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Abstract

Broadcasting in Harary Graphs

Shreelekha Tanna

With the increasing popularity of interconnection networks, efficient information dissemination has

become a popular research area. Broadcasting is one of the information dissemination primitives.

Broadcasting in a graph is the process of transmitting a message from one vertex, the originator, to

all other vertices of the graph. We follow the classical model for broadcasting.

This thesis studies the Harary graph in depth. First, we find the diameter of Harary graph. We

present an additive approximation algorithm for the broadcast problem in Harary graph. We also

provide some properties for the graph like vertex transitivity, circulant graph and regularity.

In the next part we introduce modified harary graph. We calculate the diameter and broadcast

time for the graph. We will also provide 1-additive approximation algorithm to find the broadcast

time in the modified harary graph.
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Chapter 1

Introduction

The need for high performance computing is constantly increasing. Examples of applications which

require high performance computing are medical imaging, financial trading, data warehousing, bio-

science, data security and many more. Parallelism where more than one processors work on solving

the problem, has been employed for many years in high performance computing. One of the most

common model for parallel computing is MIMD(Multiple Instruction and Multiple Data) which is

referred as multicomputers or multiprocessors. The different processors working in parallel will re-

quire to exchange data with each other. This can be either done by shared memory or through

an interconnection network. Shared memory multicomputers have a limitation on the number of

processors that can be connected together. Thus, it is more practical if processors, which have their

own memory, communicate with each other through an interconnection network. The performance

of multicomputers depends not only on the processing power but also on the performance of the

interconnection network in terms of information dissemination. To improve the performance of the

interconnection network, structural properties like ease of routing, fault tolerance, cost, etc. must

be taken into account.

Our main interest in harary graph lies in the role they play in design of networks. In this context,

connectivity is of interest as a measure of reliability, while diameter is the measure of transmission
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delay. Hence given certain parameters for graph, we will be interested in maximizing the connectivity

and minimizing the diameter of the graph. As well as from the expense point of view, it is more

practical to keep the links of the network to a minimum.

Models of Broadcasting

The distribution of information can be classified into four main classes:

• Routing, distribute information from one to one;

• Broadcasting, distribute information from one to all;

• Multi-casting, distribute information from one to multiple, but not all;

• Gossiping, distribute information from all to all.

Broadcasting is the problem of information dissemination in which one message needs to be trans-

mitted to the group of nodes connected by an interconnection network [36]. This problem finds

applications in areas such as fixed and mobile networks, internet messaging, supercomputing, mul-

timedia, epidemic algorithms, replicated databases, etc. Broadcasting is assumer to take place in

distinct time units. Each time unit is called a round. During each round, a series of calls, i.e.

message-exchanging takes place between adjacent vertices in parallel. The total number of rounds

after which all nodes of the network are informed is used to measure the broadcast time.

To simplify the analysis of broadcast process, we assume that broadcasting is done according to

the following constraints. This broadcast model is known as the classical or original model.

• Each call requires one unit of time, i.e. one round.

• A vertex can participate in only one call per time unit.

• Each call involves only one informed vertex and one of its uninformed neighbors.

• In one unit of time, many calls can be performed in parallel.
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Initially, only one vertex u, called the originator, is informed. During each round, all informed

vertices will send information to one of their uninformed adjacent vertices. A call is the process of

transferring information from informed node to an uninformed neighbor.

A broadcast scheme of an originator u is a sequence of parallel calls that completes broadcasting in

the network originated at u. An optimal broadcast scheme informs all the vertices in the minimum

number of time units.

In general, any interconnection network can be represented as a connected graph G(V,E). Here

the vertices V represent the nodes or the processors inside interconnection network, and the edges E

represents the communication links between the processors. Next paragraph presents some of graph

theoretic definitions that are used in the rest of this thesis.

Given a graph G = (V,E) and originator u ∈ V (G), The broadcast time of u which is represented

by b(u) or b(u,G), is the minimum required time to finish broadcasting from u.The broadcast time

of graph G, is denoted as b(G) is defined as b(G) = max{b(u) | u ∈ V }. The broadcast center of

the given graph G = (V,E), denoted BC(G), is defined as BC(G) = {v | v ∈ V, b(v,G) = bmin(G)}.

Thus, BC(G) is the set of vertices in G, with the smallest broadcast time.

A vertex v ∈ V is said to be a neighbor of u ∈ V , if there exists an edge e ∈ E between u and

v such that e = (v, u). A path between two vertices is the sequence of edges that connect the two

vertices together. The distance between two vertices u and v, d(u, v) is the length of the shortest

path between the two vertices. The diameter of a graph G, denoted by D(G), is the longest distance

between any pair of vertices in the graph. A graph G is called a connected graph, if there exists

at least one path between any pair of vertices of graph G. The degree of vertex v, δ(v), in an

undirected graph G(V,E), is the number of neighbors that v have. The degree of G(V,E), Δ(G), is

the maximum degree of its vertices, Δ(G) = maxv∈V {δ(v)}. Let V (G) be the vertex set of a simple

graph G and E(G) its edge set. Then a graph isomorphism from a simple graph G to a simple
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graph H is a bijection f : V (G) → V (H) such that u, v ∈ E(G) if and only if f(u)f(v) ∈ E(H). An

automorphism of a graph is a graph isomorphism with itself, i.e., a mapping from the vertices of the

given graph G back to vertices of G such that the resulting graph is isomorphic with G. A graph

G(V,E) is called vertex transitive if for any two vertices u, v ∈ V there is an automorphism of G

mapping u to v. For all other definitions of graph theoretic terms refer to [61].

Finding the broadcast time of a given vertex in random graph is proved to be NP-complete in [59].

The proof used a reduction of the three-dimensional matching (3DM) problem to the broadcast time

problem. In [54] it is shown that the broadcast time problem remains NP-complete even for regular

planar graphs of degree 3. The minimum broadcast time problem is addressed by many different

approximation algorithms and heuristics with reasonably good proximities and running times.

Only for very few graph families, an algorithm for the broadcast time problem with a polynomial

time complexity is known. An algorithm with linear time complexity for the exact solution of the

broadcast time problem in trees is presented by Slater, Cocakyne and Hedetniemi in [59]. Their

algorithm finds in linear time the broadcast center of the given tree, and using it, determines the

broadcast times of all vertices of the tree. In [60] Proskurowski suggested another linear time algo-

rithm for the same problem, which without finding the broadcast center, determines the broadcast

time of a vertex in a tree. A linear time algorithm is also known for the unicyclic graphs (connected

graphs with only one cycle) [33, 34]. Algorithms for the exact solution of the broadcast time problem

for a few other tree-like graph families are presented in [52].

In the literature, there are two main broadcasting problem. The first one, called the minimum

broadcast time problem, can be described as follows: given an originator u, find a broadcast scheme

such that the time required to transmit information inside graph G is minimized. It is easy to

conclude that for any vertex u in connected graph G with n vertices, �log n� ≤ b(u) ≤ n − 1, since

during each time unit, number of informed vertices can at most doubled.
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The second one called, minimum broadcast graph problem, can be defined as follows: find a

network architecture on n vertices with broadcast time �log n� and a minimum number of edges.

Clearly the answer to above problems is highly dependent on the model of communication used.

At the communication link level, there are two models discussed in literature [36]:

• One way mode - also called telegraph mode or half duplex. In this mode, one link many be

used in only one direction during a communication process involving two adjacent nodes. This

process can be modeled using directed graphs as the underlying topology.

• Two way mode - also called telephone mode or full-duplex. In this mode, one link may be

used in both direction during a communication process involving two adjacent nodes. This

process can be modeled using undirected graphs as the underlying topology.

Following [15], communication in interconnection networks can be classified based on the ability

of the vertices to communicate simultaneously with their neighbors:

• Processor bound: also called 1-port or whispering, in which a vertex can communicate only

with one neighbor at a time.

• Link-bound: also called n-port or shouting, in which a vertex can call all its neighbors

simultaneously.

Here we have to mention k-broadcasting which is a model of broadcasting that fits between the

two above-mentioned models. Some authors also refer to it as c-broadcasting [19, 46, 45, 65]. In this

model, a vertex can call simultaneously up to k of its neighbors. A considerable amount of literature

[42, 26, 25, 27, 28, 64] is dedicated to this model which is useful to the study of DMA-bound system

[44] or on computing functions in network [3, 7].

Another issue in characterizing communication in networks in the necessary time for a message

to be prepared, to travel along an edge, and to be received. There are two widely used models

addressing this issue:
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• The constant model, in which the time needed to transmit and receive a message is constant,

T = const.

• The linear model, in which the time needed to communicate is modeled as T = β+Lτ where

β is the cost of preparing the message, L the length of the message, and τ the propagation

time of a data unit length.

Using different assumption regarding the communication model employed, other broadcasting

models have been developed and analyzed:

• Broadcasting with universal lists

In broadcasting with universal lists, also known as orderly broadcasting, a (universal) broadcast-

ing scheme is a function of assigning a single ordered list of its neighbors, called the universal

list, to every node. The list is determined regardless of source and the node will transmit the

received message in the order of the list.

This model has two versions: adaptive and nonadaptive. In the adaptive version, each

informed vertex tracks the vertices from which it receives the message. During sending the

message, it skips them from its universal list. In the nonadaptive version an informed vertex

does not know from which neighbor the message comes from. It sends the message to all of its

neighbors.

The adaptive model of broadcasting with universal lists was introduced in [62] where the

broadcasting in trees under this model was studied. In [11, 12], authors introduced the non-

adaptive model of broadcasting with universal lists. They studied both adaptive and non-

adaptive models in trees, rings, grids, toruses and complete graphs. An upper bound on

nonadaptive broadcast time for two dimensional tori is presented in [35], where this broadcast

model was studied under the name orderly broadcasting. In [40] the nonadaptive version of
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this model was studied in paths, complete k-ary trees, grids, complete graphs, and hypercubes.

The nonadaptive broadcasting g in trees was recently studied in [32].

• Messy broadcasting

The messy broadcasting model was introduced in [2]. The main difference of this model, from

the classical model, is that here the protocols of nodes are not coordinated. In this model,

a node knows nothing about the topology of the network or the broadcast originator. The

behavior of a node only depends on its all or some neighbors. Depending on the amount of

information available for each node about its neighbors, 3 sub models were considered. Below,

these sub models are listed in the decreasing order of information available in each node.

– Model M1 : Each node knows the state of its all neighbors, i.e which are informed and

which are not. Using this information, in each time unit, an informed node sends the

message to one of its uninformed neighbors.

– Model M2 : Each node keeps a list of all neighbors from which it received a message or

sent a message. In each time unit, it sends the message to a neighbor not present in the

list.

– Model M3 : Each node keeps a list of all neighbors to which it sent a message. In each

time unit, it sends the message to a neighbor not present in the list.

We note that in M2 and M3 models, a node may send a message to a node which is already

informed. This is a price paid for the simplicity of the broadcast protocols.

The exact values for the worst-case broadcast time of various graphs such as complete

graphs, paths, cycles, and complete d-ary trees for all three sub models are presented in [31].

More recent results are presented in [30] . The exact values of the worst-case broadcast time

in M1 and M2 models and bounds in M3 model are given for the hypercube. In [10, 24]

multidimensional directed tori and complete bipartite graphs are studied. The average-case
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broadcast time of stars (claws), paths, cycles, complete d-ary trees and hypercubes are studied

in [47].

The same model under the name broadcasting in unknown networks is studied in [18]. Very

similar model with a limited knowledge of the network topology is studied in [53], where a

vertex knows the topology of the network only within knowledge radius r from it.

• Radio broadcasting

In the radio broadcasting model, an informed vertex in each time unit can send the message

to all its neighbors simultaneously. Note that a vertex cannot send the message to a strict

subset of its neighbors. A vertex is considered as informed if it receives the messages from

precisely one neighbor in a certain time unit. The intuition behind this constraint is that a

message received from more than one neighbor in the same time unit gets corrupted. There is

a considerable amount of literature regarding this model.

• Fault-tolerant broadcasting

The fault-tolerant communication is a huge area of research. It is assumed that the nodes

and/or links of the network are not reliable. A faulty link may stop transmit messages and a

faulty node may stop to send or receive messages. Numbers of results are presented specially

for broadcasting and gossiping in faulty networks.

The fault-tolerant broadcasting model was introduced in [48], where the k-tolerant broadcast

function Bk(n) is defined. Bk(n) is the minimum number of links in a network supporting

k-tolerant broadcasting from any originator in theoretical smallest possible time. This research

was continued in [9].

In [1], the minimal k-fault tolerant broadcast graphs were studied. Authors generalize the

minimum broadcast graph problem. They study the networks where up to k links may fail,

but any originator still must be able to complete the broadcasting in optimal time.
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The survey article [58] provides detailed overview of the fault-tolerant communication prob-

lem in the context of broadcasting and gossiping. Large source of information about broad-

casting and related problems can be found in [37].
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Chapter 2

Literature Review

First section of this chapter briefly reviews the commonly used interconnection topologies. A topol-

ogy is a schematic or geometric description of the arrangement of an interconnected network (graph),

including its processors (vertices) and connecting links (edges). Section 2.2 describes broadcast graph

problem and lists currently known values of broadcast functions.

