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Abstract

A study in the topology-aware reconstruction of thin tubular structures

Juan Montes

This thesis is dedicated to the 3D reconstruction of thin tubular structures, such as cables or ropes,

from a given image sequence. This is known to be a challenging task, mainly because of self-

occlusions of the structure and its fine details. This new approach combines image processing tools

with physics simulation to faithfully reconstruct jumbled and tangled cables in 3D. This method

estimates the topology of the tubular object in the form of a single 1D path and also computes a

topology-aware reconstruction of its geometry. This method is evaluated on both, synthetic and real

datasets and demonstrate that this method favourably compares to state-of-the-art methods.
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Chapter 1

Introduction

3D reconstruction deals with the problem of finding a representation of a shape given a

set of images or depth information. Among these shapes, thin structures pose a special

challenge since the volume obtained through traditional reconstruction methods is not

enough to get an accurate representation of the shape. Thus, the reconstruction of such

structures is an open problem.

Tubular structures occur in a variety of instances, such as electric cables, fire and garden

hoses, and ropes, among many others (fig 1.1). While any of these examples share the

property of being a deformed tube, the way they are arranged to themselves, i.e., the

way they bend, overlap, twist, or self-occlude, is different. Therefore, it is difficult to

correctly reconstruct the geometry of these varying topological arrangements1.

While the field of 3D surface reconstruction has made impressive progress over the last

few years, conventional reconstruction methods are challenged in this context as tubular

objects can be relatively thin. Video based reconstruction methods such as structure

from motion (Wu et al. [1], Wu [2]) provide limited quality even when many images are

being accumulated as shown in Figure 1.2. Emerging colour and depth cameras such

as the Kinect device have paved the way for a more detailed reconstruction compared

to conventional colour cameras (Zhou and Koltun [3], Izadi et al. [4]). However, while

significant progress has been made, the depth quality of current sensors is not sufficient

to reconstruct thin features. An important limitation common to all methods mentioned

is that they do not take the topology of the object into consideration. However, under-

standing the topology is an important prior in the reconstruction process as illustrated

in Figure 1.2.

1In the context of computer vision, topological arrangements and topological consistency means that

the reconstruction preserves the structure of the object being reconstructed.

1
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strands of hair from an input point set acquired from a multi-view stereo setup. The

method proposed in (Livny et al. [11]) employs a series of global optimizations to con-

solidate a point cloud representing one or more tree objects into skeletal structures, and

uses a graph-based approach to reconstruct tree branches. However, tree structures have

a simpler topology compared to more general graphs, thus, their optimization requires

a relatively dense set of points. Similarly, the method of (Tagliasacchi et al. [6]) and

(Huang et al. [7]) extract the medial axis from a point cloud and uses it to reconstruct

the surface in a topologically correct way as shown in figure 2.1. (Li et al. [5]) intro-

duce a new 1D primitive, called arterial snake, that is used to reconstruct 1D structures

such as rods. Unfortunately, all these methods require a relatively dense set of sample

points, much denser than can be obtained from one moving camera using state-of-the-art

structure from motion algorithms, as demonstrated in the experiments section.

In the case of physics simulation systems, (Bergou et al. [12]) presents a discrete elastic

rods formulation that allows curves to be simulated with rod properties (section 2.5).

The following sections give an overview on how current state-of-the-art general recon-

struction methods are implemented (Sections 2.2 and 2.3). The result of these methods

is always a point cloud. They all use a pin-hole camera model (section 2.1) to estimate

the depth information of the images in 3D space.

Finally, the point cloud given by the general reconstruction methods is processed into

a consistent representation of the object. Methods to obtain such representations are

overviewed in section 2.4.

2.1 The camera model

There are two types of camera parameters used in computer vision for surface recon-

struction: Intrinsic and extrinsic.

The intrinsic parameters form the perspective transformation of the camera which is

defined by its focal length (the distance between the camera eye and the projection

plane) and the physical coordinates of the projection plane (fig. 2.2). It can be observed,

that if a camera has a short focal length, the field of view of the camera increases, and

if the camera has a long focal length, its field of view narrows.

The intrinsic camera matrix is given in equation 2.1, where f is the focal length and ic

is the image centre in pixels.
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Figure 2.2: Intrinsic parameters of the camera.
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The extrinsic camera parameters determine its position and orientation in world coor-
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2.2 Reconstruction from video

2.2.1 Reconstruction from calibrated setups

In calibrated setups, the parameters of the cameras are calibrated before performing

the reconstruction. This calibration is done by moving a known pattern (eg. a chess-

board, with known square width and height) (fig. 2.3) in front of the cameras, taking

representative snapshots, and then tracing the pattern in the snapshots.

The intrinsic parameters are estimated individually. The pattern must be placed at

different angles to increase the accuracy of the estimated intrinsic parameters of each

camera.

The extrinsic parameters are estimated by guessing the position of the camera using the

position of the pattern as reference, and then optimizing through iterative methods.

The main advantage of this method is that it is very accurate with low radial distortion.

The main disadvantage is that the positions of the cameras must be fixed, otherwise the

cameras have to be recalibrated each time they are moved.

Figure 2.3: Chessboard pattern features.

Stereo reconstruction is a 3D reconstruction method that uses two cameras. With only

one camera, it is impossible to estimate the depth of a point in a 3D scene. With two

cameras, it is possible to estimate a point in a 3D scene by triangulating its position

(fig: 2.4), thus making two cameras the minimum number required to perform a 3D

reconstruction.
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Figure 2.4: Two cameras triangulation.

