have derived sufficient conditions under which the bottom-up hierarchical ap-
proach of [59] is nonblocking. The important observer property, introduced in
[52], together with the consistency between the marked states at the low-level
and high-level ensure the nonblocking property at the high-level carries over
to the low-level. One important aspect of the observer property which was
later studied in [51, 54] is that if the reporting map is observer, the state-size
of the high-level model would be smaller than that of the minimal canonical

representation of the low-level model. This implies if the reporting map is ob-
server, the computational complexity of supervisor synthesis decreases at the
high-level. [19] has presented a reachability tree-based algorithm for modify-
ing the reporting map so that it becomes observer. A more efficient algorithm
which is based on automata and congruences is given in [54]. The interesting

8

observer property in cases where the reporting map is a natural projection,

has further been investigated and used in [15, 46, 40] due to its potential to
reduce computational complexity.

Including partial observation in the bottom-up hierarchical framework has

been studied in [25]. There, it is shown that hierarchical consistency can be
achieved if (i) the high-level specification is controllable and ?-observable with
respect to the high-level model and (ii) the supremal controllable sublanguage
of the inverse image of high-level specification is observable with respect to

low-level model. ?-observability follows from observability with respect to

the high-level models. No course of action has been provided if either of the

two conditions above are not met. In other words, it is not known how the

H-observability of the high-level specification with respect to the high-level

model and the observability of the low-level supremal controllable language

with respect to the low-level model can be ensured at the same time.

State aggregation is the third type of hierarchical framework which was intro-

duced by Caines et al. [6, 8]. There, the hierarchy is achieved by aggregating
the states of the model. Controllability is also considered in terms of the ex-

istence of the paths between the states. The last and most recent hierarchical

approach is found in the works of Leduc, Lawford and Wonham [27, 28]. In
their master-slave approach, the high-level system requests services from the
low-level system through an interface, modeled as DES. Leduc has extended
this work to the parallel case in which more than one low-level model exist.
The authors in [28] have defined a hierarchical consistency, referred to as level-
wise consistency, which can be done separately for each low-level model.

[38] also presents a hierarchical framework for a system which has uncertainty
in modeling. [38] considers one high-level specification for the entire system,
where, and in contrast to [38], we assume each plant has its own specifica-

9

tion. Furthermore, we present sufficient and necessary conditions for achiev-

ing Joint-SOCC property which ensures hierarchical consistency in the system
consisting of several models. Prom the modeling point of view, our proposed
framework has one more advantage over that of [38]; we exploit automata
structure to present our results and models, however, the results in [38] are
presented on a language basis and it is not known how a control structure is

guaranteed for the system which consists of several model (Joint-OCC prop-
erty in Chapter 4).

1.4 A Motivational Example

Figure 1.1 shows a flexible manufacturing system (FMS) which consists of two
machines and two buffers. The machines work independently and can be run
in parallel. Machine 1 can perform Operations 1 and 2 and Machine 2 can

perform Operations 2 and 3. Workpieces are fed into the machines through two
feed-lines. When a machine completes a process it will deposit the workpiece to
either a buffer or the conveyor depending on the product recipes. The buffers
have a capacity of one and they have access to both machines. Therefore, a
transfer from one machine to another is possible using buffers. Three product
recipes A = OPl + OPS + 0P2, B = OPZ + OP2 and C = OPZ + OPl are

available. Suppose due to safety regulation (or other planning considerations)
it is required that after two consecutive production of A, one B and finally
one C be produced. Furthermore, suppose the system is prone to fault and
Machine 1 might fail to perform Operation 2 at any time. In order to start
the process, the FMS should receive a start signal. The system could also be
shut down at any time (stop signal). It is required that the system satisfy the
safety regulation in both the normal and faulty modes, i.e. after every two A's,

10

¦<M>-
Buffer 1

Feed-line Machine 1

ÖP1
OP2

Machine 2

0P2
0P3

Feed-line

Œ Conveyor D
<M>

Buffer 2

Figure 1.1: A flexible manufacturing system, consisting of two machines and
two buffers

one B and one C are produced, and the maximum capability of the machines
be used at any time (i.e. machines can be employed simultaneously). Finally
a repair action is possible only when the system has stopped.
In Chapter 6 we will show how this problem can be solved as an HRSC problem,
resulting in a transparent two-level supervisory control.

1.5 Complexity Issues

One main advantage of hierarchical supervisory control is its potential to re-
duce the computational complexity of supervisor synthesis. Wong [54] notes
that in a hierarchical problem the high-level model can be obtained as the nat-

ural projection of a low-level Mealy model once the outputs at the low-level
are assigned to transitions. Given the fact that natural projection could result
in an exponential state explosion in the worst case, it is concluded that the
state-size of the high-level model might increase exponentially, in the worst
case, in contrast to our primary intention to reduce computational complexity

11

in the system. However, [54] has shown if the reporting map is observer, the
state-size of the high-level model will be less than or equal to that of the min-
imal canonical representation of the low-level model. This implies that if the
reporting map is observer, the computational complexity of supervisor syn-
thesis will not increase at the high-level. Therefore, it can be concluded that

the state-size of the high-level model, hence the high-level supervisor synthesis
computational complexity, in the worst case is exponential and in the best case
is less than or equal to that of the low-level model. It should be noted that,
the observer property is a sufficient condition in achieving the best case above.
In other words, a high-level model, with a state-size smaller than that of the
low-level model, might be achieved even if the reporting map is not observer.
While the implications of the observer property is that transferring the low-
level problem to the high-level does not increase the complexity, in particular,
the adoption of a hierarchical approach has reduced computational complexity
significantly. For instance, in the case study given in [28] the state-size of the
final (high-level) model decreases by an order of eleven. In the simple case
study we present in Chapter 6 the state-size of the high-level model is less
than the size of the low-level model by an order of three.

1.6 Thesis Objectives

In this thesis we develop a bottom-up hierarchical solution to the RSC problem
of [45]. The objective is to derive the conditions which ensure an RSC prob-
lem can be solved in a hierarchical framework, specifically in the bottom-up
approach of [59] and under partial observation. The primary motivation for
this work has been the RSC problems which are encountered in fault recovery
problems. The importance of the recently investigated fault recovery prob-

12

lems in DES and the computational complexity of RSC problem motivates

the development of a framework which can capture the structure of the RSC
problem and reduce the supervisor synthesis computational complexity.

The RSC problem in [45] is formulated for a finite number of plant models,
each matched with a specification. The goal of solving an RSC problem is to
find a unique supervisor that regardless of which plant is currently active, it
can disable events to keep the overall behavior of the system within the bounds
set by specifications. The task of such supervisor becomes more crucial when
the plant models share sequences of events and where some of these sequences
need to be disabled to meet various specifications in the system. The super-

vision of such systems, due to the state-size explosion problem, is not usually
easy.

The bottom-up hierarchical approach that we have used in this thesis can also
be seen as a medium which can capture the natural hierarchy that one can

find in or attribute to the behavior of a system. For example, a sequence of
events which does a certain task is referred to by the task it does, rather than

by the events it consists of. Therefore, if a certain task is done in different
ways, i.e. different sequences of events perform the same task, then, it will
be clearer to refer to the performed task rather than the different patterns of
events which can do the task. Therefore, as another benefit, using a hierar-

chical frame\vork, we can expect to gain a more user-friendly and transparent

design in the system.

1.7 Thesis Outline and Contributions

The contributions of this thesis are in extending the bottom-up hierarchical

framework of [59] to include partial observation and in development of a hier-

13

archical solution for the problem of robust supervisory control. The outline of
the thesis is as follows.

Chapter 2 reviews the preliminary mathematics and the theory of supervisory
control which we use throughout the thesis.
Chapter 3 extends the bottom-up hierarchical framework to include
partial observation. To study event observability at the high-level, we have
introduced an output-observation-consistency condition which is the dual of
the output-coñtrol-consistency of [59]. We show that the reporting map of the
system should satisfy a feasibility condition which we refer to as Factoriza-

tion Property. This condition is necessary for the construction of a reporting
map that respects the observation limitations of the low-level. Specifically,
it implies that low-level sequences with the same natural projection (look-
alike sequences) must be reported and observed the same by the high-level
supervisor (i.e. they must have the same natural projection at the high-level).
We have also derived three conditions that ensure hierarchical consistency un-
der partial observation. Three conditions that prevent unintentional disable-

ment are Unobservability-and-Unique-Controllability (UUC), Unobservable-
and-Uncontrollable-Prefixes-for-Observability (UUPO) and Partially-Observa
ble-Strict-Output-Control-Consistency (PO-SOCC). The PQ-SOCC property
can be regarded as the extension of SOCC property [59] to the case of partial
observation. If these conditions are satisfied, it is ensured that every high-level
controllable and observable specification can be implemented at and recovered

from the low-level. At the end of Chapter 3, we show how by proper modifi-
cations in the low-level models, the Factorization Property, UUC, UUPO and
PO-SOCC can be ensured.

Chapter 4 introduces the hierarchical robust supervisory control prob-
lem. We propose a framework for solving the RSC problem in a hierarchical

14

fashion. We show in a hierarchical RSC (HRSC) problem, the reporting map
should meet a feasibility condition with respect to all system models. Fur-
thermore, we show how hierarchical consistency is achieved in a system with

multiple models (robust hierarchical consistency). To achieve robust hierarchi-
cal consistency, we have shown the plant models should satisfy a Joint-Strict-
Output-Controllable-Consistency (Joint-SOCC) property, as the extension of
SOCC property [59] to the case of robust problem.
Chapter 5 combines and links our previous results in Chapters 3 and 4 with
each other. In Chapter 5, we solve HRSC problem under partial observation

(HRSCPO). Specifically, we have shown how robust hierarchical consistency
property can be achieved under partial observation. In order to do so, we show
that it suffices to combine PO-SOCC property, which extends SOCC property

[59] to the case of control under partial observation in Chapter 3, with Joint-
SOCC property, which extends SOCC property to RSC problem in Chapter 4.
This results in a more general property that is called Joint-PO-SOCC prop-
erty.

Chapter 6 presents a case study. The theory in Chapter 4 is illustrated through
a fault recovery problem in a flexible manufacturing system (FMS) consisting
of two machines and two buffers. There, each machine is able to do several

tasks and a product is a combination of a subset of the tasks that the system
can perform in a certain order. Furthermore, the machines are prone to fault,
the process starts in the beginning by an operator and can be shut down by
the operator at any time. It is required that the system produce two products
A and B and keep the production order in the faulty condition. We show how
solving an HRSC problem will be a natural and transparent solution for the
automation of the above manufacturing system.

Chapter 7 summarizes our results and proposes new research directions which

15

can further extend and improve our results in this thesis.

16

Chapter 2

Background

Advancements in computerization and the trend towards process automation

in industry, for years, have demanded a mathematical platform which can help
experts and researchers in industry to come up with comprehensive and reli-
able tools for automation and supervision. In these applications, the type of
the signals which is used is discrete both in time and value, e.g. acknowledge
signal, start signal, shut-down signal. Here the commands, issued at some
point in the system, or the actions which take place in the system are referred
to as events. Upon the occurrence of any event, the system reaches a new state
or keeps its current state unchanged. Therefore, as the dynamics of the sys-
tems evolves (i.e. certain events occur in the system) the state of the system
changes from one to another or remains unchanged. This implies that the dis-
crete behavior of a system can be modeled by a pattern of sequence of events.
The automata theory is one of the most comprehensive and useful tools which
enables us to capture the behavior of discrete-event systems as sequences of
events (actions) and represent that behavior in a compact and computationally
efficient form. Every automaton generates a language which in this concept
would represent the behavior of the system. A language consists of finite or

17

infinite set of sequences of events. In the theory of supervisory control, the
system behavior modeled as languages can be restricted or (technically) con-
trolled. The control action over the language of a system is exercised through
the enablement and disablement of a subset of events which are controllable.

Different methodologies have been developed so far for this control or super-
vision action. In the following sections of this chapter, we first review useful
concepts from algebra and automata theory and then we will study the two
main control frameworks and methodologies which are relevant to the subject
of this thesis.

2.1 Algebra

A short review of the set theory follows. The reader is referred to [3, 56] for
more details. Let X be a set. A binary relation R : X ?—> X which can also
be considered as a subset of X ? X is said to be a partial order if it is

• reflexive: (Vx G X) xRx;

• transitive: (Vx, y, ? G X) xRy and yRz ==> xRz;

• antisymmetric: (Vx, y G X) xRy and yRx => ? = y

where by ?Ry we mean R(x) = y. A partial order R is denoted by <. We refer
to the pair (X, <) as a poset (or partially order set). Let AT be a nonempty
set, and ECXxXa binary relation on X. E is an equivalence relation if
it is

• reflexive: (Vx G X) xEx;

• symmetric: (Vx, x' G X) xEx' =F· ?' Ex;

• transitive: (Vx, ?', ?" G X) xEx' and x'Ex" ==> xEx".

18

If E is an equivalence relation and xEx' we write ? = x'(mod E). Furthermore,

for ? € X, the set [x] denotes the subset of elements x' which are equivalent
to x:

[x] = {x' eX \ x'Ex}.

Each subset [x] is called a coset (or equivalently class) of ? with respect of the
equivalence relation E. It can easily be shown that any two cosets are either
the same or disjoint.

Let V be a family of subsets of X induced by a in some index set A:

V= {Ca\ae A}, CQ C X.

The family V is a partition of X if each subset Ca is nonempty, each ? belongs
to some C01 and subsets with distinct indices are pairwise disjoint. The subsets
Ca are the cells of V. Therefore, it can easily be shown that the cosets [x]
are a partition of X. Inversely it can be shown that every partition V of X
corresponds to an equivalence relation Soni which is defined properly as:

xEy iff (3a G A)? G Ca and y G Ca.

Then let S(X) or simply S denote the class of all equivalence relations on
(partitions of) X. A partial order < can be assigned to S as follows:

[VE1, E2 G S)E1 < E2 iff (\fx,y G X)xE}y => xE2y.

Here E] is said to be finer than E2. If E1 < E2 then every coset of Ex will be
a subset of some (and therefore exactly one) coset of J^2-
One important equivalence relation on S(X) that we refer to in this thesis is
the equivalence kernel of a function / : X 1—> Y which is denoted by ker f

19

and is defined as follows:

(Vx, x' E X)x = x'(mod ker f) iff f(x) = f(x').

Lemma 2.1. [3] Suppose f : X ?—>Y and g : X ?—> Z and let ker g < ker f.
Then there exists a unique map h : Z ?—> Y such that f = hog. Here f is said
to factor through g (see Figure 2.1).

ker g < ker f

>y

Figure 2.1: If ker g < ker f, a unique map h : Z <—> Y exists and / is said
to factor through g.

2.2 Automata Theory

A deterministic automaton is a 5-tuple G = (Q,E,5,q0,Qm) where Q is the
set of states, S the set of events, d : Q ? S ?—> Q the partial transition
function, q0 the initial state and Qm the set of marked states. S is the event
set and assumed to be nonempty and finite. S is also called an alphabet. In
our notation, we will use S+ to denote the set of all finite sequences of symbols
(strings) over S. We also use S* = S+ U {e}, where e ^ S is the empty string.

Definition 2.2. Catenation of two sequences s andt is defined as cat(s,t) =
st.

Definition 2.3. A language over alphabet S is any subset ?/S*.

The language L(G) Ç S*, the closed behavior of G, [56] is defined as
L(G) = {s e S*|(?>(90,5)!} where ô(q0,s)l means 5(q0,s) is defined. L(G) in
fact represents the dynamics of the system modeled by G. On the other hand,

20

the marked language L7n[G) Ç L[G) which is the set of sequences which end
in Q7n is defined as L7n[G) = {s G L[G)\ô[q0,s) G Q7n). L771[G) is considered
as the set of sequences which flag the accomplishment of certain tasks in the

system denoted by the states of Q7n.

Outputs can be attributed to transitions or states of an automaton such that

upon executing any event or reaching a state of that automaton, an output

is generated. An automaton G is a Mealy automaton if its transitions are

assigned outputs and is called a Moore automaton if the outputs are assigned
to its states.

A Mealy automaton is a 7-tuple G = [Q1T1^, d, ?, q0, Q7n) where Q, S, d,
q0 and Q7n are defined as before, T is the set of outputs and ? : Q ? S ?—> T

is the output map satisfying the following

{?(?,s)£?, ií ô[q,a)\;
undefined, otherwise.

Therefore, different transitions reaching a state q' might produce different

outputs. On the other hand, a Moore automata generates a unique output at
each state:

A Moore automaton is a 7-tuple G = [Q, S, T, d, ?, q0, Q7n) where Q, S, d,
q0 and Q7n are defined as before, T is the set of outputs and ? : Q ?—> T

is the output map. Mealy automata can be converted into Moore automata

and vice versa [9], The properties given in the following are general and valid
regardless of associating outputs to the model or not.

Definition 2.4. For every s G S*; the set pre[s) = {s' E E*\3s" G S* : s =
s's"} denotes the prefixes of s. If s' G pre[s) we write s' < s.

Definition 2.5. Let L C S* be a language. The prefix-closure of L is

21

defined by L — {s' G E*|3s G L : s' < s). L denotes all sequences which have
an extension in L.

Definition 2.6. An automaton G is nonblocking if we have Lm(G) = L(G).

If there is a path s from the initial state q0 to some state q, i.e. g = 6(q0, s),
q is said to be reachable from q0 or simply reachable. We obtain the reachable
part of an automaton by deleting the unreachable states and the transitions
which are attached to them. If there is a path s from the state g to a marked
state, i.e. S(q, s) G Qmi we say q is coreachable to Qm or simply coreachable.
We can obtain the coreachable part of an automaton by deleting the states
which are not coreachable. Coreachability is closely related to the concept of
blocking. An automaton is nonblocking if and only if every reachable state is
coreachable.

Definition 2.7. An automaton G is said to be trim if its states are reachable
and coreachable.

Let trim(G) denote the trim part of G. For every automaton G = (Q, S, d, q0
, Qm) with the event set S which marks the language Lm(G), we can build an-
other automaton Gco which marks the language S* — Lm(G). Automaton Gc0
is called the complement of automaton G with respect to the set S.
Several operations such as intersection, synchronization and union can be per-
formed on languages. Such operations can be performed on automata which

mark these languages. These operations are known as compositional opera-

tions. We review some of them which are used in this thesis.

Definition 2.8. Consider two automata Gi = (Qi} Ej, ¿¿,Çi,o, Qi.m) (* = I5 2).
The Product of Gi and G2 is shown by G1 x G2 and is defined as the reachable

22

part of the automaton (Q,E,ô,q0,Qm) where

Q = Qx ? Q2

E = E1HE2

<7o = (9l,o, 92,o)

Qm = Qi,m X V2,m

and partial transition function d : Q ? S 1—? Q zs defined as

(<5?(9?,s),?2(<72,s)), ?/5?(??,s)! and 52(ç2,a)!;
<5((9?,?2),s) = <((2.1)

undefined, otherwise.

The product Gi ? G2 represents the common behavior of two systems

Gi and G2. In can easily be shown that L(Gi x G2) = L(Gi) ? L(G2) and
Lm(Gi x G2) = L7n(Gi) ? L7n(G2).
Natural projection is another useful operation.

Definition 2.9. Let S be a set and E0 Ç E be a subset of it. The map

P : S* 1—> E* is called the natural projection and is defined as follows.

P(e) = e

s, if s e E0;
?(s) = (

I e, otherwise.
P(sa) = P(s)P(a) for s G E*, s <? E. (2.2)

The inverse natural projection denoted by P~l : E* 1—> 2S is defined as
follows. For a sequence t E E*

P-1W = [S G E*\P(s) = t}. (2.3)

23

While the product of two automata represents the common behavior of two
system's components, it is usually the joint behavior of two system's compo-
nents which is of importance in modeling the behavior of the total system.
In joint operation, two components synchronize on common events only and
operate independently when performing their private (uncommon) events. A
mathematical definition for parallel behavior follows.

Definition 2.10. Let Gi = (Qi, Ej, Si,qi.0,Qi,m) (i — 1, 2) be two automata.
The Synchronous product or parallel composition of G1 and G2 is

shown by GiWG2 and is defined as the reachable part of (Q, E, d, q0, Qm) where

Q =

S =

Qo =

Vm

Ql X <?2

E1UE2

(<7l,o,92,o)

Ql,m X Q2,

and the partial transition function d : Q ? E ?—> Q is defined as

(6l(q1,a),ô2(q2,a)), ifaeT,1HE2 and 8i(qx,a)!
and d2^2,s)\;

S((qi,Q2),o) = { (d?^,s)^^, if s E E1 - E2 and <$?(9?,s)!;
(Qi^2(q2,a)), if s G E2-E1 and 52(<72,s)!/
undefined, otherwise.

(2.4)

The first row in (2.4), describes the common behavior (event) of G1 and
G2 which occurs at states in which both automata are able to perform it. On

the other hand, the second and the third row show the independent behaviors

(private events) of G1 and G2 that can occur regardless of the state of the

24

other automaton.

Let Pi : S* t—> S* and P2 : S* ?—> E2* be the natural projections with E1
and S2 as the event sets of Gi and G2 and S = E1 U S2. It can be shown that

L(Gi||G2) is obtained as

L(G1IIG2) = P^(L(G1)) ? P2^(L(G2)).

Next we discuss a procedure for constructing an automaton to generate and

make the union of the closed behaviors and the union of the marked behaviors

of two automata. This operation does not seem to be standard in the literature.

However, in this thesis, we will find it useful in our discussions.

Definition 2.11. Union (U) of Automata: Consider two automata G¿ =
(Qj, Ej, Si, qi,o,Qi,m) (i = 1,2). The union of Gi and G2, denoted by G =
G\ U G2, is the reachable part of the automaton (Q, S, d, q0, Q7n) where

Q = (QiOId1]) ? (Q2ù{d2})-{(dud2)},

S = S??S2,

<7o = (<?l,o,<72,o),

Qm = (Ql,mÙ{di}) X (Q2,mÜ{d2})-{(d1,d2)},

Û denotes the disjoint union operation, d\ and d2 are new labels that do not
exist in Q\ and Q2, and the partial transition function d : Q ? S ?—> Q is

25

defined as

?((9?.92),s) = <

6((q1)d2)ìa) =

S((duq2),o) =

(Si(qi,a),S2(q2,a)), if S1(C1, s)\ and S^q2, s)\;
(5i(qi,a),d2), if only S1(C1, s)\ ;
(duS2(q2,a)), if only 52(q2,a)\;
undefined otherwise.

(5i(gi,a),d2), if d^?,s)\ ;
undefined otherwise.

(duS2(q2,a)), if 82(q2,a)\ ;
undefined otherwise.

Note that L(G) = L(G1) U L(G2) and L171(G) = L771(G1) U L7n(G2). Also
S((qi,o,q2,o),s) = (qud2) if and only if s e L(Gi)-L(G2) and ¿((91,0,92,0), s) =
(di, 92) if and only if s G L(G2) — L(G1). Furthermore, it can be seen that
union operation is associative. Alternatively, G — G1 U ¦ · · U Gn with Gj =

(Qi, E¿,¿í,9j)0, Qi,m), can be constructed as

G = tnm[(GÏ° ? · · · ? Gc°)co] (2.5)

where trim(.) denotes the trim operation.

Definition 2.12. Consider a model G = (Q,E,S,q0,Q) and let E = E0UE1
and P : S* 1—> E* be a natural projection map. The automaton

G = (Q, E0, 5, 9?, Q)

is called the (reachable) observer automaton of G and characterized as
follows.

26

(u)-f->@-9—H@-—q\—><20)-t>>(22)-
i
? s

h^-V{Í9)-f H^]) 9—>^3)
T)-a-H5)-b—MJp-' ^-h->(¿)-b->® a H^

Figure 2.2: An automaton G with unobservable transitions denoted by dashed
lines

Q C 2*2 — {0} ¿5 t/ie síaíe sei and

Co = {q I 3s 6 L(G) : q = 5(q0, s) and P(s) = e}.

The transition function d is defined as follows: For ?? G Q and s G S0,

q2 = <5(<??, s) = {ç2 | 3çi e qx and s G ?_1(s) : q2 = ¿(<7i, s) }.

G generates L(G) = P(L(G)); i.e. it generates the projection of the closed
behavior of G. If a state q is reached in G by a sequence S G S* (<? = 5(q0, S)),
then g would be the estimate of the states of G given observation S. We will
denote this state estimate by est (S) as well. Thus

est(S) = S(q0,S) = {q | 3s' G P^(S) ? L(G) : ç - ô(q0,s')}. (2.6)

Therefore, the partial transition function d in the observer automaton G has
the property that for every S, S' G L(G)

6(q0, S) - 6{q0, S') « est(S) = est(Sf).

27

8

f

Q o

f

O

©—d-KgK-?-?-?a

Figure 2.3: Observer automaton G for model G in Fig. 2.2

Example 2.13. Fig. 2.2 shows an automaton G = (Q, S, 5,çr0,Q) with the
event set S = {a, b, C1 d, e. f g, h} U {a,?,s} and observable events S0 =
{a, b, c, d, e, f, g, h}. Unobservable events have been shown by dashed lines.
The observer automaton G has been given in Fig. 2.3. Each state q{ =
S(q0,S) of G corresponds to a state estimate est(S). Examples include q0 =
est(e) = {0,1}, ç8 = est{e.f) = {16,21}, q9 = est{e.f.g) = {18,20,23} and
çio = est(a.b.f) = {20,23}. This shows the state estimates are not necessar-
ily disjoint as can be seen for est(e.fg) and est(a.b.f). Furthermore, since
est(e.f.g) f est(a.b.f), (2.6) implies e.f.g and a.b.f would reach two different
states in the observer automaton G, namely, states ç9 and ç10.

2.3 Supervisory control of Discrete-Event Sys-
tems

Consider an automaton G modeling a system. The closed behavior of G, L(G),
represents all possible behavior (sequences) which the system can experience.

However, it is often needed that the system's behavior be restricted (by a
supervisor) such that the controlled system's behavior satisfies certain char-

acteristics. In supervisory control of DES, the language of the system under
supervision must be contained in some specification language. Here, the spec-

28

ification language is the desired language which is obtained from the design
requirements. The supervision which is studied in this thesis is language-based;
however, the computations for such supervision are carried out on automata,

representing the languages.

Let an automaton G = (Q, S, d, q0, Qm) describe a plant model. It is assumed
that the event set S can be partitioned into disjoint sets of controllable events

Ec and uncontrollable events Euc as S = Se?S??. The above partitioning
follows from the assumption that only a subset of events (Ec) can be disabled
(and controlled) by supervisor. In the following we give a formal definition of
supervisor. Let

r={7e2s|7^uc}

be the set of control patterns and define a map S : L(G) <—> G. Then S is
called a supervisor for G if for every sequence s G L(G), S(s) is a subset of
S which at least includes S„0 and is enabled after s.

Definition 2.14. A Supervisor S is called admissible if it does not disable
any uncontrollable event.

Admissibility can be regarded as a physical restriction and can be ensured
through the controllability property (to be discussed later). Furthermore, we

use the notation S/G to denote the controlled system which is also called the
system under supervision. The language of the system under supervision, i.e.

L(SfG), by definition is calculated as follows.

(i) e e L(SfG)

(ii) If s e L(SfG), s e S(s), and sa 6 L(G) then sa e L(SfG).

(iii) No other string belongs to L(S/G).

29

The marked language of a system under supervision is also obtained by L7n(S/G)
L(SfG) nLm(G).
In a supervisory control problem the desired behavior is described in terms

of a specification language. The sublanguage of the marked behavior that
belongs to the specification language and satisfies the specification, is called
the legal marked behavior. Let E C Lm(G) denote the legal behavior. A
control problem is considered fully solved if a supervisor, as elaborated above,
exists so that the language of the system under supervision is contained in the
specification language, namely, it meets the specifications and that the system
under supervision is nonblocking.

Definition 2.15. For a plant G and a legal language E, we say the nonblocking
supervisory control problem is solved if there exists an admissible supervisor S
such that

(?) Ln(SfG) C E

(it) L7n(SfG) = L(SfG)

Furthermore, a supervisor S is called maximally permissive if and only if
for any other supervisor S' which solves the supervisory control problem for G
and E we have Lm(S'/G) C Ln(SfG) and L(S'/G) C L(SfG).

Since supervisor admissibility property is always required, not every legal
language can be generated by the system under supervision. The admissibility
of supervisor is related to the property of controllability.

Definition 2.16. A language K G S* is said to be controllable with respect
to another closed language M if KEUC DMC K .

It can be shown that controllability is closed with respect to the union
operation. Furthermore, the empty language is always controllable. There-

30

fore, for every language E there exists a supremal sublanguage of E which is

controllable with respect to L(G).

Notation 2.17. We use EG to denote the supremal controllable sublanguage
of E with respect to L(G).

The system under supervision will be nonblocking if we have L7n(S/G) —
L(S/G). This is achieved if the (controllable) legal behavior (or a controllable
sublanguage of it) is Lm(G)-closed.

Definition 2.18. [56] A language K is said to be L-closed if K ? L — K.

The existence of a nonblocking supervisor for a given plant model G, a

specification E, the set of uncontrollable events Euc is examined in Theorem

2.19 [41]:

Theorem 2.19. [4I] (Nonblocking Supervisory Control): Consider a
plant G and a legal behavior E C L7n(G) and a language K Ç E, K f 0.
There exists a nonblocking supervisor S for G such that L7n(S/G) = K and

L(S/G) = K if and only if

(i) K is controllable w.r.t L(G).

(ii) K is Lm(G)-closed.

Theorem 2.19 indicates for any sublanguage K oí E which is Lm(G)-closed
and controllable with respect to L(G), there exists a supervisor S which can
synthesize K.

Remark 2.20. Supervisor S can be implemented by the automaton which

generates K .

Due to observation limitations, a subset of event set S may be unobserv-

able. That is, the supervisor would not recognize if they have occurred. Ob-
servable events are those events whose occurrence are detected (observed) by

31

the supervisor. Therefore, in a general case, event set S is partitioned as
S = S??S„0 where S0 and S?s are respectively the subset of observable and
unobservable events. This implies, two sequences of events corresponding to

two different patterns of behavior, in general, may seem the same to supervi-
sor, i.e. they have the same pattern of observable events. More precisely, if
P : S* ?—> S* is a natural projection, for s,s' G S*, s F s', we would have
P(s) = P{s'). In such a case, the decision of supervisor for the two look-alike

sequences s and s' must be the same. In other words, S(s) = S(s'). Such a
supervisor is called feasible. Feasibility of supervisor can be ensured for cases

involving observable languages.

Definition 2.21. Let G = (Q, S,d, q0, Q7n) be an automaton, S = S0?S„0
and P : S* ?—> S* be the natural projection. A language E is said to be

(L(G), P)-observable if for every two sequences s, s' G L(G) with P(s) = P(s')
and for every a G S

sa e E and s'a e L(G) and s' e E => s'a e E.

The observability property requires two sequences s, s' that have the same

natural projection and are extended by the same event a, to be treated the

same by the supervisor S; i.e. if both s and s' belong to E then a G S(s) <=>
a G S(s') for every a G S. Observability is not closed under union operation
of languages. Therefore, a supremal observable sublanguage of E with respect
to L(G) might not exist. An alternative property which is sometimes used is
normality.

Definition 2.22. Let G — (Q,E,S,q0,Qm) be an automaton, S = S0?S?0
and P : S* ?—> S* be a natural projection. A language K C L(G) is said to
be (L(G), P) -normal if K = L(G) ? P~lP(K).

32

Normal languages are closed under union operation and 0 is a normal lan-
guage. Thus a supremal normal sublanguage of a given language exists. While
every [L(G), F)-normal language K is (L(G), P)-observable, the reverse is not
necessarily true. The following proposition [9] describes a set of conditions
under which observability implies normality.

Proposition 2.23. .[9] Assume Ec Ç E0. Then if K is controllable w.r.t.
L(G) and is (L(G), P)-observable, then it is (L(G), P) -normal.

It follows from Proposition 2.23 that when the assumption Ec Ç E0 holds

(all the controllable events are observable) a supremal observable and control-
lable sublanguage of a given language E exists and is equal to the supremal
normal and controllable sublanguage of E. In the rest of this thesis, unless

explicitly stated, observability property will be used. Note that, normality is
stronger than observability.

Theorem 2.24. [9] (Nonblocking Supervisory Control Under Partial
Observation): Consider a plant G and a legal behavior E Ç L7n(G) and
a language K Ç E, ii/0. There exists a feasible admissible nonblocking
supervisor S for G such that L7n(SfG) = K and L(SfG) = K if and only if

(i) K is controllable w.r.t L(G).

(H) K is Lm(G)-closed.

(in) K is (L(G), P) -observable.

2.4 Robust Supervisory Control (RSC) Prob-
lem

Robustness of control system against changes in plant dynamics or changes
of specification is an important and desired property. Robustness in super-

33

vision of DES has been developed in the literature from different viewpoints

[35, 36, 30, 4, 45]. A review of the RSC problem in [4, 45] follows.
Consider a family of DES consisting of TV models Gi, · ¦ ¦ , Gn and the corre-

sponding legal behaviors Ei, ¦ ¦ · , E^. Let Ej be the event set of Gi and E¿>0
and Ej1Uc the subsets of observable and uncontrollable events in Ej. Although
Ej 's are not necessarily the same, it is assumed they agree on the control-

lability and observability of their common events. In other words, an event

s G Ej ? Ej [i f j) is controllable (resp. observable) in E¿ if and only if it is
controllable (resp. observable) in Ej (i F j).
It is desired that each model Gj under supervision meets its corresponding

legal language E^, In a sense, this implies that N separate supervisory control

problems be solved and N separate supervisors be obtained. However, in a

case that the actual model of a system is unknown and is only known to be

among the finite set of models G, (i = 1, · · · , N), solving supervisory control
problem requires a unique nonblocking and feasible supervisor that the system

under its supervision can meet the specifications regardless of what the current

model actually is. A formal definition of RSC-PO problem follows.