2.1 Commonly used Topologies

This section reviews the commonly used topologies on basis of three important communication

parameters: (i) the degree, (ii) the diameter, and (iii) the broadcast time. Table 2.1 summarizes

properties of all the topologies. It also includes number of vertices and edges in respective topologies.

The path Pn is a tree with two end nodes of vertex degree 1, and the remaining n − 2 nodes

of vertex degree 2, thus the maximum degree of Pn is 2. The D(Pn) = b(Pn) = n − 1. A path is

therefore a graph that can be drawn so that all of its vertices and edges lie on a single straight line.

Figure 1 shows a path with seven vertices, where D(P7) = b(P7) = 6.

10



Figure 1: The Path graph for n = 6

The Cycle Cn

Cycle Cn, n ≥ 3, is a simple graph with vertices v1, . . . , vn and edges {v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1}.

In other words cycle Cn is a path such that the start vertex and end vertex are also connected by

an edge. Cn has n vertices and the maximum degree is 2. The D(Cn) = 	n
2 
 and the b(Cn) = �n

2 �.

Figure 2 demonstrates C4 and C6, where the diameter and broadcast time of C4 is 2 and that of C6

is 3.

Figure 2: The Cycle graph for n = 4 and n = 6.

The Complete graph Kn

A complete graph Kn is a simple graph with exactly one edge between any pair of distinct vertices.

Kn has n vertices and degree n − 1. The diameter of Kn is 1. Kn is a broadcast graph because

during each time unit the number of informed vertices is doubled, thus b(Kn) = �log2 n�. Figure 3

demonstrates K4 and K6, where the broadcast time of K4 is 2 and that of K6 is 3.
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Figure 3: The Complete graph for n = 4 and n = 6.

The Hypercube Hn

The hypercube of dimension n, denoted by Hn, is a simple graph with vertices representing 2n bit

strings of length n, n ≥ 1 such that adjacent vertices have bit strings differing in exactly one bit

position. Hn has 2n vertices and n · 2n − 1 edges. The diameter of Hn is n and each vertex has

exactly degree n. As illustrated in Figure 4 (n+1)-dimensional hypercube can be constructed from

two n−dimensional hypercubes by connecting each pair of the corresponding vertices. Hn is the

minimum broadcast graph. The b(Hn) = �log2 2n� = n.

The Cube-Connected Cycles CCCn

CCCn is a modification of the hypercube Hn by replacing each vertex of the hypercube with a cycle

of n vertices. The ith dimensional edge incident to a node of the hyper-node is then connected to

the ith node of corresponding cycle of the CCCn. Thus, CCCn has n · 2n nodes and the maximum

degree is 3. The D(CCCn) = 2n+ �n
2 � − 2. The b(CCCn) = � 5n

2 � − 1, first every informed vertex

sends the message to the hypercube neighbor, then to the right neighbor on the ring, and finally to

the left one. Figure 5 shows a 3-dimensional cube connected cycle.

The Shuffle-Exchange SEn

SEn is the graph whose vertices can be represented by binary strings of length n. Each edge of

SEn connects vertex βa, where β is a binary string of length n − 1 and a is in {0, 1}, with vertex

12



Figure 4: The Hypercube graphs

βc and vertex βa, where c is the binary complement of a. SEn has 2n vertices and the maximum

degree is 3. The D(SEn)=2n − 1 and it is provided that b(SEn) ≤ 2n − 1. Figure 6 represents a

Shuffle-Exchange graph SE3.

The DeBruijn DBn

DBn is the graph, whose nodes can be represented by binary strings of length n and whose edges

connect each string βa, where β is a binary string of length n − 1 and a is in {0, 1}, with the

strings βb, where b is a symbol in {0, 1}. DBn has 2n vertices with the maximum degree 4 and the

diameter is n. [57] provides the lower bound b(DBn) ≥ 1.3171n, and [5] proves the upper bound,

b(DBn) ≤ 1.5n+ 1.5. Figure 7 illustrates a DeBruijn graph of dimension 3.

13



Figure 5: The CCC3

Figure 6: Shuffle Exchange Graph SE3

The d-Grid G[a1 × a2 × · · · × ad]

The d-dimensional grid (or mesh) is the graph whose nodes are all d-tuples of positive integers

(z1, z2, . . . , zd), where 0 ≤ zi < ai for all i(1 ≤ i ≤ d), and whose edges connect d -tuples, which

differ in exactly by coordinate one. For example, in G[3, 3], vertex (1, 1) is connected to vertices

(0, 1), (2, 1), (1, 0) and (1, 2). G[a1 × a2 × · · · × ad] has a1 × a2 × · · · × ad vertices with the maximum

degree 2d, if each ai is at least 3. The diameter of d-Grid G[a1 × a2 × · · · × ad] is (a1 − 1) + (a2−

1) + · · ·+ (ad − 1) and [reference] provides the b(G[a1 × a2])=a1 + a2 − 2. Figure 8 shows a 2-Grid

graph G[4× 5].
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Figure 7: DeBruijn Graph DB3

Figure 8: 2- Grid graph G[4× 5]

The d-Torus T

A d-Torus graph is a d-grid graph with both ends of rows and columns connected. T [a1×a2×· · ·×ad]

denotes the d-Torus graph. The diameter of k × k X-Torus is given in [reference], that is 	k
2 
+ 1 if

k is odd, and 	k
2 
 if k is even. It is proven in [reference] that the optimal broadcast time of 2-Torus

graph is �a1

2 �+ �a2

2 �, when a1 or a2 is even; and it is �a1

2 �+ �a2

2 � − 1 when both a1 and a2 are odd.

The bounds on the broadcast time of Torus are D ≤ b(T [a1 × a2 × · · · × ad]) ≤ D + max(0,m− 1),

where D =
∑d

i=1 ai − d, and m is the number of odd ai. Figure 9 shows a 2-Torus graph T [4× 3].
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Figure 9: 2-Torus graph T [4× 3]

Recursive Circulant graph RC(n, d)

The recursive circulant graph RC(N, d) is introduced by Park and Chwa [56]. We define the recursive

circulant graph RC(N, d) = (V,E) with d ≥ 2, to be a graph where, V = 0, 1, . . . , n− 1, and the

edge set E = {uv|∃i, 0 ≤ i ≤ �log(n)� − 1, such that u + di ≡ v(mod n)}. RC(N, d) has recursive

structure when N = cdm, 1 ≤ c < d. The [reference] provides the diameter as follows: if d is

odd, D(RC(cdm, d)) = 	d
2
m + 	 c

2
. When d is even and c is odd, the diameter is �d−1
2 �m + 	 c

2


Finally, when both d and c are even, the diameter is 	d−1
2 
m+ 	 c

2
. RC(2m, 4), whose degree is m,

compares favorably to the hypercube Hm. RC(2m, 4) has the maximum possible connectivity, and

its diameter is � 3m−1
4 �. The broadcast time of RC(2m, 4) is m. Figure 10 shows the two recursive

circulant graphs, RC(8, 4) and RC(16, 4).
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Figure 10: Recursive Circulant graphs G(8, 4) and G(16, 4)

Graph Vertices Edges Diameter Degree b(G)

Pn(n ≥ 3) n n− 1 n 2 n− 1

Cn(n ≥ 3) n n 	n
2 
 2 �n

2 �

Kn n n(n−1)
2 1 n− 1 �log2 n�

Hd 2d d · 2d−1 d d d

T (n1, . . . , nd)
∏d

i=1 ni d
∏d

i=1 ni

∑d
i=1	ni

2 
 2d
∑d

i=1	ni

2 
 ≤ D ≤ ∑d
i=1	ni

2 
 +

max{0,∑d
i=1 ni mod 2 -1 }. [16]

G(n1, . . . , nd)
∏d

i=1 ni

∏d
i=1(ni − 1)

∑d
i=1 ni − d 2d

∑d
i=1 ni − d. [14]

CCCn n · 2n 3n · 2n−1 	 5n
2 
 − 2 3 	 5n

2 
 − 2. [49]

DBn 2n 2n+1 n 4 1.3171n ≤ D(DBn) ≤ 3
2 (n+ 1)

SEn 2n 3 · 2n−1 2n− 1 3 2n− 1

RC(2m, 4) 2m m · 2m−1 � 3m−1
4 � m m

Table 1: Properties of the commonly used topologies
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2.2 Broadcast graph problem

A broadcast graph is a connected graph on n vertices such that b(G) = �log n�. A minimum broadcast

graph on n vertices is a broadcast graph with the minimum number of edges over all broadcast graphs

on n vertices. This minimum number of edges is denoted B(n). There has been significant research

on the problem of finding minimum broadcast graphs. Finding B(n) is not easy even for small values

of n. The exct value of B(n) is known mostly for small values of n. Only three non isomorphic

infinite graph families are known as minimum broadcast graphs. These families are the hypercube

of dimension k [13], the recursive circulant graph G(2k, 4) [56] and Knödel graph Wk,2k [41].

To determine the value of B(n), we need to find a solution of the corresponding MBG problem,

which means that determining B(n) is a difficult problem.

The value of the broadcast function, obtained by the above mentioned three graph families is:

B(2k) = k · 2k−1,

B(2k − 2) = (k − 1) · (2k−1 − 1)

For some small values of n, specially constructed minimum broadcast graphs are also known.

Figure 11 illustrates minimum broadcast graphs for 2 ≤ n ≤ 15 from [14]. All the currently known

values of B(n) and the corresponding references are presented in Table 1.

Since it is extremely difficult to find the exact values of the broadcast function, a considerable

effort has been made on finding tight upper and lower bounds on B(n). Usually to get an upper

bound on B(n) we should construct a broadcast graph on n vertices and pick the number of its

edges. For a lower bound we should use the graph-theoretic properties of the minimum broadcast

graphs, e.g. the minimum possible vertex degree and derive from them a lower bound on its number

of edges.
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n B(n) Ref.

1 0 [14]

2 1 [14]

3 2 [14]

4 4 [14]

5 5 [14]

6 6 [14]

7 8 [14]

9 10 [14]

10 12 [14]

11 13 [14]

12 15 [14]

13 18 [14]

14 21 [14]

15 24 [14]

17 22 [55]

18 23 [38, 68]

19 25 [38, 68]

20 26 [51]

21 28 [51]

22 31 [51]

23 33 or 34 [8, 51]

24 35 or 36 [17, 38]

25 38, 39 or 40 [17, 38]

26 42 [63, 69]

27 44 [63]

28 48 [63]

29 52 [63]

30 60 [38]

31 65 [38]

58 121 [63]

59 124 [63]

60 130 [63]

61 136 [63]

63 162 [43]

127 389 [29]

1023 4650 [64]

4095 22680 [64]

2p p2p1 [14, 41, 56]

2p2 (p1)(2p11) [50, 39]

Table 2: Known values of broadcast function B(n).
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Figure 11: Minimum broadcast graphs for 7 ≤ n ≤ 15.
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Chapter 3

New Results on Harary Graph

The first section of this chapter defines Harary graphs and describes some properties of the graphs.

After that each section describes different case of Harary graphs. Each section is divided in two

parts. In the first part we calculate the diameter of respective graph and second part describes

broadcast scheme, which will help to find the upper bound on the broadcast time of respective

graph.

3.1 Harary Graph

We are always interested in maximizing connectivity to make network more reliable. Along with

that we are also interested to minimize the number of edges to reduce the cost of network. Therefore

we always try to balance both factors cost and reliability.

In general, as the connectivity of graph increases, number of edges increases. F. Harary intro-

duced Harary graph Hk,n in 1962 [22]. It is a k-connected graph on n vertices has degree at least k

and �kn
2 � edges.

The structure of Hk,n depends on the parities of k and n.
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Classification of Harary Graph

Harary graph Hk,n, given 1 < k < n, can be constructed by placing n vertices around the circle,

equally spaced, and joining them based on the parities of k and n.

There are three different cases as mentioned below:

Case 1: k even

Form Hk,n by joining each vertex to its adjacent k
2 neighbors in each direction around the circle

[66]. Graph H4,8 is shown in Figure 12 .

Figure 12: Graph H4,8

As we can see in Figure 12, each vertex is connected to its k
2 neighbors in both directions.

Therefore, vertices {i, i+1, . . . , i+ k
2 }and {i, i− 1, . . . , ı− k

2 } form clique in clockwise and counter-

clockwise directions respectively. There are many cliques in Harary graph. In fact, from every vertex

there is a clique in each direction.

Case 2: k odd, n even

Let k = 2r + 1. Then H2r+1,n is constructed by first drawing H2r,n and then adding edges joining

vertex i to i+ n
2 for 1 ≤ i ≤ n

2 [66]. Figure 13 shows H5,8. In graph H5,8, every vertex is connected

to its k−1
2 neighbors. Therefore vertices between i to i+ k−1

2 form a clique.
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Figure 13: Graph H5,8

Case 3: k odd, n odd

Let k = 2r + 1. then H2r+1,n is constructed by first drawing H2r,n and then adding edges joining

vertex 0 to vertices n−1
2 and n+1

2 and vertex i to vertex i+ n+1
2 for 1 ≤ i < n−1

2 [66]. H5,9 is shown

in Figure 14.