The extrinsic and intrinsic parameters of the cameras must be known before performing

the reconstruction, however this information is not enough as the positions of the point

in image space (fig. 2.5) are also needed to be able to estimate its position in 3D. To

find these common positions, several matching methods have been proposed such as

Semiglobal Matching (Hirschmuller [13]).

Figure 2.5: Common features in image space.

Modern techniques of multi-view stereo decompose the images into clusters to find the

matches (Clustering Views for Multi-view Stereo) (Furukawa et al. [14]) and then re-

construct the scene by patches (Patch-based Multi-view Stereo) (Furukawa and Ponce
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This method starts with two images. A first camera, for one of the two images, is placed

at the origin. A set of features is found for each image and are corresponded. With

these features, the position of the other camera is estimated with respect to the other.

These two cameras are used to perform an initial reconstruction of the scene.

The next step is adding the remaining images to the scene. A set of features is found

for all the images. Using the information of the cameras already placed, a new camera

position is estimated.

With this new camera, the sparse scene is reconstructed again. This has the objective of

identifying distortions and inconsistencies in the scene. These distortions are minimized

by optimizing the cameras previously positioned in a process called bundle adjustment.

Finally, the new camera is placed.

After all cameras have been estimated, it proceeds to perform the dense reconstruction

of the scene.

This method is able to provide good reconstruction results with little additional infor-

mation. However, it may suffer from considerable radial distortion and performance

issues as bundle adjustment is an expensive routine.

Generally Structure from motion is followed by a dense reconstruction of the scene

using PMVS (Furukawa et al. [14]), however the information given by SfM can be used

to generate a surface directly from the sparse data such as manifolds (Lhuillier and Yu

[18]).

2.3 Hybrid reconstruction

2.3.1 Structured light

Structured light (Valkenburg and McIvor [8]) is a 3D reconstruction method that uses

a camera and a projector.

This method has a similar layout to stereo reconstruction, which has two cameras. In

this case, one of the cameras is replaced by a projector for which the camera parameters

still need to be known.

The aim of replacing one of the two cameras by the projector is to reduce the complexity

in finding matches in the images. The projector casts a series of light stripes on the object

(fig. 2.7) and now the matches become the light stripes. However, the position of these

light stripes still has to be estimated. (Valkenburg and McIvor [8]) introduced a new
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method for estimating the 3D position of the sub-stripes of the light projected on the

image using differential methods. Other methods present robust pixel classification [19]

and calibration systems (Ben-Hamadou et al. [20]).

Figure 2.7: Light stripes on the object.

In terms of limitations, it shares the same limitation to stereo reconstruction, as its only

change from it, is the way the features are found in the images.

2.3.2 Volumetric fusion

Volumetric fusion (Curless and Levoy [9]) reconstructs a 3D object using a range sensor

and a laser projector.

In the previous kinds of reconstructions exposed, the depth of the 3D points was es-

timated by triangulating its position in image space. In this type of reconstruction,

the RGB images are replaced by depth maps (fig. 2.8), so the depth is already given.

Techniques that use silhouettes and range data have also been proposed (Yemez and

Wetherilt [21]), (Song et al. [22]) .

The way the scene is reconstructed is implicit. After a series of depth maps have been

taken, a volumetric grid is built (fig. 2.9). Each voxel is projected against the depth

maps and it is turned on or off depending on the range data. (Curless and Levoy [9])

provide a way to join this range data. Notice that explicit reconstructions such as stereo

and structured light directly compute an arbitrary number of points which are known

to be part of the object. In a volumetric grid, the points are set beforehand and later it

is decided if it belongs to the object or not.
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Figure 2.8: Depth map. Objects closer to the sensor are whiter.

Figure 2.9: Volumetric grid.

The main advantage of this method is its performance. Since it is no longer needed to

find matches in the images, and the depth map is given directly, this method is very fast.

The main disadvantage is that reconstructing thin objects is difficult due to hardware

limitations.

2.4 Object representation

In the previous sections, several methods were exposed on how to get a set of points

belonging to an object from a video or hybrid setups. This set of points, however, is a

raw representation of the object being reconstructed and can be manipulated depending

on which kind of representation is desired.
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Point based surfaces introduce new surface estimation mechanisms to allow point clouds

to be correctly rendered without finding a triangular mesh. Surface meshes methods try

to get a triangular mesh from the set of points. Volume meshes are a representation of

the interior of the meshes. 1D reconstruction techniques aim to fit a set of 1D curves

through the point set.

2.4.1 Point based surfaces - MLS

The main idea behind point based surfaces is that common methods of reconstruction

provide a relatively good point cloud as an initial model, so they can be used to be a

good representative of the physical model. The main problem with this initial point

cloud is that it is not smooth, and outliers are very common. Point based surfaces and

MLS methods (Alexa et al. [23]) aim to provide a smooth surface estimation technique

which preserves small details of the object being reconstructed (fig. 2.10).

Figure 2.10: Point based surface.

MLS estimates a polynomial that fits the set of points using moving least squares opti-

mization (Lee [24]). The points are resampled using the polynomial and a local plane

computed for each point (fig. 2.11).

In figure 2.11, g corresponds to the approximated polynomial, r to the original point,

H is the reference plane of the original point, and the point between r and q defines

the resampled point. This way, the points are smoothed and are allowed to be rendered

without noise.

This method preserves better the structure of the object than a triangular mesh, however

it may suffer if the point cloud is not very clean.
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Figure 2.11: Surface resampling.

There have been contributions to reconstruct thin object using Point based surfaces

methods by forcing points into a common surface (Ummenhofer and Brox [25]).

2.4.2 Surface mesh

Surface extraction methods aim to find a triangular mesh out of a point cloud. The

motivation behind this representation is that triangular meshes is the most common

type of representation in existence, and usually the object extracted will most likely be

used in a system where a triangular mesh is needed.