Definition 2.25. [45] Robust nonblocking supervisory control prob-
lem under partial observation (RNSC-PO): Given plants Gi and speci-
fications Ei for i = 1, · ¦ ¦ , N , ?e?S = IJ E, and Euc = \J Ej>uc and define

1<?<? l<i<N

G = {7 Ç E|7 D Euc}. S is said to be a robust feasible nonblocking supervisor
if for i = 1 , ¦ · · , /V we have

(1) L7n(S[G1) Ç E1;

(11) Lrn[S[G1) = L(S[G1).

Definition 2.26. [45] (Gi-nonblocking): Let G be a DES with event set E,
and marked and closed languages L7n(G) and L(G). Then a language KCE*

34

is called G-nonblocking if K ? L1n(G) = K ? L(G).

Theorem 2.27. /^5/fSolution to RNSC-PO problem,) Given plants G7 and
specifications Ei for i = I, · · · , N, let S, G and S be defined as in Definition

2.25. Let G be an automaton for which we have L7n(G) = {j L7n(Gi) and
\<i<N

L(G)= U L(G1) and define E = f| (E1 U(E* -L7n(G1))) G? L7n(G). Then
i<i<N l<i<N

there exists a feasible supervisor S which solves the RNSC-PO problem if and

only if there exits a language K Ç E, K f 0 which is

(i) controllable w.r.t. L(G);

(ii) (L(G), P) -observable;

(ni) Lm(G)-closed;

(iv) G'i-nonblocking for i = 1, · · ¦ , N.

If such S exists, then L7n(SfG) = K and L(SjG) = K and

(1) L7n(SfG1) ^KDL7n(G1)

(2) L(SfG1) = K HL(G1)

The results (1) and (2) in Theorem 2.27 are in fact the implications of
Lemma 2.28 [12] applied to plant models Gi (i = 1, · · · ,N) and G.

Lemma 2.28. [12] Consider two automata G and H with L(H) C L(G).
Let SfG and SfH denote respectively G and H under the supervision of a
supervisor S. Then

(?) L(SfH) = L(SfG) ? L(H)

(U) L7n(SfH) = L7n(SfG)HL7n(H)

The reader is referred to [4, 45] for the computation methods using which
the conditions (i) — (iv) in Theorem 2.27 can be achieved.

35

Remark 2.29. In cases, where nonblocking property is not studied in supervi-

sory control problem, then Q{ = Qm<i, and in Theorem 2.27, conditions (Hi)-
(iv) can be eliminated (since they will always hold). The automaton G in Theo-
rem 2.27 can be obtained from the union of the plant models Gi (i = 1, · ¦ · , N).
Therefore, RNSC-PO problem, can be seen as a supervisory control problem
for plant G and the specification E which is obtained from E{ (i = 1, · · · , TV)
as given. Once L(SfG) is obtained, the individual languages L(SfGi) can be
obtained using Lemma 2.28.

2.5 Hierarchical Supervisory Control (HSC)
The primary goal in controlling a system is to shape the behavior of the sys-
tem such that the system satisfies certain characteristics; however, different
priorities in different levels of management demand controlling systems from
different viewpoints. For example, a system might be controlled to avoid
buffer overflow- or underflowing at the lowest level while the manager at a
higher level, assured of proper working of the system and the buffers under
normal conditions, may only be concerned with the cost of repairs. More-
over, at a higher level of management not all of the details of the system
are necessarily needed. In other words, some details of the dynamics of the
system can be ignored by the manager since they are not needed or are ir-
relevant to the specifications at the high-level. This suggests the dynamics
of the systems can be aggregated to certain order, depending on the relation
between the plant and the high-level specifications, resulting in lower compu-
tational complexity for supervisor design. Improvement in the transparency
of user interface and design can also be mentioned as additional benefits of
such aggregation. Model aggregation has been studied in the literature from

36

comhi

com hilo

Ch

info hi

com lo

info Io

hi

info

<&>
lohi

High-level

Low-level

Figure 2.4: General overview of a hierarchical supervisory control system

different viewpoints [5, 7, 27, 28, 52, 59]. The bottom-up hierarchical frame-
work of [Zhong-Wonham] [59] is a language-based platform which aggregates
sequences of events of an alphabet S into another alphabet T. This is compat-

ible with the robust supervisory framework we explained in previous section.

A review of the bottom-up hierarchical framework of [59] follows.
In the hierarchical framework of [59], Fig. 2.4, two levels of hierarchy, low-

level and high-level, are identifiable. In brief, a map summarizes the behavior
of the low-level model G\0 and reports it to the high-level to generate the high-

level model Ghi- Let Ehx be the high-level expectation (specification). Then
a supervisory control problem is solved for Ghi and Ehi- The dashed lines in

Fig. 2.4 indicate virtual transmissions of information or commands which are
not implemented directly. Fig. 2.4 shows that the actual feedback system is

closed not through the interaction between the high-level controller Cu and
the high-level model Ghi but rather through first, a translation channel comhu0

which translates the high-level commands to the low-level, then, a low-level
feedback channel comio which communicates to Gi0 and finally a reporting

map infoiohi which summarizes the latest low-level model's behavior evolution

for Ghi- This is a bottom-up hierarchical supervisory control framework [59].

37

If the reporting map mïoi0hi is chosen properly, then HSC approach can reduce
the computational complexity of supervisor synthesis. A short review of the
synthesis of the reporting map info;^ which is denoted by ? follows.
The low-level model is assumed to be a finite state deterministic automaton

Gio — (Q, S, q0, d, Q) that represents the actual plant model which is to be
controlled in the real world. The abstraction channel vaioi0hi is a causal map
? : L(Gi0) '—? T* where T is the set of events at the high-level. The causal
map ? would have the following property:

9(e) = e

{either ? (s)
(2.7)

or ?(ß)t, for some t € T

Therefore, the sequences of events in L(Gi0) are abstracted into events of T
and more generally into sequences of T*. For a sequence s, 9(s) carries the
important information that is transmitted to the high-level. Next, a finite state
deterministic automaton Ghi can be realized to model the high-level language
L(Gfn) — 6(L(Gi0)). An output map ? : L(Gi0) '—* TU {t0} where r0 is called
the silent event, is defined over L(Gi0) such that for every 5 G L(Gi0) we have

T0 if 9{sa) = 9(s)
Cj(so) = { (2.8)

t if 9(sa) = 9(s)t.

Therefore the output map ? generates the silent event r0 whenever the map
? outputs nothing and generates a new high-level event r otherwise. Further-

more, a new output map ? : Q ?—> TU {t0} can be incorporated into the
low-level model Gto to satisfy the following: u(q) = Cj(s) for any s such that
<? = S(q0,s). This yields a Moore automaton Gio = (Q,E,TU{r0}i,a.',g0,Q).

38

In this way, the output map ? generates the information transmitted to the
high-level.

A state q G Q of Gi0 is called vocal if u>(q) f t0. A sequence s G L(Gi0) for
which q = ô(q0, s) is vocal, is called vocal. A sequence s that connects the
initial state q0 to a vocal state or a vocal state to another vocal state through

a set of nonvocal states is called a silent path.

Notation 2.30. The empty string and the set of sequences leading to a vocal

state are denoted by Lvoc = {s G L(Gi0)\s = e or û(s) f t0}. The nonempty
silent extensions of a sequence s G L(Gi0) that lead to a vocal state are denoted
by Lvoc(s) = {s' G E+|ss' G Lvoc and (3r G T : 0(ss') = 0{s)t)}. Note that
the sequence s G L(Gi0) in the definition of Lvoc(s) is not necessarily vocal.

For a sequence s G S*, let the map Ec : S* ?—>· 2Ec

Ec(s) = {a I aGEc, Bv, v' GE*, ?s?' = s} (2.9)

denote the controllable events in s. A silent path s is controllable if it includes

at least one controllable event (i.e. |£c(s)| > 1), and is uncontrollable
otherwise (i.e. |Ec(s)| = 0). A controllable (uncontrollable) sequence is defined
similarly.

To equip the high-level model Ghi with control structure, we need to know
how the controllability is inherited at the high-level. The following property

(if holds) clarifies the issue of the controllability of events in T.

Definition 2.31. [59] The Moore automaton Gi0 is said to satisfy the Output-
Control- Consistency (OCC) property if every vocal state in it is reachable
either by only controllable silent paths or by only uncontrollable silent paths.

Alternatively, let Tc and Tuc denote the controllable and uncontrollable
subsets of T. Suppose s = s'r where s' G Lvoc and r G Lvoc(s') and define the

39

o—y(T) b-
Figure 2.5: OCC property is vio-
lated at state 3; silent paths d.a.b
and c.b which reach the vocal state 3
and generate the same output t are
respectively controllable and uncon-
trollable

^&-^<I>^<B
UC

-*?—"-KD
Figure 2.6: OCC property holds by
splitting state 3 and generating con-
trollable (rc) and uncontrollable (ruc)
copies of the output r.

maps ?0 : Lvoc — {e} ?—> {red, green} according to

Xc(s) =
red o)(s) G Tc

green û>(s) 6 Tu,
(2.10)

and colorc : Lvoc — {e} ?—> {red, green} as follows

colorc(s) = Í red Ec(r) ^ 0

green Ec(r) = 0.
(2.11)

The map ?° shows if the assigned label to the state reached by s belongs
to the controllable set Tc or the uncontrollable set Tuc. On the other hand,
the map colorc determines if the last silent segment of s is controllable or
uncontrollable. The OCC property can therefore be rephrased as follows.

Definition 2.32. The Moore automaton Glo = (Q, E,TU{r0}, d,?, q0) is OCC
if for all s e Lvoc - {e}

Xe (s) = color0 [s). (2.12)

If the OCC property does not hold, using the OCC algorithm in [59], Gio
can be modified to satisfy the OCC property. Fig. 2.5 shows an example

40

where the OCC property is violated. There, event d is controllable. Thus
controllable silent path d.a.b and uncontrollable silent path c.b generate the
same output r which implies a violation of the OCC property. Fig. 2.6 shows
a possible modification by OCC algorithm where rc G Tc and ruc G Tuc. It can
be seen that each output is chosen in Fig. 2.6 to match the controllability of
its corresponding silent path. This enables us to have a well-defined high-level
model for the plant. If the OCC property holds in the system, the high-level
event alphabet T can be partitioned as T = TCÙTUC. Therefore, a high-level
control structure can be synthesized for the system. Let S^ be a solution of
supervisory control problem for high-level model Ghi and legal behavior E^-
The high-level supervisor Shl : L(Gf11) ? T ?—> {0, 1} is implemented through
a disabled-event map Ahi : L (Ghi) '—> 2Tc as follow. For every t G L(Ghi) and
t G T, we have

(?, if t G ?« (t);Shi(t,r) = <
1, otherwise.

where 0 and 1 respectively indicate the disablement and enablement of r after t.
A low-level version of disab led- event map Ahi is defined by Ai0 : S* ? T —> 2Sc
according to

Ai0(s,t) = {s G Ec|(3s' G T,*uc)sas' G L(G10) and û(sas') G Ahl(t)
and Va" < s',Û(sas") = r0}. (2.13)

Finally, the control at the low-level is implemented through a low-level super-
visor Si0 : L(Gi0) x S ?—> {0, 1} which is defined similar to S^-

, 0, iî s e Ai0(s);Sl0(s,a)={ (2.14)
1, otherwise.

41

Therefore a virtual command flow from high-level to low-level can be consid-
ered as

Sm <= ?/jj f=> ?/0 => Si0.

Now let Ehi Ç L(Ghi) the legal language at the high-level be controllable.
Ski can be synthesized so that L(Shi/Ghi) = Ehi. The high-level commands
are translated and implemented at the low-level by S¡0 as explained before.

This yields a system under supervision Si0/Gi0. Let Ei0 = 9~l(Ehi) Ç L(Gi0)
be the translation of E^ at the low-level. Eio is interpreted as the low-level
legal language. Theorem 2.33 states the relation between the language of the
system under supervision L(Si0/Gi0) and the low-level legal language Ei0.

Theorem 2.33. [59] Assuming the plant model G¡0 is OCC, we have L(Si0/Gi0)
= E¡0 where E¡0 is the supremal controllable sublanguage of Ei0 w.r.t L(Gi0)
and Euc.

Theorem 2.33 states that the language the system under supervision Si0/Gi0
generates is in fact the supremal controllable sublanguage of Ei0. However, the
relation between the system under supervision at the high-level and that at the
low-level is yet to be established. It is expected that the high-level controlled
language Ehi (the high-level expectation) be recovered through the abstrac-

tion 9(E]0). However, it turns out that in cases we have 9(EJ0) C E^. The
strict inclusion would imply the occurrence of unintended disablement in the

system. This unintentional disablement is addressed in the following.

Definition 2.34. [59, 25] Consider two vocal nodes Ti1 and n2 with different
controllable outputs in the reachability tree of Gi0 which are reached by respec-
tively silent paths s}as2S3 and S\as2S4 that share an initial segment s\a. The
nodes n\ and n2 are said to be partners if their corresponding silent paths

start either at the root state or at the same vocal state, s € E0 S2 6 E*c and

42

X^a-H5>fcH<2)-c>(3) J2
?_0 ^B)

Figure 2.7: Nodes 5 and 6 are partners and thus disabling T1 and T2 are not
independent from each other.

at least one of the strings S3 and S4 belongs to E*c.

Definition 2.35. [59] A plant model Gi0 is said to be Strictly- Output-
Control- Consistent (SOCC) if (i) it is OCC and (H) no two vocal nodes
with different controllable outputs are partners in it.

Figure 2.7 shows a model which is not SOCC; nodes 5 and 6 are partners
there. In Figure 2.7 if the high-level event T2 is to be disabled, the low-level
event d should be disabled as a result of which the high-level event T1 will

also be disabled. This unintentional disablement would not occur if node 2 or

3 were vocalized. The SOCC algorithm developed in [59] can be applied to
modify the system to render it SOCC. Therefore, we assume Gi0 is SOCC and
thus no unintentional disablement would occur at the low-level. This implies

Ehi can be recovered as 0(L(Si0/Gi0)) in the system under supervision.

Definition 2.36. [59] We say hierarchical consistency holds m the system if
0(L(Slo/Gio)) = Ehl.

Theorem 2.37 summarizes the result.

Theorem 2.37. [59] Assume that the low-level model Gi0 is SOCC. Also let T.
Ehi, Eia and S¡0 be as defined previously. Then we have 9(L(Si0/Gi0)) = Ehl. .

Theorem 2.37 implies that if the system is SOCC, the desired high-level
controllable specification Ehi can be recovered through the application of low-
level supervisor and thus the system is hierarchically consistent.

43

2.6 Conclusion

In this chapter we reviewed background theory which we use in this thesis.
We reviewed results from algebra, automata theory and supervisory control
of discrete event systems. In particular, robust supervisory control of DES
was discussed as a technique for dealing with model uncertainty or changes of
system dynamics. Also, hierarchical supervisory control of DES was discussed
as a framework in which supervision can be done at higher-level of abstraction
resulting in a more transparent and partially less complex solution.

44

Chapter 3

Hierarchical Supervisory

Control under Partial

Observation

This chapter extends the hierarchical framework of Zhong-Wonham [59] to
the case of control under partial observation. The hierarchical framework of

Zhong-Wonham [59] considers a full observation case. Here we have relaxed
this assumption about observability of the events and extended the setup of [59]
to the case of control under partial observation. Not surprisingly, the results
we obtain for hierarchical supervisory control under partial observation reduce
to their counterparts given in [59], for the case of full observation.

3.1 Problem Formulation and Reporting Map

Problem Formulation: In this chapter, we extend the hierarchical setup

of [59] (see Section 2.5 for details) to the case of control under partial obser-
vation. Consider the Moore automaton G = (Q. S, T U {t0}, 5, ?, q0, Q). It
follows from the partial observation assumption that the event set of S can be

45

partitioned as S = S0?S„0 where S0 and S„0 are observable and unobservable

event sets.

The output symbols in T generated by Gi0 announce the completion of se-
quences which are important for high-level supervision. Because some of the

low-level events are assumed unobservable, some of the output symbols be-
come unobservable. Therefore, we should partition T into observable subset

T0 and unobservable subset Tuo. Towards this end, we define a silent path
unobservable if it contains only unobservable events; otherwise it will be

observable. The following definition characterizes the high-level observable
and unobservable event sets.

Definition 3.1. Suppose t E T is the output generated from the sequence ss'
with s G Lvoc and s' G Lvoc(s); i.e. t = íu(ss'). Then t G T110 if Pi0(s') = e;
otherwise t E T0.

Suppose q is the state reached by ss' in Definition 3.1 (q = S(q0,ss')).
Then Definition 3.1 is well-defined if Gi0 is Output-Observation-Consistent as
defined below.

Definition 3.2. A model Gi0 is Output- Observation- Consistent (OOC)
if every vocal state q G Q is reached either by only unobservable silent paths
or by only observable silent paths.

Note that an observable silent path may also contain low-level unobserv-
able transitions. OOC property can be regarded as the dual of OCC property.
If Gi0 is not OOC, then an algorithm identical to the OCC algorithm with
controllable (resp. uncontrollable) events replaced with observable (resp. un-
observable) events can be used to modify Gi0 to satisfy OOC. From now on,
we assume Gto is OOC and OCC. Therefore T can be partitioned according

46

G.hi

À

-? G

?

hi

À

?

lo
?? -? G,

Figure 3.1: If ker(P¡0) < ker(Phi ? ?), then map ? exists.

to T = T0ÙTU0. Let

Phi ¦ T* T*

denote the high-level natural projection. With the above arrangement, the
generation of symbols in Tuo will be unobservable to the high-level supervisor.
Therefore a reporting map that maps the low-level observation to high-level
information must be a map ? : Pi0(L(Gi0)) ?—> T* such that for every s G

L(G10),
Ö(Pi0(s)) = Phi(0(s))

or in other words,

? o P10= Phl ? T.

Lemma 2.1 implies such a map exists (and is unique) if and only if

ker(Plo) < ker(Phl o (S.I;

In other words, Phi ? ? must factor through Pi0. We refer to (3.1) as the
Factorization Property. This is shown as the commutative diagram in Fig.
3.1. Note that in the proposed hierarchy under partial observation, ? (not T)
is the reporting map which will be implemented.
As mentioned in Section 2.5, initially in a hierarchical supervisory control
problem the output symbols T and the reporting map ? (and equivalently

the output map ?) are chosen so that the occurrence of significant events
or accomplishment of important tasks are captured in the high-level model
and also reported to the high-level supervisor. If after the problem is set up,
Factorization Property (3.1) turns out not to be satisfied, then it is possible to
enhance ? (through vocalizing some of silent states and refining Gi0) to ensure
Factorization Property (3.1). The details are given in Section 3.7 (Appendix)
at the end of this chapter. Therefore, in the rest of this chapter we assume
the reporting map is such that Factorization Property (3.1) is satisfied.
Definition 3.1 and Factorization Property (3.1) have implications for silent
paths which are described in the following proposition.

Proposition 3.3. Consider a nonempty vocal sequence s G Lvoc. If u[s) G T0
(is observable), then s = S1 s for some s G S0 and S1 < s.

Proof: Assume for a sequence s G Lvoc, the output ¡2>(s) = t G T0 is ob-
servable. There exist sequences s' G Lvoc and s" G Lvoc(s') such that s = s' s".
Now since û[s) G T0 is observable, Definition 3.1 requires Pi0[s") F e. This
implies for some s G Ss and sequences S1 G S* and u G S*0 we can write
s" = S1OU. Now suppose s = s's\au does not end in an observable event.

That means u G S+,. Next note that Pi0[S1S1Uu) = Plo[s'sia). However,
Pu[O[S1S1Ou)) = Phi[9[s'Sla)T) = ??[?[3'8?s))t f Phl[9[s 'Sla)) which vio-
lates (3.1). Therefore u = e and s = s'sia G S*S0. D

Proposition 3.3 states that if a silent path generates a high-level observable
event, the last event of that silent path must be observable. In Example 3.4
we show how satisfying Factorization Property can affect the vocalization,
specifically, holding Proposition 3.3.

Example 3.4. Fig. 3.2 shows two models in which S = {a,b,a,ß} is the set
of low- level events. S0 = {a.b} is the set of observable events and the dashed

48

(a): G1

a->O-"-K>i>>0A-X>-"HD
(b): G2

Figure 3.2: (a) Factorization Property (3.1) does not hold and Proposition 3.3
is not ensured; (b) Factorization Property (3.1) and Proposition 3.3 both hold.

lines denote the unobservable events. Let S1 = a.ß.b, S2 = a.ß.b.ß.a and

S = Pio(si) = Pi0(S2) = a.b. In model Gi m Fig. 3.2. (a), T = (T1 } is the set of
high-level events and we have T0 = T. Model G1 does not satisfy Factorization
Property (3.1) since we have S = P/0(si) = Pi0{s2), 0(s\) = e, 6(s2) = T1 and
Phi{Ti) ¥" e- While U)(S2) = T1 is considered an observable high-level event, the
last event of S2 is not observable. That means Proposition 3.3 does not hold in

Fig. 3.2. (a). On the other hand, model G2 in Fig. 3.2. (b) illustrates model G\
with a modified reporting map. Model G2 vocalization in Fig. 3.2. (b) implies

T = {rnew,Ti} is the updated high-level event set in which T0 = {Tnew} is the
set of observable events. Note that T1 is considered an unobservable high-level
event here. Model G2 satisfies Factorization Property (3.1) where we have
Pm(O(Si)) = Phl(rnew) = ???(t?£?,.t?) = Ph,(9(s2)). Therefore, Proposition 3.3
should hold as it is also the case in Fig. 3.2. (b). Note that, in Fig. 3.2. (b),
b G E0 is the last event of S1 where we have 9(si) = rnew G T0.

49

3.2 Vocalizing Observer Automaton

Observer automaton Gi0 = (Q, ?0,d,?0) plays an important role in establish-
ing hierarchical consistency under partial observation. In this section we show

how Gi0 can be vocalized.

Definition 3.5. Consider an automaton G = (Q, S, d, q0). For sequences
Si, S2 G L(G) we say S1 ? S2(modG) if and only if5(q0,si) = 5(q0,s2) = q for
some q G Q.

The binary relation = (mod G) is an equivalence relation on L(G) and
partitions L(G) into \Q\ equivalence classes.

Lemma 3.6. Let Gi0 = (Q,T.0,5,q0) be the observer automaton for Gi0. For

every two sequences S, S G L(Gi0) define & = {s \ s G P1^(S) ? L(Gi0)] and
& = {s I s G P1^(Sf) (? L(G/o)}. TTien we /?a-?e 5 = S^ (mod Gi0) if and only
if (Vs G 6, 3s' G 6' : s = s'(mod Glo)) and (Vs' G 6', Bs G & : s ?
s' (mod Gi0)).

Proof: The proof is not difficult and omitted for brevity. D
Two subsets of q G Q (that are not necessarily disjoint) are defined in the
following.

Definition 3.7. Let q = 5(q0, S) be a state of Gi0 with S G S+. We refer to
the set ins(q) = {q \ 3s' G S*, s G E0 : S= Plo(s'a) and q = 6(q0, s'a)} as the
incoming subset of state q w.r.t the sequence S. We also denote the union

of incoming subsets of q as in(q) = {q\ q G q and (3S G S+ : q G ins(q))} .

The set in(q) consists of those states in q that can be reached by sequences
s G L(Gi0) whose last events are observable.

Definition 3.8. Let q = ô(q0, S) be a state of Gi0 and s G S0 be an observable

event. We refer to the set outa(q) = {q g q\ S(q,a)\} as the outgoing

50

subset of q w.r.t s. We also denote the union of outgoing subsets of q as

out(q) = {q\q G q and (3s £S0: q G outa(q))}.

Thus out(q) contains the states çGç from which an observable transition
exits.

Example 3.9. Consider the model in Fig. 2.2. There, we have m(g2) =

{4,5}, out(q2) = {6,7,11} and in(q8) = out(q8) = {16,21}. ./Is it can be
observed here, incoming and outgoing subsets are not necessarily disjoint from
each other.

Next, we show how a state q = ô(q0, S) of Gi0 can inherit the output of its
incoming subset of states in(q).

Definition 3.10. A state q G Q with q F q0 is called P-vocal if it contains
some vocal state (i.e. there exists q G q with u(q) F t0).

Lemma 3.11. Let q F q0 be a state of Gi0- Then q is P-vocal if and only if for
every 5eE+ that q = 6(q0, S), there exists a state q G ins{q) with u(q) f t0.

Proof: (If) Since q is P-vocal, there exists ? G q with ?(?) f r0. For
every S G E0 that q = S(q0, S), there exist s-¡ G S*, s G E0 and s' G S*0 such
that Pioisias') = S and ? = 5(q0, Sias'). If s' = e, ? G ins(q) and the lemma
holds. Suppose s' F e. Let q - 5(q0,s1a). Clearly we have q G ins(q). On the
path from q to p, using the sequence s', let Ci be the first vocal state reached
with ql = 5(q,s"), s" < s'. Since s" G S+0, by Proposition 3.3, ?(<??) G Tu0.
Now if ? (q) = T0 then the sequence as" which includes an observable event
has resulted in the generation of an unobservable output o>(çi) which violates
Definition 3.3. Therefore u(q) f t0.
(Only if) Follows from Definition 3.10. ?
Next, we extend the results of the previous lemma to show that all of the

51

incoming states of a vocal state q are vocal and furthermore they generate the
same observable output.

Proposition 3.12. Let q G Q (q f q0) be a P-vocal state in Gi0. Then there
exists t G T0 such that for all q G in(q), ?(a) = r.

Proof: Consider <7?,<?2 £ in(q). Suppose g¿ = 5(q0,Si) for some sequences

Si G L[Gi0) [i = 1,2). Let ù(Si) = ? and S¿ = F¿0(s¿) (i = 1,2). We
distinguish the following two cases:

Case 1: Si = S2. Let s G P^(S1) ? L(Gi0) be the sequence in Lemma 3.11
for which we have q — 5(q0,s), q G ins^q) and lj(s) f T0. Let uj(s) = t.
Definition 3.1 implies t G T0 is observable. Since Pi0(s) = P/0(s¿) = Si
(i = 1,2), Factorization Property (3.1) implies that for some t G T0+ we have

t = PnMs)) = PhMs1)). (3.2)

On the other hand, since q, g¿ G msi (<?), for some s G E0 and s', s· G L(Gi0) we
have s = sV and s¿ = s-s where P;0(s') = P;0(s·)· By Factorization Property
(3.1), Phl(9(s')) = ??(?(ß<)). Now it follows from (3.2) that Phl(e(s')r) =
Pm(O(S^)T1) and since t G T0, ??{?{ß'))t = Pm(B(^))Pi11(T1). But Phl(0(s')) =
Phi(d(s\). Therefore t = Ti £ T0. This proves that for every state c¿ G insx(q)
we have u>(c¿) = r G T0.
Case 2: Si 7^ S2. Lemma 3.6 implies for every r G Pr^(Si) ? L(Gi0), there
exists r' G P^(S2) ? L(Gi0) such that r ? r'(mod Gi0). Especially for r = S1
and some r' G P^(S2)PiL(Gz0) we have Si = r1 (mod G/o). Therefore we have

?(ß,) = ?(G'). (3.3)

In the course of proving case 1 we showed T1 = ¿»(s,) G T0. Since Si =

52

r' (mod Gio) and q\ G in(q), 5(q0,r') G in(q). Therefore from case 1 we have

U(S2) = Cj(r'). (3.4)

(3.3) and (3.4) imply Cj(S2) = Cj(s\) or equivalently ui(q\) = u>(q2). This
completes the proof. D

3.3 Output Map Properties

The uniqueness of the outputs of in(q), shown in Proposition 3.12, justifies
the definition of an output map ? : L(Gi0) '—> T0 U {r0} for Gi0.

Definition 3.13. We define ? : L(Gi0) '—> T0 U {r0} as follows. Let S G
L(Gi0), q = à(q0,S) and I = {s G L(G/0)| <5(g0,s) G in(q)}. Then Cj(S) = r0
if S = e and

Cj(S) ¦= Cj (s) for any s G I. (3-5)

D

Proposition 3.12 implies that the output map ? is well-defined and every

state q is either silent, cD(S) = T0, or P-vocal with an unique output Cj(S) =
t G T0. Furthermore the observer model G¡0 can be equipped with an output

map w : Q ?—> T0 U {r0} where for every q G Q that q = S(q0, S), we have
zu(q) = Cj(S). Once again Proposition 3.12 ensures w is well-defined. So finally
Gi0 = (Q, E0, T0 U {t0}> 5, ts, q0) becomes a Moore automaton.

Theorem 3.14. The reporting map ? : L(Gi0) '—> T0*, defined by ? o P10 —
Phi o Ö, /ias the property that for every S G L(Gi0), S(S) = e if S = t, and
6(S) = ê(S')Cj(S,a) if S= S'a for some S" G S*0 a??s£?0.

53

Proof: First note that for S G L(Glo), 0{S) = Phi(0(s)) for every s G
V (S) ? L{Glo). If S = e, then e G P,;1 (S) ? Z,(G/o) and hence

Ö(S) = P*(0(e)) = Pw(e) = e. (3.6)

Now, consider S = SV with S' G S* and s G Ss. Note that for every

s G V(S) ? L[G10) = V(SV) ? ¿(G,,) there exists s' G V (S') n MGi0)
such that s = sV. Therefore we have

0(S) = Pw(0(s)) = Pw(0(sV))

= Pw(0(s,)Û/(sV))

= Phi(0(s'))PW(£(sV)). (3.7)

The definitions of ? and ?, (3.7) imply

Phms'))Phi{u{s'o)) = 0(S')PM(¿>(SV)). (3.8)

Considering the fact that Cb(S) G T0, we will have

(9(S')P«(Û)(SV)) = 0(S')û(SV) (3.9)

Therefore (3.7), (3.8) and (3.9) yield 0(S) = 0(S')¿>(SV). ?
The following definitions will be useful in the next section in the study of
hierarchical consistency.

Definition 3.15. Let q be a state in G10 and 5eE0+ such that S(q, S)!. VKe

say S is P?„- controllable from q iffor every q G out(q) and every s G P^(S)
that 5(q,s)\, we have |Ec(s)| > 1.

Recall from (2.9) that Ec(s) is the set of controllable events of the string

54

s. Definition 3.15 states that given a transition q —?, the sequence S is P¡0-

controllable from q if every sequence s G P1'1 (S) exiting from an outgoing
state q G q, is controllable (i.e. contains at least a controllable events).

Definition 3.16. Let q be a state in G\0 and S G SJ such that S(q, S)\. We say
S is P\0-uncontrollable from q if there exists q G out(q) and s G P1"1 (5) DE^.
with 5(q, s)\.

s
Definition 3.16 states that given a transition q —>, the sequence S is Pi0-

uncontrollable from q if there exists at least one sequence s G P^1 (S) which
exits from an outgoing state q G out(q) and consists of uncontrollable events
only.

Definition 3.17. An observable sequence S G E+ in Gi0 which connects the
root state q0 to a P-vocal state or two immediate P-vocal states to each other

is called a P\0-silent path.

Therefore a p0-silent path S, from a P-vocal state ? to a P-vocal state q,

is P;0-controllable if all the sequences s G P^(S) which connect an outgoing
state of ? to an incoming state of q are controllable (i.e. contain at least one
controllable event) and is P¡0-uncontrollable otherwise.

Example 3.18. Consider the state q2 = S(q0, a.b) of Gi0 in Fig. 2.3 and let
51 = cd and S2 = b.a be two sequences which start from q2. Fig. 2.2 shows

that out(q2) = {6, 7, 11}. It is observed that Si is Pi0- controllable from q2 since
the sequence c.a.d from state 6 is the only transition out of {6, 7, 11} that has
the projection cd and we have Ec(c.a.<i) = {c} f 0. On the other hand,
52 is Pi0-uncontrollable from q2 since for 7 G out(q2) we have ¿(7, b.d)\ and
Ec{b.d) = 0.

55

3.4 Supervision Implementation At The Low-

level

Let Gio describe the low-level model and Gi0 be the observer automaton for

Gi0. Let Ghi be the abstracted model at the high-level with L (Ghi) = 0(L(Gi0))
and Ehi be a high-level controllable specification which is also observable w.r.t.

Ghi- A virtual high-level supervisor Sh% can be obtained by solving a su-

pervisory control problem under partial observation for the pair {Ghi, E^)
such that L(Shi/Ghi) = Ehl. Let Eto = 9~l(Ehi) be the low-level image of
Ehi- Hierarchical supervisory control is performed by a low-level supervi-

sor Si0 implementing a controllable and observable sublanguage of Ei0 at the
low-level with L(Si0/Gi0) <= Ei0. It is desired to achieve hierarchical consis-
tency [59] under partial observation. Hierarchical consistency requires that
9(L(Si0/Gi0)) = Ehi; i.e. high-level specification E^ is recovered through the

actual low-level supervisory action. In [59], hierarchical consistency is achieved
by ensuring that in two silent paths which have a common prefix and generate
different outputs, disablement of one silent path does not (unintentionally)
disable the other silent path. In the case of control under partial observation,
we have to consider look-alike sequences.