Figure 14: Graph H5,9

In figure 14 each vertex is connected to its k−1
2 neighbors which forming a clique with vertices i

to i + k−1
2 . Vertex 0 is connected to k−1

2 neighbors in both directions and to the vertices n−1
2 and

n+1
2 . Therefore, the degree of vertex 0 is k + 1, while degree of any other vertex is k.

Properties of Harary graph

• Harary graph Hk,n is vertex transitive except for both n and k are odd.

• Harary graph Hk,n with k or n even is circulant graph, which implies that it is regular.
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• Harary graph Hk,n has �kn
2 � edges.

• In third case when both n and k are odd, all the vertices have degree k except one vertex

which has degree k + 1 .

• Harary graph Hn−1,n gives complete graph Kn, and H2,n gives cycle Cn.

Theorem 3.1.1 Harary graph Hk,n with n or k even is vertex transitive .

Proof A graph is vertex transitive, if for any two vertices u and v there exists some automorphism

mapping u to v. Define the family of functions f(u) = u+α where α can be any integer other than

0. Let i and j be any two vertices. The automorphism satisfying f(i) = j is f(u) = u + (j − i).

Applying this function on any two vertices x and y, we get f(x) = x + j − i and f(y) = y + j − i.

(f(x), f(y)) will be an edge only if f(y) = f(x) ± m where l = 0, ..., n − 1. Here when k is even,

m ∈ {(l− k
2 ) mod n, (l+ k

2 ) mod n} and when k is odd and n is even, m ∈ {(l− k−1
2 ) mod n, (l+ k−1

2 )

mod n}∪{l+ n
2 }. Substituting the values of the functions, we get y+ b−a = x+ b− 1±m which is

equivalent to y = x±m. Which means that transformed vertices will be adjacent only if the original

ones were too. Thus, the suggested family of function preserves the structure of the graph. Hence

there is an automorphism.

Theorem 3.1.2 proves that Harary graph achieves the smallest possible number of edges. This is

proved in [67] for the case when k is even. For completeness we will present the proofs for all cases.

Theorem 3.1.2 κ(Hk,n) = k, and hence the minimum number of edges in k-connected graph on n

vertices is �kn
2 �.

Proof Case 1: k is even k = 2r, Let G = Hk,n. Since δ(G) = k, it suffices to prove κ(G) ≥ k.

For S ⊆ V (G) with | S |< k, we prove that G − S is connected. Consider u, v ∈ V (G) − S. The

original circular arrangement has a clockwise u, v - path and a counterclockwise u, v - path along

the circle; let A and B be the sets of internal vertices on these two paths.

Since | S |< k, the pigeonhole principle implies that in one of {A,B}, S has fewer than k
2

vertices. Since in G each vertex has edges to the next k
2 vertices in each direction, deleting fewer
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than k
2 consecutive vertices cannot block travel in that direction. Thus we can find a u, v-path in

G− S via the set A or B in which S has fewer than k
2 vertices.

Case 2: k is odd For n > k = 2r + 1 and r ≥ 1, we show that the Harary graph Hk,n is

k-connected. The graph consists of n vertices v0, ..., vn−1 spaced equally around a circle, with each

vertex adjacent to the r nearest vertices in each direction, plus the “special” edges (vi, v(i+ �n
2 �)) .

When n is odd, v�n
2 � has two incident special edges.

To prove that κ(G) = k, consider a separating set S. Since G − S is disconnected, there are

nonadjacent vertices x and y such that every x, y-path passes through S. Let C(u, v) denote the

vertices encountered when moving from u to v clockwise along the circle (except u and v). The

cut S must contain r consecutive vertices from each of C(x, y) and C(y, x) in order to break every

x, y-path(otherwise one could start at x and always take a step in the direction of y). Hence | S |≥ k

unless S contains exactly r consecutive vertices in each of C(x, y) and C(y, x).

In this case, we claim that there remains an x, y-path using a special edge involving x or y. Let

x′ and y′ be the neighbors of x and y along the special edges, using v0 as the neighbor when one of

these is v�n
2 �. Label x and y so that C(x, y) is smaller than Cy, x (diametrically opposite vertices

require n even and are adjacent). Note that | C(x′, y′) |≥| C(x, y) | −1 (the two sets has different

sizes when n is odd if x = vi and y = vj) with 0 ≤ j < �n
2 � ≤ i ≤ n − 1. Because | C(x, y) |≥ r,

we have | C(x′, y′) |≥ r − 1. Therefore, when we delete r consecutive vertices from C(y, x), all of

C(y, x′) ∪ {x′} or {y′} ∪ C(y′, x) remains. Therefore at least one of the two x, y-paths with these

sets as internal vertices remains in G− S.

Theorem 3.1.3 The graph Hk,n with n or k even is circulant graph.

Proof There are two conditions which needs to be satisfied in order to prove if the graph is Circulant.

First, a circulant graph is a graph of n vertices in which each vertex u is adjacent to the vertices

(u + v) and (u − v) for each v in a list l. Second, a graph G is a circulant iff the automorphism

group of G contains at least one permutation consisting of a minimal cycle of length | V (G) |. To

show that MHk,n is circulant, we will prove that it satisfies these two conditions.
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As described in section 3.1 , each vertex u in Hk,n is connected to vertices u+ k
2 and u− k

2 where

u = {0, . . . , n− 1} when k is even. When k is odd and n is even, each vertex is connected to vertices

u+ k
2 , u− k

2 and u+ n
2 .Which satisfies the first condition.

Now as we described before, each vertex u in Hk,n is adjacent to vertices u+ r and u− r where

u = {0, . . . , n−1} and r = { 1, . . . , k
2 } when k is even or r = { 1, . . . , k−1

2 } ∪{u+ n
2 } when k is odd.

Here if we take r = 1, then vertex u is connected to vertices u+1 and u−1. Let’s take automorphism

group where vertex u is connected to node u + 1. As proved in theorem 4.1.1 that Hk,n is vertex

transitive, we will start from node 0 and traverse through vertices in clockwise direction.

0 → 1 → . . . → u → (u+ 1) → . . . → (n− 1) → 0

As vertex 0 repeats in above path, there is a cycle consisting of vertices 0, . . . n − 1. Thus, the

automorphism group has cycle of length | V (G) |. This satisfies the second condition. Hence Hk,n

is circulant graph.

Third case of Harary graph is not a vertex transitive graph. Thus, it cannot be a circulant graph.

3.2 Hk,n with k even

H6,20 is the example of the first case which is shown in Figure 15. Since Hk,n is circulant graph,

it is vertex transitive. Therefore, it is easy to consider vertex 0 as originator. As we already know,

from every vertex v starts a clique in each direction. It is graphically convenient to consider cliques

as shown in Figure 16 for simplicity.

Since for every vertex i, where i ∈ {0, . . . , (n − 1) mod n}, there are two cliques in Hk,n formed

by the set of vertices V1 and V2, then from i we can visit vertices (i + 1) mod n,. . . ,(i + k
2 ) mod n

and (i− 1) mod n,. . . ,(i− k
2 ) in just one time unit. From node i if we visit node (i+ k

2 ) mod n or

(i− k
2 ) mod n, then it is called a city-tour, otherwise it is called a village-tour.

Lemma 3.2.1 To find the shortest distance between any pair of vertices in the Harary graph Hk,n,

it is always optional to first take the city-tours as much as possible.
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Figure 15: Example Graph H6,20 of first case

Proof: Let us consider the pair of vertices be 0 and X. Let us assume a scheme Su where we have

taken maximum possible city-tours from 0 in order to reach vertex X. In one city-tour we can cover

	k
2 
 vertices. Thus we can have at most 	 2X

k 
 city-tours. From there at most one village-tour will

take us to vertex X. Hence, distSu
(0, X) = � 2X

k �.

Let us consider another scheme Sv, where after m city-tours from vertex 0, where m < 	 2X
k 
,

there is a village-tour which covers c vertices and c < 	k
2 
. Then after m + 1 passes, the vertices

still need to be covered are X − mk
2 − c. If the remaining are all city-tours then distSv

(0, X) =

m + 1 + �X−mk
2 −c
k
2

� = � 2X+k−2c
k ≥� 2X

k (as c < 	k
2 
)= distSv (0, X). Now we apply the method of

induction.

The base case, when there is only one village-tour before we have completed the maximum possible

city-tours has been shown to be true for t such village-tours and let in total ct vertices are being

covered in t village tours. Similarly, we can claim distSv(0, X) = m+t+�X−mk/2−ct
k/2 � ≥ distSu

(0, X)

is true. We are now going to consider the case for t + 1 village-tours. Let us assume in the

(t + 1)th village-tour ct+1 vertices will be covered and ct+1 < k
2 . Then, distSv(t+1)

(0, X) = m +

t + 1 + �X−mk/2−ct−ct+1

k/2 � = m + t + �X−mk/2−ct
k/2 � + (1 − ct+1

k/2 ) = distSv(t)
(0, X) + (1 − ct+1

k/2 ) ≥

distSu
(0, X) + (1 − ct+1

k/2 ). Now, 1 − ct+1

k/2 > 0 as ct+1 < k
2 . Thus, distsv(t+1)

(0, X) = distSu
(0, X).
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3.2.1 Diameter

A shortest u−v (where u, v ∈ G) path is often called a geodesic. The diameter D(G) of a connected

graph G is the length of any longest geodesic [23]. A clique starts from every vertex in each direction.

So vertex i ∈ Hk,n can reach vertices {(i+ 1)mod n . . . (i+ k
2 )mod n} and {(i− 1)mod n . . . (ı− k

2 )

mod n} in just one time unit through a village-tour. Therefore diametral vertex from i will be inside

the farthest clique from i.

Figure 16: Diameter path for the graph

Figure 16 shows the diametral path. We will take a city-tour from originator 0 and visit vertex

k
2 . Then from vertex k

2 to vertex 2k
2 and so on until we arrive at vertex lk

2 . The path for diameter

will be
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0 → k
2 → 2k

2 → . . . → lk
2

or

0 → n− k
2 → n− 2k

2 → . . . → n− lk
2

Where l is an integer.

Here n
2 = lk

2 when n mod k = 0, we reached at farthest vertex from 0 using above path in l time

units. If 	n
2 
 = lk

2 +m , where m < k
2 , then vertex 	n

2 
 is inside the clique which starts at lk
2 . So

the diameter for that case will be l+1. l is the distance to reach vertex 	n
2 
 or its neighbor lk

2 based

on the value of n and k. Vertices lk
2 and n− lk

2 both can be reached after traveling l edges.

lk
2 = n− lk

2

l = 	n
k 


We used floor function because in l time units we can reach halfway through the Hk,n or to the clique

which contains n
2 vertex. Here l = 	n

k 
 is obvious, as graph Hk,n has k-connectivity on n vertices

and we can reach farthest vertex in 	n
k 
 time units. (We know cycle graph has 2-connectivity, and

farthest vertex is at 	n
2 
 ).

Diameter of Hk,n can be either l or l + 1, which depends on parity of k, n and value of n
k .

Case 1: n even, n
k = P (P is integer)

As we saw before, l = n
k , which means vertex n

2 can be reached in n
k time units by making city-tours,

which is the diameter of the Harary Graph where n and k are even and n is divisible by k.

Case 2: n even, n
k �= P (P is integer)

As shown in Figure 16, 	n
2 
 is inside the clique. Therefore, in l + 1 time units, we can reach vertex

n
2 .

n
2 = l · k

2 +m , m < k
2
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From above, we can clearly say that vertex l · k
2 is nearly halfway in the graph. As we have seen

previously, Harary Graph is a circulant graph with k connectivity, but n is not divisible by k. Hence,

the diameter would be 	n
k 
+ 1 = �n

k � (Since l = 	n
k 
)

Case 3: n odd, and n mod k = 1 (where n = i · k + 1, i is an integer.)

Figure 17: Hk,n when n mod k =1

Here, since n is odd, there are two vertices from node 0 at diametric distance. As shown in

Figure 17 farthest vertices are at distance l · k
2 , so the diameter of the graph in this case would be

	n
k 
.

Case 4: n odd, n mod k > 1.

This case is similar in nature with the case 2 because the farthest vertices are inside the clique. As

we have seen before, these vertices are at distance l+1 from node 0. Hence, as case 2, the diameter

would be following:	n
k 
+ 1 = �n

k � (Since l = 	n
k 
)

Summary:

d(Hk,n) = 	n
k 
, if n mod k = 1

= �n
k �, otherwise
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Lemma 3.2.2 Let Hk,n be a Harary graph on n and k is even. Then the diameter of Hk,n is �n
k �.

Proof This result is a consequence of Lemma 3.2.1. From vertex 0, at most 	n
2 
 vertices can be

covered from either clockwise or anti-clockwise direction. At first we will take maximum possible city-

tours from vertex 0, and in one city-tour we can cover k
2 vertices. Initially we will traverse through

�n
k � city-tours. The number of vertices being covered through this traversal will be 	n

k 
k
2 = n−c1

2 ,

where c1 = n mod k. If n
k = p, where p is any positive integer, then a vertex can be at maximum

n
k distance apart from 0. We need one more village tour to reach such a vertex. This makes the

diameter of the graph to be �n
k �.

