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ABSTRACT

Firms can be de-listed from public market due to different reasons. They could

go bankrupt which would be a negative outcome for their shareholders, they could

merge with or acquired by other firms, or they could go private, outcomes that are

usually pleasant for their stakeholders. What if a firm becomes an acquisition target

in the period right before going bankrupt? Is it still a positive event for sharehold-

ers or because of the firms distressed situation there will be no positive return for

them? We estimate the likelihood of firm failure and examine the premium offered

for distressed public firms in both contractions and normal economic periods. We use

Survival Analysis and Artificial Neural Networks, both using multi-period inputs, to

categorize firms into distressed and not-distressed groups. These models claim to be

more successful compared to the single-period static models widely used in the ex-

tant literature. Results of analyzing 1378 targets in different market conditions shows

that acquirers tend to overpay for distressed targets and even more in contraction

periods. on the other hand, we observe a huge discount when we calculate the mean

target premium in reference to targets’ highest price in the 52-week period before

the announcement . It seems that acquirers bid reference is not the current market

valuation, but the targets best position in the one year prior to announcement.
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CHAPTER 1

Introduction

1.1 Introduction

Firms can be de-listed from public market due to different reasons.They could

go bankrupt, which would be a negative outcome for their shareholders; they could

merge with or get acquired by other firms, or they could go private, outcomes that

are usually positive for stakeholders. But what if a firm becomes an acquisition tar-

get in the period right before it would otherwise go bankrupt? Is it still a positive

event for shareholders or because of the firms distressed situation, there will be little

positive gain for them? In this research, we analyze how being distressed, or more

specifically being close to filing for bankruptcy, affects targets’ gain from M&A activ-

ity. We compare distressed and normal (not distressed) targets’ premiums. In order

to accomplish this, we first estimate a failure prediction model to categorize targets

into distressed and non-distressed groups. Having these two target categories will are

able to analyze the difference between the two groups in terms of the premiums they

receive at acquisition. The study consists of two main parts; failure prediction which

helps us in categorizing targets, and an event study looking at the two categories in

order to compare their characteristics in terms of their gains at deal announcement.

What happens to near-to-failure targets’ when acquired is not extensively studied in

the mergers and acquisitions literature. Very few empirical studies have been done
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on the amount of target premium and what drives it. To the best of our knowledge,

Ang and Mauck (2011) is the nearest study to this subject. They study distressed

firms, not exactly those near to filing for bankruptcy but those experiencing financial

difficulties, asserting that ”Fire Sales”, a situation where firms have to sell their as-

sets at deep discounts, do not really exist when targets’ premium reference is its price

right before the announcement. Some other studies, although not directly looking

at the same question, seem to contradict the Ang and Mauck conclusion. Stud-

ies by Koutsomanoli-Filippaki and Mamatzakis (2009), Shleifer and Vishny (1992)

and Wang et al. (2009), show that firms with less liquidity and profits suffer more

in stock market crashes and cause lower premiums for the target shareholders, are

some examples of these researches.

Even though the Ang and Mauck (2011) paper analyzes financially distressed

targets’ premiums deeply, in both recessionary and normal economic periods, we

believe that their criteria for defining distressed firms can be improved by using more

well-studied models, which are supported by bankruptcy prediction studies. We may

deviate from their definition of ”distressed firms” by choosing more strict criteria to

isolate near-to-failure firms. More precisely, Ang & Mauck used (1) two [consecutive]

years of negative net income, (2) negative equity, (3) the Altman Z-score (Altman,

1968), and (4) the Ohlson O-score (Ohlson, 1980), and categorized more than 34%

of their sample as distressed. Using more sophisticated newer models, we introduce

another definition of distressed firm; we investigate M&A activity gains to targets

that are close to bankruptcy filing.
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We are specifically interested in the distressed firms’ premium when they are

targeted by acquirers and if these premiums are different in size with those of non-

distressed firms. We compare these premium differences in both contractionary and

normal economic periods.

To have a more reliable sample categorization, we use Survival Analysis and

Artificial Neural Networks, both using multi-period variables as their inputs, along

with a logit regression model (commonly used in the current literature) to catego-

rize firms as distressed or not-distressed. There are various studies claiming that

multi-period- input models are more powerful compared to single-period-input static

models.

A brief literature review follows the introduction section. This section covers

two strands of related literature; bankruptcy prediction and distressed target abnor-

mal returns around M&A activity announcements. Section 2 discusses both data

and methodology. Data description, manipulation and cleaning as well as a compre-

hensive presentation of different methodologies used in the study are covered in this

section. Results are presented in section 3, and section 4 concludes the study.

1.2 Literature Review

The main focus of the study is the difference between premiums paid to dis-

tressed vs. non-distressed targets. This can be related to two different branches of

the finance literature; mergers and acquisitions of distressed firms, and bankruptcy

prediction. This is because a very important and sophisticated part of the study
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would be isolating distressed targets. For this reason, alongside the M&A activ-

ity related literature, the bankruptcy prediction models’ literature review is also

included. As very few studies directly address fire sales of distressed targets, the

corresponding part in the literature review is shorter than the bankruptcy prediction

discussion.

1.2.1 Distressed Targets’ Mergers and Acquisitions

Targets, experiencing financial difficulties and/or operating at the time of finan-

cial crisis, face liquidity and solvency problems. These problems may reduce their

negotiating power in acquisition talks, which may end up in a reduction of share-

holders’ take out from the acquisition event. If these conditions exist, chances are

that targets get paid the ”Fire sale” price, a very deep discount to the firms’ true

value had they not been in their current difficult situation.

There are very few studies directly addressing the acquisition of distressed firms.

To the best of our knowledge, Ang and Mauck (2011), is the closest and most com-

prehensive one. Ang and Mauck (2011) report a higher premium for distressed firms

compared to non-distressed ones, and even higher premiums during a financial cri-

sis period, concluding that ”fire sale” discounts are not present for distressed firms.

They assert that their results are based on using the targets’ recent stock price as the

reference point as these prices are the true value of firms that are being transferred

to the acquirer. Ang and Mauck (2011) report contrary results using the 52-week

highest prices as the reference point. Their sample from SDC M&A data set contains
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5794 acquisitions from 1977 to 2010. They use four different methods to identify dis-

tressed targets: (1) two years of negative net income, (2) negative equity, (3) the

Altman Z-score (Altman, 1968), and (4) the Ohlson (Ohlson, 1980) O-score, and

categorize 34.72% of targets as distressed firms.

Another research, Khatami, Marchica, and Mura (2013), studies a large sample

of firms engaging in M&A events and finds that “financial constraints of target

companies significantly increase acquisition premiums and abnormal returns for both

parties”. They use three of the five criteria namely dividend payout ratio, size,

interest coverage ratio and KZ index (Kaplan-Zingales index, an index to measure

the extent of reliance on external financing) to rank firms and then used different

quintiles of firms for their study. This approach sounds to be more complete than the

one used in Ang and Mauk (2011). The result associated with the bidder performance

is not in line with previous study as Khatami et al. (2013) reports higher acquisition

premiums for the bidders probably because they would eventually be able to turn

the target around using less costly external financing available to them, while Ang

and Mauk (2011) reports a lower premium at announcement and a lower long-term

performance for bidders buying distressed firms compared to others.

Other studies are related to the topic in a non-direct way; studies looking at

distressed firms and how distress affects their efficiency, performance, and stock prices

together with those looking at partial asset fire sales are among them. Research by

Koutsomanoli-Filippaki and Mamatzakis (2009), Shleifer and Vishny (1992), and

Wang et al. (2009) show that less liquid firms and those with poorer performance
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indicators experience higher price falls in market contractions, are among the most

relevant studies.

1.2.2 Forecasting Bankruptcy

A general definition of business failure is the firm’s inability to pay its debt hold-

ers, preferred stockholders, or its suppliers. Firms may officially file for bankruptcy

or try to restructure their capital at the time that they are close to failure. Firm

failure is important to all its stakeholders including lenders, employees, clients, sup-

pliers, community, and of course its shareholders and management team. For this

reason it is very helpful to be able to predict a possible future failure in order to

make use of the situation. This can be the gain to the near-failure firm itself from

implementing corrective actions in order to lessen the distress costs, or possible profit

the potential acquirers can make by paying less for the currently-distressed target.