3.4.1 UUC Property

t t"
~*V_y ' ^vJ ^s_/ New outputs to ensure UUC Property

Qp10(S) = P10(S') G-*"- G" G*
t

'ß

t'
o-q-o^-o^-o--o

Figure 3.3: Motivational example for UUC property: Event a cannot be dis-
abled independently.

56

Fig. 3.3 shows a model in which Ec = {a, ß} and the dashed lines de-
note the low-level unobservable events Euo. Also T = {t, t', t"} is the set
of high-level events and Tc = {t',t"} the controllable subset. The system
is prone to unintentional disablement if either of r' or t" is to be disabled
through disabling a. To resolve this issue, we include the information about
the unobservable-controllable events in Ghi- Specifically, we propose the fol-

lowing property to be imposed.

Property 3.19. Unobservable- and- Uniquely- Controllable (UUC) sile
nt paths: For each s G Lvoc and s' G Lvoc(s) that we have ûj(ss') G T110 ? Tc,
we should have |Ec(s')| = 1.

If UUC is not satisfied, we can use the Single- Controllable-Event (SCE)
Algorithm, discussed in the Appendix, to ensure it. Briefly, SCE Algorithm
proceeds as follows. Define a new set of labels

7? = {ts|s€S???Sß} (3.10)

and add them to the set of high-level events. Also by definition we let
T™ C Tuo ? Tc. To satisfy UUC, we assign output from the set Tcu0 to
the destination node of every unobservable-controllable transition of every
unobservable-controllable silent path (If the label of transition is s, the as-

signed label will be ts e Tcuo). In this way, by choosing labels from T^0, we
include the information about the unobservable-controllable events in the high-

level model Gh1- UUC and the modification performed in the above procedure
ensure that if an unobservable silent path is controllable, then its controllability

originates from only a single controllable event, say s G Ec, and furthermore
the occurrence of s is shown in Ghl with a unique symbol ts. The result of
applying the above procedure is shown in Fig. 3.3 where the new outputs are

57

indicateci with shaded area.

_ "a ?

New output to ensure A v ; —r"

H^-O-^-ObO-d-v©
w ^-^ New output to ensure ^Hj UUPO Property :ty '~a

Figure 3.4: Motivational example for UUPO property: Event a cannot be
disabled independently.

3.4.2 UUPO Property

Fig. 3.4 shows another model which satisfies UUC. Here Ec = {a, ß} and
as usual unobservable low-level events have been shown with dashed lines.

T = {ta,?ß,t} is the set of high-level events. It can be checked that the
system is still prone to unintended disablement if either of ra or r is to be

disabled through disabling a. We propose Property 3.20 to be imposed as the

remedy to this problem. For a path r G S*, let

V(r) = {u\ue S;?, 3w E S+S* U {e} : r = uw} (3.11)

be the largest unobservable prefix of r.

Property 3.20. Unobservable-and- Uncontrollable-Prefixes-for- Obse

rvable (UUPO) silent paths: For every sequence s G Lvoc and its silent path
extension r e Lvoc(s), it should be the case that

PUr)^e and u(sr) E Tc =^ Ec(r)(r)) = 0, (3.12)

Property UUPO means if an observable-controllable silent path starts with

an unobservable segment, that segment should be uncontrollable. (3.12) can

58

also be rewritten as

Ec(r/(r)) f 0 => Pl0{r) = e. (3.13)

In Fig. 3.4, if the state reached by as is vocalized, then as will become an

unobservable silent path and UUPO will be ensured. In general, by vocalizing

some states and refining the structure of Gi0 UUC (and UUPO) can be ensured.
The details are given in UET Algorithm in the Appendix.

If a P;0-silent path is P;0-controllable, then the output generated by the silent

path is controllable. However, the reverse is not generally true. Proposition

3.21 discusses the condition under which the reverse is ensured. Let Lvoc =

{S G L(Gi0) I S = e or Co(S) f r0} contain the null sequence e and the
sequences which end in P-vocal states.

Proposition 3.21. Assume UUPO holds in the system and let S G Lvoc be a

P-vocal sequence in Gi0 and R G S+ be a Pi0-silent path following S. In this

case, if U)(SR) is controllable (û(SR) G Tc), then R is Pi0- controllable from
q = S(q0,S).

Proof: Direct result of Proposition 3.12 and property UUPO. D

Proposition 3.21 implies that a P;0-silent path is P/0-controllable if and only

if the the output which is generated upon completion of that P;0-silent path

is controllable. A similar conclusion follows from Proposition 3.21 for ???-

uncontrollable P¿0-silent paths. In the rest of this thesis we assume the map ?
is such that UUC and UUPO properties are satisfied.

?0>a-000>00)
Figure 3.5: Motivational example for PO-SOCC property: Event a cannot be
disabled independently.

59

3.4.3 PO-SOCC Property

Fig. 3.5 shows a model whose reporting map satisfies Factorization Property
(3.1) as well as UUC and UUPO properties. There, S = {a, b, c, d, f, g, a, s},
Ec = {a, c} and the dashed lines denote the low-level unobservable events

S?? = {a,s}. T = T0 = {A, ?} is the set of high-level events. It can be
verified that the system is prone to unintended disablement which occurs if

for example event A is desired to be disabled at the high-level. In this case,
event a is disabled after an observable event "a" is generated. If the low-level
supervisor is feasible, this leads to unintended disablement of B.

For a more general discussion consider Fig. 3.6. (a). Fig. 3.6. (a) shows

r,

(a)

(b)
SS Hm 1 Ki/) t

Figure 3.6: PO-SOCC property inspiration, (a): two branches in reachability
tree of Gi0, (b): corresponding projected branches with common segments in
reachability tree of Gi0.

two transitions T1S1US2, r[s[vs3 6 L(G¡0) which generate high-level events
?, T2 e T0. We assume P10[T1) = Plo{r[), Plo{u) = Plo{v) = e, Plo(Sl) =
Pio(s\) f e and P[0(s2), P¡0(s3) F e. Fig. 3.6. (b) shows the correspond-
ing projections Pi0[T1)P10(S1U)P10[S2), ???^?f'^?f?) <? L(Gi0) share
a common segment Pi0(T1)Pi0(S1) = Pi0(r[) Plo(s[) G S+. Let q be P-vocal and
Pi0(S1U)Pi0(S2) and Pio(s[v)Pl0(s3) be two P^-silent paths which start from

q and lead respectively to ^1 and q2 with w(q{) = T1 and ro(ç2) = t2. Also

60

let the state ? be the last state which is reached by the common segment
Pio(ri)Pio(siu) = PUr'^Piois'yv). If PUs2) or Plo{s3) is P/o-uncontrollable
from p, disabling T1 or T2 might not be done independently from each other

(This is comparable with partnership status in the full observation case). The
PO-SOCC property (which will turn out to be a generalization of SOCC for
the case of control under partial observation) is introduced in the following to
prevent unintended disablement in these cases. First we define P-partners.

Definition 3.22. Two P-vocal nodes U1 and n2 with different controllable

outputs in the reachability tree of Gi0 are said to be P-partners if their Pi0-
silent paths start either at the root node or at the same P-vocal node, share an
initial segment S1 G S+ which is followed in turn by segments S2 G S+ and
S^ G S+, where S\S2 and SiS5 are Plo- controllable and at least one of S2 or
S3 is Pi0-uncontrollable. ?

If two nodes in the reachability tree of Gi0 are P-partners, then disabling

the high-level event associated with one of them might unintentionally disable
the other one.

Definition 3.23. A Moore automatonGi0 is Partially- Observable-Strictly-

Output- Control- Consistent (PO-SOCC) if it is (1) OCC and 0OC and
(ii) no two P-vocal nodes with controllable outputs are P-partners in the reach-
ability tree of its observer automaton Gi0. ?

Remark 3.24. In Proposition 3.26 we show that PO-SOCC is stronger than
SOCC. However, note that in the case of full observation, the PO-SOCC prop-

erty reduces to SOCC (and properties UUC and UUPO hold trivially).

Remark 3.25. Similar to SOCC, if PO-SOCC does not hold in the system,
by vocalizing new states and refining the structure of Gi0 we can ensure PO-
SOCC The details are given m PO-SOCC Algorithm m the Appendix.

61

Proposition 3.26. IfG10 is UUC, UUPO and PO-SOCC, then it is SOCC

Proof: By contradiction suppose Gi0 is not SOCC and thus there exist

two vocal nodes ?? and n2 with controllable outputs that are partners in
the reachability tree of Gi0 (see Fig. 3.7. (a)) and there exist s G Lvoc, S1 G
S*, s G Ec and S2 G S*, S3, S4 G S+ of which S2 G E*c and S3 or S4 G
E+c and 5(g0, ssias2s3) = ?? and <5(ç0, ssias2s4) = n2. First note that
if ?{?\) is unobservable, ?(?2) is unobservable and vice versa. To see why,
without loss of generality assume û(ssxas2s3) = <2>(??) G Tuo is unobservable
which implies s G S??, sx,s2,s3 G S*0 (by Definition 3.1). On the other
hand, since s G Se is controllable, (3.13) implies sias2S4 will be unobservable
too. Furthermore, property UUC and vocalization rule in the SCE Procedure

require that U(SSXaS2S3) = û)(ssxas2s4) = ts are the same for s G S?? ? S,..
Therefore reaching ?? or n2 generates the same high-level event ts and takes
us to the same state in Ghi which implies ?? and n2 are not partners. Thus
without loss of generality we assume both ?? and n2 have observable outputs.
Therefore assume u(ssxas2s3) = t G T0 and û(ssxas2s4) = t' G T0 are both

>Ow' I—KU

P1A^)

(a) (b)

Figure 3.7: Proposition 3.26: if (a): states ?? and n2 are partners, (b): states
(J1 and ç2 will be P-partners.

observable and let the reachability tree of observer automaton Gi0 be given in

Fig. 3.7.(b). Also let S = Pi0(s), S1 = Pi0(sxas2s3) and S2 = Pi0(sxas2s4) and
q, q~x and q2 be states in reachability tree of Gio that are respectively reached

62

®-*->®-q—hJs)-—gt->@-f»<22)-
1 ?
! ' s

-Ko)
La-

A
-a WT7)

^?^-?<^-^-a---?6>+?^s-??^^?®^

Figure 3.8: Automaton Gi0 with unobservable transitions denoted by dashed
lines and outputs A and B

by S, SSi and SS2. First note that s G Lvoc which implies S G Lvoc. Therefore
q is either the root state q0 or a P-vocal state. Let <f be the state which is
reached by the sequence Sp0(S1Cr). Next note that s G Ec and since r, r' G
T0DT0, property UUPO requires S^?^?s)) = 0. This implies P0(S1O) f e
which means states q and <f are distinct. Furthermore, since t,t' G T0 are
observable, by Proposition 3.3 we can see that 6(q0, ssios2s3) G in(q~\) and

S(q0, SSIaS2S4) G in(q2). Therefore by (3.5) we have O)(SS1) = t G T0 ? T0 and
CU(SS2) = t' G TcnT0. It follows from Proposition 3.21 that S1 and S2 are P/o-
controllable from q. On the other hand, by assumption, either s2s3 G E+c or
S2S4 G E+c which implies either Pi0[S2Sz) or P^0(S2S4) is p0-uncontrollable from
q' . lì t f t', the above facts imply C1 and q2 are P-partners in the reachability
tree of Gi0 which contradicts the assumption that Gi0 is PO-SOCC. Therefore

do is SOCC. ?

Example 3.27. Consider the plant Gi0 in Fig. 3.8. Gi0 is SOCC since the
sequences leading to states 12 and ? (and thus generating controllable high-

level events A and B) have the common initial segment of O —> 1, and all
sequences from state 1 to states 12 and 17 are controllable. Now we observe
disabling high-level event A also disables B since to disable A (following ob-
servable sequence a.a.b), event a in state 5 must be disabled as a result of which

63

a at state 4 will also be disabled leading to an unintended disablement of B. In
fact, it can be verified that Gi0 is not PO-SOCC. Specifically, in the reachability
tree of Gi0 (see Fig. 2. 3 for details), the nodes which are reached by sequences
Ri = a.b.b.a and R2 = a.b. cd will be P-partners. To see why, note that R\
and R2 are Pi0- controllable Pi0-silent paths which share a segment Si = a.b
which can be extended to the P-vocal state q^ and ¿¡q by a Pi0-uncontrollable
sequence S2 = b.a and a Pi0- controllable sequence S3 = cd respectively. S2 is

Pi0-uncontrollable since there is a transition 17 = 5(7, b'.a) with b.a G E+c in
Fig. 3.8 and 7 G out(q2), the sequence S2 is Pi0-uncontrollable.
Next we show how Gi0 can be modified so that it satisfies PO-SOCC (as well
as the Factorization Property, UUC and UUPO properties) . The change is
done in two steps shown in Fig. 3.9 and 3.11. In Fig. 3.9, states 4 and 5 are
vocalized to turn the Pi0-uncontrollable segment S2 of the Pi0-silent path Ri

into a Pi0-silent path. Next, states 6 and 7 need to be vocalized to satisfy UUC
property. However, it can be observed that of the two newly-formed silent paths
b.a, starting from state 7, and a.b.b.a, starting from state 5, the former is un-
controllable but the latter is controllable. Therefore, OCC is violated here. If
we split state 17, say into 17a and 17b, to have controllable and uncontrollable

versions of A (as required by OCC algorithm) , then the Factorization Property
would be violated since the sequences leading to states 17a and 17b have the
same natural projection and generate different outputs. As shown in Appendix,

the remedy is to vocalize states 13 and 15 so that the information of the low-
level unobservable- controllable transition 7 from state 13 to 15 is included in
Gi11. Following this, state 9 is also vocalized with the same output as 13 to
ensure the Factorization Property. Finally state 12 is split into 12 and 27 to
ensure OCC, as shown in Fig. 3.11. The model in Fig. 3.11 is PO-SOCC and
satisfies the Factorization Property, UUC and UUPO properties.

64

?@-í->-(Í6)-£h>@- - - -t - >{20H»{22}

?µ>@.|_^@ g—?{g)
a.

?)—a-H5>t>^<|)-J'

Factorization 9
Property

E. Ac

H^><7>b->(9) ^Kg)
^^^^^JI

"KO) Z1

Properties
UUC &
UUPO &
PO-SOCC

Figure 3.9: States enclosed in shaded area should be vocal so that G\0 is UUC,
UUPO and PO-SOCC

Suppose the high-level specification Ehi is controllable and observable. The
supremal controllable sublanguage of Ei0 = 6~l(Ehl) which we denote by EJ0
would not necessarily be observable with respect to the low-level model Gi0.

Below we show E]0 can be guaranteed to be observable in a more relaxed sense
which we call (G, Pi0, #)-observability.
Let a map acte '¦ L(Gi0) '—> 2T be defined as

acte(s)
M*)}, if 5 e L,¡

{t I 3u G Lvoc(s), lü(su) = t}, otherwise.

acte{s) returns the generated high-level event if s is vocal. Otherwise, it returns
the set of next possible high-level events.

Definition 3.28. A language E Ç L(G) is said to be (G, Pi0, T)- observable
if for any s,s' G E that Pi0(s) = Pi0(s'), and for any a G S that acte(sa) -
actg(s'a) F 0 and actg (s'a) f 0, we have

sa e E and s'a G L(G) => s'a G E.

65

Next, we show (G, Pi0, (9)-observability of E]0 is ensured by the PO-SOCC
property.

Proposition 3.29. Consider a high-level controllable specification Ehi- Let

Ei0 = 9~l(Ehi) be the translation of E^ at the low-level. Then if Gi0 is PO-
SOCC, Ej0 is (Gio, Pi0, T) -observable.

Proof: We show if E]0 is not (Gi0, Pi0, T)- observable, then Gi0 cannot be
PO-SOCC. Suppose there exist s,s' G E]0 with Pi0(s) = Pi0(s'), and a G S
such that actg(sa) - act0 (s'a) f 0, actg(s'a) F 0 and sa G E]0 and s'a G
L(Gi0) but s'a ^ E]0. First note that if a G EUC) then since s' G E]0 and s'a G
L(Gio), from the controllability of Elo we conclude that s'a G Elo contradicting
the assumption. Therefore from now, we assume a is controllable (a G Ec).

Now let 9(s) = t and 9(s') = t' for some t, t' G T*. From the Factorization
s

_______?

-K)-^2—HO-^C^^HO

K) J' xy-^o^^o
S=IfM)=^1(S2) s7=^^)=^:)

Figure 3.10: Proposition 3.29: S1 and s[are the largest vocal prefixes respec-
tively of s and s' whose natural projections Pj0(Si) = P/0(s'i) = S' are the same.
If (Gi0, Pi0, #)-observability is violated, then nodes corresponding to sas3 and
s'as'3 must be P-partners.

Property (3.1) it follows that Pkl(t) = Phi(t') = t for some t G T0*. Let
S = Pi0(s) = Pîo(s').

Thus 9(S) = t. Let S' denote the shortest prefix of S such that 0(S') = 9(S).
Then for some S" G S*, S = S'S". Furthermore, let S1 and s[be the largest
prefixes of s and s' such that P0(S1) = P0(S1) = S' and si,s\ G Lvoc. Thus
there exist S2 and s'2 with s = S1S2 and s' = s^s^ and Pio(s2) = Po(s2) = S"
(Fig. 3.10). By assumption, acte(sa) - actg(s'a) F 0 and actg(s'a) F 0. So

66

F

suppose t G acte(sa) — actg(s'a) F 0 and r' G acte(s'a) f 0. Obviously we
must have t ^ t'. Also since s G S0, by OCC, r, r' G Tc. Three cases are
possible.

Case (1): re Tuo. Then for some S3 G S*0 we have û(siS2as3) = t G Tuo,
which in turn implies S2 G S*0 and a G Euo. Since P/0(s2) = Pi0(S2) = S", we
can conclude that s'2 G S*0, and thus s'2a G S+0. Now let s'3 G S* be a sequence
such that ¿"(sjS^aSg) = t'. Prom (3.13), s'2as3 G Lvoc(s\), s'2a G S+0 and
s G Ec, it follows that s'3 G S*0 and therefore Cj(s\s'2as'3) = t' G Tu0. Now from
property UUC and the following vocalization rule in SCE Procedure (when
applied to S1, s[G Lvoc), we can conclude that tÛ(siS2as3) = U(S[S^aS3) = ts
with ts G Tcuo defined in (3.39). This means t = t' = ts which contradicts the
assumption t ^ t'.

Case (2): r G T0 and sa G L„oc. Since P¡0(sa) = PÍO(s'a), by Factorization
Property (3.1) we have:

Phi[9(sa)] = Phl[e{s'a)}

Phx[tCj(sa)} = Phi[t'u(s'a)}

Phl(t)Phl(Cj(sa)) = Phl(t')Phi(ù(s'a))
t r = t Phl(û(s'a)).

This implies s'a G Iuoc and t = ^^(^'(sV)) = t' which contradicts the as-
sumption t f t'.

Case (3): r e T0 and sa ^ Lvoc. There exists S3 G S+ such that Cj(S1S2OS3) =
t. Now t G T0, a G S0 and (3.12) imply S°(t7(?2s53)) = 0 and S" ???{s) =
Pio{s2a) = P[0(s'2a) f e. Then note that s'a <£ L„oc otherwise, since Pi0(s'2a) F
e, we would have ? (s'a) = t' G T0, and for sequences sa and s'a, Pi0(sa) =
Pio(s'a) and Phi(9(sa)) = t F tr' = Phi(9(s'a)) which would violate Factoriza-

67

tion Property (3.1). Therefore there exists s'3 G E+ such that U(S[S^aS3) = t'
and r' G T0. Furthermore, Proposition 3.3 implies S3, S3 G S+. Next by
(3.5), U(S1S" P[o(a)Pio(s3)) = ¿(sas3) = t G Pc and ¿,(S'S"P»P4s3)) =
ù(s'as'3) = r' G Tc. Therefore by Proposition 3.21, both S"P0(a)P/0(s3) and
S" ?[s(s) Pi0(s'3) are P(o-controllable from state q' = o(q0, S'). Now consider the
sequence s'a. By assumption, s'a G L(Gi0) and s'a ^ i?/0. Any extension of
s'a, that is s'as", which does not lead to a vocal state is a legal string since

9(s'as") = 0(s'a) G T(?]0) C Ew. Therefore it follows from s'a <£ E]0 that
there exists an uncontrollable sequence s" G E+c such that s'as" G Lvoc. There-
fore without loss of generality we will assume S3, introduced earlier in Case
(3), is an uncontrollable sequence (s'3 G S+,). This requires that Pi0(s'3) to be
P/0-uncontrollable from state q = o(q0,S'S"Pi0(a)). Since t f t', the nodes in
the reachability tree of Gio reached by S'S"P,o(a)P/0(s3) and S'S"P,0(a)P,0(s'3)
are P-partners, and thus Gio cannot be PO-SOCC, contradicting the hypothe-

sis assumption. This completes the proof that EJ0 is (G, Pi0, #)-observable. D
Next, it is shown how supervisor can be implemented at the low-level.

3.4.4 Hierarchical Consistency under Partial Observa-
tion

Let Shi : T* ? Tc >—> {0,1} be the high-level supervisor which implements
a controllable and observable specification Ef17- A disabled-event map ?^ :
L(Ghi) '—> 2Tc can be derived for Shi as

Ahl(t) = {reTc\ Shi(t,r) = 0}.

68

A high-level disablement is implemented at the low-level by a low-level dis-
ablement law ?/0 : S* ? T* ?—> 2Ec given by

Àlo(s,t) = {J{Al0(s',t')\ 3'EP1-1PIo(S)DL(G10),
t'eP^Phl(t)nL(Ghl)}, (3.14)

where A¡0(s,t) is defined similar to [59]:

Aio(s,t) = {s <=S0\ 3u G E*c, saueL(Gio) and

?(ds«) G ?,,?(?) and Vs" < ?, ù(sos") = t0}.

Then low-level supervisor Si0 : S* ? T ?—> {0, 1} is defined based on Aio as
follows:

Í0 if ae Al0(s, 0(s))
(3.15)

1 otherwise.

To study the properties of Si0, we compare it with the low-level supervisor

Si0 : S* ? T ?—> {0, 1} defined based on A¡0 for the case of full observation
[59]:

Í0 if ae Al0(s, 9(s))
(3.16)

1 otherwise.

Recall that in supervisory control under partial observation, a supervisor is

said to be feasible if it acts the same in response to two look-alike sequences

(two sequences with the same natural projection).

Proposition 3.30. Low-level supervisor Si0, given in (3.15), is feasible.

Proof. We must show for every s,s' G L(Gio) that Pi0{s) = PÍ0(s') we

69

have Kío(s,9(s)) = Alo(s',9(s')). First note that

A/o(s,0(s)) = ?{??0(G,?)| r G ^1P10(S)HI(C0),
EGPn-1Pw(O(S))DL(Gw)). (3.17)

Since Pio(s) = Pio(s'), Factorization Property (3.1) implies Phi(9(s)) = Phi(9(s')).
Therefore (3.17) can be written as

^io(s,9(s)) = \J{Al0(r,t)\r E P-1Pi0(S1) ? L(G10),
tGP^Phi(0(s'))nL(Ghi)}

= Àlo(s',9(s')).

Hence Si0 is feasible. D

The following theorem shows that UUC, UUPO and PO-SOCC guarantee
hierarchical consistency.

Theorem 3.31. IfGi0 is UUC, UUPO and PO-SOCC and the high-level speci-

fication Ehi is controllable and observable with respect to Ghi, then 9(L(Si0/Gi0)) =
Em

Proof. Since by Theorem 2.37, 9(L(Slo/Glo)) = Ehu it suffices to show
that 9(L(Slo/Glo)) = 9(L(S1JG10)).
Q): From the definition of ?/?, for every s G L(Gi0), AJs, 9(s)) C Ato(s,9(s));
therefore the set of events disabled by Si0 is a subset of those disabled by S¡0
and therefore 9(L(S1JG10)) C 9(L(S10 /Gi0)).
(C): To show 9(L(Slo/Glo)) Ç 9(L(S1JG10)) we prove

9(L(G10)) - 9(L(S1JG10)) Ç 9(L(G10)) - 9(L(S1JG10)). (3.18)

70

lï0{L(Glo))-e{L{Slo/Glo)) = 0, (3.18) holds. Suppose e(L(Glo))-0(L(Slo/Glo
)) f 0. Then for any tx G 9(L(Gi0)) ~ ? (L(Sio/Gi0)), there exists S1 €
L(Gi0) - L(Si0IGi0) such that 9(sx) = U <£ 0(L(Si0/Glo)). Let s2 < S1
be the largest prefix of S1 in L(Si0/Gi0). Thus there exists o G Ec and
S3 e S* such that S1 = s2as3 with S2 G L(Sto/GÎO), 9(s2) G 9(L(Slo/Gio))

and s G A/0(s2,#(s2)). Since #(s2) 7^ ^(S1), the sequence os3 goes through at
least one vocal state. Thus there exists S4 < S3, t G T such that as4 G 1-U0C(S2),
tû(s2as4) = t. Let t2 = 0(S2). Clearly i2r ^ ? (L(Si0 /Gi0)). We show
i2r £ 0[L[S1JG10)).
Case (1) s G Ä/0(s2, #(s2)) is disabled by Si0 but s ^ AÍO(s2,9(s2)) re-
mains enabled by Si0: Recall from Theorem 2.33 that L(Si0/Gi0) = Elo. Thus
s 4- ???(52, Q(S2)) implies

s2o G E]0. (3.19)

Next, note that since s G À/0(s2, #(s2)), by (3.14), there should exist s' G
^;1fio(s2) ? L(Gi0) and i' G P^Pht(9(s2)) ? L(Ghi) such that s G Alo[s',t').
Factorization Property (3.1) for S2 and s' with Pi0(s') = Pi0(s2) implies Phi(9(s')
) = Pm(O(S2)) and since Phi(t') = Phl(9(s2)), we have Phi(t') = Phl(9(s')).
Then, since Shi is feasible it is concluded that ?^(?') = Ahl(9(s')). This
implies o G AÍ0(s',9(s')) and hence

s'a i Ej0. (3.20)

Let ?! G E*c be the corresponding sequence in the definition of ??? for which
we have ou' G Lvoc(s') and u(s'ou') G Afti(ö(s')). Let Cj(s'ou') = r' for some
t' G T. Therefore, we should have

r' G Ahl(9(s')) (3-21)

71

and 9(s')r' f ? (L(Si0/Gi0)). Recall that we had assumed U)(S2CS4) = r. We
have Pio{s2) = Ph(s') and that

s2a G E]0 k s'a G L(Gio) h s'a f E]0 (3.22)

where the first and the last terms were given respectively in (3.19) and (3.20).
Note that by Proposition 3.26 the system is SOCC; hence we have actg(s'a) =
{t'}. Now if t F t', then acte(s2a) - acte(s'a) ^ 0 which together with
(3.22) imply E]0 is not (G, Pi0, 6>)-observable. This cannot be the case since
Gi0 is PO-SOCC; thus by Proposition 3.29, E]0 is (Gi0, Ph, ^-observable. This
implies t = t'. Besides, S^ is feasible which implies Ahi(9(s2)) = Ahi(9(s')).
Therefore, (3.21) implies r G Ahl(9(s2)) or equivalently 9(s2)t g Ehi. Finally,
since by Theorem 2.37 9(L(Si0/Gi0)) = Ehl, we have

9(s2)t = t2T i 9(L(S1JG10)). (3.23)

Case (2): s G Àh(s2, 9(s2)) and a G Alo(s2,9(s2)) is disabled by both Slo
and Si0: In this case, 9(s2)t = t2r <£ 9(L(Si0/Gi0)).
Therefore in both cases we have shown t2r £ 9(L(Si0/Gi0)). Finally, since
t2T £ 9(L(Si0/Gi0)), t2r < tx and 9(L(Si0/G¡0)) is closed, we conclude tx £
9(L(Sl0/Glo)). This proves (3.18) and thus 9(L(Sio/Gi0)) C 9{L(Si0)/GÍ0)
which completes the proof. D

Example 3.32. Let us continue Example 3.27. The low-level model after the
modifications to ensure Factorization Property, UUC, UUPO and PO-SOCC
properties is shown in Fig. 3.11. The high-level model Ghi is shown in Fig.

3.12. The high-level event set is T = Tc U Tuc with T0 = {Bc, ta,t?} and Tuc =
{Auc, Buc, Duc, Euc} where we havera,T^ G Tcuo with T?0 defined in (3.39). Let
the design specification E'hi at the high-level be described as "Event A cannot

72

s ?

-J

->{Í4)-{-H^6)-g^8)- - - -t - *<20)-t>>{22)-
!

a

^a->{^b-H^--i-">(^l>->(9)——a H®
---->^2)-b->^Í3H-KÉ}-J

4.

Q, Ä

—Hg)-^- >{25)-h->{26}g->@

Figure 3.11: Final model Gi0 after satisfying properties UUC, UUPO and
PO-SOCC. Colored states have been assigned new outputs.

Bc B„,
¦ ? c >·< ? y ¦>·

Figure 3.12: Final high-level model Gftî

occur". 77ns is formally written as E'hi = {t G L[Ghi) | Vr < i, rv4uc ^ t] .
The automaton generating an observable and controllable sublanguage of E'hi

is given in Fig. 3.13. Let Ehi = B0 + DUCEUC denote this sublanguage of E'hl
in the following. Then, consider a feasible supervisor Sio which implements

Ei0 — 0'^[Em) at the low-level. The low-level system under supervision S¡0/ Gi0
is given in Fig. 3.14- It can easily be verified that L[Si0/Gi0) in Fig. 3.14
is hierarchically consistent with the high-level specification Ehi, i.e. we have
6[L[S10/Gi0)) = Ehi- Recall from Example 3.27 that some sequences, not
leading to high-level event A, were unintentionally disabled there. Here, by
the refinements applied to the reporting map as explained in Example 3.27
hierarchical consistency has been achieved. Note that how the UUC, UUPO
and PO-SOCC properties have ensured hierarchical consistency in this system
by relabeling in which a or 7 at the low-level respectively after states 4, 5 and

73

-J4^·

Figure 3.13: Controllable and observable specification E^ at the high-level

L^-Hg)-MKg) g—Hg)
Zi

T)-a-H^b-Hp
-Ko. Zi. -H2)-b-HÍ3) 4

La->(?)—b->(4)
Figure 3.14: Si0/Gi0: System under supervision which is hierarchically consis-
tent with Ehi in Fig. 3.13.

13 are disabled if and only if rQ or T7 are disabled at the high-level.

Next we show how (G^0, P/0,#)-observability, which is induced by UUC,
UUPO and PO-SOCC properties, and is weaker than observability, suffices to
ensure hierarchical consistency.

Example 3.33. Consider the Moore model G¡0 in Fig. 3.15 where S =

{a, 6, c, d, s, ß, ?/}, Ec = {e, s}, S„0 = {s,a,ß,??}, T = T0 = {?,t2} and
T0 = {t2}. The Factorization Property holds in the system and the high-
level model Ghi is given in Fig. 3.16. Let E^ — rj". E^ is controllable

r

ß

K¿y^°^j)~iyK¿y~ci~*(j)

^¿)^c-K^iyK¿y4"jK¿)~à-+®
Figure 3.15: Glo is UUC, UUPO and PO-
SOCC.

Figure 3.16: High-level
model Ghi which corre-
sponds to model Gi0 in
Fig. 3.15.

74

and observable with respect to Ghi. Ei0 = 6~1(Ehi) = a.(-y.c.b + ß.c.b.a) and
EJo = a. (7 + ß.c.b). It can be seen that E]0 is not observable with respect
to G\0. It can be verified that the properties UUC, UUPO and PO-SOCC
hold in the system. Hence, there exits a low-level feasible supervisor Sio such

that Q(L(Si0/ Gi0)) — ^T/ i- e· hierarchical consistency holds in the system. In
particular, S¡0 (following (3.15)) will disable event c once Gi0 reaches state
1. Therefore, the closed behavior of the system under supervision will be

L(Slo/Glo) = a.(? + ß) C E]0. Note that E]0 is (Gio, P10, T)- observable.

Example 3.33 shows that even if E]0 is not observable with respect to Gi0,
we are still able to ensure hierarchical consistency, provided that Gi0 is UUC,

UUPO and PO-SOCC. In this case, E]0 will be (Gi0, Pio, 0)-observable.

3.5 Comparison with H-observability

Kim et al. [25] have investigated partial observability in the hierarchical su-
pervisory control framework of [59]. In this regard, [25] introduces the notion
of H-observability.

Definition 3.34. ¡25] A language Ehi C L(Ghi) is said to be H-observable
w.r.t. (A, Ghi) if for all s, s' e A(Q L(Gi0)) s.t. P(s) = P(s'),

(Vr e Tc)6(s)t e Ehi and 0(s') G Ehi and 9(s')t G L(Ghi) => 9(s')t G Ehl.
(3.24)

To achieve hierarchical consistency under partial observation, Theorem 1

of [25] states that assuming Gio is SOCC, for a controllable specification Ehi,
hierarchical consistency is achieved, i.e. 6(L(Si0/Gi0)) = Ehl, if

(i) Ehi is ?-observable w.r.t. (E10, G hi)'·.

75

(ii) Ej0 is observable w.r.t. Gi0.

As discussed earlier in this chapter, partial observation at the low-level, has
two important implications for the supervisory control problem at the high-
level. First, some of the high-level events in T become unobservable. To ensure

consistency in the observability status of the high-level events, we introduced
the OOC condition. Secondly, in order to be able to have a feasible reporting
map (one that reports to the high-level based on the low-level observations
Pi0(s)), the Factorization Property must be satisfied. None of the above two

implications have been considered in [25].
Now, let us assume OOC and the Factorization Property hold. The follow-

ing proposition shows that observability of Ehi implies ?-observability (w.r.t.
(Elo,Ghi)).