Lemma 3.2.3 Let Hk,n be a Harary graph on n vertices and k is even. The broadcast time of Hk,n

from any originator is

(i) b(Hk,n) ≥ �n
k � when 2n

k = p

(ii) b(Hk,n) ≥ �n
k �+ 1 when 2n

k �= p

Proof This lemma gives lower bound on the first case of Harary graph.

(i) This is a consequence of the result in [36], claiming that the diameter of the graph is a trivial

lower bound on the broadcast time . This is true when value of n very much bigger than th

value of k.

Suppose there is a graph Hk,n which can finish broadcasting in less than �n
k � time units. From

Lemma 3.2.2, the longest distance between any two vertices in graph is �n
k � which contradicts

that every vertex in Hk,n can be informed in less than �n
k �.

(ii) Since 2n
k �= p, there are at least two vertices in Hk,n at the diametral distance from originator.

As described in [15], if there exists at least two vertices at a diametral distance D from vertex

u in graph G, then b(G) ≥ D + 1. Hence, b(G) ≥ �n
k �+ 1.
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3.2.2 Broadcasting

In this section we will give a broadcast scheme that completes broadcasting in �n
k � + �log(k2 + 1)�

time units. Figure 18 shows the broadcast scheme for the first case of Harary graph. Since the

graph is vertex transitive we will describe the broadcast scheme only for the originator 0.

Figure 18: Broadcast scheme of the first case of Harary graph

Broadcast Scheme for Originator 0

• At time unit 1, vertex 0 sends the message to its adjacent vertex 1.

• Starting time unit 2, vertex 0 and vertex 1 start broadcasting inside cliques with vertices

{0,. . . , n− k
2} and {1,. . . , k

2 + 1} respectively.

• Cliques {0,. . . , n− k
2} and {1,. . . , k

2 + 1}, each have k
2 + 1 vertices. Thus broadcasting within

the cliques will take �log(k2 + 1)� time units.

32



• After time 1+ �log(k2 +1)�, both cliques will be informed. In other words, the graph will have

in total 2 + 2 · k
2 = k + 2 informed vertices.

• Starting at time �log(k2 + 1)�+ 2, every informed vertex v in these 2 cliques except vertices 0

and 1, will inform a new vertex v + k
2 in clockwise direction and v − k

2 in counter-clockwise

direction.

• At time unit �log(k2 + 1)�+ 2, k more vertices will be informed.

• Each informed vertex u continues to inform an uninformed vertex u+ k
2 or u− k

2 ,depending

on its position in graph, until all the vertices in the graph are informed.

• Starting at time unit �log(k2 + 1)�+ 2, k new vertices are informed at each time unit until all

the vertices are informed.

• Thus, the total broadcast time of the graph will be �n−2
k �+ �log(k2 + 1)�.

• During the last time unit of broadcasting, some uninformed vertices may receive the message

from clockwise and counter-clockwise directions.

Algorithm 1 gives the broadcast scheme forHk,n when k is even. Let’s take set U = {u1, u2, . . . , up}

as set of informed vertices in clockwise direction, and set W = {w1, w2, . . . , wq} as set of informed

vertices in counter-clockwise direction.

Algorithm 1 Broadcast Algorithm S1

1: procedure BROADCAST-SCHEME-S1(Hk,n, 0, U,W )

2: Vertex 0 is the originator , k is even

3: Initially U = {} and W = {}

4: Vertex 0 informs vertex 1
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5: Starting at time unit 2, vertex 0 and vertex 1 start to inform vertices

inside cliques {0, (n− 1) mod n, . . . , (n− k
2 ) mod n} and {1, 2, . . . , k

2 + 1}

respectively.

6: After time �log(k2 + 1)�+ 1 do

7: U = U∪{1, 2, . . . , k
2+1} andW = W∪{0, (n−1) mod n, . . . , (n− k

2 ) mod n}

8: for i = 1, . . . , �n−k−2
k � in clockwise direction do

9: Represent all the informed vertices in U = {u1, u2, . . . , up} as um where

m ∈ {1, 2, . . . , p}

10: if um + k
2 /∈ U then

11: um informs um + k
2 at time unit i

12: U = U ∪ {um + k
2}

13: end if

14: end for

15: for j = 1, . . . , �n−k−2
k � in counter-clockwise direction do

16: Represent all the informed vertices in W = {w1, w2, . . . , wq} as wn where

n ∈ {1, 2, . . . , q}

17: if wn − k
2 /∈ W then

18: wn informs wn − k
2 at time unit j

19: W = W ∪ {wm − k
2}

20: end if

21: end for

22: During the last time unit �n−k−2
k �, some uninformed vertices may receive

information from both clockwise and anti-clockwise directions

23: end procedure
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end

Figure 19: Broadcasting inside Hk,n after �log(k2 + 1)�+ 1 time units

Algorithm 1 gives the broadcast scheme for the first case of Harary graph. At time unit 1 vertex

0 sends message to vertex 1. After that they both start to broadcast inside their respective cliques.

Now as we know that both cliques have k
2 + 1 vertices, so it will take �log(k2 + 1)� time units to

broadcast inside those cliques. Figure 19 describes step 1-7 of algorithm 1.

After �log(k2 + 1)�+ 1 time units, in total k + 2 vertices are informed. In other words, there are

n− k− 2 uninformed vertices. These uninformed vertices receives message by following step 8-20 of

algorithm 1. Starting from �log(k2 +1)�+2 time unit, k new vertices receives message at each time

unit. Figure 20 shows, the graph after �log(k2 + 1)� + 2 time units. Therefore, it takes �n−k−2
k �

time units to send message to n− k − 2 vertices.

Thus, broadcast scheme takes in total �n−2
k �+ �log(k2 + 1) time units.

Below we will show that our algorithm 1 will always generate �n−2
k � + �log(k2 + 1) time units

for broadcasting in Hk,n.
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Figure 20: Broadcasting inside Hk,n after �log(k2 + 1)�+ 2 time units

Theorem 3.2.4 Algorithm 1 gives (�log k+2
2 �)-additive approximation for b(Hk,n).

Proof Under the algorithm 1, vertex 0 first informs vertex 1. Starting at time unit 2, vertices 0 and

1 start sending the message to vertices inside clique {0,. . . , n − k
2} and {1,. . . , k

2 + 1} respectively.

There are k
2 +1 vertices inside both cliques. So, it will take �log k+2

2 � time units to broadcast in each

of those cliques. By �log(k+2
2 )�+ 1 time units, in total 2 + 2 · k

2 = k + 2 vertices will be informed.

Now vertices 0 and 1 do not have any uninformed neighbors. At time unit �log(k+2
2 )�+2 vertices

v ∈{2,. . . ,k2+1 } and u ∈{n−1,. . . ,n− k
2−1 } will inform their neighbors v+ k

2 and u− k
2 respectively

as shown in Figure 20. At time unit �log(k+2
2 )�+2, k new vertices are informed. In next time unit,

these new informed k vertices will send the message to next k uninformed vertices at distance k
2 by

following steps 8-21 of algorithm 1. At each time unit k vertices are informed, therefore it takes

�n−k−2
k � additional time units to inform all the remaining n− k − 2 vertices.

Thus, bS1(Hk,n) = 1 + �log(k+2
2 )� + �n−k−2

k � = �n−2
k � + �log(k+2

2 )� ≤ �n
k � + �log(k+2

2 )� ≤

b(Hk,n) + �log(k+2
2 )� using Lemma 3.2.3(i).
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Lemma 3.2.5 Let Hk,n be a Harary graph on n vertices where k is even. The broadcast time of

Hk,n from any originator is b(Hk,n) ≤ �n−2
k �+ �log(k+2

2 )�.

Proof This is direct consequence of the proof of theorem 3.2.4.

3.3 Hk,n with n even k odd

Figure 21: Example Graph H5,20 of second case

Figure 21 shows the example graph H5,20 of second case. Here n is even and k is odd. Every

vertex in Hk,n is connected to k−1
2 consecutive neighbors in both direction and to the diametrically

opposite vertex. Each vertex has k degrees.

As we discusses in section 3.1 for every vertex i, where i ∈ {0, . . . , (n− 1) mod n}, there are two

cliques in Hk,n formed by the set of vertices V1 and V2, then from i we can visit vertices (i+1) mod

n,. . . ,(i + k−1
2 ) mod n and (i − 1) mod n,. . . ,(i − (k−1

2 ) mod n) in just one time unit. From node

i if we visit node (i + k−1
2 ) mod n or (i − k−1

2 ) mod n, then it is called a city-tour, otherwise it is

called village-tour.
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Figure 22: Diametral path of second Case

3.3.1 Diameter

Figure 22 shows the diametral path of the second case on Harary graph. As Hk,n is vertex transitive,

we can start from any vertex v in the graph. For simplicity, we will take vertex 0 as originator.

.Vertex 0 is directly connected vertex n
2 , which divides graph Hk,n into half. So the diametral

vertex will be inside the farthest clique from vertex 0 and n
2 . First it is necessary to reach the clique

that contains the diametral vertex. After that in just one village-tour one can reach the vertex at

diametral distance from node 0.

• Vertex 0 visits node n
2 at time unit 1.

• Starting at time unit 2 node n
2 and 0 start to make city tours to reach the farthest clique.

• As we described before, every city-tour connects vertex v ∈ V in Hk,n to vertex v + k−1
2 .

• So the farthest clique will be at distance � n/4
(k−1)/2� = � n

2(k−1)� from either vertex 0 or vertex

n
2 .

• Vertex � n
2k−2�(k−1

2 ) can be reached at time unit � n
2k−2�.
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• After that one can visit diametral vertex in just one time unit.

Lemma 3.3.1 Let Hk,n be a Harary graph on n vertices where k is odd and n is even then diameter

of Hk,n is denoted as D(Hk,n) is � n
2k−2�+ 1.

Proof Vertex 0 is directly connected to vertex n
2 , here n is even. We are going to consider several

cases based on value of n
k−1 .

(i)When n
k−1 is even:

Let n
k−1 = 2p, where p is positive integer. In other words in either direction, starting from vertex

0 we can make 2p city-tours, since at most n
2 vertices can be covered. Let us label the city-tours

as 1, 2, . . . , 2p from vertex 0 along any particular direction. From vertex 0 we can make city-tours

along 1, 2, . . . , p in p moves. During the same p moves we can first visit vertex n
2 and then traverse

through city-tours labeled as 2p, 2p − 1, . . . , p + 1. The vertices covered by (p + 1)th city-tour can

be reached through one more move, therefore making the total moves to be p+ 1. Hence, diameter

of Hk,n = p+ 1 = n
2(k−1) + 1.

(ii) When n
k−1 is odd:

Let n
k−1 = 2p− 1. Similar to the proof in part (i), from vertex 0 we will consider city-tours along

1, 2, . . . , p in p moves. During the same p moves we can first visit vertex n
2 and then traverse through

city-tours labeled as 2p − 1, . . . , p + 1, thus making the total moves to be p. Hence, diameter of

Hk,n = p = n
2(k−1) +

1
2 = � n

2k−2�+ 1 (Since n
k−1 is odd).

(iii) When � n
k−1� is even:

Let � n
k−1� = 2p. Similar to proof in part (i), from vertex 0 we will consider city-tours along

1, 2, . . . , p in p moves. During the same p moves we can first visit vertex n
2 and the traverse through

city tours labeled as 2p, . . . , p + 2. Now, (p + 1)th city tour covers less then k−1
2 vertices. we need

one more city tour to reach a vertex at diametrall distance from 0, therefore, making total moves to

be p+ 1. Thus, diameter of Hk,n = � n
2k−2�+ 1.
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(iv) When � n
k−1� is odd:

Let � n
k−1� = 2p − 1. Similar to the proof in part (ii), from vertex 0 we will consider city-tours

along 1, 2, . . . , p in p moves. During the same p − 1 moves we can first visit vertex n
2 and then

traverse through city-tours labeled as 2p− 1, . . . , p+2. Now (p+1)th city tour covers less than k−1
2

vertices. We need one more city-tour to reach at vertex at a diametral distance from 0, therefore

making total moves to be p. Similarly, diameter of Hk,n = � n
2k−2�+ 1.

Lemma 3.3.2 Let Hk,n be a Harary graph on n vertices where degree of each vertex is at least k,

here k is odd and n is even. The broadcast time of Hk,n from any originator is

(i) b(Hk,n) ≥ � n
2k−2�+ 1 when 2n

k−1 = p

(ii) b(Hk,n) ≥ � n
2k−2�+ 2 when 2n

k−1 �= p

Proof This lemma gives the proof for lower bound on the second case of Harary graph Hk,n.

(i) This is direct consequence of the result in [36], that the diameter of the graph is a trivial lower

bound on the broadcast time. Therefore from Lemma 3.3.1, b(G) ≥ � n
2k−2�+ 1.

(ii) Since 2n
k−1 �= p, there are at least two vertices in Hk,n at the diametral distance from originator.

As described in [15], if there exists at least two vertices at a diametral distance D from vertex

u in graph G, then b(G) ≥ D + 1. Hence, b(G) ≥ � n
2k−2�+ 2.

3.3.2 Broadcast Scheme

This section illustrates the broadcast scheme inside Hk,n where n is even and k is odd.

