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Abstract: 

Graph Partitioning of Transportation 

 Networks under Disruption 

Ghavidelsyooki, Mona 

Concordia University, 2015 

This research is concerned with providing a solution capable of treating network complexity 

and scalability effectively so that it overcomes administrative, environmental and technique 

boundaries. One good approach dealing with this matter is applying graph partitioning 

techniques. Graph partitioning is an optimization problem with the aim of dividing a large 

geographical network into manageable size districts called sub-networks with less complexity 

in favor of balancing the workload and minimizing the communication among them, with the 

aim of maximizing their independency as much as possible. Over the past decades various 

models have been developed in such a way to satisfy a multi-objective problem such as delivery 

time and managerial cost. In real life, due to inevitable changes during network’s lifetime, it is 

vital to offer survivability and resilience in the existence of network failure and disruption. 

Further, it is essential to maintain functionality in critical facilities and high priority connections 

in the time of crisis. This paper suggests four partitioning techniques namely “Hierarchical 

recursive progression1+ “(HRP1+) and “Hierarchical recursive progression2+ “(HRP2+) and 

their extensions called “HRP1+control” and “HRP2+control” to solve the scalability as well as 

complexity of a network. For this matter, the initial balanced partition is produced on a 

predefined network. Furthermore two different approaches namely “complete failure update 
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“and “partial failure update” are proposed and demonstrated in the occurrence of network 

disruption. 

In sum, the three main objectives of this thesis are as follows:  

1. Modeling disruption on logistics networks 

2. Assuring and strengthen connectivity in the disrupted network for routing purposes 

3. Developing partitioning approaches in favor of generating roughly equal sized and 

balanced partitions in the disrupted network. 
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    Chapter 1: 

Introduction 

1.1. Background 

The evolutionary change in the nature of supply chain and logistics networks is the aftermath of 

network complexity derived from technology development and the emergence of globalization. 

Supply chain network is a complex combination of organs, recourses and activities interacting 

to provide a service/product from supplier to consumer. A number of activities are involved in 

logistics and supply chain management such as planning and optimization of 

sourcing/procurement, facility location, inventory management, warehousing, distribution, 

information integration etc.  According to the Supply Chain Council
1
 a non-profit, global 

corporation, “Logistics management can be considered as the process of coordinating 

movement of materials and its related information from its starting point to its endpoint in favor 

of meeting customer requirements and expectations”. 

The ongoing growth of this world-wide integration has forced fundamental changes to the 

network’s infrastructure, its inherited characteristics and underlying properties that have caused 

great transformation in system’s functionality. Today, supply chain and logistics networks are 

struggling with challenges such as unpredictability, uncertainty in a non-linear way more than 

ever due to the enlargement of markets from national to international arena.  

A model capable of managing and optimizing complex systems calls for a wide fundamental 

change in the perspective of the company.  Not only logisticians and operators need to level up 

their envision with a broader insight of how a decision in one section can have a great impact 

                                                           
1
 The Supply Chain Council's website is located at http://www.supply-chain.org/public/home.asp   
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on the whole system but also must acquire sufficient technological and analytical competence 

in order to firstly fulfill communication requirements and secondly understand and interpret 

data such that the system evaluation and improvement can ultimately pursuit its effective 

functionality. As a result network designers must foresee possible problematic scenarios and 

fortify their models with underlying characteristics such as resilience and reliability due to 

network survivability. Furthermore since the future effect of a local change in the global 

behavior of a network is unpredictable, it is vital for supply chain planners to take account for 

risks and unexpected events in order to mitigate not only the severity of an incident but also its 

unknown yet possible widespread impact by prompt reaction; as late detected errors can 

propagate rapidly and cause extreme damages in the system-wide structure and performance. It 

is well known that each model embeds a robust and at the same time fragile template. This 

means that various types of stochastic and deterministic mathematical models for formulating a 

network are able to address and satisfy some aspects yet it is most likely to fail sustaining other 

aspects. Therefore, the system must have the tolerance for further adjustments in the case of 

probable disruptive events that haven’t been seen prior to occurrence. Hence, redesigning 

actions with the aim of improving the structure of the network to meet key player’s 

expectations in the supply chain is necessary. 

(A Framework for Computing Topological Network Robustness 2010) In conclusion, 

survivability is practiced in three areas. Preventive actions; that aim to improve network 

survivability by means of reliability enhancement such as upgrading equipment and machines 

as well as equipping critical zones with fault-tolerant and self-healing hardware. Network 

design; that plan on catering extra capacity with diverse range of paths such as multi-homing 

solution in order to reduce the impact of node /link failure in the system. Finally, an end to end 
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traffic management ensuring fast recovery from attacks meaning the ability to adapt quickly 

and perform business-usual activities in the time of crisis. Moreover utilizing the remaining 

capacity and other available options in order to avoid traffic jam and pursue traffic flow. With 

all this in mind, the scope of this thesis is to provide a solution that could solve survivability 

problem by utilizing the advantages of the latter mechanism. We would like to develop a 

solution that is to be considered a corrective action which accelerates system recovery after 

disruption by means of a resourceful and robust structure.  

We present our problem through a set of nodes and links called graph. That is because primarily 

the natural framework treating complexity lies within graph theory science. Secondly studying 

large scale networks of irregular structure that are dynamically evolving in time through 

depicted graphs would lead to a better understanding of its evolutionary mechanisms and 

functional behavior. As a result many scientific areas of study have called attention to employ 

graphs and their applications in their frame work, mostly where flow of people, goods, 

information and funds also known as network flow models is to be closely investigated. The 

other important factor that led us towards proceeding our research in the field of graph 

optimization problem is that globally interconnected systems are a combination of many 

interacting parts that run on their own internal structure, performing a specific behavior or 

function. Network segregation proves to be very practical when working with large scale 

networks, where clustering components into logical units helps enhancing performance in areas 

such as pattern configuration, data management, data storage and virtual memory improvement. 

In addition our solution is known to be a heuristic-based approach due to the fact that applying 

ILP- based models (integer linear programming) would require computational calculation. 

Hence for networks of large scale, consisting of great number of nodes and links, an ILP- based 
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model would become very complicated and time consuming while a heuristic approach can 

obtain near optimal solutions within an acceptable time frame. 

1.2. Research objectives 

Graph partitioning is an optimization problem that divides a network into subsets of 

manageable size with less complexity and minimum interaction between them, with the aim of 

maximizing their independency as much as possible. This in turn helps improving network 

performance and functionality along with handling restriction and privacy issues relating to 

transforming information.  

With the assumption that the studied network is in general a robust network we would like to 

develop a partitioning-based approach that not only improves the management of supply chain 

and logistics but also is able to account for disruption in the face of inescapable, unpredicted 

incidents. Nevertheless it is essential to maintain functionality in critical facilities and high 

priority connections in the time of crisis.  

In summary, the three main objectives of this thesis are as follows:  

4. Model disruption on logistics networks 

5. Assure and strengthen connectivity in the disrupted network for routing purposes 

6. Develop partitioning approaches to generate roughly equal sized and balanced 

partitions in the disrupted network 

1.3. Thesis  organization 

This thesis is organized as follows. Chapter 2 states our problem and the main targets to be 

addressed in this research. Chapter 3 explains essential definitions required for the reader to 

understand the studied topic and reviews literature concerning graph partitioning while 
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presenting various methods in this area. In addition we introduce elements that are closely 

related to system’s survivability along with the area of attention in previous works concerning 

supply chain disruption. Chapter 4 presents the solution approach. We define the input property 

and our overall strategy concerning a disrupted network and demonstrate how the suggested 

methods intertwine with disruption modeling. In section 5, we demonstrate the applicability of 

our work and its efficiency in modeling large scale networks with higher uncertainty by testing 

the proposed approaches on a few certified networks with different properties. A table set of 

calculation concerning different percentage of disruption on our pre-defined network is 

included. Finally we summarize, provide conclusions and propose future works in chapter 6. 

The organization of this thesis is illustrated in Figure 1 below.  

 

 

Figure 1: Organization of Thesis 
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   Chapter 2: 

Problem Statement  

2.1. Problem definition 

The three set of problems concerned in this work are: 

• How to model disruption on logistics networks? 

Our main concern when modeling disruption is the type and level of disaster. As for the 

type we need to investigate the point of occurrence meaning whether it has occurred in 

the node or the link or both. In terms of level we must take into account state of failure, 

that is, whether it is a temporary damage or permanent.  

• How to assure and strengthen the connectivity of the disrupted network? 

One essential act dealing with this matter is to collect all necessary information 

regarding supply and transportation; and transferring these raw data into practical 

information in a centralized establishment for future need. Nonetheless maintaining 

continuous flow of information to related sections is as important as the previous step. 

We must also investigate a procedure that will improve the system functionality in the 

occurrence of an event. For instance in a military-based network the complexity and 

sensitivity of the distribution is high as it involves moving both materiel and forces. 

• How to generate roughly equal sized and balanced partitions in the disrupted network? 

Algorithms capable of providing good partitioning are important as they promise 

efficient execution on scientific simulations. Many groups of simulations such as 

parallel computers where high performance is vital can’t achieve such kind of 

performance through single objective techniques (traditional partitioning) and therefore 
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multi-objective versions are required to accomplish these set of requirements. In 

general, the structure of the computation in scientific simulations changes at each phase, 

and techniques mostly start off with an initial decomposition and then it continues 

balancing the load work at certain intervals of the simulation. Each segment iteratively 

entails a computational performance step and a data exchange step respectively. Two 

most common metrics that must stay balanced to indicate an efficient algorithm in the 

area of optimization problems are computational complexity concerned with the 

required processing time and optimality of solutions via capacity utilization assessment. 

Nonetheless, the network attributes and their underlying characteristics may change 

from one to another based on their expected objectives. Therefore each system might as 

well require particular metrics that are appropriate to specifically evaluate functionality 

of that certain network. For instance, in an army network it is necessary to perform 

process measurement via metrics to measure and evaluate the level of customer 

satisfaction. For example, applying supply chain and performance metrics in order to 

measure the performance of linked facilities. The former metric analyzes the entire 

supply chain with independent process integration and the latter measures a particular 

process in the supply chain.  
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Chapter 3: 

Literature Review 

In this chapter, we present the notations and formulations, an overview of the basic concepts of 

graph theory, and graph partitioning approaches which are the basis of solution approach 

proposed in Chapter 4. We also discuss elements that are closely related to system’s 

survivability along with the area of attention in previous works concerning supply chain 

disruption. 

1. Preliminaries and general description 

 Notation  

A graph G (𝑉, 𝐸), is a network consisting of a specific number of nodes 𝑣∈𝑉 with edges 

connecting them 𝑒∈𝐸. 𝑣𝑖  and 𝑣𝑗  are connected if a path exists between them in which, one is the  

starting point  and the other is  the final point ,also they are called adjacent if the edge e =  

(𝑣𝑖, 𝑣𝑗)  is a component in E. Note that each edge connects two different nodes so loops are not 

allowed. One other property affiliated with a graph is that each node has an assigned number 

indicating the degree of the node that is equal to the number of edges (arcs) connecting to it.  

Plotting a graph depends on the structure of our computational network that is either performed 

on the nodes, elements or both. Node graph presentation is where a vertex exists for each node 

and displayed as a point while edges are introduced as lines displaying their connection thus 

each edge has two endpoints stating communication. On the contrary dual graph is when the 

computation is performed on elements, then the points in the modeled graph represent elements 

and the lines introduce shared edges /faces among them. (Figure2)      



9 
 

 

 

 

 

 

Figure 2: Graph (a) shows a 2D irregular network, graph (b) models a node graph, representing 

communication and graph (c) models a dual graph, performed on the mesh elements representing adjacent 

elements 

 

In addition since different graph types embody particular characteristics, it is possible for each 

node to have a size 𝑠 (𝑣); and each edge having an assigned weight 𝑤 (𝑒) representing workload 

or the amount of dependency. Moreover edges can display direction separating them into 

directed and undirected graphs. 

Undirected graph by definition is when there are no directions associated with the edges. That 

is, the edge from 𝑣𝑖 to 𝑣𝑗   and the edge from 𝑣𝑗  to 𝑣𝑖 are the same and interchangeable.  (𝑣𝑖, 𝑣𝑗) 

= (𝑣𝑗 , 𝑣𝑖) 

A directed graph by definition is when a direction is assigned to each edge. More specifically 

the edge linking 𝑣𝑖 to 𝑣𝑗  distinguishes from the edge connecting 𝑣𝑗  to 𝑣𝑖. (𝑣𝑖, 𝑣𝑗) ≠ (𝑣𝑗 , 𝑣𝑖). This 

indicates that one node will be the successor of the other and as to a real time network this 

means that the execution of one task depends on the completion of its successor.  

Further, in terms of associating a weight to the arcs of a directed graph, considering  𝐺1  as an 

undirected graph and 𝐺2 as a directed graph with a weight attached to each arc, then we have: 

𝐺1 = (N, E) where N is a set of nodes and E is a set of edges between nodes. 

𝐺2 = (N, E, Le) where N is a set of nodes, E is a set of edges between nodes, and L denotes a 

a b c 
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square matrix whose entities  represent the weight associated with each edge, with all entries  

on the diagonal equal to zero, indicating that self-loops are not permitted. 

Graphs in Figure 3 display directed and undirected graphs. 

 

 

 
Figure 3: Directed and undirected graphs 

 

One substantial part of our research is assigned to efficiently partitioning a graphical network. 

A common definition of a weighted K-way graph partitioning problem is the process of 

dividing a graph G = (N, E,𝑊𝑁,𝑊𝐸) into approximately K equal sized subsets N = N1 U N2 U 

… U 𝑁𝑘 while minimizing the inner connection and maximizing the intra connection among 

them. Where N stands for nodes, E indicates edges while  𝑊𝑁 and 𝑊𝐸 are associated weights to 

nodes and edges respectively.  

The given graph will be decomposed into p disjoint subgroups; whose union equals N and their 

intersection is Ø. This will guarantee that no node is a member of more than one cluster. 

Further, concerning our suggested methods, W and Q are two main parameters to be discussed 

in this section W is a user-defined value for the cardinality indicating the maximum number of 
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nodes present inside a subset. Let 𝑐𝑎𝑟𝑑𝑖 denotes the cardinality of subset  𝐺𝑖. Note that 𝑐𝑎𝑟𝑑𝑖 ≤

𝑊. 

Q is a user-defined value representing the density of a subset, which is the ratio of the number 

of external connections of a subset divided by its cardinality (number of internal nodes). 

𝑄𝑖 Corresponds to the density of the subset  𝐺𝑖.  

W and Q are parameters that highly affect the quality of clusters thus, must be specified with 

care. For this matter, the value of W must be greater than 0 and less than the total number of 

nodes N. Likewise,  (Awasthi, et al. 2009) Q should not be too high or too low, as low density 

will result in isolated subgroups and high density will cause large number of inter-connections 

which is contrary to the stated objectives of the paper. For more information on graph theory 

we refer to (Bondy and Murty 1976) 

2. Graph partitioning 

Partitioning 𝑣∈𝑉 of graph G into k disjoint subsets provides a mapping of either the mesh nodes 

or the mesh elements onto k processors. In simple words the goal of solving a problem through 

graph partitioning is to implement a computational method in a way that both the overall 

runtime and communication are reduced. It is desirable for each chunk to have the same amount 

of node weight so that each processor handles an approximately equal fraction of workload 

(balanced subsets) and as well minimizing the edge weight between processors of two subsets 

(Minimized edge-cut). 

More specifically, the total communication volume during parallel processing is estimated by 

counting the number of edges that connect the vertices of different subsets namely edge-cut. A 

well-chosen decomposition should minimize this metric; although the edge cut metric and the 

total communication are not always the same in volume. The reason is that firstly the edge- cut 
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counts every edge cut and secondly as in total interaction the data must be sent once, even if 

two or more edges of the same vertex are cut by the same subset. Therefore this metric isn’t 

solely adequate to predict the inter-processor communication. Accordingly a more reliable 

measure with accuracy is taken in to account which is the maximum time required for each 

processor to perform communication. This strongly depends on the number of processors; a 

processor must communicate with as well as the amount of information that must be swapped 

among processors. Figure 3 is a good example that illustrates the abovementioned issue. As 

depicted the total communication between A, B, C is 9 while the edge-cut is equal to 7. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: A partitioned network 

Balanced subsets are attained through restructuring and levelizing processors in a way that each 

processer runs an equal execution time; also each processor deals with the same storage demand 

namely balancing storage. Nonetheless it is notable to mention that partitioning is done based 

on the type of the problem. For example in a heterogeneous cluster representing workstations it 

is desirable to carry the extra subset weights on to faster machines. Another example would be 
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a workstation with uniform graph models projected on them where most vertices have about the 

same number of edges; here there would be a strong correlation between edge-cuts and inter-

processor communication, hence traditional balanced graph partitioning is considered which 

aims to minimize the cuts. K-way partitioning through recursive bisection is executed through 

following steps: 

 Graphs are frequently partitioned into k sub graphs. 

 If k is not a power of two, the k-way partitioning must be computed in a way to ensure 

balanced sectors. Accordingly bi-partitioning is easier to implement than k-way 

partitioning since there is  no need to choose the destination part of vertices  

 After computing our separator, the two separated sub graph must be reconstructed by a 

sequence of iterative bipartitions on half of the available processors. 

In general; (Meyerhenke, Monien and Sauerwald 2008) Graph partitioning methods can be 

categorized into two major types’ namely local improvement methods and global strategies. 

Local search are edge based techniques that aim to find cuts close to the starting node 

regardless of their connectivity status and start off with an initial arbitrary based partitioning. 

They claim to be fast relative to the size of the small side of the cut; however they are lower in 

quality compared to global strategies. Mainly because they do not take connectivity matrix in to 

account and system improvement is merely based on gain and loss ratio as well as its difficulty 

to employ on parallel computation. (Andersen, Chung and Lang 2006) Global strategies on the 

other hand, are mathematical based approaches that perform partitioning with respect to the 

properties of the entire network. All related methods require calculation and entail 

mathematical analysis therefore they are known to be time consuming techniques; however the 

quality is considerably higher.  
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The urge of graph partitioning strongly arises when dealing with a large scale network and 

handling network complexity. Graph partitioning techniques are considered to be a very fast 

and effective solution in various fields of computational science and engineering. In this regard 

many platforms such as VLSI circuit design, data mining, image processing, parallel processor 

computation and work distribution, spars matrix recording, telecommunication networks and 

many other related operational research have taken advantage of this fundamental optimization 

problem method.  

Graph partitioning is known to be a NP complete optimization problem. Due to the nature of 

the problem, as the size of the network increases the chances of finding the ideal solution in a 

reasonable time frame is almost impossible. More specifically in practice, solutions based on 

primitive algorithms are approximate and known to be general problem solving methods rather 

than specific tailor-made solving methods. In detail the solution obtained is more than often far 

from optimality along with other drawbacks namely slow computation and complicated 

implementation.  

Therefore the importance of heuristic methods has been conceived to efficiently solve 

optimization problems by finding a low cost, near-optimal solution in an acceptable time. As a 

result a large number of heuristic algorithms have been proposed over the past decades. . 

(Schloegel, Karypis and Kumar 2006) . Overall provides a descriptive review of different graph 

partitioning techniques for scientific simulations based on their nature. It defines adaptive 

(dynamic) and static graphs and reviews different algorithms for each by classifying static 

graphs into four classes of Geometric (Berger and Bokhari, 1987; Heath and Raghavan, 1995), 

Combinatorial (Kernighan and Lin, 1970; Fiduccia and Mattheyses, 1982), Extended 

combinatorial optimization techniques , Spectral (Simon et al, 1997), and Multilevel methods 
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(Karypis and Kumar, 1998a). Here we will take time and provide a descriptive explanation for 

each method. 

 

3. Graph partitioning approaches 

3.1. Static graph partitioning techniques  

Static graph partitioning algorithms follow a certain mathematical procedure across the 

algorithm iterations. They intelligently partition a graph when the network is not in operation. 

These algorithms mainly aim to satisfy the edge cut criteria. 

3.1.1. Geometric computation 

The geometric computation is somewhat considered to be a fast technique that ignores the edge-

cut factor and is merely coordinate-based information on the nodes, with the goal of grouping 

nodes that are spatially close to each other regardless of their connectivity status.  Therefore, 

minimizing the inter-processor communications requires schemes, designed in a way to 

minimize metrics such as the number of mesh elements that are next to non-local elements. 

Most important features of this type of techniques are:  

 Applicability for graphs with coordinate system such as Crash Simulations and Contact 

Detection, Adaptive Mesh Refinement, Particle Simulations and Parallel Volume 

Rendering 

 Simplicity since no connectivity information is required. 

 Iteratively splits mesh into bisections. 

 Conceptually fast. 

 Since connectivity between elements is not considered, partitioning is known to be low 

in quality.  
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 There is no cost control or optimization on communication. 

 Forming disconnected subsets in complex calculations is common.  

Coordinate Nested Dissection (CDN) is a frequently used scheme in this category.  Recursive 

Inertial Bisection (RIB), Sphere-Cutting Approach and Space-Filling Curve Techniques are 

three other well-known schemes worth mentioning. (Andersen, Chung and Lang 2006) 

 

3.1.1.1. Coordinate nested dissection (CND)  

 “Recursive Coordinate Bisection (RCB) “is a static load-balancing algorithm that was 

proposed by Berger & Bokhari in 1987 and plans on maximizing independency by minimizing 

inter-processor communications. In other words, smaller portions of information and data are 

exchanged by cutting down the boundary between the subsets. Since the technique produces 

incremental partitions, therefore it has also been studied under the name of dynamic algorithms. 

CND bisects the domain with a plane that is perpendicular to one of the coordinate axes(X, Y or 

Z). The procedure starts off by computing the center of the mass for each element. It then maps 

the correspondent points on the coordinate axis that is the longest dimension of the mesh with 

respect to the geometric location of the entities. The elements are sorted in an orderly fashion 

and then divided in half to produce bisection. The method is recursive hence subsets are 

iteratively divided with the same splitting technique until the optimum is achieved in other 

words the number of subsets matches the number of processors. (figure5a) 

Advantages  

CND appears to be extremely fast and requires little memory. Therefore the partitioning is quite 

compact. It is known for easy parallelization. Furthermore the cost associated with data 

redistribution is low since small changes in data causes insignificant movement in cut. 
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Disadvantages 

In general computation is restricted due to the fact that orderings are computed on a single 

dimension which is one of the coordinate axes. Thus, the resulting subsets are of low quality. 

Also complicated geometries lead to disconnected subsets.  

 

3.1.1.2. Recursive inertial bisection (RIB) 

RIB is an advanced model of CND that was proposed by Simon in1991 and studied afterwards 

by Taylor & Omid in 1994. RIB is capable of computing bisections that are orthogonally 

rotated around the inertial axis rather than solely the coordinate axis. RIB bisects the domain 

(figure5b) with a plane at any angle relative to the coordinate axes. This in turn provides higher 

quality decomposition. The procedure starts off by computing its prime inertial axis and then 

maps the center of the mass onto this axis. Sorted elements are split in half and bisected. The 

procedure is repeated by dividing the subsets according to the technique steps to the point 

where the optimum is achieved. Appropriate size adjustment for each part helps generating 

equal-sized subsets. However in parallel computation processors with different speed must be 

set with non-uniform sizes.  

 

Figure 5: Bisection by CDN and RIB; a and b respectively  
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Advantages  

The resulting decomposition is obtained in a shorter time and the shared face/edge of subsets is 

smaller than the one produced by CND scheme. 

Disadvantages 

Computation of the ordering list is done by mapping elements on a single dimension also the 

separators computed are known as hyperplanes. (Chamberlain October 13, 1998) 

 

 3.1.1.3. Space filling curve techniques (related self-avoiding walk) 

Space filling curves method is defined as a mesh rearrangement mathematical function that 

attempts to map a high dimensional domain into a one dimensional hyperspace. (Aftosmis, 

Berger and Murman 2004). They are constructed in such a way to continuously fill up high 

dimensional spaces such as squares/cubes spheres into smaller unit of somewhat same shape by 

applying one of the many certified ordering methods such as Peano-Hilbert curves. SFC it starts 

off by computing the center points of mesh elements followed by sorting them based on their 

closeness. In other words the objective is to traverse all subdomains while preserving locality 

and neighborhood. Finally the list of ordered elements is split into k parts resulting in k subsets. 

Advantages  

It is known to be fast and simple and thrifty. It produces a higher quality decomposition 

compared to CND and RIB method since it considers more than one dimension at a time and 

has the ability to propagate repartitioning. (Figure 6) 
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Figure 6: Space filling curve with two different ordering 

Disadvantages 

It performs better on certain type of problems where computation greatly depends on spatial 

closeness of objects for instance hierarchical methods in n-body computations. 

 

3.1.1.4. Sphere-cutting approach  

(Miller, et al. 1993) , (Chamberlain October 13, 1998)  Sphere-Cutting decomposition also 

referred to as recursive circle bisection is known to be practical for a variety of graph problems.  

The method is capable of dealing with overlap graphs that basically consists of both well-

shaped meshes and planar graphs and it can also tackle downsides of hyper plane-based 

algorithms. To that end it conducts a global search on vertices and defines separators as circle 

and spheres instead of line and planes that offers extra degree of freedom to the problem. These 

graphs have O(𝑛
𝑑−1

𝑑 )   vertex separators. A vertex separator is by definition a set of vertices 

that can be removed and split a graph into two roughly equal-sized subdomains without any 

edge linking them. This means, instead of partitioning the graph between the vertices resulting 

edge cuts, the graph partitions vertices side by side. For this matter, the total weight of the 

vertex separators should be minimized. (Constraint) 

The main idea behind this approach is the usage of a neighbourhood system in decomposing an 
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overlap graph. In that event a k-ply neighborhood is applied. A k-ply neighbourhood system is a 

set of n spheres in a d-dimensional space where each point can only be surrounded with only k 

out of n spheres.  

a (∝, k)-overlap graph comprises of spheres corresponding to each vertex  and are such that two 

nodes are adjacent if spheres, expanded by α, intersect in other words a direct edge is between 

them.  

(Gilbert, Miller and Teng 1995) The method proposed maps nodes of a d-dimensional graph on 

to the unit d+1 dimensional sphere surrounding it. In order to decrease the level of complexity 

and as well accelerate the process the algorithm generates a random sample of projected nodes 

representing the graph. Next it computes the center point for the projected nodes. For large 

scale graphs center points are calculated through a heuristic algorithm instead of a linear 

programming algorithm to speed up computation. The result is achieved by selecting a few best 

circles (partitions) in a randomly fashion and choosing the best among them that is the one that 

has the fewest edge cuts. 

Advantages  

It guarantees high probability in quality when decomposing well-shaped networks.  

Disadvantage 

Due to randomness there are no guarantees for a perfectly balanced partition. (Gilbert, Miller 

and Teng 1995) Offers a modified version that will create a balanced partition by shifting the 

separator normally to its orientation. 

 

3.1.2. Combinatorial techniques  

 Geometric partitioning are fast, understandable and easy to implement but they all have two 

mutual flaws that is; firstly even though most algorithms in this class select a random sample of 
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nodes yet each node of the input graph requires coordinates. Secondly they don’t take the 

connectivity status of the nodes into account and consider a short connecting path between 

nodes by reason of spatial closeness. At some point this assumption may seem logical but is not 

germane for all sort of input graphs therefore other class of algorithms have been conceived to 

address such kind of problems. Combinatorial techniques also referred to as structural 

algorithms are known to be more sophisticated as they include the graph’s connectivity state. 

Here, partitioning is solely based on the graph’s adjacency information rather than locality and 

the coordinates of the vertices. Simply put, it attempts to group together highly connected 

vertices regardless of their closeness in space. Most important characteristics of this class of 

techniques are as follows: 

This in turn leads to smaller edge-cuts as well as lower chance of isolated subsets compared to 

the previous class. Although combinatorial techniques are slower than geometric schemes and 

considered to be a less practical for parallel processor computation, they are still known to be 

reasonably fast. 