All these reasons suggest the importance and use of failure prediction models.

The literature on bankruptcy prediction models is very rich and researchers

properly paid a tremendous amount of energy in researching all kinds of prediction

models. From multiple discriminant analyses (MDA) with many restrictive statistical

assumptions to less limited logistic regression (logit) models to ”recursive partitioning

algorithms” like survival analyses and iterative learning models like neural networks,

many theoretical and empirical contributions can be found in the existing finance

and accounting literature.

6



One way to categorize the models is their input structure. Most of the primary

bankruptcy prediction models like logistic regression or MDA use single-period data

as their input. These static models are prone to criticisms suggesting that their

outputs are biased and inconsistent because they fail to take into account the nature

of the bankruptcy data; the fact that failure is happening during a longer than one

year period of time. On the other hand, there exist other models like survival analyses

and artificial neural networks that use multi-period variables as their inputs. There

are many studies that compare the two types of model and suggest that the latter

are more powerful than the former. Another way to categorize prediction models

is their restrictive assumptions about independent variables and their distributions.

Static prediction models, such as MDA, logit, and probit, all have different types

of degrees of restrictive statistical assumptions. On the contrary, iterative learning

models, trying to develop prediction algorithms using previous data on the subject,

usually do not have the same assumptions about the distribution characteristics of

the inputs. Neural networks and inductive learning systems are two examples of such

methods.

Beaver (1966) is the pioneer study in using accounting ratios to predict firms’

failure. He uses ratio analysis to predict firm failures. With a sample of 79 large

failed firms from Moody’s Industrial Manual, and their control pairs from the same

industry and asset size, he analyses the financial reports by firms one year prior to

their de-listing. Using 30 ratios and ex-post cut-off points he categorizes firms into

two groups and concludes that financial ratios are useful for predicting firm failure

status compared to random prediction. He introduces “working capital to debt” and
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”net income to total assets” ratios as the best discriminant factors. He continues

his studies on the subject in Beaver (1968a) where he uses the same data as Beaver

(1966) but this time paying attention to the differences in the predicting ability of

ratios and researching the causes of these differences. His second paper in 1968, still

using the same body of data from Moody’s, looks at market prices of firms as well as

financial ratios and ”the degree of association” between them in predicting failure.

Ratios measuring liquidity, profitability, and solvency are the most useful ones based

on these studies although the order of their importance is not clear as it changes

from study to study.

Altman’s study, Altman (1968), is the first to use a multivariate statistical model

in order to predict firm failure and the Altman Z-Score credit risk model, introduced

in this paper, is still one of the common models highly used by practitioners. Altman

criticizes the use of ratio analysis in predicting failure and instead uses a multiple

discriminant model. He argues that as these types of models incorporate several

variables at the same time, they would lead us to more accurate failure predictions

compared to ratio analyses models. His sample consists of 66 corporations, all man-

ufacturers and mostly large ones, 33 of them bankrupt. As his biggest criticism of

the previous studies is focused on analyzing only one variable at a time he decides

to select important ratios, to assign weights to each of them and to estimate with an

index (z-score, he calls it) which contains all the important variables for predicting

failure, instead of looking at one variable at a time. Altman uses multiple discrim-

inant analysis (MDA), which has been used in biological and behavioural sciences

before his study. After all, Altman’s Z-score failed to predict bankruptcy when using
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data other than one year prior to the event. Beaver (1966) on the other hand, while

using one variable at a time, could predict failure up to 5 years before the actual

failure event.

Another study, Deakin (1972), adds Beaver’s best ratios to Altman’s model. The

new model worked better in sample but it was not acceptable because of its poor out

of sample results. In another attempt, Diamond, in his PhD thesis in 1976 tried to

improve the Deakin/Altman model using more sophisticated models such as stepwise

discriminant analysis, principal component analysis, and optimal discriminant plane

techniques with no apparent success. In 1977, Altman, Haldeman and Narayanan

updated the sample originally used in Altman (1968) and added some refinements to

the existing model in order to improve the model’s classification accuracy. Altman,

Haldeman and Narayanan (1977) introduced an enhanced model, called ZETA, the

second generation of Z-score in which they “incorporated refinements in the utiliza-

tion of discriminant statistical techniques”.(Altman 1977, P.1)

Studies by White and Turnbull (1975a,b) and Santomero and Vinso (1977) were

the first to introduce the probability of failure. Ohlson (1980) is another related study

using conditional logit model and incorporates Maximum Likelihood Estimation to

avoid problems associated with MDAmodels used by Altman among others. Ohlson’s

sample consists of 105 bankrupt and 2058 non-bankrupt firms. Ohlson reports four

significant variables to predict firm failure one year ahead with size as the most

important one. Ohlson is the first researcher to use an unbiased sample in his studies.

His results are important and suggest that all previous studies may have overstated
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their prediction powers by using samples with half the firms being bankrupt (Morris

1997).

All mentioned studies use accounting data, which some researchers criticize as

not being the most helpful data because of the existence of different accounting

standards and the problems associated with the time gap between the availability of

data and actual event time.

Queen and Roll (1987) try to predict firm mortality using size, price, return,

volatility, and beta. They focus on market information, mainly to avoid the problems

mentioned above about accounting variables. Theodossiou (1993) uses multivariate

cumulative sum (CUSUM), a sequential dynamic model, to predict financially dis-

tressed firms by trying to identify the time when a firm goes from healthy to troubled

position. Other studies like Healy (1988) and Shumway (1988) also used such models

to predict failure.

Other authors, such as Pagano, Panetta, and Zingales (1998) and Denis, Denis,

and Sarin (1997), estimate multiple-period logit models that can be interpreted as

hazard models.

Schumway (2001) uses hazard models arguing that these models are “more ap-

propriate than single period models for forecasting bankruptcy”(Schumway 2001,

P.1). He claims that static models look basically at a single point in time and miss

the information about firms as they change period by period and therefore the mod-

els’ results are biased and inconsistent. To overcome these problems he proposes a

multi-period hazard model, which is “simple, consistent, and accurate”(Schumway

2001, P.1). The reasoning here is that changes are happening in multiple periods
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and looking at a series of data points instead of just a single one helps to model the

bankruptcy prediction easier and more reliable. Schumway’s model outperformed

static models in his out-of-sample forecasts.

Another class of models that is being used more frequently in the recent years

is artificial intelligence algorithms or Neural Networks. These models were first used

in bankruptcy prediction papers in 1990 with a work by Odom and Sharda (1990).

They used Altman’s factors as their neural network model’s input and reported more

accurate results compared to the ones from the MDA model that Altman estimated

on a data set consisting of 128 firms. Altman, in Alyman (1994) uses Neural Networks

on Italian data and cautiously reports a “balanced degree of accuracy” between linear

discriminant models and Neural Networks. Both models were successful in predicting

90% of cases in the studied database. A number of other studies compared the NN

with MDA, most of them concluding the better performance of NN (Coats and Fant

(1993) , Kerling and Poddig (1994), Boritz and Kennedy (1995), Leshno and Spector

(1996) among many others). Empirical studies such as Odom and Sharda (1990),

Tam and Kiang (1992), and Messier and Hansen (1988) provide results showing the

out-performance of such models comparing to statistical ones. Zhang, Hu, Patuwo,

and Indro (1999), also compared Artificial Neural Networks with logistic regression

and reported a “significantly better estimate of the classification rate for the unknown

population as well as for the unseen part of the population” of neural networks. Lee

and Choi (2013), compared neural networks with MDA model and asserted that

“neural network model better capture the nonlinear pattern between independent

variables and bankruptcy than MDA.”

11



CHAPTER 2

Data and Methods

2.1 Data

We aim to conduct a comparison between distressed and non-distressed targets’

average gain in the process of being merged with or acquired by another firm. The

study needs two different event data sets, a data set containing bankrupt firms with

their filing dates and a data set covering merger and acquisition events. We also

need firm specific and market information for the period we are looking at, namely

1980 to 2013. Each of these data sets and their manipulating and cleaning processes

are presented in this section.