Broadcast Scheme for Originator 0

• At time unit 1 originator 0 sends message to vertex n
2 . Let us take v = n

2 , here n is even.

• At time unit 2 vertex 0 sends message to vertex 1 and vertex v sends message to vertex v+1.
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• Starting at time unit 3, vertex 0 informs vertices inside clique {0, n − 1, . . . , n − k−1
2 },vertex

1 informs vertices inside clique {1, 2, . . . , k+1
2 } , vertex v informs vertices in clique { v, v −

1, . . . , v − k−1
2 } and vertex v + 1 informs vertices inside clique {v + 1, v + 2, . . . , v + k+1

2 }.

• Each of these four clique has k−1
2 + 1 = k+1

2 vertices.

• By the time �log k+1
2 � + 2, in total 4(k+1

2 ) = 2k + 2 vertices will have information including

vertices 0,1, v and v + 1.

• Let us assume that U = {2,. . . , k+1
2 , v + 1, . . . , v + k−1

2 } and W = {n − 1, . . . , n − k−1
2 , v −

1, . . . , v − k+1
2 }. Starting at time unit �log(k−1

2 + 1)� + 3, all the vertices in vertices um ∈ U

informs vertices um+ k−1
2 and all the vertices inside wn ∈ W informs vertices wn− k−1

2 . Vertex

0,1, v and v + 1 do not have any uninformed neighbor from this step.

• At time unit �log(k−1
2 + 1)�+ 3, new 2k − 2 vertices will receive information.

• After that at each time unit 2k − 2 more vertices will receive message until all the vertices in

Hk,n are informed.

• Therefore, it will take �n−2k−2
2k−2 � time units to inform n− 2k − 2 vertices.

• Thus, the total broadcast time of the graph will be �n−2k−2
2k−2 �+ �log k+1

2 �+2 = �n−4−2k+2
2k−2 �+

�log k+2
2 �+ 2 = � n−4

2k−2� − � 2k−2
2k−2�+ �log k+1

2 �+ 2 = � n−4
2k−2�+ �log(k+1

2 )�+ 1.

Figure 23 shows the broadcast scheme inside Hk,n when n is even and k is odd. In the second

case of Harary graph node 0 is connected to node n
2 . By sending the message to vertex n

2 at time

unit 1, we divide the graph into half. Thus we can observe that broadcast time of the first case of

Harary graph is almost double than the second case of Harary graph.

Algorithm 2 describes the broadcast scheme of the second case of Harary graph. Let’s take

set U = {u1, u2, . . . , up} as the set of informed vertices in clockwise direction and set W =

{w1, w2, . . . , uq} as the set of unformed vertices in counter-clockwise direction.

Algorithm 2 Broadcast Algorithm S2
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Figure 23: Broadcast Scheme inside Hk,n when n is even and k is odd

1: procedure BROADCAST-SCHEAM S2 (Hk,n, 0, U,W )

2: Vertex 0 is the originator, n is even and k is odd

3: Vertex 0 informs vertex n
2 at time 1. Let v = n

2

4: At time unit 2, vertex 0 informs vertex 1 and vertex v informs vertex v + 1

5: Starting at time unit 3, vertex 0 informs vertices inside clique

{0, n − 1, . . . , n − k−1
2 },vertex 1 informs vertices inside clique {1, 2, . . . , k+1

2 } ,

vertex v informs vertices in clique { v, v − 1, . . . , v − k−1
2 } and vertex v + 1

informs vertices inside clique {v + 1, v + 2, . . . , v + k+1
2 }.

.

6: After time �log(k+1
2 ) + 2�+ 1 do
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7: U = U ∪ {1, 2, . . . , k+1
2 , v + 1, v + 2, . . . , v + k+1

2 } and W =

W ∪ {0, (n− 1), . . . , (n− k−1
2 ), v − 1, v − 2, . . . , v − k−1

2 }

8: for i = 1, . . . , �n−2k−2
2k−2 � in clockwise direction do

9: Represent all the informed vertices in U = {u1, u2, . . . , up} as um where

m ∈ {1, 2, . . . , p}

10: if um + k−1
2 /∈ U then

11: um informs um + k−1
2 at time unit i

12: U = U ∪ {um + k−1
2 }

13: end if

14: end for

15: for j = 1, . . . , �n−2k−2
2k−2 � in counter-clockwise direction do

16: Represent all the informed vertices in W = {w1, w2, . . . , wq} as wn where

n ∈ {1, 2, . . . , q}

17: if wn − k−1
2 /∈ W then

18: wn informs wn − k−1
2 at time unit j

19: W = W ∪ {wm − k−1
2 }

20: end if

21: end for

22: end procedure

end

Algorithm 2 gives the broadcast scheme for the second case of Harary graph. At time unit 1

vertex 0 sends information to vertex v = n
2 . At time unit 2 vertices 0 and v informs vertices 1 and

v + 1 respectively. Starting at time unit 3, vertex 0 informs vertices inside clique {0, n− 1, . . . , n−
k−1
2 },vertex 1 informs vertices inside clique {1, 2, . . . , k+1

2 } , vertex v informs vertices in clique {

v, v − 1, . . . , v − k−1
2 } and vertex v + 1 informs vertices inside clique {v + 1, v + 2, . . . , v + k+1

2 }.
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Figure 24: Second case of graph Hk,n after �log(k+1
2 )�+ 2 time units

Figure 24 shows Hk,n after �log(k+1
2 )�+ 2 time units.

After �log(k+1
2 )� + 2 time units, in total 2k + 2 vertices will have information. In other words,

there are n − 2k − 2 uninformed vertices. Figure 25 shows Hk,n after �log(k+1
2 )� + 3 time units.

Starting at time unit �log(k+1
2 )� + 3, 2k − 2 vertices are informed at each time unit new .So It

takes �n−2k−2
2k−2 � time units to inform rest of the n− 2k − 2 vertices. Figure 23 shows the complete

broadcast scheme inside the second case of Harary graph.

Theorem 3.3.3 Algorithm 2 gives (�log k+1
2 �)-additive approximation.

Proof Under the algorithm 2, vertex 0 first informs vertex v = n
2 . Vertices 1 and v + 1 receive the

message at time unit 2 form vertex 0 and 1 respectively. Starting at time unit 3, vertex 0 informs

vertices inside clique {0, n − 1, . . . , n − k−1
2 },vertex 1 informs vertices in clique {1, 2, . . . , k+1

2 } ,
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Figure 25: Second case of graph Hk,n after �log(k+1
2 )�+ 3 time units

vertex v informs vertices in clique {v, v− 1, . . . , v− k−1
2 } and vertex v+1 informs vertices in clique

{v + 1, v + 2, . . . , v + k+1
2 }. There are k−1

2 + 1 vertices inside all four cliques. So it will take

�log k+1
2 � time units to broadcast in each of those cliques. By �log(k+1

2 ) + 2� time units, total

4(k−1
2 + 1) = 2k − 2 + 4 = 2k + 2 vertices will be informed.

Now vertices 0,1, v and v+1 do not have any uninformed neighbor. At time unit �log(k+1
2 )�+3

vertices v ∈{2,. . . ,k−1
2 + 1, v + 2, . . . , v + k−1

2 + 1 } and u ∈{n − 1,. . . ,n − k−1
2 , v − 1, . . . v − k−1

2

} will inform their neighbor v + k
2 and u − k

2 respectively as shown in Figure 25. At time unit

�log(k+1
2 )�+3, 2k−2 new vertices are informed. In next time unit, these new informed vertices will

send message to next 2k − 2 uninformed vertices by following steps 8-21 of algorithm 2. At each

time unit 2k−2 vertices are informed, therefore it takes �n−2k−2
2k−2 � time units to inform all n−2k−2

vertices.

Thus, bS2
(Hk,n) = �n−2k−2

2k−2 �+ �log k+1
2 �+2 = �n−4−2k+2

2k−2 �+ �log k+2
2 �+2 = � n−4

2k−2�− � 2k−2
2k−2�+

�log k+1
2 � + 2 = � n−4

2k−2� + �log(k+1
2 )� + 1 ≤ � n

2k−2� + �log(k+1
2 )� + 1 ≤ b(Hk,n) + �log(k+1

2 )� using
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Lemma 3.3.2(i). Note that when � n−4
2k−2� < � n

2k−2�, the approximation will be �log(k+1
2 )� − 1.

Lemma 3.3.4 Let Hk,n be a Harary graph on n vertices where k is odd and n is even. The broadcast

time of Hk,n from any originator is b(Hk,n) ≤ � n−4
2k−2�+ �log(k+1

2 )�+ 1.

Proof This is direct consequence of the proof of theorem 3.3.3.

3.4 Hk,n with n,k odd

Figure 26: Example Graph H5,15 of third case

Figure 26 represents graph H5,15, which is example of the third case of Harary graph. This case

is nearly similar to the second case of Harary graph. Every vertex v in Hk,n is connected to v+ k−1
2

to v− k−1
2 vertices, and then adding edges joining vertex 0 to vertices n−1

2 and n+1
2 and vertex i to

vertex i+ n+1
2 for 1 ≤ i < n−1

2 .

As represented in Lemma 3.2.1, there are two cliques in Hk,n formed by the set of vertices V1 and

V2. From i we can visit vertices (i+1) mod n,. . . ,(i+ k−1
2 ) mod n and (i−1) mod n,. . . ,(i−	k−1

2 
)

in just one time unit. From node i if we visit node (i+ k−1
2 ) mod n or (i− k−1

2 ) mod n, then it is

called a city-tour, otherwise it is called village-tour.
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3.4.1 Diameter

Figure 27: Diameter path of third case

Above Figure 27 shows the diametral path of the third case on Harary graph. Here Hk,n is not

vertex transitive. Every vertex in this graph has k degree except node 0, which has degree k + 1.

The graph is similar to the second case except vertex 0 is connected to one more vertex n−1
2 .

In this graph vertex 0 is directly connected vertex n+1
2 , which divides graph Hk,n into almost

half. So the diametral vertex will be inside the farthest clique from vertex 0 and n+1
2 . First of all, it

is necessary to reach the clique that contains the diametral vertex. After that in just one village-tour

one can reach the vertex at diametral distance from node 0.

• Vertex 0 visits node n+1
2 at time unit 1.

• At time unit 2, node n+1
2 and 0 starts to make city tours to reach farthest clique.

• Every city-tour connects vertex each vertex v ∈ V in Hk,n to vertex v + k−1
2 .

• Therefore the farthest clique will be at distance � n/4
(k−1)/2� = � n

2(k−1)� from either vertex 0 or

vertex n+1
2 .

• Vertex � n
2k−2�(k−1

2 ) can be reached at time unit � n
2k−2�.
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• After that, one can visit diametral vertex in just one time unit by making a village-tour.

Lemma 3.4.1 describes the proof for the diameter of the third case of Harary graph. Diameter of

the graph changes depending on the value of n
k−1 .

Lemma 3.4.1 Let Hk,n be a Harary graph on n vertices where n and k are odd, then D(Hk,n) =

⌈
n

2k−2

⌉
+ 1.

Proof When n is odd, 0 is directly connected with n+1
2 . We are going to consider several cases:

(i) when n
k−1 = 2p, for some positive integer p:

Let n
k−1 = 2p, for some positive integer p. In other words in either direction, starting from vertex

0, we can make 2p city-tours, since at most n+1
2 vertices can be covered. Let us label the city-tours

as 1, 2, ..., 2p from vertex 0 along any particular direction. From vertex 0 one can make p city-tours.

During the same p moves, one can first visit vertex n+1
2 and then traverse through p− 1 city-tours.

We need at most one more move to reach a diametral vertex. Hence, the diameter of Hk,n = p+ 1

= n
2(k−1) + 1.

(ii) when n
k−1 = 2p− 1:

Similar to the proof in part (i), in total, p moves are enough to reach a diametral vertex from

vertex 0. Hence, the diameter of Hk,n = p = n
2(k−1) + 1/2 =

⌈
n

2k−2

⌉
+ 1 (since n

k−1 is odd).

(iii) When
⌈

n
k−1

⌉
= 2p:

Similar to the proof in part(i), from vertex 0 we need p+1 moves to reach a vertex at a diametral

distance. Thus, diameter of Hk,n =
⌈

n
2k−2

⌉
+ 1.

(iv) When
⌈

n
k−1

⌉
= 2p− 1:

Similar to the proof in part(ii), from vertex 0 we will consider city-tours along 1, 2, ..., p in p

moves. During the same p− 1 moves one can first visit vertex n+1
2 and then traverse through city-

tours labeled as 2p− 1, ..., p+2. Now, the (p+1)th city-tour covers less than k−1
2 vertices. We need

one more village-tour to reach a vertex at a diametral distance from 0, thus making total moves to

be p. Similarly, diameter of Hk,n =
⌈

n
2k−2

⌉
+ 1.
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Lemma 3.4.2 Let Hk,n be a Harary graph on n vertices where degree of each vertex is at least k,

here k and n are odd. The broadcast time of Hk,n from any originator is

(i) b(Hk,n) ≥ � n
2k−2�+ 1 when 2n

k−1 = p

(ii) b(Hk,n) ≥ � n
2k−2�+ 2 when 2n

k−1 �= p

Proof This lemma gives the proof for lower bound on the third case of Harary graph Hk,n.