Advantages: 

The output partitioning has lower edge-cuts and a lower chance of isolated subsets compared to 

those by geometric schemes. 

Disadvantages: 

It appears to be slower than geometric schemes and is considered to be a less practical for 

parallel processor computation. 

Levelized Nested Dissection (LND) and Refinement algorithms namely Kernighan-

Lin/Fiduccia- Mattheyses (KL/FM) partition refinement are two popular algorithms of this class 

with the objective of  exploring moves that reduces edge-cuts while satisfying balanced 

constraints. In this section, we explain these two approaches in detail. 
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3.1.2.1. Levelized nested dissection (LND) 

The procedure is a graph growing algorithm that seeks to put together connected nodes, starting 

by randomly selecting a single node as a subset referred to as 𝑣0 and assigned to the first 

partition.it is highly desirable to choose an exterior node as 𝑣0. The next step would be to add 

adjacent nodes to increase the size of the subset. To that end the distance for each adjacent node 

to 𝑣0 is determined through breadth-first search (BFS). This process is repeated iteratively till 

half of the nodes are united with 𝑣0. At this point, the graph is split into two subsets namely 

assigned, unassigned and the algorithm terminates. Furthermore we can test LND algorithm 

with different starting nodes in order to achieve the best possible partition.  

 LND algorithm promises at least one well-connected subset as long as the input graph is 

fully connected.  

 The method argues that it is capable of producing subsets of same or higher quality than 

the previous class, though the argument is not definite.   

 

3.1.2.2. Refinement algorithms 

The output partitioning computed through a method is not always the optimal solution. 

Therefore, the urge of refinement techniques has been conceived. Refinement techniques can be 

categorized into an independent group as they attempt to enhance the quality of an initially 

developed partitioning. Nonetheless due to its closeness to partitioning problems, we consider a 

subgroup of combinatorial schemes. Recently great attention has been given to such kind of 

algorithms as they have not only turned out to be very useful and efficient in amending the 

output of other partitioning methods but also has proven to be very practical when  partitioning 

from scratch through simply selecting a random partitioning as its input. 
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The first algorithm was developed by Kernighan and Lin in the late 60’s, named KL partition 

refinement and later an improved version called KL/FM partition refinement. Generally both 

procedures aim to reduce the number of edge-cuts and may start off by improving a randomly 

selected partition by flipping over nodes from one subset to the other. Here we describe each 

algorithm in detail. 

3.1.2.2.1. KL Partition refinement 

The KL partition refinement is basically based on a metric that determines if trading nodes 

between subsets can be beneficial. Here an initial bisection of a graph, preferably equal-sized 

subsets namely A and B, is given. KL algorithm is applied  by  finding an  X ⊆ A and a Y ⊆ B 

in a way that swapping X to B and Y to A leads to  greatest reduction in edge-cut  that in turn 

helps improving the quality level of the partitioning. Our goal is to reduce the node’s gain by 

simply reducing the total interconnections. The trouble finding the best set of X and Y could be 

achieved through a greedy method that is, moving nodes with maximum positive gain, up to the 

point where no set of nodes with such characteristics are left unswapped. Next step is to select 

and restore the bisection that has the least edge cut. Finally, all remaining vertices that were 

moved after the selected bisection are moved back to their first place. An additional step would 

be to consider this new partition as an input for an extra pass. 

Noteworthy points of the technique are as follows: 

 In KL refinement method each pass takes approximately O(|𝑣|2)time.  

 The possibility of encountering local minimum is high; therefore KL solves the problem 

by allowing hill climbing that is the permission to move nodes with negative gain with 

the aim of reaching a global minimum.   
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3.1.2.2.2. KL/FM partition refinement 

KL/FM Partition Refinement proposed by Fiduccia and Mattheyses is a modified version of the 

basic KL algorithm with the purpose of reducing the overall runtime through enhanced data 

structures. Partitioning through a globally-based approach can improve the result by executing 

FM algorithm as an additional step. In general its job is to adjust the gain and loss values by 

minimizing the sum of the nodes after node migration. The major difference between these two 

techniques is that the latter method considers moving one node at a time. The procedure runs as 

follows: 

1. Note down values of gain/loss for each node along the partition. 

2. Generate a priority queue for each subset, sorted by the gain obtained by node’s 

migration. 

3. Move the node that allows both edge cut reduction and balance improvement. 

I. If the highest node in one queue maintains the balance constraint, then node migration 

is done. 

II. If the highest node in both queues satisfies the balance constraint, then select that node 

with the greatest gain. 

4. Omit the migrated node from the queue and update the gains of the adjacent vertices. 

5. Stop passing when there is no node left to move.   

6. Here the bisection with the highest quality is selected and restored. 

Strength and limitations of the scheme are as follows: 

 The complexity of each pass of the FM algorithm is equal to O (|𝐸|). 

 Node migration is done regardless of its gain negativity or positivity. 

 KL/FM is capable of escaping local minimum. 
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 KL/FM scheme has a restricted ability therefore the quality of the final bisection, 

strongly depends on the quality of the input bisection 

 KL/FM algorithm has the capacity to modify and adjust itself depending on the 

requirements of the programmer, the area of interest and the problem definition. For 

instance considering weighted graphs, P-way partitions or when applying more complex 

standards for gain. (Chamberlain October 13, 1998) 

3.1.3.  Spectral methods 

Spectral schemes known as challenging partitioning schemes are high in quality but expensive. 

A high level structure of the scheme consists of three basic steps namely: pre- processing, 

decomposition and grouping. The general approach is to formulate the problem into a discrete 

quadratic function and transform the discrete optimization problem into a continuous one.  

The procedure is as follows:  

 Input graph G with adjacency matrix A whose diagonal element provides matrix D[𝑖, 𝑖] 

= degree of node i. 

 Pre- processing : 

• Matrix LG is a discrete Laplacian matrix generated to represent the dataset 

and is equal to A - D 

• Decomposition: values required for this scheme are eigenvalues and 

eigenvectors that provide the global information about the structure of the 

graph. 

• Since LG is a negative matrix its largest eigenvalue is 0 therefore the second 

largest eigenvalue measures graph connectivity. 
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• Problem minimization is solved by computing the corresponding 

eigenvector of the second largest eigenvalue called Fiedler vector with the 

purpose of measuring distance between nodes.   

 Grouping:  

• Fiedler vector is sorted incrementally and graph segmentation. 

Strength and limitations of the scheme are as follows: 

• Produces higher quality partitioning than geometric schemes. 

• Computing Fiedler vector for large data set is expensive and infeasible in 

real time.  

• Great attention has been focused on speeding up the algorithm by taking 

Lanczos algorithm and multilevel methods in to account to practically 

compute eigenvector. 

• By applying spectral bisection recursively a k-way partition is computed.  

• K-way decomposition has also been investigated by clustering multiple 

eigenvectors in units of four and eight.  This in turn prevents instability due 

to information loss. 

• The latter k-way partitioning approach is more efficient and less costly 

compared to recursive spectral bisection, since it considers approximate 

spectral clustering.  

• The splitting point can be calculated either by basic approaches such as the 

mean, median or at 0 or through more expensive approaches such as 

normalised cut criterion in 1-dimension. 
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3.1.4.  Multilevel schemes 

Lately, great attention has been designated to this class of optimization problem. Multilevel 

schemes consist of three phases respectively: graph coarsening, initial partitioning and partition 

refinement. The common computational structure applied recursively is as follows: 

1. Graph coarsening: is to coarsen the original graph by breaking down pair of nodes that 

forms a matching preferably heavy –edges pairs. At each stage the coarsened graph acts 

as the input for another round of this procedure and continues until the smallest graph 

of its kind is obtained. 

2. Initial partitioning: is performed on the coarsest graph (smallest) using a standard 

approach such as recursive bisection method. 

3. Partition refinement: is executed on each graph from the coarsest up to the largest 

graph using KL/FM algorithm. 

 

This paradigm appears to be very efficient while resulting in a short period of time. It performs 

well by hiding a large number of nodes and edges on the coarsest graph. Moreover moving a 

single node in a coarsened graph is equal to moving a large number of highly connected nodes 

in the original graph. Subsequently in this context incremental refinement schemes such as 

KL/FM perform better by escaping problems such as local minimum. Multilevel partitioning 

algorithm has been implemented in Chaco [Hendrickson and Leland, 1994], MeTiS [Karypis 

and Kumar, 1998], SCOTCH [Pellegrini and Roman, 1996], PARTY [Preis and Diekmann, 

1997] and JOSTLE [Walshaw, 1998] software packages. 

(Karypis and Kumar 1998) Studied multilevel paradigm broadly highlighting the advantages 

that are as follows: 
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 The scheme is robust.  

 It surpasses the previous methods in terms of speed and quality.  

 The initial partitioning method implemented on the coarsest graph does not 

jeopardize the overall quality of the solution, in other words supposing the initial 

partitioning of the coarsest graph is refined poorly, by employing a local refinement 

method in the multilevel scheme high quality partitioning is attained regardless. 

 Capable of reducing the total edge weight. That is heavy –edge matching (HEM) 

is much more effective in hiding edges in the coarsest graph, compared to random 

matching (RM). in other words in the HEM algorithm the coarser graph combines 

nodes holding greater weight edges leading to minimized edge weight. 

 The total run time of the multilevel recursive bisection scheme is O (|E| log k). 

Other benefits of such scheme is that 

• Partitioning on the coarsest graph maintains higher quality compared to the 

original graph and works better than the traditional single level techniques. 

• Movement of a single vertex in a coarsened graph is equal to the movement of a 

large number of highly connected vertices in the original graph. 

Multilevel k-way partitioning 

(Karypis and Kumar 1998) presents an alternative that is a generalized form of the previous 

versions of the KL/FM algorithm concerning k-way partitioning refinement. The first step, 

graph coarsening, is performed as in its original scheme. But as for the second step the 

coarsened graph is directly divided into k parts. Finally the output of the previous step is refined 

and subsequently un-coarsened back into the original graph.  

Strength and limitations of the scheme are as follows: 
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 The method proves to be more practical when directly applied on a graph rather than 

following a computation via recursive bisection. Since firstly it only computes the 

coarsened graph once, therefore great reduction in complexity is gained leading to 

faster runtime which is linear in the number of edges and is O (|E|). Secondly, in 

general, recursive bisection is known to do worse than k-way partitioning.  

 The run time is compatible with the run time of geometric recursive bisection 

algorithms with 2 to 4 runs but with a higher quality. 

 It creates a better quality decomposition compared to multilevel recursive bisection. 

 In comparison with multilevel spectral bisection it produces partitioning with 

generally smaller edge-cuts.  

 

3.2.  Dynamic graph partitioning techniques  

(Schloegel, Karypis and Kumar 2006) also present techniques developed to undertake 

applications with unfixed workloads during the computation steps and are related to network 

flexibility and how to effectively deal with complication and complexity of data assignment. 

The techniques are known to be cost effective and useful when the workload evolves over time 

and the network dynamically changes. In large scale networks redistributing data and balancing 

workload through local refinement and de-refinement is rewarding as it can not only accurately 

capture the flow-field phenomena of interest but also considers a capacity for a diverse range of 

errors. In general, these methods would be less time consuming if the input partitioning is 

disturbed just enough to balance the workload rather than dealing with redistributing excessive 

data. 

Dynamic load balancing is obtained by utilizing a graph-partitioning algorithm where the graph 

corresponds either to the adapted mesh or to the original mesh with the node weights modified 
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in order to resolve error estimates. The amount of rearranged data among the processors is 

minimized in order to balance the computation which means minimizing node migration with 

respect to the node size (redistribution cost of workload). 

(Oliker and Biswas 1998)Present metrics to measure distribution costs as: 

I. Total V defined as the total amount of nodes switching between subsets; that is the 

total volume of communication required to balance repartitioning.  

II. Max V equal to the highest amount of relocated nodes in the network and measures 

the maximum time required to send/receive data. 

The goal of repartitioning is to minimize both metrics. However refinement is easier through 

simple heuristics, thus some schemes attempt to minimize the Total V instead, that will 

automatically lead to a minimized Max V. One other important reason is that Max V equals an 

amount that is less than the total node weight transferred into an underweighted cluster. 

In general, adaptive schemes are distinguished by the quality of the partitioning result, the 

execution speed and the amount of transferred data. For instance there may be a scheme 

providing a high quality result but with a high communication cost or a scheme resulting in a 

short time while the quality is not so very good. Here the system management has to determine 

and decide on the best solution strategy concerning the area of interest. 

Most common approaches are namely cut and paste repartitioning method, scratch-remap 

repartitioners and diffusion-based repartitioners:  

I. Cut and paste repartitioning method: overweighed subsets are balanced by relocating 

their excessive number of nodes into the underweight subsets despite their adjacency 

status. This in turn will minimize data redistribution but can lead to higher edge-cuts 

as well as disconnected clusters and is hence not used in many applications. 
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II. Scratch-Remap repartitioners: (Oliker and Biswas, 1998) attempt to compute the 

new partitioning from scratch by design. It maps the labels assigned to subsets in 

accordance to those of the original partitioning in order to minimize the data 

redistribution cost. This is done by constructing a similarity matrix, S, of size k *k. A 

similarity matrix is a square matrix where rows represent subsets of the old 

partitioning and columns represent subsets of the new partitioning. Moreover each 

element represents the sum of the sizes of the nodes that are both in the subset of the 

old partitioning and the new partitioning. The method will result in higher 

redistribution costs(Total V) compared to other schemes that starts off balancing the 

input partitioning by a minimal disruption (cut-and-paste and diffusion-based 

schemes). It then solves the problem by combining elements in such a way that 

every row and column contains one and only one selected element and the sum of 

the selected elements has the highest value among the rest. 

III. Diffusion based repartitioners: through accumulative changes the difference between 

the original partitioning and the final repartitioning is minimized. In the original 

partitioning nodes located in overweighed subsets are transferred into their 

neighbors. These subsets may in turn swap their excessive number of nodes to their 

next adjacent subset in order to reach global balance. Therefore the possibility of 

creating extra edge cuts or isolated subsets is minimized. 

Two main concerns when practicing diffusion-based repartitioning schemes is firstly, the 

amount of work transferred between processors, that is balancing the workload and secondly 

tasks that should be transferred to minimize the edge cut. In the context of balancing workload 

diffusion based schemes are generally classified as: 
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 Local diffusion schemes concentrate on exchanging workload among the 

processors solely based on their corresponding workload rather than the loads 

of geographically distant processors. 

 Global diffusion schemes execute on a global view of workloads across 

processors in order to balance the partitioning. In general global diffusion 

schemes manage to handle diffusion by methods capable of defining the 

amount of work moved between two processors namely recursive bisection, 

space-filling curves or flow solutions. 

Nevertheless there’s a tradeoff between cost and communication volume in all adaptive 

repartitioning algorithms. More specifically minimizing the data redistribution cost conflicts 

edge-cut minimization thus it is critical to understand the problem’s priority. In other words 

decisions are made based on the status of our problem for instance if mesh adjustment happens 

frequently or the amount associated with each element is relatively high; we persuade 

minimizing the data redistribution cost rather than edge-cut minimization. On the other hand for 

applications where repartitioning does not occur frequently, obtaining the minimal edge-cut is 

preferred. 

3.2.1. Parallel graph partitioning parallelism 

The above mentioned classifications of graph partitioning problem, static and adaptive, are 

generalized schemes that must be formulated in order to address their application to parallel 

computing. Mainly adaptive schemes are developed in order to operate on parallel procedures 

by rearranging data that has been already distributed. 

Studies in the field of parallel graph partitioning, have been focused on 

 Geometric partitioning schemes as  
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o Their runtime is not affected by the initial distribution. 

o They can be used to compute the partitioning of the input graph for the next two 

schemes 

 Spectral partitioning schemes 

 Multilevel partitioning schemes 

The last two schemes are harder to parallelize through a randomly partitioned input graph; 

therefore a well distributed input graph among processers is essential for high performance. 

Also in various problems the nature of the graph determines the level of quality required for the 

initial partitioning. As for static graphs consisting of unchanging sequence of nodes and links 

we can’t expect a clustered input graph since this is what the algorithm must produce in the first 

place. In the case of dynamic graphs due to their unstable nature we refine the graph from an 

initial cluster configuration among processers that hold small edge cuts .This attempt 

accelerates the process and is also cost effective. Further in favor of parallelism due to higher 

memory and space, solving problems and graphs in large scale is possible. Also higher 

efficiency in the matter of time and cost is the other advantage of parallel computers. Last but 

not least well scheduled parallel processors will also prevent bottle necks. 

3.2.2. A generalized formulation for graph partitioning 

 

As mentioned earlier due to lack of adequacy in basic schemes, imbalanced memory space and 

bias computation, restriction in the scale of the problem remains. This appears to be more 

challenging for sophisticated classes of simulations namely multi-physics, multi-phase, and 

multi-mesh as former schemes are not capable of balancing more than one constraint and 

minimizing more than one objective. For instance constructing a balancing node weight 
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procedure while minimizing the number of edge-cuts. Thus an extended version of graph 

portioning methods must be formulated in order to guarantee their practicality and efficiency in 

the performance of such simulations. Here we take time to first describe each class of 

simulation separately. We then describe are generalized formulation of the graph partitioning 

problem. 

Multi- physics simulation: 

This class embeds the simulation of multiple materialistic constraints together. Therefore 

unbalanced computation and memory requirements that lead to inefficiency and size restriction 

are respectively addressed. In consequence a number of objectives are satisfied at the same 

time. (Schloegel, Karypis and Kumar 2006) provides an example in this regard. As shown in 

figure (7) Graph (A) is the original graph distinguishing computation and memory associated 

with each vertex. 

Graph (B) is a balanced computation vis-à-vis non-uniform memory requirements. 

Part (C) is a balanced memory requirements vis-à-vis imbalanced computation. 

Part (D) is where both constraints are balanced. 

 

Figure 7: An example for computation and memory requirements 
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Multi-phase simulation 

Multi-phase problem is a combination of m disjoint computational phase, where each phase is 

separately decomposed and the outcome is injected in to the next phase. In other words each 

phase follows an individual synchronization step that is to balance the work load. This in turn 

involves different amount of computation for each element in different steps of computation. 

Therefore instead of summing up the required time to accomplish each phase and solving the 

problem based on this estimated time; Problem computation in this simulation is based on an 

equal amount of workload for each processor, which is aggregated from all computational 

phases. Consequently it prevents imbalanced workload and idle machines throughout execution. 

Moreover maintaining a minimum inter-communication among processors as well as an 

approximately equal share of the network entities for each processor during different phases are 

critical factors. 

The two following methods can help computing the problem. 

1) By using m separate decomposition, where each one is capable of balancing the 

workload of one phase of the process. This in turn requires constant data redistribution 

between phases which will increase the communication costs. 

2) By using a one shot decomposition that simultaneously balances the work with respect 

to multiple loads in each phase, thus no extra data redistribution is required and is 

more cost effective.   

Multi-mesh computations 

Multi-mesh computation is an important class of mathematical methods. This specific problem 

calculation appears efficient in problems such as radiation transport sweeps, FFT where 
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structured grids are used to discretize partial differential equations; while in complex 

geometries an unstructured mesh seems to be more practical. Nevertheless due to problem 

requirements in different operations as well as the quantity of variables, a particular grid that is 

appropriate to solve the equation maybe considered for each variable. An example would be the 

simulation of welding two parts together. The following steps are considered as the basic 

blueprint for a multi-physics procedure running on a distributed-memory parallel machine: 

1) Computing a solution on the first mesh 

2) Interpolating the result to the second mesh 

3) Computing a solution on the second  mesh 

4) Interpolating the result on the first mesh 

5) So on 

Note that regardless of the efficacy of the applied method where partitioning meshes 

independently creates a balanced computation and a minimized communication through each 

phase nevertheless the chances of excessive data transfer during the update-step and inter-

processer communication is high. 

Domain decomposition preconditioners  

Iterative methods are more likely to provide an efficient solution when  

 Matrix-vector multiplication is efficiently implemented in parallel by: 

1) Minimizing the number of non-zero elements that are off of the diagonal block matrix 

by taking edge cuts into account and rearranging elements. 

Note that each non-zero element off the block diagonal corresponds to an inter processor 

communication.  
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2) Taking account of edge- weights will aid minimizing the magnitude of non-zero 

elements that are off the block diagonal.   

 The number of iterations required for the method to converge is minimized by: 

1) setting preconditions for each block of the matrix 

2) applying  a combination of all preconditions for the entire matrix 

Note that non-zero elements off the block diagonal are ignored in these preconditions.  

 

3.2.2.1. Multi-constraint and multi-objective graph partitioning 

One way of formulating a multi-constraint, multi-objective graph partitioning problem follows 

these steps: 

1) A weight vector of size “m” is given to each node and a weight vector of size “l” is 

assigned to each edge. 

2) A partitioning that maintains a minimized edge-cut while respecting the assigned l 

weights, and maintains balanced for each m weight across subsets. 

Consequently where our problem definition is to balance computation and memory, each node 

is tagged with a vector (i, j) where i and j represent node requirements (two constraint problem). 

Also where the problem is concerned with the computation of the ordering for a sparse linear 

system that has been preconditioned by a block diagonal method, each edge is tagged with a 

vector (i, j) where i and j represent the number of non-zero entries and their magnitude (two 

objective problem). 

Therefore Multi mesh computations are in fact multi-constraint and multi-objective 

computations. The illustrated problem in figure 8 and 9 where  

Figure (A) shows two overlapping meshes  
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Figure (B) shows the graph associated with the problem 

Figure (C) shows the four- way partitioning of the graph (balancing both node types as well as 

minimizing their edge-cut) 

Circular node (0,1) 

Square node (1,0) 

Red solid edges (1,0,0) 

Blue dotted edges (0,1,0) 

Black dashed edges (0,0,1) 

 

Figure 8: Overlapping networks and their corresponding graphs 

 

Figure 9: Partitioned network (Figure 6)  
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Multi-constraint graph partitioning 

The problem is defined as follows: 

A single surface is enough to split three connected areas in half in a three dimensional space. (h 

and J 1994) demonstrated that the theory is also applicable for graphs consisting of nodes that 

are tagged with random weights. Recent studies in this section have developed extended 

versions of some schemes which differ in complexity and their problem-solving scale. 

A suitable scheme for multi-phase computation that modifies the traditional graph partitioning 

to some degree is to gradually partition disjoint subsets. 

For this matter  

1. Nodes are grouped based on the phase of the computation in which they are activated.  

2. Grouped nodes are locked.  

3. Free nodes will be partitioned with respect to the locked subsets. This means highly 

connected nodes to the locked subset are likely to be assigned to the same subsets as 

their neighbors.  

(Karypis and Kumar 1998) Present a more general scheme for a wide range of complex multi-

phase, multi-physics, and multi-mesh simulations in which the key factor for their efficiency is 

the initial partitioning algorithm. 

It demonstrates that a set of m-weight objects can be partitioned into m disjoint subsets in a way 

that the maximum difference between weights of the sets is limited to twice the maximum 

weight of any object. 

A parallel formulation of this scheme presented by (Schloegel, Karypis and Kumar 1999) 

efficiently computes partitioning for large scale graphs. 
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Multi-objective graph partitioning  

Contrary to traditional methods, in the case of multi-objective schemes the optimal solution is 

presented for each objective and not as a general solution.  

1) The minimum optimization values are determined  

2) Greater values for a single object are considered  

3) The result is then projected on the next object 

Note that: 

 The scheme considers independent solutions namely pareto -optimal points whether 

they are optimal for other objectives or not. 

 Pareto-optimal points are those that improve the value of an objective without 

negatively impacting the value of other objectives. 

 Multi-objective optimization consists of many pareto- optimal points. 

 The user is to specify and adjust the area of interest among the pareto frontier. 

Nevertheless allowing user to offset different objectives that are substantially different 

in nature is challenging.  

 Clarifying the area of interest among the pareto frontier will lessen the ambiguity of 

the desired solution. 

 (Schloegel, Karpis and Kumar 1999) Provides a new method for multi-objective graph 

partitioning utilizing traditional methods. The solution translates the trade-offs 

between objectives in a user-specified preference vector.  

3.2.2.2. Comparison of graph partitioning techniques 

It is noteworthy to mention that graph partitioning schemes differ in the edge-cut quality 
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produced, run time, degree of parallelism, and applicability to certain kinds of graphs. The main 

problem in all schemes is that sufficient data on the edge-cut quality and run time for a common 

pool of benchmark graphs is not available. (Schloegel, Karypis and Kumar 2006) 

 The best way to obtain practical partitioning results with respect to the problem is to take 

advantage of multiple schemes by consolidating them in such a way that the overall quality is 

improved. For instance   the combination of geometric method and KL/FM refinement that will 

lead to fast and high quality decomposition. Or multilevel techniques perform better when 

executing LND or spectral method on the original graph and improving it through KL/FM 

algorithm.  

Furthermore here we provide a graphical display in table 1 and 2 concerning qualitative 

comparison of static graph partitioning schemes comparing the abovementioned features. Also 

table 3 provides a comparison between common and well known techniques regards adaptive 

schemes. 
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Table 1: Graph partitioning schemes rated based on run time, degree of parallelism and related characteristics 
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Table 2: Qualitative comparison of graph partitioning schemes 

The first column shows the number of trials required to find a good quality partition. Here 

uncolored cells indicate the necessity of more than one trial. Colored cells in the second column 

show the need to know the coordinates in order to solve the problem. Colored cells in the third 

column indicate high-quality partitioning. The quality of different schemes is assessed by 
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taking global and local view into account. The next two columns provide information in this 

regard; where colored cells in both columns indicate their ability in maintaining such 

requirement. Consequently as shown in table 1, algorithms that have colored cells for both 

characteristics provide higher quality decomposition compared to the rest. Next column 

provides information on algorithm’s runtime. Lighter shades imply faster schemes with little 

execution time. For instance rows 9, 10 and12 have the lowest computational time compared to 

the rest. Finally the last column indicating the level of parallelizability where darker shade 

implies that the method is highly sequential and incapable of parallelism.  

As illustrated in table (1) we can conclude that multilevel graphing is one of the good types of 

partition among all since  

 Its number of trials is low.  

 There’s no need to collect coordinate information associated with the nodes. 

 It maintains high quality edge-cut compared to other methods.  

 It has the ability to provide both local and global view. 

 It executes on a somewhat moderate run time.  

 Its capability in exploiting parallelism effectively.  

As shown in table 3 diffusion based schemes are known to be very promising as the quality is 

high when the imbalance happens globally and scratch remap scheme is known to be practical 

where imbalance occurs locally. 
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Adaptive schemes Quality Speed Amount of data 

movement 

Diffusion based 

repartitioners 

 

high 

 

slow 

 

low 

Scratch-Remap 

repartitioners 

High for local 

imbalanced areas 

Low for globally 

imbalanced areas 

 

slow 

 

high 

Cut and paste 

repartitioning 

method 

 

low 

 

fast 

 

low 

 

Table 3: A summary of adaptive schemes 

 

Limitations of graph partitioning approaches 

 

 The edge-cut metric is neither an accurate model for inter processor communication costs 

incurred by parallel processing nor the total communication volume. 

 Min-cut formulation is effective for the well-shaped meshes but not for non-uniformed 

meshes. 

 (Catalyurek and Aykanat 1999)Developed a hyper graph partitioning formulation able to run 

on more general cases.  

 Strength and weaknesses of the scheme are as follows  

o Able to minimize communications volume. Nevertheless the start-up time or the time 

required for the processor with the most communication remains the same. 

o Decreases the inter-processor communication costs for graphs of non-uniform degree. 

However this does not apply for graphs of uniform degrees. 

o The standard graph partitioning scheme is only capable of modeling square and 

symmetric sparse matrices. 
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  Solving linear systems, least squares problems, and linear programs require 

rectangular and unsymmetrical matrices. For this matter we can address the problem 

effectively through schemes such as bipartite graph partitioning and multi-constraint 

graph partitioning. Minimizing the edge-cut of a partitioning doesn’t guaranty the 

numerical scalability of an iterative method.  