Proposition 3.35. If Gi0 satisfies Factorization Property (3.1) and E^ is

observable w.r.t Ghi, then Ehi is ?-observable w.r.t. (EJ0, G^).

Proof: Consider two sequences s,s' G E]0 such that Pi0{s) — Pi0{s').
Then, Elo Ç L(Gi0) and thus Factorization Property implies that

Ph1(O(S)) = Phl(0(s')).

Next, since Ehi is observable w.r.t Gfn, for sequences 6(s) and O(s') and for
every r G T we have:

6(s)t g Ehl and 9(s') G Ehi and e(s')r G L(Ghl) => 0(s')r G Ehi. (3.25)

Comparing (3.24) and (3.25), it is concluded that Ehl is ?-observable w.r.t.
(E}0, GM). D
Therefore, Theorem 1 of [25] essentially guarantees hierarchical consistency if

76

Elo is observable.
While it is known how the SOCC property can be satisfied [59], no course of
action or algorithm has been given in [25] to deal with cases where the first
or the second conditions of Theorem 1 of [25] is not met. Furthermore, the

conditions given in [25] are specification-based, i.e. depend on E^, and even
if they are satisfied, hierarchical consistency would only be valid for a certain

Em-

In contrast to the solution of [25], our solution guarantees hierarchical consis-
tency for any controllable and observable specification Ehi. Finally, it should

be noted that as shown in Example 3.33, in the approach proposed in this

thesis, to achieve hierarchical consistency, Elo does not have to be observ-
able; satisfying the weaker assumption of (Gi0, P;0, 6>)-observability would be
enough.

3.6 Conclusion

In this chapter, the hierarchical supervisory control setup of Zhong-Wonham
was extended to the case of control under partial observation. The construction

of a reporting map was discussed. A feasible low-level supervisor was proposed
to implement the commands of the high-level supervisor. The UUC, UUPO
and Partially-Observable-SOCC (PO-SOCC) properties were introduced to
ensure hierarchical consistency under partial observation.

77

3.7 Appendix

3.7.1 Necessary and Sufficient Conditions for the Sat-

isfaction of the Factorization Property

In this appendix we show how the output map ? can be refined such that the

Factorization Property, the UUC, UUPO and PO-SOCC properties hold in
the system. We begin with the Factorization Property. Let Gi0 = (Q1E1TU
{t0},d, uj,q0) be the low-level model and Gi0 = (Q, E0, d, q0) the observer au-
tomaton for Gi0. Consider two sequences s.s' E L(Gi0) for which we have

Pio(s) = Pio(s').

It is desired by the Factorization Property (3.1) to have Phi(9(s)) = Phi(9(s')).
Let

0(s) = e?t? ¦ ¦ ¦ EnTnEn+1 and 9(s') = e\t[¦ ¦ ¦ e^t^e^+1

where t¿, rj e T0 and e,, e'3,e T*0 (i = 1, · · · , ? and j = 1, · · · , m). How-
ever, since e?+?,e^+1 e Tu*0 and ?;0(e?+?) = Plo(e'm+l) = e, without loss of
generality, we assume e?+? = ^7n+1 = e. This yields

9(s) = e?t? ¦ ¦ ¦ EnTn and 9(s') = e\t[¦ ¦ ¦ e^t^.

Thus satisfying (3.1) requires that

ri · · · Tn = Phi(9(s)) = Ph1(O(S')) =T[---T'm

which implies ? = m and T1 = t[for i = 1, · · · , ?. Furthermore, by Theorem

3.14 we have 9(Pio(s)) = 9(Plo(s')) = T1-- -Tn. Note that Plo(s) = Plo(s') con-

78

sists of ? sequential P¿0-silent paths in L(Gi0); i-e- we have Pi0(s) = Pi0(s') =
?? · · · ?? where each £¿ is a P;0-silent path in L(Gi0).
Consider the segmentations

S = Sn=Sn^vnTn and s' = s'n = Sn-1 u'nrn (3.26)

where we have sn_i,s'n_! G Lvoc, Pi0(Un) = Pi0(^n) = e, rn G Lvoc(sn-iVn) ,
r'n G LyOc(Sn-1Vn), 9(Sn-^n) = E1T1-- -Tn^en and 9(s'n_yn) = e\t[¦ ¦ ¦ t'?_?e'?.
Clearly we have

Pio(sn-i) = Piois'n-i) = ?? · ¦ ¦ ??-? and Pi0(Tn) = Pio(r'n) = ??

which imply

0(Pi0(Sn^1)) = 9(P10(S^1)) = T1 ---Tn.,

"(PM) = "(ño«)) = Tn.

In other words, all the incoming states q G in(q) where q = est(PÌ0(sn)) have
the same output. Furthermore, the segmentation in (3.26) can be applied
to the sequences sn_i and Sn^1 such that sn_i = sn_2^n-ir„_i and s'n_i =
s'n-2v'n-\r'n-\ where sn_2, s'n_2, un-i, i/n_x, r„_] and t'?_? are defined as before.
Therefore,

Q(Pi0(Si)) = Uj(Pi0(S1)) = T1 for i = 1, · · ¦ , ?.

This discussion agrees with Proposition 3.12 which states that if Factorization
Property holds, then all the incoming states of a P-vocal state have the same
output.. We show the reverse is also true. Next, for any P/0-silent path ? G S+

79

entering a P-vocal state q, let

??(?) = {re P1'1 (O I 3s G Lvoc : r G !„«.(s) and 5(ç0, sr) G m(g)} (3.27)

be the set of silent paths in L(Gi0) whose natural projections is ? and enter the
incoming states set in(q). Note that by Definition 3.1 the outputs generated
by Ag (?) are observable.

Proposition 3.36. The Factorization Property holds if and only if for every
P-vocal state q and for every incoming state q G in(q), we have u)(q) = t for
some fixed t G T0.

Proof: (If): Assume the Factorization Property (3.1) holds. Then Propo-
sition 3.12 states all the incoming states in a P-vocal state q have the same
output t G T0.

(Only if): Assume for every P-vocal state q and for every incoming state
q G in(q), the output u(q) G T0 is unique and fixed. Now consider sequences
s,s' G L(Gi0) with the same projection Pi0(s) = Pi0(s'). Therefore, if for
some sequence r < s, we have ?(t) G T0, then (i) r G S*S+ leads to an
incoming state and (ii) there exists a sequence r' < s' such that ?(t') = û(r)
and r' G S*S+ (i.e.. r' leads to an incoming state). This implies Pi0(s) and
Pio(s') consist of the same number of P;0-silent paths. Let ? G N be the largest
number for which we have ??··-?? < Ph(s) = Pi0(s') where & are P/o-silent
paths in L(Gi0). It then follows that s and s' can respectively be split as
s = ??t? ¦ ¦ ¦ vnrnd and s' = u[r[¦ ¦ · ?'?t'??' where vu v[G S*s are unobservable
sequences, ri,r[G A^fa) are silent paths which enter appropriate çji's to which
Çi's enter, and ?,?' G S* are sequences in S* which might only generate un-
observable outputs. We will have Phi(e(uir1 ¦ ¦ ¦ unrnd)) = Phi(9(virx ¦ ¦ ¦ vnrn))
and Phl(e(u[r[¦ ¦ ¦ v'nr'J')) = Pki(e(is[r[¦ ¦·«)). Therefore and without loss

80

of generality assume ? = ?' = e. Hence, we can write s = V\V\ · ¦ ¦ unrn and
s' = v'xr'x ¦ ¦ ¦ v'nr'n. Next, note that by splitting s¿ = s^iTi and s[= S^1T1'
(i = n, · · · ,1), where Sn = s and s'n = s' and

Si-i = v\r\ ¦ ¦ ¦ Vi-Xr1^Vi and s_x = v'xr'x ¦ ¦ ¦ ?_?t_??\, (3.28)

we have

0(Si) = O(Si-I)^(Si) and Q{s\) = 0(^1K2 c¿(s|).

Here, £¿,s- G T£0 are generated by Vi and ^1' transitions. Now since ri,r¡ G
Ajj(fi) enter the incoming states of the P-vocal state g¿ and by assumption all
the incoming states of P-vocal state <j¿ have the same output, say r¿, it can

easily be seen that u(si) = ?(d-) = r^ E T0 which implies

0(Si) = 0(Si-OETi T1 and 0(s'¿) = 0(S^1K r¿.

Therefore by recursively splitting Si, s'^ as given in (3.28), we will have

0(s) = E1T1 ¦ ¦ ¦ e?t? and 0(s') = SjT1 · · · e'?t?. (3.29)

Equation (3.29) implies

PhMs)) = Phi(0(s')) = T1-^-Tn.

This proves that by ensuring silent paths r G ?$(?) which enter P-vocal state
q have the same output, the Factorization Property (3.1) can be ensured. D

81

3.7.2 Initialization Procedure

If the the conditions of Proposition 3.36 do not hold, in order to modify the

reporting map T, we need to examine the sequences of events in the system.

Alternatively, if the Moore automaton which represents the closed behavior of

the hierarchical system lends itself to certain characteristics, we can examine

the states of the Moore automaton. In this section, we present one possible

way of using the information of the states instead of examining the sequences.

Let Gi0 = (Q, S, T U {t0}, d, ?, q0) be the low-level model, Gi0 = (Q, S0, d, q0)

the observer automaton for Gi0 and Qpvoc Q Q the set of P-vocal states in Gi0.
Step 1: (Defining a virtual output map µ) Define a new label set T' =
{a, b, a, ß} with T'0 = {a, b} as the observable subset and T'c = {a, a} as the
controllable subset, b and ß are regarded as the uncontrollable versions of a

and a. Also, a and ß are regarded as unobservable versions of a and b. Let

a new output map µ : Q ?—> T' U {t0} be defined over the state set Q of Gi0
with the following order of priorities in assignment:

(i) µ^) = a if q G in(q) for some q G Qpvoc-

(ii) µ^) = a if q G out(q) for some q G Qpv0c-

(iii) //(g) = T0, otherwise.

Therefore, if q is both an incoming state and an outgoing state, then q by

the first priority is assigned µ^) = a. Apply OCC and 0OC Algorithms to
the model Gi0, considering µ : Q ?—> V U {t0} as the output map, with the
following conversions in those algorithms as needed:

• OCC: a < ? b or a <—> ß;

• 0OC: a < > a or b < > ß.

82

Let G'lo = (Q', S, T"U{t0}, ?, µ, q'0) be the Moore automaton which is obtained
in this step where µ : Q' ?—> T' U {t0} is properly redefined by the OCC

and 0OC algorithms. Let G'lo denote the observer automaton for G'lo. By
construction, L(G'lo) = L(Gi0) and L(G'lo) = L(Gi0).
Step 2: (Refining with respect to state estimates) Let ??? = G'lo\\G'lo.
Recall that we had L(G'lo) = L(Gi0); hence, it is easy to see that L(Hi0) =
L(Gi0), We assume Hi0 = (F,Y,,T' U {r0}, ?, ?, /0) is the refined Moore au-
tomaton we obtain where for each state / G F with / = (q',q), we assign
Hf) = ßW).
Step 3: (Setting up output map ? for ???) First, recall that the out-
put map ? : Q ?—> T U {r0} is defined over the state set Q. Now, let
? : L(Gi0) '—? T1 U {t0} be defined on L(Gi0) as follows:

Cj(s) = ?(?t) where q = ô(q0,s).

Then, since =Hlo<=Gi <^G(o, we can define the output map ? : L(Gi0) '—*
TU {r0} on the state set F of i/io and hence redefine the output map ? :
Fi—> TU{t0} as follows:

u(f)=û(s) where f = u(f0,s).

Note that the redefinition of ? is well-defined since =Hlo<=clo- Therefore, we
consider Hi0 = (F, S,?? {t0},?,?, f0) as the new Moore automaton with the
output map ?.

Step 4: (Characteristics and notation) Let Hi0 = (F, S?,?,/0) denote
the observer automaton for Hi0. The automata H!o and Hto have the property

that first, states / G F are the cell blocks of the state set F of Hi0 and second,
if a potentially P/0-silent path ? reaches a state / G F, then for every sequence

83

r' G ?'??) which reaches a state / G in(f), we have

Ec(r') f 0 «=> ?(/) E G,!. (3.30)

Equation (3.30) implies that the controllability of the silent paths which cor-
respond to ? can be examined by checking the outputs of Hi0 with respect to
the map ?. We write (Hi0, ?) = INIT(Gi0) to mean that Hlo = (F, S, T U
{t0}, ?, ?, /0) is the final Moore automaton we obtain in Step 3 with, ? as the
virtual output map which we obtain in Step 2. Note that both ? and ? are

defined on the state set F of Hi0. However, we refer to ? as a virtual output

map only. D

Some useful definitions follow.

Definition 3.37. We say the output map ? is well-defined if for every q G

Qpvoc, in(o~) can be assigned a unique output t G T0 U {t0}/ i.e. for every
q G in(q), there exists a unique t E T0U {t0} such that u)(q) = r.

Now, assume ? is not well-defined. This means that there exists a state

q G Q whose incoming states set cannot be assigned a unique output. In this

regard, a state q G Q is either silent or potentially P-vocal as defined in the

following:

Definition 3.38. Let S G L(Gi0) be a sequence m Gi0 and q = S(q0, S). q is
called a potentially P-vocal state if there exists a state q G q for which we have
?(q) f T0. An observable sequence R G S* which connects the root state to a
potentially P-vocal state or connects two immediate potentially P-vocal states

to each other, is called a potentially Plo-silent path.

A potentially P-vocal state is a generalization of the P-vocal state in the

sense that the uniqueness of the output for in(q) is relaxed. Satisfying (3.1)

84

guarantees each potentially P-vocal state (resp. potentially P^-silent path) is

in fact a P-vocal state (resp. P/0-silent path). Let Qpvoc now denote the set
of Potentially P-vocal states in Gi0. For a potentially P;0-silent path ? G S+

which enters a state q G QpV0c define a set function A'^ : S+ ?—> S*,

4(0 = {r' e ?{-\?) I Bp G QpVoc and 3p e OUt(P) : ¿(p, r') G m(ç)} (3.31)

to return the sequences which start from an outgoing state ? of a potentially

P-vocal state p, whose projections are ? and end in an incoming state q of the

potentially P-vocal state q. Note that if ? is well-defined, q is a P-vocal state

and ? is a P¡>0-silent path entering q and thus, for each sequence r' G ?'^(?)
there will exist a sequence r G ^g(O such that r = 7](r)r' where ?(.) is given
in (3.11) and thus IAj(OI = \?'?(?\. Furthermore, if UUPO property holds in
the system, r = ?(t)t' implies

S£(?) f 0 « EV) ^ 0. (3.32)

Therefore, as long as we intend to ensure UUPO property in the system, for

a given potentially P;0-silent path entering a state q, sequences r' G ?'^(?)
can be examined instead of r G Aj(O- Note that in case ? is not well-defined

IAj(OI < 14(0 an(* tnus tnere may not ex'st a one-to-one map between A?(0
and ^(0- Therefore, exploiting A'^(.) instead of Aj(-) is inevitable in cases ?
is not well-defined and the controllability of the silent paths is of interest.

3.7.3 FP Test: ES Algorithm

We present a test, based on Proposition 3.36, to check if the Factorization
Property holds in the system.

Factorization Property (FP) Test: Gi0 satisfies Factorization Property if

85

u(q) = iv(q') G T0 for every q, q' G in(q) where q G Qpvoc. ?
Consider a transition ? —> q where ? and q are potentially P-vocal states and
? is a potentially Pto-silent path (i.e. we have q = d(?, ?)). If the FP Test fails
(at the state q), it means ? is not well-defined. Three cases are distinguishable;
we modify the reporting map in each case.

Remark 3.39. For the sake of convenience at this step, we assume the pri-
mary model G¡0 is such that we have (Gi0, X) = INIT(Gi0).

FP Test, Case (1): For some q,q' G in(q), u>(q) F uj(q') where for every

r' G ?'?(?) we have Ec(r') = 0 or equivalently for all q G in(q) we have
X(q) G T'uc. This case represents the silent paths whose natural projection
is the same, all are uncontrollable but the output they generate are not the
same. We propose the following modification.

Algorithm 3.40. [Modification in Case (I)]
Input: Automaton Gi0 which fails FP Test in case (1).

i. Initial step: Let W = Qpvoc

ii. Choose any q G W and let W <— W — {q} (Suppose it is desired that
vj (q) = t where t G T0).

ni. If for all q G in(q) we have \(q) G T'uc, let V = in(q) and do the
following:

1. Choose any q G V. Let V <— V — {q} and t = u(q) and

2. Ifr = T0, let u(q) = t.

3. Otherwise, If' ta? t f- t , let Q <— Qu{q'} where q' is a new state
of the system and do the following:

a. Let E = {q" -^ q \ 3q" G Q, 3s G E0 : q = 5(q" , s)} be the set
of transitions which reach q by some observable event.

86

b. Define a new set of transitions F= {q" -^-> q' | q" -^-> g G £"}
to consist of transitions which reach the new state q' and where

there is a one-to-one map between the transitions of E and F.

c. Let (EuonEuc) <— (EuonEuc)U{/3} where ß is a new unobservable-
uncontrollable event of the system.

d. Remove E from the system transitions.

e. Add F U {q' --·* q) to the system.

f. Let u>(q') = t and u{q) = t.

4. IfV f®, go to Step 1.

iv. IfW f 0, go to Step ii.

Output: Automaton G\0 which passes the FP Test in Case (1).

Algorithm 3.40 ensures that in each potentially P-vocal state q, if for all

q G in(q) we have X(q) G T'uc, then the outputs u(q) which are generated by
the system are the same.

Case (2): For some q,q' G in(q), u(q) f u(q') and for every r' G ?'^(?) we
have Ec(r') f 0, or equivalently for all q G in(q), we have X(q) G T'c. This
case deals with the silent paths whose natural projection is the same, all are

controllable but the output they generate are not the same.

The modification required in this case is the same as that given for Case (1) in
Algorithm 3.40 except that here line (iii). in Algorithm 3.40 should consider
\(q) G T'c. Without loss of generality, we modify line (iii). in Algorithm 3.40
to cover both Cases (1) and (2). We refer to this extended algorithm as Event
Split (ES) Algorithm.

Algorithm 3.41. Event Split (ES)
Input: Automaton Gi0 which fails the FP Test in Cases (1) or (2).

87

i. Initial step: Let W — Qpvoc

ii. Choose any q G W and let W <— W — {q} (Suppose it is desired that
vj(q) = r where t G T0).

in. If for all q E in(q) we have X(q) € T'uc or X(q) € T'c, then let V = in(q)
and do the following:

1. Choose any q G V. Let V <— V — {q} and t = ui{q) and

2. If t = T0, then let u(q) = r.

3. Otherwise, IfV0 f t f t , let Q <— QU{q'} where q' is a new state
of the system and do the following:

a. Let E = {q" -^-> q \ 3q" e Q,3a G E0 : q = 5(q", s)} be the set
of transitions which reach q by some observable event.

b. Define a new set of transitions F = {q" —> q' \ q" —> gei?}
to consist of transitions which reach the new state q' and where

there is a one-to-one map between the transitions of E and F.

c. Let (EuonEuc) <— (EuonEuc)U{/5} where ß is a new unobservable-
uncontrollable event of the system.

d. Remove E from the system transitions.

e. Add F U {</ ---> q} to the system.

f. Let uj(q') = t and u>(q) — t .

4. IfV f 0, go to Step 1.

iv. IfW f 0. go to Step ii.

Output: Automaton Gi0 which passes the FP Test in Cases (1) and (2).

The third case requires a different algorithm which is explained in the
following section.

88

3.7.4 FP Test: MSPSS Algorithm

Case (3): For some q,q' G in(q), u(q) f u(q') where for some r,r' G ?'?(?)
we have Ec(r) =0^ Sc(r'), or equivalently for some q,q' G in(q) we have

X(q) G T'c and ?(</) G T¿c. This case deals with the silent paths whose natural
projection is the same, but some of them are controllable and some of them
are uncontrollable. Of course, by construction, the outputs of states q G in(q)
cannot be the same. The following example demonstrates our solution in this
case.

T2

Figure 3.17: Model Gto which violates the Factorization Property in Case (3):
The shaded areas are vocalized such that unobservable-controllable transitions
are isolated.

Example 3.42. Fig. 3.17 shows a model Gi0 where we have Ec = {«,7} and
E0 = {a, ò, e, d, e} and two silent paths s\ = a.b.a.c.d.-y.e and S2 = ß.a.b.c.a.d.e
have the same projection P¡0{si) = Pi0(s2) = a.b.c.d.e. Therefore, T1 = U(S1)

JtExploiting Case (1)-

Figure 3.18: The shaded area in Fig. 3.17 has been assigned proper outputs.

>9 r' >m-\—a--+m Tl >·+--->» r—?#-----?#

Figure 3.19: High-level model Ghi which is obtained from Fig. 3.18.

is controllable and T2 = Cu(S2) is uncontrollable while their corresponding silent
paths have the same natural projection. It is easy to see that here, and in
general in Case (3) that FP Test fails, all observable events are uncontrollable
and those silent paths which are controllable include unobservable-controllable

events a, 7 G EU0DEC. The procedure which we follow for modifying the vocal-
ization of the system isolates the unobservable- controllable events as individual

silent paths. Two shaded areas in Fig. 3.17 encompass two unobservable-

controllable events a and 7 whose exiting and entering states are to be vocal-
ized; i.e. states 4, 6, 10 and 12 are vocalized. On the other hand, the Factor-

ization Property requires that if state 4 (resp. state IQ) is vocalized, then state
5 (resp. state HJ should be vocalized too. Fig. 3.18 shows the outputs which
have been assigned to the newly vocalized states in Fig. 3.17. The following
assignments are notable: ?(4) = ? (5) = t[, ? (6) = ta, ?(10) = ?(11) = T2

and ? (12) = T7 where we have t[,t'2 e Tuc and ta,t? G Tcuo. Furthermore,
states 13 and 14 now satisfy the conditions in Case (1). Therefore, a new
unobservable-uncontrollable transition ? is added to states 13 and 14 to have

?(13) = ?(14) = t e Tuc. Note how the initial vocalization t\ and T2 are
assumed uncontrollable thereafter. Fig. 3.19 shows the final high-level model
Ghl where 0(S1) = t[tat'2t?tt?. 0(s2) = t[t'2tt2 with Phl(9(s\)) = Phi(d(s2)) =

We now give a general algorithm for dealing with the failure of FP Test in

90

Case (3). Define a set

X = {(?, s, ?') I 3p, ?' G Q, 3p G Q - <5P™C, 3s G Ec ? S„0 :
?,?'e?, ?' = 5(?,s)}. (3.33)

to consist of the transitions which are unobservable and controllable and whose

beginning and ending states are in a state ? which is not potentially P-vocal

(i.e. p, p' G ? G Q — Qpvoc)- The set X includes the transitions which might
be selected to be vocalized such that unobservable-controllable transitions are

isolated in Case (3). More specifically, for a state estimate q define the set

% = {(?,a,?') G X I Br G S* : Plo{r) f e and 5{p',r) G in(q)} (3.34)

to include a subset of X which can reach the incoming states of q. We refer to

X^ as the restriction of X to q.

Lemma 3.43. The set X in (3.33) is finite.

Proof: Let Trns = {(p,a,q) \ 3p,q G Q, s G S : q = d(?, s)} be the set
of transitions of the system. Clearly Trns is finite and we have X Ç Trns,

hence, X is finite. ?

Consider a potentially P-vocal state q and a potentially P;0-silent path ? which
enters q. Define a property ?, as

?5(0 holds <{=> Vr' G ?'?(?) : Zc(r') =0or W G ?'^(?) : S£(?') ^ 0(3.35)

The property LIc holds if and only if all of the silent paths which enter q are
controllable or uncontrollable. As the first step in any remedy to Case (3), it

should be ensured that for every ? which enters q, we have ?,(?). In order
to do so, some transitions from X are selected and vocalized such that for

91

every Pío-silent path ? which enters q, ?1?(?) holds. We first show how a single
potentially P-vocal state is treated in this case.

Algorithm 3.44. Single State Projected String Split (SSPSS):
Input: A potentially P-vocal state q consisting of incoming states with outputs

under the map ? that are both controllable and uncontrollable.

i. Find T and %\q and let T <— 1 — %\q.

ii. Choose any transition (?,a,?') G T^. Let T^ *— X^ — {(?,a,?')} and
do the followings:

1. If state ? is silent, vocalize it such that ?(?) f t0.

2. Vocalize state ?' such that ui(p') — rQ G Tcuo.

Hi. If \1\q\ > 0, then go to Step ii.

Output: A potentially P-vocal state q that for every potentially Pi0-silent path

? which enters it, ?,(?) holds.

Proposition 3.45. Algorithm SSPSS terminates after a finite number of it-
erations.

Proof: By Lemma 3.43, ? is finite; hence, 1\? is finite. Therefore, after a
finite number of iterations Algorithm SSPSS stops. D
Let SSPSS(q) denote the application of the SSPSS algorithm to a potentially
P-vocal state q. If the states p,p' G ? in a transition (p, a,p') G X are vocalized,
then ? will be considered a potentially P-vocal state. Let ? denote all the new
potentially P-vocal states ? which are formed by the SSPSS algorithm.
Notation: We write (Y,uJnew) = SSPSS(q) to mean that ? is the set of new
potentially P-vocal states and unew is the updated output map when SSPSS
Algorithm is applied to q.

92

In Proposition 3.46 we study an important characteristics of the new P-vocal
states ? eY which are formed by SSPSS Algorithm.

Proposition 3.46. Let {Y,ujnew) = SSPSS (q). Then, (?) for every poten-
tially Pi0-silent path ? which enters a state ? G Y and for every sequence

r' G ?'?(?), we have Ec(r') = 0 and (H) for every newly formed potentially
Pi0-silent path ? which enters q and for every sequence r' G ?'^(?), we have
Ec(r') = 0.

Proof: (i): Suppose in the application of SSPSS algorithm to a potentially
P-vocal state q, the states p,p' G ? G Y in a transition (?,a,?') G Iq have
been vocalized. Then assume ? is a potentially F/0-silent path which enters ?

from a potentially P-vocal state, say x; i.e. ? = d(?,?). Consider any sequence

r' E ?'?(?) such that for some ? G out(x), we have 6(x,r') G in(p). Then note
that by construction, q is reachable from p. This further implies that q is
reachable from x; i.e., for some s G S* we have

ô(x,r's)ein(q). (3.36)

Now, by contradiction, if Ec(r') ^ 0, then it should be the case that for some

r[,r'2 G S* and ? G Ec ? S?0, we have r' = r\^r'2. Therefore from (3.36)

5{x,r'^r'2s)ein{q). (3.37)

Let yx = 6{x,r[) and y2 = ô{x,r[j). Therefore, (3.37) implies (1/1,7,2/2) e
%q. Then, since the SSPSS algorithm has been applied to q, we should have
u(y-¡),u(y2) f T0 which is a contradiction since ? is a potentially Pio-silent path
and r' should be silent. Therefore, 7 does not exist and we have Ec(r') = 0.

This completes the proof for part (i). Part (ii) is proved similarly. D

93

Proposition 3.46 implies that ???(?) is true for every state p G YO{q} and
every Potentially P/o-silent path ? which enters p. Specifically, the condition

in Case (1) of the FP Test is recovered at the incoming states of ? G YÙ{q}.
However, by applying algorithm SSPSS to a potentially P-vocal state q, other
potentially P-vocal states might be affected. Thus, we need to check other

potentially P-vocal states q G Qpvoc and possibly apply algorithm SSPSS to
them until no other potentially P-vocal state violates the property ?, given
in (3.35) and a fixed point is reached. We show a fixed point is reached in a
finite number of iterations.

Algorithm 3.47. Multi State Projected String Split (MSPSS):
Input: A model Glo = (QG, S, TU {r0}, sa,?, q0ìG) which fails the FP Test in
Case (3).

i. Let z = l and Wi = Qpvoc.

ii. Choose any q G Wi and let Wt <— W¿ — {q}.

ili. If there exist states ??,?2? in(q) such that X(X1) G T'c and X(x2) G T'uc,
then do the following:

1. Let(Y,unew) = SSPSS(q).
2. Redefine Gio = (QG,Z,Tnew U {t0}, aG,unew,q0,c) where Tnew has

been updated according to ujnew.

3. Let (Jlo,X) = INIT(G10).

4- Let Ki0 = Ji0 ? Gi0 where Jlo and Gi0 are the observer automata of
Ji0 and Gi0. Also, let the states of Ki0 be of the form qK = (qj, qG)
where qj and qG are the states of Jlo and Gi0.

5. Let Wi+1 = {qK I 3qj.qG : qK = (£,, qG) and qG G Wi).
6. Let Gio i— Jio and i *— i + 1.

94

iv. If%=0 OrW1 = Q, then exit; otherwise go to Step ii.

Output: A model Gi0 whose outputs satisfy property ?, given in (3.35).

3.7.5 Convergence of MSPSS Algorithm

To show the convergence of the MSPSS algorithm, we first show how the set

X is updated. Let (?, a, ?') G T be an unobservable-controllable transition.
Suppose in line iii.3 of the MSPSS algorithm, the transition (?,a,?') which
is within the behavior of Gi0 splits as a result of using OCC and 0OC al-

gorithms which are exploited in INIT Procedure. We denote these splits as

a set split ((?,a,?')). Let Sq and Oj be the partial transition maps of Gi0
and Ji0 respectively in lines iii.2 and iii.3 of MSPSS Algorithm. Also let Qj
and q0j respectively denote the state set and the initial state of Ji0. The set

split((p,a,p')) is characterized by

split((p,a,p')) = {(??,a,?·) | 3p¿,p- G Qj, 3a G S?? ? Ec,

\fr,s G S*, Vm G N,3i,j G N : 1 < i, j <m

(ôj{q0tJ,s)=Pi ==> 5G(q0,G,s)=p) and

(5G(p', r)! F=> 5j(p[, r)\) and (d3(?\, r) = d3(?'? t))}. (3.38)

Next, we show how the membership of a transition (?,a,?') of Gi0 in Tg with
q G Wi extends to the membership of the transitions split(p, a,p') of Ji0 in Tg'
with q' G W1+1.

Lemma 3.48. Let split((p,a,p')) be the set of unobservable-controllable tran-
sitions in Jio which is characterized by (3.38) where (?,a,?1) G T]9- is an
unobservable-controllable in Gi0. Then, for every potentially P-vocal state

q' G Wi+1 in Ji0 either split((p,a,p')) G\1\^ = 0 or split ((?,a,?1)) Ç T^.

95

Proof: Consider any P-vocal state ? G Wi+1 C Qj where Qj is the state

set of Ji0. We show that if split((p,a,p')) ? ?\?, f 0, then split ({?, a, ?')) Ç
1\g>. Consider a transition (c,a,c') G split ((p, a, p')). If (c,a,c') G %\$, then
by the definition of T|,' there exists r G S* for which we have 5(d , r) G
in(q'). On the other hand, definition of split ((p, a, p')) implies that all the
transitions (??,a,?-) G split((p,a,p')) extend the same in L(Gi0). Specifically,
for every r G S* that S(c' , r) G in(q') we will have d(?[, r) G in(q') for 1 < i <

\split((p, a,p'))\ which implies (??,a,?·) G X^. ¦ This proves split ((p, a, p')) C
%. D
Lemma 3.48 implies that in finding Tg, the set split ((p, a, p1)) can be treated
as a single transition in Gi0 since a P-vocal state q G Wi+l is either reachable

from all of the transitions (c,a,c') G split ((p, a, p')) or it is not reachable
from any of them. We use Lemma 3.48 to show that the convergence of
the MSPSS algorithm is independent from the split action that might occur
in INIT Procedure in line iii.3 of the MSPSS algorithm. We now show the
MSPSS algorithm stops in a finite number of iterations.

Proposition 3.49. The MSPSS algorithm terminates in a finite number of
iterations and specifically, after at most N times of calling SSPSS Algorithm
where N is the number of unobservable- controllable transitions in % at the

initial step i = 0.

Proof: Let ./V = |T| at the initial step i = 0. In each iteration of the
MSPSS algorithm a state q G Wi is chosen and removed from W in line ii. If

the statement in line iii. is true, then the SSPSS algorithm is called by which
at least one transition (?,a,?') or its subsequent splits, i.e. split((p,a,p')) by
Lemma 3.48, are removed from T. On the other hand, if the statement in

line iii. is not true, then the inner loop in line iii. is skipped and the system
remains the same while the cardinality of W\ has decreased by one in line ii.

96

Therefore, either T = 0 after at most N times of executing the inner loop or

I Wi I = 0 after a finite number of times the outer loop is performed. D
Proposition 3.46 implies that in treatment of Case (3), the new potentially P-
vocal states which are formed by the MSPSS algorithm, in the worst case, are

such that conditions in Case (1) are recovered for them. This implies that the
output of a potentially P-vocal state q will be well-defined after at most two

treatments, first by the MSPSS algorithm and second by the ES algorithm.

Therefore, by distinguishing three cases in the FP Test, the reporting map of

the system can be examined and modified in the order given below.

Procedure 3.50. Factorization Property (FP)

(?) Perform FP Test,

(ii) Apply MSPSS Algorithm,

(ni) Apply ES Algorithm.

We next, show how the other properties which we require for hierarchical

consistency can be satisfied.