(i) This is direct consequence of the result in [36], that the diameter of the graph is a trivial lower

bound on the broadcast time. Therefore , b(G) ≥ � n
2k−2�+ 1.

(ii) Since 2n
k−1 �= p, there are at least two vertices in Hk,n at the diametral distance from originator.

As described in [15], if there exists at least two vertices at a diametral distance D from vertex

u in graph G, then b(G) ≥ D + 1. Hence, b(G) ≥ � n
2k−2�+ 2.

3.4.2 Broadcast Scheme

This section illustrates the broadcast scheme inside Hk,n where n and k are odd. Here, the broadcast

scheme is almost similar to the second case of Harary graph.

Broadcast Scheme for Originator 0

• At time unit 1 originator 0 sends message to vertex n−1
2 . Let us take v = n−1

2 , here n and k

are odd.

• At time unit 2 vertex 0 sends message to vertex 1 and vertex v sends message to vertex v+1.

• Starting at time unit 3, vertex 0 informs vertices inside clique {0, n − 1, . . . , n − k−1
2 },vertex

1 informs vertices inside clique {1, 2, . . . , k+1
2 } , vertex v informs vertices in clique { v, v −

1, . . . , v − k−1
2 } and vertex v + 1 informs vertices inside clique {v + 1, v + 2, . . . , v + k+1

2 }.

• Each of four clique has k−1
2 + 1 = k+1

2 vertices.
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• By the time �log(k+1
2 + 2), total 4(k+1

2 ) = 2k + 2 vertices will have information including

vertices 0,1, v and v + 1.

• Let us assume that U = {2,. . . , k+1
2 , v + 1, . . . , v + k−1

2 } and W = {n − 1, . . . , n − k−1
2 , v −

1, . . . , v − k+1
2 }. Starting at time unit �log(k−1

2 + 1)� + 3, all the vertices in vertices um ∈ U

informs vertices um + k−1
2 and all the vertices inside wn ∈ W informs vertices wn − k−1

2 .

Vertices 0,1,v and v+1 will not participate in the broadcasting process from this step because

they do not have any uninformed neighbor.

• At time unit �log(k−1
2 + 1)�+ 3, new 4(k−1

2 ) = 2k − 2 vertices will receive information.

• After that at each time unit 2k − 2 more vertices will receive message until all the vertices in

Hk,n are informed.

• Therefore, it will take �n−2k−2
2k−2 � time units to inform n− 2k − 2 vertices.

• Thus, the total broadcast time of the graph will be �n−2k−2
2k−2 �+ �log k+1

2 �+2 = �n−4−2k+2
2k−2 �+

�log k+2
2 �+ 2 = � n−4

2k−2� − � 2k−2
2k−2�+ �log k+1

2 �+ 2 = � n−4
2k−2�+ �log(k+1

2 )�+ 1.

Figure 23 shows the broadcast scheme inside Hk,n when n and k are odd. In the Third case of

Harary graph node 0 is connected to node n−1
2 .

Algorithm 3 describes the broadcast scheme of the third case of Harary graph. Let’s take set U =

{u1, u2, . . . , up} as the set of informed vertices in clockwise direction and set W = {w1, w2, . . . , uq}

as the set of informed vertices in counter-clockwise direction.

Algorithm 3 Broadcast Algorithm S3

1: procedure BROADCAST-SCHEAM S3 (Hk,n, 0, U,W )

2: vertex 0 is the originator, n is odd and k is odd

3: vertex 0 informs vertex n−1
2 at time 1. Let v = n−1

2

4: At time unit 2, vertex 0 informs vertex 1 and vertex v informs vertex v + 1
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Figure 28: Broadcast Scheme inside Hk,n when n and k are odd

5: Starting at time unit 3, vertex 0 informs vertices inside clique

{0, n − 1, . . . , n − k−1
2 },vertex 1 informs vertices inside clique {1, 2, . . . , k+1

2 } ,

vertex v informs vertices in clique { v, v − 1, . . . , v − k−1
2 } and vertex v + 1

informs vertices inside clique {v + 1, v + 2, . . . , v + k+1
2 }.

.

6: After time �log(k+1
2 ) + 2�+ 1 do

7: U = U ∪ {1, 2, . . . , k+1
2 , v + 1, v + 2, . . . , v + k+1

2 } and W =

W ∪ {0, (n− 1), . . . , (n− k−1
2 ), v − 1, v − 2, . . . , v − k−1

2 }

8: for i = 1, . . . , �n−2k−2
2k−2 � in clockwise direction do

9: Represent all the informed vertices in U = {u1, u2, . . . , up} as um where

m ∈ {1, 2, . . . , p}

10: if um + k−1
2 /∈ U then
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11: um informs um + k−1
2 at time unit i

12: U = U ∪ {um + k−1
2 }

13: end if

14: end for

15: for j = 1, . . . , �n−2k−2
2k−2 � in counter-clockwise direction do

16: Represent all the informed vertices in W = {w1, w2, . . . , wq} as wn where

n ∈ {1, 2, . . . , q}

17: if wn − k−1
2 /∈ W then

18: wn informs wn − k−1
2 at time unit j

19: W = W ∪ {wm − k−1
2 }

20: end if

21: end for

22: end procedure

end

Algorithm 3 gives the broadcast scheme for the third case of Harary graph. At time unit 1

vertex 0 sends information to vertex v = n−1
2 . At time unit 2 vertices 0 and v informs vertices 1 and

v + 1 respectively. Starting at time unit 3, vertex 0 informs vertices inside clique {0, n− 1, . . . , n−
k−1
2 },vertex 1 informs vertices inside clique {1, 2, . . . , k+1

2 } , vertex v informs vertices in clique {

v, v − 1, . . . , v − k−1
2 } and vertex v + 1 informs vertices inside clique {v + 1, v + 2, . . . , v + k+1

2 }.

Figure 29 shows Hk,n after �log(k+1
2 ) + 2� time units.

After �log(k+1
2 )� + 2 time units, in total 2k + 2 vertices will have information. In other words,

there are n − 2k − 2 uninformed vertices. Figure 30 shows Hk,n after �log(k+1
2 )� + 3 time units.

Starting at time unit �log(k+1
2 )� + 3, at each time unit new 2k − 2 vertices are informed. So It

takes �n−2k−2
2k−2 � time units to inform rest of the n− 2k − 2 vertices. Figure 28 shows the complete

broadcast scheme inside the third case of Harary graph.
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Figure 29: Third case of graph Hk,n after �log(k+1
2 )�+ 2 time units

Theorem 3.4.3 Algorithm 3 gives (�log k+1
2 �)-additive approximation.

Proof Under the algorithm 2, vertex 0 first informs vertex v = n−1
2 . Vertices 1 and v + 1 receives

information at time unit 2 form vertex 0 and 1 respectively. Starting at time unit 3, vertex 0 informs

vertices inside clique {0, n− 1, . . . , n− k−1
2 },vertex 1 informs vertices inside clique {1, 2, . . . , k+1

2 } ,

vertex v informs vertices in clique { v, v − 1, . . . , v − k−1
2 } and vertex v + 1 informs vertices inside

clique {v + 1, v + 2, . . . , v + k+1
2 }. There are k−1

2 + 1 vertices inside all four cliques. So it will

take �log k+1
2 � time units to broadcast in each of those cliques. By �log(k+1

2 )�+ 2 time units, total

4(k−1
2 + 1) = 2k + 2 vertices will be informed.

Now vertices 0,1, v and v+1 do not have any uninformed neighbor. At time unit �log(k+2
2 )�+3

vertices v ∈{2,. . . ,k−1
2 + 1, v + 2, . . . , v + k−1

2 + 1 } and u ∈{n − 1,. . . ,n − k−1
2 , v − 1, . . . v − k−1

2
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Figure 30: Third case of graph Hk,n after �log(k+1
2 )�+ 3 time units

} will inform their neighbor v + k
2 and u − k

2 respectively as shown in Figure 30. At time unit

�log(k+1
2 )�+3, 2k−2 new vertices are informed. In next time unit, these new informed vertices will

send message to next 2k − 2 uninformed vertices by following steps 8-21 of algorithm 3. At each

time unit 2k−2 vertices are informed, therefore it takes �n−2k−2
2k−2 � time units to inform all n−2k−2

vertices.

Thus, bS3
(Hk,n) = �n−2k−2

2k−2 �+ �log k+1
2 �+2 = �n−4−2k+2

2k−2 �+ �log k+2
2 �+2 = � n−4

2k−2�− � 2k−2
2k−2�+

�log k+1
2 � + 2 = � n−4

2k−2� + �log(k+1
2 )� + 1 ≤ � n

2k−2� + �log(k+1
2 )� + 1 ≤ b(Hk,n) + �log(k+1

2 )� using

Lemma 3.4.2(i). Note that when � n−4
2k−2� < � n

2k−2�, the approximation will be �log(k+1
2 )� − 1.

Lemma 3.4.4 Let Hk,n be a Harary graph on n vertices where k is odd and n is odd. The broadcast

time of Hk,n from any originator is b(Hk,n) ≤ � n−4
2k−2�+ �log(k+1

2 )�+ 1.

Proof This is direct consequence of the proof of theorem 3.4.3.
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3.5 Analytical Observations

We saw in section 3.1 that Hn−1,n is a complete graph and H2,n is a cycle graph. Thus,

b(Hn−1,n) = �log n�

b(H2,n) = �n
2 �

Now let us consider different value of k based on n such that broadcast time of the graph is

minimum.

In general theorem 3.2.4 gives �log k+1
2 � approximation in the worst case. However, our analysis

below will show that for many values of k our algorithm generates much better approximation.

Moreover, for many values of k our algorithm generates the exact broadcast time of Harary graph.

If k = �n
2 − 1�, where k is even, then

b(Hk,n) = �n− 2

k
�+ �log k + 2

2
�

b(H�n
2 −1�,n = � n− 2

�n
2 − 1��+ �log(�

n
2 − 1�+ 2

2
)�

= �2(n− 2)

n− 2
�+ �log(n+ 2

4
)�

= 2 + �log(n+ 2)� − 2

= �log(n+ 2)�

= �log n� for all n except n = 2l, 2l − 1, 2l − 2 where l is integer

Since b(G) ≥ �log n� for any graph G on n vertices and then algorithm 1 generates the exact

broadcast time for Hk,n when k = �n
2 − 1�. It is also clear that when �n

2 − 1� ≤ k ≤ n − 1,

b(Hk,n) ≤ b(H�n
2 −1�,n) = �log n�. As when k increases, the size of every clique in the graph gets

bigger and more vertices are part of the same cliques.

Now let’s take k = �n
4 �.
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b(Hk,n) = �n− 2

k
�+ �log k + 2

2
�

b(H�n
4 �,n = �n− 2

n
4

�+ �log(
n
4 + 2

2
)�

= �4(n− 2)

n
�+ �log(n+ 8

8
)�

= 4 + �log(n+ 8)� − 3

= �log(n+ 8)�+ 1

= �log n�+ 1 for all n except 2l − 8 ≤ n ≤ 2l where l is integer

Based on above calculations, we can say that when k = �n
4 �, broadcasting in Hk,n takes just one

more time unit than in Hk,n where k = �n
2 − 1�. It is clear that b(Hk,n) ≤ b(H�n

4 �,n = �log n� + 1

when �n
2 − 1� > k ≥ �n

4 �.

Theorem 3.3.3 gives �log k+1
2 � + 1 approximation. However the analysis below will show that

algorithm 2 gives exact broadcast time. Let’s take k = �n
4 � where k is odd. Then

b(Hk,n) = � n− 4

2k − 2
�+ �log k + 1

2
�+ 1

b(Hn
4 ,n) = � n− 4

2(n4 )− 2
�+ �log

n
4 + 1

2
�+ 1

= �2(n− 4)

n− 4
�+ �log n+ 4

8
�+ 1

= 2 + �log n+ 4

8
�+ 1

= 3 + �log n+ 4

8
�

= �log 8 · n+ 4

8
�

= �log(n+ 4)�

= �log n� except 2l − 4 ≤ n ≤ 2lwhere l is an integer

As k increases, the size of each clique gets bigger. So there will be more vertices in each clique,

which helps to broadcast faster in the graph. Thus, it is clear that b(Hk,n) ≤ b(Hn
4 ,n) = �log n�
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when �n
4 � ≤ k ≤ n− 1. Now let’s consider k = �n

8 + 1� where k is odd.

b(Hk,n) = � n− 4

2k − 2
�+ �log k + 1

2
�+ 1

b(Hn
8 +1,n) = � n− 4

2(n8 + 1)− 2
�+ �log

n
8 + 1 + 1

2
�+ 1

= �4(n− 4)

n
�+ �log n+ 16

16
�+ 1

= 4 + �log n+ 16

16
�+ 1

= 4 + �log(n+ 16)� − 4 + 1

= �log(n+ 16)�+ 1

≥ �log n�+ 1 except 2l − 16 ≤ n ≤ 2l where l is an integer

Broadcasting in Hk,n takes just 1 more time unit when k = n
8 + 1 than in Hk,n with k = �n

4 �.