 Numerical scalability is a measurement tool indicating the performance of a graph 

decomposition scheme for parallel computation. Numerical scalability promise to keep the 

convergence rate of the iterative procedure constant regardless of the number of subsets, 

processors or the size of the network. More specifically computational resources required to 

solve a problem of a given size are related to the problem size in linear way. 

 Numerical scalability is maintained if only subsets have low mean aspect ratio. 

 Walshaw, Cross, Diekmann, and Schlimback’s scheme sustain a low mean aspect ratio but 

lack minimum edge-cut property. 

Architecture modeling limitations 

In the case of parallel computational models, we take advantage of traditional graph partitions 

on the assumption that a flat and homogeneous structure is our ultimate objective. 

In the matter of Meta –computing environments where estimating the type of the machines and 

the exact number of processors for execution is indecisive until the execution time; 

Heterogeneous and hierarchical architectures have come to attention.  

Software packages 

Currently, software packages are available for both static and dynamic graphs. The purpose of 

using such packages is to save effort and time of the organization as well as enabling a 
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comparative assessment of different schemes when applied in the system. Table 4 presents 

available software packages 

 

 

Table 4: Available software packages  
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3.3. Graph partitioning under disruption  

 

Traditional models presented in the literature review  assume that the network never fails to 

perform and its properties (nodes and edges) are defectless; while in real life supply chain 

networks, especially large scale networks that are expanded globally can face irregularities in 

their activities due to the occurrence of unexpected events such as economic crises, intentional 

attacks such as war and labor strikes, natural disasters such as hurricane and unseen weather 

conditions, power failure  and machine breakdowns ,shortage of parts and materials ,quality 

rejection and  corruption in transportation system, etc. These factors contribute to indirect and 

direct financial loss throughout the system, unreliability in performance; influencing the 

operational environment and inflicting damage to the system. However, some possible threats 

with high probability are anticipated and identified in advance by studying past records and 

their historical frequency. These set of threats can be dealt with resource concentration in 

potential areas as well as fortifying assets towards first, damage resistance and second, low 

degree of severity in the case of disaster. Nevertheless the effect of an event is very relevant to 

the point where it occurs as critical nodes and cardinal links known as bottlenecks in a network 

happen to create the greatest damage compared to non-critical ones. Therefore besides 

identifying potential areas vulnerable to certain threats it is also in the system’s interest to 

identify critical elements and develop a link/ node protection scheme to increase their tolerance 

to shock and additionally provide comparable alternatives for extreme events. Nevertheless, in 

practice, it is not possible to completely rule out the occurrence of an unseen event thus, 

depending on the magnitude of the event the normal flow of the system is interrupted followed 

by its resulting consequences.  
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In the sense of network decomposition which is the scope of this research; a well-structured 

topology has a major role not only on the practicality of the resulting partitions but also the 

system’s functionality under a certain level of damage and its ability to quickly replace or repair 

a broken link /node and bounce back. Thus models such as hierarchical, random and 

heterogeneous structures intend to return different results and will react differently to disaster.  

In this study, other than our initial objective that is partitioning a network into independently 

manageable groups as well as re-clustering the network under any type of disruption, we aim to 

take out our suggested methods while sustaining connectivity between clusters through a set of 

commands. It is important to understand that a critical element in a network is not necessarily 

critical in graph partitioning, meaning that a node and its related links may be positioned in a 

critical state when clustered regardless of its state in the network.  That is why maintaining 

resiliency in the actual bottlenecks as well as virtual bottlenecks of the network comes to 

attention as it is enables the system to proceed activates and services in spite of breakdown in 

entities. In order to avoid confusion for the reader we will refer to these virtual bottlenecks as 

damage sensitive elements. A damage sensitive node by definition is a node that contains a pair 

in more than one cluster and whose removal will lead to disjoint components and significantly 

degrades the performance of the network. Damage sensitive links are simply ones who exits or 

enters a damage sensitive node.  

Contributing towards a better understanding of the importance of such investment in the system 

a comparative study is gathered and we will demonstrate both conditions where the method re-

clusters the disrupted network with and without system control and protection of damage 

sensitive elements.  
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But before going any further studying post-actions in an actual disrupted network also referred 

to as “corrective actions”; we will take time addressing the essential components required in the 

underlying structure of a network in favor of a resilient and reliable network. 

To start with, Resiliency has been a controversial topic as some studies insist on it to be solely 

relatable to post actions that are done for the system to go back to its pre-event state after an 

incident takes place; while others define it as combination of pre and post actions implemented 

in order to withstand shock and maintain performance meanwhile recovering from shock. 

(Riskviews: Commentary on Risk and ERM 2013) Posted an article titled as “Five components 

of resilience -- robustness, redundancy, resourcefulness, response and recovery”. The post was 

"adapted from the “WEF Global Risks 2013 Report” 

The state of resiliency in an organization is determined through the first three components 

mentioned in the title. Robustness, Redundancy and Resourcefulness are known as resilience 

capacity indicators and should be designed in the infrastructure of a system so that the inherent 

resilience capabilities of an organisation are assessed by them.   

The article also states that Response and Recovery are two components known to evaluate the 

performance of a resilient system in the face of crisis and are subject to risk, event and time. 

More specifically Response and Recovery are considered as calibers for resilience 

characteristics. Here we take time to define each along with the attributes associated with them. 

"Robustness is a factor that indicates reliability and is when the system is composed of 

standardized units and is equipped with fail-safes and firewalls at its vulnerable areas also 

critical points in order to efficiently deal with crisis instead of blocking the flow of information 

and stopping system’s progress. In other words a potential damage in one section is less likely 

to spread and expand around with pre-actions such as:  

http://riskviews.wordpress.com/2013/01/24/five-components-of-resilience-robustness-redundancy-resourcefulness-response-and-recovery/
http://riskviews.wordpress.com/2013/01/24/five-components-of-resilience-robustness-redundancy-resourcefulness-response-and-recovery/
http://reports.weforum.org/global-risks-2013/
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 Regular update and evaluation on system’s health condition.  

 Equipping system with mechanisms that are specifically designed to localize the 

impact of a problem and prevent unexpected attacks spreading to other sections. 

 Utilizing adaptive decision-making models help system to continue its operations in 

times of crisis. 

That is to say, robustness provides consistency in operations with respect to the nature of the 

business, the scale of operations performed in the organization and the system’s response to a 

disconnection between sections.  

"Redundancy comes with investing in on an alternative plan including a diverse range of 

policies, strategies and services. Network redundancy requires spare capacity and diversity in 

routes from an origin to its destination. Contrary to the general belief a redundant system brings 

back the initial investment and will save the organization in the long term and shouldn’t be 

considered a dead loss. Most efficient attributes concerning this characteristic is as follows: 

 Redundancy of critical infrastructure: to pinpoint critical components and create 

identical copies for them in the case of disruption.  

 Diversity of strategy and solution: to develop alternative solutions for certain 

operations will allow the system to continue its activities though disrupted. In brief a 

balanced combination of diversity and redundancy is an important factor for 

efficiency. 

 “Resourcefulness is about asset and property optimization. It concerns system flexibility and 

adjustment to the aftermath of disruption, adapting to new circumstances and turning a negative 

situation into a positive form. This requires certain attributes namely: 
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 Testing both system’s response plan and the individual’s reaction to crisis in simulated 

exercises are necessary to maintain system’s ability to resolve problems in real-time. 

 Building trust within the network structure starting from the staff and working 

environment up to the consumer and providers, developing a self-organized system 

determined to solve problem in the face of unpredicted challenges. 

 Self-organizing attitude: a skill that basically arises in the event of an abnormal 

situation requiring factors such as social and human capital
2
, a strong social network 

and organizational structure, effective communication and an open attitude to 

exchange of information ideas and experiences. 

 Establishing an atmosphere enhanced with creativity and innovation which is 

influenced by the state of the networks backup resources and the defined set of rules 

and disciplines.  

“Response is the readiness of the system to react immediately in order to withstand the extent of 

damage. In other words the ability to notice and take action on any abnormal behavior by 

quickly sharing relevant information to related units through useful methods of gathering and 

distributing information. Attributes that can strongly minimize response time are 

 Conducting an effective communication by building mutual trust. This will accelerate 

the flow of information in crisis and will ensure a two-way cooperation. 

Communication can also become more germen by familiarizing participants to 

informal communication channels so that they will be more coordinate when 

interacting in the time of crisis.  

                                                           
2
  Social capital: The networks of relationships among people who live and work in a particular society, enabling 

that society to function effectively. 
Human capital: The skills, knowledge, and experience possessed by an individual or population, viewed in terms 
of their value or cost to an organization or country. 
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 Global participation among all unities is required so that potential factors creating 

crisis are eliminated as much as possible.  

Recovery plays a great role in system’s resiliency and comes with flexibility and 

tolerance. 

Recovery is for the system to move back to some point of its normal behavior and adjust 

itself to the new situation after an incident. This component works by assessing systems 

strategies in transmitting necessary data so that decision makers are well informed to take 

forward actions required for network’s adjustment to the new circumstance. Recovery is 

characterized with attributes such as  

 Putting horizon scanning techniques in to use will not only brings gaps and inabilities 

into attention but also help detecting potential opportunities to enhance system 

performance.  

 Building up a responsive feedback mechanism that empowers an organization with the 

ability to capture lessons learnt and translate information gained from horizon-

scanning into practical, effective solutions. 

Furthermore, in order to complete an efficient performance thoroughly, operators should 

regularly monitor the status of the network to detect any probable abnormality such as traffic 

conditions, link damage and security failure caused by network equipment deficiency or failure 

in satisfying basic agreed upon transmissions. In addition some effective inference techniques 

are necessary to acquire information for further network assessment. This in turn has a major 

role in preventing potential disruptive events such as natural disasters or unexpected attacks 

from happening. 
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The abovementioned characteristics are necessary to maintain an ideal system.  Nevertheless 

based on our foregoing discussion we have acknowledged that no matter how hands-on and 

anticipated a system operates, there are some unseen flaws or accidents that will unfortunately 

cause disruption. However previous studies in this regard, as we will discuss in details in this 

section, have mainly focused on strategy adjustment and flexibility in order to decrease the 

chances of accidents. One of our goals in this thesis, as previously stated, is to create a set of 

corrective actions capable of resolving the occurrence of unpredicted incidents in the concept of 

graph partitioning and decomposition. That is re-clustering the network into a new set of 

clusters while satisfying node and link weight constraints.  

A disrupted network by definition is when a network fails to accomplish an end to end 

communication. In particular, a challenged network is the consequence of an external 

disturbance that leads to changes in network topology where both links (communication paths) 

and nodes (entities) can encounter trouble performing their original service. In terms of network 

decomposition, the extent and impact of an event can be limited to one cluster and cause 

damage among intra-connected nodes or may exceed and spread throughout other clusters and 

affect inter-connections creating partial/complete disruption in the network. Previous works in 

various fields of science have been assigned to Predicting and diagnosing abnormalities in the 

system and taking action in advance to avoid significant disaster that can substantially demolish 

the system’s performance and operation. Subsequently, Network vulnerability assessment and 

evolutionary methods have been widely studied towards understanding the nature of the 

network and its strengths and weaknesses in favor of formulating preventive actions mainly to 

increase networks resilience when facing disaster. This happens to be more evident in complex 

and noisy transportation networks where network planning and risk management is vital for 
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network functionality. (Snyder, et al. 2005) (Inference of Network-Service Disruption upon 

Natural Disasters n.d.) 

In this regard (Erjongmanee, et al. 2008) provides an application capable of inferring network-

service disruption upon natural disasters using sensory measurements and human inputs as well 

as analyzing the disruption caused by natural disasters. (Huang, et al. 2007) Suggest a network-

wide analysis in routing information in favor of detecting and identifying network disruption. 

For this matter it applies a multivariate analysis technique on dynamic routing information and 

demonstrates how this technique can detect every reported disruption on nodes/ links within the 

network with a low percentage of deception. It investigates the type of disruption and the 

scenario that has created disruption through analyzing both network-wide static configuration 

and its dynamic routing updates. (Dinh, Xuan, et al. 2009) Believe that the pre-active 

assessment over network vulnerability in the light of connectivity matrix is essential to aspects 

such as design and maintenance of any infrastructure network such as communication, 

commercial, and social networks. It investigates a measure called pairwise connectivity that 

seeks to discover critical nodes/links and safeguard them against destructive case scenarios 

where the overall network connectivity is at risk. More specifically it generates this 

vulnerability problem as a new graph-theoretical optimization problem called β-disruptor, 

whose removal brings in the highest damage of the global pairwise connectivity by destroying a 

set of interacting nodes or connections that can cause a whole network breakdown.  

(Snyder, et al. 2005) Holds account for additional investments in planning and designing the 

network .It concedes that depending on the possible financial resources, planners need to take 

risk of disruption into consideration by identifying and eliminating all threatening elements 
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prior to system failure due to difficulty in changing a strategic decision quickly or prescribing 

an efficient remedy for after destruction.  

(Sterbenz, et al. 2012) Represent an analytical framework with the purpose of evaluating 

network resilience based on a two-dimensional state space, namely operational state and service 

delivered. It provides a flexible framework for an n-level hierarchical, modular structure and 

simulates the problem by a model called KU-CSM.  (Hua, Ding and Shao 2008) Suggests a 

multi-criteria model for a periodic balanced partition that takes into account a pareto partition 

for a large-scale network via constructional partitioning and cooperative searching.  (Drid, et al. 

2010) Handles the problem of survivability via data banking and backup resources and solves 

network complexity and scalability by building a protection- based solution on a well-

established p-cycle concept. (Dinh, Xuan, et al. 2009) Investigate a measure called pairwise 

connectivity. It solves the problem by generating a new graph-theoretical optimization called β-

disruptor that finds a set of critical nodes and links, whose removal will results in the maximum 

change in the global pairwise connectivity. It claims that building a good communication 

among connected nodes could reduce potential disruption and preserve the infrastructure of the 

network. 
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Chapter 4: 

Solution Approach 

 

In this chapter we present our proposed solution for each set of the problem stated in chapter 2. 

We translate the actual problem into a node graph; as it provides a more coherent view of the 

problem and can be easily and rapidly constructed. Figure 7 looks at the solution methodology 

from a flow chart view. The first step would be to define the input graph. In our work, our 

modeled graph has a directed structure with a positive integer number assigned to each edge 

denoting weight. Nodes represent entities and links indicate their relationship according to the 

characteristics and nature of the problem. In the second stage the original graph is disrupted by 

means of various disruption scenarios. In the third step we apply our proposed methods and in 

the final step 4, our new re-clustered graph is generated. 

In the following subsections we discuss our scenarios regarding disruption followed by a 

descriptive explanation of each one of the proposed techniques. 

4.1. Scenario generation for disruption modeling 

Identifying basic requirements are essential when developing a scenario based framework. In 

the case of disruption our model must determine the state of disruption. In this sense, it is 

necessary to detect whether we are dealing with a temporary or a permanent disruption. Note 

that here monetary consequences are excluded. Further the assessment of the nature of 

disruption is important as each one leads to a different solution plan. For this reason, network 

disruption is introduced as occurring in nodes or in the connection between nodes. Furthermore 
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the type of a disrupted link must also be distinguished as it can either be internal or external to 

the subgroup (intra-connection and inter-connection).  

Given these complexities, in this study; we have defined three different categories for an 

operational network status namely complete disruption, partial disruption and no disruption. A 

complete disruption occurs when any of the elements of the network is permanently damaged 

and is no more available. Partial disruption is when system disruption is temporary and the 

failure has not led to complete loss of component parts. For instance some parts may shut down 

after system sees an event due to lost access to data but will come back into service once an 

alternative source and in some cases a transportation link is found. In other words, the link or 

node failure is repairable within a timeframe. Finally, no disruption is where our static graph 

applies and no node or link disruption takes place.   

We generate nine possible scenarios considering the state of the network; namely: 

1. No Disruption in the Network 

2. Complete Disruption in Links 

3. Complete Disruption in Nodes 

4. Complete Disruption in Nodes and Links 

5. Partially Disrupted Links 

6. Partially Disrupted Nodes 

7. Partially Disrupted Links and Nodes 

8. Complete Disruption in Nodes and Partially disrupted Links:  

9. Complete Disruption in Links and Partially Disrupted Nodes: 
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Each case has been individually studied and investigated by a specified percentage of 

disruption, considering any more than 40% disrupted nodes as a complete disruption. 

Nevertheless, in accord with accomplishing our purpose that is handling disruption in the most 

efficient way possible the best strategy would be to consider and signalize areas of vulnerability 

in favor of building up the infrastructure with key factors of resiliency. Therefore as discussed 

earlier we will be demonstrating each scenario for each method and its subclass, that is in 

consideration of the check and control step.  

4.1.1. Scenarios description  

Based on the information and previously discussed requirements, our proposed models define 

two set of disruptions namely complete and partial disruption. The algorithms work on the 

following principles. 

 As for an interrupted component when completely stated; network refinement is done by 

updating the corresponding elements of connectivity matrix x to zero. Accordingly, when link 

disruption occurs, broken links are solely updated to 0. On the other hand if node disruption 

occurs, all links associated with the broken node are taken out and updated to 0. Next step is to 

apply each one of our algorithms to the updated network and obtain a new partitioning scheme 

for the network.  

The mechanism of the algorithm in a partial disruption can be briefly explained as follows. The 

weighted matrix (on a scale of 1 to 10) is taken into account and troubled links /nodes are 

explored and accordingly their value is adjusted to a greater number indicating delay. HRP1+ 

and HRP2+ are then applied to the updated matrix. More specifically when the program is 

exploring for set of nodes to combine the low weight elements are selected before high weight 

elements signifying extra time and ultimately resulting in network refinement. 
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In the case of our illustrated numerical example, we have considered adding a fixed quantity 

specified as 5 units to any misbehaved element. However the model is capable of assigning 

random values to each troubled component with respect to its constraints. 

Additionally as mentioned previously since the algorithm randomly disrupts the network there 

is always a chance of selecting a damage sensitive component; therefore we have developed the 

program to identify nodes that are critical in the ultimate set of clusters and provide an 

alternative that functions just as the original component. More specifically if the attacked 

component is damage sensitive the program returns one link of higher priority back into the 

network and updates matrix x accordingly and then  HRP1+ and HRP2+ are applied to the 

updated matrix. 

Here we will explain each scenario along with the corresponding algorithm.  

1. No disruption in the network:  

This scenario indicates that system is steady and no disruption has occurred, therefore HRP1+  

and HRP2+  result in the original partitioning without disruption. 

2. Complete disruption in links:  

This scenario indicates that system has encountered a permanent damage in the connections; 

hence the corresponding algorithm is used: 

Get n 

Find all the links in [X] 

Randomly disrupt n% of the links  

**Check cric  

Update [X] 

Define [W] equal to [X] 

Get [X], [W] (input) 
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Run HRP1+ or HRP2+ ((HRP1+ control or HRP2+𝑐𝑜𝑛𝑡𝑟𝑜𝑙)) 

**Note that check cric command is only executed when the check and control step is included 

in the program and the extended version of our methods are running. 

3. Complete disruption in nodes: 

 This scenario implies that system has encountered a permanent damage in nodes; thus the 

corresponding algorithm is used: 

Get n 

Randomly select n% of the nodes (N):  

Disrupt all related links to the chosen nodes in [X] 

**Check cric  

Update [X] 

Define [W] equal to [X] 

Get [X], [W](input) 

Run HRP1+ or HRP2+((HRP1+ control or HRP2+𝑐𝑜𝑛𝑡𝑟𝑜𝑙)) 

**Note that check cric command is only executed when the check and control step is included 

in the program and the extended version of our methods are running. 

4. Complete disruption in nodes and links:  

This scenario shows permanent damage in both links and nodes and the corresponding 

algorithmic solution is as follows: 

Get n 

Find all the links in [X] 

Randomly disrupt n% of the links  

**Check cric  

Update [X] 
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Randomly select n% of the nodes (N):  

Disrupt all related links to the chosen nodes in [X] 

Update [X] 

Define [W] equal to the updated [X] 

Get [X], [W] (input) 

Run HRP1+ or HRP2+((HRP1+ control or HRP2+𝑐𝑜𝑛𝑡𝑟𝑜𝑙)) 

**Note that check cric command is only executed when the check and control step is included 

in the program and the extended version of our methods are running. 

5. Partially disrupted links:  

This scenario implies that system has encountered a repairable damage in links and allegedly, 

tasks are accomplished with delay; hence the corresponding algorithm is presented as follows: 

Define [W] equal to [X] 

Find all the links in [X] 

Randomly select n% of the links  

**Check cric  

Find the corresponding arrays for the selected links in [W] 

Set the value of the weight equivalent to the value of disruption in the links  

Update [W] 

Get [X], [W](input) 

Run HRP1+ or HRP2+((HRP1+ control or HRP2+𝑐𝑜𝑛𝑡𝑟𝑜𝑙)) 

**Note that check cric command is only executed when the check and control step is included 

in the program and the extended version of our methods are running. 

6. Partially disrupted nodes:  

This scenario denotes temporary damage in nodes and the corresponding algorithm used is 
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presented as follows: 

Define [W] equal to [X] 

Randomly select n% of the nodes (N) 

**Check cric  

Find the correspondent arrays for the selected nodes in [W] 

Set the value of the weight equivalent to the value of disruption in the nodes  

Update [W] 

Get [X], [W] (input) 

Run HRP1+ or HRP2+((HRP1+ control or HRP2+𝑐𝑜𝑛𝑡𝑟𝑜𝑙)) 

**Note that check cric command is only executed when the check and control step is included 

in the program and the extended version of our methods are running. 

7. Partially disrupted links and nodes: 

This scenario shows that system is facing a repairable damage in both links and nodes. Thus, 

there’s communication and computation delay. Subsequently, the corresponding algorithm used 

is presented as follows: 

Define [W] equal to [X] 

Find all the links in [X] 

Randomly select n% of the links  

**Check cric  

Find the correspondent arrays for the selected links in [W] 

Set the value of the weight equivalent to the value of disruption in the links  

Update [W] 

Randomly select n% of the nodes (N) 

Find the correspondent arrays for the selected nodes in [W] 
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Set the value of the weight equivalent to the value of disruption in the nodes 

Update [W] 

Get [X], [W] (input) 

Run HRP1+ or HRP2+((HRP1+ control or HRP2+𝑐𝑜𝑛𝑡𝑟𝑜𝑙)) 

**Note that check cric command is only executed when the check and control step is included 

in the program and the extended version of our methods are running. 

8. Complete disruption in nodes and partially disrupted links:  

This scenario implies that system is dealing with a permanent damage in some nodes; 

meanwhile links are facing a temporary conflict. HRP1+  and HRP2+contribute to the problem 

by the following algorithm: 

Get n 

Randomly select n% of the nodes (N):  

Disrupt all related links to the chosen nodes in [X] 

**Check cric  

Update [X] 

Define [W] equal to [X] 

Find all links 

Randomly select n% of the links in [X] 

Find the corresponding arrays for the selected links in [W] 

Set the weight value equivalent to the disruption value of the links  

Update [W] 

Get [X], [W] (input) 

Run HRP1+ or HRP2+((HRP1+ control or HRP2+𝑐𝑜𝑛𝑡𝑟𝑜𝑙)) 
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**Note that check cric command is only executed when the check and control step is included 

in the program and the extended version of our methods are running. 

9. Complete disruption in links and partially disrupted nodes:  

This scenario indicates that system is facing a permanent damage in links while some nodes are 

temporarily dysfunctional. HRP1+ and HRP2+contribute to the problem by the following 

algorithm: 

Get n 

Find all the links in [X] 

Randomly disrupt n% of the links  

**Check cric  

Update [X] 

Define [W] equal to [X] 

Randomly select n% of the nodes (N) 

Find the correspondent arrays for the selected nodes in [W] 

Set the weight valuer equivalent to the disruption value of the links  

Update [W] 

Get [X], [W] (input) 

Run HRP1+ or HRP2+((HRP1+ control or HRP2+𝑐𝑜𝑛𝑡𝑟𝑜𝑙)) 

**Note that check cric command is only executed when the check and control step is included 

in the program and the extended version of our methods are running. 

4.2. Scenario generation  

We have considered a network of 8 nodes and 11 links shown in figure (10) to demonstrate the 

type and level of disruption. Figure (A) shows a network in its original state pre-event, figure 
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(B) and (C) display a complete link and node failure respectively. In figure (B) link 1-2 is taken 

out due to disruption, while figure (C) illustrates a situation where node 4 has been attacked 

therefore associated links with node 4, link 1-4 and 4-7 are also removed. Figure (D) and (E) 

present partial disruption. In figure (D) link1-2 is dashed representing a delay while figure (E) 

is showing a temporary damage in node 4 resulting delay in its associated links, 1-4 and 4-7, as 

well. 

 

(A) 

 

Link 1 to 2 is removed                                       Node 4 and its associated links are removed 

 

Link 1 to 4 is dashed due to partial disruption           Node 4 and its associated links are dashed  

 

Figure 10: A network of 8 nodes and 11 links 
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In the next section, we will separately define the proposed methods and their extension. In each 

subsection, we will brief the reader with the procedure as well as providing the related pseudo-

code to our model. Further, our previously discussed scenarios have been implemented 

separately displaying results at the 5 percentage of disruption probability level. We have also 

seen a stepwise computational procedure embodied in each scenario for when the network is 

under 5% disruption. In the following subsections we will demonstrate each one of our basic 

models as well as their extended versions provided in relative Tables. 

 

 

 

4.3. Proposed partitioning approaches 

Here we report on an improved version of HRP1 and HRP2 algorithms namely HRP1+ 

standing for Hierarchical Recursive Progression1+ and HRP2+ an abbreviation for Hierarchical 

recursive progression2+. (Awasthi, et al. 2009) . HRP1 and HRP2 are two heuristic approaches 

that fall into the combinatorial class algorithms and are performed on undirected and 

unweighted static graphs with the objective of decomposing a large network into subgroups of 

limited size while minimizing the inter-connection between these divided groups and 

maximizing the intra-connection so that the workflow among subgroups is reduced.  

HRP1+ and HRP2+ are two extended version of the previously established algorithms capable 

of performing on positively weighted directed graphs. The techniques also attempt to reduce 

unnecessary communication between clusters while increasing data distribution and 

communication inside each cluster, in favor of operational efficiency and cost management. In 

addition they are modified to overcome unexpected incidents and changes in the underlying 

graph due to disruption by two adaptive computation approaches namely “complete failure 

update “and “partial failure update”. More specifically we have embodied a scenario based 
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model, discussed in the previous subsection, for the second stage of the execution that performs 

re-clustering on the disrupted network.  

4.3.1. HRP𝟏+ Partitioning Technique 

1. Description  

The HRP1+  technique is a cluster-based approach to graph decomposition that is capable of 

dealing with delay and disruption.The algorithm is based on the minimization of the minimum 

density criteria and is generated as follows: 

HRP1+ algorithm starts off with a single node in each subset. Therefore, the initial number of 

subgroups is equal to the total number of nodes in the network. HRP1+ attempts to find a pair 

of nodes that can be combined as one by exploring all connected pairs with a size less or equal 

to W and a density greater than or equal to Q. A node-set with the lowest density among all 

other possible combinations is subsequently selected. Nevertheless the crucial point in finding 

the best result is the appropriate choice in defining W and Q for the studied network.  (Awasthi, 

et al. 2009) . HRP1+ algorithm is a recursive method and ends when each subset satisfies all 

constraints. In other words, completion is achieved when all subsets have a size less than or 

equal to W and/or a density lesser than or equal to Q. 