2.1.1 Bankruptcy Data

A sample of bankrupt firms and their corresponding data such as bankruptcy

filing date, performance, annual reports, and market information is needed to esti-

mate failure prediction models. We tried to gather as many failed firms as possible

in order to increase the prediction power of our categorization models. Our sam-

ple of failed firms consists of all the reported bankruptcies with the information we

needed from SDC bankruptcy data set, the CRSP (The Centre for Research in Secu-

rity Prices) monthly database, and UCLA-LoPucki Bankruptcy Research Database.
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After removing firms with no usable identifier or filing date and deleting duplicate

observations, the final sample of failed firms consists of 1384 bankruptcies filed during

1980 and 2013. Firm specific fundamental data is from Standard & Poor’s COMPU-

STAT yearly database and market information are from the CRSP daily monthly

database as well as National Bureau of Economic research. After removing firms

with no usable data in any of these data sources the final sample came to 813 failed

firms with a complete set of data needed to run analyses. The logic behind the

choice of inputs will be presented in upcoming sections. Figure 2–1 shows number

of bankruptcies in each of these databases as well as number of covered firms in the

CRSP data set in each year. Table 2–1 follows with the same information and extra

statistics. The main restriction was the lack of an adequate number of data points

for each firm prior to their bankruptcy filing. For example, for Survival Analysis and

Artificial Neural Network models, the need for at least of 3 years of data for each

firm reduced the sample size substantially.
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Figure 2–1: Number Of Bankruptcies;

The graph shows the Number of Bankruptcies reported in each of the data sets used, namely UCLA

and SDC combined, and CRSP. Number of firms covered by CRSP data set is also included in order

to facilitate the comparison.

To estimate the prediction models, we need a match for each failed firm. The

matching process is based on firms’ industry, size in terms of total assets, age, and

data year. To find matching firms, bankrupt firms were removed from the COMPUS-

TAT and the CRSP databases and matched firms were selected from remaining firms

that had the minimum number of data points needed for analyses. As for industry,

the 3-digit Standard Industrial Classification (SIC) code is used to find peer firms,

in the case of not having a suitable match based on other criteria, the 2-digit SIC

code is used. In terms of data year, if more than one match is found for a bankrupt
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firm, the one with available data closer to the failed firm bankruptcy filing date is

selected. After removing financial and utility firms, and firms with no match at all

(this happened for 5 firms), the final complete sample consists of 1626 firms, 813 of

them having filed for bankruptcy, and each having at least 3 years of yearly data

points.
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Table 2–1: Number Of Bankruptcies;

This table illustrates the number of failed firms, those filed for bankruptcy, in the period between

1980 to 2013 in United States of America. Failed firms from both the CRSP and the SDC/UCLA

data sets are presented. Number of covered firms by the CRSP in any year, and percentage of failed

firms in the CRSP covered firms are presented, too. Column ”All” reports the final count of failed

firms from all data sets after removing duplicates. The last column shows the count of the final

sample with all the firms having all the variables needed to estimate the models.

Year

No.of
Firms

Covered
(CRSP)

CRSP
Delisted

% Of
Bankruptcy
(CRSP)

SDC/UCLA All
Final

With All
Data

1980 5549 5 0.09% 1 6
1981 5895 11 0.19% 5 16
1982 6119 16 0.26% 7 23 1
1983 6782 19 0.28% 4 23 9
1984 7012 12 0.17% 8 20 11
1985 7144 13 0.18% 13 26 15
1986 7617 19 0.25% 13 32 17
1987 7881 16 0.20% 6 22 8
1988 7898 28 0.35% 9 37 18
1989 7608 14 0.18% 18 32 15
1990 7406 42 0.57% 26 68 24
1991 7466 78 1.04% 34 112 41
1992 7766 80 1.03% 29 109 30
1993 8325 48 0.58% 26 74 24
1994 8852 32 0.36% 15 47 15
1995 9243 30 0.32% 19 49 17
1996 9832 8 0.08% 22 30 18
1997 10073 14 0.14% 24 38 26
1998 9920 29 0.29% 32 61 25
1999 9611 25 0.26% 43 68 40
2000 9314 42 0.45% 71 113 62
2001 8622 52 0.60% 102 154 85
2002 7942 52 0.65% 64 116 61
2003 7500 30 0.40% 60 90 50
2004 7364 17 0.23% 29 46 23
2005 7382 12 0.16% 21 33 17
2006 7473 2 0.03% 17 19 11
2007 7705 4 0.05% 12 16 10
2008 7407 18 0.24% 27 45 23
2009 7175 49 0.68% 50 99 56
2010 7126 21 0.29% 8 29 10
2011 7143 14 0.20% 17 31 20
2012 7136 15 0.21% 26 41 23
2013 7142 8 0.11% 4 12 8

Total 875 862 1626 813
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2.1.2 Mergers and Acquisitions Data

The M&A sample is from SDC U.S. Mergers and Acquisitions database. SDC

is by far one of the most widely used M&A database. The same limitations as

those found in creating the bankruptcy data set are present for the M&A data set.

Firms should have at least 3 years of data for all of the independent variables used

in the prediction models as well as all control variables we need to analyze the

target abnormal return around the event announcement. Of the primary SDC M&A

dataset, after merging with COMPUSTAT and CRSP data sets and removing firms

with insufficient data points, a sample of 1378 firms is finalized to be used in analyses.

2.2 Variable Selection

Independent variables, which one and how many to use, can be selected based

on different criteria. In terms of number of observations for each firm-variable, many

-mostly older- studies used one single data point, mostly one year prior to the event,

while others use several data points for each firms-variable, having in mind that the

failure is a result of a process happening in the firm from years prior to the actual

event. The degree of prediction model power associated with these two different

choices is a controversial question we examine in the first part of this study.

As for which explanatory variables to use in the first place, the main criterion

for selecting them is their popularity, which is the frequent appearance in the related

literature. The idea is that these frequently used variables are proved to be effective in
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the prediction process. As a large number of variables, both from firms’ fundamentals

to market and economy data, were introduced in related literature, a systematic and

intuitive way would be to try to cover all aspects of firms’ characteristics in selecting

variables.

Courtis (1978) categorizes 79 financial ratios in three main groups: (a) profitabil-

ity ratios; (b) managerial performance ratios and (c) solvency ratios. Market, indus-

try and macroeconomic variables are added in years to come by other researchers.

For example Foster (1986) and Rose et al. (1982) use macroeconomic variables in

their prediction models. This study uses variables, mostly ratios, to capture prof-

itability, performance, and solvency as well as market condition and firm specific

risk. Table 2–2 presents the final explanatory variables as inputs for failure predic-

tion models and these variables’ sources. The following Table, 2–3 summarizes the

simple statistics calculated for each independent variable.

Table 2–2: Independent variables, Their Descriptions and Sources;
Table summarizes Independent variables used to model bankruptcy prediction, their description
and their corresponding dataset.

Description Source

Size Log of Firm’s Market Value COMPUSTAT
QATL Quick Assets Divided by Total Liabilities COMPUSTAT
STA Sales Divided by Total Assets COMP \CRSP
TDTA Total Debt Divided by Total Assets COMPUSTAT
NISHE Net Income Divided by Shareholders Equity COMPUSTAT
Contraction Dummy variable equal 1 if date is reported as Contraction NBER
R2 The R-Squared from the regression (firm return over Market’s) CRSP
Age Number of Years Appearing In COMPUSTAT database COMPUSTAT
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Table 2–3 is divided into three sections, summarizing all, bankrupt, and non-

bankrupt firms in order to make it easier to compare values between the two main

categories.

Table 2–3: Statistics
Table summarizes independent variables by illustrating their Mean, Standard Deviation, Minimum,
and Maximum. These statistics are reported for both all firm-year data in the database and last-
year data. This is because logit models uses just one year of observations for each firm while other
models use multiple-year observations. Table also compares statistics for All, Failed and Not-Failed
groups. The number of observations are: All: 6683, Bankrupt:3527, non-bankrupt:3126 for all-years
and 1626, 826, 806 respectively for last-year columns.