So it is clear that if �n
4 � > k ≥ �n

8 + 1�, then b(Hk,n) ≤ b(Hn
8 +1,n) = �log n�+ 1.
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Chapter 4

Results on Modified Harary Graph

This chapter introduces new Modified Harary Graph MHk,n. We will first see the definition and

construction of MHk,n. Section 4.2 illustrates the diameter of modified harary graph. Section 4.3

describes the broadcast scheme and gives upper bound on broadcast time.

4.1 New Modified Harary Graph

Definition 1 Modified Harary graph, MHk,n on even number of vertices with even degree is con-

structed as follows: Let the vertices be labeled as 0, 1, ..., n−1. The two vertices i and j are connected

by an edge if vertices j ∈ {(i− 2r + 1)mod n, (i+ 2r − 1)mod n} for i = 0, ..., n− 1 and r = 1, ..., k
2

(see Figure 31). Here n, k are even.

Modified Harary graph is more practical in termes of cost as it has less numbers of edges than

Harary graph. In this graph not all consecutive vertices are connected. As the value of k increases,

Every vertex gets connected to the farthest possible vertex. Which can speed up the broadcasting

process in the graph.

Properties of Modified Harary Graph:

• MHk,n is a circulant graph.
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Figure 31: Graph MH4,12

• It is vertex transitive.

• Each vertex is connected to k
2 vertices in the clockwise direction and another k

2 vertices in the

anti-clockwise direction.

• Every vertex has degree k.

Theorem 4.1.1 Graph MHk,n is vertex transitive .

Proof A Graph is vertex transitive if for any two vertices u and v there exists some automorphism

mapping u to v. Define the family of functions f(u) = u+α where α can be any integer other than

0. let i and j be any two vertices. The automorphism satisfying f(i) = j is f(u) = u + (j − i).

Applying this function on any two vertices x and y we get f(x) = x + j − i and f(y) = y + j − i.

(f(x), f(y)) will be an edge only if f(y) = f(x) ± m where m ∈ {(l − 2r + 1) mod n, (l + 2r − 1)

mod n} where l = 0, ..., n − 1 and r = 1, ..., k
2 . Substituting the values of the functions we get

y+ b− a = x+ b− 1±m which is equivalent to y = x±m. Which means that transformed vertices
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Figure 32: Modified Harary graph Mk,n

will be adjacent only if the original ones were too. Thus, the suggested family of function preserves

the structure of the graph hence there is an automorphism.

Theorem 4.1.2 The graph MHk,n is circulant graph.

Proof There are two conditions which needs to be satisfied in order to prove if the graph Circulant.

First, a circulant graph is a graph of n vertices in which each vertex u is adjacent to the vertices

(u+ v) and (u− v) for each v in a list l.Second, a graph G is a circulant iff the automorphism group

of G contains at least one permutation consisting of a minimal cycle of length | V (G) |. To show

that MHk,n is circulant, we will prove that it satisfies these two conditions.

As described in definition 1, each vertex u in MHk,n is connected to vertices u + (2r − 1) and

u− (2r − 1) where u = {0, . . . , n− 1} and r = { 1, . . . , k
2 }. Which satisfies the first condition.

Now as we described before, each vertex u in MHk,n is adjacent to vertices u + (2r − 1) and
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u− (2r − 1) where u = {0, . . . , n− 1} and r = { 1, . . . , k
2 }. Here if we take r = 1, then vertex u is

connected to vertices u+ 1 and u− 1. Let’s take automorphism group where vertex u is connected

to node u+ 1 .As proved in theorem 4.1.1 that MHk,n is vertex transitive, we will start from node

0 and traverse through vertices in clockwise direction.

0 → 1 → . . . → u → (u+ 1) → . . . → (n− 1) → 0

As vertex 0 repeats in above path, there is a cycle consisting of vertices 0, . . . n − 1. Thus, the

automorphism group has cycle of length | V (G) |. Which satisfies the second condition. Hence

MHk,n is circulant graph.

Figure 32 shows that i is connected to k
2 vertices in clockwise direction and k

2 in counter-clockwise

direction. Which concludes that every vertex in MHk,n have k degree. We can say that MHk,n is

circulant graph Cn(2
1 − 1, 22 − 1, . . . , 2

k
2 − 1) with k connectivity. Figure 31 shows the example of

modified harary graph.

As the graph MHk,n is vertex transitive, we will consider vertex 0 as the originator. It is necessary

to modify the definitions of city-tours and village-tours for MHk,n. From any node i in MHk,n, if

we visit either node (i+2
k
2 −1)mod n or (i−2

k
2 +1)mod n, then it is called a city-tour; otherwise it

is termed as a village-tour. For any vertex i, we will refer the set of vertices {i, i+ 1, ..., i+ 2
k
2 − 2}

as the region of i. Figure 32 shows that with each vertex there starts a region with 2
k
2 vertices in

both direction, where k
2 = r, which is shown in Figure 33.

4.2 Diameter of Modified Harary Graph

As described in chapter 3, diameter is the longest shortest distance between any two vertices in

graph. MHk,n is vertex transitive, therefore we can find diameter from any vertex. It is easier to

start from vertex 0. Figure 34 shows the diametral path from vertex 0.

Here we will take k
2 = r for the simplicity. A city-tour in clockwise and anticlockwise direction

from vertex 0 will cover at least 2 · (2r − 1) vertices. So the farthest vertex from 0 will be in the
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Figure 33: region inside MHk,n

region which starts from vertex � n
2·(2r−1)� · (2r − 1) . To find the diameter of the MHk,n, it is

necessary to first reach vertex � n
2·(2r−1)� · (2r − 1). As shown in Figure 34, it will take n

2·(2r−1)

city-tours from originator to visit vertex � n
2·(2r−1)� · (2r − 1). There are 2r − 1 vertices in between

nodes � n
2(2r−1)� · (2r − 1) and (� n

2(2r−1)� − 1)(2r − 1). So the diameter of the MHk,n will be :

D(MHk,n) = � n
2·(2r−1)� + number of village-tours to cover (2r − 1) vertices

In order to cover (2r − 1) vertices, we will take recursive approach. With each village tour the

number of vertices to be covered will be reduced in half, because number of vertices are in the power
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Figure 34: Diametral path of MHk,n

of 2. So it will take r − 1 village tours to cover (2r − 1) vertices. This result is proven in Lemma

4.3.1. Therefore diameter of the graph is :

D(MHk,n) = � n
2·(2r−1)�+ r − 1.

Lemma 4.2.1 Let MHk,n be a modified Harary graph on n vertices. Then D(MHk,n) =
⌈

n
2(2r−1)

⌉
+

r − 1, where r = k
2 .

Proof The result in Lemma 3.2.1 is also applicable in the modified Harary graph MHk,n. This is

because of its similar properties to Harary graph. Like Hk,n, MHk,n is also a minimal k-connected

graph on n vertices and each vertex in MHk,nis connected to k
2 vertices in both clockwise and

anti-clockwise directions. From vertex 0, at most n
2 vertices can be covered from either clockwise

or anti-clockwise direction. To start, we will take the maximum possible city-tours from vertex 0.

In one city-tour we can cover 2r − 1 vertices. Thus, initially we will traverse through
⌈

n
2(2r−1)

⌉

city-tours. There are 2r −1 vertices in between nodes
⌈

n
2(2r−1)

⌉
(2r −1) and (

⌈
n

2(2r−1)

⌉
−1)(2r −1).
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From either of these 2 nodes, we can make village-tours which will cover 2r−1 vertices from either

node. So in a recursive way, with each village-tour, the number of vertices to be covered reduces

to half. Thus, at most we need r − 1 village-tours in order to cover 2r−1 vertices. This makes the

diameter of the graph to be
⌈

n
2(2r−1)

⌉
+ r − 1.

Lemma 4.2.2 Let MHk,n be a modified Harary graph on n vertices, where the degree of each vertex

is k. The broadcast time of MHk,n from any originator,

(i) b(MHk,n) ≥
⌈

n
2(2r−1)

⌉
+ r − 1, if n

(2r−1) = p

(ii) b(MHk,n) ≥
⌈

n
2(2r−1)

⌉
+ r, if n

(2r−1) �= p

where r = k
2 and p is any positive integer.

Proof (i) Since n
(2r−1) = p, there is exactly one vertex in MHk,n which is at a diametral distance

from the original vertex. Thus, the proof is a direct consequence of the result in [36], where it has

been shown that b(G) ≥ D(G) for any connected graph.

(ii) Since n
(2r−1) �= p, there are at least two vertices in MHk,n which are at a diametral distance

from the original vertex. It has been shown in [15], if there exists at least two vertices at a diametral

distance D from vertex u in graph G, then b(G) ≥ D + 1. Hence, b(MHk,n) ≥
⌈

n
2(2r−1)

⌉
+ r.

4.3 Broadcasting in Modified Harary Graph

This section illustrates broadcast scheme of MHk,n and gives upper bound and lower bound on

broadcast time.

As described before, in MHk,n with every vertex there starts a region with 2k vertices in both

clockwise and counter-clockwise direction. For simplicity we will refer it as a region.

In order to find the upper bound on broadcast time, It is necessary to consider two broadcast

schemes. First we will describe broadcast scheme inside the region of MHk,n and after that we will

do broadcasting in the whole graph.
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Broadcast scheme inside region

Figure 35 shows the broadcast scheme inside the region from the originator 0. Here k
2 = r.

Figure 35: Broadcast scheme in region

• Vertex 0 sends the message to its uninformed neighbor 2r − 1 at time unit 1.

• Then node 0 and 2r − 1 will send message to its next farthermost uninformed neighbor as

shown in Figure 35.

• In short, every informed vertex will send message to its farthermost uninformed neighbor until

all the vertices in the region are informed.

Here Farthermost vertex from the originator is referred in terms of its assigned integer value.

We can see in Figure 35, when node 0 sends message to 2r − 1 vertex, it divides internal region

with 2r−1 − 1 vertices. Every time we send message to uninformed neighbor using above broadcast

scheme, we divide internal region into 2 half regions with same number of vertices. By this, we can

say that broadcasting in this region can be done by log 2r = r time units.
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Figure 36: Broadcasting in region with 2m+1 − 1 vertices can be done by m+1 time units

Lemma 4.3.1 Broadcasting in region can be done by k
2 time units.

Proof We will prove by induction that broadcasting in region can be done by k
2 time units.

Base Case: When k
2 = 1, region will have only 2 vertices 0 and 1. Therefore broadcasting can be

done in just one time unit.

Induction Hypothesis: Assume when k
2 = m, broadcasting in region can be done by m time units.

Induction step: Let k
2 = m + 1. Figure 36 shows the region with 2m+1 vertices. By following the

broadcast scheme, node 0 will send message to vertex 2m+1 − 1.That divides inner region into two

regions with 2m vertices. By the induction hypothesis we can say that broadcasting in two regions

with 2m vertices can be done by m time units. As node 0 sends message to vertex 2m+1 − 1 at

first time unit, broadcasting in inner two regions can be done simultaneously. The broadcast time

is m+ 1 when k
2 = m+ 1. Hence by induction we proved broadcasting in region can be done by k

2

time units.
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Broadcast scheme MHk,n

Figure 37: Broadcasting in Modified Harary graph

Figure 37 shows the broadcast scheme inside MHk,n with vertex 0 as originator.

• Let k
2 = r. At time unit 1, vertex 0 will send information to node 2r − 1.

• At time unit 2, the originator sends message to vertex n − (2r − 1), and vertex 2r − 1 sends

message to 2(2r − 1).

• As shown in Figure 37, in each direction vertex i · (2r − 1) or n− i · (2r − 1) will respectively

send message to vertex (i+ 1) · (2r − 1) or n− (i+ 1)(2r − 1), where 0 ≤ i ≤ � n
2(2r−1)� − 1, at

i+1 time unit until every region has at least one informed vertex.

• An informed vertex v will always first send message to its farthest uninformed vertex and then

it will start broadcasting inside its respective region as described in Lemma 4.3.1.

• A region which starts with vertex � n
2(2r−1)� · (2r − 1), will be the last one to have a informed

vertex. After that it will start broadcasting inside its region at � n
2(2r−1)�+ 1 time unit.

Above broadcast scheme suggests that it is optimal to first inform at least one vertex inside each
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region, so that they can start broadcasting inside their region. Above broadcast scheme finishes

broadcasting inside MHk, n in � n
2(2r−1)�+ r time units.

Algorithm 4 is developed using both broadcast schemes inside region and in Modified harary

graph [6].

Approximation Algorithm to broadcast in Modified Harary graph

Algorithm 4 Broadcast Algorithm Sm

1: procedure BROADCAST-SCHEME-Sm(MHk,n, 0)

2: vertex 0 is the originator and let r = k
2

3: for i = 1, ...,
⌈

n
2(2r−1)

⌉
in clockwise direction do

4: vertex (i− 1)(2r − 1) informs vertex i(2r − 1) at time i.

5: end for

6: for j = 2, ...,
⌈

n
2(2r−1)

⌉
do

7: vertex (j − 1)(2r − 1) informs the uninformed vertices in its region starting at

time j + 1. REGION-BROADCAST-RB((j − 1)(2r − 1), r, j)

8:9: end for

10: Starting at time
⌈

n
2(2r−1)

⌉
+ 1, vertex

⌈
n

2(2r−1)

⌉
(2r − 1) informs its region.