2. Pseudo-code 

The following inputs are the main variables of HRP1+ :  

N: total number of nodes  

i,j: connected nodes in the network  

𝑤𝑡𝑒𝑚𝑝 (i): total number of nodes in a subgroup 

𝑞𝑡𝑒𝑚𝑝 (i) : subset’s density in each instance  
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Q: maximum density allowed in a subgroup (user-defined) 

W: maximum nodes in a subgroup (user-defined) 

C (𝑟𝑘): total external connections in a subgroup defined by external nodes 

card (𝑟𝑘): cardinality 

q (𝑟𝑘) = C (𝑟𝑘)/ card (𝑟𝑘): externally connected nodes over cardinality 

neigh_opt_1: (nop1), neigh_opt_2: (nop2), are temporary variable set to achieve the 

optimum combination. 

𝑟𝑛: A vector of size n where components represent connected nodes to node i 

The algorithm starts with N=K, K defines the number of clusters at each instant. In other words, 

the number of subsets in round one is equal to the total number of nodes. 

A high level scope of our method comes as follow: 

Input:  

K: number of clusters 

x: a matrix of links( dynamic property) 

W and Q; user defined variables 

Output:  

Final set of generated clusters 

1. Initialize K cluster  

2. While termination condition is not satisfied do 

3. Assign nodes to the clusters based on density constraint and node count limit in 

each cluster 

4. Update cluster 

5. End while 
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6. Detect damage sensitive elements (when applying HRP1+ control) 

7. Run disruption scenarios   

 

A low-level stepwise code of our algorithm is as follows: 

0: n=1 

1. While (max (card) <= W || max (q) >= Q) 

2. K = length(x);  

2.1. For i=1: K calculate 

2.1.1.  𝑟𝑛  equals  all links with one end in node i and then c(i) equals length(find(𝑟𝑛 

is not equal to 0)); 

2.1.2.  q (i)=c(i)/card(i); 

2.1.3.  𝑞𝑡𝑒𝑚𝑝(i)=q(i); 

2.1.4. End For 

2.2. For all i from 1 to K-1        

2.2.1. For all j from i+1 to K 

2.2.2. If ((x(i,j) equal to 1 or  x(j,i) equal to 1) and (card(i)+card(j)) less than or 

equal to W and  q(i) greater than Q and q(j) greater than Q) 

2.2.2.1. 𝑞𝑡𝑒𝑚𝑝 (i)= merging (i,j,x,card); 

2.2.2.2. End If 

2.2.3. If (𝑞𝑡𝑒𝑚𝑝 (i) less than or equal to 𝑞𝑜𝑝𝑡 (i) ) and ( 𝑤𝑡𝑒𝑚𝑝 (i) greater than or 

equal to w(i,j)) 

2.2.3.1. nop (i) = result (j, 1); 

2.2.3.2.  nop2 (i) = j; 
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2.2.3.3. End If 

2.2.4. End For    

2.2.5. If (qopt (i) less than qopt max) 

2.2.5.1. 𝑛𝑜𝑝12 =i 

2.2.5.2. nop2 =nop (i); 

2.2.5.3. 𝑛𝑜𝑝22 = nop2 (i); 

2.2.5.4.  End If 

2.3. End For 

3.   If (𝑛𝑜𝑝12 equals to 0 or 𝑛𝑜𝑝22equals to 0) terminate algorithm 

 Merge and cardinality update 

4.  𝑐𝑎𝑟𝑑𝑛𝑒𝑤(𝑛𝑜𝑝12) =  𝑐𝑎𝑟𝑑𝑛𝑒𝑤 (𝑛𝑜𝑝12) + 𝑐𝑎𝑟𝑑𝑛𝑒𝑤 (𝑛𝑜𝑝22); 

4.1. card = 𝑐𝑎𝑟𝑑𝑛𝑒𝑤 ; 

5.   n=n+1 and go to 1 

3. Numerical Example 

We have considered a network of 24 nodes and 30 links as shown in figure (11) to investigate 

all scenarios. For this hypothetical network our user defined parameter W is set to 8 and Q is set 

to 0.125. 
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Figure 11: Network of 24 nodes and 30 links 

 

Our network has been decomposed into 4 clusters shown in table 4.1. 

 

No Disruption in the Network 

  

Clusters q 

1,4,7,3,6,2,5,8 9,10,11 12,14,16,17,18,20,21,19 13,15,22,24,23 .125,.6667,.25,.2 

 

Table 4.1: No node disruption – No link disruption 

The step wise procedure of computation for a network without disruption is shown in table 4.2. 

The table displays the best three options of node consolidation at each iteration of the program. 

The algorithm chooses the node pair with the lowest density among the other options. For 

instance in row three of table 4.2, we see that the options for combinations are to  

1) Unite node 1 and node 4  

2) Unite node 16 to the previous combination that is the cluster containing node 18, 20 and 

21  

3) Merge node 19 with18, 20 and 21 that is the combination from the previous step  

In this step since the W constraint is maintained it simply chooses node 19 over other choices 

as it allows a smaller value for Q. 
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Network with no disruption  

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

selected q 

1 1-4 20-21  20-21 1 

2 1-4 18  18 joins 20-21 0.6667 

3 1-4 16 19 19 joins  

18-20-21 

0.5 

4 1-4 16 17 17 joins  

18-20-21-19 

0.2 

5 1-4 16 - 16 joins  

17-18-20-21-19 

0.1667 

6 1-4 14 - 14 joins 

16-17-18-20-21-19 

0.2857 

7  1-4 12 - 12 joins 

14-16-17-18-20-21-19 

0.3750 

(cluster 1) 12-14-16-17-18-20-21-19 0.2500 

8 1-4 22-24 - 22-24 1 

9  1-4 15 23 23 joins 22-24 0.3333 

10 1-4 13-15 15 15 joins 22-24-23 0.333 

11 1-4 13 - 13 joins 15-22-24-23 0.5 

(cluster 2) 13-15-22-24-23 0.2000 

12  1-4 - - 1-4 1.5 

13 7 - - 7 joins 1-4 1 

14 3 - - 3 joins 1-4-7 0.75 

15 6 - - 6 joins 1-4-7-3 0.4 

16 2 - - 2 joins 1-4-7-3-6 0.333 

17 5 - - 5 joins 1-4-7-3-6-2 0.25 

18 8 - - 8 joins 1-4-7-3-6-2-5 0.1429 

(cluster 3) 1-4-7-3-6-2-5-8 0.1250 

19  9-10 - - 9-10 1.5 

20 11   11 joins 9-10 1 

(cluster 4) 9-10-11 0.6667 

 

Table 4.2: No node disruption – No link disruption 

 

Table 4.3 shows results of the network with complete failure in links at the 5 percentage of 

disruption probability level. 
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Scenario 2: Complete disruption in links 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

selected q 

1 1-4 17-19 20-21 20-21 1 

2 1-4 17-19 18 18 joins 20-21 1 

3 1-4 16 19 19 joins  

18-20-21 

0.75 

4 1-4 16 17 17 joins  

18-20-21-19 

0.4 

5 1-4 16 - 16 joins  

17-18-20-21-19 

0.3333 

6 1-4 14 - 14 joins 

16-17-18-20-21-19 

0.4857 

7  1-4 12 - 12 joins 

14-16-17-18-20-21-19 

0.5 

(cluster 1) 12-14-16-17-18-20-21-19 0.2500 

8 1-4 22-24 - 22-24 1.5 

9  1-4 15 23 23 joins 22-24 0.6667 

10 1-4 13-15 15 15 joins 22-24-23 0.75 

11 1-4 13 - 13 joins 15-22-24-23 0.4 

(cluster 2) 13-15-22-24-23 0.2000 

12  1-4 - - 1-4 2 

13 7 - - 7 joins 1-4 1.3333 

14 3 - - 3 joins 1-4-7 1 

15 6 - - 6 joins 1-4-7-3 0.6 

16 2 - - 2 joins 1-4-7-3-6 0.5 

17 5 - - 5 joins 1-4-7-3-6-2 0.2857 

18 8 - - 8 joins 1-4-7-3-6-2-5 0.3750 

(cluster 3) 1-4-7-3-6-2-5-8 0.1250 

19  9-10 - - 9-10 2 

20 11   11 joins 9-10 1 

(cluster 4) 9-10-11 0.6667 

 

Table 4.3: Clustering under 5% disruption 

 

Table 4.4 shows results of the network with complete failure in nodes at the 5 percentage of 

disruption probability level. 
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Scenario 3: Complete disruption in nodes 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

selected q 

1 1-4 20-21 23-24 23-24 1 

2 1-4 15  15 joins 23-24 1 

3 1-4 13  13 joins  

15-23-24 

0.75 

4 1-4 12  12 joins  

13-15-23-24 

0.6 

5 1-4 14  14 joins  

12-13-15-23-24 

0.5 

6 1-4 16  16 joins 

12-13-15-23-24-14 

0.57 

7  1-4 17  17 joins 

12-13-15-23-24-14-16 

0.5 

(cluster 1) 12-13-15-23-24-14-16-17 0.2500 

8 1-4 20-21 - 20-21 1.5 

9  1-4 18  18 joins 20-21 1 

10 1-4 19  19 joins 18-20-21 0.5 

(cluster 2) 18-20-21-19 0.2000 

11  1-4 - - 1-4 2 

12 7 - - 7 joins 1-4 1.3333 

13 3 - - 3 joins 1-4-7 1 

14 6 - - 6 joins 1-4-7-3 0.6 

15 2 - - 2 joins 1-4-7-3-6 0.5 

16 5 - - 5 joins 1-4-7-3-6-2 0.2857 

17 8 - - 8 joins 1-4-7-3-6-2-5 0.3750 

(cluster 3) 1-4-7-3-6-2-5-8 0.1250 

18 9-10 - - 9-10 2 

19 11   11 joins 9-10 1 

(cluster 4) 9-10-11 0.6667 

(cluster 5) 22 0 

 

Table 4.4: Clustering under 5% disruption 

 

Table 4.5 provides the results of a scenario where the network is challenged with complete 

failure in nodes and links at the 5 percentage of disruption probability level. 
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Scenario 4: Complete disruption in links and nodes 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

Selected q 

1 1-3 17-19 20-21 20-21 1 

2 1-3 17-19 18 18 joins 20-21 1 

3 1-3 16 19 19 joins  

18-20-21 

0.75 

4 1-3 16 17 17 joins  

18-20-21-19 

0.4 

5 1-3 16 - 16 joins  

17-18-20-21-19 

0.3333 

6 1-3 14 - 14 joins 

16-17-18-20-21-19 

0.4286 

7  1-3 12 - 12 joins 

14-16-17-18-20-21-19 

0.5 

(cluster 1) 12-14-16-17-18-20-21-19 0.2500 

8 1-3 22-24 - 22-24 1.5 

9  1-3 15 23 23 joins 22-24 0.6667 

10 1-3 13-15 15 15 joins 22-24-23 0.75 

11 1-3 13 - 13 joins 15-22-24-23 0.4 

(cluster 2) 13-15-22-24-23 0.2000 

12  1-3 - - 1-3 2 

13 7 - - 7 joins 1-3 1.3333 

14 6 - - 6 joins 1-3-7 0.75 

15 2 - - 2 joins 1-3-7-6 0.6 

16 5 - - 5 joins 1-3-7-6-2 0.3333 

17 8 - - 8 joins 1-3-7-6-2-5 0.4286 

18 11 - - 11 joins 1-3-7-6-2-5-8 0.3750 

(cluster 3) 1-3-7-6-2-5-8-11 0.1250 

19  9-10 - - 9-10 1.5 

(cluster 4) 9-10 1 

(cluster 5) 4 0 

 

Table 4.5: Clustering under 5% disruption 

 

Table 4.6 shows results of the network with partial failure in links at the 5 percentage of 

disruption probability level. 
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Scenario 5: Partially disrupted links  

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

Selected q 

1 1-4 20-21  20-21 1.5 

2 1-4 18  18 joins 20-21 1 

3 1-4 16 19 19 joins  

18-20-21 

0.75 

4 1-4 16 17 17 joins  

18-20-21-19 

0.4 

5 1-4 16 - 16 joins  

17-18-20-21-19 

0.3333 

6 1-4 14 - 14 joins 

16-17-18-20-21-19 

0.4286 

7  1-4 12 - 12 joins 

14-16-17-18-20-21-19 

0.5 

(cluster 1) 12-14-16-17-18-20-21-19 0.2500 

8 1-4 22-24 - 22-24 1.5 

9  1-4 15 23 23 joins 22-24 0.6667 

10 1-4 13-15 15 15 joins 22-24-23 0.75 

11 1-4 13 - 13 joins 15-22-24-23 0.4 

(cluster 2) 13-15-22-24-23 0.2000 

12  1-4 - - 1-4 2 

13 7 - - 7 joins 1-4 1.3333 

14 3 - - 3 joins 1-4-7 1 

15 6 - - 6 joins 1-4-7-3 0.6 

16 2 - - 2 joins 1-4-7-3-6 0.5 

17 5 - - 5 joins 1-4-7-3-6-2 0.2857 

18 8 - - 8 joins 1-4-7-3-6-2-5 0.3750 

(cluster 3) 1-4-7-3-6-2-5-8 0.1250 

19  9-10 - - 9-10 2 

20 11   11 joins 9-10 1 

(cluster 4) 9-10-11 0.6667 

 

Table 4.6: Clustering under 5% disruption 

 

Table 4.7 provides the results of a scenario where the network is challenged with partial failure 

in nodes at the 5 percentage of disruption probability level. 
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Scenario 6: Partially disrupted links 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

4
th

 best 

option 

selected q 

1 1-3 2-5 20-21 - 20-21 1.5 

2 1-3 2-5 18 - 18 joins 20-21 1 

3 1-3 2-5 16 19 19 joins  

18-20-21 

0.75 

4 1-3 2-5 16 17 17 joins  

18-20-21-19 

0.4 

5 1-3 2-5 16 - 16 joins  

17-18-20-21-19 

0.3333 

6 1-3 2-5 14 - 14 joins 

16-17-18-20-21-19 

0.4286 

7  1-3 2-5 12 - 12 joins 

14-16-17-18-20-21-19 

0.5 

(cluster 1) 12-14-16-17-18-20-21-19 0.2500 

8 1-3 2-5 22-24 - 22-24 1.5 

9  1-3 2-5 15 23 23 joins 22-24 0.6667 

10 1-3 2-5 13-15 15 15 joins 22-24-23 0.75 

11 1-3 2-5 13 - 13 joins 15-22-24-23 0.4 

(cluster 2) 13-15-22-24-23 0.2000 

12  1-3 2-5 - - 2-5 2 

13 1-2 6 - - 6 joins 2-5 1.3333 

14 1 - - - 1 joins 2-5-6 1 

15 3 - - - 3 joins 1-2-5-6 0.8 

16 7 - - - 7 joins 1-2-5-6-3 0.5 

17 8 - - - 8 joins 1-2-5-6-3-7 0.5714 

18 11 - - - 11 joins 1-2-5-6-3-7-8 0.5 

(cluster 3) 1-2-5-6-3-7-8-11 0.2500 

19  9-10 - - - 9-10 1.5 

(cluster 4) 9-10 1 

(cluster 5) 4 1 

 

Table 4.7: Clustering under 5% disruption 

 

Table 4.8 provides the results of a scenario for the network with partial failure in nodes and 

links at the 5 percentage of disruption probability level. 
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Scenario 7: Partially disrupted links and nodes 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

4
th

 best 

Option 

selected q 

1 1-3 2-5 20-21 - 20-21 1.5 

2 1-3 2-5 18 - 18 joins 20-21 1 

3 1-3 2-5 16 19 19 joins  

18-20-21 

0.75 

4 1-3 2-5 16 17 17 joins  

18-20-21-19 

0.4 

5 1-3 2-5 16 - 16 joins  

17-18-20-21-19 

0.3333 

6 1-3 2-5 14 - 14 joins 

16-17-18-20-21-19 

0.4286 

7  1-3 2-5 12 - 12 joins 

14-16-17-18-20-21-19 

0.5 

(cluster 1) 12-14-16-17-18-20-21-19 0.2500 

8 1-3 2-5 22-24 - 22-24 1.5 

9  1-3 2-5 15 23 23 joins 22-24 0.6667 

10 1-3 2-5 13-15 15 15 joins 22-24-23 0.75 

11 1-3 2-5 13 - 13 joins 15-22-24-23 0.4 

(cluster 2) 13-15-22-24-23 0.2000 

12  1-3 2-5 - - 2-5 2 

13 1-2 6 - - 6 joins 2-5 1.3333 

14 1 - - - 1 joins 2-5-6 1 

15 3 - - - 3 joins 1-2-5-6 0.8 

16 7 - - - 7 joins 1-2-5-6-3 0.5 

17 8 - - - 8 joins 1-2-5-6-3-7 0.5714 

18 11 - - - 11 joins 1-2-5-6-3-7-8 0.5 

(cluster 3) 1-2-5-6-3-7-8-11 0.2500 

19  9-10 - - - 9-10 1.5 

(cluster 4) 9-10 1 

(cluster 5) 4 1 

 

Table 4.8: Clustering under 5% disruption 

 

Table 4.9 provides the results of a scenario where the network is challenged with partial failure 

in links and complete disruption in nodes at the 5 percentage of disruption probability level. 
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Scenario 8: Complete disruption in nodes and partially disrupted links 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

selected q 

1 1-3 20-21 - 20-21 1 

2 1-3 18 - 18 joins 20-21 1 

3 1-3 16 19 19 joins  

18-20-21 

0.75 

4 1-3 16 17 17 joins  

18-20-21-19 

0.4 

5 1-3 16 - 16 joins  

17-18-20-21-19 

0.3333 

6 1-3 14 - 14 joins 

16-17-18-20-21-19 

0.4286 

7  1-3 12 - 12 joins 

14-16-17-18-20-21-19 

0.5 

(cluster 1) 12-14-16-17-18-20-21-19 0.2500 

8 1-3 22-24 - 22-24 1.5 

9  1-3 15 23 23 joins 22-24 0.6667 

10 1-3 13-15 15 15 joins 22-24-23 0.75 

11 1-3 13 - 13 joins 15-22-24-23 0.4 

(cluster 2) 13-15-22-24-23 0.2000 

12  1-3 - - 1-3 2 

13 7 - - 7 joins 1-3 1.3333 

14 6 - - 6 joins 1-3-7 0.75 

15 2 - - 2 joins 1-3-7-6 0.6 

16 5 - - 5 joins 1-3-7-6-2 0.3333 

17 8 - - 8 joins 1-3-7-6-2-5 0.4286 

18 11 - - 11 joins 1-3-7-6-2-5-8 0.3750 

(cluster 3) 1-3-7-6-2-5-8-11 0.1250 

19  9-10 - - 9-10 1.5 

(cluster 4) 9-10 1 

(cluster 5) 4 0 

 

Table 4.9: Clustering under 5% disruption 

 

Table 4.10 provides the results of a scenario for the network with partial failure in nodes and 

complete disruption in links at the 5 percentage of disruption probability level. 
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Scenario 9: Complete disruption in links and partially disrupted nodes 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

selected q 

1 1-2 20-21 - 20-21 1.5 

2 1-2 18 - 18 joins 20-21 1 

3 1-2 16 19 19 joins  

18-20-21 

0.75 

4 1-2 16 17 17 joins  

18-20-21-19 

0.4 

5 1-2 16 - 16 joins  

17-18-20-21-19 

0.3333 

6 1-2 14 - 14 joins 

16-17-18-20-21-19 

0.4286 

7  1-2 12 - 12 joins 

14-16-17-18-20-21-19 

0.5 

(cluster 1) 12-14-16-17-18-20-21-19 0.2500 

8 1-2 22-24 - 22-24 1.5 

9  1-2 15 23 23 joins 22-24 0.6667 

10 1-2 13-15 15 15 joins 22-24-23 0.75 

11 1-2 13 - 13 joins 15-22-24-23 0.4 

(cluster 2) 13-15-22-24-23 0.2000 

12  1-2 - - 1-2 2 

13 6 - - 6 joins 1-2 1.3333 

14 3 - - 3 joins 1-2-6 1 

15 7 - - 7 joins 1-2-6-3 0.6 

16 8 - - 8 joins 1-2-6-3-7 0.83 

17 5 - - 5 joins 1-2-6-3-7-8 0.5714 

18 11 - - 11 joins 1-2-6-3-7-8-5 0.5 

(cluster 3) 1-2-6-3-7-8-5-11 0.2500 

19  9-10 - - 9-10 1.5 

(cluster 4) 9-10 1 

(cluster 5) 4 1 

  

Table 4.10: Clustering under 5% disruption 

4. Properties 

The main properties of algorithm HRP1+ and HRP1+control are presented in detail in this 

section: 

Property 1: The algorithms end after a certain number of iterations. This number is less than or 

equal to N − 1. 

 The algorithm runs repetitively until all generated clusters reach to a size and density that 

satisfies the user-defined density Q and size W constraints. Accordingly by the end of the 
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runtime of the algorithm, if either W or Q or both are dissatisfied by the sub-networks produced, 

the algorithm terminates. Such kind of incident can occur soon after the first iteration (i.e. 1) or 

at the most in its last iteration (i.e. N − 1), therefore we can conclude that the number of 

iterations required for termination is less than or equal to N − 1. (Awasthi, et al. 2009) 

 

Property 2: If  𝑟1 and 𝑟2 represent two sub-networks and s = 𝑟1∪𝑟2. We denote q(x) as the 

density of a subnetwork x. 

The total number of nodes connected to s is equal to the total number of nodes connected to 𝑟2  

minus  𝑟1  plus the total number of exterior nodes connected to 𝑟1 excluding  𝑟2 . Thus: q(s) ≤

 Max {q ( 𝑟1), q ( 𝑟2)}. (Awasthi, et al. 2009) 

 

Property 3: The computational complexity is known as an index of method evaluation. It 

represents the execution time required for the algorithm to solve the problem. Therefore, it is 

highly desirable for a method to reach an acceptable, near-optimal solution in a reasonable 

amount of time i.e. complexity. Furthermore, the computational time increases with the increase 

in density criterion Q. Here, the complexity of HRP1+ is equal to O (𝑁3). The algorithm firstly 

includes density criterion and secondly it explores sub-networks with maximum density as well 

as all connected pairs to find the lowest density of all other possible combinations in the 

network. 
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4.3.2. HRP𝟐+ Partitioning Technique 

1. Description  

HRP2+ is also a cluster- based approach that runs recursively and is formulated specially to 

deal with system disruption and delay. It distinguishes from HRP1+ in satisfying its density 

constraint. The objective of this model is to minimize the maximum density while HRP1+ 

explores the network for pairs of nodes with density greater than or equal to Q.  

HRP2+ identifies all possible unions between connected subsets in favor of integrating pair of 

subsets that correspond with its two user-defined criteria: size (W) and density (Q).Therefore 

combinations with a size less than W and a density greater than Q are credible and sorted in 

order to define and select the highest and the next highest density subset whose union leads to a 

subset with an acceptable size and density. 

Since HRP2+ is an iterative approach it continues to combine subsets until the ultimate subsets 

respectively contain a number of nodes and a density less than or equal to W and Q. Note that 

the algorithm works on the assumption that size restriction  has priority over density constraint 

and must be satisfied before its density verification. This means in the case of conflict between 

two constraints size wins over density, therefore the algorithm ends assigning nodes to a sub-

network that has reached the maximum size regardless of the density condition. 

2. Pseudo-code 

Main variables are as follows: 

N: total number of nodes  

K: size of the input matrix that is the number of clusters at step zero 

i,j: connected nodes in the network  
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Q: maximum density allowed in a subgroup (user-defined) 

W: maximum nodes in a subgroup (user-defined) 

S(i) number of successors 

P(i) number of predecessors                                   

q (i)= S(i)+ P(i):total external connections in a subgroup defined by external nodes 

ls list of successors 

lp list of predecessors  

nb :total number of nodes in each subset that’s initially one  

𝐹𝑞= q (i)/nb: externally connected nodes over cardinality 

𝑤 Destiny of the new cluster in each iteration. 

𝑖1 and 𝑗1 are temporary variable set to determine the optimum combination. 

𝑟𝑛: A vector of size n where components represent connected nodes to node i 

The algorithm starts with N=K, the number of subsets in the first iteration is equal to the 

number of nodes in the network. 

A high level scope of HRP2+ comes as follows: 

Input:  

K: number of clusters 

x: matrix of links( dynamic property) 

W and Q; user defined variables 

Output:  

Final set of generated clusters 

1.  Initialize K cluster  

2.  While termination condition is not satisfied do 
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3.  Compute S (i) and P (i) 

4.  Create ls and lp 

5.  Select i1 based on density constraint and node count limit in each cluster 

6.  Search for  r from ls and lp with respect to user defined constraints  

7. Assign nodes to the clusters 

8. Update clusters 

9. End while 

10. Detect damage sensitive elements (when applying HRP2+ control) 

11. Run disruption scenarios   

A low-level stepwise code of our Algorithm is as follow: 

1. For i=1:K 

1.1. For j=1:S(i) 

1.1.1.  r= ls (i,j); 

1.1.2.  [w]= merging2 (i,r,x,nb); 

1.1.3.  If (w > X) and (nb(i)+nb(r) less than or equal to W) and (w greater than 

Q)  and (wx(i,r) less than or equal to  𝑤𝑡𝑒𝑚𝑝) then 

1.1.3.1. X=w; 

1.1.3.2. 𝑖1=i; 

1.1.3.3. 𝑗1=r; 

1.1.3.4. cont =1; 

1.1.3.5. End If 

1.1.4.         End For 

1.2. For j=1:P(i) 
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1.2.1.  r= lp (i,j); 

1.2.2.  [w]= merging2 (i,r,x,nb); merging function 

1.2.3.  If (w greater than X) and (nb(i)+nb(r) less than or equal to W) and (w 

greater than Q)  and  (wx(i,r) less than or equal to  𝑤𝑡𝑒𝑚𝑝) 

1.2.3.1. X=w; 

1.2.3.2. 𝑖1= I; 

1.2.3.3. 𝑗1= r; 

1.2.3.4. cont=1; 

1.2.3.5. End If 

1.2.4.  End for 

2. End for 

3. If cont equals to 0 

3.1. break; 

3.2. End If 

4. If 𝑗1 equals to -1 

4.1. break; 

4.2. End If 

3. Numerical Example 

We have applied HRP2+ on the same hypothetical network studied for when applying HRP1+. 