This extraction is done in different ways such as, Delaunay triangulation (Kuo and Yau

[26]), the Voronoi diagram of the point cloud (Alliez et al. [27]) or the most common

one, Poisson surface reconstruction (fig. 2.12) (Kazhdan et al. [28]).

Figure 2.12: Poisson surface reconstruction.

Methods based on Delaunay triangulation and Voronoi diagrams of the point cloud

create jagged meshes if the points are subject to noise. Poisson surface reconstruction
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finds an approximate surface to the points. None of these methods is good to reconstruct

thin structures since their point cloud is often sparse and these methods rely on a dense

point cloud.

2.4.3 Volume mesh

Volume meshes are used when the information given by surface meshes is not enough,

and information about the interior of the mesh is desired.

The simplest method used to obtain a volume mesh is resampling a surface mesh. Sev-

eral vertices are added in the interior of the mesh and are connected using Delaunay

triangulation (fig. 2.13 or similar. This kind of mesh is used in volumetric deformation

methods such as the one proposed by (Zhou et al. [29]).

Figure 2.13: Volumetric graph construction.

Volumes are also used for finding a triangular mesh out of implicit functions with the

Marching Cubes method (Nielson [30]).

In reconstruction, volumes are used to reconstruct a scene implicitly as shown in section

2.3.2. This kind of models offers a good intermediate representation for reconstructing

thin structures.

2.4.4 1D reconstruction

This kind of reconstruction consists in a poly-line or a set of poly-lines. They are mainly

used for analysis of the point cloud and to extract structural or topological features from

it.
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Arterial snakes (Li et al. [5]) tries to reconstruct thin tubular structures in a point cloud

by growing ”snakes” from such tubular structures (fig. 2.14). It aims to provide an

accurate physical representation of the object scanned by using only poly-lines.

Figure 2.14: Arterial snakes.

L1-medial skeleton (Huang et al. [7]) extracts a skeleton that corresponds to the median

of the raw scan (fig. 2.15). This skeleton is a powerful analysis tool and representation

of the model. It is not meant to be an accurate representation of the physical model.

Figure 2.15: L1-medial skeleton.

2.5 Physics (Discrete elastic rods)

Discrete elastic rods (Bergou et al. [12]) proposes a discrete geometric model for Kirchhoff

rods. Its main objective is to introduce a simple and easier to implement model than

existing ones.

Kirchhoff rods defines the concept of an adapted framed curve 2.16 to represent bending

and twisting motion. A rod consists in a centreline and orthonormal frames on every
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point {t(s),m1(s),m2(s)}. These frames are then used to compute the bending and

twisting energy in each frame (eq. 2.3).

ω1 = t′ ·m1 (2.3a)

ω2 = t′ ·m2 (2.3b)

m = m′

1 ·m2 (2.3c)

Figure 2.16: Adapted frame curve.

ω1 and ω2 represent the bending energy, which is the curvature at that point in the

curve. m represents the twisting energy which is the rotation around the centreline of

the rod. Using this model, the Kirchhoffs continuous bending and twisting energies for

the whole rod (isotropic) are pictured in equations 2.4 and 2.5. α and β correspond to

the bending and twisting modulus, which define the stiffness of the rod.

Ebend(Γ) =
1

2

∫

αω2ds (2.4)

Etwist(Γ) =
1

2

∫

βm2ds (2.5)

The overall energy is defined in equation 2.6.

E(Γ) = Ebend + Etwist (2.6)

In the case of the bending energy ω = (w1, w2)T .

(Bergou et al. [12]) contributed with the formulation of the discrete energies pictured in

equations 2.7 and 2.8.
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Ebend(Γ) =
1

2

n
∑

i=1

α

(

κbi
l̄i/2

)2 l̄i
2
=

n
∑

i=1

α(κbi)2

l̄i
(2.7)

Etwist(Γ) =
n
∑

i=1

β
(θi − θi−1)2

l̄i
=

n
∑

i=1

βm2
i

l̄i
(2.8)

In the bending energy, (κb)i is the curvature binormal and is defined by equation 2.9,

where ei = xi+1 − xi, being xi the ieth vertex of the rod. l̄i is double the distance of

the Voronoi region of the vertex, and is defined as l̄i = ∥ei−1∥+ ∥ei∥.

(κb)i =
2ei−1 × ei

∥ēi−1∥∥ēi∥+ ei−1 · ei
(2.9)

With the discrete energies defined, the next step is to perform the physics simulation.

The initial rod has its material frames computed for each vertex with no twist. After

an external force is applied, the objective is to minimize the total energy of the system.

This is done through numerical methods.



Chapter 3

Proposed Approach

The method proposed here combines uncalibrated multi-view stereo from Structure from

Motion, a volumetric representation of the surface and rods physics to reconstruct cable-

like objects.

There are several challenges when trying to reconstruct a tubular structure with multiple

crossings. The first one is detecting those crossings. In 2D, a simple skeletonization

algorithm can solve the problem. However, it is not so clear in 3D scenarios. Another

challenge is processing the volumetric grid obtained in the initial step of a reconstruction.

In the case of thin tubular structures, this volumetric grid may have some wedges and

present some minor inconsistencies due to distortion error during the camera calibration

step. It is also hard to find the medial axis of a volumetric grid. The final challenge is

achieving a smooth cable-like looking curve. The medial axis of a mesh is not usually

smooth and follows the topology of the whole grid rather than the topology of the object

being reconstructed.

With this challenges in mind, the method takes as input a sequence of colour images of

a tubular structure. The reconstruction pipeline consists of the following steps:

1. Segment the tubular object pixels and identify the junction regions in the 2D

images (Section 3.1).