REGION-BROADCAST-RB(
⌈

n
2(2r−1)

⌉
(2r − 1), r,

⌈
n

2(2r−1)

⌉
)

11: for i = 2, ...,
⌈

n
2(2r−1)

⌉
in anti-clockwise direction do

12: vertex (n− (i− 2)(2r − 1))mod n informs vertex (n− (i− 1)(2r − 1))

mod n at time i.

13:14: end for

15: for j = 2, ...,
⌈

n
2(2r−1)

⌉
do

16: vertex (n− (j − 2)(2r − 1))mod n informs the uninformed vertices in its region

starting at time j + 1. REGION-BROADCAST-RB((j − 1)(2r − 1), r, j).

17:18: end for
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19: Starting at time
⌈

n
2(2r−1)

⌉
+1, vertex (n− (

⌈
n

2(2r−1)

⌉
−1)(2r−1))modn informs

its region. REGION-BROADCAST-RB((n− (
⌈

n
2(2r−1)

⌉
− 1)(2r − 1))mod n, r,

⌈
n

2(2r−1)

⌉
)

20:21: end procedure

end

Algorithm 5 Region Broadcast Algorithm

1: procedure REGION-BROADCAST-RB(u, r, τ)

2: vertex 0 is the originator and let r = k
2

3: if r = 1 then MHk,n is a cycle and there will be no uninformed vetex in the region of u.

4: end if

5: if r = 2 then u
τ+1−−→ (u+ 22 − 1) and u

τ+2−−→ (u+ 21 − 1), (u+ 22 − 1)
τ+2−−→ (u+ 22 − 2)

6: end if

7: if r ≥ 3 then Let c = 1

8: while r ≥ 4 do

9: vertex u informs vertex u+ 2r−1 − 1 at time unit τ + c.

10: SUB-REGION-BROADCAST-SRB (u+ 2r−1 − 1, τ + c)

11: r = r − 1 and c = c+ 1

12: end while

13: if r = 3 then the set of uninformed vertices within the region {u, ..., u + 23 − 1} are

u+ 1, ..., u+ 6

14: u
τ+c+1−−−−→ (u+ 3)

15: u
τ+c+2−−−−→ (u+ 1), (u+ 3)

τ+c+2−−−−→ (u+ 6)

16: (u+ 3)
τ+c+3−−−−→ (u+ 4), (u+ 1)

τ+c+3−−−−→ (u+ 2) and (u+ 6)
τ+c+3−−−−→ (u+ 5)

17: end if

18: end if
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19: end procedure

end

Algorithm 6 Sub-Region Broadcast Algorithm

1: procedure SUB-REGION-BROADCAST-SRB (u+ 2r−1 − 1, τ + c)

2: We will consider the vertices within the region R={u+2r−1−1,...,u+2(2r−1−1)

=u+2r−2}. Let the set of informed vertices inR be I. Initially I = {u+2r−1−1}

and R is the region for u+ 2r−1 − 1
3: for every vertex, v1 ∈ I do

4: v1 informs the farthest uninformed vertex v2 within its own region.

5: The set of vertices within {v1, ..., v2} becomes the region for both v1 and v2.

6: Update I = I + v2.

7: end for

8: end procedure

end
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Figure 38: Graph MH4,12

The REGION-BROADCAST scheme for the region containing vertices {0, 1, ..., 25 − 1} except

when r = 3. The figures in black are the labels of the vertices and the figures in red show the
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broadcast times. We assume in the figure that vertex 0 informs vertex 31 at time 0. The broadcast

times for the regions {15, ..., 30} and {7, ..., 14} are based on the SUB-REGION-BROADCAST

schema. Initially I = {15} for the region containing the vertices {15, ..., 30} and region for vertex 15

is {15, ..., 30}. 15 informs the farthest uninformed vertex within its own region (in this case 30) at

time 2. The region for vertex 30 is {15, ..., 30} and I = {15, 30}. In the next time unit, both 15 and

30 respectively inform the farthest uninformed vertices in their regions. Thus, 15 informs vertex 22

and 30 informs vertex 23. The region for both vertices 15 and 22 now becomes {15, ..., 22} and that

for vertices 30 and 23 is {23, ..., 30} and I = {15, 30, 22, 23}. Similarly in the next time unit, all the

vertices in set I inform the farthest uninformed vertex in their own regions.

Under the Sub-Region-Broadcast scheme, when node, u+2r−1−1 sends a message to its farthest

uninformed vertex u+2r−2, it divides the region with u+2r−2−(u+2r−1−1)+1 = 2r−1 vertices.

In the next time unit when both vertices u+2r−1− 1 and u+2r − 2 inform their respective farthest

uninformed vertices within their region, the new regions formed will each have 2r−2 vertices. Thus,

every time we send a message to the farthest uninformed vertex, we divide the region into two new

regions with same number of vertices.

Complexity: In all the broadcast schemes Sm, Region-Broadcast and Sub-Region-Broadcast, at a

given time, a set of informed vertices are informing another set of uninformed vertices and will be

part of informed vertices in the next round. This makes the total complexity of the algorithms to

be O(|V |).

Lemma 4.3.2 Let MHk,n be a modified Harary graph on n vertices and let r = k
2 . The Sub-Region-

Broadcast scheme takes r time units to broadcast in a region of MHk,n with 2r vertices.

Proof This proof is similar to the proof of Lemma 4.3.1.

Lemma 4.3.3 Let MHk,n be a modified Harary graph on n vertices and let r = k
2 . The Region-

Broadcast scheme takes r time units to broadcast in a region of MHk,n with 2r vertices.

Proof When r = 2, it is clear from step 5 of Region-Broadcast that it will take 2 time units to

complete broadcasting. When r = 3, steps 13-16 show 3 time units are enough to broadcast. When
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r ≥ 4, in step 9, u informs vertices u + 2r−1 − 1, u + 2r−2 − 1,...,u + 2r−i − 1 at times 1,2,...,i

respectively (we assume τ = 0 here). In other words, after time i, we have a region containing 2r−i

vertices which will be operated upon by the Sub-Region-Broadcast scheme. From Lemma 4.3.2, we

know the Sub-Region-Broadcast takes r− i time units to finish broadcasting in this region. In total,

i+ r − i = r time units are necessary.

Theorem 4.3.4 Algorithm Sm gives 1-additive approximation when n
(2r−1) = p for some positive

integer p.

Proof We assume k
2 = r.

Case 1: when n
2r−1 = 2q:

In other words in either direction, starting from vertex 0, we can make q city-tours. Let us

label the city-tours as 1, 2, ..., 2q from vertex 0 in a clockwise direction. Under algorithm Sm,

starting at time 1 in a clockwise direction, vertex 0 makes n
2(2r−1) = q city-tours to inform vertex

n
2(2r−1) (2

r − 1) = n
2 at time n

2(2r−1) . Similarly, starting at time 2 in an anti-clockwise direction,

vertex 0 makes q− 1 city-tours to inform vertex (n− ( n
2(2r−1) − 1)(2r − 1))modn=n

2 +2r − 1 at time

n
2(2r−1) . All the informed vertices will start informing the uninformed vertices in their respective

regions no later than n
2(2r−1) + 1 time units. Similarly, vertex n

2 will inform the vertices covered

by the (q + 1)th city-tour. Since there are 2r vertices in that region, we know from Lemma 4.3.3

that Region-Broadcast scheme will take r time units to finish broadcasting. Thus, bSm(MHk,n) ≤
n

2(2r−1) + r ≤ b(MHk,n) + 1 from Lemma 4.2.2(i).

Case 2: n
2r−1 = 2q − 1 is not possible.

Let us assume by contradiction that n
2r−1 = 2q− 1 is possible. Since 2r − 1 is odd, n is also odd.

This contradicts as in MHk,n, n is even.

Theorem 4.3.5 Algorithm Sm is optimal when n
(2r−1) �= p for some positive integer p.

Proof We assume k
2 = r.

This is similar to the result we proved in Case 2 of Theorem 4.3.4. Similarly, depending on

whether
⌈

n
2r−1

⌉
is odd or even in scheme Sm, the uninformed vertices in the regions of n

2(2r−1) (2
r−1)
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and (n− ( n
2(2r−1) − 1)(2r − 1)) either share c1 common vertices or do not share any common vertex.

Instead, there are exactly c2 vertices between the regions, where 1 ≤ c1, c2 < 2r. Thus, these

vertices will take less than r time units to inform the uninformed vertices in their regions using the

Region-Broadcast scheme. However starting at time
⌈

n
2(2r−1)

⌉
+ 1, vertex (n − ( n

2(2r−1) − 2)(2r −

1)) takes exactly r time units to inform the 2r uninformed vertices using Region-Broadcast (from

Lemma 4.3.3). Thus, bSm(MHk,n) ≤
⌈

n
2(2r−1)

⌉
+ r ≤ b(MHk,n) from Lemma 4.2.2(ii).

Theorem 4.3.6 MH2�logn�−2,n is a broadcast graph.

Proof Definition of broadcast graph is described in section 1.2 of chapter 1.

From Lemma 4.2.2(i), we know that b(MHk,n) ≥
⌈

n

2
k
2
+1−2

⌉
+ k

2 − 1.

When k = 2 �log n� − 2, 2
k
2+1 = 2�logn� = n+ c for some positive integer c.

Thus, b(MH2�logn�−2,n) ≥
⌈

n
n−2

⌉
+�log n�−1−1 = 2 + �log n� - 2 = �log n�. Hence, MH2�logn�−2,n

is a broadcast graph.
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Chapter 5

Conclusion and Future Work

In this thesis we studied the problem of broadcasting in Harary graph Hk,n and new modified harary

graph MHk,n. We proved that Hk,n is vertex transitive and circulant graph when at least n and k

are even or at least one of them is even. It has smallest possible number of edges �kn
2 � for κ(n) = k.

Then we studied each case of Harary graph in depth.

Chapter 3 illustrates diameter and the broadcast scheme of each case. We calculated the diameter

D of each case of Harary graph. When k is even, the diameter of the graph was calculated to be

�n
k �. We developed an algorithm to compute the broadcast time on n vertices, which completes

broadcasting inside Hk,n by �n
k � + �log(k2 + 1)�+ time units. Then we proved that this algorithm

gives �log(k2 + 1)� additive approximation.

The diameter of Hk,n is � n
2(k−1)� + 1 when n is even and k is odd. Since in the second case

of Harary graph every vertex is connected to its diametral opposite vertex, The diameter is almost

half as compared to diameter in first case of Harary graph. We also developed an algorithm for

broadcasting in the second case of Harary graph. Using this algorithm we can finish broadcasting in

Hk,n by � n
2k−2�+1+�log k+1

2 � time units. It gives �log k+1
2 �-additive approximation for broadcasting.

Third case of Hk,n when n and k are odd, gives the same diameter and broadcast time as the

second case of Harary graph. Since here both n and k are odd and every vertex in the graph does
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not have same degree, the graph is not vertex transitive and circulant. Lower bound of Harary graph

is same as the diameter of the graph when value of n is much bigger than k. In future one can find

out proportionality between n and k such that broadcast time is same as the diameter of the graph.

In section 3.5, we analyzed the Hk,n based on different value of k. In the first case of Harary

graph, b(Hk,n) ≥ �log n�, when n− 1 ≥ k ≥ �n
2 − 1�. When �n

2 − 1� > k ≥�n
4 �, the broadcast time

of Harary graph is b(Hk,n) ≥ �log n�+1. In the second case of Harary graph when n− 1 ≥ k ≥ �n
4 �,

broadcast time of Harary graph is b(Hk,n) ≥ �log n� . When �n
4 � > k ≥ �n

8 + 1�, broadcast time of

Harary graph is b(Hk,n) ≥ �log n�+ 1.

Here by observing all three cases of Harary graph, we can say that second case of Harary graph

gives the best topology in terms of diameter and broadcast time comparing to the first case of the

graph. It is vertex transitive, circulant and symmetric which is advantageous over the third case of

graph, as it does not have such properties.

In chapter 4, we defined a new modified harary graph MHk,n when n is even. We proved

that MHk,n is vertex transitive and circulant graph. We calculated the diameter of MHk,n to

be � n

2(2
k
2 −1)

� + k
2 − 1 which is also lower bound on the graph. To calculate the broadcast time

of the graph, it is necessary to find broadcast time of the region. By induction, we proved that

broadcasting inside region can be finished in k
2 time units. We developed algorithms to broadcast

inside the region and inside whole MHk,n. Using these algorithms, broadcasting inside MHk,n can

be finished in � n

2(2
k
2 −1)

� + k
2 time units, just 1 more time unit than the diameter of the graph.

This proves that this algorithm gives 1-additive approximation. Here approximation is very close to

optimal. We also showed that graph MH2�logn�−2,n is a broadcast graph.

The future work here will be to determine the exact broadcast time of Harary graph for any

value of k. One can provide polynomial algorithm for the broadcast time problem in that subclass

of modified harary graph. Many different graphs can be created by modifying Harary graphs.
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