Our user defined parameters remain the same. The resulting clusters are shown in table 4.11. 
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No Disruption in the Network 

clusters Q 

1     2     6     8     

4    11     5      

3     

7 

9    10    12    14    

15    16    18    19 

13 17 20  21 22    24    

23 

0.4286    1    

0.8750    2    2    

0.5000    0.3333 

 

Table 4.11: No node disruption – No link disruption 

 

The step wise procedure of computation for a network without disruption is shown in table 

4.12. The table displays all possible options of node consolidation at iteration while satisfying 

our constraints of the program. The algorithm chooses the node pair with the highest density 

(w) among the other options. For instance in row eight of table 4.12 we see that the options for 

combinations are to:  

1) Unite subset 3, 7 with subset containing nodes 1, 2, 6 and 8 

2) Unite node 6 to the previous combination that is the cluster containing node 1, 2, 6 and 8 

3) Unite subset 10, 12 with subset containing nodes 14 and 15 that is the combination from 

step 2 

4) Merge node 16 with subset containing nodes 14 and 15  

In this step since the W constraint still maintains it simply chooses the last option over other 

choices as it allows a greater value for Q. 
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Scenario 1: Network with no disruption  

Number 

of 

iteration 

1
st
 best option 2

nd
 best 

option 

3
rd

 best 

option 

4
th

 best 

option 

5
th

 best 

option 

selected w 

1 1-2 5-8 6-8 - - 6-8 3 

2 1-2 2 and 6-8 14-15 - - 14-15 2.5 

3 1-2 2 and 6-8 - - - 2 joins 6-8 2.33 

4 1 and 2-6-8 - - - - 1 joins  

2-6-8 

2 

5 3 and 1-2-6-8 4 and 1-2-

6-8 

7 and 1-2-6-

8 

3-7 - 3-7 2 

6 3-7 and 1-2-

6-8 

4 and 1-2-

6-8 

9-10 10-12 - 10-12 2 

7  3-7 and 1-2-

6-8 

4 and 1-2-

6-8 

10-12 and 

14-15 

14-15 and 

16 

- 16 joins 

14-15 

2 

8 3-7 and 1-2-

6-8 

4 and 1-2-

6-8 

10-12 and 

14-15-16 

18 and 

14-15-16 

18-19 18 -19 2 

9  3-7 and 1-2-

6-8 

4 and 1-2-

6-8 

10-12 and 

14-15-16 

- - 10-12 joins 

14-15-16 

1.60 

10 3-7 and 1-2-

6-8 

4 and 1-2-

6-8 

10-12-14-

15-16 and 

18-19 

- - 10-12-14-

15-16 joins 

18-19 

1.4286 

11 3-7 and 1-2-

6-8 

4 and 1-2-

6-8 

- - - 4 joins 1-

2-6-8 

1.40 

12  3-7 and 1-2-

6-8-4 

5 and  1-2-

6-8-4 

9 and 1-2-6-

8-4 

9 and 10-

12-14-15-

16-18-19 

- 9 joins 10-

12-14-15-

16-18-19 

1.25 

13 3-7 and  1-2-

6-8-4 

5 and  1-2-

6-8-4 

11 and  1-2-

6-8-4 

- - 11 joins  1-

2-6-8-4 

1 

14 3-7 and 1-2-

6-8-4-11 

5 and  1-2-

6-8-4-11 

20-21 - - 20-21 1 

15 3-7 and 1-2-

6-8-4-11 

5 and  1-2-

6-8-4-11 
22-24 - - 22-24 1 

16 3-7 and  1-2-

6-8-4-11 

5 and  1-2-

6-8-4-11 

23 and 22-

24 

- - 23 joins 

22-24 

0.6667 

17 3-7 and 1-2-

6-8-4-11 

5 and  1-2-

6-8-4-11 

- - - 5 joins 1-

2-6-8-4-11 

0.4286 

(cluster 1) 1     2     6     8     4    11     5 0.4286 

(cluster 2) 3     7 1 

(cluster 3) 9    10    12    14    15    16    18    19 0.8750 

(cluster 4) 13 2 

(cluster 5) 17 2 

(cluster 6) 20    21 0.5 

(cluster 7) 22    24    23 0.3333 

 

Table 4.12: No node disruption – No link disruption 

Table 4.13 provides the results of a scenario where the network deals with complete failure in 

links at the 5 percentage of disruption probability level. 
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Scenario 2: Complete disruption in links 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

4
th

 best 

option 

5
th

 best 

option 

selected w 

1 1-2 5-8 6-8 - - 6-8 3 

2 1-2 2 and 6-8 - - - 2 joins 6-8 2.33 

3 1 and 2-6-

8 

- - - - 1 joins  

2-6-8 

2 

4 3 and 1-2-

6-8 

4 and 1-2-

6-8 

7 and 1-2-

6-8 

3-7 - 3-7 2 

5 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 

9-10 10-12 - 10-12 2 

6 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 
10-12 and 

14 

14-15 - 14-15 2 

7 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 

10-12 and 

14-15 

16 and 

14-15 

16-18 16-18 2 

8 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 

10-12 and 

14-15 

19 

and16-18 

- 19 joins16-

18 

1.6667 

9 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 
10-12 and 

14-15 

- - 10-12joins 

14-15 
1.5 

10 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 

- - - 4 joins 1-2-

6-8 

1.40 

11 3-7 and 1-

2-6-8-4 

5 and  1-2-

6-8-4 

9 and 1-2-

6-8-4 

9 and 10-

12-14-15 

10-12-

14-15 

and 16-

18-19 

10-12-14-

15 joins 16-

18-19 

1.2857 

12 3-7 and 1-

2-6-8-4 

5 and  1-2-

6-8-4 

9 and  1-

2-6-8-4 

9 and 10-

12-14-

15-16-

18-19 

- 9 joins  10-

12-14-15-

16-18-19 

1.1250 

13 3-7 and 1-

2-6-8-4 

5 and  1-2-

6-8-4 

11 and 1-

2-6-8-4 

- - 11 joins  1-

2-6-8-4 

1 

14 3-7 and 1-

2-6-8-4-11 

5 and  1-2-

6-8-4-11 

20-21 - - 20-21 1 

15 3-7 and 1-

2-6-8-4-11 

5 and  1-2-

6-8-4-11 

22-24 - - 22-24 1 

16 3-7 and 1-

2-6-8-4-11 

5 and  1-2-

6-8-4-11 

- - - 5 joins   1-

2-6-8-4-11 

0.4286 

17 23 and 22-

24 

- - - - 23 joins 22-

24 

0.3333 

(cluster 1) 1     2     6     8     4    11     5 0.4286 

(cluster 2) 3     7 1 

(cluster 3) 9    10    12    14    15    16    18    19 0.8750 

(cluster 4) 13 2 

(cluster 5) 17 2 

(cluster 6) 20    21 0.5 

(cluster 7) 22    24    23 0.3333 

 

Table 4.13: Clustering under 5% disruption 
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Table 4.14 provides the results of a scenario where the network deals with complete failure in 

nodes at the 5 percentage of disruption probability level. 

Scenario 3: Complete disruption in nodes 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

4
th

 best 

option 

5
th

 best 

option 

selected w 

1 1-2 5-8 6-8 - - 6-8 3 

2 1-2 2 and 6-8 - - - 2 joins 6-8 2.33 

3 1 and 2-6-8 - - - - 1 joins2-6-8 2 

4 3 and 1-2-6-

8 

4 and 1-2-6-

8 

7 and 1-2-

6-8 

3-7 - 3-7 2 

5 3-7 and 1-2-

6-8 

4 and 1-2-6-

8 

9-10 10-12 - 10-12 2 

6 3-7 and 1-2-

6-8 

4 and 1-2-6-

8 

13-15 - - 13-15 2 

7 3-7 and 1-2-

6-8 

4 and 1-2-6-

8 
10-12 and 

13-15 

- - 10-12 joins 

13-15 
2 

8 3-7 and 1-2-

6-8 

4 and 1-2-6-

8 

18-19 - - 18-19 1.5 

9 3-7 and 1-2-

6-8 

4 and 1-2-6-

8 

- - - 4 joins 1-2-6-

8 

1.5 

10 3-7 and 1-2-

6-8-4 

5 and 1-2-6-

8-4 

9 and 1-2-

6-8-4 

9 and 10-12-

13-15 

- 9 joins 10-12-

13-15 

1.20 

11 3-7 and 1-2-

6-8-4 

5 and  1-2-6-

8-4 

11 and 1-2-

6-8-4 

-  11 joins  1-2-

6-8-4 

1 

12 3-7 and 1-2-

6-8-4-11 

5 and  1-2-6-

8-4-11 
9-10-12-

13-15 and 

14 

9-10-12-13-

15 and 22 

20 and 18-

19  

20 joins 18-19 1 

13 3-7 and 1-2-

6-8-4-11 

5 and  1-2-6-

8-4-11 

9-10-12-

13-15 and 

14 

9-10-12-13-

15 and 22 

22-24 22-24 1 

14 3-7 and 1-2-

6-8-4-11 

5 and  1-2-6-

8-4-11 

9-10-12-

13-15 and 

14 

9-10-12-13-

15 and 22-

24 

9-10-12-

13-15 and 

23 

23 joins 9-10-

12-13-15  

0.8333 

15 3-7 and 1-2-

6-8-4-11 

5 and  1-2-6-

8-4-11 

- - - 5 joins   1-2-

6-8-4-11 

0.4286 

16 14 and 9-10-

12-13-15-23 

9-10-12-13-

15 and 22-

24 

- - - 9-10-12-13-

15 joins 22-24 

0.3750 

17 17 and 18-

19-20 

- - - - 17 joins 18-

19-20 
0.25 

(cluster 1) 1     2     6     8     4    11     5 0.4286 

(cluster 2) 3     7 1 

(cluster 3) 9    10    12    13    15    23    22    24 0.3750 

(cluster 4) 14 2 

(cluster 5) 16 0 

(cluster 6) 17    18    19    20 0.2500 

(cluster 7) 21 1 
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Table 4.14: Clustering under 5% disruption 

Table 4.15 shows results of the network with complete failure in both links and nodes at the 5 

percentage of disruption probability level. 

Scenario 4: Complete disruption in links and nodes 

Number of 

iteration 

1
st
 best option 2

nd
 best option 3

rd
 best option selected w 

1 1-2 5-8 - 5-8 2.5 

2 1-2 2 and 5-8 - 2 joins 5-8 2 

3 1 and 2-5-8 10-12 - 10-12 2 

4 1 and 2-5-8 10-12and 14 14-15 14-15 2 

5 1 and 2-5-8 14-15 and 16 16-18 16-18 2 

6 1 and 2-5-8 19 and 16-18 - 19 joins 16-18 1.6667 

7 1 and 2-5-8 - - 1 joins  2-5-8 1.5 

8 1-2-5-8 and 4 9and 10-12 10-12and 14-15 10-12 joins 14-15 1.5 

9 1-2-5-8 and 4 10-12-14-15 and 

16-18-19 

- 10-12-14-15 joins 16-

18-19 

1.2857 

10 1-2-5-8 and 4 - - 4 joins 1-2-5-8 1.2000 

11 1-2-5-8-4 and 6 1-2-5-8-4 and 9 9 and10-12-14-15-

16-18-19 

9 joins 10-12-14-15-

16-18-19 

1.1250 

12 1-2-5-8-4 and 6 1-2-5-8-4 and 11 - 11 joins1-2-5-8-4 1 

13 1-2-5-8-4-11 

and 6 

20-21 - 20-21 1 

14 1-2-5-8-4-11 

and 6 

22-24 - 22-24 1 

15 1-2-5-8-4-11 

and 6 

- - 6 joins1-2-5-8-4-11 0.4286 

16 1-2-5-8-4-11-6 

and 7 

23 and 22-24 - 23 joins 22-24 0.3333 

17 1-2-5-8-4-11-6 

and 7 

- - 7 joins 1-2-5-8-4-11-6  0.1250 

(cluster 1) 1     2     5     8     4    11     6     7 0.4286 

(cluster 2) 3      1 

(cluster 3) 9    10    12    14    15    16    18    19 0.3750 

(cluster 4) 13 2 

(cluster 5) 17 0 

(cluster 6) 20    21 0.2500 

(cluster 7) 22    24    23 1 

 

Table 4.15: Clustering under 5% disruption 
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Table 4.16 shows results of the network with partial disruption in links at 5 percentage of 

disruption probability level.  

Scenario 5: Partially disrupted links 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

4
th

 best option 5
th

 best 

option 

selected w 

1 1-2 5-8 6-8 - - 6-8 3 

2 1-2 2 and 6-8 14-15 - - 14-15 2.5 

3 1-2 2 and 6-8 - - - 2 joins 6-8 2.33 

4 1 and 2-6-8 - - - - 1 joins  

2-6-8 

2 

5 3 and 1-2-

6-8 

4 and 1-2-

6-8 

7 and 1-2-6-8 3-7 - 3-7 2 

6 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 

9-10 10-12 - 10-12 2 

7 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 
10-12 and 

14-15 

14-15 and 16 - 16 joins 14-15 2 

8 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 

10-12 and 

14-15-16 

18 and 14-15-

16 

18-19 18 -19 2 

9 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 

10-12 and 

14-15-16 

- - 10-12 joins 14-

15-16 

1.60 

10 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 

10-12-14-15-

16 and 18-19 

- - 10-12-14-15-16 

joins 18-19 

1.4286 

11 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 

- - - 4 joins 1-2-6-8 1.40 

12 3-7 and 1-

2-6-8-4 

5 and  1-2-

6-8-4 
9 and 1-2-6-

8-4 

9 and 10-12-

14-15-16-18-

19 

- 9 joins 10-12-

14-15-16-18-19 
1.25 

13 3-7 and  1-

2-6-8-4 

5 and  1-2-

6-8-4 

11 and  1-2-

6-8-4 

- - 11 joins  1-2-6-

8-4 

1 

14 3-7 and 1-

2-6-8-4-11 

5 and  1-2-

6-8-4-11 

20-21 - - 20-21 1 

15 3-7 and 1-

2-6-8-4-11 

5 and  1-2-

6-8-4-11 
22-24 - - 22-24 1 

16 3-7 and  1-

2-6-8-4-11 

5 and  1-2-

6-8-4-11 

23 and 22-24 - - 23 joins 22-24 0.6667 

17 3-7 and 1-

2-6-8-4-11 

5 and  1-2-

6-8-4-11 

- - - 5 joins 1-2-6-8-

4-11 

0.4286 

(cluster 1) 1     2     6     8     4    11     5 0.4286 

(cluster 2) 3     7 1 

(cluster 3) 9    10    12    14    15    16    18    19 0.8750 

(cluster 4) 13 2 

(cluster 5) 17 2 

(cluster 6) 20    21 0.5 

(cluster 7) 22    24    23 0.3333 

 

Table 4.16: Clustering under 5% disruption 
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Table 4.17 provides the results of a scenario where the network with partial failure in nodes at 

the 5 percentage of disruption probability level.  

Scenario 6: Partially disrupted nodes 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best option 4
th

 best 

option 

5
th

 best 

option 

selected w 

1 1-2 5-8 6-8 - - 6-8 3 

2 1-2 2 and 6-8 14-15 - - 14-15 2.5000 

3 1-2 2 and 6-8 - - - 2 joins 6-8 2.3333 

4 1 and 2-6-8 - - - - 1 joins 2-6-8 2 

5 3 and 1-2-6-

8 

9 and 1-2-

6-8 

7 and 1-2-6-8 3-7 - 3-7 2 

6 3-7 and 1-2-

6-8 

9 and 1-2-

6-8 

9-10 10-12 - 10-12 2 

7 3-7 and 1-2-

6-8 

9 and 1-2-

6-8 
10-12 and 14-

15 

14-15 and 

16 

- 14-15 joins 16 2 

8 3-7 and 1-2-

6-8 

9 and 1-2-

6-8 

10-12 and 14-

15-16 

14-15-16 

and 18 

18-19 18-19 2 

9 3-7 and 1-2-

6-8 

9 and 1-2-

6-8 

10-12 and  14-

15-16 

- - 10-12 joins  14-

15-16 

1.6000 

10 3-7 and 1-2-

6-8 

9 and 1-2-

6-8 

19 and 10-12-

14-15-16 

- - 19 joins 10-12-

14-15-16 

1.4286 

11 3-7 and 1-2-

6-8 

9 and 1-2-

6-8 

- - - 9 joins 1-2-6-8 1.4000 

12 3-7 and 1-2-

6-8-9 

1-2-6-8-9 

and 11 

10-12-14-15-

16-19 and 20 

- - 10-12-14-15-16-

19 joins 20 

1.2500 

13 3-7 and 1-2-

6-8-9 

11 and 1-

2-6-8-9 

- - - 11 joins 1-2-6-

8-9 

1.1667 

14 3-7 and 1-2-

6-8-9-11 

3-7 and 4 - - - 4 joins 3-7 1 

15 1-2-6-8-9-

11 and 5 

22-24 - - - 22-24 1 

16 1-2-6-8-9-

11 and 5 

23 and 22-

24 

- - - 23 joins 22-24 0.6667 

17 1-2-6-8-9-

11 and 5 

- - - - 1-2-6-8-9-11 

joins 5 
0.4286 

(cluster 1) 3     7     4 0.6667 

(cluster 2) 5     1     2     6     8     9    11 0.4286 

(cluster 3) 10    12    14    15    16    18    19    20 0.8750 

(cluster 4) 13 2 

(cluster 5) 17 2 

(cluster 6) 21 1 

(cluster 7) 22    24    23 0.3333 

 

Table 4.17: Clustering under 5% disruption 



94 
 

 

Table 4.18 provides the results of a scenario where the network deals with partial failure in both 

links and nodes at the 5 percentage of disruption probability level. 

Scenario 7: Partially disrupted nodes and links 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best option 4
th

 best 

option 

5
th

 best 

option 

selected w 

1 1-2 5-8 6-8 - - 6-8 3 

2 1-2 2 and 6-8 14-15 - - 14-15 2.5000 

3 1-2 2 and 6-8 - - - 2 joins 6-8 2.3333 

4 1 and 2-6-8 - - - - 1 joins 2-6-8 2 

5 3 and 1-2-6-

8 

9 and 1-2-

6-8 

7 and 1-2-6-8 3-7 - 3-7 2 

6 3-7 and 1-2-

6-8 

9 and 1-2-

6-8 

9-10 10-12 - 10-12 2 

7 3-7 and 1-2-

6-8 

9 and 1-2-

6-8 
10-12 and 14-

15 

14-15 and 

16 

- 14-15 joins 16 2 

8 3-7 and 1-2-

6-8 

9 and 1-2-

6-8 

10-12 and 14-

15-16 

14-15-16 

and 18 

18-19 18-19 2 

9 3-7 and 1-2-

6-8 

9 and 1-2-

6-8 

10-12 and  14-

15-16 

- - 10-12 joins  14-

15-16 

1.6000 

10 3-7 and 1-2-

6-8 

9 and 1-2-

6-8 

19 and 10-12-

14-15-16 

- - 19 joins 10-12-

14-15-16 

1.4286 

11 3-7 and 1-2-

6-8 

9 and 1-2-

6-8 

- - - 9 joins 1-2-6-8 1.4000 

12 3-7 and 1-2-

6-8-9 

1-2-6-8-9 

and 11 

10-12-14-15-

16-19 and 20 

- - 10-12-14-15-16-

19 joins 20 

1.2500 

13 3-7 and 1-2-

6-8-9 

11 and 1-

2-6-8-9 

- - - 11 joins 1-2-6-

8-9 

1.1667 

14 3-7 and 1-2-

6-8-9-11 

3-7 and 4 - - - 4 joins 3-7 1 

15 1-2-6-8-9-

11 and 5 

22-24 - - - 22-24 1 

16 1-2-6-8-9-

11 and 5 

23 and 22-

24 

- - - 23 joins 22-24 0.6667 

17 1-2-6-8-9-

11 and 5 

- - - - 1-2-6-8-9-11 

joins 5 

0.4286 

(cluster 1) 3     7     4 0.6667 

(cluster 2) 5     1     2     6     8     9    11 0.4286 

(cluster 3) 10    12    14    15    16    18    19    20 0.8750 

(cluster 4) 13 2 

(cluster 5) 17 2 

(cluster 6) 21 1 

(cluster 7) 22    24    23 0.3333 

 

Table 4.18: Clustering under 5% disruption 
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Table 4.19 shows results of the network with partial disruption in links and complete disruption 

in nodes at 5 percentage of disruption probability level.  

Scenario 8: Complete disruption in nodes and partially disrupted links 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best option 3
rd

 best option 4
th

 best 

option 

Selected w 

1 1-2 5-8 - - 5-8 2.5 

2 1-2 2 and 5-8 14-15 - 14-15 2.5 

3 1-2 2 and 5-8 - - 2 joins 5-8 2 

4 1 and 2-5-8 10-12 - - 10-12 2 

5 1 and 2-5-8 10-12and 14-15 14-15 and 16 - 14-15 joins 16 2 

6 1 and 2-5-8 10-12and 14-15-

16 

14-15-16 and 18 18-19 18-19 2 

7 1 and 2-5-8 10-12and 14-15-

16 

- - 10-12 joins 14-15-

16 

1.6000 

8 1 and 2-5-8 - - - 1 joins  2-5-8 1.5 

9 1-2-5-8 and 4 9and 10-12-14-

15-16 

10-12-14-15-16 

and 18-19 

- 10-12-14-15-16 

joins 18-19 

1.4286 

10 1-2-5-8 and 4 9 and 10-12-14-

15-16-18-19 

- - 9 joins  10-12-14-

15-16-18-19 

1.2500 

11 1-2-5-8 and 4 - - - 4 joins 1-2-5-8 1.2000 

12 1-2-5-8-4 and 

6 

1-2-5-8-4 and 11 - - 1-2-5-8-4 joins  11 1 

13 1-2-5-8-4-11 

and 6 

20-21 - - 20-21 1 

14 1-2-5-8-4-11 

and 6 

22-24 - - 22-24 1 

15 1-2-5-8-4-11 

and 6 

23 and 22-24 - - 23 joins 22-24 0.6667 

16 1-2-5-8-4-11 

and 6 

- - - 1-2-5-8-4-11 joins  

6 

0.4286 

17 1-2-5-8-4-11-

6 and 7 

- - - 7 joins 1-2-5-8-4-

11-6  

0.1250 

(cluster 1) 1     2     5     8     4    11     6     7 0.1250 

(cluster 2) 3      0 

(cluster 3) 9    10    12    14    15    16    18    19 0.8750 

(cluster 4) 13 2 

(cluster 5) 17 2 

(cluster 6) 20    21 0.5 

(cluster 7) 22    24    23 0.3333 

 

Table 4.19: Clustering under 5% disruption 
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Table 4.20 shows results of the network with partial disruption in nodes and complete 

disruption in links at the 5 percentage of disruption probability level. 

Scenario 9: Complete disruption in links and partially disrupted nodes 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best option 4
th

 best 

option 

- selected w 

1 1-2 2-6 5-8 6-8 - 6-8 3 

2 1-2 2 and 6-8 14-15 - - 14-15 2.5 

3 1-2 2 and 6-8 - - - 2 joins 6-8 2.3333 

4 1 and 2-6-8 3 and 2-6-

8 

- - - 3 joins 2-6-8 2 

5 1 and 2-6-8-

3 

9 and 2-6-

8-3 
9-10 10-12 - 10-12 2 

6 1 and 2-6-8-

3 

9 and 2-6-

8-3 

10-12 and 14-15 16 and 14-

15 

- 16 joins 14-15 2 

7 1 and 2-6-8-

3 

9 and 2-6-

8-3 

10-12 and 14-

15-16 

14-15-16 

and 18 

18-

19 

18-19 2 

8 1 and 2-6-8-

3 

9 and 2-6-

8-3 

10-12 and 14-

15-16 

- - 10-12 joins 14-15-

16 

1.6000 

9 1 and 2-6-8-

3 

9 and 2-6-

8-3 

10-12-14-15-16 

and 18-19 

- - 10-12-14-15-16 

joins 18-19 

1.4286 

10 1 and 2-6-8-

3 

9 and 2-6-

8-3 

- - - 9 joins  2-6-8-3 1.4000 

11 1 and 2-6-8-

3-9 

11 and 2-

6-8-3-9 

10-12-14-15-16-

18-19 and 20 

- - 10-12-14-15-16-

18-19 joins 20 

1.2500 

12 1 and 2-6-8-

3-9 

11 and 2-

6-8-3-9 

- - - 11 joins 2-6-8-3-9 1.1667 

13 1 and 2-6-8-

3-9-11 

4-7 - - - 4-7 1 

14 1 and 2-6-8-

3-9-11 

22-24 - - - 22-24 1 

15 1 and 2-6-8-

3-9-11 

- - - - 1 joins 2-6-8-3-9-

11 

0.7143 

16 5 and 1-2-6-

8-3-9-11 

23 and 22-

24 

- - - 23 joins 22-24 0.6667 

17 5 and 1-2-6-

8-3-9-11 

- - - - 5 joins 1-2-6-8-3-

9-11 

0.3750 

(cluster 1) 4     7 1 

(cluster 2) 5     1     2     6     8     3     9    11 0.3750 

(cluster 3) 10    12    14    15    16    18    19    20 0.8750 

(cluster 4) 13 2 

(cluster 5) 17 2 

(cluster 6) 21 1 

(cluster 7) 22    24    23 0.3333 

  

Table 4.20: Clustering under 5% disruption 
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4. Properties 

The properties of algorithm HRP2+ are described as follows: 

1) The algorithm ends after a certain number of iterations that is equal to or less than N − 1. 

2) Subsets must be connected with at least one link. This means the mentioned link must 

have its head in one subset and its end in another. 

3) All subsets must have an acceptable number of nodes that is smaller than or equal to the 

user defined W. 

4) The density of the subset which is formulized as the number of external links divided by 

the size of the subset (cardinality) must finally reach an amount less than or equal to Q. 

5) The resulting subset in each round of the program must not only satisfy size (W) 

constraint but also its density must be lower than the maximum density between the 

selected subsets. 

If  𝑟1 and 𝑟2 represent two sub-networks and s = 𝑟1∪𝑟2. We denote w(x) as the density of 

a subnetwork x. 

The total number of nodes connected to s is equal to the total number of nodes 

connected to 𝑟2  minus  𝑟1 plus the total number of exterior nodes connected to 𝑟1 

excluding  𝑟2 . Thus: w(s) ≤ Max {w ( 𝑟1), w ( 𝑟2)}. (Awasthi, et al. 2009) 

6) The computational time increases with the increase in density criterion Q. Here, the 

complexity of HRP2+ is equal to O (𝑁2)  as the algorithm firstly includes density 

criterion and secondly it explores sub-networks with maximum density as well as all 

connected pairs to find the lowest density of all other possible combinations  in the 

network. 
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4.3.3. HRP𝟏+and HRP𝟐+ with Control 

1. Description  

We maintain that since adapting the infrastructure of a network involves changing strategic 

decisions, it is more desirable to make additional investment in measures that help building a 

fortified system and increase network resiliency especially for critical as well as damage 

sensitive elements. Therefore in addition to our initial implementation, here; since the 

decomposed network is facing a randomly generated disruption; damage sensitive elements are 

also exposed to risk. Thus, in order to ensure flow of information between clusters; we improve 

our model by sustaining connectivity among ultimate clusters. That is why we have introduced 

a check and control operator to the system with the purpose of identifying and flagging the 

damage sensitive nodes/links in favor of vaccinating them with system reliability and 

resiliency. Hence once detected, we immune them by means of intense monitoring and 

inspection to prevent all possible chances of faulty behavior or breakdown. Further depending 

on the scale of the network we may also capacitate damage sensitive elements with an 

alternative that is supposed to function as the original element in the case of failure.  That is 

they are established to carry out the assigned task according to the new circumstances. 

Nevertheless to achieve a practical solution for any real-time network certain constraints 

namely time and cost must be considered and satisfied in order to guarantee the viability of our 

solution approach.   

In this subsection we have examined our improved version of HRP1+ and HRP2+ on the same 

example. That is, we show the impact of system resiliency in a network, executing our graph 

partitioning approach while including our control and check step in each scenario 
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2. Pseudo-code 

Control/check function after clustering the network for both HRP1+ and HRP2+  : 

List of employed variables: 

ls list of successors 

ch is an array representing a subset of successor  nodes (dynamic property) 

cric an array of damage sensitive nodes 

𝑝𝑟, 𝑝𝑐 variables representing subset of successor nodes in the clusters 

𝑞𝑟, 𝑞𝑐 variables representing subset of successor nodes in the damage sensitive vector 

A low-level stepwise code of our algorithm is as follows: 

Function [cric,ls]= control(x,result) 

1. For i=1:K 

1.1. ls(i,1:length(find(x(i,:)==1)))=find(x(i,:)= =1); 

1.2. End for 

2. For i=1: M 

2.1. For j=1: N 

2.2. If result (i,j) is not equal to 0 

2.2.1.     𝑡𝑒𝑚𝑝𝑥= result (i,j); 

2.2.2.    ch = ls(𝑡𝑒𝑚𝑝𝑥,:); 

2.3. For k=1: length (ch) 

2.3.1.     If ch (k)  is not equal to 0 

2.3.1.1. [𝑝𝑟 𝑝𝑐] =find (result==ch (k)); 

2.3.2.      If 𝑝𝑟 is not equal to i 

2.3.2.1. [𝑞𝑟 𝑞𝑐] =find (cric= =𝑡𝑒𝑚𝑝𝑥); 
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2.3.3.      If is empty (𝑞𝑟) 

2.3.3.1. cric=[cric; 𝑡𝑒𝑚𝑝𝑥]; 

2.3.3.2. End if 

2.3.2.2         End if 

2.3.1.2. End if 

2.4.   End for 

3. 𝑡𝑒𝑚𝑝𝑥=[]; 

4.  ch=[]; 

2.2.3.          End if 

2.5.      End for 

5.  End for 

In brief, the control function simply searches the ls matrix and projects the connections into our 

result matrix in order to determine whether the connection has an end in more than one cluster 

or not. Thus its role is to investigate for pairs of nodes that are assigned to two clusters. The 

next step would be to maintain one link between successors if the node is identified as a 

damage sensitive element. 