All Last Year

Variable Mean Std. Dev. Min Max Mean Std. Dev. Min Max

A
ll

size 4.17 1.90 -4.45 12.15 3.78 2.03 -4.45 11.58
QATL 0.80 2.45 0.00 130.68 0.62 1.40 0.00 30.74
STA 1.27 0.98 0.00 17.40 1.33 1.07 0.00 9.46
TDTA 0.35 0.35 0.00 7.49 0.43 0.50 0.00 7.49
NISHE -0.13 18.85 -699.39 944.37 -0.48 9.90 -211.54 73.96
Contraction 0.11 0.32 0.00 1.00 0.11 0.31 0.00 1.00
R2 0.06 0.10 0.00 0.93 0.06 0.11 0.00 0.75
Age 13.33 6.49 3.00 34.00

B
a
n
k
ru
p
t

size 4.07 1.72 -4.45 10.43 3.51 1.76 -4.45 9.72
QATL 0.65 2.92 0.00 130.68 0.38 0.90 0.00 18.32
STA 1.26 1.04 0.00 17.40 1.34 1.13 0.00 9.46
TDTA 0.42 0.37 0.00 7.49 0.53 0.56 0.00 7.49
NISHE -0.26 25.84 -699.39 944.37 -0.88 13.47 -211.54 73.96
Contraction 0.11 0.32 0.00 1.00 0.14 0.35 0.00 1.00
R2 0.05 0.08 0.00 0.61 0.04 0.07 0.00 0.58
Age 13.44 6.81 3.00 34.00

N
ot
-B

an
k
ru
p
t

size 4.26 2.06 -4.38 12.15 4.04 2.23 -4.33 11.58
QATL 0.96 1.85 0.00 59.55 0.87 1.73 0.00 30.74
STA 1.28 0.91 0.00 8.18 1.33 1.02 0.00 8.18
TDTA 0.27 0.30 0.00 4.23 0.33 0.42 0.00 4.23
NISHE 0.01 6.57 -134.47 225.22 -0.07 3.77 -44.69 50.09
Contraction 0.11 0.32 0.00 1.00 0.07 0.26 0.00 1.00
R2 0.07 0.12 0.00 0.93 0.08 0.14 0.00 0.75
Age 13.21 6.15 5 34
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2.3 Methodology

We use survival analysis, logit regression, and Artificial Neural Networks to

predict bankruptcy in order to categorize the M&A activity targets into distressed

versus non-distressed firms. The ultimate idea is to compare the target shareholder

premiums for these two groups. The premium is calculated in terms of target stock

price jump around the event announcement. A more comprehensive discussion on

premium calculations is presented in the following sections. Methodologies used to

construct a failure prediction model, are presented here in more detail.

2.3.1 Survival Analysis

Survival Analysis is a data analytic approach, which addresses problems that

either “time until an event” or “hazard rate at each point in time” is output variable

of interest. The approach has been existed for a long time and was used in warfare

reliability estimation in the onset of the World War II. In the post-war period,

the model found its way to private industry clients like financial and health care

enterprises. The original ”event” to study was death and hence the name ”survival

analysis”. The analysis has many applications now such as predicting time to death,

stock market crash, bankruptcy, or machinery failure among others.

In survival analysis jargon, time refers to survival time because it is the duration

that the subject of the study has survived before the event happened. In bankruptcy

prediction literature, time represents the period that firm has survived until the
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bankruptcy event happened. What is very important to note is that survival analysis

must consider the ”not happening” of the event, too. This is called “censoring” and it

refers to a situation that “survival time” is not known exactly because subject either

does not experience the event, or exits the sample because of a reason other than the

event itself. Firms that do not file for bankruptcy in the sample period or those which

are dropped from the sample because of other reasons such as mergers are among

censored data points in the sample. Taking censored observations into account and

incorporating their information into the analyses is one of the advantages of survival

analyses over ordinary regression models. Thanks to having a two-part dependent

variable compared to a normal one-part variable that is used in regression analyses,

the survival model has the ability to include censored observations in the analysis.

The dependent variable contains information about both the event status, which

means if it has happened or not, and the time to the happened event. Having this

kind of dependent variable, one can then estimate two functions that are dependent

on time, namely the survival and hazard functions. The survival and hazard functions

are key concepts in survival analysis for describing the distribution of event times.

The survival function gives, for every given time, the probability of surviving (or not

experiencing the event) up to that time. The hazard function gives the potential

that the event will occur, per time unit, given that the study subject, firms in our

case, has survived up to the specified time.

Figure 2–2 shows the survival analysis input structure. The first firm, Firm

ID = 1, has filed for bankruptcy in year 4, this event is shown as Failed = 1 in

the last column. This firm has 4 years of data corresponding to 4 years before its
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filing. As no bankruptcies were filed during the first 3 years, the Failed Censored

variable equals ”0” for these years, and as firm has survived during all these years

the survival time goes from 1 to 4 which shows the period that firm has survived

until the bankruptcy occurred. The third firm, Firm ID = 3, has 4 years of data,

too. As opposed to the first firm, this firm has never filed for bankruptcy. We show

this not-presence of the event by putting zeros for all firm-year observations. This

firm is an example of a censored firm. This firm has never experienced the event we

are studying (bankruptcy) in our sample.

Figure 2–2: Survival Data Sample

Our goal from using survival analysis is to estimate and interpret the hazard

function from our data, compare hazard probabilities and assess the relationship

between independent explanatory variables and survival times. To accomplish these,

we need the mathematical model of survival analyses. The model we use here is one

of the most popular ones, the Cox proportional hazard (PH) model.
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2.3.2 Survival Analysis - The Model

Survival analysis model relates the time before an event occurs to one or more

independent variables that the researcher believes may be associated with that quan-

tity of time. In a proportional hazards model, the unique effect of a unit increase in

an independent variable is multiplicative with respect to the hazard rate.

Before calculating hazard rate we need to introduce some basic survival model

background; Assume a random variable, ’time’, records our study survival time.

The probability density function PDF, or f(t), describes the likelihood of observing

our random variable at time t among all other survival times. The probability of

observing a survival time comes from incorporating this density function over a range

of survival times.

The cumulative distribution function (cdf), or F (t), is the probability of observ-

ing the random variable ’time’ less than or equal to some time t. We can show this

probability mathematically as P (T imet) and calculate it by adding up all probabil-

ities up to time t:

F (t) =
∫ t

0
f(u)du (2.1)

What is interesting to us is to have a simple transformation of this function,

which we calculate Survival Function. It describes surviving not before but after our

time, t. Mathematically it is calculated by subtracting our F (t) function from one:

S(t) = 1− F (t) (2.2)

23



Coming back to hazard rate, which basically calculates the relative probability

of the event occurring at time t, conditional on the study subject’s survival up to

that time. Hazard rate is calculated from following equation.

h(t) =
f(t)

S(t)
(2.3)

In this way, the hazard rate basically expresses the instantaneous rate of failure

at any specific time t and ignores the accumulation of hazard up to that time. The

cumulative hazard function, sums hazards over the period of time. The formula to

calculate it is shown below:

H(t) =
∫ t

0
h(u)du (2.4)

The Cox proportional hazard (PH) model, is the most popular hazard model.

Its advantage is that the baseline hazard, h0(t), is an unspecified function. This is

why the model is a semi-parametric and is the best choice when no known parametric

model is proved to be useful for the study. The positive point of this Cox PH model

is that it is a robust model, so that the results from using the Cox model will closely

approximate the results for the correct parametric model.

The model has two forms, one, which incorporates just time-independent vari-

ables, and the extended one, which allows the use of time-dependent variables. We

use the extended Cox PH model as our data nature consists of time-dependent ex-

planatory variables. The general model of the extended Cox PH model is presented

here:
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h(t,X(t)) = h0(t)exp[
p1
∑

i=1

βiXi +
p2
∑

i=1

σjXj(t)] (2.5)

X(t) = {( X1, X2, ..., Xp1
︸ ︷︷ ︸

Time-Independent

, X1(t), X2(t), ..., Xp2(t)
︸ ︷︷ ︸

Time-Dependent

)} (2.6)

The model shows the hazard rate at time, t, for a firm with specification repre-

sented by time-dependent variables denoted by X. In this way, independent explana-

tory variables in X are being modeled to predict firm’s hazard rate at each point in

time. The extended Cox PH models consists of two parts, baseline hazard function

h0(t) and an exponential function which contains both time-independent, Xi and

time-dependent variables, Xj(t).