3.7.6 SCE and UET Algorithms

While the Factorization Property serves as a fundamental property for the
HSC problem under partial observation, there aret other properties which we
intend to satisfy in the system for the purpose of exercising control. Recall
that to achieve hierarchical consistency it is sufficient for the system to satisfy
the UUC, UUPO and PO-SOCC properties. In the following we show how

these control properties can be ensured in the system.

Satisfying UUC Property: Define a new set of labels

TT = {ts ! s e S?? ? Ec} (3.39)

97

and add them to the set of high-level events. Also by definition we let Tcuo Ç
Tuo ? Tc. To satisfy the UUC property, we assign outputs from the set T™°
to the destination node of every unobservable-controllable transition of every
unobservable-controllable silent path.

Algorithm 3.51. Single Controllable Event (SCE)

Input: A model Gi0 = (Q, E, TU{t0}, s, ?, q0) whose P-vocal states Qpvoc might
not satisfy the UUC property.

i. Let W = Qpvoc.

it. Choose any state q G W and let W <— W — {q}.

in. For every incoming state q G in(q) and for every sequence r G E*0 that
cu(6(q, r)) t¿ r0 if |Ec(r)| > 1, then let u(sr) = t and do the following.

1. Choose Tj G S*S0 ? S*?? for j = 1, · · · , m and u G T,*uc ? E*uo such
that |Ec(rj)| = 1 for j = 1, · · · , m and r = r\ · ¦ ¦ rmu.

2. Let {aj} = T,c(rj) for j = 1, · ¦ ¦ , m. Clearly we have O7 G S0?S??.

3. Let U[Sr1 ¦ ¦ ¦ Tj) = r0j G Tcuo for j = 1, · · · , m - 1.

4- If u F e let U(Sr1 ¦·· rm) = ts?? G Tc"°. Otherwise if u = e and
t f ts?? , do the followings.

a. Let (Euof]Euc) <— (E110HE^)U {/3} and Q <— QU {</} where
ß and q' are new event and state of the system.

b. For r' < rm and am G Ec ? S?? that rm = r'am, let C1 =
S(q0, sr') and q2 = 5(q0, sr).

c. Remove the transition q1 -™* q2 and add a new transition Qi - ™->
. e

q ---> Ç2 instead to the system.

d. Let u(q') = ¿¿(sr) = T0rn and u{q2) = u(srß) = r G Tuo ? Tuc.

98

5. If W f 0, then go to ii.

Output: A model Gi0 that satisfies the UUC property.

Therefore, in the SCE algorithm if the label of an unobservable-controllable
transition is s, the assigned label will be ts G T"0. In this way, by choosing la-

bels from Tcuo, we include the information about the unobservable-controllable
events in the high-level model G^- The UUC property and the modification
performed in SCE Algorithm ensure that if an unobservable silent path is
controllable, then its controllability originates from only a single controllable
event, say s G Ec, and furthermore the occurrence of s is shown in Ghi with
a unique symbol ts.

Satisfying The UUPO Property: The UUPO property restricts the silent
paths whose output are observable and controllable. Specifically, if those silent
paths start with an unobservable segment, the segment should be uncontrol-
lable. Assume initially (Gi0, X) = INIT[Gi0).

Algorithm 3.52. Uncontrollable Exiting Transitions (UET)
Input: A model Gi0 whose P-vocal states Qpv0C may not satisfy the UUPO
property.

i. For every P-vocal state q G Qpvoc and every outgoing state q G out(q) if
\{q) G T'c, then let ?(a) = t where t G Tc ? Tuo

Output: A model Gi0 whose P-vocal states Qpvoc satisfy the UUPO property.

3.7.7 PO-SOCC Algorithm

Suppose two nodes ^1 and q2 are P-partners in the reachability tree (RT)
of Gio such that for some ? G Qpv0CÙ{to} and some S^S2 G S+, we have
<ji = d(?, S]) and q2 = d(?, S2) and by the P-partnership status there exist se-
quences R; R2, R3 G S+ such that S1 = RR1 and S2 = RR2 and at least one

99

of the sequences R1 or R2 is P^-uncontrollable from d(?, R). It can be seen
that the largest common prefix of S1 and S2 always includes R. Therefore,
without loss of generality, assume R is the largest prefix common to S1 and
S2.

In order to modify the system to satisfy the PO-SOCC property, the node
which is reached from ? by R in the RT of G¡0 should be vocalized. This

is very similar to the SOCC algorithm where the common controllable path
should be vocalized. In fact, satisfying the PO-SOCC property for Gi0, can
be seen as satisfying SOCC property for Gio where the terms controllable and
uncontrollable in Gi0 are respectively replaced with the terms P/0-controllable
and P/0-uncontrollable in Gi0.

Notation: We use the subroutine SOCC, as the counterpart of SOCC al-

gorithm in the partial observation case. Specifically, Hi0 = SOCC(G¡0) is
obtained as follows.

(i) Assign outputs t G T0 to suitable nodes of the RT of Gi0 such that no
two nodes are partners there and

(ii) split the states of Gi0 as needed such that the OCC property is satisfied.

Here, the terms controllability and uncontrollability in the application of OCC
and SOCC to Gi0 are respectively replaced with P¿0-controllability and P0-
uncontrollability in the application of OCC and SOCC to Gi0. D

Therefore, let Gi0 be a Moore automaton with an output map ? which satisfies
the Factorization Property, the UUC and UUPO properties. Also, let Gio be
the observer automaton of Gi0 with the output map w.

Algorithm 3.53. PO-SOCC Algorithm:
Input: Model Gio which is not PO-SOCC.

i. Let H10 = SOCC[G10).

100

?. Let Ki0 = Hio\\Gi0.

iti. Let qk = {qh,Qg) be any state of Kio where q~h and qg respectively denote
the states of Hto and Gi0. Furthermore, let qg G qg where qg is a state of
Gi0.

iv. Let f : Qh '—> T0 U {r0} be the output map of Hi0. Then, define the
output map ? : Qk '—> T U {r0} for Kto as follows:

?

id{qg), if'w(cjg) F r0;
U[Qk) = { (f(qh), if p (Qg) = ^0 and qg e in{qg);

T0, otherwise,

v. Apply the OCC and 0OC algorithms to Ki0 and call the result Ki0 again.

vi. Let Gi0 <— Ki0.

Output: A model Gio which is PO-SOCC (but may not satisfy the Factorization
Property).

The output assignment in line iv. of the PO-SOCC algorithm implies that

if a state qg is P-vocal, then qk inherits the outputs of qg E qg\ however, if qg is
silent, which does not limit q~h from being P-vocal, then qk inherits the outputs

of qg e qg only if qg G in(qg) is an incoming state. qk remains silent otherwise.
It should be noted that the procedure given in the PO-SOCC algorithm does
not necessarily give a Moore automaton that satisfies the Factorization Prop-

erty. In fact, after applying the PO-SOCC algorithm to G[o we need to apply
the Factorization Property Procedure to Gi0 one more time so that we are guar-
anteed the Factorization Property and the other properties of UUC, UUPO
and PO-SOCC are satisfied. Fig. 3.20 shows the order in which Gio should be

treated by the FP Procedure and PO-SOCC algorithm. We show that the final
system which is obtained from the procedures in Fig. 3.20 is still PO-SOCC

101

Factorization
Property

PO-SOCC
property

Factorization
Property

UUC, UUPO, OCC,
0OC properties

Figure 3.20: Logical ordering for satisfying Factorization Property and PO-
SOCC property

and, of course by construction, satisfies the Factorization Property, UUC and
UUPO properties.

Notation: Let H = SCEoUEToFP[G) denote the function H = SCE[UET
[FP[G))) in Proposition 3.54 where SCE[.), UET[.) and FP[.) denote the
application of the SCE algorithm, UET algorithm and FP procedure to an
automaton.

Proposition 3.54. Let G be a model which satisfies the Factorization Property

and M be computed from G as follows:

(?) H=PO-SOCC(G)

(U) M == SCE o UET o FP[H).

Then M is PO-SOCC.

Proof: Let G, H and M. be the observer automata for G, H and M. We
define the output maps uq, ujh, ?? and ?a, ?? and ?? as usual for these
models. Then, by contradiction, suppose M is not PO-SOCC. Therefore, there

should exist sequences S G S+ U {e} and R, Ri, R2 G S+ such that the nodes
SRR1 and SRR2 are P-partners in the RT of M where S G L[M) is either
P-vocal or the null sequence (e) and RRi and RR2 are P;0-silent paths with
ûim(SRRi), (Jm(SRR2) e Tc (i.e. RRj and RR2 are Pio-controllable P,0-silent
paths).
Next, we investigate how different algorithms including the SCE and UET

102

algorithms and FP Procedure modify the system and how they affect the Pi0-
silent paths in the systems. First, note that the SCE and UET algorithms do
not affect the controllability of observable silent paths. Furthermore, the ES

algorithm which is exploited in FP Procedure, does not generate new P-vocal
states. Thus, it can be seen that P;0-controllability and Pio-uncontrollability do

not change as a result of the application of the SCE, UET and ES algorithms.
Thus, only the MSPSS algorithm, with the SSPSS algorithm as its core, might
introduce new P-vocal states to the system. Now, note that Proposition 3.46

states that all P/0-silent paths which are formed by the SSPSS algorithm are
-P/o-uncontrollable and hence would generate uncontrollable outputs t G Tuc.
This implies P-vocal nodes SRRi and SRR2 could not have been formed by
the SSPSS algorithm. Specifically, the the nodes SRRi and SRR2 have not
been vocalized by SCE o OG o FP in the RT of M. This implies they have
been P-vocal in the RT of H. However, the P-vocal node S in the RT of M

may not be a P-vocal node in the RT of H .
Now suppose, the node S is not P-vocal in the RT of H. Let Y < S be
the largest prefix of S which is either P-vocal in the RT of H or is the null
sequence e and V G S* be a sequence such that S = YV. First, note that
this arrangement, implies VRRi and VRR2 are P/0-silent paths in the RT
of H. Then, note that VRR1 and VRR2 which start from the node Y are
P/0-controllable and share a segment VR which is in turn followed by Ri and
R2 where at least one of Ri or R2 is Pio-uncontrollable. In other words, nodes
YVRRi and YVRR2 are P-partners in the RT of H which is a contradiction
since H is PO-SOCC. Therefore, no two nodes with controllable outputs are

P-partners in M and thus M is PO-SOCC. ?

103

ar-^e-MS)—f-XgK9i
? t(|>3-?2>s-^>?(6>s-H^^^io)^^-^

s.

^
hL-

ß-*®^--'
<2ÖH- i s

? ±

hWH—*-
-<?d?^-^@?—c

Figure 3.21: Low-level model Gi0: Shaded states are vocal.

-e-KD-HKD- 9
^a-K-p-t^-Kt

hL·—^

-K4

b-@+K|H

IH-

Figure 3.22: Observer automaton Gi0: Shaded states are P-vocal.

Y r,

Figure 3.23: High-level model Ghi-

104

3.7.8 An Illustrative Example

Example 3.55. Fig. 3.21 shows a Moore automaton G¡0 where S = {a, b, c, d, e
, /, g, h, a, s}, Ec — {h, a} and S?? = {a,s}. The !inobservable events are
shown with the dashed lines. T — Tc = T0 = {t\, T2 } is the high-level alphabet.
Fig. 3.22 shows the observer automaton Gi0. Let the output maps ?,?,t?,?

be defined as before. In Fig. 3.22 Qpoc = {qe,^}, w(<?6) — t\ ^ Tc and
^(99) = T2 £ Tc. It can be verified that Gi0 satisfies the Factorization Property
(3.1). Fig. 3.23 shows the high-level model Ghi-
A: Satisfying PO-SOCC Property

It can be verified that the node a.b.e.f.g.e is P-partner with the node a.b.c

in the RT of Glo m Fig. 3.22.

PO-SOCC Algorithm

(i) State q~4 in Fig. 3.22 is vocalized by SOCC subroutine so that w{q^) =

(ii) Fig. 3.24 shows the resulting model Gi0 with the newly-induced output
map ? (See the PO-SOCC algorithm for details).

(iii) In Fig. 3.24, the incoming states of q~\ are vocalized so that ? (6) =
?(7) =t3.

(??) State q~g in Fig. 3.22 is split to satisfy the OCC property. Thus in Fig.
3.24 we have o;(21) = rc and r2],iC = ? (26) = r2iUC.

B: Satisfying Factorization Property

The resulted model in Fig. 3.24 fails the FP test in case (3); in particular,

?{6) G T'c and ?(7) G Vuc where ? is defined by (Hi0, X) = INIT(G10) in
Section 3.1.2. Thus, the FF procedure is applied to modify the system.

(1): MSPSS Algorithm

105

a G - -Kg)-^-MS) f—?® 9?

^.*>0-^_^b_^^_?_>^+«>^)-Ç->^L>^ 0

(!>*+<*>-<-
h h

<22H-a (20X-

r3 r,

I Xr

Hc <gf« e-
huc Hh—e-

Figure 3.24: PO-SOCC(G10) satisfies the PO-SOCC property. Shaded states
have been vocalized by the PO-SOCC algorithm

(i) Transitions 3 ---> 5 and 16 ---> 18 are vocalized in Fig. 3.25.

(ii) MSPSS Algorithm stops after one iteration. The resulted automaton is

given in Fig. 3.25 where ?(3) = T4, cj(16) = T5 and ? (5) = u;(18) = ra.

(2): ES Algorithm

(?) States 2 and 20 are vocalized so that ? (2) = ?(3) = r4 and cj(20) =
?(16) = r5.

This ensures all incoming states of the new P-vocal states generate the same
output.

C: Satisfying UUC and UUPO Properties
SCE and UET Algorithms

(?) States 9, 10 and 15 in Fig. 3.25 are vocalized so that ?(9) = a.' (10) =
?(15) = ta where ta e ?£~<uo

c ·

D: Satisfying OCC and OOC Properties
OCC and OOC Algorithms: The final model in Fig. 3.26 is OCC and

106

a ? - Mg>-<^-M3>—f-H® 9-

! IT G, Jf ! !

± T4 ·; ',t,
©-»-?f"

r
h h

a ,[·

Í5 d
-a—6QH—

#b>0--^>(9)JL_^h_>Ä Â

&

È
gK-a—@K--»--@) T5

«—e-"Xc

hue Ç6H e-

Figure 3.25: FPoPO-SOCC(Gio) satisfies the PO-SOCC property and Factor-
ization Property. Shaded states have been vocalized by the FP Procedure.

0OC.

Note that r2iC £ Tc and r2uc G Tuc are respectively a controllable and uncontrol-
lable copy of previously assigned label T2. Therefore, the new high-level event

set is T = {TUr2^T2,uc^^Ti,Tb,Ta} where Tc = {r2iC,ra} and Tuo = {ra}.
It can be verified that the Factorization property and UUC, UUPO and PO-
SOCC properties hold in the system in Fig. 3.26. The final high-level model
has been given in Fig. 3.27. ?

107

a?-?§?»->@ f—?© 9-1
k t* Jk r« G' „ ?

b J

=-@H-a @?-

(1>^?3> -? —' ?(^?-^f--^^f-? ?rîÎKh—?{§) @

"2,c #
a

d

(§K-a—@^---^-@r5
hue (§H e-

Figure 3.26: SCEoUEToFPoPO-SOCC(Gío) satisfies the PO-SOCC property,
Factorization Property, UUC and UUPO properties. Shaded states have been
vocalized by the SCE and UET algorithms.

¦2,c

¿T4 H

'2,c

1 V^ I
1???^^_?3_

l2.c

T 5

Figure 3.27: Final high-level model Ghi. Unobservable events are shown by-
dashed lines.

108

Chapter 4

Hierarchical Robust

Supervisory Control

In this chapter we extend the robust supervisory control (RSC) problem of

[4] and [45] (reviewed in Section 2.4) to the hierarchical framework of [59]
(reviewed in Section 2.5) for the case of full observation and closed languages.
Our main results for Hierarchical Robust Supervisory Control (HRSC) problem

include a hierarchical solution for the RSC problem of [4] and [45] for a finite set
of DES plants in which each plant has a separate closed specification language.
It is shown that suitable extensions of Output-Control-Consistency (OCC) and

Strict-Output-Control-Consistency (SOCC) properties can be used to establish
a high-level control structure and to ensure hierarchical consistency in the
system.

4.1 Proposed Control Structure

We aim to solve a robust control problem for a finite number of models, rep-
resenting different modes of operation of a plant, in a hierarchical framework.
Fig. 4.1 shows a HRSC configuration for a system having two models. A

109

L(GhJ = 6(L(G1J)

G

High-level

U¦«¿?*·· Khi

J-* \-\- M 1?
_ GLk I HZ\ I o

/.A /?

Low-level,k

! «
/* 8?

Plant 1 Plant 2

Figure 4.1: HRSC problem configuration with two models

detailed definition of HRSC problem is given below.

Consider a set of low-level Moore automata Gi¿ = [Qk, ^k, ??){t0}, ók,uk, q0,k),
[k — 1, · · · ,?). We assume all models agree on the controllability of the events.
In RSC problem (Section 2.4), for a set of plant models Gi^ and the corre-
sponding legal behaviors Ei¿, it is desired to find a robust supervisor Si0 such
that

L[Si0/Gm) Q ELk k = 1, · · · , n.

This means for every k, GLk under the supervision of robust supervisor Si0
must satisfy its design specification. Here, in HRSC problem our objective
is to design a robust supervisor for the above plant models in a hierarchical
fashion; in other words, we want to develop a hierarchical solution for the RSC

problem. So we assume there exists a map ? : \J L[GLk) '—> T* that reports
k

.the important sequences from, the low-level to the high-level. We will discuss

110

how ? can be obtained. Following the approach of Zhong-Wonham in [59],
Ghk [k = 1, · · · , n) denote the abstract model at the high-level that generates

9[L(G^k))- We also assume the desired legal behavior at the high-level for
Gh,k is given in the form of closed language E'hk. With the legal behavior
E'h k given at the high-level, we build the equivalent low-level legal languages
E[k — 0~l[Ehk). With the previous notations, a road map of the solution
follows.

(i) The RSC problem is solved at the high-level for the models Gh,k and the
specifications E'hk, yielding a robust supervisor Shi-

(ii) The systems under the supervision at the high-level would be L[S^/Gh,k)
= Ehik C E'htk.

(iii) Let Si0 be the implementation of Shi at the low-level which will be dis-
cussed in details later.

(iv) The relation between the system under the supervision at the high-level,
i.e. Ehtk = L(Shi/Gh,k) and that under the supervision at the low-level,
i.e. L[Si0/Gitk) needs to be investigated.

4.2 Information Mapping

In order to transmit the information about the important low-level event se-

quences to the high-level and also to translate the high-level commands to the
low-level, we need to have a map capable of uniquely transmitting the low-level
strings to the high-level.

Consider a set of low-level Moore automata Gi^ = [Qk, S?<,??{t0}, ôk,uik, q0.k),

[k = 1, · · · ,?) where uk : Qk ?—> T U {t0} are the individual output maps.
Similar to Section 2.5 consider the map ûk : L[G^k) ?—> TU {r0} defined as

111

follows: for s G L(Gi^), ¿fc(s) = ujk(q) where q = S(q0:k,s). Each output map
¡l)k in fact corresponds to a map 9k : L(G/ifc) ?—? T* as elaborated previously
in Section 2.5 for HSC. The image of the language L(Gi1J under the map 9k
would be a language Lh¿ Ç T*, i.e. Lhtk = 9k(L(G^J). Let Gh,k be any
automaton whose closed behavior is Lh,k\ i-e we have:

L(Gh,J = 9k(L(GlM)). (4.1)

The high-level languages L(Gh,J (k = 1,··· ,n), are defined over the same
event set T and hence it would be necessary to expect any low-level sequence

in different models G^k to be mapped to the same high-level sequence. In
other words, information maps 9k are well-defined if and only if for any i,j,
1 < i,j < ? we have:

O1(S) = Oj(S) for s G L(G1J ? L(G1J (4.2)

or equivalently in terms of the maps uJk:

ûi(s) = Uj(S) for s G L(G1J ? L(GtJ). (4.3)

The condition in (4.2) (or (4.3)) requires any string s which is common among
several models, to be transmitted the same in all those models. If the condition

in (4.2) is satisfied for all 1 < i,j < n, it would be possible to define an

information (reporting) map ? : [JL(Gi1J ?—> T* as follows:
k

9(s) = 0k(s) for any k such that s G L(GLJ. (4.4)

112

Similarly we can define ? : (JL(G/,*;) ?—> T U {r0} with
k

û(s) = ûk{s) for any k such that s e L(G/jt). (4.5)

Obtaining a well-defined information map ? for a set of Moore automata Gi^
is guaranteed if it can be ensured that the condition of (4.2) (or (4.3)) holds.
To verify (4.2) for only two Moore automata G/,¿ and G¡¿ for 1 < i, j < n, let

G1J = Gi11 x Gij be the meet product of them. Then condition (4.2) holds if
and only if in every state (qi,qj) of Gij, we have U1 (g¿) = ui3(qj) where ?, and
Uj are the output maps of the models G/,¿ and G¡j .

Remark 4.1. The procedure to obtain the information map ? can be done in
reverse direction, guaranteeing conditions (4-2) or (4-3) automatically. Con-
sider low-level models G/,fc (which are not yet equipped with an output map).
Now one can take advantage of the fact that with a given information map

? : (jL(G/,fe) ?—> T*, the restrictions of ? to the individual languages L(Gi^),
k

say 6k, would automatically satisfy the condition in (4-2). Specifically, the
following steps can be taken to obtain feasible maps ?^ : L(Gi^) '—? T*.

(?) Let a map ? : (JL(G/,*;) ?—> T* be given or defined.
k

(n) Let the restriction of ? to L(Gi¿) (k = 1, · · · ,?) be called 6k and call the
corresponding output map Uk-

(in) Combine the model G/,fc with the map uk to get the Moore automata G/,fe.

The output maps uk in the Moore automata G/,¡t satisfy the condition (4-3) by
construction, and hence ? is the information map for the system.

Remark 4.2. In the rest of this chapter, we assume that the Moore automata
G/,fc 's satisfy condition (4.2) or (4.3) and hence we only refer to an information

113

map ? defined in (4-4) for the purpose of exchanging the information between
the low-level and high-level layers. Therefore, we can rewrite (4-1) as (4-6):

L(Gh,k) = 9(L(G1*)). (4-6)

4.3 Joint-OCC Property

Consider the low-level models Gitk (k = 1,··· ,n). Suppose s G L(Gi¿) for
some 1 < i < ? leads to a vocal state generating ?(ß) = t. If s can also

be generated in a another model, say Gi¿, that is s G L(Gi¿), then by (4.3),
ujj(s) = uji(s) = t. In the hierarchical frameAvork proposed in this chapter, we
intend to design a high-level robust supervision for high-level models Gh,k- As
with robust control problems discussed in Section 2.4, we expect the high-level
models agree on the controllability of high-level events. Therefore, t must be

controllable (resp. uncontrollable) for Gi¿ if and only if it is controllable (resp.
uncontrollable) for Gij. Therefore, we need & joint output- control- consistency
property as described in the following.

Let TCifc and Tuc¡k denote the controllable and uncontrollable event sets of Gi^,
and define Tc = \jTck and Tuc = \jTuck and T = TCUTUC. Furthermore, define

k k

Lvoc over \JL(Giik) as Lvoc = {s G \JL(Gi,k)\s = e or ?(ß) F r0}. Now,
k k

similar to Section 2.5, the maps ?a and color0 can be defined on Lvoc — {e} as
follows. Let s G Lvoc — {e}. Therefore, there exists s' G Lvoc and r G Lvoc(s')
such that s = s'r. We define

I red, iÎÛ(s) eTcX(s) = <
green, if û(s) G Tuc

114

and

{red, ifEc(r)^0;
green, if Ec(r) = 0.

Note in particular that color0'(.) assigns a color to s based on whether the last
silent segment of s contains a controllable event or not. Since, by assumption,

all low-level models G^k agree on the controllability of events, color0 (.) is well-
defined. Next we define the Joint-OCC property.

Definition 4.3. Consider a set of Moore automata G^ = (Qk, ^k, TU{r0}, Sk,

uk, Qo, k) (k = 1, · ¦ · , n). We say Gi^ (k = 1, · · · , n) satisfy the Joint-Output-
Control- Consistency (Joint-OCC) property if for all s G Lvoc - {e} x°(s) =
colorc(s).

One way of constructing a Moore automaton Gi0 that generates IJL(Gi1Jt)
k

and captures the outputs of GLk's is described in the following.

Remark 4.4. Consider a set of Moore automata Gi¿ (k = 1, · · · ,n) with the
output maps ?^ : L(G^k) '—? T U {t0}. Assuming that all the states in G¡¿ 's
are marked, we construct Gi0 as follows:

Gi0 = trim[(G% ? · · ¦ x G°°n)c°} (4.7)

where trim(.) denotes the trim function and Gco stands for the complement
of automaton G w.r.t the set S = U^t- Each state of Gi0 is of the form

k

g = (<7i, · · · , <7„)· For state q = (<?i, · · · ,qn), at least one of the elements, say
Ci, belongs to the state set Qi of G^1. That means any sequence leading to state
q in Gio, leads to q% m Gi1. The closed behavior of Gi0 with above structure
is L(Gi0) = [JL(Gi, k) and besides, contains the outputs of G¡,jt 's. Using the

k

map ?, to any state q of Gi0 we assign an output u(q) = Cj(s) where s is any
sequence such that q0 —> q is a path in Gi0.

115

Proposition 4.5. Consider the Moore automata Gi^ (k = 1, · · · , n) and let
Gi0 — G;,i U · · ¦ U G^n be defined as in Remark 4-4- Then Gi^'s satisfy the
Joint- OCC property if and only if Gi0 satisfies the OCC property.

Proof: Follows from Definition 4.3 and that Gi0 generates (JL(G^). D
k

Proposition 4.5 states that satisfying the Joint-OCC property which is defined
on [JL(Gi^) is equivalent to OCC property being satisfied by Gi0. In Propo-

k

sition 4.6 and the following corollary we show how OCC property is inherited
by Gio where all G^ 's are individually OCC.

Proposition 4.6. Consider the Moore automata Gi,k {k = 1,··· ¡n). Then
Gi^k 's satisfy the Joint-OCC property if and only if each Gi^ satisfies the OCC
property.

Proof: An automaton G is OCC if every s € L(G) leading to a vocal state
q satisfies the following:

(i) If the output at q is controllable, then the last silent segment of s includes
at least one controllable event;

(ii) If the output at q is uncontrollable, then the last silent segment of s
contains only uncontrollable events.

Now, if G/.fc's are Jointly-OCC, then every string s in L(Gi0) = U L(Gi^),
k

(and thus every string in L(G¡¿)) for which u(s) =¿ r0 satisfies conditions (i)
and (ii). Therefore, Gi^ will be OCC (for every k). Conversely, if all G/^'s
are OCC, then all strings in L(Gi^) (for every k), and thus all strings in
L(Gi0) = U L(Gi^), will satisfy the above property. D

k

Finally, we have the following useful corollary.

Corollary 4.7. Gi^ (k = 1, · · · , n) are individually OCC if and only if[jGik,
k

is OCC.

Proof: Follows from Proposition 4.5 and Proposition 4.6 D

116

4.4 Supervision Implementation at the Low-

level

The ability to synthesize the Moore low-level models that satisfy the Joint-
OCC property, equips the high-level with the control structure. In this section,

we discuss supervisor design and implementation, and the issue of hierarchical
consistency.

4.4.1 Supervision Implementation

Let Gh,k be the models at the high-level whose closed languages are L[Gh,k) —
? [L[G? tk)) [k = 1, · · · ,?). We assume the desired behavior is given by E'hk.
Let Shi be the solution to the robust control problem at the high-level and

Ehtk = L[Shi/Gh,k) the closed behavior of the system under the supervision
at the high-level for each model. Also, let Ehi = \J Eh,k, Ei0 = 9~x[Ehi) and

k

finally E'lk = 9~l[E'hk) as the corresponding legal language for each model
Gitk at the low-level. Let Ghi be any automaton at the high-level whose closed
behavior is L[Ghl) = \JL[Gh,k)- Theorem 2.27 implies L[Shl/Ghl) = Ehi and

fc

Ehi is controllable w.r.t L(Gz11). Also, let Gi0 be the Moore automaton given by
(4.7) in Remark 4.4. Then, L[Ghi) = \J9[L[Gltk)) = 9[{jL[Gi,k)) = B[L[Gi0)).

k k

Now, from Theorem 2.33, we conclude that if the high-level supervisor Shi
is implemented by a disabled-event map ?^, then there exists a low-level

supervisor Si0 which is implemented by a disabled-event map ??? given in
(2.13). We show Si0 solves the robust supervisory control problem at the
low-level for the set of models Gi,k and the legal languages E'lk.

Theorem 4.8. If the set of models GLk are Jointly-OCC, then

(?) L[Si0IGi0) = Ej0

117

(ii) L[S1JG1,,) = E}0 ? L(GUk) Ç ?'1?

Proof Part (1): Since G/^'s are Jointly-OCC, it follows from Proposition
4.5 that G¡o is OCC. Therefore, by Theorem 2.33 we have

L(S10ZG10) = (0-1(Ehi))l = Ej0 (4.8)

Part (2): Si0 solves the supervisory control problem for the model Gi0 and

the specification Ei0. Therefore for Gi,k with L(Gi,k) Ç L(Gi0) we have:

L(Slo/GLk) = L(Si0ZGi0) ? L(G1^) (By Proposition 2.28)

= E]0 ? L(G1,,) (4.9)

Therefore

9{L(Slo/Gi,k)} = 9[EjonL(Gi,k)}
= ?[(?-\???)? HL(G1^))
ç T[T-\??) ? L(GlM)}

C e(9-\Ehl))r\9(L(Gl,k))

= L(Shi/Ghi) ? L(Gh,k)

= L(Shl/Gh,k) (By Proposition 2.28)

= £/a· (4.10)

118

L-HB-H
G>.2_

-^"ÇUc) J0'0'-® jok>~®L-Ki)
Figure 4.2: Gi¿ and G/2 satisfy the SOCC condition individually but the
model Gi0, which describes the union of them, does not.

Thus (4.10) implies

L[Si0 /Gi¿) Q ? [Ef1^)

Q d-\E'Kk)
= Kk (4-11)

D

Therefore, we have shown Si0 solves a robust control problem at the low-level

for models Gi¿ and the legal behaviors E'l¡k = 9~ì[E'hk). We illustrate our
conclusions in Theorem 4.8 in the following example.

Example 4.9. Fig. 4-% shows two low-level models G;ifc [k = 1,2) and the
corresponding high-level models G^k- Ln Fig. J¡..2, the odd numbers denote
the controllable events and the even numbers, the uncontrollable events. Each

Gitk is OCC, hence, they will be Jointly-OCC; let the high-level specifications
E'hi = A + B and E'h2 = {e} be given respectively for Gh.\ and G/1,2· The
automaton Gio = Gi^ UG¡,2 and Ghi = Gh,\ UG/,,2 are also shown in Fig. 4-2.
Ehi = E'h : U E'h 2 = A + B is controllable and Sm can be constructed so that
L[Shl/Ghi) = Ehl = A + B with L{Shl/Gh<l) = A + B and L[Skl/Gh.2) = e.
A low-level supervisor Si0 would implement the high-level commands at the
low-level. Let Si0/ Gi0 and Eio = 9~l[Ehi) be the system under supervision and

119

the image of Ehl at the low-level. We will have Elo = {e, "1", "1.3", "1.5"}.
The supremal controllable sublanguage of Ei0 is E¡0 = {e} and therefore, by
Theorem 4.8 we have L[Si0/Gi0) = Ej0 = {e}. In this example, Shi intends
to disable C. To implement this at the low-level, Si0 disables event 1, leading
to L(S10/???) = L[Si0/1G^2) = {e}. Note that e C E[x and e C E'l2 where
?[? = e-\E'hìl) = GU and E[a = (9"1^2) = {e, "1"}.

4.4.2 Robust Hierarchical Consistency

So far we have shown how the commands of a robust supervisor S^ at the high-
level can be translated to a robust supervisor Si0 at the low-level. The relation

between the behavior of system under supervision at the low-level (L(Si0/G^k))
and that of the high-level (L(Shi/Gh%k)) is not clear yet. We would like the
behavior of the system under supervision at the high-level for each model, i.e.

L(Shi/Gh>k), be recovered from L(Si0 /Gi^) as explained below. We refer to
this one-to-one hierarchical consistency as robust hierarchical consistency.

Definition 4.10. We say the robust hierarchical consistency property holds in
the system if 9(L(SÌ0/Ghk)) = L{Shi/Gh,k)for k = 1, · · · ,n.

Of course, the robust hierarchical consistency property is an extension of
hierarchical consistency in [59] to the robust supervisory control problem. In
hierarchical control of [59], to have hierarchical consistency, it must be ensured
that low-level implementation of a high-level command to disable a high-level
event does not produce unintended consequences in the form of disablement

of other high-level events. If the plant is SOCC, then hierarchical consistency
can be guaranteed. In HRSC problem discussed here, we have to make sure
that the implementation of a high-level command to disable an event does not
produce unintended consequences in any possible plant. To ensure this, we
bring in a Joint-SOCC property.

120

Definition 4.11. The Moore automata G^ (k — 1, · · · ,?) are Jointly-SOCC

if (i) they are Jointly-OCC and (it) in the reachability tree of IJG/.fc, no two
k

vocal nodes with controllable outputs are partners.

In the following proposition, we show if Gi^ (k = 1,··· ,n) are Jointly-
SOCC, then Gitk are individually SOCC. The reverse is not necessarily true
as shown in an example following the proposition.