2. Fuse images and junction information from the 2D images into a 3D occupancy

grid (Section 3.2).

3. Estimate 1D curve skeleton segments that connect junction regions or end-points

in 3D (Section 3.3).

4. Reconstruct the geometry of the tube segments combining the information from

the video footage with rod physics (Section 3.5).
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In equation 3.2 (t,b,l,r) correspond to the top, bottom, left and right coordinates in

world space of the screen where ic is the centre of the image, and (n,f) correspond to the

near and far values. ptr and pbl correspond to the top-right and bottom-left points of the

screen, K is the projection matrix, and px, py and pz correspond to the x,y,z coordinates

of the point, so ptry is the y coordinate of the top-right point.
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(3.2)

Projection matrix parameters :

ptr = K−1

(

icx icy 1

)

, (3.3a)

pbl = K−1

(

0 0 1

)

, (3.3b)

t = n
ptry
ptrz

, b = n
pbly
pblz

, (3.3c)

l = n
pblx
pblz

, r = n
ptrx
ptrz

(3.3d)

This occupancy grid is treated as a connected graph where the nodes are the corners of

the turned on voxels, and the edges are the paths between two consecutive turned on

voxel corners. The outliers are removed leaving only one graph. The nodes are classified

as either simple nodes or junction nodes. Figure 3.10

3.3 3D Segments Extraction

Although the 3D occupancy grid provides some rough information regarding the location

and geometry of the tubular structure, it has no knowledge of its topology. This method

extracts 1D curves that connect two junctions or a junction to an end-point (segments)

by traversing through the occupied regions of the grid. Although junctions are identified,

extracting the segments is non-trivial because there can be several segments joining the
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Each central junction node is grown using Breadth First Search until a maximum number

of fronts is found per junction area, being the Voronoi diagram (fig. 3.11) the limit.

Every node traversed by the BFS algorithm is marked as a junction node in order to

obtain a more consistent junction area (fig. 3.11). A front is a subgraph of simple nodes

that have at least one edge connecting to a junction node from the newly computed

junction areas (see section 3.4).

The centroid of each front is found the same way the central junction nodes are found.

A path is grown from each front until it finds another front. If it does not find another

front, the longest path is chosen instead. These paths become the initial guess of the

tube (fig. 3.11).

The paths are smoothed using the Laplacian to make them suitable for the physics sim-

ulation. In equation 3.4 p′ corresponds to the smoothed vertex, N to the number of

neighbours the vertex has, which in this case is 2 and pj is the position of the neigh-

bouring vertex.

p′ =
1

N

N
∑

i=1

pj (3.4)

3.4 Growing Algorithm

The junction area growing procedure is based on the Depth First Search algorithm.

Consider the figure 3.12. The process starts with one node. Each level corresponds to

the neighbours of the nodes already marked. To advance one level, the neighbours of

the nodes are marked as junctions.

To identify the fronts, consider the nodes marked in green. A front consists of con-

secutively connected green nodes by up to one red node (fig. 3.13). This method is

guaranteed to work thanks to the way the junctions were grown. The green nodes of a

single front are always guaranteed to be connected by at least one red node.

With these fronts, it is possible to proceed to connect the paths with the method exposed

in section 3.3, and there is no space between two fronts where the cable guess might

escape while growing to find a path between them. The front can be seen as a wall

dividing the graph.
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Figure 3.12: Growing algorithm. State at different levels.

Figure 3.13: Fronts identification. Left: Graph at a current state. Right: Fronts
identified. Each independent front is in a different colour.

3.5 3D Segments Reconstruction

While the segments identified in the previous step provide accurate topological infor-

mation regarding the tube, they are generally not geometrically accurate. Accuracy is

improved by executing a physics based rod simulation based on (Bergou et al. [12]).

The external forces of the simulation are computed based on the occupancy grid. Each

vertex in the occupancy grid which is sufficiently close to the rod exerts a force onto

the closest vertex of the rod. This has the effect of naturally placing the rod inside the
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occupied grid voxels while at the same time pressuring its physical properties. Figures

3.14, 3.15, 3.16, 3.17.

Figure 3.14: Segments and point cloud.

Figure 3.15: Computed correspondences. Each vertex in the point cloud exerts a
force on its closest vertex in the segment.

Figure 3.16: Correspondences after simulation.

The physics simulation makes use of the bending and twisting energies to maintain the

physical properties of the rod with an inextensibility constraint. Mass damping is added

to the system to make sure the system converges. The system is then solved using

Newton-Rhapson method to find the velocities of the vertices at each time step.
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Figure 3.17: Segments after simulation.

One challenging problem is computing the external force. If the force is too weak, the

physics simulation would be useless, but if the force is too high, the system becomes

unstable. Hence, the external force in a vertex is computed by adding the normalized

vectors from the vertex to the vertices in the point cloud that were chosen to be closest.

Equation 3.5 refers to the mass damping used for the simulation and equation 3.6 to the

external force. Both are vectors.

Fmd = −cmivi (3.5)

In equation 3.5 c corresponds to the magnitude, m to the mass, i to the vertex index

and v to the velocity of the vertex.

Fe = cmi

n
∑

j=0

pj − pi
∥pj − pi∥

(3.6)

In equation 3.6 c corresponds to the magnitude, m to the mass, i to the vertex index, j

to a vertex index correspondence in the point cloud and p to the position.

There are several parameters of the simulation that have to be carefully tweaked for

each dataset, however this tweaks can be done automatically depending on the number

of vertices in the point cloud, its density and how close together the vertices in the 1D

curve are. These properties are explained in table 3.1.