The regression coefficients in the extended Cox PH model are estimated us-

ing Maximum Likelihood procedure. The regressions were run in STATA survival

analysis package.

The hazard ratio for extended Cox PH model is calculated from following for-

mula:

ĥ(t,X∗(t))

ĥ(t,X(t))
= exp[

p1
∑

i=1

β̂i[X
∗

i −Xi] +
p2
∑

j=1

δ̂j[X
∗

j (t)−Xj(t)]] (2.7)

The formula shows the ratio of hazards at a particular time, t. Two differ-

ent variables denoted by X∗(t) and Xi are time-dependent and time-independent

explanatory variables, respectively. It is evident here that the hazard ratio is not

constant and it is a function of time, and particularly it is positively related to time

if δj is positive.
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2.3.3 Neural Networks

Dr. Robert Hecht-Nielsen, the inventor of one of the first neuro-computers,

defines an Artificial Neural Network as: ”...a computing system made up of a number

of simple, highly interconnected processing elements, which process information by

their dynamic state response to external inputs.” (”Neural Network Primer: Part I”

by Maureen Caudill, AI Expert, Feb. 1989)

ANNs have many applications in business. They can be used for approximation,

optimization, prediction, and classification. Some tangible neural network applica-

tions are analyzing signals to detect explosives, mostly in airline security systems,

helping to recognize the shape and evolution of interest rate curves in order to im-

prove asset allocation process, and predicting stock price index. (li, 1994)

ANNs are algorithms trying to model the human cerebral cortex on a much

smaller scale. They comprise of several layers, each containing a number of inter-

connected nodes (artificial neurons) with an activation function. Nodes are inspired

from natural human neurons, which receive signals through their synapses located

on the dendrites. If the received signal is strong enough to surpass the neuron’s

threshold, the neuron is activated, and sends a signal through its axon. The natural

neuron scheme is shown in 2–3.
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Figure 2–3: Natural Neuron Scheme

Source: Introduction to Neural Network AGH University of Science and Technology,

http://home.agh.edu.pl/ vlsi/AI/intro/

In ANNs, an input layer transfers the input data multiplied by weights to one

or several hidden layers in which a mathematical function decides the activation of

each node. The output, which is computed by nodes function and is based on the

inputs and their corresponding weights, then appears in the output layer. In this

way, by adjusting the input weights we can get the output we want for the specific

inputs that we feed to the network. The process of adjusting weights for all the nodes

in each model (this could be hundreds of thousands of nodes) to get the desirable

result, is called training process. A schematic of the introduced structure is graphed

in 2–5.
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Figure 2–4: Artificial NeuronSource:Diagram of an artificial neuron, Wikipedia.org

We use a ANN simulator to model our bankruptcy prediction tool. The Neural

Network simulator first divides the input data into three categories: Training, Val-

idation, and Test subsets. The first step is calculating the gradient, changes that

need to be done to nodes’ weights and biases using training subset. Next in the

training process, the error on the validation set is observed. Training and validation

sets errors usually decrease during the initial phase of the training. The only time

when validationset error rises is the time that model starts to over-fit the data. The

network weights and biases are saved at the minimum of the validation set error.

The test is only used to compare different artificial neural network models but is not

used in the modelling process, itself.
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Figure 2–5: Neural Network Scheme

Source:Neural Networks in Trading, MechanicalForex.com

2.3.4 Event Study

Event study is a method to evaluate the effects of a specific event such as merger

and acquisition, dividend change, and proxy contest on the value of the firm as well

as being a test for market efficiency. Because of this two-sided issue, it is usually said

that an event study is always a joint test. Basically by doing event study, one can

study the market reaction to a specific event. Two types of event studies are usually

done in finance: short-horizon and long-horizon studies, which refer to study window

the researcher choose to analyze. There is no fixed window definition for short and

long-run studies, for example Kothari and Warner (2006) defined the windows of

less than a year as a short-run while others like Mackinlay (1997) suggested a very

smaller periods such as 20-day period for their short-run studies.
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The following assumptions have to be made in order to use the event study

methodology: that financial markets are at least semi-strong efficient, that there is

an available asset pricing model to measure the returns adjusted for everything but

the event itself, that the stock returns are normally distributed, that in the period

of study no other information other than event exist, and that there is no risk shift

as a result of the event.

Short-Run Event Study

In the short run event study the idea is basically to calculate the predicted

return predicted by an asset pricing model and comparing it with the actual return

at the time of the event. The abnormal return calculated from subtracting these two

returns would be the effect of the event on the firm value. In this sense, it is obvious

that the event study test is a joint test meaning that it assumes that the asset pricing

model is appropriate for estimating the returns and as no one can be confident of

the measurement model, the study is always testing both asset pricing model and

market efficiency together. There are two different methods for conducting an event

study: Classic Two-Stage and Dummy variable methods. The general procedure of

a two-stage event study is used in this study.

The pre-study step would be selecting the event and finding appropriate dates

corresponding to the selected event. For this study, the event is acquisition of other

firms and the announcement date is used to study the event. The next step is defining

the event window. After defining the inputs and windows, the first step of the event

study is to estimate the normal return using a simple market model.
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rit = αi + βirmt + εit (2.8)

The abnormal returns are then can be calculated by comparing the estimated

normal firm return using αi and βi with the actual observed returns.

CAR = Σ(Actual(rit)− E(rit)) (2.9)

We use 250 days ending at 45 days prior to the event as estimating windows.

Eventus package is used to run all the event studies.
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CHAPTER 3

Results

In order to analyze the differences between announcement gains of distressed

and non-distressed targets, we need a model to categorize targets into these two

groups. We compare three different bankruptcy prediction models and use the most

reliable one to categorize targets. These models are Survival Analyses, Logit, and

Artificial Neural Networks.

It is well documented in the literature that Survival Analysis, as it takes the

year-by-year changes in different variables into account, can predict bankruptcy bet-

ter than other models (Shumway, 2001). More recent studies assert that Neural

Networks are highly powerful, too. As, to the best of our knowledge, there was no

comparison of ANN and Survival Analysis models in the literature, we decided to

compare their prediction power by using same set of data as their input. Logitistic

regression model is also included in the comparison, because it is one of the easi-

est, most straightforward, and powerful methods of categorization, which is used by

many researchers in the related papers. Using the biggest sample possible covering

bankruptcies reported in SDC database as well as CRSP from 1980 to 2013, we run

all three models, namely survival analysis, logistic regression analysis, and artificial

neural networks to predict bankruptcy as a final consequence of firm being distressed

for a long time.
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This study is different from that of Ang and Mauck (2011) in a particular way.

We look at nearly bankrupt firms as opposed to distressed firms, which are proxied

by having reported two years of consecutive negative net income.

In the following sections we investigate the in-sample power of each model and

we use the most powerful one to categorize our M&A targets during the period

between 1980 and 2013. A sample of 1626 firms with all needed data available is

used in this step. Following the categorization, a thorough study on both target

and bidders’ stock market reaction to announcement as well as target’s premium is

presented.

3.1 Survival Analysis

A survival analysis was conducted in order to predict hazard rates in the upcom-

ing year for each target. The analysis is done using 1626 firms and 6683 firm-year

observations. Half of the analyzed firms have filed for bankruptcy during the time

period between 1980 and 2013, and the rest are their matches based on industry, age,

size measured by the log of total assets, and data year. The entire analyzed firms in

the sample have all the independent variables reported in the corresponding years.

We used eight explanatory variables to create the hazard model. Most of these

variables are selected from previous studies showing their significant effect on distress

prediction; others were included as possible effective not-previously-used variables.