Proposition 4.12. Consider the set of Moore automata Gi¿ (k = 1, · · · ,?).
If Gi¿ 's (k = 1, · ¦ · ,?) are Jointly-SOCC then Gi¿ {k = 1, ¦ · · , n) are indi-
vidually SOCC.

Proof: Let G\0 = (JG/.k- We use the fact that the reachability trees (RT)
fe

of G/.fc (k = 1, · · · ,n) are subtrees of the RT of Gi0. Therefore, if two nodes
with controllable outputs are partners in the RT of G/^, they will be partners
in the RT of Gio. Hence, if G;,fc (k = 1, · · · , n) are Jointly-SOCC, each G^k
would be individually SOCC.

Next by contradiction, let B and C be two partners in the RT of G/^ for some
1 < k < n, say Gj1I, which are reached respectively through the silent paths
SiOS2S3 and SiOS2S4 originated from the initial state or a vocal node A. Let
A be reached through a sequence s in the RT of G^1. The arrangement above
implies we have U(SSiOS2S3) = B and Cj(ss\os2S^) = C. Note that

seL(GM)ÇL(Gi0)=>seL(G/0).

Similarly we have ssiOS2s3 ,SS1OS2S4 G L[Gi0). It follows from the feasibility
condition that in the RT of Gi0 we have ù{s) = A, û(ssios2s3) = B and

U(SS^aS2S4) = C. If in the RT of G/0 we have û(ssio) = T0 then B and C
are also partners in it which is a contradiction since, by the hypothesis, in
the RT of Gi0, no two vocal nodes with controllable outputs are partners. So

121

ûj(ss\a) F T0 which again from the feasibility condition we conclude B and C
cannot be partners in G^\. ?

Example 4.13. (Example 4-9 continued) In Example 4-9, G/j and G¿)2 are
individually SOCC but not Jointly-SOCC since in the RT of Glo the node
corresponding to sequence "1.2" with output C is partner with the node corre-

sponding to sequence "1.3" generating A (also with "1.5" generating B).

Joint-SOCC property of G^'s is equivalent to SOCC property of the union
model Gi0 (defined in (4.7)).

Proposition 4.14. The models G1^ (k = 1, · · · , n) are Jointly-SOCC if and
only if G10 is SOCC.

Proof: Follows from Corollary 4.7 and Definition 4.11 G
In the following we show that the Joint-SOCC property is sufficient for robust
hierarchical consistency.

Theorem 4.15. // the low-level Moore automata Gi¿ (k = 1,··· ,?) are
Jointly-SOCC, then

(?) 9(L(Sl0/Gi0)) = Ehi;

(U) B(L{Sl0/Gl<k)) = Eh,k.

Proof: (i) Solving the robust supervisory control at the high-level amounts
to solving supervisory control for plant Ghi and legal behavior Ehi. Thus
Ehl = L(Shl/Ghi). Since G;ife's are Jointly-SOCC, it follows from Proposition
4.14 that G10 is SOCC and therefore by Theorem 2.37, 9{L(Slo/Glo)) = Ehi.
(ii) From (4.10) we have:

G(L(Slo/Gl>k)) C EhM (4.12)

122

For the reverse inclusion we have:

Eh,k = Ehi ? L(GhM) (since SM solves RSC)

= 9(L(S1JG10)) ? L(GhJ (by part (i))

= 9(L(Slo/Gio)) DO(L(G,,*). (4.13)

Now let T be the event set at the high-level. For any t E T* that

te 9(L(SJGJ) ? 9(L(G1J) (4.14)

let

S; = {5 G L(GJ\uj(s) f T0 and ? {s) = t}.

In other words, E't is the strings whose images are t e T* and lead to vocal
states in Gi0. Then, Lemma 4.18 in the Appendix states

S; C L(Slo/Glo). (4.15)

Also, t e 9(L(G¡J) implies

S', ? L(GiJ f 0 (4.16)

Equations (4.15) and (4.16) together imply for some s' G T!t we have:

s' EL(SJGJnL(G1J and 9(s') = t (4.17)

It is concluded from (4.17) that

t G 9(L(SJGJ ? L(GJ) (4.18)

123

and hence from (4.14) and (4.18) we have:

9(L(S1JG10)) ? 6(L(Gl)k)) C 9(L(Slo/Glo)nL(GUk))

= 9(L(S10/Gl)k)). (Proposition 2.28) (4.19)

Finally, equations (4.13) and (4.19) yield

Eh,k Q 9(L(S1JG^)). (4.20)

Therefore, (4.12) and (4.20) together prove that 9(L(Sh/Gitk)) = Eh%k which
completes the proof. ?

Theorem 4.15, specifically part (ii), show that the Joint-SOCC property guar-
antees robust hierarchical consistency.

Example 4.16. (Example 4-9 continued) The system in Example 4-13 (Fig.
4-2) does not satisfy the robust hierarchical consistency. Specifically, we have
9(L(Si0/Gi}i)) = {e} F Eh%\ = E'hl — A + B. It was shown in Example
4-13 that Giti (i = 1,2) do not satisfy the Joint-SOCC property and hence
the violation of robust hierarchical consistency is not unexpected. Again note
that in general the Joint-SOCC property is a sufficient and not a necessary
condition for robust hierarchical consistency.

We conclude this chapter with an example.

Example 4.17. The theory developed in this chapter will be illustrated here.
Fig 4-3 shows two Moore automata Gy and G2 with individually assigned out-
put maps U1 fori = 1, 2. There S = {a, b, c, d. m, ?, ?] of which Ec = {a, b, d)
is the set of controllable events. T = Tc = {A, B, C) is also the set of high-
level events. It can be checked that the condition (4-3) holds for them; however,
they are neither Jointly-SOCC nor Jomtly-OCC. In fact, G2 is neither SOCC

124

nor OCC and hence G1 and G2 would not be Jointly-OCC or Jointly-SOCC.

Specifically, the OCC property is violated at state 5' in G2 since the silent path
O, a.n.a.m „/5' contains controllable events and the silent path 5' p.n 5' is un-

controllable. We follow a procedure, based on Proposition 4-5 and Proposition

4.14 t° Tnodijy G\ and G2 such that they become Jointly-SOCC.
Step 1: Fig. 4.4 shows Gio = G1 U G2 which is not SOCC or OCC.

|—*\j) t-a ?TM n

I Q hl^0_n-+0 -? *?®\+*-+?^\

(a): G1 (b): G2
Figure 4.3: Moore automata models (a): G] and (b): G2 which are neither
Jointly-SOCC nor Jointly-OCC

B

-*\TJ t"a ^fVVm—+\J>)
A B

n Q h^0-^0
AlLJ L c
(0 ^a-^/l^rTV+72^d-^/3j

L·.?—*/??) m-*TllVl- 12

Figure 4.4: Gi0 = G1 U G2 which is neither SOCC nor OCC.

Step 2: Modify Gio so that it becomes SOCC. (Fig. 4.5). In Fig. 4.4 OCC
fails at state 13. Therefore, it has been split as shown in Fig. 4-5 into states
14 and 15. This split requires us to have two controllable and uncontrollable
copies of the event B. We denote this output relabeling by B —> {Bc, Buc}
in Fig. 4.5. Moreover, Gio in Fig. 4-4 ^ n°t SOCC since in the reachability

125

B-* Bn

?Tej-m—*\^j
B-* B^

b *\s)—"-»^O

A —> -^i1Yc
-p—?Tío) m-»/riVt-b-*M2J ? *\^)

B^B1,

Cy
B->B„

Figure 4.5: Gi0 = G1 U G2 has been modified to be SOCC.

tree of Gi0, the nodes a. ? and a.m.d are partners. As a remedy, state 1 is
vocalized such that m Fig. 4-5 we have co(l) = D (? is the output map of
Gio). Following this vocalization, two controllable and uncontrollable copies of
event A need to be generated, i.e. we have A —> {AC,AUC}. The final result
is shown in Fig. 4-5- We call the automaton in Fig. 4-5 Gi0 again.

Step 3: Let G¿ = G¡0 x G¿ fori = 1,2 (Fig. 4-6). The states of G¿ are of the
form q = (q, x) where q is the state of Gi0 and ? is the state of Gi. Vocalize Gi
such that the output of q be equal to the output of q in Gi0; i.e. u>i(q) = ui(q)
where üi is the output map for G,. Therefore, the set of high-level events would

r— ?—?G6' T+3"*^7') mrO -I-a- <!>-"
??-*/?G\-?>>/(?

(a): G1 (b): G2
Figure 4.6: Modified Moore automata Gi = Gi0 x G1 (a) and G2 = Gi0 ? G2
(b) are Jointly-SOCC.

126

B

h4

B
B

i UC

BBUC UC

O ho hi h2 hO' hr h2' h3' h4'

(a): Gh,i (b): Ghì2

Figure 4.7: High-level models (a) Gh,i and (b) G^2

be T = {Ac, Auc, Bc, Buc, C, D) of which Tc = {Ac, Bc, C, D) is the set of con-
trollable events. By construction and based on Proposition 4-5 and Proposition
4.I4, G\ and G2 are Jointly-SOCC. Two high-level models Gh,\ and Gh, 2 for
which we have L(G^1) = 6(L(Gi)) and L(Gh:2) = Q(L(G2)) are given in Fig.
4-7. Now, suppose two specifications E'hl and E'k2 are given as "every thing is
permitted" and "system should be loop-free" or equivalently E'hl — L(Gh,i) and
E'h2 = D. (Bc + AUC.BC).BUC. The solution of RSC problem at the high-level is
EKl = L(Shl/GhJ) = D.(Ac.(C + Bc)
+C) and Eh¿ = L(Shl/Gh,2) = D.AUC. The high-level systems under super-
vision is shown in Fig. 4-8- Let Si0 be the supervisor which implements the

f? > f

(a): EhA (b): Eh,2
Figure 4.8: High-level system under supervision (a) Eh,\ and (h)Eht2

commands of Shi at the low-level. The systems under supervision Si0/ Gx and
Si0/ G2 are shown in Fig. 4-9- It can easily be verified that robust hierar-
chical consistency holds in the system and we have 9(L(Si0/G\)) = Eh,\ and
9(L(Si0JG2)) = Eh¡2. The operation of the hierarchical robust supervisors can
be explained as follows. At the high-level (Fig. 4-7), the Bc transition from
states hi1 and h2' to /i3' have to be disabled to avoid the uncontrollable ille-

127

?T
-t-b+

C

*®
a): 5/o/Gi

r^0
1 Ip ?^

(b): S1JG2

Figure 4.9: The systems under supervision at the low-level (a) Si0/Gi, (b)
S10/G2

gal self-loop in state h3' . This in particular disables the Bc event following
a D event (state hi'). As a result, the robust supervisor Sm disables the Bc
transition from state hi to M in G^i- To implement this disablement at the
low-level, the controllable transition a from state 7 to 8 in Gi and from 6' to T
in G2 are disabled. Similarly, to implement the disablement of Bc from hfl' to
Ko' , at the low-level in G2 the controllable transition b from 3' to 4' is disabled.

4.5 Conclusion

In this chapter a hierarchical solution for the problem of robust supervisory
control of a finite family of DES plants was derived based on Zhong-Wonham
approach. The Joint-OCC and Joint-SOCC properties, as the extensions of
the OCC and SOCC properties, were developed to guarantee robust hierar-
chical consistency. We showed that a maximally permissive robust supervisor
which is designed for the high-level yields the maximally permissive control-
lable behavior at the low-level while assuring robust hierarchical consistency.

128

4.6 Appendix

Consider the robust supervisor Si0 defined in Section 2.4. Let t G T* be a

high-level sequence and define S[= {s G L(Gj0)I ? (s) F t0 and ? (s) = t}
to be the strings whose images are t G T* and lead to vocal states in Gi0. If

t G 9[L[Si0/'G??))), the membership of S£ in L(Si0/Gi0) is investigated. Note
that by Theorem 2.37 which states 0(L(Sio/Gio)) = L(Shi /Ghi), for every
t G L(Shi/Ghi) it is only concluded that for some sequence s G S* that 0(s) = ?
we have s G L(Si0/Gi0).

Lemma 4.18. IfGi0 is SOCC, then for every t G L(Shi/Ghi) we have S[C

L(5í0/Gí0).

Proof: Although not directly addressed, the proof is originally given for

Theorem 2.1 in [59]. This is elaborated in the following.
By contradiction suppose for some t G L(Shi/Ghi) and some s G S[we have

s ? S[- L(Si0/GI0). Since s G Lvoc is vocal it can be split ass = s'r where
s' G Lvoc and r G L„oc(s'). Let s" < s be the largest vocal prefix of s for
which we have 5" G S[? L(Si0/Gi0). If s" 7^ s' then we choose s = s"r
where r G L„oc(s") and we let t = 0(s) = 6(s"r). Therefore without loss of
generality we assume it is the case that s' < s is the largest prefix of s such
that s' G E/inL(5/0/G/o) and that for which we have s = s'r where r G Lvoc(s').
Now let O(s') = t' and û(s) = t so that ? = t'r. If s ^ L(S10/ GÎO) by the fact
that L(Si0/GI0) is controllable with respect to G¿0 and G^0 is OCC, we should
have Ec(r) 7^ 0. Furthermore for some s' G Ec(r) and appropriate Si, S2 G S*
that r = S\a' S2 we have

By definition of Aio there should exist S3 G E*c such that ù(s' S^a1S3) G ?/,?(?')-

129

Let u(s'sia's3) = t'. Since by assumption t'r = t G E^ it follows that
t ^ Ahi(t') and therefore

This implies nodes corresponding to sequences s's\a's2 and s'sict's3 in reach-
ability tree of Gi0 are partners which is a contradiction since Gi0 is SOCC

and this cannot be the case. Therefore we should have s G L(Si0/Gi0). This
completes the proof that S[Ç L(Si0/Gi0). O

130

Chapter 5

Hierarchical Robust

Supervisory Control under
Partial Observation

This chapter extends our results on hierarchical robust supervisory control
(HRSC) in Chapter 4 to the case of control under partial observation, that
is to say combines our results on hierarchical supervisory control under par-
tial observation (USCPO) in Chapter 3 and our result on HRSC problem in
Chapter 4. Robust supervisory control under partial observation has previ-

ously been studied in [45]. However, in this thesis, we study HRSC under
partial observation which implies robust supervisory control is performed in a
hierarchical fashion while partial observation is assumed in the modeling. Our
main results for HRSC under partial observation include a hierarchical solu-
tion for the RSC problem under partial observation [45] for a finite set of DES
plants in which each plant has a separate closed specification language. It is
shown that suitable extensions of UUC, UUPO and PO-SOCC properties can

be used to establish a high-level control structure and to ensure hierarchical

131

consistency in the system.

5.1 Proposed Control Structure

We aim to solve a robust control problem under partial observation for a finite

number of models, representing different modes of operation of a plant, in a
hierarchical framework. Consider a set of low-level Moore automata G^k =
(Qk, S)J1TU {To},ôk,Uk,q0,k), (k = 1, · · · ,?). We assume all the models agree
on the controllability and observability of the events. Let S = (JEfc. Assume

k

E0 Ç S and Ec Ç S are the set of observable and controllable events. Next,
for each model G1^, Efc)0 = Efc G? S0 and EfeiC = E4 ? Ec denote the sets of

observable and controllable events and S^?? — S^ — Efc,0 and S& uc — Sk — T,kìC
denote the sets of unobservable and uncontrollable events.

In RSC problem under partial observation (Section 2.4), for a set of plant
models G^k and the corresponding legal behaviors E^, it is desired to find a
robust feasible supervisor Si0 such that

L(Si0/ Gitk) Q Eik k = 1, · · · , n.

This means for every k, G¡¿ under the supervision of feasible robust supervisor
Si0 must satisfy its design specification and furthermore, the sequences with
the natural projection are treated the same by supervisor. Here, in HRSC
problem under partial observation our objective is to design a robust super-
visor for the above plant models in a hierarchical fashion; in other words, we
want to develop a hierarchical solution for the RSC problem under partial ob-
servation. So we assume there exists a map ? : [JL(Gm) '—* T* that reports

k

the important sequences from the low-level to the high-level. We will discuss
how ? can be obtained. Following the approach of Zhong-Wonham in [59],

132

Gfi,k {k = 1, · · · , n) denotes the abstract model at the high-level that gener-
ates 9(L(G^k))- We also assume the desired legal behavior at the high-level
for Gh,k is given in the form of closed language E'hk. With the legal behavior
E'hk given at the high-level, we build the equivalent low-level legal languages
E[k = 6~l(E'hk). With the previous notations, a road map of the solution
follows.

(i) The RSC problem under partial observation is solved at the high-level
for the models Gh,k and the specifications E'h k, yielding a robust feasible
supervisor S^. The systems under supervision at the high-level would

be L(Shi/Gh,k) = Efi.k Q E'hk.

(ii) Let Si0 be the feasible implementation of Sfn at the low-level which will
be discussed in details later.

(iii) The relation between the system under supervision at the high-level,

Eh,,k — L(Shi/ Gh,k), and that under the supervision at the low-level,
L(Si0/Gitk), needs to be investigated.

5.2 Information Mapping

In order to transmit the information about the important low-level event se-

quences to the high-level and also to translate the high-level commands to
the low-level, we need to have the capability of uniquely mapping the se-

quences to the high-level. This is very similar to Chapter 4 where full obser-
vation was assumed. Therefore, consider a set of low-level Moore automata

Gi.k = (Qfc,SfclTU{T0},<5fc,a>felc0iA:), (k = I1-- ¦ ,n) where wfc : Qk ?—>TU{r0}
are the individual output maps. Similar to Section 2.5 consider the map

uk : L[Gi.k) '—> T U {r0} defined as follows: for s E L(Gi¿), ûk(s) = uk(q)

133

where q = 6(q0:kìs). Each output map Cjk in fact corresponds to a map
9k ¦ L(Gi^) ?—> T* as elaborated previously in Section 2.5 for HSC. The
information maps 9k are well-defined if and only if for any i,j, I < i,j < ? we
have:

0i(s) = 9,(S) for s e L(G1,) D L(GU) (5.1)

or equivalently in terms of the maps ûjk :

ûz(s) = Uj(S) for s G L(G1J ? L(GU). (5.2)

If the condition in (5.1) holds for all 1 < i, j < n, it would be possible to define

an information (reporting) map 9 : [JL(Giik) '—> T* as follows:
k

9(s) = 9k(s) for any k such that s e L(Gltk). (5.3)

Similarly, we can define ? : \jL(G^k) '—> T U {r0} as
k

û(s) = (2>k(s) for any k such that s e L(Gitk). (5.4)

Therefore, if G^k is the abstract model at the high-level which generates
9k(L(Gi,k)) (k = 1, ¦ · · , n) we can write

L(GhiJt) = 9(L(GlM)) (5.5)

where 0 is given by (5.3). In the rest of this chapter, we assume that Moore
automata G^k's satisfy the condition (5.1) or (5.2) and hence we only refer
to an information map ? defined in (5.3) for the purpose of exchanging the
information between the low-level and high-level layers.

134

5.3 Joint-OCC and Joint-OOC Properties

Consider the low-level models Gi^ [k = 1,··· ,n)- Suppose s G L[G? ¿) for
some 1 < i < ? leads to a vocal state generating u)(s) = t. lì s can also

be generated in another model, say Gi¿, that is s G L[Gij), then by (5.2),
i2>j[s) = ú)j(s) = t. In the hierarchical framework proposed in this chapter, we
intend to design a high-level robust supervision for high-level models Gh,k- As
with robust control problems discussed in Section 2.4, we expect the high-level

models agree on the controllability of high-level events. Therefore, t must be

controllable (resp. uncontrollable) for Gn if and only if it is controllable (resp.
uncontrollable) for Gij. Joint-OCC which was derived in Chapter 4 ensures
this property and remains valid through this chapter. Hence we assume Tc and

Tuc denote the subsets of controllable and uncontrollable events at the high-

level and the models G¡¿'s are Joint-OCC. Nevertheless, the system should still
be examined for observability of the events. Similar to Joint-OCC property,

we argue that the output r must be observable (resp. unobservable) for G¡¿ if
and only if it is observable (resp. unobservable) for G¡j. Therefore, we need
a joint-output-observation-consistency property as described in the following.
Assume T0 Q T and Tuo = T — T0 denote the subsets of observable and

unobservable events at the high-level. Furthermore, define Lvoc over [JL[G^k)
k

as Lvoc = {s E (JL(Gi1Jc)Is = e or û[s) ^ r0}. Now, the maps ?° and color0
k

can be defined on Lvoc — {e} as follows. Let s e Lvoc — {e}. Therefore, there
exist s' G Lvoc and r G Lvoc[s') such that s = s'r. We define

Íred, if Co[s) G T0

green, if CJ[s) G Tuo

135

and

I red, iîPlo(r)^e
color°(s) = <

I green, if Pto(r) = e
. The map ?° shows if the assigned label to s belongs to the observable set T0
or the !inobservable set Tuo. On the other hand, the map color0 assigns a color
to s based on whether the last silent segment of 5 is observable or not. Since,
by assumption, all low-level models Gi^ agree on the observability of events,
color0 (.) is well-defined. Next we define the Joint-OOC property.

Definition 5.1. Consider a set of Moore automata G^ = (Qk, S*., TU {r0}, ¿>fc,
uk,q0,k) (k = 1, · · · , n). We say Gi^ (k = 1, · · · , n) satisfy the Joint-Output-
Observation-Consistency (Joint-OOC) property iffor alls G Lvoc— {e}, x°(s) =
color0 (s).

A paraphrasing of the OOC property (Definition 3.2) follows.

Remark 5.2. Consider a Moore automaton H = (Q, S, TU{r0},¿, ?, q0). Let
q = S(q0,sr) where r is a silent path which extends s G L(H)- Then, H is
OOC if the following holds: r contains at least one observable event if the
output at q is observable and r contains only unobservable events if the output
at q is unobservable.

Proposition 5.3. Consider the Moore automata G^ (k = 1, · · · , n) and let
Gi0 = Gjj U ¦ · · U Gin be defined as in Remark 4-4- Then Gi^ 's satisfy the
Joint-OOC property if and only if Gi0 satisfies the OOC property.

Proof: Follows from Definition 5.1 and that Gi0 generates \jL(GLk)- ?
k

Proposition states that satisfying the Joint-OOC property which is defined on

[JL(Gi1Iz) is equivalent to OOC property being satisfied by Cz0. In Proposition
k

5.4 and the following corollary we show how OOC property is inherited by Gi0
where all G^'s are individually OOC.

136

Proposition 5.4. Consider the Moore automata Gi%k (k = 1,··· ,n). Then

Gi¿ 's satisfy the Joint- OOC property if and only if each Gitk satisfies the OOC
property.

Proof: Remark 5.2 implies, an automaton G is OOC if every s G L(G)
leading to a vocal state q satisfies the following:

(i) If the output at q is observable, then the last silent segment of s includes
at least one observable event;

(ii) If the output at q is unobservable, then the last silent segment of s
contains only unobservable events.

Now, if Gifc's are Jointly-OOC, then every string s in L(Gi0) = U L(Gltk),
k

(and thus every string in L(G¡¿)) for which ¿L>(s) f t0 satisfies conditions (i)
and (ii). Therefore, G^k will be OOC (for every k). Conversely, if all G^s
are OOC, then all strings in L(GÍ¡k) (for every k), and thus all strings in
L(Gi0) = U L(Gi^k), will satisfy the above property. ?

k

Finally, we have the following useful corollary.

Corollary 5.5. Gi k (fc = 1, · · · , n) are individually OOC if and only if\JGi<k,
k

is OOC

Proof: Follows from Proposition and Proposition 5.4. D
Therefore, we assume the plant models G/^'s are Jointly-OCC and Jointly-
OOC. If the models G/>fc's are Joint-OCC and Joint-OOC then a control struc-
ture can be defined for them at the high-level. Let Phi : T* ?—> T* be a natural

projection at the high-level. Similar to the Factorization Property (3.1) for
a single model in Chapter 3, we argue that if two sequences 5 G L(Gu) and
s' G L(G1 j) (1 < i,j < n) have the same observation at the low-level, i.e.
Pio(s) = Pio(s'), then the images of s and s' should have the same observation

137

at the high-level, i.e. Phi(9(s)) = Pki(9(s')) where ? is given by (5.3); that is
to say

PM = PM) ==? Phl(9(s)) = Phl(9(s')).

Equivalently, we should have

ker(Plo)<ker(Phio9). (5.6)

Condition (5.6) is, in fact, a generalization of the Factorization Property (3.1)
to a model Gi0 which generates [JL(Gw) where Gio is synthesized in Remark

k

4.4 by (4.7). Note that, by construction, if (5.6) holds, then (3.1) holds for
each model G^ and we can define the reporting maps 9k and the output
maps ùk for observer automata G^ (k = 1, · · · , n) as explained in Chapter 3.
Therefore, (5.6) implies that for every s G L(Gi¿) and s' G L(Gi0) (i ^ j) if
S = Ph(s) = PM), then Pk,(9l(s)) = Phl(9j(s')). This implies we can define
a reporting map ? : PÎ0(\jL(GÎ<k)) —» T0*. For every S G PU[JL(G1 ¡k))

k k

0(S)=0fc(S) for any k such that S e L(Gl<k). (5.7)

Similarly, an output map ? : Pi0([JL(Gi,k)) ?—> T0 U {t0} can be defined as
k

follows. For every S G Pio([jL(Gltk))
k

Co(S) = uk(S) for any k such that S G L(GUk). (5.8)

Remark 5.6. Tn i/ie rest of this chapter, in addition to conditions (5.1) or
(5.2), we assume that the maps Plo, Phl and ? satisfy the Factorization Property
(5.6).

We propose the following algorithm for satisfying conditions (5.1) (or (5.2))
and the Factorization Property (5.6):

138

Proposed algorithm for satisfying conditions (5.1) (or (5.2)) and the
Factorization Property (5.6): Consider the low-level models Gi¿ (which
are not yet equipped with an output map). We take advantage of the fact that
with a given information map 9 : [JL[Gitk) ?—? T* which satisfies Factorization

k

Property (3.1), the restrictions of 9 to the individual languages L[Gi^), say #&,
would automatically satisfy condition (5.1) (or (5.2)) and (5.6). Specifically,
the following steps can be taken to obtain a feasible set of reporting maps

e = {eir-- ,??}.

(i) Let a map 9 : [JL[Gi^) '—* T* be given or defined such that it satisfies
k

the Factorization Property (5.6). If ? does not satisfy the Factorization
Property, then 9 can be modified by the algorithms given in Section 3.7,

such that it satisfies the Factorization Property.

'(ii) Let the restriction of 9 to L[G¡¿) [k = 1, · · · ,p) be called 9k and call
the corresponding output map u>k-

(iii) Combine the model Gi^ with the map u>k (which corresponds to <?*.) to
get the Moore automaton Gi^ = [Qk, S^,G U {r0},5fc,u;fc, q0,k)·

The reporting maps 9k which correspond to output maps Uk satisfy the condi-

tions (5.1) (or (5.2)) and the Factorization Property (5.6) and hence 9 is the
information map (5.3) for the system.

5.4 Supervision Implementation At The Low-

Level

The ability to synthesize the Moore low-level models that satisfy the Joint-
OCC and Joint-OOC properties, equips the high-level with the control struc-

ture. In this section, we discuss supervisor design and implementation, and

139

the issue of hierarchical consistency.

Let Gh,k be the models at the high-level whose closed languages are L(G\m) —
? (L(Gim)) (k = 1,··· , n). We assume the desired behavior is given by E'hk.
Let Shi be the feasible solution to the robust control problem at the high-level

and Eh,k = L(Shi/Gh,k) the closed behavior of the system under supervision
at the high-level for each model. Also, let Ehi = U Ef1Mi Ei0 = 6~l(Efli) and

k

finally E[k = 6~l(E'hk) as the corresponding legal language for each model
GiM at the low-level. Let Ghi be any automaton at the high-level whose closed

behavior is L(Ghi) = (JL(Gf1M)- Theorem 2.27 implies L(Shi/Ghi) — Ehi and
k

Ehi is controllable and observable w.r.t L(Ghi)- Also, let Gi0 be the Moore
automaton given by (4.7) in Remark 4.4. Then, L(Ghi) = \J0(L(Gim)) =

k

? ([JL (Gim)) = 0(L(Gi0)). Now, from Theorem 3.31, we conclude that if the
k

high-level feasible supervisor Shi is implemented by a disabled-event map ?^,

then there exists a low-level supervisor Si0 which is implemented by a disabled-

event map ?/0 given in (3.14). We show Si0 solves the robust supervisory con-
trol problem at the low-level for the set of models Gim and the legal languages
E¡ k and we investigate the relation between the behavior of system under su-
pervision at the low-level (L(Si0/Gim)) and that of the high-level (L(Shi/GhM))·
In Chapter 4 we showed that the closed behavior of the system under supervi-
sion for each model Gim matches the supremal controllable sublanguage of the
specification E1 k = ?-1 (EhM)', however, under partial observation that would
not necessarily be the case. In fact, reaching an supremal observable control-
lable sublanguage is not necessarily possible. Nevertheless, it was shown in

Chapter 3 how hierarchical consistency under partial observation is ensured
by the UUC, UUPO and PO-SOCC properties.

Definition 5.7 (repeated). We say the property of robust hierarchical consis-
tency holds in the system if 9(L(Si0/G^)) = Eh,k for k = 1, · · · , n.

140

In hierarchical supervisory control of [59], to have hierarchical consistency,
it must be ensured that low-level implementation of a high-level command to

disable an high-level event does not produce unintended consequence in the

form of disablement of other high-level events. In the case of control under

partial observation, as shown in Chapter 3, if the plant is UUC, UUPO and

PO-SOCC, then hierarchical consistency can be guaranteed. In HRSC under

partial observation problem discussed here, we have to make sure that the

implementation of a high-level command to disable an event does not produce

unintended consequences in any possible plant. To ensure this, we bring in the

Joint-UUC, Joint-UUPO and Joint-SOCC properties.

5.4.1 Joint-UUC Property

Recall that the UUC property (Property 3.19) requires for every s <E Lvoc and
•s' G Lvoc(s) that ûj(ss') <? TuoDTc, we have |Ec(s')| = 1. The UUC property is
a property of silent paths, regardless of how they are connected to each other
in the model. It is expected that if the models G^k (k = 1, · · · , n) individually
meet the UUC property, the union of them satisfies UUC property and vice
versa.

Definition 5.8. Consider a set of Moore automata Giik = (Qk, S/? TU{t0}, Sk,

0Jk,qoJ {k = lr- ¦ ,n). Let Lvoc = {s e\jL(GLk)\s = e orCj{s) = r0}. We
k

say G^k's satisfy the Joint-Unobservability-and-Unigue-Controllability (Joint-
UUC) property if for every s G Lvoc property UUC holds.

Proposition 5.9. Consider a set of Moore automata G^k [k = 1,··· ,n).
Then GLk s satisfy the Joint-UUC property if and only if each GLlc individually
satisfies the UUC property.

Proof (if): VVe use the fact that L(GLk) C \JL(GLk) (fc = 1, · · · ,t?).
it

141

Assume G/ifc's satisfy the Joint-UUC property. Suppose for some 1 < j < ?
there exist a sequence s G Lvoc and a silent path r G Lvoc(s) such that sr G
L(Gij) and

¿,(sr)€TcnTuo. (5.9)

We have sr G L(GltJ) C L(G/o). Therefore, by (5.4),

lj(s) = ûj (s) f T0 and û(sr) = U)7(Sr) G Tc (? G„0.

Next, note that r which is a silent path in L(Gltj) will be a silent path in
[JL(G^k) since otherwise for some r' < r by (5.4) we have ¿jj(sr') = u(sr') F t0
k

which is a contradiction. Therefore r is a silent path in (jL(Giife) and since
G^ 's satisfy the Joint-UUC property, for s G Lvoc and r G Lvoc(s) we have

|Sc(r)| = 1. (5.10)

Equations (5.9) and (5.10) imply that Gi¿ satisfies the UUC property for
1 < j < n. This means each G^k (k = 1, · · · , n) individually satisfies the UUC
property.

(Only if): Assume each G;ife (k = 1, · · · , n) individually satisfies UUC prop-
erty. Then, for every sequence s G Lvoc and r G Lvoc(s) that sr G (JL(G^)

k
and

ô;(5r)GTcn7;o (5.11)

we have sr G L(Gi^) for some index 1 < j < n. Then, again (5.4) implies that
s G L„oc ? L(G1J), a silent path r G i^oc(s) extends s in L(Gij) and that

Uj(Sr) =û(sr) eTcDTU0.

142

Then, since by assumption Gi¿ satisfies the UUC property, it is concluded that

|Ec(r)| = 1. (5.12)

Equation (5.12) implies that for every s G Lvoc and r G Lvoc(s) that (5.11)
holds, |Ec(r)| = 1. This completes the proof that G/^'s satisfy the Joint-UUC
property. ?

Corollary 5.10. Gl:k 's (k = 1, ¦ ¦ ¦ ,n) individually satisfy the UUC property
if and only if Gi0 = \JG^k satisfies the UUC property.

k

Proof: Follows from Proposition 5.9 and the definition of Gi0. D

5.4.2 Joint-UUPO Property

Recall that the UUPO property (Property 3.20) requires that every sequences
s G Lvoc and r G Lvoc{s) with P¡0{r) F e and û{sr) G Tc be such that
Ec(7?(r)) = 0 where for r G S*, V{r) = {u | u G E^0, 3w G-S+S* U {e} :
r = uw} is the largest unobservable prefix of r.
It can be shown that individual models GLk (k — 1, · · · ,n) inherit the UUPO
property from Gi0 and vice versa.