The physics simulation is considered done once there are no significant changes from one

time step to the next.
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Property Description

Density This parameter defines the stiffness of the rod.
If it’s low, the rod is better preserved, however
it becomes less manipulable.

Mass The mass of each vertex can be left constant
for all datasets.

Force The magnitude of the force that has to be ap-
plied to each vertex.

Damp Force The magnitude of the desacceleration force.

Table 3.1: Physical properties.

Properties of the physics simulation.

3.6 Topological 3D Segments Connection

The reconstructed tubular segments need to be connected into a single tube. Determin-

ing how segment end points are connected to other segment end points at the junctions

regions is a combinatorial problem. Once again, visual information is used from the

images to solve this. When cables cross, the cable that goes on top has no sharp edges

while the cable at the bottom generally exhibit two sharp edges due to the ambient

occlusion. Then, in image space, the shortest path between the end points using the

image gradient as graph weights is computed. Figure 3.18.

The average of the shortest path through the gradient from the junction end points is

computed for all the images and the segments are chosen from the shortest distance to the

longest one by one until there are only two left, which are the tube end points. This way,

the system will connect first the end points representing the top crossings of the cable

and the bottom crossings are connected last. It is noticeable then that this method

only works well when there are less than four junction end points per junction area,

and solving more complex scenarios is left for future work. To improve performance,

only paths between two junctions end points belonging to the same junction area are

considered.

The gradient which gives the best result uses a 3x3 Gaussian filter kernel as seen in

equation 3.7 and table 3.2. In equation 3.7 G(x, y) corresponds to the 3x3 convolution

matrix around the pixel (x, y).

g(x, y) = ∥image(x, y)−G(x, y)∥ (3.7)
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A connection is regarded as ambiguous when the shortest paths between junctions in

the same junction area are not significantly different.

Finally, once the connections are made, rod-based physics simulation presented in Sec-

tion 3.5 is performed once again on the entire structure to obtain the final results. This

last step is important as it smoothes out wriggles at the segments connection points.

3.7 Implementation

The system is constructed using the following components: VisualSFM (Wu et al. [1], Wu

[2]), a volumetric grid application, a path extractor, a path unifier, and GIMP and

Matlab scripts.

A video is given as the input. An image is taken from the video each 10 frames with the

idea of getting a good calibration from VisualSFM. These frames are obtained using a

MATLAB script.

The images obtained are processed with VisualSFM (Wu et al. [1], Wu [2]). The result

of this process is a text file with the camera information of the images. This file is

processed by a script written in C++ to a format compatible with the system.

The images are segmented in bulk using a GIMP script written in Python. Similarly, a

GIMP python script is used to find the gradient, which is precomputed to save on time.

The volumetric grid application is written in C++. It receives as input the segmented

images and the camera information. It outputs the resulting grid in two formats; as a

graph with nodes and edges, and as a bit array with all the cells of the grid. The last

format is used for visualization purposes.

The path extractor is also written in C++. It receives the graph as the input and

outputs smoothed initial guesses.

The physics simulator (Bergou et al. [12]) in this step receives the volumetric grid and the

smoothed initial guesses or final guess. It outputs the physically correct initial guesses

or the final result.

The path unifier receives the segmented images, the gradient of the images and their

camera parameters, and the output of the physics simulator. It outputs a single 1D path

whose junctions are connected by a sampled straight line.
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3.8 Constraints

This method has a number of constraints which will be reviewed in this section.

The input video must be recorded with the light placed ideally on top of the cable and

remain constant through the whole video. If placed in a different manner, it will create

undesirable shadows that would difficult the segmentation of the cable and cause the

gradient algorithm to fail. If the light position changes abruptly during the video, a

good calibration may not be able to be obtained.

The camera must be moved slowly around the cable, capturing as much detail as possible.

The system must get good camera calibration parameters and a relatively clean point

cloud. The formation of wedges in a 3D point cloud is often undesirable. The system

can handle minor wedges but it is very sensitive with wedges over the junction areas.

Wedges on junction areas will cause the growing algorithm to fail and unable to find

correct junctions.

A wedge is a set of points in the point cloud that are considered to be part of the object

when they should not (fig. 3.19). Usually, it is noise generated by camera distortion or

occlusions in the images.

Figure 3.19: A wedge in the point cloud. The area circled in red is considered to be
part of the cable even though that area does not belong to the cable. The guess of the

cable is given in black

In terms of resolution, any modern phone camera can be used to get the video, however,

the resolution should be over 1200x800 and should not have too much noise. Little noise

can be solved by applying some blur to the image, however noise found in pictures taken

at night, for example, or cameras with poor optics, will cause both the segmentation,

and the gradient to fail.

The system can handle cables of multiple thicknesses, however it will most likely fail if

the cable is too thin (e.g. earphones). It is very difficult to get a good graph/point cloud

with a cable of these characteristics, the images would need to have a huge resolution
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and the grid would need to be very dense as well. The gradient may also fail in this

case.

Cables with deformation properties may be reconstructed, but with some problems. The

physics simulation system assumes a stiff rod. If the stiffness of the rod is reduced to

allow this kind of cables, the physics simulation becomes useless as the elastic forces no

longer have major impact in the modelling of the cable. The result will be jagged.



Chapter 4

Results and Discussion

In this section, implementation details of the system and the results obtained are de-

scribed.

The system implemented uses VisualSFM (Wu et al. [1], Wu [2]) and a modified version

of the physics simulation implementation done by (Bergou et al. [12]). All the code is

written in C++ using OpenGL 2.1 for rendering, Eigen for math, and Glui for the user

interface in a Linux environment. The details are discussed in the following section.