 

3. Numerical Example 

1. Numerical Example of  HRP𝟏+ with Control 

In this subsection, we apply HRP1+ with control on our predefined network. The stepwise 

partitioning procedure of our intact network is shown in Table 4.21. In this scenario as can be 

seen there is no difference between the results from HRP1+ and HRP1+ with Control but the 

mere fact that the execution time of the program is longer since it requires computing and 

flagging damage sensitive nodes. 
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Network with no disruption  

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

selected q 

1 1-4 20-21  20-21 1 

2 1-4 18  18 joins 20-21 0.6667 

3 1-4 16 19 19 joins  

18-20-21 

0.5 

4 1-4 16 17 17 joins  

18-20-21-19 

0.2 

5 1-4 16 - 16 joins  

17-18-20-21-19 

0.1667 

6 1-4 14 - 14 joins 

16-17-18-20-21-19 

0.2857 

7  1-4 12 - 12 joins 

14-16-17-18-20-21-19 

0.3750 

(cluster 1) 12-14-16-17-18-20-21-19 0.2500 

8 1-4 22-24 - 22-24 1 

9  1-4 15 23 23 joins 22-24 0.3333 

10 1-4 13-15 15 15 joins 22-24-23 0.333 

11 1-4 13 - 13 joins 15-22-24-23 0.5 

(cluster 2) 13-15-22-24-23 0.2000 

12  1-4 - - 1-4 1.5 

13 7 - - 7 joins 1-4 1 

14 3 - - 3 joins 1-4-7 0.75 

15 6 - - 6 joins 1-4-7-3 0.4 

16 2 - - 2 joins 1-4-7-3-6 0.333 

17 5 - - 5 joins 1-4-7-3-6-2 0.25 

18 8 - - 8 joins 1-4-7-3-6-2-5 0.1429 

(cluster 3) 1-4-7-3-6-2-5-8 0.1250 

19  9-10 - - 9-10 1.5 

20 11   11 joins 9-10 1 

(cluster 4) 9-10-11 0.6667 

 

Table 4.21: No node disruption – No link disruption 

 

Table 4.22 shows results of the network with complete disruption in links while protecting 

damage sensitive elements at the 5 percentage of disruption probability level. 
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Scenario 2: Complete disruption in links 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

selected q 

1 1-4 16-17 - 16-17 1.5 

2 1-4 19 - 19 joins 16-17 1 

3 1-4 21 - 21 joins 16-17-19 0.75 

4 1-4 20 - 20 joins 16-17-19-21 0.4 

5 1-4 18 - 18 joins16-17-19-21-20 0.1667 

(cluster 1) 16-17-18-20-21-19 0 

6 1-4 22-24 - 22-24 1.5 

7  1-4 15 and 22-24 23 and 

22-24  

23 joins 22-24 0.6667 

8 1-4 15 and 22-

24-23 

- 15 joins  22-24-23 0. 7500 

9  1-4 13 - 13 joins 15-22-24-23 0.6000 

10 1-4 12 14 14 joins13-15-22-24-23 0.3333 

11 1-4 12 - 12 joins 13-15-22-24-

23-14 

0.2857 

(cluster 2) 12-13-15-22-24-23-14 0.1429 

12  1-4 - - 1-4 2 

13 7 - - 7 joins 1-4 1.3333 

14 3 - - 3 joins 1-4-7 1 

15 6 - - 6 joins 1-4-7-3 0.6000 

16 2 - - 2 joins 1-4-7-3-6 0.5000 

17 5 - - 5 joins 1-4-7-3-6-2 0.2857 

18 8 - - 8 joins 1-4-7-3-6-2-5 0.3750 

(cluster 3) 1-4-7-3-6-2-5-8 0.1250 

19  9-10 - - 9-10 2 

20 11 - - 11 joins 9-10 1 

(cluster 4) 9-10-11 0.6667 

 

Table 4.22: Clustering under 5% disruption 

 

 

Table 4.23 shows results of the network with complete disruption in nodes while protecting 

damage sensitive elements at the 5 percentage of disruption probability level. 
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Scenario 3: Complete disruption in nodes 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

Selected q 

1 1-4 - - 1-4 1.5 

2 7 - - 7 joins 1-4 1 

3 2 - - 2 joins 1-4-7 1 

4 6 - - 6 joins 1-4-7-2 0.6 

5 5 - - 5 joins 1-4-7-2-6 0.333 

6 8 - - 8 joins 1-4-7-2-6-5 0.4286 

7  11 - - 11 joins 1-4-7-2-6-5-8 0.3750 

(cluster 1) 1-4-7-2-6-5-8-11 0.1250 

8 9-10 - - 9-10 1.5 

9  12 - - 12  joins 9-10 1.333 

10 13 - - 13 joins 9-10-12 1 

11  14 - - 14 joins 9-10-12-13 0.8 

12 16 - - 16 joins 9-10-12-13-14 0.8333 

13 17 - - 17 joins 9-10-12-13-14-16 0.7143 

14 19 - - 19 joins 9-10-12-13-14-16-

17 

0.6250 

(cluster 2) 9-10-12-13-14-16-17-19 0.3750 

15 15-23 18-20 - 18-20 1.5 

16 15-23 21 and 18-20 - 21 joins 18-20 0.6667 

(cluster 3) 18-20-21 0.3333 

17 15-23 22-24 - 22-24 1.5 

18 15-23 23 and 22-24 - 23 joins 22-24 0.6667 

19 15 15 and 22-

24-23 

- 15 joins 22-24-23 0.5 

(cluster 4) 15-22-24-23 0.2500 

(cluster 5) 3 0 

 

Table 4.23: Clustering under 5% disruption 

 

Table 4.24 shows a step wise clustering result of the network with complete disruption in both 

nodes and links while protecting damage sensitive elements at the 5 percentage of disruption 

probability level. 
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Scenario 4: Complete disruption in links and nodes 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

selected q 

1 1-4 - - 1-4 1.5 

2 3 - - 3 joins 1-4 1 

3 6 - - 6 joins 1-4-3 0.75 

4 2 - - 2 joins 1-4-3-6 0.6 

5 5 - - 5 joins 1-4-3-6-2 0.333 

6 8 - - 8 joins 1-4-3-6-2-5 0.4286 

7  11 - - 11 joins 1-4-3-6-2-5-8 0.3750 

(cluster 1) 1-4-3-6-2-5-8-11 0.1250 

8 9-10 - - 9-10 1.5 

9  12 - - 12 joins 9-10 1.333 

10 14 - - 14 joins 9-10-12 1 

11 13 - - 13 joins 9-10-12-14 0.6 

12  15 - - 15 joins 9-10-12-14-13 0.6667 

13 23 - - 23 joins 9-10-12-14-13-

15 

0.5714 

14 24 - - 24 joins 9-10-12-14-13-

15-23 

0.3750 

(cluster 2) 9-10-12-14-13-15-23-24 0.2500 

15 16-17 - - 16-17 1.5 

16 19 - - 19 joins 16-17 1 

17 21 - - 21 joins 16-17-19 0.75 

18 20 - - 20 joins 16-17-19-21 0.4 

19  18 - - 18 joins 16-17-19-21-20 0.1667 

(cluster 3) 16-17-19-21-20-18 1 

(cluster 4) 7 0 

(cluster 5) 22 0 

 

Table 4.24: Clustering under 5% disruption 

Table 4.25 shows a step wise clustering result of the network with partial disruption in its links 

while protecting damage sensitive elements at the 5 percentage of disruption probability level. 
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Scenario 5: Partially disrupted links  

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

selected q 

1 1-4 20-21 - 20-21 1.5 

2 1-4 18 and 20-21 - 18 joins 20-21 1 

3 1-4 16 19 19 joins 18-20-21 0.75 

4 1-4 16 17 17 joins 18-20-21-19 0.4 

5 1-4 16 - 16 joins 17-18-20-21-19 0.333 

6 1-4 14 - 14 joins 16-17-18-20-21-

19 
0.4286 

7  1-4 12 - 12 joins 14-16-17-18-20-

21-19 

0.5 

(cluster 1) 12-14-16-17-18-20-21-19 0.2500 

8 1-4 22-24 - 22-24 1.5 

9  1-4 15 23 23 joins 22-24 0.6667 

10 1-4 13-15 15 15 joins 22-24-23 0.75 

11 1-4 13 - 13 joins 15-22-24-23 0.4 

(cluster 2) 13-15-22-24-23 0.2000 

12  1-4 - - 1-4 2 

13 7 - - 7 joins 1-4 1.333 

14 3 - - 3 joins 1-4-7 1 

15 6 - - 6 joins 1-4-7-3 0.6 

16 2 - - 2 joins 1-4-7-3-6 0.5 

17 5 - - 5 joins 1-4-7-3-6-2 0.2857 

18 8 - - 8 joins 1-4-7-3-6-2-5 0.3750 

(cluster 3) 1-4-7-3-6-2-5-8 0.1250 

19  9-10 - - 9-10 2 

20 11 - - 11 joins 9-10 1 

(cluster 4) 9-10-11 0.6667 

 

Table 4.25: Clustering under 5% disruption 

 

Table 4.26 shows a step wise clustering result of the network with partial disruption in the 

nodes while protecting damage sensitive elements at the 5 percentage of disruption probability 

level. 
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Scenario 6: Partially disrupted links 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 

best 

option 

selected q 

1 1-4 20-21 - 20-21 1.5 

2 1-4 18 - 18 joins 20-21 1 

3 1-4 16 19 19 joins 18-20-21 0.75 

4 1-4 16 17 17 joins 18-20-21-19 0.4 

5 1-4 16 - 16 joins 17-18-20-21-

19 

0.333 

6 1-4 14 - 14 joins 17-18-20-21-

19 

0.4286 

7  1-4 12 - 12 joins 14-17-18-20-

21-19 

0.5 

(cluster 1) 12-14-17-18-20-21-19 0.2500 

8 1-4 22-24 - 22-24 1.5 

9  1-4 15 23 23 joins 22-24 0.6667 

10 1-4 13-15 15 15 joins 22-24-23 0.75 

11 1-4 13 - 13 joins 15-22-24-23 0.4 

(cluster 2) 13-15-22-24-23 0.2 

12  1-4 - - 1-4 2 

13 3 - - 3 joins 1-4 1.333 

14 6 - - 6 joins 1-4-3 1 

15 2 - - 2 joins 1-4-3-6 0.8 

16 5 - - 5 joins 1-4-3-6-2 0.5 

17 8 - - 8 joins 1-4-3-6-2-5 0.5714 

18 11 - - 11 joins 1-4-3-6-2-5-8 0.5 

(cluster 3) 1-4-3-6-2-5-8-11 0.2500 

19  9-10 - - 9-10 1.5 

(cluster 4) 9-10 1 

(cluster 5) 7 1 

 

Table 4.26: Clustering under 5% disruption 

 

Table 4.27 shows a step wise clustering result of the network with partial disruption in both 

links and nodes while protecting damage sensitive elements at the 5 percentage of disruption 

probability level. 
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Scenario 7: Partially disrupted links and nodes 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 

best 

option 

selected q 

1 1-4 20-21 - 20-21 1.5 

2 1-4 18 - 18 joins 20-21 1 

3 1-4 16 19 19 joins 18-20-21 0.75 

4 1-4 16 17 17 joins 18-20-21-19 0.4 

5 1-4 16 - 16 joins 17-18-20-21-

19 

0.333 

6 1-4 14 - 14 joins 17-18-20-21-

19 
0.4286 

7  1-4 12 - 12 joins 14-17-18-20-

21-19 

0.5 

(cluster 1) 12-14-17-18-20-21-19 0.2500 

8 1-4 22-24 - 22-24 1.5 

9  1-4 15 23 23 joins 22-24 0.6667 

10 1-4 13-15 15 15 joins 22-24-23 0.75 

11 1-4 13 - 13 joins 15-22-24-23 0.4 

(cluster 2) 13-15-22-24-23 0.2 

12  1-4 - - 1-4 2 

13 3 - - 3 joins 1-4 1.333 

14 6 - - 6 joins 1-4-3 1 

15 2 - - 2 joins 1-4-3-6 0.8 

16 5 - - 5 joins 1-4-3-6-2 0.5 

17 8 - - 8 joins 1-4-3-6-2-5 0.5714 

18 11 - - 11 joins 1-4-3-6-2-5-8 0.5 

(cluster 3) 1-4-3-6-2-5-8-11 0.2500 

19  9-10 - - 9-10 1.5 

(cluster 4) 9-10 1 

(cluster 5) 7 1 

 

Table 4.27: Clustering under 5% disruption 

 

Table 4.28 shows a step wise clustering result of the network with partial disruption in its links 

and complete disruption in nodes while protecting damage sensitive elements at the 5 

percentage of disruption probability level. 
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Scenario 8: Complete disruption in nodes and partially disrupted links 

Number of iteration 1
st
 best option 2

nd
 best option selected q 

1 1-4 - 1-4 1.5 

2 3 - 3 joins 1-4 1 

3 6 - 6 joins 1-4-3 0.75 

4 2 - 2 joins 1-4-3-6 0.6 

5 5 - 5 joins 1-4-3-6-2 0.3333 

6 8 - 8 joins 1-4-3-6-2-5 0.4286 

7  11 - 11 joins 1-4-3-6-2-5-8 0.3750 

(cluster 1) 1-4-3-6-2-5-8-11 0.1250 

8 9-10 - 9-10 1.5 

9  12 - 12 joins 9-10 1.3333 

10 13 - 13 joins 9-10-12 1 

11 14 - 14 joins 9-10-12-13 0.8 

12  16 - 16 joins 9-10-12-13-14 0.8333 

13 17 - 17 joins 9-10-12-13-14-16 0.7143 

14 19 - 19 joins 9-10-12-13-14-16-17 0.6250 

(cluster 2) 9-10-12-13-14-16-17-19 0.3750 

15 15-23 18-20 18-20 0.6667 

16 15-23 21 21 joins 18-20 1.5 

(cluster 3) 18-20-21 0.3333 

17 15-23 22-24 22-24 1.5 

18 15 23 22-24-23 0.6667 

19  15 - 15 joins 22-24-23 0.5 

(cluster 4) 15-22-24-23 0.2500 

 

Table 4.28: Clustering under 5% disruption 

 

Table 4.29 shows a step wise clustering result of the network with partial disruption in nodes 

and complete disruption in links while protecting damage sensitive elements at the 5 percentage 

of disruption probability level. 
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Scenario 9: Complete disruption in links and partially disrupted nodes 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

selected q 

1 1-4 20-21 - 20-21 1.5 

2 1-4 18 - 18 joins 20-21 1 

3 1-4 16 19 19 joins 18-20-21 0.75 

4 1-4 16 17 17 joins 18-20-21-19 0.4 

5 1-4 16 - 16 joins 17-18-20-21-19 0.3333 

6 1-4 14 - 14 joins 16-17-18-20-21-

19 
0.4286 

7  1-4 12 - 12 joins 14-16-17-18-20-

21-19 

0.5000 

(cluster 1) 12-14-16-17-18-20-21-19 0.2500 

8 1-4 22-24 - 22-24 1.5 

9  1-4 15 23 23 joins 22-24 0.6667 

10 1-4 13-15 15 15 joins 22-24-23 0.75 

11 1-4 13 - 13 joins 15-22-24-23 0.4 

(cluster 2) 13-15-22-24-23 0.2000 

12  1-4 - - 1-4 2 

13 3 - - 3 joins 1-4 1.3333 

14 6  - - 6 joins1-4-3 1 

15 2 - - 2 joins 1-4-3-6 0.8000 

16 5 - - 5 joins 1-4-3-6-2 0.5000 

17 8 - - 8 joins 1-4-3-6-2-5 0.5714 

18 11 - - 11 joins 1-4-3-6-2-5-8 0.5 

(cluster 3) 1-4-3-6-2-5-8-11 0.2500 

19  9-10 - - 9-10 1.5 

(cluster 4) 9-10 1 

(cluster 5) 7 1 

  

Table 4.29: Clustering under 5% disruption 

 

2. Numerical Example of HRP𝟐+ with Control 

In this subsection we apply HRP2+ with control on our predefined network. The stepwise 

partitioning procedure of our intact network is shown in Table 4.30. In this scenario as can be 

seen there is no difference between the results from HRP2+ and HRP2+ with Control but the 

fact that the execution time of the program is longer since it requires computing and flagging 

damage sensitive nodes. 
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Scenario 1:Network with no disruption  

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

4
th

 best 

option 

5
th

 best 

option 

selected w 

1 1-2 5-8 6-8 - - 6-8 3 

2 1-2 2 and 6-8 14-15 - - 14-15 2.5 

3 1-2 2 and 6-8 - - - 2 joins 6-8 2.33 

4 1 and 2-6-

8 

- - - - 1 joins  

2-6-8 
2 

5 3 and 1-2-

6-8 

4 and 1-2-

6-8 

7 and 1-2-6-

8 

3-7 - 3-7 2 

6 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 

9-10 10-12 - 10-12 2 

7  3-7 and 1-

2-6-8 

4 and 1-2-

6-8 

10-12 and 

14-15 

14-15 

and 16 

- 16 joins 

14-15 

2 

8 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 

10-12 and 

14-15-16 

18 and 

14-15-

16 

18-19 18 -19 2 

9  3-7 and 1-

2-6-8 

4 and 1-2-

6-8 

10-12 and 

14-15-16 

- - 10-12 

joins 14-

15-16 

1.60 

10 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 

10-12-14-

15-16 and 

18-19 

- - 10-12-14-

15-16 

joins 18-

19 

1.4286 

11 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 

- - - 4 joins 1-

2-6-8 

1.40 

12  3-7 and 1-

2-6-8-4 

5 and  1-2-

6-8-4 

9 and 1-2-6-

8-4 

9 and 

10-12-

14-15-

16-18-

19 

- 9 joins 10-

12-14-15-

16-18-19 

1.25 

13 3-7 and  1-

2-6-8-4 

5 and  1-2-

6-8-4 
11 and  1-2-

6-8-4 

- - 11 joins  

1-2-6-8-4 
1 

14 3-7 and 1-

2-6-8-4-11 

5 and  1-2-

6-8-4-11 

20-21 - - 20-21 1 

15 3-7 and 1-

2-6-8-4-11 

5 and  1-2-

6-8-4-11 

22-24 - - 22-24 1 

16 3-7 and  1-

2-6-8-4-11 

5 and  1-2-

6-8-4-11 

23 and 22-

24 

- - 23 joins 

22-24 

0.6667 

17 3-7 and 1-

2-6-8-4-11 

5 and  1-2-

6-8-4-11 

- - - 5 joins 1-

2-6-8-4-11 

0.4286 

(cluster 1) 1     2     6     8     4    11     5 0.4286 

(cluster 2) 3     7 1 

(cluster 3) 9    10    12    14    15    16    18    19 0.8750 

(cluster 4) 13 2 

(cluster 5) 17 2 

(cluster 6) 20    21 0.5 

(cluster 7) 22    24    23 0.3333 

 

Table 4.30: Clustering under 5% disruption 
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DS (Damage Sensitive elements) 

Table 4.31 shows a step wise clustering result of the network with complete disruption in links 

while protecting damage sensitive elements at the 5 percentage of disruption probability level. 

Scenario 2: Complete disruption in links 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

4
th

 best option 5
th

 best 

option 

selected w 

1 1-2 5-8 6-8 - - 6-8 3 

2 1-2 2 and 6-8 14-15 - - 14-15 2.5 

3 1-2 2 and 6-8    2 joins 6-8 2.33 

4 1 and 2-6-8 - - - - 1 joins 2-6-8 2 

5 3 and 1-2-

6-8 

4 and 1-2-

6-8 

7 and 1-2-6-8 3-7 - 3-7 2 

6 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 

9-10 10-12 - 10-12 2 

7 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 
10-12 and 14-

15 

16 and 14-15 - 16 joins 14-15 2 

8 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 

10-12 and 14-

15-16 

- - 10-12 joins 14-

15-16 

1.60 

9 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 

17-19 - - 17-19 1.5 

10 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 
- - - 4 joins 1-2-6-8 1.40 

11 3-7 and 1-

2-6-8-4 

5 and  1-2-

6-8-4 

9 and 1-2-6-

8-4 

9 and 10-12-

14-15-16 

- 9 joins 10-12-

14-15-16 

1.333 

12 3-7 and 1-

2-6-8-4 

5 and  1-2-

6-8-4 

11 and  1-2-

6-8-4 

17-19 and 9-

10-12-14-15-

16- 

18 and 

9-10-12-

14-15-16 

18 joins 

9-10-12-14-15-

16 

1.1429 

13 3-7 and 1-

2-6-8-4 

5 and  1-2-

6-8-4 

11 and 1-2-6-

8-4 

- - 11 joins  1-2-6-

8-4 

1 

14 3-7 and 1-

2-6-8-4-11 

5 and  1-2-

6-8-4-11 

9-10-12-14-

15-16-18 and 

13 

9-10-12-14-

15-16-18 and 

22 

22-24 22-24 1 

16 3-7 and 1-

2-6-8-4-11 

5 and  1-2-

6-8-4-11 

9-10-12-14-

15-16-18 and 

13 

9-10-12-14-

15-16-18 and 

23 

- 9-10-12-14-15-

16-18 joins 23 

0.75 

 

Table 4.31: Clustering under 5% disruption 

DS* 1 8 4 11 3 7 12 15 16 18 19 13 17 
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Scenario 2: Complete disruption in links 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

4
th

 best option 5
th

 best 

option 

selected w 

17 3-7 and 1-

2-6-8-4-11 

5 and  1-2-

6-8-4-11 

17-19 and 21 - - 17-19 joins  21 0.6667 

18 3-7 and 1-

2-6-8-4-11 

5 and  1-2-

6-8-4-11 

- - - 5 joins  1-2-6-

8-4-11 

0.4286 

19 17-19-21 

and 20 

- - - - 17-19-21 joins 

20 

0.2500 

(cluster 1) 1     2     6     8     4    11     5 0.4286 

(cluster 2) 3     7 1 

(cluster 3) 9    10    12    14    15    16    18    23 0.6250 

(cluster 4) 13 2 

(cluster 5) 17    19    21    20 0.25 

(cluster 6) 22    24 0.5 

 

Table 4.31: Clustering under 5% disruption 

 

Table 4.32 shows a step wise clustering result of the network with complete disruption in nodes 

while protecting damage sensitive elements at the 5 percentage of disruption probability level. 

Scenario 3: Complete disruption in nodes 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best option 4
th

 best 

option 

5
th

 best 

option 

selected w 

1 1-2 2-6 5-8 6-8 - 6-8 3 

2 1-2 2 and 6-8 14-15 - - 14-15 2.5 

3 1-2 2 and 6-8 - - - 2 joins  6-8 2.33 

4 1 and 2-

6-8 

3 and 2-6-

8 

- - - 3 joins2-6-8 2 

5 1 and 2-

6-8-3 

9 and 2-6-

8-3 

9-10 10-12 - 10-12 2 

6 1 and 2-

6-8-3 

9 and 2-6-

8-3 

10-12 and 14-

15 

14-15 and 

16 

- 14-15 joins 16 2 

7 1 and 2-

6-8-3 

9 and 2-6-

8-3 

10-12 and 14-

15-16 

18 and 14-

15-16 

18-19 18-19 2 

8 1 and 2-

6-8-3 

9 and 2-6-

8-3 

10-12 and 14-

15-16 

- - 10-12 joins 14-

15-16 

1.60 

9 1 and 2-

6-8-3 

9 and 2-6-

8-3 

10-12-14-15-16 

and 18-19 

- - 10-12-14-15-16 

joins 18-19 

1.4286 

 

Table 4.32: Clustering under 5% disruption 
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Scenario 3: Complete disruption in nodes 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

4
th

 best 

option 

5
th

 best 

option 

selected w 

10 1 and 2-6-8-

3 

9 and 2-6-

8-3 

- - - 9 joins 2-6-

8-3 

1.40 

11 1 and 2-6-8-

3-9 

2-6-8-3-9 

and 11 

20 and 10-

12-14-15-

16-18-19 

- - 20  joins 

10-12-14-

15-16-18-

19 

1.25 

12 1 and 2-6-8-

3-9 

2-6-8-3-9 

and 11 

- - - 2-6-8-3-9 

joins 11 

1.1667 

13 1 and 2-6-8-

3-9-11 

4-7 - - - 4-7 1 

14 1 and 1-2-6-

8-3-9-11 

22-24 - - - 22-24 1 

15 1 and 2-6-8-

3-9-11 

-  - - 1 joins 2-6-

8-3-9-11 

0.7143 

16 1-2-6-8-3-9-

11and 5 

22-24 and 

23 

- - - 22-24 joins 

23 

0.6667 

17 1-2-6-8-3-9-

11and 5 

- - - - 1-2-6-8-3-

9-11joins 5 

0.3750 

(cluster 1) 1     2     6     8     3     9    11     5 0.3750 

(cluster 2) 4     7 1 

(cluster 3) 10    12    14    15    16    18    19    20 0.8750 

(cluster 4) 13 2 

(cluster 5) 17 2 

(cluster 6) 21 1 

(cluster 7) 22    24    23 0.3333 

 

Table 4.32: Clustering under 5% disruption 

Table 4.33 shows a step wise clustering result of the network with complete disruption in both 

nodes and links while protecting damage sensitive elements at the 5 percentage of disruption 

probability level. 
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Scenario 4: Complete disruption in links and nodes 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best option 4
th

 best option  5
th

 best 

option 

selected w 

1 1-2 6-8 - - - 6-8 2.5 

2 1-2 14-15 - - - 14-15 2.5 

3 1-2 - - - - 1-2 2 

4 1-2 and 3 1-2 and 

6-8 

3 and 6-8 - - 3 joins 6-8 2 

5 1-2 and 

3-6-8 

3-6-8 and 

9 

4-7 10-12 - 10-12 2 

6 1-2 and 

3-6-8 

3-6-8 and 

9 
4-7 10-12 and 14-

15 

14-15 and 

16 
14-15 joins 16 2 

7 1-2 and 

3-6-8 

3-6-8 and 

9 

4-7 10-12 and 14-

15-16 

- 10-12 joins 14-

15-16 

1.60 

8 1-2 and 

3-6-8 

3-6-8 and 

9 

4-7 - - 4-7 1.50 

9 1-2 and 

3-6-8 

3-6-8 and 

9 

10-12-14-15-

16 and 9 

17-19 - 17-19 1.5 

10 1-2 and 

3-6-8 

3-6-8 and 

9 

10-12-14-15-

16 and 9 

- - 10-12-14-15-16 

joins 9 

1.333 

11 1-2 and 

3-6-8 

3-6-8 and 

5 
- - - 3-6-8  joins 5 1.25 

12 1-2 and 

3-6-8-5 

1-2 and 

4-7 

9-10-12-14-

15-16 and 13 

9-10-12-14-

15-16 and 17-

19 

9-10-12-14-

15-16 and18 

9-10-12-14-15-

16 joins18 

1.1429 

13 1-2 and 

3-6-8-5 

1-2 and 

4-7 

9-10-12-14-

15-16-18 and 

22 

22-24 - 22-24 1 

14 1-2 and 

3-6-8-5 

1-2 and 

4-7 
9-10-12-14-

15-16-18 and 

23 

- - 9-10-12-14-15-

16-18 joins 23 

0.8750 

15 1-2 and 

3-6-8-5 

1-2 and 

4-7 

- - - 1-2 joins 4-7 0.75 

16 1-2 and 

3-6-8-5 

17-19 

and 21 

- - - 17-19 joins 21 0.6667 

17 1-2 and 

3-6-8-5 

17-19- 

21and 20 

- - - 17-19- 21 joins 

20 

0.25 

18 1-2 and 

3-6-8-5 

- - - - 1-2 joins  3-6-

8-5 

0.125 

(cluster 1) 1     2     4     7     3     6     8     5 0.125 

(cluster 2) 9    10    12    14    15    16    18    23 0.75 

(cluster 3) 11 1 

(cluster 4) 13 2 

(cluster 5) 17    19    21    20 0.25 

(cluster 7) 22    24    0.5 

 

Table 4.33: Clustering under 5% disruption 
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Table 4.34 shows a step wise clustering result of the network with partial disruption in links 

while protecting damage sensitive elements at the 5 percentage of disruption probability level. 