Definition 5.11. Consider a set of Moore automata G^k = (Qk,Ek,T Ö

{t0}?,?*,9?,*) (k = 1,··· ,?). Leí Lvoc = {5 G \jL{GLk)\s = e or û(s) f
k

t0). We say G^k's satisfy the Joint- U UPO property if for every sequence
s G LV0C, the UUPO property holds.

Proposition 5.12. Consider a set of Moore automata Gl)k (k = 1,··· ,t?).
Then GiM 's satisfy the Joint-UUPO property if and only if each Gitk individu-
ally satisfies the UUPO property.

143

Proof: The proof is similar to that for Proposition 5.9. We use the fact
that L(Gl<k) C \JL(Gltk) (k = 1, · · · , n).

k

(if): Assume G;ifc's satisfy the Joint-UUPO property and suppose for some
sequences s G Lvoc and r G Lvoc(s) and some 1 < j < ? that sr G L(G?j)

Pio(r) f e and Uj (sr) G Tc. (5.13)

We have sr G L(Gij) Q \jL(Glik)· Therefore, similar to Proposition 5.9,
fc

(5.4) implies that r is a silent path in (JL(G1^) with a controllable output
fc

Lu(sr) = ûj(sr) G Tc. Then, since G¡ik's satisfy the Joint-UUPO property,

Ec(77(r)) = 0. (5.14)

Equations (5.13) and (5.14) imply that Gitj satisfies the UUPO property where
1 < J' < n. Therefore, each automaton G^ (k = 1, · · · , n) individually satisfies
the UUPO property.

(Only if): Assume each G^k (k = 1,··· , n) individually satisfies the UUPO
property. Then for every sequence s G Lvoc and r G Lvoc(s) that sr G (jL(G^k),

k

Pi0(r) ^ e and cD(sr) G Tc, (5.15)

there exists some index 1 < j < ? that sr G L(Gij). Again (5.4) implies that
r is a silent path in GLj, s G Lvoc ? L(Gij), and that

Pio(r) F £ and ûij(sr) G Tc.

Then, since by assumption GLj satisfies the UUPO property,

Ec(r?(r)) = 0. (5.16)

144

Equations (5.15) and (5.16) imply that G^k's satisfy the Joint-UUPO property.
D

Corollary 5.13. Consider a set of Moore automata Gi¿ (k = 1, · · ¦ , ?). Then,
each Gizk {k = 1, · · · , n) individually satisfies the UUPO property if and only
if Gi0 satisfies the UUPO property.

Proof: Follows from Proposition 5.12 and the definition of Gi0. ?

In the rest of this chapter we assume the models Gi¿ satisfy the Joint-UUC
and Joint- UUPO properties

5.4.3 Joint-PO-SOCC Property

The Joint-UUC and Joint-UUPO properties, in a sense, prevent unintended

disablement of high-level unobservable events in the system. On the other

hand, the PO-SOCC property, in Chapter 3, prevented unintended disable-

ment of high-level observable events. We show how the PO-SOCC property is

extended in HRSC problem under partial observation; some references are also

made to P-partners (Definition 3.22) and the PO-SOCC property (Definition
3.23).

Definition 5.14. Consider a set of Moore automata Gi¿ — (Qk,^, T U

{T~0},ò~k,ujk,q0,k) (k = 1,··· ,?) and let G^ be the corresponding Moore ob-
server automaton for Gi¿- We say Gi± 's are Jointly-PO-SOCC if (i) G¡¿ 's are
Jointly-OCC and Jomtly-OOC and (ii) no two P-vocal nodes with controllable
outputs (nodes whose associated outputs are members of Tc), are P-partners
in the reachability tree of [JGi^.

k

We show how ensuring the Joint-PO-SOCC property guarantees each model
GLk (k — 1, · · ¦ ,n) meets the PO-SOCC property. The reverse is not true as
shown in an example following Proposition 5.15.

145 -

Proposition 5.15. Consider a set of Moore automata Gitk (k = 1, · · · , n). If
GlJc 's are Jointly-PO-SOCC, then each GlM is PO-SOCC.

Proof: Assume G/,*'s (k = 1, · · · , n) are Jointly-PO-SOCC. Let Gl¡k be
the observer automaton which corresponds to G¡¿ and uk be the output map
for G^k- Then, let

Gio = <nm[^x...xG^n

so that L(Gi0) = [JL(G1^) and the output map ? : L(Gi0) '—> T0 U {r0} is
fc

given by (5.8). In fact, it can be shown that Gi0 is an observer automaton

for Gio given by (4.7). If G1^s are Jointly-PO-SOCC, no two P-partners are
found in the RT of Gi0. Now suppose, by contradiction, for some 1 < j < n,

Gij is not PO-SOCC. In other words, there exist a sequence S G L(G? j)
with S = e or U3(S) f T0 and sequences S1, S2, S3 G S+ such that SiS2
and SiS3 are two p0-controllable Pio-silent paths which extend S in the RT
of Gij, CO(SSiS2) f U)(SSiS3) and at least one of the sequences S2 or S3 is
•P/o-uncontrollable. Without loss of generality, assume S2 is Plo- uncontrollable.

Because the RT of Gltj is a subtree of the RT of Gi0, we have S G L(G¡0). Next,
(5.8) implies either S = e or U)(S) F r0 and furthermore, SiS2 and SiS3 are
P/0-controllable Pio-silent paths which extend S in the RT of Gi0. Therefore
we have

LD(SS1S2) = U)J-(SS1S2) G Tc;

U(SS1S3) = Uj(SS1S3)GT0;

CO(SS1S2) f CU(SSiS3). (5.17)

Nevertheless, the controllability of S2 is yet to be determined. Since S2 is

Pio-uncontrollable (from the node corresponding to SSi) in GLj, there exist
sequences s G L(GLj), sx G S* and S2 G S+S*S+ with P1Js) = S, PÎO(sx) = S1

146

and P;0(s2) = S2 such that SiS2 E Lvoc(s) is a silent path in Gi¿, and

s2GE¿, (5.18)

Then, since ssis2 E L(Gi¿) Ç L(Gi0), we have

Ss1S2 e P^(SS1S2)HL(GU (5.19)

Equations (5.18) and (5.19) imply that S2 is P;o-uncontrollable from the node
corresponding to SS1 = P0(SS1) in G¡0. Therefore, (5.17) and the fact that
S2 is P;0-uncontrollable imply that the nodes SS1S2 and SS1S3 are P-partners

in the RT of Gi0 = [JGi^. This is a contradiction since G/./c's are Jointly-PO-
k

SOCC. Therefore, S2 cannot be P;0-uncontrollable in Gi¿ and no two nodes
with controllable outputs are P-partners in the RT of Gi¿. Hence, G¡¿ is PO-
SOCC. This completes the proof that each GiM (k = 1, ¦ · · , n) is PO-SOCC.
D

Proposition 5.16. The models Gi^ 's {k = 1, · · · ,n) are Jointly-PO-SOCC if
and only if Glo = (JGt1* is PO-SOCC.

k

Proof: Follows from Definition 5.14 and that Gi0 generates (JL(G\fc). D
k

Remark 5.17. If the models G^k's are not Joinly-UUC, Jomtly-UUPO or
Joinly-PO-SOCC, then it follows that the model Gi0 = [JGi^, given by (4-7), is

k

not UUC, UUPO or PO-SOCC. Therefore, by ensuring Gio = \JGLk satisfies
k

above properties, as discussed in the Appendix of Chapter 3, we can ensure
GlM's are Joinly-UUC, Jointly-UUPO and Joinly-PO-SOCC.

The following shows that if the models are individually PO-SOCC, they
are not necessarily Jointly-PO-SOCC.

147

Example 5.18. Figs. 5.1. (a) and 5.1.(b) show two models G^1 and G^2 which
are PO-SOCC. There, S = {a, b, c, a, ß} in which E0 = {a, b, c] and Ec = {a}.
Also T = Tc = T0 — {7-1,72}. Fig. 5.2 shows the union model Gi0 = G^1 U
Git2 which is not PO-SOCC. In other words, Gn and Giy2 are individually
PO-SOCC but they are not Jomtly-PO-SOCC. Let Glo, in Fig. 5.3, be the
observer automaton of Gi0. In Fig. 5.3, in the RT of Gi0, the node a.a.c is P-

partner with the node a.c.b since the outputs T1 = ù(a.c.b) and T2 = a(a.a.c)
are controllable, T1 f T2 and furthermore, the segments a.c and c.b are Pi0-
uncontrollable. Therefore, disabling T1 and T2 might not be independent from
each other as is the case here too. In fact, if a feasible robust supervisor disables
T1 in Fig. 5.2, the event a after state 2 should be disabled as a result of which
event a after state 10 is disabled. This yields the unintended disablement

of event T2 at the high-level. Note that Gio in Fig. 5.2 is SOCC and this
unintended disablement would not occur if full observation was assumed.

—KI>---KEh--*©

(a): Gu (b): G,,2
Figure 5.1: Two models Gt¡1 (a) and G^2 (b) which are individually PO-SOCC.

-KD~--K!>-'-HS) T>

--?@--?--->(?)-3—Hg)-c—Hg) t, U HjT)-C—?® T¡
Gio Gi0

Figure 5.2: Union model Gi0 = GL1 U Figure 5.3: Observer automaton
GL2 which is not PO-SOCC. Gio which corresponds to G,0

148

5.4.4 Robust Hierarchical Consistency under Partial Ob-

servation

Next, we show how robust hierarchical consistency property can be ensured
in an HRSC problem under partial observation. Let Shi be the feasible robust
supervisor which solves the RSC problem at the high-level and Si0 the induced
feasible supervisor at the low-level which corresponds to Shi and is given by
(3.15).

Theorem 5.19. // the low-level Moore automata Gi^ (k = 1,·-· , n) are

Joinly-UUC, Jointly- UUPO and Jomtly-PO-SOCC, then Si0 is a feasible ro-
bust supervisor for models Gi^ 's and legal languages E'lk 's and we have:

(?) 6[L[S10IG10)) = Ehl;

(ii) 0{L(Sio/Giik)) = Ehtk.

Proof: (i): Let Ghl = trim[[Gc^ x ··· x Gch°n)œ}. Union operation (U)
and information map ? commute with each other and it can easily be shown
that L (Ghi) = 9(L(Gi0)) where Gi0 is given by (4.7). On the other hand,
solving the robust supervisory control at the high-level amounts to solving
supervisory control for the plant Ghi and the legal behavior Ehi = \JEh,k-

k

Thus L(Shl/Ghr) = Ehi- Then, since G/ife's satisfy the Joint-UUC, Joint-UUPO
and Joint-PO-SOCC properties (Glo satisfies the UUC, UUPO and PO-SOCC

properties), it follows from Theorem 3.31 that for the feasible supervisor SLo

9(L(S1JG10)) = L(Shi/Ghi) = Ehi.

(ii): First, note that by Lemma 2.28 we have:

L(Si0/Gim) = L(S1JG10) ? L(Gn,)- (5.20)

149

Therefore we have:

0(L(Sio/Glik)) = 9(L(Slo/Glo)n L(G1^))

ç 9(L(Slo/Glo))c\9(L(GlM))

= £tó ? 9(L(Glk)) (from part (i))

= ?,,» ? L(Gh;k) (by definition of Gh)fc)

— -E1Zi1^ (since S^ solves RSC)

which means

9(L(Slo/Glfk)) C Eh,k. (5.21)

For the reverse inclusion we have:

Eh,k = Ehi ? L(Gh1Ic) (since Shl solves RSC)

= 9(L(Slo/Glo))nL(G^k) (from part (i))

= 9(L(S¡0/Glo))n9(L(GLk)) (5.22)

Now let T be the event set at the high-level. For any t G T* that

t G 9(L(S10/ G10)) ? 9(L(Guk)) (5.23)

let S[= {s e L(Gj0)I u>(s) ^ r0 and 0(s) = t} be the strings which lead to
vocal states in L(G10) and 9(s) = t. By Lemma 5.20 in the Appendix we have:

S; C L(S1JG10). (5.24)

150

Also, t E 0(L(Gi*)) implies

S; ? L(G1*) f 0 (5.25)

Equations (5.24) and (5.25) together imply for some s' E S[we have:

s' G L[S1JG10) ? L(G1*) and 0(s') = t, (5.26)

which implies

te 0(L(S10ZG10) ? L(G1*)). (5.27)

Therefore, equations (5.22), (5.23) and (5.27) imply that

Eh* = 0(L(S1JG10)) ? 6(L(G1*)
C 0(L(S1JG10)HL(G1*))

= 0(L(S1JG1*)) (by Lemma 2.28). (5.28)

Equations (5.21) and (5.28) complete the proof that 0(L(Sio/Gi*)) = Eh*.
Furthermore, it can be concluded from (5.21) that

L(S1JG1*) C 0-\Eh*)

C EJ (5.29)

Equation (5.29) implies Sio is a robust supervisor for the models G1* (k =
1,··· , n) and the corresponding legal behavior E[k where Slo is feasible by
construction. ?

151

5.5 Conclusion

In this chapter a hierarchical solution for the problem of robust supervisory
control under partial observation for a finite family of DES plants was derived,
based on Zhong-Wonham approach. Conditions were derived so that a unique
reporting map can be defined and constructed for the system. The Joint-OCC
and Joint-OOC properties, as the extensions of OCC and 0OC properties,
were shown to enure a control structure at the high-level. We showed that the
Joint-UUC, Joint-UUPO and Joint-PO-SOCC properties, as the extensions of
UUC, UUPO and PO-SOCC properties, suffice to ensure robust hierarchical
consistency in the system under partial observation. It was also shown how a
feasible robust supervisor can be constructed at the low-level.

5.6 Appendix

Consider the supervisors Sio given by (3.15) and Slo given by (3.16). Now, let
t G L(Shi /Ghi) be a sequence in the high-level system under supervision and
define S[= {s G L(Glo)\ u(s) f T0 and ? (s) = t] to be the low-level strings
whose images are t G T* and lead to vocal states in Gi0. Theorem 3.31 which

states 9(L(Sl0/Gio)) = L(Shl/Ghl) = Ehi implies that for every t G L(Shl/Ghi)
there exists some sequence s G S[that s G L(SÌO/Glo). Lemma 4.18 states
that S[C L(Sio/Gio), however, the membership of the set S[in L(Si0/Gi0)
should still be investigated. Lemma. 5.20 gives an extension of Lemma 4.18 to
the case of control under partial observation.

Lemma 5.20. For every t G L(Shl/Ghl), let S[= [s G L(Ci0)I ? (s) f
T0 and 0(s) = t}. Then, if Glo is PO-SOCC, S[C L(S10/1G10).

Proof: Theorem 3.31 states e(L(Slo/Glo)) = L(Shl/Ghl) = Ehi, hence
we have t G 6(L(Si0/Gio))). Now. suppose, by contradiction, that for some

152

s G S[, s £ L(Si0/Gi0)). Let S2 < s be the largest prefix of s in L(Si0/Gi0).
The definition of Si0 implies that there exists s G Ec and S3 G S* such that
s = s2os3 with S2 e L(S10/ Gio), 9(s2) G 9(L(S,.0/Gi0)) and s G A,0(s2, 0(s2)).
Since S2 < s and s is vocal, 0(s2) ^ 9(s) and hence the sequence as3 goes
through at least one vocal state. Thus there exist S4 < S3 and t G T such
that os4 G Lvoc(s2) and á>(s2as4) = r. s G Aío(s2, 0(s2)) is disabled by Si0
but since by Lemma 4.18, S[Ç L(Si0/Gi0) and also L(Si0/Gi0) is closed,
s ^ A/o(s2,6>(s2)) and s2as4 G L(Si0/Gto) or equivalently

0(s2as4) = 0(s2)r G 0(L(S10IG10)). (5.30)

Recall from Theorem 2.33 that L(Si0/Glo) = EJ0. Therefore, o <£ Alo(s2, 0(s2))
implies

s2o G E]0. (5.31)

Next, note that since s G Ato(s2, 6>(s2)), by (3.14), there should exist s' G
PiO1Pi0(S2) ? L(Gi0) and f G Pw1Pw(O(S2)) ? L(Ghl) such that s G Aio(s',í').
The Factorization Property (3.1) for S2 and s' with Pio(s') = Pi0(s2) im-
plies PhMs')) = Pw(0(s2)) and since Phl(t') = Phl(9(s2)), we have Phl(t') =
Pw(0(s'))- Then, since Shi is feasible it is concluded that Ahl(t') = Ahl(9(s')).
This implies s G Aío(s', 9(s')) and hence

s'a £ E]0. (5.32)

Let u' G E*c be the corresponding sequence in definition of ??? for which we
have ou' G LV0C(s') and Ûj(s'ou') G An.i(0(s'))· Let ûi(s'au') = t' for some
r' G T. Therefore, we should have

r' G Ahl(9(s')) (5-33)

153

and 9(s')t' f ? (L(Si0/Glo)). Recall that we assumed û(s2as4) = t. We have
ño(s2) = ño(s') and that

s2a e E]0 and s'a e L(Gi0) and s'a i E¡0 (5.34)

where the first and the last term were given respectively in (5.31) and (5.32).
Note that by Proposition 3.26, the system is SOCC, hence we have acte(s'a) =
{t'}. Now if t f t', then acte(s2a) - acte(s'a) f 0 which together with (5.34)
imply E\0 is not (G, Plo, #)-observable. This cannot be the case since Gi0

is PO-SOCC, hence by Proposition 3.29, E]0 is (G, Pio, 0)-observable. This
implies r = t'. Besides, Shi is feasible which implies Ahi(e(s2)) = Ahi(6(s')).
Therefore, (5.33) implies r e Ahl(9(s2)) or equivalently 9(s2)t g Ehi. Then,
since by Theorem 2.37 9(L(Si0/GÎO)) = Ehi, we have

9(s2)r f 9(L(Sio/Gi0)) (5.35)

which contradicts (5.30). Therefore, s2 — s and thus for every s G Y,'t, s G
L(Si0IGi0). This completes the proof that S[Ç L(Si0/Gi0). ?

154

Chapter 6

Case Study

A flexible manufacturing system (FMS) consisting of two machines and two
buffers is studied in this chapter. This case study, in part, has been inspired

by the example given in [42]; however, our framework, modeling and results
differ from those in [42]. In this case study, we use the hierarchical robust
supervisory control (HRSC) framework to model an FMS. First, the prob-
lem statement, which includes an overview of the system and the interactions

among the components of the system, is given. Next, different components
and interactions within the system are modeled. This includes obtaining the

low-level model. Following this, the outputs of system are chosen properly so

that enough information is gathered from the system and hence the specifica-
tions at the high-level can be recovered through the low-level implementation.
This includes choosing the vocal states and obtaining the high-level models.
Then, the high-level specifications are modeled. Finally, the HRSC problem
is solved. It is shown that the Joint-SOCC property holds in the system and

hence the system satisfies the robust hierarchical consistency property. Finally,
possible extensions of this case study are discussed.

155

¦<M>-
Buffer 1

Feed-line Machine 1

ÖP1
0P2

Machine 2

0P2
ÒR3

Feed-line

Œ Conveyor T)
<M>

Buffer 2

Figure 6.1: A flexible manufacturing system, consisting of two machines and
two buffers

6.1 Problem Statement

Fig. 6.1 shows a flexible manufacturing system (FMS) which consists of two
machines, two buffers and one conveyor. The machines work independently
and can be run in parallel. Machine 1 can perform Operations 1 and 2 (OPl
and 0P2) and machine 2 can perform Operations 2 and 3 (0P2 and 0P3).
To start a new product, new workpieces are fed into the machines through
two Feed-lines. When a machine completes its task, it deposits the workpiece
into either a buffer or the conveyor depending on the product recipes. Each
buffer has a capacity of one and each buffer has access to both machines.

Therefore, a transfer from one machine to another is possible via buffers. Two
products recipes A = OP1+OP3+OP2 and B = 0P3+OP2 are available.

Safety regulation requires that after two consecutive production of A, one B
is produced. Furthermore, the system is prone to fault. For brevity, we only
consider failure in Machine 1. Machine 1 might fail to perform 0P2 at any
time. In order to start the process, the FMS should receive the start signal
from the master controller of the plant. The system might also be shut down

156

Master Controller ?/

Glo

Figure 6.2: Master controller vs. recipe controllers

at any time (stop signal). It is required that the buffers do not overflow or
underflow, the system satisfies the safety regulation at both the normal and
faulty modes (i.e. after every two A's, one B is produced) and the maximum
capability of the machines be employed at any time (i.e. the machines can be
used simultaneously). Finally a repair action is possible only when the system
has stopped.

Remark 6.1. As explained in the following sections, two types of controllers
are designed for the FMS we already described. One type is the recipe controller
which is designed for each product, regardless of the presence of the other prod-
uct in the system (SupA and SupB in Fig. 6.2). Each recipe controller works
independently. However, there are other interactions in the system in which
we are more interested. Handling the shared resources of the two recipe con-
trollers and managing the order in which the products are produced are issues
which cannot be taken into consideration by the individual recipe controllers.

We use the term master controller to simply refer to the controller for such

inter-recipe interactions (Shl in Fig. 6.2). Moreover, as we will see later, dif-
ferent levels of authority exist in the system where, for example, the command
STOP which is uncontrollable for the recipe controller is considered control-
lable for the master controller. The machines under the supervision of recipe

157

---->(Òj—h-Feed-MI, Buf-Mt—*-(T)-h-0P1, OP2—>{J)

----- M1-Conv, M1-Buf 1—(5)-* Fin-Mi-·

Figure 6.3: General performance of Machine 1 without considering the inter-
actions within the FMS

controllers form the low-level model Gi0 used in a hierarchical approach to de-

sign the master controller (based on the HRSC problem). The details are given
in the following sections.

6.2 Modeling

6.2.1 Normal Mode

Machine 1 and 2: The general performance of Machine 1, without consid-

ering the product recipes, is given in Fig. 6.3. Machine 1 starts a task by
either taking a new workpiece from the Feed-line (Feed-Mi) or by taking a
previously processed workpiece from a buffer (Buf-Ml). It then performs an

operation (OPl or 0P2) on the workpiece, signals the end of the task (Fin-
Mi) and deposits the workpiece in either the buffer (Ml-Buf) or the conveyor
(Ml-Conv).

The model described in Fig. 6.3, although generally correct for modeling, does
not represent the real interactions in our setup. First, the resource sharing and
second, the maximum flexibility that we want to have from the machines in

the system, require more specific and distinct events in the system so that a
certain task, say 0P2, can independently be enabled or disabled for different

product recipes; we assume an operation which is performed by either of the
machines, does not necessarily have the same effect for the workpieces of A
and B. In other words, OPl for workpieces A and B is not necessarily the

158

same. As another example, consider 0P2 which is common between A and
B. If it is desired that A is done before B, at some point in the run-time

of the system, OP2 should be enabled for A and disabled for B. This im-
plies disabling OP2 for A and disabling OP2 for B should be distinguished.
Machine 1 and Machine 2 can perform OP2. This common capability should

also be addressed and included in the modeling. Finally, START and STOP
commands should be incorporated into the component models as appropriate.
These facts suggest more elaborated models are needed here. Next, we present
the complete models of the components.

Fig. 6.4 shows the complete dynamics of Machine 1. Several improvements

EMPT-M1EMPT-M1

,—STOP

STOP STRT STOP

(4\<-B02-1, BOH-(^H Feed-B-M1

-STOP-

Buf-B-M 1—+TOH- Feed-A-M 1 , Buf-A-M1*(T)+-A01, A02-1-*^?)
STOP

-Fin-M1-

.STOP
6 H-MI-B-C0™, M1-B-Buf—' .M1-A-Conv, MI-A-BuI+/ 5 -Fin-M1

Figure 6.4: Ml: Machine 1 behavior in Normal mode

can be seen in Fig. 6.4 over the model in Fig. 6.3. The model in Fig. 6.4
consists of two symmetric parts; the right side corresponds to product A and
the left side corresponds to product B. The events which denote a task for
A, hold a tag A in their names. Similarly, the events which denote a task for
B, hold a tag B in their names. Thus, event BuJ-A-Ml represents a transfer
of the workpiece of product A from the buffer to Machine 1 and event Ml-B-
Conv indicates the completion of the product B by Machine 1 (depositing B

into the conveyor). It should be noted that, from Machine 1 point of view, two
events Ml-A-Conv and Ml-B-Conv are essentially the same and denote the

159

same task, namely, depositing a workpiece into the conveyor. However, one
flags a product A and one flags a product B completion and hence, supervisor
considers them as different events.

The models of Machine 1 in Fig. 6.4 can be explained as follows. Machine
1 starts from state 0 with the command STRT which is uncontrollable and

is issued by the master controller. It evolves through the states 1-6 and rests
at state 9 unless a STOP command occurs. If a STOP command is issued,
the system switches off and goes to the initial state 0. An EMPT-Ml action
might then be employed to empty Machine 1 if it is not at the rest state 9

when the STOP command is issued. Machine 2 works similarly except that it
can perform operations OP2 and OP3.

Then, a task schedule for processing product A follows: Machine 1 takes a

workpiece A either from the Feed-line (Feed-A-Ml) or from the buffer (Buf-
A-Ml), processes it (AOl or A02-1), signals the completion of the job (Fin-
Ml) and deposits the workpiece into either the conveyor (Ml-A-Conv) or the
buffer (Ml-A-Buf). Product A is processed similarly in Machine 2 (see Fig.

-STOP-

-STOP-

EMPT-M2

8

(î)-B02-2, B03-l-(3)^Feed-B-K/2, Buf-B-M2
STOP

Fin-M2 ?(6 H-M2-B-Conv, M2-B-Buf-

EMPT-M2-,

STOP-

STRT STOP F -STOP-

Feed-A-M2, B|jf-A-M2^T)-t-A03, A02-2^(2)
STOP

M2-A-Conv, M2-A-Buf—\-(5 *— F¡n-M2—'

Figure 6.5: M2: Machine 2 behavior in Normal mode

6.5); Machine 2 initially starts with the STRT command, then takes the work-
piece A either from the Feed-line (Feed-A-M2) or from the buffer (Buf-A-M2),
processes it {A02-2 or A03). signals the completion of the job (Fin-M2) and

160

finally deposits the workpiece into either the conveyor (M2-A-Conv) or the

buffer {M2-A-Buf).
The same tasks are allowed for product B with tag A replaced with B in

above actions (events). Note that both of the events A 02- 1 and A 02-2 de-
note operation OP2 where the former is performed in Machine 1 and the latter

is performed in Machine 2. Table 6.1 gives the list of actions and their task
definitions in the system. In the next sections, we will refer to Machines 1 and

Machine 2 in Fig. 6.4 and 6.5 as Ml and M2.

Buffer Specifications: Buffers represent the robots in our setup. They can

be considered as the medium for transferring workpieces between the machines.

Buffers should not underflow or overflow. Therefore, a general specification for

a buffer, without considering the interactions within the FMS, could be given
by Fig. 6.6. Fig. 6.6 shows a workpiece can be deposited into the buffer by

?—l·— M1-Buf, M2-Buf 1

1 Buf-M1, Buf-M2 H

Figure 6.6: General performance of a Buffer without considering the interac-
tions within the FMS

either of the machines (Ml-Buf or M2-Buf) and, in return, buffer deposits the
workpiece into one of the machines (Buf-Ml, Buf-M2) for further processing.
This prevents the buffer from under- or overflowing. However, the model in
Fig. 6.6 is not complete and ignores the resource sharing and the STOP com-
mand occurrence in the system; it does not differentiate between a transfer of
workpiece A and a transfer of workpiece B, and furthermore, if buffer is full
and a STOP command is issued, the buffer takes no action to be emptied. We

further assume that each buffer is in charge of one product. This assumption

means one buffer handles product A transfers and one buffer handles product

161

Event
AOl
A02-1

c/uc Definition
Machine 1 performs OPl for making A
Machine 1 performs 0P2 for making A

A02-2 Machine 2 performs 0P2 for making A
A03 Machine 2 performs 0P2 for making A
BOl Machine 1 performs OPl for making B
B02-1 Machine 1 performs 0P2 for making B
B02-2 Machine 2 performs 0P2 for making B
B03 Machine 2 performs 0P3 for making B
Buf-A-Ml
Buf-A-M2
Buf-B-Ml
Buf-B-M2

Buffer transfers a workpiece to Machine 1 for making A
Buffer transfers a workpiece to Machine 2 for making A
Buffer transfers a workpiece to Machine 1 for making B

EMPT-Ml
Buffer transfers a workpiece to Machine 2 for making B
Machine 1 is emptied

EMPT-M2 Machine 2 is emptied
EMPT-bufA Buffer A is emptied
EMPT-bufB
Fin-Mi

Buffer B is emptied
Machine 1 finished a process

Fin-M2 Machine 2 finishes a process
Feed-A-Ml New workpiece is loaded into Machine 1 for making A
Feed-B-Ml New workpiece is loaded into Machine 1 for making B
Feed-A-M 2 New workpiece is loaded into Machine 2 for making A
Feed-B-M2 New workpiece is loaded into Machine 2 for making B
Fault uc Fault: Machine 1 cannot perform 0P2
Ml-A-Buf Machine 1 deposits a workpiece of A into the buffer
Ml-B-Buf Machine 1 deposits a workpiece of B into the buffer
M2-A-Buf Machine 2 deposits a workpiece of A into the buffer
M2-B-Buf Machine 2 deposits a workpiece of B into the buffer
Ml-A-Conv
Ml-B-Conv

Machine 1 deposits product A into the conveyor
Machine 1 deposits product B into the conveyor

M2-A-Conv Machine 2 deposits product A into the conveyor
M2-B-Conv
Reset-A
Reset-B

c

c

Machine 2 deposits product B into the conveyor
Machine 1 is rest in making A
Machine 1 is rest in making B

REPAIR Machine 1 is repaired
STRT uc Svstem starts
STOP uc System stops

Table 6.1: Event Definition and Tasks of the system

162

B transfers. Therefore, the buffer specifications can be as given by Fig. 6.7
and Fig. 6.8 for respectively product A and product B.

In Fig. 6.7, a workpiece is deposited in BufA by either Machine 1 [Ml-A-
I 1 M1-A-Buf, M2-A-Buf 1 . 1 M1-B-Buf, M2-B-Buf

STOpJ STOF-- JL STOpJ STOP* 1V©^EMPT-aIh¿)^ST0P-(O W(OH-EMPT-B-I^hJh-STOPhC)

-Buf-A-M1, Buf-A-M2 h -Buf-B-M1,Buf-B-M2-

Figure 6.7: BufA handles product A Figure 6.8: BufB handles product B
transfers. transfers.

Buf) or Machine 2 (M2-A-Buf). The buffer, then, is emptied by depositing
the workpiece into either Machine 1 [Buf-A-Ml) or Machine 2 [Buf-A-M2).
If the uncontrollable STOP command occurs, the buffer takes no action if it

is resting at the initial state O and it is emptied [EMPT-A) otherwise. Note
that a self-loop at the state 2 of the buffer is necessary because the models of
Machine 1 and Machine 2 have a STRT-STOP loop from their state O to 9.

Thus, as the STOP command is considered uncontrollable, a STOP loop at
the state 2 of the buffer prevents an initial dead-lock in the system. Fig. 6.8
shows a similar task schedule for BufB.

Recipes: Fig. 6.9 and 6.10 show the detailed recipes of products A (SpecA)
and B (SpecB). In SpecA in Fig. 6.9, first, a new workpiece is allowed to be fed
into Machine 1 [Feed-A-Ml), then, operations OPl [AOl), OP3 [AOS) and
0P2 [A02-1 /A02-2) are successively applied to the workpiece and finally
the workpiece is deposited into the conveyor from Machine 1 [Ml-A-Conv)
or from Machine 2 [M2-A-Conv) depending on which one has performed the
final operation on the workpiece. In dealing with the STOP command, the
controller takes no action if it is at the initial state 0 and resets otherwise. In

Fig. 6.9, the box, which surrounds the states 1-5, with an event STOP exiting

163

STOP.
STOP

Feed-A-Ml{^J^A01-^^?)-^A03--^^â)-^
-?*?1-?-0??\?-

I- <¿>* -A02-1

M2-A-Conv- -&*¦
A02-2I

Figure 6.9: SpecA: product A recipe in Normal mode

STOP, STOP

Feed-B-Mi2t*<lk:

?^@^-M1-B-Con'

M2-B-Conv-

-B02-1-

-F*
B02-2

Figure 6.10: SpecB: product B recipe in Normal mode

from it denotes a reset action from every state inside the box to the initial
state. A similar task description is given for SpecB in Fig. 6.10.

Some of the (controllable) events in the system are not used in producing the
EnbA EnbB

EnbA={events which are used in producing A} EnbB={events which are used in producing B}

Figure 6.11: EnbA: Permitted events Figure 6.12: EnbB: Permitted events
for product A in Normal mode; for product B in Normal mode;
EnbA = S - {Feed-A-M2} EnbB = S - {Feed-B-Ml, BOI}

products A or B. We wish to have these events disabled in the system so that
only those events are allowed to occur in the system that, at some point, are
executed and used. Let S denote the set of low-level events. Then we define

EnbA = S - {Feed-A-M2} in Fig. 6.11 and EnbB = S - {Feed-B-Ml, BOI}
in 6.12 to be the sets of enabled events in product recipes A and B.
Low-level model: We assume only states 0 and 9 in Ml and M2 are marked.