Independent variables, their descriptions, and their calculation formula and

source is presented in Table 2–2.
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Table 3–1: Independent variables, Description, Source

Description Source

Size Log of Firm’s Market Value COMPUSTAT
QATL Quick Assets Divided by Total Liabilities COMPUSTAT
STA Sales Divided by Total Assets COMPUSTAT \CRSP
TDTA Total Debt Divided by Total Assets COMPUSTAT
NISHE Net Income Divided by Shareholders Equity COMPUSTAT
Contraction Dummy variable equal 1 if date is reported as Contraction in NBER NBER
R2 The R-Squared from the regression (firm return over Market’s) CRSP
Age Number of Years Appearing In COMPUSTAT database COMPUSTAT

The correlation matrix of the independent variables is shown in Figure 3–2.

The highest correlation factor is 0.55 between R2 and Size. Overall, the correlations

are in the acceptable range and they seem not to impose a significant co-linearity

problem according to Farrar and Glauber (1967).

Table 3–2: Independent variables’ Correlation Matrix;
Table shows the correlation coefficient among independent variables, high correlation may cause
problems in regression estimates.

Size QATL STA TDTA NISHE Contraction R2 Age

Size 1
QATL -0.0186 1
STA -0.2079 -0.0905 1
TDTA -0.0913 -0.2056 -0.0559 1
NISHE 0.016 -0.0013 -0.0228 0.0259 1
Contraction 0.0401 0.0039 -0.02 0.0421 0.0276 1
R2 0.5528 -0.0135 -0.1315 -0.0707 0.0058 0.1603 1
Age 0.1779 -0.0475 0.0597 -0.0234 -0.0051 0.0795 0.2385 1

The survival analysis results are reported in Table 3–3. Two different models

were run; one with exact explanatory variables’ values and one incorporating their

winzorised values at 0.5 percent level. The first column represents the regression
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results using the exact values while the results using winzorised values are reported

in the second column.

Size coefficient is not statistically significant but the sign is in line with previ-

ous studies showing that smaller firms tend to be more prone to bankruptcy. Quick

assets to total liability, the second independent variable, is negative and statistically

significant in one percent level. Firms with less liquidity and at the hand assets,

as a ratio to total liability, are closer to experience a failure in the times of hard-

ship as their safety cushion to cover their short-term liabilities is smaller. A similar

relation is observable for the Sales to Total Assets variable. Higher Total Debt to

Total Assets is positively related to bankruptcy probability in the following year,

and is significant at the 5 percent level. The more debt the firm uses in its capital

structure the higher the bankruptcy risk. This theory is covered in corporate finance

literature as the “bankruptcy cost of debt”, the main reason that firms have a limit

to use debt financing although the method has significant advantages. Net income

to Shareholder’s equity coefficient is positive and significant in the first column but

negative and insignificant in winsorized analysis. The negative result is more in-

clined to previous studies as, intuitively, firms with the ability to generate higher

net incomes tend to be more able to prevent distress. Contraction has a significant

positive relation with bankruptcy and firm’s risk measure, defined by the r-squared

from regressing firm’s daily return over market return in the previous year, and age

are negatively related to the probability of default in the coming year. The r-squared
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shows the degree to which market return can describe firm’s return so the higher r-

squared means less firm specific risk. A negative coefficient suggests that less risky

firms have lower probability of failure.

We used STATA statistical package to perform the survival analysis on bankruptcy

data. Helpful graphs from the software are presented here in order to better sum-

marize the results as well as to help recognize the power of the prediction. Figure

3–1 shows the hazard function and the hazard change as time passes. As it can be

observed from the graph, hazard rate increases as the time of bankruptcy, here year

5, approaches.

Figure 3–1: Hazard Rate Change As time Passes

Figure 3–2 illustrates the mean hazard rate in different years for both bankrupt

and not-bankrupt firms, the hazard rate for bankrupt firms increases more in the

years previous to bankruptcy filing.
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Table 3–3: Survival Analysis Regression Results;
Table reports the Survival Analysis output. Size is the log of total assets, QATL is the quick assets
to total liability ratio, STA is calculated by dividing sales by total assets, TDTA is total debt to total
assets ratio, NISHE is net income to shareholder’s equity ratio, Contraction is the dummy variable
which is equal 1 if in economic contraction and zero otherwise, R2 is the r-squre of the regression
of firm’s return on market’s return, and Age is the number of years in Compustat. Multiple-year
observations for all the mentioned independent variables were used to run the Cox proportionate
hazard model in order to assess the relationship between firm failure and its hypothesized drivers.
Two columns of coefficients are presented; Column 1 reports the coefficients from the analysis
using actual independent variables values while Column 2 reports the output of the model using
winsorised values in order to remove outliers.

(1) (2)
VARIABLES Coeff. Coeff. Win.

Size -0.0370 -0.0364
(0.0235) (0.0247)

QATL -0.398*** -0.463***
(0.0826) (0.0917)

STA -0.0767** -0.0839**
(0.0374) (0.0398)

TDTA 0.139** 0.272***
(0.0685) (0.0979)

NISHE 0.000624*** -0.0106
(0.000136) (0.0118)

Contraction 0.370*** 0.368***
(0.109) (0.109)

R2 -2.488*** -2.498***
(0.581) (0.605)

Age -0.0340*** -0.0338***
(0.00684) (0.00682)

Constant -14.22*** -14.15***
(0.511) (0.511)

Observations 6,683 6,683

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Figure 3–2: Conditional Default Probability;

BKR is associated to bankrupt firms and NBKR to not-bankrupt ones. The hazard rate for each

year is reported.

The following graphs present the histograms of hazard rates for the two cate-

gories, namely bankrupt and not-bankrupt firms. The histogram is skewed to left

toward lower hazard rates for the non-bankrupt firms and more inclined to right and

higher rates for distressed firms. Although the difference is observable between the

two groups, it seems that the distinction is not very clear, and the model may not

have the acceptable power to predict bankruptcy accurately.
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Figure 3–3: Probability Distribution of bankruptcy; Two-sided Histogram; Zero (0)

corresponds to non-bankrupt firms while One (1) represents bankrupt ones.
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Figure 3–4: Probability Distribution of bankruptcy for Non-bankrupt firms
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Figure 3–5: Probability Distribution of bankruptcy for bankrupt firms

The prediction power of the model can be evaluated more precisely by construct-

ing a Confusion Matrix using predicted values for firms in the sample. This matrix

shows the percentage of correct and incorrect predictions of the model in different

categories, more specifically it calculates the types I and II errors of the prediction

model. The in-sample confusion matrix for survival prediction model is presented in

Figure 3–6.

Figure 3–6: Survival Confusion Matrix
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From the confusion matrix, the model predicts 50.56 percent of the bankruptcies

correctly, which is very poor and not really different from pure chance. The model

tends to over-predict the non-bankrupt firms and categorize them in the distressed

group. In other words the model’s type I error is high but it does a fairly acceptable

job in categorizing healthy firms into the correct group. Overall, it seems that the

survival model does not have the needed prediction power to be used for further

analyses. This contradicts the studies reporting results in favour of the model. This

may be because of the nature of the data set used here and its differences with

previously used samples. Existing studies tend to use a few years of data and a

limited number of firms, while we use the biggest sample for which we could get the

needed variables. The independent variables used were also different from those in

previous studies.

3.2 Logit Model

The second model, one of the most popular ones in the failure prediction litera-

ture, is a simple straightforward logistic regression model. The dependent variable is

1 when firm is bankrupt and 0 otherwise. We use the same explanatory variables as

those used in modelling survival analysis. The main difference here is that the logit

model uses only one year of data, contradicting survival analysis, which uses 5 years

of data, to predict. Each firm’s last year of observation is used, which corresponds

to firm’s situation right before the official bankruptcy filing. The regression output

is presented in Table 3–4.
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Table 3–4: Logit Analysis Regression Results;
Table reports the Logit Regression output. Size is the log of total assets, QATL is the quick assets to
total liability ratio, STA is calculated by dividing sales by total assets, TDTA is total debt to total
assets ratio, NISHE is net income to shareholder’s equity ratio, Contraction is the dummy variable
which is equal 1 if in economic contraction and zero otherwise, R2 is the r-squre of the regression
of firm’s return on market’s return, and Age is the number of years in Compustat. Single-year
observations for all the mentioned independent variables were used to run the logit model in order to
assess the relationship between firm failure and its hypothesized drivers. Two columns of coefficients
are presented; Column 1 reports the coefficients from the analysis using actual independent variables
values while Column 2 reports the output of the model using winsorised values in order to mitigate
the effects of outliers.