The accuracy of the method is tested using synthetic datasets and real datasets. The

discussion will be focused in the evaluation of two synthetic datasets and three real

datasets. All two synthetic datasets are manually created poly-lines which are then

rendered from different views. The results are evaluated by difficulty in obtaining the

occupancy grid, quality of the occupancy grid, quality of the junctions, quality of the

images and quality of the end result.

In synthetic datasets it is possible to evaluate the algorithm quantitatively since the

reconstructed cable should be the same as the synthetic cable. This accuracy is evaluated

by calculating the distance from each vertex in the output polyline to the closest line

segment in the input polyline. The error is the average of these distances.

Real datasets can only be compared qualitatively since developing a quantitative com-

parison method equals to solving the problem.

35
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4.1 Synthetic datasets

All two synthetic datasets are evaluated under the same section, as the input is similar

and there are not many changes among them when comparing its quality. The purpose

of the synthetic datasets is to test the pipeline accuracy in simple cases before going to

real datasets. The first synthetic dataset tests the algorithm on complex crossings, and

the second evaluates the algorithm capacity on processing loops with 3D complexity.

Thus, the synthetic datasets have the following characteristics:

1. The intrinsic and extrinsic camera parameters are perfect since they are obtained

directly from the renderer.

2. The images exhibit clear junctions with clear shadows where the cable crossings

are located.

With these characteristics, a clean occupancy grid is obtained for every dataset even at

low grid resolutions with clear junctions. All two cases are solved using the same grid

resolution and parameters for the physics simulation. Since the camera parameters are

perfect, a voxel in the occupancy grid is considered to be on only if it is white in all of

the segmented images. Same with the junctions. The results are summarized in table

4.1. Since the input is synthetic, it is possible to make a direct comparison with the

output of the system. This is shown in figure 4.2.

Property Result

Occupancy Grid The occupancy grid is trivial to obtain, and
free of wedges or noise.

Junctions The junctions were manually computed for the
synthetic datasets, so they are perfect.

the Images The images exhibit clear shadows in the cross-
ings.

End result The difference between the synthetic dataset
and the output is minimal. Quantitative re-
sults are given in section 4.5.

Table 4.1: Result for the synthetic datasets.
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Figure 4.4: Occupancy grid and initial guesses before joining the paths.

Figure 4.5: Comparison between the cable in the video footage (top) and the recon-
structed cable (bottom).
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4.5 Evaluation

In this section, the algorithm is evaluated quantitatively in the case of the synthetic

datasets and qualitatively for the real datasets.

4.5.1 Quantitative

The synthetic datasets are evaluated quantitatively by comparing the result with the

input. Since the cameras used to reconstruct the cable are the same ones used to create

the views, both, the input and the reconstructed output should be the same.

Both synthetic cables have a thickness of 1 cm. The result is evaluated by how much

the result cable differs from the input cable by averaging the distance from each vertex

of the output cable to the closest line segment of the input cable (fig. 4.12).

Figure 4.12: Quantitative evaluation. The error of the result (blue) is computed by
computing the distance from the vertices to the closest line segment in the input (red).

Poly-lines may be sampled differently.

Using this evaluation method, the cable with multiple crossings gave a difference of 3.74

mm which related to its thickness, gives an error of 3.74%. The second cable gave a

difference of 1.48 mm which related to its thickness, gives an error of 1.48%. Numerically,

the difference is very small.

This error can come from different sources. The biggest contribution comes from the

point cloud. The point cloud may contain points that do not belong to the cable and can

influence slightly where the centre of the cable is located. Also, during the simulation,

the system is set to prefer stiffness of the rod slightly over placing of the rod. The test

itself induces a bit of error, since it compares two rods which were built with different

sampling.

Qualitative results were given in figure 4.2 of section 4.1.
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4.5.2 Qualitative

The real datasets are evaluated qualitatively due to the lack of reference to compare

quantitatively. To evaluate these datasets, the resulting cable is put on top of the view

and it is measured visually.

Figure 4.13: The cable resembles topologically the original cable. The red cable is
the original cable as exposed in the images, and the blue cable is the reconstructed one.

Figure 4.14: The cable resembles topologically the original cable with the exception
of one junction area. The red cable is the original cable as exposed in the images, and

the blue cable is the reconstructed one.

Figure 4.15: The cable resembles topologically the original cable. The blue cable is
the original cable as exposed in the images, and the orange cable is the reconstructed

one.
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4.6 Comparison to L1-medial skeleton

Figure 4.16: Red cable result.

Figure 4.17: Red cable L1-medial skeleton (Huang et al. [7]). It can be observed how
one junction is completely lost while extracting the L1-medial skeleton of the red cable.

Figure 4.18: Blue cable result.

Figure 4.19: Blue cable L1-medial skeleton (Huang et al. [7]). In this example, some
loops are lost in the skeleton. Also, the junctions are misplaced.



Chapter 5

Conclusion

In this thesis, a method that reconstructs the geometry of tubular structures and estab-

lishes their topology from a given set of input images is proposed. First, for each image

the 2D topology of the tubular structure is reconstructed identifying the segments and

the junctions. This is achieved by a low-level image analysis. Then, the topological

information from all the images is fused into a volumetric grid which is the basis for

the reconstruction of the 3D structure. The final reconstruction uses physics simulation

to connect up the segments. This method is a first step towards robust reconstruction

of tubular objects, as those structures are notoriously difficult to reconstruct due to

their thin geometry and complex topology. As shown in the results section, this method

performs robustly if the segments are clearly visible in at least some views.