164

That is, only the states at which the machines rest are marked. However, all
of the states of the specifications SpecA, SpecB, BufA, Buffi, EnbA and EnbB
are marked. Thus, the specification do not contribute to the marking of the
states in the system under supervision. Now, let

LeA = (Ml\\M2\\BufA\\SpecA) ? EnbA

and

LeB = {Ml\\M2\\BufB\\SpecB) ? EnbB

where || and ? denote the sync and the meet operations for automata. LeA
and LeB denote the individual legal behaviors that would produce respectively
products A and B. We also need to ensure that they are controllable and non-
blocking. Let (LeA)]N = SupCNb{LeA) and (LeB)]N = SupCNb{LeB) denote
the suprema! controllable and nonblocking sublanguage of respectively LeA

and LeB. Therefore, (LeA)]^ and (LeB)Jv represent the systems under super-
vision which individually would produce A and B in Normal mode. However,

it should be noted that (LeA)^ and (LeB)I, are generated by the supervisors
which in parallel act on the same resources (M1||M2). In other words, (LeA)\,
and (LeB)\ are generated by modular supervisors. We obtain the common
behavior of the systems under supervision (LeAyN and (LeB)N as

ProdAB = {LeAfN ? {LeB)]N.

ProdAB was checked by the software TCT [1] and was verified to be nonblock-
ing. It is also controllable with respect to the plant model M1||M2. ProdAB
represents the joint behavior of the supervisors which would independently

165

produce A and B. It has 253 states and 706 transitions. We let

Gio.normai = ProdAB = (LeAyN ? (LeB)]N

to represent the low-level model in Normal mode.

6.2.2 Faulty Mode

We consider a single-fault scenario. We assume Machine 1 may fail to perform
operation OP2 at any time. The fault is considered to be permanent, that
is, if the fault occurs, Machine 1 will not be able to perform OP2 unless it is
repaired manually (REPAIR).
Machine 1 and 2: The model Ml Fault in Fig. 6.13 denotes Machine 1 in
Faulty mode. The dashed lines in Fig. 6.13 indicate the occurrence of the
fault. As with other events, the fault is considered to be observable in this

case study. If a fault occurs, operation OP2 in Machine 1 (A02-1, B02-1) is
disabled. However, if a workpiece has previously been deposited into the ma-
chine, the machine job has not started yet and the fault occurs (i.e. the fault
at the states 1 or 3 in Fig. 6.13) the machine could be emptied (Reset-A or
Reset-B) and the workpiece should be transferred to Machine 2 for processing.
The states 0, 7, 18 and 19 will be marked in MlFault. However, Machine 2 is
not affected by the fault and hence we model it as M2 again.
Buffers Specifications: Buffers specifications are not affected by the fault.

Recipes: If the fault occurs, the resources of the system change and thus
an action (Reset-A or Reset-B) might be needed to empty Machine 1 and
furthermore the workpieces should be guided to Machine 2 thereafter for an
OP2 operation (if needed). These facts imply the product recipes will ex-
perience changes in their models. SpecAFault in Fig. 6.14 and SpecBFault

166

EMPT-M1-

-STOP——f-

0+B01.B02

-Fin-M1

EMPT-M 1

STOP

Feed-B-M1. Buf-B-I fl1-W18H-Feed-A-M1 Jf-A-MI-^K 1 H-A01.A02-1

STOP

-M1-A-Conv, M1-A-Buf—K. 5 Rn-M 16 H-M1-B-Conv. Ml-B

I—stop ^^F?^t)-*

????-??fp I G????-?1+^\
äTOP 'Ml S)W^ "T ^NSTOP-

^STOP-

-»>mW— BO 1-l-(í 0^Hh-FeIBd-B-Ml, Buf-B-M1-+-(7))—?— Feed
I— Reset-B M j STOp

•A-M1, Buf-A-MI-^QÎ^—A01
'< U-Reset

-Fin-M1 13>+IVI1-B-Conv, M1-B-Buf

STOP

-A-I

------ M1-A-Conv, MI-A-Buf-H^H— Fin-M1-
Figure 6.13: Ml Fault: Machine 1 behavior in Faulty mode; dashed lines indi-
cate the occurrence of the fault

167

STOP

^-?|)^??^-*?|>-?A0 1

/3O . °?
< OJ

?ß© /TuJ-. Qra C* M 1 -?-Con
f

ce

M2-A-Con

Stop
STOP

8)-AO

Reset-A

I©
CS^
<N10M1-A-Conv

rg
cm

M2-A-Conv (11>*

Figure 6.14: SpecAFault: product A recipe in Faulty mode. Dashed lines
indicate the occurrence of the fault.

in 6.15 show respectively the recipes of products A and B in Faulty mode.
In SpecAFault in Fig. 6.14, if the system is to execute operation OP2 at

state 3 (A02-1 or A02-2) and the Fault occurs (Fault takes the system to
state 9), two options will be available. At state 9 if the workpiece has pre-
viously been deposited in Machine 1, the Machine 1 is first reset (ResetA)
and then operation OP2 from Machine 2 (A02-2) is executed. However, if at
state 9 previously Machine 2 has been in charge of processing the workpiece
and Fault occurs, operation OP2 from Machine 2 (A02-2) is directly chosen
and the system keeps on processing the workpiece as if the fault has not oc-
curred. Note that, ResetA will be used at most once after the occurrence of

Fault. In each case if Fault happens, the specification has been designed not
to choose Machine 1 for operation OP2 again. A similar description can be
given for SpecBFault in Fig. 6.15. The models of the enabled-events need
to be updated although they might not change. Let S denote the set of

events in Faulty mode. Then, EnbAFault=E - {Feed-A-M2} in Fig. 6.16 and

168

STOP- STOP

Feed-B-M2-

STOP

*^)—B03—>^¿)-|
O
CQ

1—M2-B-ConvJ*t-rfv-(4 ¦ ¦¦'¦· I
STOP

/ /

/ / Reset-B·
?1-?-????-("-ß'')?/- s

' B02-2 ö ¦
I—M2-B-Con\^—-(9) << : —' i

Figure 6.15: SpecBFault: product B recipe in Faulty mode. Dashed lines
indicate the occurrence of the fault.

EnbBFault=E - {Feed-B-Ml, BOI} in Fig. 6.17 denote the set of enabled
events in products recipes A and B in Faulty mode.

Low-level model: Low-level models in Faulty mode are obtained similar to

EnbAFault EnbBFault

EnbAFault={events which are used
in producing A in Faulty mode}

Figure 6.16: EnbAFault: Per-
mitted events for product A in
Faulty mode; EnbAFault=E —
{Feed-A-M 2}

EnbBFault={events which are used
in producing B in Faulty mode}

Figure 6.17: EnbBFault: Per-
mitted events for product B in
Faulty mode; EnbBFault=S —
{Feed-B-Ml, BOI}

their counterparts in Normal mode. We have

LeAFault = {MlFault\\M2\\Buj?\\ SpecA Fault) ? EnbAFault

and

LeBFault = {M IFault\\M2\\BufB\\SpecB Fault) ? EnbBFault.

169

Also let (LeAFaultyN = SupCNb(LeAFault) and (LeBFaultyN = SupCNb(Le
BFault) denote the supremal controllable and nonblocking sublanguage of re-
spectively LeAFault and LeBFault. Therefore, (LeAFault% and (LeBFault
)N are the systems under supervision which individually would produce A and
B in Faulty mode. Again, we obtain the common behavior of the above con-
trollers by

ProdABFault = [LeAFault)^ ? (LeBFaultYN.

ProdABFault was checked by TCT and it was shown to be nonblocking and
controllable with respect to the plant model MlFault\\M2. ProdABFault
represents the joint behavior of the supervisors which independently would
produce A and B when Machine 1 is subject to failure. It has 1187 states and
3716 transitions. We let

Gio,Fauit = ProdABFault = (LeAFault)^ ? {LeBFault)\.

Therefore, Gi0iFau¡t would represent the low-level model in Faulty mode.

Remark 6.2. Recall the recipe controllers SupA and SupB in Fig. 6.2. Since
the specifications of Normal mode are a subset of those of Faulty mode, au-
tomata generating and marking (LeAFault)"N and (LeBFault)]^ can be con-
sidered as implementations of the supervisors SupA and SupB for both Normal

and Faulty modes. Therefore. SupA and SupB are the modular (recipe) su-
pervisors that in effect mark the behaviors Gi0,normai and Glo.Fault in Normal
and Faulty modes.

Finally and in agreement with the HRSC problem notations in Chapter 4,

170

we let

Gio,i = Gio^normai and Gi0^ = Gi0jauit· (6-1)

We will refer to Gi0,\ and Gi0^ in the next sections as the low-level models in
Normal and Faulty modes.

6.2.3 High-level Models

To obtain the high-level model we should specify the states of G;0ti and Gi0^ at
which the outputs should be generated (a Moore automaton should be synthe-

sized). First, the aspects of the system which are important for the high-level
(the aspects in which the high-level is interested), are derived. Here, we are
interested in the order in which the products A and B are generated. Further-

more, the commands STRT and STOP are issued by the master controller
and should be taken into account for their significant roles in managing the

process. Finally, the occurrence of Fault as well as REPAIR are important
since Fault changes the model of the system and REPAIR resets it to its ini-
tial status. We choose the related transitions in the system that refer to the

above actions. Note that this transition selection yields a Mealy automaton

finally. Therefore, we label the events Ml-A-Conv and M2-A-Conv as "ac-
complishing A" or simply as A and the events Ml-B-Conv and M2-B-Conv as
B. Furthermore, the events STRT STOP, Fault and REPAIR are respectively
labeled as STTZT, STOP, TAUCT and TIEVAITl at the high-level.

Remark 6.3. In designing the hierarchical supervisory control, the controlla-
bility status of the events may differ from their status in designing the low-level
supervisors SupA and SupB which would implement Le A Fault 'N (LeAN) and
LeBFa,ult]N (LeB]1,). For instance, the events STRT and STOP will be con-
sidered controllable hereafter since they are issued by the master controller at

171

Event c/uc in Primary Modeling c/ uc in HRSC Problem
AOl
A02-1
A02-2
A03
BOl

uc

UC

UC

UC

UC

B02-1 UC

B02-2 UC

B03 UC

Buf-A-Ml UC

Buf-A-M2 UC

Buf-B-Ml UC

Buf-B-M2 UC

EMPT-Ml UC

EMPT-M2 uc

EMPT-bufA UC

EMPT-bufB UC

Fin-Ml UC

Fin-M2 UC

Feed-A-Ml uc

Feed-B-Ml uc

Feed-A-M2 uc

Feed-B-M2 uc

Fault uc uc

Ml-A-Buf UC

Ml-B-Buf UC

M2-A-Buf UC

M2-B-Buf UC

Ml-A-Conv
Ml-B-Conv
M2-A-Conv
M2-B-Conv
Reset-A uc

Reset-B uc

REPAIR
STRT uc

STOP uc

Table 6.2: Change of controllability of events in HRSC problem

172

FAUlT-

REPAI R-""" >\

a y

A, B

FAULT ?{ 3 .

A, B

Figure 6.18: Gw,norma/: High-level Figure 6.19: GhiJault: High-level
model at Normal mode model at Faulty mode

the high-level. Table 6.2 gives the changes of the controllability for all events.

Therefore, we synthesize the high-level event set T as

T = {A, B, STTZT, STOP, TAULT, TZSVATTZ)

in which all events are observable and the subset of uncontrollable events is

Tuc = {?AUCT}. Then, the high-level events assignments which we gave
earlier and are in Mealy automata form now should be expressed as Moore au-
tomata which are OCC. The conversion is a routine procedure in the literature

and it is not given here for brevity. Let Gi0¡norrnai and Gi0jauit denote the Moore
automata which we obtain for Normal and Faulty modes in this step. Fig. 6.18

and 6.19 give the final high-level models Ghitn0Tmai = Higen(Gi0<norrnai) and

Ghi. fault = Higen(Giojauit) where Eigen is the command in TCT which gen-
erates the high-level model from a Moore automaton. To follow the HRSC
notation we further let

Ghi, l = Ghi.narmal and Ghi, 2 ~ GhiJault- (6-2)

Note that blocking is not considered at the high-level and hence it is assumed
all the states of G/,,,? and Ghi, 2 are marked. In the following sections, we

173

also make a reference to the reporting map ? that relates the low-level and
high-level languages:

L(Ghitl) = 9(L(Gl0tl)) and L(Ghh2) = 9(L(Gl0:2)).

6.2.4 High-level Specifications

As the problem statement demands, the high-level specifications are:

• Safety regulations are satisfied at both Normal and Faulty modes; i.e.
one product B is generated after two consecutive A.

• Process starts with the STTZT command and may STOP at any time.

• TZAVAlTZ is possible if the process has stopped.

"I)A

A

Figure 6.20: Ehi<normal: High-level
specification at Normal mode

We propose Eh^narmoX and EhljauH, respectively given in Fig. 6.20 and 6.21,
to denote the high-level specifications. Eh/l,normal and Ehijault simply satisfy
the safety regulation in Normal and Faulty modes; note that the production
sequence (i.e. safety regulation) is the same for both Normal and Faulty modes.
For instance, in Fig. 6.21 states 1 and 4 are reachable from each other through
the occurrence of J7AUCT or the execution of TZEVAlTZ where the set of

,..—fault-— __

REPAIR

?...— FAULT-—

REPAIR

..-FAULT—,

REPAIR

Figure 6.21: EhiJauli: High-level
specification at Faulty mode

174

enabled events after both states are the same. On the other hand, Ehi,normai

and Ehi, fault do not include or constrain STVJT and STOV commands. In
fact, STVT and STOV commands will be appear in legal behaviors when we

consider the joint behavior of Ehi,normai and.Ehijauit and their corresponding
plant models as follows:

Ehi,l — Ehi<norTnai\\Ghi,normal and Ehi, 2 = Ehijauit \ \Ghi, fault ¦ (6-3)

We consider £tójl and Ehi,2 as the final high-level legal behaviors at the high-
level. This means, we intend to implement and recover the supremal control-

lable sublanguages of Eni,\ and Ehl,2 in the system.

6.3 Hierarchical Robust Supervisory Control

Equations (6.1), (6.2) and (6.3) show respectively the low-level models, high-
level models and high-level legal behaviors. In order to define an HRSC
problem, we still need to show that the models above satisfy condition (4.2)
and that the low-level models are Jointly-SOCC. Then, note that we have

L{Gio,i) Ç L(G¡0,2)· This implies the condition (4.2) holds by construction
and furthermore, if Gi0,2 is SOCC, then G\0,3 (j = 1,2) are Jointly-SOCC.
GI0, ï was checked by TCT and it was verified to be SOCC. Therefore, Gi0ii
and Gio, 2 are Jointly-SOCC and an HRSC problem can be solved for them
such that robust hierarchical consistency holds in the system.

We first solve an RSC problem [4, 45] for the pairs (Ght,\, Ehu\) and (Ghl,2, Em,2)·
Note that EfuA Ç Ehi, 2 and furthermore, -Ehi, 2 is controllable with respect to
Ghi,2- Therefore

SupC(Ehi,2) = Ehi,2-

175

It can be verified that Ehi,\ and Ehh2 are a solution to the RSC problem which
is solved at the high-level (see Section 2.4 for details). In other words, for a

high-level robust supervisor Sm which can be implemented by Ehi,2 we will
have

(i) L{ShilGhi^) = -E/,,,1,

(ii) L(Ski/Ghi,2) = -Eyu,2·

Ehit2 has 12 states and 27 transitions. Next, by Theorem 4.15, the low-level
supervisor Si0 which is built based on S^ will be a robust supervisor at the

low-level and since Glo¿ (j = 1,2) are Jointly-SOCC, robust hierarchical con-
sistency property holds in the system and we will have:

(i) 0(L(Sio/Glo,i)) = EhiX

(ii) 9(L(S10ZG1Ot)) = Ehu2.

A (low-level) non-hierarchical robust supervisory control Snh following the ap-
proach in [4] can be implemented by SupC(?~? (Ehi)) = EJ0. Using TCT, it

Supervisor
Shi
5,nh

Number of States
12

2047

Number of Transitions
27

6646

Table 6.3: The number of the states and transitions for the implementation of
low-level and high-level supervisors

was shown that E]0 has 2047 states and 6646 transitions. Table 6.3 shows
a comparison between the high-level supervisor which we have designed here
and a (low-level) implementation design \vhich could otherwise be obtained
with the approach given in [4].
The investigation of nonblocking properties has not been done in this case
study: the low-level models Gloj and G¡0¿ were synthesized to be nonblocking
in the first step. However, whether or not nonblocking is inherited from the

176

high-level to the low-level is an issue that has not been studied in this case

study. One could manually check nonblocking in the system by calculating

the supremal controllable languages E]0 x and E]0 2 and see if they are noncon-
flicting.

The case study presented here, has a natural hierarchy which would make it

Model
Cio,l
GI03.
GhiA

Ghi,2

Number of States
253
1187

Number of Transitions
706

3716

11

Table 6.4: The number of the states and transitions in low-level and high-level
models

a good example for a hierarchical solution resulting in clarity in the designed
supervisors. Table 6.4 provides some information on the size of the models in-
volved. It indicates a considerable reduction in the state sizes of the abstract

models. The state sizes of Gu has decreased to 2 from 253 and that of Gi^
has decreased to 4 from 1187. This suggests a considerable decrease in the

computational complexity of supervisor synthesis as it is polynomial in terms
of the number of the system states.

6.4 Conclusion and Extensions

A flexible manufacturing system which consists of two machines, two buffers
and one conveyor was studied in this chapter. It was shown how an HRSC
problem can be used to design a master controller for this system. It was
shown the low-level system is Jointly-SOCC and hence the high-level specifi-
cations could fully be recovered through the implementation of the low-level
robust supervisor. Significant clarity at the high-level modeling and master
controller design as well as a reduction of an order of three in computational

177

complexity of supervisor synthesis was gained, showing the advantages of us-
ing the HRSC framework.

The case study presented in this chapter can be extended further by including
more faults and restrictions in it. New faults in machines or buffers or restric-

tion on the number of the available buffers can add extra complexity to the
problem. Recipes as well as the number of the products can also change. When
the number of the buffers is less than the number of the products, then the
buffers should have a different model. The strategy that the system chooses
in dealing with the fault is another extension to this case study. Moreover, if
the software capability is available to take the unobservability of events into
account, then we would be able to solve the more realistic problem of HRSC
under Partial Observation. That will be an interesting improvement to this
case study and it would make it a good example for the applications of HRSC
under Partial Observation.

178

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, hierarchical robust supervisory control problem under partial ob-

servation (HRSCPO) was introduced and studied. Motivated by fault recovery
problems in discrete-event systems (DES) which recently have been addressed
in the literature and are computationally demanding, we introduced HRSCPO
setup to obtain a more transparent model and design, and to reduce supervi-
sor synthesis computational complexity. HRSCPO is a useful setup in cases
where the model of the system changes and different layers of control or au-
thority exist in the system. We refer to such layers of control or authority as
hierarchy in this thesis. Recognizing hierarchy in a system makes the control
design in the system more transparent and likely decreases the computational
complexity of supervisor synthesis. We arrived at our results by extending
the hierarchical control setup of [59] to the case of control under partial ob-
servation, introducing the HRSC framework, and finally extending the HRSC
framework to include partial observation.

We first extended the hierarchical control setup of [59] to the case of con-

179

trol under partial observation. The Factorization Property was derived as the
condition which ensured the existence of a map that translated low-level ob-
servations to high-level observations. To avoid unintentional disablement and

to ensure hierarchical consistency, we derived three sufficient conditions for the
system; the UUC and UUPO properties were introduced to ensure uninten-
tional disablement does not occur along unobservable silent paths. Further-
more, the PO-SOCC property was derived to prevent unintentional disable-

ment along observable silent paths. The PO-SOCC property can be regarded
as the natural extension of the SOCC property [59] since it reduces to SOCC
if full observation is assumed. We introduced a type of langauge observabil-
ity which is weaker than the standard observability property and we showed

that the supremum controllable sublanguage of the low-level specification EJ0
would be observable in this weaker sense if UUC, UUPO and PO-SOCC hold
in the system. Next, we developed a map for implementing the commands of
the high-level supervisor based on low-level and high-level observations, and
showed that assuming UUC, UUPO and PO-SOCC, hierarchical consistency
could be achieved. This ensures that the low-implementation of the high-level
commands matches the expectations of the high-level supervisor. In cases
when any of the Factorization Property, UUC, UUPO or PO-SOCC is not
satisfied, we developed an algorithm to modify the reporting map ? to ensure
the satisfaction of the above properties. In the next step, we considered a hi-
erarchical robust supervisory control (HRSC) framework. HRSC framework is
built based on HSC and RSC frameworks. We showed how hierarchical frame-

work can be employed to design a robust supervisor for a system in which the
nominal model is not precisely known but it is known to be among a finite
set of models Gk. It was shown that a hierarchical control structure can be

assigned to the system if either each model is individually OCC or the union

180

of the models is OCC (Joint-OCC property). To achieve robust hierarchical
consistency (i.e. to achieve hierarchical consistency regardless of which model
is active at the time), it was shown that the low-level models should satisfy a
Joint-SOCC property.

Next, we showed how our HRSC setup can be extended to the case of control

under partial observation. We showed a combination of our previous results
on partial observation and HRSC framework can ensure robust hierarchical
consistency under partial observation in the system. We showed, to achieve

robust hierarchical consistency, the system models should satisfy Joint-OCC,

Joint-OOC, Joint-UUC, Joint-UUPO and Joint-PO-SOCC properties. We

showed that Joint-OCC, Joint-OOC, Joint-UUC and Joint-UUPO properties

are equivalent to each model satisfying the properties individually but Joint-
PO-SOCC is not equivalent to individual PO-SOCC for all models.
We concluded the thesis with a case study. Through a supervisory control

design for a flexible manufacturing system (FMS), we showed how the HRSC
framework (in the full observation case) could be used to design recovery pro-
cedures. Specifically, we showed how using HRSC setup could add more clarity
to design and implementation while significantly reducing complexity of the
models involved.

7.2 Future Work

An important extension of our results would be to include the nonblocking
properties. Including nonblocking properties in HSC problem has previously

been studied in [52]. The important observer property which has been given
in [52] is a sufficient condition for ensuring nonblocking in a hierarchical su-
pervisory control problem. An automaton-based algorithm has been given in

181

[54] to modify the reporting map such that it becomes observer. However,
to include nonblocking properties in HRSC problem, we need to show how a
reporting map can be modified so that it is observer with respect to different

models. Thus an algorithm should be given that can satisfy the Factorization
Property, UUC, UUPO and PO-SOCC properties and furthermore, ensures
that the reporting map is observer with respect to all the models.
Extensions to timed systems can also be mentioned as another line of research
for the HRSC framework that we have presented in this thesis. Hierarchical

timed systems have previously been studied, in a more general framework, in
[53].
Other direction for future work includes the development of software for im-
plementing the algorithms of hierarchical control under partial observation,
and the study of modularity in hierarchical control under partial observation
for further reduction of computational complexity.

182

Bibliography

[1] Software XPTCT. http://www.control.utoronto.ca/DES/, 2009.

[2] F. Baccelli, B. Gaujal, and D. Simon. Analysis of preemptive periodic real-
time systems using the (max, plus) algebra with applications in robotics.
IEEE Transactions on Control Systems Technology, 10(3):368-380, May
2002.

[3] G. Birkhoff. Lattice theory. American Mathematical Society, 1992.

[4] S. Bourdon, M. Lawford, and W. Wonham. Robust nonblocking supervi-
sory control of discrete-event systems. IEEE Transactions on Automatic
Control, 50(12): 2015-2020, 2005.

[5] Y. Brave and M. Heymann. Control of discrete-event systems modeled as
hierarchical state machines. IEEE Transactions on Automatic Control,

38(12):1803-1819, 1993.

[6] P. Caines and Y.J. Wei. The hierarchical lattices of a finite machine.
Systems and Control Letters, 25(4):257~263, 1995.

[7] P. Caines and Y.J. Wei. Hierarchical hybrid control systems: a lattice the-
oretic formulation. IEEE Transactions on Automatic Control, 43(4):501-

508, 1998.

183

[8] P.E. Caines, V. Gupta, and G. Shen. The hierarchical control of ST-

finite state machines. Proceedings of the 36th Conference on Decision
and Control, pages 3584-3589, San Diego, California, USA, December
1997.

[9] CG. Cassandras and S. lafortune. Introduction to discrete event systems.
Springer, Second Edition, 2008.

[10] S. F. Chew and M. A. Lawley. Robust supervisory control for production
systems with multiple resource failures. IEEE Transactions on Automa-

tion Science and Engineering, 3(3):309-323, 2006.

[11] K. H. Cho and J. T. Lim. Stability and robustness of discrete-event dy-
namic systems. International Journal of Systems Science, 28(7):691-703,
1997.

[12] J. E. R Cury and B. H. Krogh. Robustness of supervisors for discrete-event
systems. IEEE Transactions on Automatic Control, 44(2):376-379, 1999.

[13] J. E. R. Cury and B. H. Krogh. Design of robust supervisors for discrete
event systems with infinite behaviors. Proceedings of the IEEE Conference
on Decision and Control, 2:2219-2224, Kobe, Japan, 1996.

[14] I. Elmahi, O. Gründer, and A. Elmoudni. A max plus algebra approach for
modelling and control a supply chain. Proceedings of 2003 IEEE Control
Conference on Applications, 2:1425- 1430, Istanbul, Turkey, June 2003.

[15] L. Feng and W. M. Wonham. Supervisory control architecture for discrete-
event systems. IEEE Transactions on Automatic Control, 53(6): 1449-
1461, 2008.

184

[16] B. Gaudin and H. Marchand. Supervisory control of product and hierar-
chical discrete event systems. European Journal of Control, 10(2), 2004.

[17] B. Gaudin and H. Marchand. Supervisory control of product and hier-
archical discrete-event systems. European Journal of Control, 10(2): 131-
145, 2004.

[18] P. Gohari. and W. M. Wonham. On the complexity of supervisory control
design in the RW framework. IEEE Transactions on Systems, Man and
Cybernetics, Special Issue on DES, 30(5):643-652, 2000.

[19] Y. Guan. Implementation of hierarchical observer theory. Master's the-
sis, Department of Electrical and Computer Engineeirng, University of
Toronto, 1997.

[20] W. Han and M. A. Jafari. Component and agent-based FMS modeling
and controller synthesis. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part C: Applications and Reviews, 33(2): 193-206, 2003.

[21] D. Harel. Statecharts: a visual formalism for complex systems. Science
of Computer Programming, 8:231-274, 1987.

[22] M. Heymann. Concurrency and discrete-event control. IEEE Control
System Magazine, 10:103-112, April 1990.

[23] R.C. Hill, D.M. Tilbury, and S. Lafortune. Modular supervisory con-
trol with equivalence-based conflict resolution. Proceedings of American
Control Conference, pages 491-498, Seattle, June 2008.

[24] L. E. Hollowway, B. H. Krogh, and A. Giua. A survey of Petri net methods
for controlled discrete-event systems. Discrete-Event Dynamic Systems:

Theory and Applications, 7(2): 151-190, April 1997.

185

[25] S. G. Kim, K. H. Cho, and J. T. Lim. Hierarchical supervisory control of
discrete event systems based on ?-observability. IEE Proceedings, Control
Theory and Applications, 150(2):179-182, March 2003.

[26] R. Kumar and M. Heymann. Masked prioritized synchronization for in-
teraction and control of discrete-event systems. IEEE Transactions on
Automatic Control, 45(11): 1970-1982, Nov. 2000.

[27] R.J. Leduc, M. Lawford, and W.M. Wonham. Hierarchical interface-
based supervisory control-part I: serial case. IEEE Transactions Auto-
matic Control, 50(9):1322-1335, Sept. 2005.

[28] R.J. Leduc, M. Lawford, and W.M. Wonham. Hierarchical interface-based

supervisory control-part II: parallel case. IEEE Transactions Automatic

Control, 50(9):1336-1348, Sept. 2005.

[29] R.J. Leduc, D. Pengcheng, and S. Raoguang. Synthesis method for hier-
archical interface-based supervisory control. IEEE Transactions on Au-
tomatic Control, 54(7):1548-1560, 2009.

[30] F. Lin. Robust and adaptive supervisory control of discrete event systems.
IEEE Transactions on Automatic Control, 38(12):1848-1852, 1993.

[31] C. Ma and W.M. Wonham. Nonblocking supervisory control of state
tree structures. IEEE Transactions on Automatic Control, 51(5):782-793,
2006.

[32] C. Ma and W.M. Wonham. Control of state tree structures. Proceedings
of the 11th Mediterranean Conference on Control and Automation, pages
T4-005,p. 6, Rhodes, Greece, June 2003.

186

[33] H. Marchand and B. Gaudin. Supervisory control problems of hierarchical
finite state machines. Proceedings of 41th IEEE Conference on Decision

and Control, pages 1199-1204, Las Vegas, Nevada, USA, December 2002.

[34] J. O. Moody and P.J. Antsaklis. Supervisory control of discrete-event
systems using Petri nets. Kluwer Academic publishers, Boston, 1998.

[35] C. Ozveren and A. Willsky. Output stabilizability of discrete-event dy-
namic systems. IEEE Transactions on Automatic Control, 36(8):925-935,
1991.

[36] C. Ozveren and A. Willsky. Stability and stabilizability of discrete event
dynamic systems. Iournal of the Association for Computing Machinery,

38(3):730-752, 1991.

[37] S.J. Park. Robust supervisory control of uncertain timed discrete event
systems based on activity models and eligible time bounds. IEICE Trans-
actions on Fundamentals of Electronics, Communications and Computer

Sciences, E88-A(3), March 2005.

[38] S.J. Park and J.T. Lim. Hierarchical supervisory control of discrete event
systems with model uncertainty. International Journal of Systems Sci-
ence, 32(6):739-744, 2001.

[39] S.J. Park and J. T. Lim. Robust and nonblocking supervisory control of
nondeterministic discrete event systems using trajectory models. IEEE
Transactions on Automatic Control, 47(4):655-658, 2002.

[40] S. Perk, T. Moor, and K. Schmidt. Controller synthesis for an i/o-based
hierarchical system architecture. Proceedings of the 9th International
Workshop on Discrete Event Systems, pages 474-479, Goteborg, Sweden,

May 2008.

187

[41] P.J. Ramadge and W. M. Wonham. Supervisory control of a class
of discrete-event systems. SIAM Journal of Control Optimization,,
25(1):206-230, 1987.

[42] A. Ramirez-Serrano, S. C. Zhu, and B. Benhabib. Moore automata for

the superviosry control of robotic manufacturing workcells. Autonomous
Robots, 9(l):59-69, 2000.

[43] K. Rudie and W. M. Wonham. Think globally, act locally: decen-
tralized supervisory control. IEEE Transactions on Automatic Control,
37(11):1692-1708, 1992.

[44] A. Saboori and S. Hashtrudi Zad. Fault recovery in discrete event systems.
Proc. Computational Intelligence: Methods and Applications, CIMA '05
(ICSC/IEEE), Istanbul, Turkey, Dec 2005.

[45] A. Saboori and S. Hashtrudi Zad. Robust nonblocking supervisory control
of discrete-event systems under partial observation. Systems and Control
Letters, 55(10):839-848, Oct 2006.

[46] K. Schmidt, T. Moor, and S. Perk. Nonblocking hierarchical control of
decentralized discrete event systems. IEEE Transactions on Automatic
Control, 53(10):2252-2265, 2008.

[47] J. T. Lim S.J. Park. Robust and nonblocking supervisor for discrete-event
systems with model uncertainty under partial observation. IEEE Trans-

actions on Automatic Control, 45(12):2393-2396, December 2000.

[48] S. Takai. Maximally permissive robust supervisors for a class of specifica-
tion languages. Proceedings of the IFAC Conference on System Structure
and Control, 2:429-434, 1998.

188

[49] J. P. Thomas, N. Nissanke, and K. D. Baker. A hierarchical petri net frame-
work for the representation and analysis of assembly. IEEE Transactions

on Robotics and Automation, 12(2):268-279, 1996.

[50] B. Wang. Top-down design for RW supervisory control. Master's the-
sis, Department of Electrical and Computer Engineeirng, University of

Toronto, 1995.

[51] K. C. Wong. On the complexity of projections of discrete-event systems.
In IEE Workshop on Discrete Event Systems, pages 201-208, 1998.

[52] K. C. Wong and W. M.Wonham. Hierarchical control of discrete-event
systems. Discrete Event Dynamic Systems: Theory and Applications,

6(3):241-273, 1996.

[53] K. C. Wong and W. M.Wonham. Hierarchical control of timed discrete-
event systems. Discrete Event Dynamic Systems.-Theory and Applications,

6(3):275-306, 1996.

[54] K. C. Wong and W. M.Wonham. On the computation of observers in
discrete-event systems. Discrete Event Dynamic Systems.-Theory and Ap-
plications, 14(1):55-107, 2004.

[55] K. C. Wong, W. M.Wonham, and W. Murray. Modular control and co-
ordination of discrete-event systems. Discrete Event Dynamic Systems,

8(3):247-297, 1998.

[56] W. M. Wonham. Lecture notes: Supervisory control of discrete-event sys-
tems. Department of Electrical and Computer Engineering, University of
Toronto, 2008.

189

[57] W. M. Wonham and P.J. Ramadge. On the supremal controllable sub-
language of a given language. SIAM J. Control Optim, 25(3):637-659,
1987.

[58] W.M. Wonham and P.J. Ramadge. Modular supervisory control of
discrete-event systems. Journal of Mathematics of Control, Signals, and
Systems, l(l):13-30, 1988.

[59] H. Zhong and W.M. Wonham. On the consistency of hierarchical supervi-
sion in discrete-event systems. IEEE Transactions on Automatic Control,
35(10):1125-1134, 1990.

190