EQUATION VARIABLES (1) (2)

bkr Size -0.0296 -0.0316
(0.0327) (0.0349)

QATL -0.580*** -0.702***
(0.104) (0.114)

STA -0.0779 -0.0962*
(0.0512) (0.0561)

TDTA 0.615*** 0.799***
(0.156) (0.176)

NISHE 0.000424 -0.0307
(0.000629) (0.0197)

Contraction 0.885*** 0.910***
(0.189) (0.191)

R2 -4.007*** -4.181***
(0.710) (0.756)

Constant 0.0843 0.0971
(0.211) (0.226)

Observations 1,626 1,626

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

The general regression results, in terms of signs and significance levels of coeffi-

cients, for logistic and survival analysis models are closely related. The first difference

is Sales to Total Assets ratio, which is significant in survival analysis, but not in the
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non-winzorised-data logistic regression, coefficients’ signs are negative in all cases

and they are significant in winzorised-data regression, too. A similar result is ob-

servable for Net Income to Shareholder Equity ratio. Fewer data points seem to be

the reason for observed differences.

The prediction power of logit model is higher than survival model. As Figure 3–

7, the logistic model confusion matrix, points out, the model correctly predicts 65.40

percent of times. Judging by comparing model accuracy calculated from both the

confusion matrices, the logit model is significantly more accurate than the survival

model. This shows that although we are using less data in this model than we do in

survival analysis, we are able to predict failure more accurately.

Figure 3–7: Logit Model Confusion Matrix
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3.3 Neural Network

Artificial Neural Networks, containing highly interconnected processing elements,

are algorithms that try to imitate human cerebral cortex in a much smaller scale.

These models had been used in predicting bankruptcies from early 1990s and several

studies reported better performance compared to logit and multiple discriminant

analyses (MDA) models. We use Matlab’s Neural Network Toolbox to train and

simulate the appropriate Neural Network Model to predict bankruptcy. The same

data that were used in survival analysis and logistic regression model are used here.

Data set consists of five years of observations for our eight explanatory variables for

813 bankrupt as well as 813 matched firms from non-bankrupt group. The network

has three layers, input, hidden, and output; there are 10 cells in the hidden layer of

the network and output layer produces a number between zero and one, zero means

not distressed and one corresponds to distressed firms. A schematic of the Artificial

Neural Network used is shown in figure 3–8.

Figure 3–8: Artificial Neural Network Schematic, Source: Matlab Software Output
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Matlab NN toolbox produces many helpful graphs to report the neural network

training and simulation outputs. The training output is presented in Figure 3–9.

The training process reaches its minimum error criteria after 40 iterations. The

graph shows that the neural network has achieved the acceptable low error using

training and validation subsets. The training report shows the prediction ability of

the network.

Figure 3–9: NeuralNetwork Training Process output

A more intuitive graph is presented in Figure 3–10. The Receiver Operating

Characteristic (ROC) curve is a plot of the true positive rate (sensitivity, which

measures the proportion of actual positives which are correctly identified as such)

versus the false positive rate (1 - specificity (measures the proportion of negatives

which are correctly identified as such)) as the threshold is varied. A perfect test would

show points in the upper-left corner, with 100% sensitivity and 100% specificity. The
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diagonal line in the graph shows a 50-50 chance line. The plot for our model is

closer to the corner than to the centre line, which means a high power of the model

compared to pure chance.

Figure 3–10: Neural Network OPC Chart

Like previous models, we present the Neural Network Confusion Matrix in order

to show the prediction power of the trained network. The overall accuracy of the
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model is 91.4%, a higher accuracy than previous two models. The Confusion Matrix

of the Neural Network Model is shown in 3–11.

Figure 3–11: Neural Network Confusion Matrix
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Comparing the prediction powers of the three models, all using the same sam-

ple as their input, it is evident that Artificial Neural Network is more powerful in

terms of bankruptcy prediction ability. We used this trained model to categorize our

M&A data set targets into two categories; distressed vs. normal. The next step is

comparing the announcement return associated to these two target groups.

3.4 Targets’ Premium Analysis

Regarding the bankruptcy prediction models comparisons, The Artificial Neural

Network model was selected to categorize each M&A target in SDC database into

two categories, distressed and not-distressed.

Based on the categorization using the trained Neural Network, we conduct an

event study on both groups around the merger’s announcement date. The idea here

is that the market reacts differently to a merger announcement in which the target

is in distress and to the one that is not. The event study is done on both targets and

bidders and the categorization is dependent on the target status, distressed or not.

The targets’ event study result is presented in Figure 3.4. The difference in

the mean cumulative abnormal return is identifiable in the graph. The average CAR

touches 48% for near-failure firm at announcement while the percentage for normal

firms is just 28%. The difference is significant at five percent level for the period of

61 days covering 30 days before M&A activity announcement to 30 days after the

announcement.

48



Figure 3–12: Mean Cumulative Abnormal Returns, Targets;
NNTarget 0 corresponds to non-bankrupt targets, NNTarget 1 to bankrupt targets

The higher abnormal return associated with the announcement of the acqui-

sition of a distressed firm can be resulted from the acquirers optimistic bid based

on her view on the existing disqualified management team and unfavorable financial

situation - cost of equity and debt to name some - and her ability to make better

use of target assets in place after changing the management team and optimizing

the financial situation. It appears that target shareholders are definitely winners

of the acquisition as they are paid a big premium, but a total return analysis is

needed to see if the event makes dollar value. Target stakeholders are being paid
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way more than their current stake in the firm and this pushes the target price up

in reaction to the news. This result is in line with Ang and Mauck (2011) as they

also report higher premiums for their distressed targets, too. The issue here is that

their distressed sample consists of many firms with mild difficulties that reported

two years of negative net income. Chances are that bidders’ view on these targets is

correct and by executing some actions, they may be able to turn the targets around.

But our firms are close-to bankruptcy, which means that a great potential of coming

back on feet is gone already. The higher premiums that we observe for distressed

group compared to normal group can be related to mentioned non-positive merg-

ers activity like management personal goals; it is often asserted in researches that

many M&A activities have reasons other than efficiency and synergy like hubris and

the management inspiration of empire building. We estimate an event study on

bidders around the announcement of the event to see the market’s reaction to the

announcement in terms of bidders’ average price change. The results show a value

destruction and negative reaction to the news. Figure 3.4 shows bidders’ abnormal

return around the announcement. Both groups experience a decrease in their stock

price around the merger announcement, which is well documented and reasoned in

the M&A literature, but those who bid to acquire distressed targets face a bigger

loss.

50



Figure 3–13: Mean Cumulative Abnormal Returns,idders;

NNTarget 0 corresponds to non-bankrupt targets, NNTarget 1 to bankrupt targets; NNTarget 0

corresponds to non-bankrupt targets, NNTarget 1 to bankrupt targets

The higher negative effect of the bid on bidders targeting distressed firms can

be associated to the market not being as optimistic as bidders themselves about

their ability to turn around targets as much as they are ready to pay in the form

of premium to distressed firms’ shareholders. In other words, market asserts that

bidders are overpaying for the targets. Figure 3.4 shows the total average size-

weighted abnormal return for both bidders and targets around the announcement

date. As we observed a negative return for the bidders and a positive one for the

targets in the previous analyses, from this graph we conclude that target’s abnormal

return is so high that it compensates for the negative return associated with bidders.
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Figure 3–14: Mean Weighted Cumulative Abnormal Returns, Bidder and Target
Combined

We use a regression analysis to investigate the relationship between target pre-

mium and the category of target, our neural network model output, in more depth.