Scenario 5: Partially disrupted links 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

4
th

 best option 5
th

 best 

option 

selected w 

1 1-2 5-8 6-8 - - 6-8 3 

2 1-2 2 and 6-8 14-15 - - 14-15 2.5 

3 1-2 2 and 6-8 - - - 2 joins 6-8 2.33 

4 1 and 2-6-8 - - - - 1 joins  

2-6-8 

2 

5 3 and 1-2-

6-8 

4 and 1-2-

6-8 

7 and 1-2-6-8 3-7 - 3-7 2 

6 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 

9-10 10-12 - 10-12 2 

7 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 
10-12 and 

14-15 

14-15 and 16 - 16 joins 14-15 2 

8 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 

10-12 and 

14-15-16 

18 and 14-15-

16 

18-19 18 -19 2 

9 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 
10-12 and 

14-15-16 

- - 10-12 joins 14-

15-16 
1.60 

10 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 

10-12-14-15-

16 and 18-19 

- - 10-12-14-15-16 

joins 18-19 

1.4286 

11 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 

- - - 4 joins 1-2-6-8 1.40 

12 3-7 and 1-

2-6-8-4 

5 and  1-2-

6-8-4 

9 and 1-2-6-

8-4 

9 and 10-12-

14-15-16-18-

19 

- 9 joins 10-12-

14-15-16-18-19 

1.25 

13 3-7 and  1-

2-6-8-4 

5 and  1-2-

6-8-4 

11 and  1-2-

6-8-4 

- - 11 joins  1-2-6-

8-4 

1 

14 3-7 and 1-

2-6-8-4-11 

5 and  1-2-

6-8-4-11 

20-21 - - 20-21 1 

15 3-7 and 1-

2-6-8-4-11 

5 and  1-2-

6-8-4-11 

22-24 - - 22-24 1 

16 3-7 and  1-

2-6-8-4-11 

5 and  1-2-

6-8-4-11 

23 and 22-24 - - 23 joins 22-24 0.6667 

17 3-7 and 1-

2-6-8-4-11 

5 and  1-2-

6-8-4-11 
- - - 5 joins 1-2-6-8-

4-11 
0.4286 

(cluster 1) 1     2     6     8     4    11     5 0.4286 

(cluster 2) 3     7 1 

(cluster 3) 9    10    12    14    15    16    18    19 0.8750 

(cluster 4) 13 2 

(cluster 5) 17 2 

(cluster 6) 20    21 0.5 

(cluster 7) 22    24    23 0.3333 

 

Table 4.34: Clustering under 5% disruption 
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Table 4.35 shows a step wise clustering result of the network with partial disruption in nodes 

while protecting damage sensitive elements at the 5 percentage of disruption probability level. 

Scenario 6: Partially disrupted nodes 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best option 4
th

 best option 5
th

 best 

option 

selected w 

1 1-2 5-8 6-8 - - 6-8 3 

2 1-2 2 and 6-8 14-15 - - 14-15 2.5000 

3 1-2 2 and 6-8 - - - 2 joins 6-8 2.3333 

4 1 and 2-6-8 - - - - 1 joins 2-6-8 2 

5 3 and 1-2-6-

8 

4 and 1-2-

6-8 

7 and 1-2-6-8 3-7 - 3-7 2 

6 3-7 and 1-2-

6-8 

4 and 1-2-

6-8 

9-10 10-12 - 10-12 2 

7 3-7 and 1-2-

6-8 

4 and 1-2-

6-8 

10-12 and 14-

15 

14-15 and 16 - 14-15 joins 16 2 

8 3-7 and 1-2-

6-8 

4 and 1-2-

6-8 
10-12 and 14-

15-16 

14-15-16 and 

18 

18-19 18-19 2 

9 3-7 and 1-2-

6-8 

4 and 1-2-

6-8 

10-12 and  14-

15-16 

- - 10-12 joins  14-

15-16 

1.6000 

10 3-7 and 1-2-

6-8 

4 and 1-2-

6-8 

18-19 and 10-

12-14-15-16 

- - 18-19 joins 10-

12-14-15-16 

1.4286 

11 3-7 and 1-2-

6-8 

4 and 1-2-

6-8 

- - - 4 joins 1-2-6-8 1.4000 

12 3-7 and 1-2-

6-8-4 

5 and 1-2-

6-8-4 

9 and 1-2-6-8-

4 

9 and 10-12-

14-15-16-18-

16 

- 9 joins 10-12-

14-15-16-18-16 

1.2500 

13 3-7 and 1-2-

6-8-4 

5 and 1-2-

6-8-4 

11 and 1-2-6-

8-4 

- - 11 joins  1-2-6-

8-4 

1 

14 3-7 and 1-2-

6-8-4-11 

5 and 1-2-

6-8-4-11 

20-21 - - 20-21 1 

15 3-7 and 1-2-

6-8-4-11 

5 and 1-2-

6-8-4-11 

22-24 - - 22-24 1 

16 3-7 and 1-2-

6-8-4-11 

5 and 1-2-

6-8-4-11 

22-24 and 23 - - 22-24 joins  23 0.6667 

17 3-7 and 1-2-

6-8-4-11 

5 and 1-2-

6-8-4-11 

- - - 5 joins  1-2-6-8-

4-11 

0.4286 

(cluster 1) 1     2     6     8     4    11     5 0.4286 

(cluster 2) 3     7 1 

(cluster 3) 9    10    12    14    15    16    18    19 0.8750 

(cluster 4) 13 2 

(cluster 5) 17 2 

(cluster 6) 20    21 0.5 

(cluster 7) 22    24    23 0.3333 
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Table 4.35: Clustering under 5% disruption 

Table 4.36 shows a step wise clustering result of the network with partial disruption in both 

links and nodes while protecting damage sensitive elements at the 5 percentage of disruption 

probability level. 

 

Scenario 7: Partially disrupted nodes and links 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

4
th

 best option 5
th

 best 

option 

selected w 

1 1-2 5-8 6-8 - - 6-8 3 

2 1-2 2 and 6-8 14-15 - - 14-15 2.5000 

3 1-2 2 and 6-8 - - - 2 joins 6-8 2.3333 

4 1 and 2-6-8 - - - - 1 joins 2-6-8 2 

5 3 and 1-2-

6-8 

4 and 1-2-

6-8 

7 and 1-2-6-8 3-7 - 3-7 2 

6 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 
9-10 10-12 - 10-12 2 

7 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 

10-12 and 

14-15 

14-15 and 16 - 14-15 joins 16 2 

8 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 

10-12 and 

14-15-16 

14-15-16 and 

18 

18-19 18-19 2 

9 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 
10-12 and  

14-15-16 

- - 10-12 joins  14-

15-16 
1.6000 

10 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 

18-19 and 

10-12-14-15-

16 

- - 18-19 joins 10-

12-14-15-16 

1.4286 

11 3-7 and 1-

2-6-8 

4 and 1-2-

6-8 

- - - 4 joins 1-2-6-8 1.4000 

12 3-7 and 1-

2-6-8-4 

5 and 1-2-

6-8-4 
9 and 1-2-6-

8-4 

9 and 10-12-

14-15-16-18-

16 

- 9 joins 10-12-

14-15-16-18-16 

1.2500 

13 3-7 and 1-

2-6-8-4 

5 and 1-2-

6-8-4 
11 and 1-2-6-

8-4 

- - 11 joins 1-2-6-

8-4 

1.1667 

14 3-7 and 1-

2-6-8-4-11 

5 and 1-2-

6-8-4-11 

20-21 - - 20-21 1 

15 3-7 and 1-

2-6-8-4-11 

5 and 1-2-

6-8-4-11 

22-24 - - 22-24 1 

 

Table 4.36: Clustering under 5% disruption 
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Scenario 7: Partially disrupted nodes and links 

Number of 

iteration 

1
st
 best option 2

nd
 best option 3

rd
 best 

option 

4
th

 best 

option 

5
th

 best 

option 

selected w 

16 3-7 and 1-2-6-8-4-

11 

5 and 1-2-6-8-

4-11 

22-24 and 23 - - 22-24 joins 

23 

0.6667 

17 3-7 and 1-2-6-8-4-

11 

5 and 1-2-6-8-

4-11 

- - - 5 joins 1-

2-6-8-4-11 

0.4286 

(cluster 1) 1     2     6     8     4    11     5 0.4286 

(cluster 2) 3     7 1 

(cluster 3) 9    10    12    14    15    16    18    19 0.8750 

(cluster 4) 13 2 

(cluster 5) 17 2 

(cluster 6) 20    21 0.5 

(cluster 7) 22    24    23 0.3333 

 

Table 4.36: Clustering under 5% disruption 

Table 4.37 shows a step wise clustering result of the network with partial disruption in links and 

complete disruption in nodes while protecting damage sensitive elements at the 5 percentage of 

disruption probability level. 

Scenario 8: Complete Disruption in nodes and partially disrupted links 

Number of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

4
th

 best 

option 

5
th

 best 

option 

6
th

 best 

option 

selected w 

1 1-2 6-8 - - - - 6-8 2.5 

2 1-2 14-15 - - - - 14-15 2.5 

3 1-2 - - - - - 1-2 2 

4 3 and 1-2 6-8 and 

1-2 

3 and 6-8 - - - 3 joins 6-8 2 

5 3-6-8 and 

1-2 

9 and 3-

6-8 

4-7 10-12 - - 10-12 2 

6 3-6-8 and 

1-2 

9 and 3-

6-8 
4-7 10-12 and 

14-15 

14-15 and 

16 
- 14-15 joins 

16 

2 

7 3-6-8 and 

1-2 

9 and 3-

6-8 

4-7 10-12 and 

14-15-16 

14-15-16 

and 18 

18-19 18-19 2 

8 3-6-8 and 

1-2 

9 and 3-

6-8 

4-7 10-12 and 

14-15-16 

- - 10-12 and 

14-15-16 

1.60 

 

Table 4.37: Clustering under 5% disruption 
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Scenario 8: Complete Disruption in nodes and partially disrupted links 

Number 

of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

4
th

 best 

option 

5
th

 best 

option 

6
th

 best 

option 

selected w 

9 3-6-8 

and 1-2 

9 and 3-

6-8 

4-7 - - - 4-7 1.50 

10 3-6-8 

and 1-2 

9 and 3-

6-8 

9 and 

10-12-

14-15-

16 

18-19 and 

10-12-14-

15-16 

- - 18-19 joins 10-12-

14-15-16 

1.4286 

11 3-6-8 

and 1-2 

9 and 3-

6-8 

- - - - 9 joins 3-6-8 1.25 

12 3-6-8-9 

and 1-2 

20 and 

10-12-

14-15-

16-18-19 

- - - - 20 joins 10-12-14-

15-16-18-19 

1.25 

13 3-6-8-9 

and 1-2 

- - - - - 3-6-8-9 joins  1-2 1 

14 1-2-3-6-

8-9 and 

4-7 

1-2-3-6-

8-9 and 5 

22-24 - - - 22-24 1 

15 1-2-3-6-

8-9 and 

4-7 

1-2-3-6-

8-9 and 5 

23 and 

22-24 

- - - 23 joins  22-24 0.6667 

16 1-2-3-6-

8-9 and 

4-7 

1-2-3-6-

8-9 and 5 

- - - - 1-2-3-6-8-9 joins 5 0.4286 

(cluster 1) 1     2     3     6     8     9     5 0.4286 

(cluster 2) 4     7 1 

(cluster 3) 10    12    14    15    16    18    19    20 1 

(cluster 4) 11 1 

(cluster 5) 13 2 

(cluster 6) 17 2 

(cluster 7) 21 1 

(cluster 8) 22    24    23 0.3333 

 

Table 4.37: Clustering under 5% disruption 

Table 4.38 shows a step wise clustering result of the network with partial disruption in nodes and 

complete disruption in links while protecting damage sensitive elements at the 5 percentage of 

disruption probability level. 
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Scenario 9: Complete disruption in links and partially disrupted nodes 

Number 

of 

iteration 

1
st
 best 

option 

2
nd

 best 

option 

3
rd

 best 

option 

4
th

 best 

option 

5
th

 

best 

option 

selected w 

1 1-2 5-8 6-8 - - 6-8 3 

2 1-2 2 and 6-8 14-15 - - 14-15 2.5 

3 1-2 2 and 6-8 - - - 2 joins 6-8 2.33 

4 1 and 2-6-8 - - - - 1 joins 2-6-8 2 

5 3 and 1-2-6-8 4 and 1-2-

6-8 

7 and 1-2-6-

8 

3-7 - 3-7 2 

6 3-7 and 1-2-

6-8 

4 and 1-2-

6-8 

9-10 10-12 - 10-12 2 

7 3-7 and 1-2-

6-8 

4 and 1-2-

6-8 

10-12 and 

14-15-16 

14-15 

and 16 

- 14-15 joins 

16 

2 

8 3-7 and 1-2-

6-8 

4 and 1-2-

6-8 

10-12 and 

14-15-16 

14-15-16 

and 18 

18-19 18-19 2 

9 3-7 and 1-2-

6-8 

4 and 1-2-

6-8 

10-12 and 

14-15-16 

- - 10-12 joins 

14-15-16 

1.6000 

10 3-7 and 1-2-

6-8 

4 and 1-2-

6-8 

10-12-14-

15-16 and 

18-19 

- - 10-12-14-

15-16 joins 

18-19 

1.4286 

11 3-7 and 1-2-

6-8 

4 and 1-2-

6-8 

- - - 4 joins 1-2-

6-8 

1.40 

12 3-7 and 1-2-

6-8-4 

5 and 1-2-

6-8-4 

9 and 1-2-6-

8-4 

10-12-

14-15-

16-18-19 

and 9 

- 10-12-14-

15-16-18-19 

joins 9 

1.2500 

13 3-7 and 1-2-

6-8-4 

5 and 1-2-

6-8-4 

11 and 1-2-

6-8-4 

- - 11 joins 1-2-

6-8-4 

1 

14 3-7 and 1-2-

6-8-4-11 

5 and 1-2-

6-8-4-11 

20-21 - - 20-21 1 

15 3-7 and 1-2-

6-8-4-11 

5 and 1-2-

6-8-4-11 
22-24 - - 22-24 1 

16 3-7 and 1-2-

6-8-4-11 

5 and 1-2-

6-8-4-11 

22-24 and 

23 

- - 22-24 joins 

23 

0.6667 

17 3-7 and 1-2-

6-8-4-11 

5 and 1-2-

6-8-4-11 

- - - 5 joins 1-2-

6-8-4-11 

0.4286 

(cluster 1) 1     2     6     8     4    11     5 0.4286 

(cluster 2) 3     7 1 

(cluster 3) 9    10    12    14    15    16    18    19 0.8750 

(cluster 4) 13 2 

(cluster 5) 17 2 

(cluster 6) 20    21 0.5 

(cluster 7) 22    24    23 0.3333 

  

Table 4.38: Clustering under 5% disruption 
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4. Properties 

We refer the reader to properties provided on page 84 and 100 of this study.  

 

4.4. Methods comparison 

 

The results of our stepwise procedure reveal that HRP1+ computes partitioning by assigning 

nodes to clusters one at a time. This means next cluster is not generated before the completion 

of the previous cluster. On the other hand, HRP2+ is able to develop multiple clusters at the 

same time. Therefore it computes partitioning by searching for pair of nodes with the highest 

density without being constrained to one cluster.  

Considering the results from our numerical example in the four previous subsections, we 

conclude that in general HRP1+leads to less number of edge-cuts than HRP2+ with or without 

the control step. 

As a matter of fact the advantage of the control strep, as previously mentioned, is that damage 

sensitive elements are protected in favor of system resiliency. Therefore it maintains 

connectivity among our ultimate set of partitions in the occurrence of an event.   
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        Chapter 5: 

Numerical 

Experimentation 

 

In this chapter, two types of experiments are performed. First we will test our two suggested 

methods (HRP1
+
, HRP2

+
) and their extensions (HRP1

+
control, HRP2

+
control) on randomly 

generated networks. Second we test them on benchmark datasets available in literature. 5 

different graphs selected from “UF Sparse Matrix Collection” are used. After experimental 

evaluation, a comparative analysis is performed. The four algorithms were coded in Mat lab. 

5.1. Randomly generated graphs 

 

Graph of 24 nodes and 30 links was generated at random and the four algorithms were applied. 

In this section we show results for the second scenario where network is dealing with complete 

disruption in links. Tables for other scenarios are available in appendix (I). It can be seen from  

the following tables that as the percentage of disruption increases the number of isolated nodes 

increases and subsets are unbalanced. However when applying HRP control methods the 

negativity of disruption leading to disconnected subsets is reduced. Nevertheless the system can 

maintain its functionality up to a certain level. Here, our first table, table 1.a shows partitioning 

results of the network with complete link disruption when applying HRP1+while accounting for 

different percentages of disruption. 
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% of 

disruptio

n 

Complete disruption in links: HRP𝟏+ 

 

Clusters 

 

q 

5% 1,4,7,3,6,2,5,8 9,10,12,13,14,16,17,19 11 15,22,24,

23 

18,20,21 .25,.375,1,

.25,.33 

10

% 

1,4,7,3,6,2,5,8 9,10,12,13,14,16,17,19 11 15,22,24,

23 

18,20,21 .25,.375,1,

.25,.3333 

15

% 

1,2,5,6,3,7,4,8 9,10,12,13,14,16,17,19 11 15,22,24,

23 

18,20,21 .25,.38,1,.

25,.33 

20

% 

1,4,7,3,6,8,11,

9 

2,5 10,12,14,16,17,13,19,

18 

15,22,24,23 20,21 

 

.13,0,.38,.

25,.5 

30

% 

1,3,6,7,4,8,11,

9 

2,5 10,12,14,16,17,13,19,

18 

15,22,24,23 20,21 .13,0,.38,.

25,.5 

40

% 

1,2 3 4,7,8,5,11,10,12,

13 

6 9 14,16,17,19,21,20,

18 

15,22,24,

23 

0,0,.125,0,

0,0,.25 

 
Table 1.a: HRP𝟏+ : No node disruption – Complete link disruption 

 

Table 1.b shows partitioning results of the network with complete link disruption when 

applying HRP1+control while keeping account for different percentages of disruption.  

 

% of 

disrup

tion 

Complete disruption in links: HRP𝟏+control 

Clusters q 

5

% 

1,4,7,

3,6,2,

5,8 

9,10,12,13,

14,16,18,20 
11 15,22,24,23 17 19,21 .1429,.5,1,.25,2,1 

10

% 

1,4,7,3,6,2

,5 
8 9,10,11 

12,13,15,23,24,

22,14 
16 

17,19,20,21

,18 

.1423,2,.6667,.2857,2

,.2 

15

% 

1,2,5,

6,4 
3 7 11 20 

8,9,10,12,14,16

,17,13 

15,22,2

4,23 
18,19,21 .6,2,3,1,1,.5,.25,.3333 

20

% 
1 

2,5,8,11,6,

7,4 
3 9 10 

12,13,15,23,24,

22 
14 16 

17,18,20,21

,19 

1,.5714,1,2,3,.1667,1,

2,.2 

30

% 
1 

2,5,6,3,8,

9,11 
4 7 

10,12,14,15,23

,24,22 

1

3 
16 17 18,19,21 20 

2,.4286,2,2,.2857,0,3,

2,1,1 

40

% 

1,3,6,2,8,

11,7 
4 5 9 

1

0 

1

2 

1

3 

14,15

,22,2

3 

16 17 
1

8 

1

9 

2

0 

2

1 

2

4 

.1429,0,1,1,2,3,1,.75,

3,2,2,2,1,1,1 

 

Table 1.b: HRP𝟏+control: No node disruption – Complete link disruption 
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Table 1.c shows partitioning results of the network with complete link disruption when 

applying HRP2+while accounting for different percentages of disruption. 

 

% of 

disruption 

Complete disruption in links: HRP𝟐+ 

 

Clusters 

 

q 

5% 1     2     3     6     

8     9    11     5 

4     7 10    12    14    15    16    

18    19    20 

13 17 21 22    24    

23 

0.3750    1    

0.8750    2    

2    1    

0.3333 

10% 1     2     6     8     

4    11     3     5 

7 9    10    12    14    15    16    

18    19 

13 17 20  21 22    24    23 0.3750    2   

0.75    2    1    

0.50    

0.3333 

15% 1     2     4     7     

5 

3     

6     

8    

11 

9    10    12    14    15    

16    18    22 

13 17 19  20 

21 

23 24 0.40    0.75    

0.8750  2  1   

0.3333    1  1 

20% 1     3     7     8     

9    10     2    

11 

4 5 6 12    14    15    16    17    

19    21    13 

18    20 22    24    23 0.7500    2    

1 2    0.3750    

0.50    

0.3333 

30% 1     2     

5     8     

6 

3 4  7 9 10    

12    

13 

11 14 15 16 17    

19    

21 

18 20 22 23 24 0.40     0    1         

0    0.3333         

0    1         0         

0    0.3333         

0    1   0   0   

0 

40% 1     3     6     8     9    

10     4     7 

2     

5 

11 12    14    16    

18    19    20    

21    17 

13 15    23    24 22 0.3750    

0.5000    1   

0.1250         

0    0.3333    

1 
 

Table 1.c: HRP𝟐+ : No node disruption – Complete link disruption 

 

Table 1.d shows partitioning results of the network with complete link disruption when 

applying HRP2+ control while accounting for different percentages of disruption. 
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% of 

disruption 

Complete disruption in links: HRP𝟐+ control 

 

Clusters 

 

q 

5% 
1     2     6     8     

4    11     5 
3   7 

9    10    12    14    

15    16    18    19 

1

3 
17 20    21 

22    24    

23 

0.4286    1    

0.8750    2    

20.50    

0.3333 

10% 
1     2     6     8     

4     9    10    12 
3     7 5 

1

1 

13    15    22    24    

14    23 

16    18    19    

20    21 
17 

0.8750    1 2    

2    0.1667    

0.40    2.0 

15% 
1     2     3     7     

8     9    11     4 
5 6 

10    12    14    

15    16    18    

19    20 

13 17 21 22 23 24 

0.6250    2    2    

1   2    2    1    

1    1   0 

20% 
1     2     6     8     

7    11     3     4 
5 

9    10    12    14    

15    16    18    20 
13 17   19 21 

22    24    

23 

0.3750    2    

0.50    2    

0.50    1    

0.3333 

30% 
1     2     6     8     

7     9     3     4 
5 

10    12    14    15    

16    17    23    22 

1

1 

1

3 
18    19    21    20 

2

4 

0.25   2    

0.6250    1    2    

0.25    1 

40% 
1     2     4     7     

5 

3     6     8    11     

9    10 

12    13    15    23    

14    16    24 

17    19    20    

21    18 

2

2 

0.4    0.5    

0.2857    0.2         

0 

 

Table 1.d: HRP𝟐+ control: No node disruption – Complete link disruption 

 

 

5.2. Benchmark dataset 

 
5.2.1. Datasets 

 

For benchmarking purposes 5 graphs were selected from a set of large and actively growing 

sparse matrices available on the University of Florida collection arising in real applications. 

Each network comes descriptively with classified information based on the user’s requirement. 

Here we will display images of the networks and their graphical matrix as well as their basic 

data required in order to apply our proposed techniques.  

Our first network, Dwt_66, consists of 66 nodes and 320 links 
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Figure 12: Dwt_66 

 

Our second network, GD96_b, contains 111 nodes and 193 links: 

 

Figure 13: GD96_b 

Our third network, Dwt_221,is a network of 221 nodes and 1629 arcs: 
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Figure 14: Dwt_221 

The fourth network consists of 310 nodes and 2448 links: 

 

Figure 15: Dwt_310 

Our last studied case, Dwt_419, is a network of 419 nodes and 3563links: 
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Figure 16: Dwt_419 

Table below, specifies our input criteria, W and Q, for each network: 

 

 
 

Table 5: Network properties 

 

 

 

 

 

Nodes Links W Q

3563 30 0.1

1629 20 0.4

2448 20 0.1

320 9 0.125

193 32 0.1

66

111

221

310

419

Network Name:

dwt_66

Network Name:

GD96_b

Network Name:

dwt_221

Network Name:

dwt_310

Network Name:

dwt_419
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5.2.2. Results 

 

The results of our experiments are contained in 5 separate tables (tables 5.3.1-5.3.5) with 

information on number of edge-cuts (EC), number of clusters(C) and their execution runtime 

(T) for different scenarios in each method. We investigate approaches when a 20 percentage of 

disruption in the network takes place.  The tables are ordered by the magnitude of the network, 

keeping our user defined criteria constant in favor of solely comparing the efficiency of our 

methods and the impact of our control step in a real test-bed. 

In table 5.3.1, HRP1+ has a shorter run time period compared to HRP2+. Looking at the results 

of scenario 1where the network is in its original state we find that the number of clusters 

obtained from HRP1+ is lower than HRP2+ and also lower number of edge cuts which means 

less communication between subsets. Considering the properties of network “dwt_66” we see 

that the network has been clustered evenly when applying HRP1+ or HRP1+control compared 

to the latter method.  

 

Table 5.3.1: Experimentation results for dwt_66 
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In table 5.3.2 the number of clusters is noticeably higher when applying HRP2+or its extension. 

This implies that HRP1+is a more practical and applicable scheme for networks with different 

properties. 

 

Table 5.3.2: Experimentation results for GD96_b 

 

In table 5.3.3 the runtime for HRP2+ and its extension is considerably greater than HRP1+. 

This implies that HRP1+ is more time efficient. Also considering the properties of network 

“dwt_221” we see that the resulting subsets are more uniform when applying HRP1+ or 

HRP1+control compared to the latter method. 

 

Table 5.3.3: Experimentation results for dwt_221 

 

EC T C EC T C EC T C EC T C

Senario1 7 1.23011 5 7 1.281785 5 79 1.263312 80 79 1.35105 80

Senario2 12 1.130326 11 9 1.139839 8 77 1.107098 80 79 1.002849 80

Senario3 6 0.717735 15 7 0.737094 16 73 1.085395 80 67 1.097984 72

Senario4 6 1.118549 14 8 1.0961 9 73 1.888434 80 64 1.091873 70

Senario5 8 1.184167 6 7 1.235409 5 79 0.969039 80 79 0.990126 80

Senario6 8 1.227042 6 7 1.172727 5 79 1.03994 80 79 0.989257 80

Senario7 8 1.219729 6 7 1.1671 5 79 0.985315 80 79 0.984069 80

Senario8 6 1.027051 11 7 1.130391 8 74 0.889942 80 67 1.075683 71

Senario9 9 1.142831 7 7 1.234013 5 79 0.971419 80 64 1.19959 65

Network Name:GD96_b
   1+    1+CTRL    2+    2+CTRL

EC T C EC T C EC T C EC T C

Senario1 56 20.91748 14 56 22.09931 14 62 78.73637 16 62 79.44794 16

Senario2 56 20.68356 14 56 21.02643 14 72 80.08517 19 76 81.75892 18

Senario3 52 19.6509 18 60 20.60258 16 64 77.99255 23 69 77.76762 18

Senario4 68 20.0806 19 59 20.27924 16 58 75.00573 23 66 79.1284 19

Senario5 60 24.32281 15 60 20.9834 15 62 83.79591 16 62 82.33762 16

Senario6 70 20.72931 17 64 20.8376 16 72 78.32173 20 62 80.28499 16

Senario7 80 20.84777 19 68 20.92525 17 76 78.37606 18 62 80.05695 16

Senario8 58 19.74654 17 66 20.55445 16 60 75.54441 22 70 76.35257 18

Senario9 70 21.02887 17 64 20.70675 16 62 79.29462 18 62 81.04738 16

Network Name:dwt_221
   1+    1+CTRL    2+    2+CTRL
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Table 5.3.4 shows a high computational time when applying HRP2+ or HRP2+control. Also 

the evenness of clusters obtained from HRP2+ is lower than HRP1+implying somewhat equal 

fraction of workload. 