5.1 Limitations

As seen in the results chapter, this method performs well on a limited set of junction

types. The segmentation can also limit the quality of the end result and it can be

further improved. However, the most important limitation is that while many tubular

structures such as cables have uniform colour that can be used to solve the topological

inconsistencies, certain objects may exhibit a strong texture. A more complex texture

is more difficult to segment and also makes the gradient useless as it can not be longer

used to connect the paths. These limitations will be addressed in future work.

In detail, the proposed approach has the following limitations:

1. The algorithm fails when two sections of the cable overlap for a long region.

47









Bibliography

[1] Changchang Wu, J. Frahm, and M. Pollefeys. Repetition-based dense single-view

reconstruction. In Proceedings of the 2011 IEEE Conference on Computer Vi-

sion and Pattern Recognition, CVPR ’11, pages 3113–3120, Washington, DC, USA,

2011. IEEE Computer Society. ISBN 978-1-4577-0394-2. doi: 10.1109/CVPR.2011.

5995551. URL http://dx.doi.org/10.1109/CVPR.2011.5995551.

[2] Changchang Wu. Towards linear-time incremental structure from motion. In Pro-

ceedings of the 2013 International Conference on 3D Vision, 3DV ’13, pages 127–

134, Washington, DC, USA, 2013. IEEE Computer Society. ISBN 978-0-7695-5067-

1. doi: 10.1109/3DV.2013.25. URL http://dx.doi.org/10.1109/3DV.2013.25.

[3] Qian-Yi Zhou and Vladlen Koltun. Dense scene reconstruction with points of inter-

est. ACM Trans. Graph., 32(4):112:1–112:8, July 2013. ISSN 0730-0301. doi: 10.

1145/2461912.2461919. URL http://doi.acm.org/10.1145/2461912.2461919.

[4] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe,

Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,

and Andrew Fitzgibbon. Kinectfusion: Real-time 3d reconstruction and interaction

using a moving depth camera. In Proceedings of the 24th Annual ACM Symposium

on User Interface Software and Technology, UIST ’11, pages 559–568, New York,

NY, USA, 2011. ACM. ISBN 978-1-4503-0716-1. doi: 10.1145/2047196.2047270.

URL http://doi.acm.org/10.1145/2047196.2047270.

[5] Guo Li, Ligang Liu, Hanlin Zheng, and Niloy J. Mitra. Analysis, reconstruction

and manipulation using arterial snakes. ACM Trans. Graph., 29(6):152:1–152:10,

December 2010. ISSN 0730-0301. doi: 10.1145/1882261.1866178. URL http:

//doi.acm.org/10.1145/1882261.1866178.

[6] Andrea Tagliasacchi, Hao Zhang, and Daniel Cohen-Or. Curve skeleton extraction

from incomplete point cloud. ACM Trans. Graph., 28(3):71:1–71:9, July 2009. ISSN

0730-0301. doi: 10.1145/1531326.1531377. URL http://doi.acm.org/10.1145/

1531326.1531377.

51



Bibliography 52

[7] Hui Huang, Shihao Wu, Daniel Cohen-Or, Minglun Gong, Hao Zhang, Guiqing Li,

and Baoquan Chen. L1-medial skeleton of point cloud. ACM Trans. Graph., 32

(4):65:1–65:8, July 2013. ISSN 0730-0301. doi: 10.1145/2461912.2461913. URL

http://doi.acm.org/10.1145/2461912.2461913.

[8] R.J. Valkenburg and A.M. McIvor. Accurate 3d measurement using a structured

light system. Image and Vision Computing, 16:99–110, 1996.

[9] Brian Curless and Marc Levoy. A volumetric method for building complex models

from range images. In Proceedings of the 23rd Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH ’96, pages 303–312, New York,

NY, USA, 1996. ACM. ISBN 0-89791-746-4. doi: 10.1145/237170.237269. URL

http://doi.acm.org/10.1145/237170.237269.

[10] Liwen Hu, Chongyang Ma, Linjie Luo, and Hao Li. Robust hair capture using

simulated examples. ACM Trans. Graph., 33(4):126:1–126:10, July 2014. ISSN

0730-0301. doi: 10.1145/2601097.2601194. URL http://doi.acm.org/10.1145/

2601097.2601194.

[11] Yotam Livny, Feilong Yan, Matt Olson, Baoquan Chen, Hao Zhang, and Jihad El-

Sana. Automatic reconstruction of tree skeletal structures from point clouds. ACM

Trans. Graph., 29(6):151:1–151:8, December 2010. ISSN 0730-0301. doi: 10.1145/

1882261.1866177. URL http://doi.acm.org/10.1145/1882261.1866177.

[12] Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grin-

spun. Discrete elastic rods. ACM Trans. Graph., 27(3):63:1–63:12, August 2008.

ISSN 0730-0301. doi: 10.1145/1360612.1360662. URL http://doi.acm.org/10.

1145/1360612.1360662.

[13] Heiko Hirschmuller. Stereo processing by semiglobal matching and mutual infor-

mation. IEEE Trans. Pattern Anal. Mach. Intell., 30(2):328–341, February 2008.

ISSN 0162-8828. doi: 10.1109/TPAMI.2007.1166. URL http://dx.doi.org/10.

1109/TPAMI.2007.1166.

[14] Yasutaka Furukawa, Brian Curless, Steven M Seitz, and Richard Szeliski. To-

wards internet-scale multi-view stereo. In Computer Vision and Pattern Recognition

(CVPR), 2010 IEEE Conference on, pages 1434–1441. IEEE, 2010.

[15] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and robust multiview stere-

opsis. IEEE Trans. Pattern Anal. Mach. Intell., 32(8):1362–1376, August 2010.

ISSN 0162-8828. doi: 10.1109/TPAMI.2009.161. URL http://dx.doi.org/10.

1109/TPAMI.2009.161.