We control for known premium drivers namely, tender offer dummy, market to book

ratio, size, horizontal versus vertical acquisition, unsolicited deals, method of pay-

ment, and the bid price to 52 week high ratio. Table 3–5 presents the basic statistics

of merger and acquisition sample used in the study. The table has two section; dis-

tressed and non-distressed firms characteristics are reported in sections one and two

respectively.

Correlations between all the used variables were calculated to check for possible

col-linearity issue. The biggest correlation is 25% between Horizontal and Consid-

eration offered variables. All others are less than 15%, and no correlation problem
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exists. Table 3–6 is the regression analysis output. Variables were added to control

for the most known drivers of premium differences. The type of payment (Consider-

ationOffered variable takes the value of 1 if target is paid by cash and 0 otherwise),

market to book ratio, tender offer, horizontal vs. vertical acquisition, and contrac-

tion dummy are among control variables. The result shows that the category dummy

variable (NN Out which is 1 if the firm is categorized as bankrupt and 0 otherwise)

is positive and statistically significant at one percent level. This is in line with our

observation from mean cumulative abnormal return graph. The cumulative abnor-

mal return during the period beginning one day prior to the announcement to one

day after it is higher if firm is predicted to be bankrupt in near future.
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Table 3–6: Abnormal Return Regression;
Table reports the regression of (−1, 1) window abnormal return associated to targets on Categoriza-
tion Dummy Variable as well as control variables to isolate the effect of being distressed in captured
target stock price appreciation around the announcement. NN Out is the dummy variable which
equals 1 if firm is predicted to be bankrupt and zero therwise, ConsiderationOffered is 1 if method
of payment is Cash, MB is market to book ratio, TenderOffer dummy is 1 if the acquisition method
is tender offer and 0 otherwise, Unsolicited is 1 if the acquisition is unsolicited and zero otherwise,
Horizontal dummy variable if both target and bidder are from same industry and 0 otherwise, Of-
ferTo52High is the ratio of the offer price to 52-weeks high price, contraction is a dummy variable
equal 1 if the economy is in a contraction period based on NBER and zero otherwise.

VARIABLES (-1,1) AR

NN Out 0.108***
(0.0373)

ConsiderationOffered 0.0863***
(0.0186)

MB 0.00124
(0.00374)

TenderOffer Dummy 0.0958***
(0.0296)

Unsolicited Dummy -0.0714**
(0.0282)

Horizontal 0.0327*
(0.0181)

OfferTo52High 0.0156*
(0.00833)

contraction 0.0657***
(0.0238)

Constant 0.161***
(0.0201)

Observations 1,378
R-squared 0.053

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 3–7 presents the average dollar gain associated to both bidders and targets

in 5 different time periods around the announcement. The dollar gains are calculated

54



using the median market values of bidders and targets and the different abnormal

returns observed for different groups and time periods. The results are in accordance

with returns reported earlier. Although the size of targets are much smaller than

those of bidders (median bidder market value is $33,279,820 while median target has

a value of $1,996,020) the dollar gain to targets are so high which is a big success for

target managers as they could create a huge gain for their shareholders in expense of

the bidders. All the differences between pairs of dollar gains reported in the Table 3–

7 are statistically significant at one and five percent levels. Bidders lose much more

money around announcement if they bid for a distressed target. In a regression,

not reported here, we added the interaction term, NNOut ∗MB to investigate the

interaction effect. The term was not significantly different from zero suggesting no

interaction effect.

Table 3–7: Dollar Gain;

Table presents the dollar gain associated to both bidders and targets in 5 different time periods

around the announcement. All the gains are in million dollars.

Bidder(Not Dist.) Bidder(Dist.) Target(Not Dist.) Target(Dist.)

(-30,-10) 136,447.26 13,311.93 45,509.26 154,292.35

(-9,-3) 123,135.33 -46,591.75 32,934.33 99,801.00

(-2,2) -402,685.82 -532,477.12 479,244.40 676,850.38

(3,10) -33,279.82 -539,133.08 -1,397.21 47,904.48

To further analyze the target gain, and the possibility of the fire sale acquisition,

the average target’s cumulative abnormal return during the time frame covering one
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day before to one day after the announcement, and two different premiums calculated

using targets’ market price one week before the announcement and 52-week high

share price as reference were compared for both distressed and non-distressed firms

for both contraction and normal economic periods. Table 3–8 shows the comparison.

A two-sample t-test was done on all the compared pairs. All of the differences are

statistically significant in one percent level.

Table 3–8: Average Premiums;

table illustrates average target’s cumulative abnormal return during the time frame covering one day

before to one day after the announcement, and two different premiums using target’s current market

price and 52-week high share price as reference compression netween distressed and non-distressed

firms and both contradiction and normal economic periods

Contraction Normal

Bankruptcy Prediction Bankruptcy Prediction

1 0 1 0

(-1,1) 0.3779 0.2838 0.3014 0.2181

Premium 1 0.5792 0.4363 0.5783 0.3705

Premium 2 -0.2616 -0.1847 -0.1492 -0.005

Targets tend to receive a huge gain with reference to their current market valu-

ation (Premium 1), but to be sold for a fire sale price with reference to their 52-week

high share price. Targets’ value have decreased due to their bankruptcy risk accel-

eration, but bidders seem to make their acquisition decisions based on the targets’

previous high values, observed way before the market incorporated the risk to the
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price, instead of current real ones. This may be the result of the hope that they

have of the tools and the ability needed to extract more gains from the targets. The

market on the other hand penalizes bidders more in distress target bids insisting on

its current target valuation.
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Table 3–5: M&A Statistics;
Table presents basic statistics, Mean, Standard Deviation, Minimum, and Maximum, for the control
variables used in the analyses. Data are from SDC Mergers and Acquisition database as well as
CRSP and NBER. TenderOffer is 1 if the bid is tender offer, MB is the Market-To-Book Ratio,
Contraction equals 1 if announcement is made in contraction periods, Size is log of Total Assets,
Horizontal is 1 if bidder and acquirer are in the same industry, Unsolicited is 1 is the bid is
unsolicited, Cash deal is one is consideration offered is cash, (-1,1) CAR is target’s announcement
cumulative abnormal return, and OfferTo52High is the ratio of Offer Price to target’s 52-week
highest price.

Variable Obs Mean Std. Dev. Min Max

Distressed(NN)

TenderOffer 90 0.13 0.34 0 1
MB 90 2.52 4.35 0.01 27.83
Contraction 90 0.68 0.47 0 1
Size 90 4.36 1.41 1.29 7.48
Horizontal 90 0.43 0.50 0 1
Unsolicited 90 0.08 0.27 0 1
Cash Deal 90 0.54 0.50 0 1
Target (-1,1) CAR 90 0.34 0.47 -0.92 2.06
OfferTo52High 78 1.34 3.13 0.09 24.25

Non-Distressed(NN)

TenderOffer 1288 0.09 0.28 0 1
MB 1288 5.74 13.71 0.01 368.22
Contraction 1288 0.19 0.39 0 1
Size 1288 5.70 1.80 0.66 12.39
Horizontal 1288 0.45 0.50 0 1
Unsolicite 1288 0.10 0.30 0 1
Cash Deal 1288 0.51 0.50 0 1
Target (-1,1) CAR 1286 0.23 0.30 -0.75 4.18
OfferTo52High 1109 1.04 0.74 0.06 15.50
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CHAPTER 4

Conclusion

Acquisition of a distressed firm is with no doubt the best for the target share-

holders, but may not be as helpful as it seems to bidders. Results of analyzing 1378

targets in different market conditions shows that acquirers tend to overpay for tar-

gets in distress all the time and even more in contraction periods. Calculating target

premiums base on 52-week highest share price, a fire sale discount will be apparent.

It seems that acquirers’ bid reference point is not the current market valuation, but

the target’s best position in one year prior to announcement. This may be because

bidder thinks it can extract value way more than current management team. Market

looks at this kind of transactions even more unfavorable than regular acquisitions.

The results are in line with Ang and Mauck (2011) paper. In order to categorize

targets we compare three different categorization tools, namely Survival Analysis,

Logistic regression, and Artificial Neural Network. We then choose the best model

to predict target’s distress level. Artificial Neural Network model, among compared

models, is the most powerful and hence the used model.
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