Bibliography 53

[16] Bo Li, Y. V. Venkatesh, Ashraf Kassim, and Yijuan Lu. Improving pmvs algorithm

for 3d scene reconstruction from sparse stereo pairs. In Proceedings of the 14th

Pacific-Rim Conference on Advances in Multimedia Information Processing &#151;

PCM 2013 - Volume 8294, pages 221–232, New York, NY, USA, 2013. Springer-

Verlag New York, Inc. ISBN 978-3-319-03730-1. doi: 10.1007/978-3-319-03731-8 21.

URL http://dx.doi.org/10.1007/978-3-319-03731-8_21.

[17] Yasutaka Furukawa and Jean Ponce. Accurate camera calibration from multi-view

stereo and bundle adjustment. Int. J. Comput. Vision, 84(3):257–268, September

2009. ISSN 0920-5691. doi: 10.1007/s11263-009-0232-2. URL http://dx.doi.

org/10.1007/s11263-009-0232-2.

[18] Maxime Lhuillier and Shuda Yu. Manifold surface reconstruction of an environment

from sparse structure-from-motion data. Comput. Vis. Image Underst., 117(11):

1628–1644, November 2013. ISSN 1077-3142. doi: 10.1016/j.cviu.2013.08.002. URL

http://dx.doi.org/10.1016/j.cviu.2013.08.002.

[19] Yi Xu and Daniel G. Aliaga. Robust pixel classification for 3d modeling with

structured light. In Proceedings of Graphics Interface 2007, GI ’07, pages 233–240,

New York, NY, USA, 2007. ACM. ISBN 978-1-56881-337-0. doi: 10.1145/1268517.

1268556. URL http://doi.acm.org/10.1145/1268517.1268556.

[20] Achraf Ben-Hamadou, Charles Soussen, Christian Daul, Walter Blondel, and Di-

dier Wolf. Flexible calibration of structured-light systems projecting point pat-

terns. Comput. Vis. Image Underst., 117(10):1468–1481, October 2013. ISSN

1077-3142. doi: 10.1016/j.cviu.2013.06.002. URL http://dx.doi.org/10.1016/

j.cviu.2013.06.002.

[21] Y. Yemez and C. J. Wetherilt. A volumetric fusion technique for surface recon-

struction from silhouettes and range data. Comput. Vis. Image Underst., 105

(1):30–41, January 2007. ISSN 1077-3142. doi: 10.1016/j.cviu.2006.07.008. URL

http://dx.doi.org/10.1016/j.cviu.2006.07.008.

[22] Peng Song, Xiaojun Wu, and Michael Yu Wang. Volumetric stereo and silhouette

fusion for image-based modeling. Vis. Comput., 26(12):1435–1450, December 2010.

ISSN 0178-2789. doi: 10.1007/s00371-010-0429-y. URL http://dx.doi.org/10.

1007/s00371-010-0429-y.

[23] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin,

and Claudio T. Silva. Point set surfaces. In Proceedings of the Conference on Visu-

alization ’01, VIS ’01, pages 21–28, Washington, DC, USA, 2001. IEEE Computer

Society. ISBN 0-7803-7200-X.



Bibliography 54

[24] In-Kwon Lee. Curve reconstruction from unorganized points. Comput. Aided Geom.

Des., 17(2):161–177, February 2000. ISSN 0167-8396. doi: 10.1016/S0167-8396(99)

00044-8. URL http://dx.doi.org/10.1016/S0167-8396(99)00044-8.

[25] Benjamin Ummenhofer and Thomas Brox. Point-based 3d reconstruction of thin

objects. In Proceedings of the 2013 IEEE International Conference on Computer

Vision, ICCV ’13, pages 969–976, Washington, DC, USA, 2013. IEEE Computer

Society. ISBN 978-1-4799-2840-8. doi: 10.1109/ICCV.2013.124. URL http://dx.

doi.org/10.1109/ICCV.2013.124.

[26] Chuan-Chu Kuo and Hong-Tzong Yau. A delaunay-based region-growing approach

to surface reconstruction from unorganized points. Comput. Aided Des., 37(8):

825–835, July 2005. ISSN 0010-4485. doi: 10.1016/j.cad.2004.09.011. URL http:

//dx.doi.org/10.1016/j.cad.2004.09.011.

[27] P. Alliez, D. Cohen-Steiner, Y. Tong, and M. Desbrun. Voronoi-based variational

reconstruction of unoriented point sets. In Proceedings of the Fifth Eurographics

Symposium on Geometry Processing, SGP ’07, pages 39–48, Aire-la-Ville, Switzer-

land, Switzerland, 2007. Eurographics Association. ISBN 978-3-905673-46-3.

[28] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface recon-

struction. In Proceedings of the Fourth Eurographics Symposium on Geometry

Processing, SGP ’06, pages 61–70, Aire-la-Ville, Switzerland, Switzerland, 2006.

Eurographics Association. ISBN 3-905673-36-3.

[29] Kun Zhou, Jin Huang, John Snyder, Xinguo Liu, Hujun Bao, Baining Guo, and

Heung-Yeung Shum. Large mesh deformation using the volumetric graph laplacian.

ACM Trans. Graph., 24(3):496–503, July 2005. ISSN 0730-0301. doi: 10.1145/

1073204.1073219. URL http://doi.acm.org/10.1145/1073204.1073219.

[30] Gregory M. Nielson. Dual marching cubes. In Proceedings of the Conference on

Visualization ’04, VIS ’04, pages 489–496, Washington, DC, USA, 2004. IEEE

Computer Society. ISBN 0-7803-8788-0. doi: 10.1109/VISUAL.2004.28. URL

http://dx.doi.org/10.1109/VISUAL.2004.28.