 

 

Table 5.3.4: Experimentation results for dwt_310 

 

Table 5.3.5 also shows how HRP1+ obtain results in more reasonable amount of time .while 

returning balanced subset with less communication volume. 

 

 

Table 5.3.5: Experimentation results for dwt_419 

 

EC T C EC T C EC T C EC T C

Senario1 72 95.51849 16 72 89.07549 16 84 415.8814 20 84 462.427 20

Senario2 78 87.00209 17 72 90.55361 16 94 362.1133 22 88 427.1849 21

Senario3 74 84.95539 22 68 91.25897 16 92 334.4588 25 88 454.5952 21

Senario4 78 84.70753 22 70 92.1976 16 90 335.8227 25 84 447.1835 23

Senario5 88 86.09844 19 72 88.81553 16 84 347.3733 20 84 362.0947 20

Senario6 108 85.02189 23 72 94.30971 16 84 347.0726 20 90 356.6155 21

Senario7 98 87.07642 21 72 88.18089 16 80 347.1723 20 90 357.8399 21

Senario8 78 98.22717 22 69 88.84786 16 90 339.5932 25 96 353.2139 21

Senario9 105 100.5631 23 70 90.47033 16 96 345.2952 21 94 357.1828 21

Network Name:dwt_310    1+    1+CTRL    2+    2+CTRL

EC T C EC T C EC T C EC T C

Senario1 60 469.1994 15 60 404.3159 15 88 1481.506 22 88 1827.263 22

Senario2 60 470.9417 15 60 405.7485 15 88 1517.069 19 84 1631.449 19

Senario3 70 478.2006 20 60 410.5418 15 94 1809.647 25 76 1657.697 21

Senario4 64 474.5634 21 60 588.553 15 96 1780.667 23 96 1616.728 20

Senario5 72 498.2138 18 60 454.4045 15 88 2325.846 22 88 1830.702 20

Senario6 76 446.0309 20 60 453.7501 15 98 1778.197 20 88 1591.643 19

Senario7 92 422.7026 23 60 503.5079 15 98 1639.467 20 88 1533.68 19

Senario8 74 391.7177 24 66 429.9015 17 90 1594.045 25 86 1533.68 18

Senario9 76 421.5906 20 60 449.2944 15 86 1608.51 20 88 1551.944 17

Network Name:dwt_419    1+    1+CTRL    2+    2+CTRL
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Considering all the above tables in this section, we can see that as the network grows bigger the 

computational time for HRP2+  with and without the control step is considerably longer than 

HRP1+, as the algorithmic complexity of HRP2+ is higher, therefore we can conclude that 

HRP1+ runs faster. In terms of partitioning set for each method we notice that HRP1+ returns 

smaller number of clusters compared to HRP2+ . As for the communication volume between 

clusters, we can see that HRP1+ has created lower edge cuts meaning that the inter connection 

is lower and sub networks will be more independent when taking out their tasks. This is due to 

the density criteria used in HRP1+ when combining subsets. Also the results reveal a balanced 

and uniform set of clusters when applying HRP1+.Further, when considering the control step in 

our calculation, the evenness of our partitions increases even though the execution time would 

take longer compared to when we solely run HRP.   
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    Chapter 6: 

Future works and 

Conclusions 

 

6.1. Conclusions 

 

Graph partitioning is an optimization problem that divides a network into subsets of 

manageable size with less complexity and minimum interaction, with the aim of maximizing 

their independency as much as possible. 

In this research, with respect to dynamic portioning, we investigated the applicability of four 

heuristic -based approaches for network partitioning called HRP1+ , HRP2+, HRP1+ with 

control and HRP2+with control for a large scale network. In addition, we extended our 

algorithms by integrating disruption modeling into our methods in favor of handling disruptive 

events by post corrective actions leading to system recovery and well performance meanwhile 

and after disruption. In this sense we provided a quick automated coping strategy in the 

existence of abnormalities that takes the given graph and returns the modified graph without the 

missing nodes, broken links and outdated elements. Our methods take the adapted graph as the 

input and produces partitioning. For this matter we re-clustered the network through two 

different approaches namely “complete failure update “and “partial failure update” based on 

damage severity. We considered nine possible scenarios specifying a possibility of combination 

of node and link disruption. Furthermore in order to ensure connectivity between the ultimate 

subsets we developed a control and checking step. 
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We demonstrated the necessity of the control and checking step by comparing the methods 

executed for both circumstances. 

To fully understand the efficiency of our suggested techniques each case was studied and tested 

by various percentage of disruption on a randomly generated network. We as well tested our 

solution on several networks with different properties chosen from benchmark dataset in order 

to study its complexity and the time it takes to perform and resolve the problem.  

From the observations we can conclude that HRP1+ approach achieves a better result for dense 

and large scale networks. Nevertheless considering the control step helps obtaining a practical 

result and improves system functionality by maintaining connectivity between the subsets.    

However a model capable of managing and optimizing complex systems calls for a wide 

fundamental change in the perspective of the company. Not only logisticians and operators need 

to level up their envision with a broader insight of how a decision in one section can have a 

great impact on the whole system but must also acquire sufficient technological and analytical 

competence in order to firstly fulfill communication requirements and secondly understand and 

interpret data such that the system evaluation and improvement can ultimately pursuit its 

effective functionality. All in all we assume that the system has a well-defined educational 

agenda for training its personnel in the areas of skill and competency. 

6.2. Future work 

 

In this study we investigated and compared the two methods and their extensions with each 

other. We can also consider comparing our results with other established methods by applying 

them on the same network. Further since we set our criteria constant, we can generate different 

set of experimentations by alternatively changing size and density criteria in order to 

understand their influence on the evenness and communication volume. 
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In addition we can include an estimate restoration time that can be employed when practicing 

partial disruption, that is, the assigned value can be based on this estimate rather than 

considering a fixed value for all the troubled links.  
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Appendix (I) 

Numerical Experimentation 

Table (continued)  

 

 

 Applying the four methods namely HRP1
+
, HRP2

+
, HRP1

+
 control, and HRP2

+
control 

methods on a network encountering complete disruption in nodes 

 

% of 

disrupti

on 

Complete disruption in nodes: HRP𝟏+ 

Clusters q 

5% 1,4,7,3,6,2,

5,8 

9,10,11 12,14,16,17,19,20,21

,13 

15,22,24,

23 

18 .125,.667,.2

5,.25,0 

10% 1 2,5,6,3,8,11,9,10 4 7 12,14,16,17,18,20,2

1,19 

13,15,22,24,23 0,.125,0,0,.

25,.2 

15% 1,2,6 3 4 5 7 8 9,10,11,12,13,14,16,17 15,22,24,

23 

18,20,

21,19 

0,0,0,0,0,0,.

25,.25,.25 

20% 1,2,6,4

,7 

3 5 8 9 10,12,13,14,16,17,1

9,21 

11 15,22,24

,23 

18,20 0,0,0,0,0,.2

5,0,.25,.5 

30% 1 2,5,8,11,6,

3 

4 7 9 1

0 

12,14,13,15,23,24,22 1

6 

17,19,18,2

1,20 

0,0,0,0,0,0,

0,0,0 

40% 1,2,6

,5 

3 4 7 8 9 1

0 

1

1 

12,14,16,17,19,21,

15,13 

1

8 

2

0 

2

2 

2

3 

2

4 

0,0,0,0,0,0,

0,0,0,0,0,0,

0,0 

 

Table 2.a: HRP𝟏+ : No link disruption – Complete node disruption 
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% of 

disrupti

on 

Complete disruption in nodes: HRP𝟏+control 

Clusters q 

5% 
1     4     7     3     

6     2     5     8 
9    10    11 

12    13    15    

22    24    14    

16    17 

18    20    

21    19 
23 

0.125 0.6667 0.25   

0.25         0 

10% 
1     2     5     8    10    

11     6     3 

4     

7 
9 

12    13    15    22    

24    14    16    17 

18    20    

21    19 
23 

0.25   0.5        0    

0.25    0.25         0 

15% 
1     4     3     6     

2     5     8    11 
7 

9    10    

12    13 

14    

15 

16    17    19    

21    20    18 

22    

24 
23 

0.1250         0    

0.2500         0   0  0   

0 

20% 1 

2     5     6     

3     7     8    

11    10 

4 9 
12    13    14    15    

22    24    23 

16    17    19    21    

20    18 

0 0.1250         0  0 

0.1429         0 

30% 
1     3     7     8     5    

11     9    10 
2 4 6 

12    14    15    23    16    

18    17    19 

1

3 

2

0 
21 

2

2 

2

4 

0.1250         0  

0 0  0.25   0  

0  1 0 0 

40% 
1     3     7     6     

8     5    11 
2 4 9 

10    

12    

13 

14 15 
16    17    19    

18    20 
21 

22    

24    

23 

All zeros 

 

Table 2.b: HRP𝟏+control: No link disruption – Complete node disruption 

 

% of 

disrupti

on 

Complete disruption in nodes: HRP𝟐+ 

Clusters q 

5% 1     3     7     8     

9    11     5     4 

2 6 10    12    14    15    

16    18    19    20 

13 17 21 22    

24    

23 

0.3750         0    2    

0.8750    2    2  1    

0.3333 

10% 1     2     6     

8     9    

10     4     

3 

5 7 1

1 

12 13    14    15    16    18    

19    20    23 

17 21 22  

24 

0.5    2         0    2        

0    0.5    2    1    

0.5 

15% 1     2     5     8     

4     6     7 

3 9    10    

12    14    

15    16    

23    17 

11 13 18  20  

21 

19 22 24 0.1429         0    

0.6250         0    2    

0.3333         0         

0    1 

20% 1     3     7     

8     9    

11     5     

4 

2 6 1

0 

12    

14    

15    

22 

13 16 17 18  19 20    21 23    

24 

0.2500         0    2         

0    0.25         0       

0   0   0.50    0.50   

0.50 

30% 1     2     3     

7     8    11     

6   4 

5 9 10    12    14    15    16    

17    19    2 

13 18 20 22   24  

23 

0.3750    2   0    

0.75    2    1   1    

0.3333 

40% 1 2     3     6     

8    11    10    

12    14 

4 5 7 9 13 15 16    18    

19    20    

21 

17 22 23 2

4 

0    0.50     0   0    

2    0    1   0 0.2     

0   0     0     0 

 

Table 2.c: HRP𝟐+ : No link disruption – Complete node disruption 
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% of 

disrupti

on 

Complete disruption in nodes: HRP𝟐+ control 

Clusters q 

5% 
1     2     6     8     

4    11     5 
3     7 

9    10    12    14    

15    16    18    

19 

13 
1

7 
20   21 22 

23    

24 

0.4286    1    

0.8750    2    2    

0.50         0    0.50 

10% 
1     2     6     8     

4    11     3     5 
7 

9    10    12    14    

15    16    18    19 
13 17 

20   

21 

22    24    

23 

0.3750    2    0.8750    

2    2    0.50   

0.3333 

15% 
1     2     6     8     9    

10    11     5 
3     7     4 12 

13    15    22    

23    14    16    

17    19 

18 20 21 
2

4 

0.25   0.6667    

1 0.6250    2 

0    1   1 

20% 1     3     4 

2     6     8     

7    11     9    

10 

5 
12    13    15    

22    23    24 
14 

16    17    

19    21    

18 

20 

0.3333    0.1429         

0    0.3333    2   

0.20    1 

30% 
1     3     7     2     6     

8     9    10 
4 5 

1

1 

12    13    15    22    

23    24 

1

4 

16    17    

19    21 
18 20 

0.3750    2      0    

1  0.1667    1  

0.25   1         0 

40% 

1     

3     

2 

4     7     

8    

11 

5 6 9 

10    12    14    

15    16    17    

19    22 

13 18 20 21 23 24 

0.3333  0.25   0    1  

0    0.8750    2    2     

0    1       0    1 
 

Table 2.d: HRP𝟐+ control: No link disruption – Complete node disruption 

 

 Applying the four methods on a network dealing with complete disruption in both nodes and 

links. 

% of 

disrupti

on 

Complete Disruption in Nodes and Links: HRP𝟏+ 

 

Clusters q 

5% 
1,2,5,6,3

,7,4 
8 

9,10,11,12,13,14,1

6,17 

15,22,24

,23 
18,20,21,19 0,0,.25,.25,.25 

10

% 

1,2,3,6,8

,11,10,7 
4 5 9 

12,14,16,17,18,

20,21,19 
13,15,22,24,23 .25,1,0,0,.25,.2 

15

% 
1 

2,6,3,7,

4,8,9,11 

10,12,14,16,18

,20,21,19 

13,

15,

23 

5 17 
2

2 
24 0,.125,.125,0,0,0,0,0 

20

% 

1,3,6,2,8

,7,9,10 
4 5 11 

12,13,15,

23,24,22 
14 

16,18,19,21,

20 
17 .125,0,0,0,.1667,0,0,0 

30

% 
1 2 3 

4,7,8,6,

11,9,10 
5 

12,14,1

5,23,24,

13,16,1

8 

17,19,21,20 22 0,0,0,.1429,0,.25,.25,0 

40

% 

1,4,

7 
2 3 

5,8,

11 
6 9 

1

0 

1

2 
13 14 15 16 17 

18,19,

21,20 

22,

24 

2

3 

0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0 

 
Table 3.a: HRP𝟏+ : Complete node disruption – Complete link disruption 
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% of 

disruption 

Complete Disruption in Nodes and Links: HRP𝟏+control 

Clusters q 

5% 
1     2     5     4     

7     3     6     8 
9    10    11 

12    13    15    22    

24    14    16    17 

18    20    21    

19 
23 

0.1250    0.6667    0.25    

0.25       0 

10

% 

1     4     3     2     

6     8    11     9 
5 7 10 

12    14    16    

17    18    20    

21    19 

13    15    22    24    23 
0.1250       0       0    2    

0.25    0.2 

15

% 

1     4     7     3     

6     2     5     8 
9 

10    12    13    15    14    

23    24    22 
11 

16    17    18    

20    21 
19 

0.1250         0         0    1         

0         0 

20

% 

1     2     3     

7     6     5 
4 

8     9    10    11    12    

14    15    22 
13 

16    17    19    

21    18 
20 

23 

24 

0         0    0.2500         0    

0.2        0    0.5 

30

% 
1 

2     5     6     8     

7     4     9    

10 

3 11 

12    14    

13    15    

23    22 

16 

17 
18 

1

9 
20 21 24 

0    0.1250         0         0    

0.1667         0         0         

0         0         0         0 

40

% 
1 2 3 

4     7     

8     9 
5 6 

10    12    13   15    

14    16    18   17 
11 

19    

20    

21 

2

2 
23 24 

0         0         0         0         

0         0    0.1250         0    

0.3333        0        0         0 

 

 

Table 3.b: HRP𝟏+control: complete link disruption – Complete node disruption 

 

% of 

disruptio

n 

Complete Disruption in Nodes and Links: HRP𝟐+ 

 

Clusters q 

5

% 

1     2     

4     7     

5 

3     6     8     9    

10    12    14    

15 

11 13 
16    17    19    

21    20   

1

8 

22    24    

23 

0.4   1    2    2    0.2     0    

0.3333 

10

% 

1     3     6     8     

4    11     5     7 
2 

9    10    12    13    15    

22    23    24 
14 

16    18    19    

20    21 
17 

0.1250         0    0.1250         

0    0.2    1 

15

% 
1 

2     6     

5 
3 4 7 8 9 

10    12    

14    15    

16    18    

20    21 

11 13 17 19 
22    

24 
23 

0    0.3333    1     0     0      

0    1    1    1   2   1   1    

0.50  1 

20

% 

1     3     

6     8     

9    10    

12    

14 

2 4 5 7 11 13 15 
16    17    19    

21    18    20 
22 23 24 

0.75    1       0     1   2    

1     0      0    0.1667       

0      0         0 

30

% 

1     2     

5     8     

6 

3 
4     

7 
9 

10    

12    

13 

11 14 
1

5 
16 

17    

19    

21 

18 20 22 
2

3 

2

4 

0.40    0    1    0    

0.3333      0    1      0       

0    0.3333      0    1     0  

0  0 

40

% 
1 2 3 4 

5     8     

9    10    

12    14    

11    16 

6 7 13 15 17 18 19 20 21 22 23 24 

0     0     0      0    

0.1250    1    0         

0    0    0    0    

0    1   1    1   0    

1 
 

Table 3.c: HRP𝟐+ : complete link disruption – Complete node disruption 
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% of 

disruption 

Complete Disruption in Nodes and Links: HRP𝟐+ control 

Clusters q 

5% 
1     2     6     8     

3     9    11     5 
4     7 

10    12    14    

15    16    18    

19    20 

13 17 21 22    24    23 

0.3750    1.0000    

0.8750    2.0000    

2.0000    1.0000    

0.3333 

10

% 

1     2     6     8     

4     9    10     5 

3     

7 
11 

12    13    15    

22    24 
14 

16    18    19    

20    21 
17 23 

0.6250    1.0000    

2.0000    0.2000         0    

0.4000    2.0000         0 

15

% 

1     2     3     

7     8     9    

11     4 

5 6 
10    12    14    

13    15    23 

16    17    

19    21 
18 20 22 24 

0.6250    2.0000    

2.0000    0.1667    

0.2500    1     0         0          

20

% 
1 2 3 4    7 5 

6     8     9    

10    12    14    

15    16 

11 13 
17    18    

19    21 
20 

22    24    

23 

1    1    1    0.50    1    

1.1250    2    2    0.25         

0    0.3333 

30

% 

1     2     6     8     

7     9     3     4 
5 10 11 

12    13    15    

22    23 

1

4 

16    17    

19    20    

21 

18 24 

0.2500    2.0000    

1.0000    1.0000    

0.2000    1.0000    

0.2000    1.0000         0 

40

% 

1     2     6     8     

4    11     5    

10 

3 7 9 
12    13    

15 
14 

16    17    

19    21 
18 20 22 23 24 

0.50    2   2    0    0.3333         

0    0.25    1    0  1   0   0 

 

Table 3.d: HRP𝟐+ control: complete link disruption – Complete node disruption 

 

 Applying the four methods on a network  dealing with partial disruption in links 

 

% of 

disruption 

Partially Disrupted Links: HRP𝟏+ 

 

Clusters q 

5% 1,4,7,3,6,2,5,

8 

9,10,11 12,14,16,17,18,20,21,19 13,15,22,24,23 .125,.6667,.2

5,.2 

10

% 

1,4,7,3,6,2,5,

8 

9 10,11 12,14,16,17,18,20,21,

19 

13,15,22,24,23 .25,2,1.5,.25,.2 

15

% 

1,4,7,3,2,5,8,

11 

6 9,10,12,13 14,16,17,18,20,21,1

9,15 

22,24,23 .25,1,.5,.25,.333

3 

20

% 

1,4,7,3,6,2,5 8,11,9 10,12,13,15,23,24,22,14 16,17,19,20,21

,18 

.1429,.6667,.

25,.1667 

30

% 

1,4,7,3,6

,2 

5 8,9,10,11 12,14,16,17,18,20,21,19 13,15 22,24,23 .3333,2,.75,.

25,1,.3333 

40

% 

1,4,7,3,2

,5 

6,8,11,9,10 12,13,14,16,17,

19 

15 18 20,21 22 23,24 .1667,.4,.666

7,3,2,1,2,1 

 

 
Table 4.a: HRP𝟏+ : No node disruption – Partial link disruption 
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% of 

disruption 

Partially Disrupted Links: HRP𝟏+control 

Clusters q 

5% 
1     4     7     3     

6     2     5     8 

9    10    

11 

12    14    16    17    

18    20    21    19 

13    15    22    24    

23 

0.1250    0.6667    

0.2500    0.2000 

10% 
1     4     3     6     

2     5     8    11 
7 

9  

10 

12    14    16    17    

18    20    21    19 

13    15    22    24    

23 

0.2500    1.0000    

1.0000    0.2500    

0.2000 

15% 
1     4     7     3     

6     2     5     8 
9    10    11 

12    14    16    

17    18    20    

21    19 

13    15    22    24    

23 

0.1250    0.6667    

0.2500    0.2000 

20% 
1     2     5     6     

8     7    11     9 
3 4 10 

12    14    16    

18    20    21    

17    13 

15 19 
22    24    

23 

0.3750    1   1   2   

0.3750    2   1  

0.3333 

30% 
1     2     5     

6     3     7 
4 

8    11     9    

10 

12    14    16    

17    13    15    

23    24 

18    20    

21    19 
22 

0.3333    1  0.50    

0.3750    0.2500    

1 

40% 
1     2     5     

3     7 
4 6     8    11     9 10 

12    14    16    

17    19    20    

21    18 

13 

15 

22    

24    

23 

0.40    1   0.50   2  

0.25    1   0.3333 

 
 

Table 4.b: HRP𝟏+control : No node disruption – Partial link disruption 

 

 

 

 

% of 

disruption 

Partially Disrupted Links: HRP𝟐+ 

Clusters q 

5%  1     2     6     8     

4    11     5 

3     

7 

9    10    12    14    

15    16    18    19 

13 17 20  21 22    

24    

23 

0.4286    1    

0.8750    2    2    

0.5  0.3333 

10%  1     2     

6     8     

4    11     

5 

3     7 9    10    12    14    15    

16    18    19 

13 17 20  

21 

22   24  

23 

0.4286    1    

0.8750    2    2    

0.5    0.3333 

15% 3     7 9    10    12    14    15    

16    18    19 

13 17 20    21 22    24    23 0.4286    1    

0.8750    2    2    

0.50   0.3333 

20% 1     2     3     6     

8    11     5 

4     

7 

9    10    12    14    

15    16    18    19 

13 17 20    

21 

22    24    

23 

0.4286    1    

0.8750    2    2    

0.5    0.3333 

30% 1     3     4     

6     8     2     

7    11 

5 9    10    12    14    

15    16    18    

19 

13 17 21    20 23    22    

24 

0.6667    0.4286    

0.8750    2    2    1    

0.3333 

40% 2     6     8     

7    11     4     

1     3 

5 

9    10    12    14    

15    16    19    

18 

13 17 21    20 23    22    

24 

0.3750    2   

0.8750    2    2    

0.5    0.3333 

 

 

Table 4.c: HRP𝟐+ : No node disruption – Partial link disruption 
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% of disruption 
Partially Disrupted Links: HRP𝟐+ control 

Clusters q 

5% 
1     2     6     8     

4    11     5 
3     7      

9    10    12    14    

15    16    18    19 
13 17 20    21 

22    24    

23 

0.4286    1  0.8750    

2  2    0.5   0.3333 

10% 
1     2     6     8     

4    11     5 
3     7 

9    10    12    14    

15    16    18    19 
13 17 20    21 

22    24    

23 

0.4286    1    0.8750    

2    2   0.5    0.3333 

15% 
1     2     6     8     

4    11     5 
3     7 

9    10    12    14    

15    16    18    19 
13 17 20    21 

22    24    

23 

0.4286    1    0.8750    

2    2    0.5    0.3333 

20% 
1     2     6     8     

4    11     5 
3     7      

9    10    12    14    

15    16    18    19 
13 17 20    21 

22    24    

23 

0.4286    1   0.8750    

2    2    0.5    0.3333 

30% 
1     2     6     8     

4    11     5 
3     7      

9    10    12    14    

15    16    18    19 
13 17 20    21 

22    24    

23 

0.4286    1   0.8750    

2    2    0.5    0.3333 

40% 
1     2     6     8     

4    11     5 
3     7      

9    10    12    14    

15    16    18    19 
13 17 20    21 

22    24    

23 

0.4286    1    0.8750    

2    2    0.5    0.3333 

 
 

Table 4.d: HRP𝟐+ control: No node disruption – Partial link disruption 

 

 

 Applying the four methods on a network  encountering partial disruption in nodes 

 

 
 

Table 5.a: HRP𝟏+ : No link disruption – Partial node disruption 

 

 

 

 

 

 

 

% of 

disruption 

Partially Disrupted Nodes: HRP𝟏+ 

Clusters q 

5% 1,4,7,2,6,5,

8,11 

3 9,1

0 

12,14,16,17,18,20,21,19 13,15,22,24,23 0.3750,1,1,.25,.2 

10% 1,4,7,3,6,2,5,8 9 10,12,13,15,22,24,23,14 11 16 17,18,20,2

1,19 

.25,2,.375,2,2,.2 

15% 1,4,3,6,2,5,

8,11 

7 9,1012,13,14,16,17

,19 

 

15 18 20 21 22,2

4 

2

3 

.25,1,.5,3,2,2,2,1,2 

20% 1 2 3,5,8,9,10,11,

6,7 

4 12,14,16,17,19,20,

21,13 

15,23,2

4 

18 22 3,2,0.5,2,0.375,.666

7,1,1 

30% 1,3,7,6,

2,8 

4 5 9,10,11,12,13,14,16,

15 

1

7 

1

8 

1

9 

20,2

1 

22 2

3 

24 .5,1,1,.625,2,3,3,1,2

,2,2 

40% 1 2,4,7,8,

6,9 

3 5 10 11 12 13,14,16,18,20,

19,15,23 

1

7 

21 2

2 

24 2,.8333,2,1,3,2,2,.6

25,1,1,2,2 
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% of 

disruptio

n 

Partially Disrupted Nodes: HRP𝟏+control 

Clusters q 

5% 
1     4     7     3     

6     2     5     8 

9    10    

11 

12    14    16    17    

18    20    21    19 
13 15 22   24 23 

0.1250    0.6667    

0.2500    1.0000    

0.3333 

10

% 

1     4     3     6     

2     8    11     

9 

5 7 
1

0 

12    14    16    17    18    

20    21    19 
13    15    22    24    23 

0.3750    1   1  2    

0.2500    0.2000 

15

% 

1     4     7     3     

6     2     5     8 
9 10  11 

12    14    16    18    20    

21    17    13 

15    22    24   

23 
19 

0.2500    2    1.50 

0.3750    0.2500    

1 

20

% 

1     2     5     6     

3   7 
4 

8    11     9    

10 

12    14    15    

22    24    23    

13    16 

17    19    18   

21 
20 

0.3333    1  0.50    

0.25    0.50    1 

30

% 
1 

2     5     6     

3     8    11     

9 

4   7 
10    12    13    14    

16    17    18    15 

1

9 

2

0 

2

1 
22 23 24 

2    0.4286    1   

0.6250   2  2  2  2 

2 2 

40

% 

1     4     7     8     

6     5    11    9 
2 3 

1

0 

12    14    16    17    

18    20    21    19 
13  15 22 23 24 

0.3750    1   1   2    

0.25    1.50    2  2   

2 

 
 

Table 5.b: HRP𝟏+control : No link disruption – Partial node disruption 

 

 
% of 

disruptio

n 

Partially Disrupted Nodes: HRP𝟐+  

Clusters q 

5

% 

1     2     6     

8     4    11     

5 

3     

7 

9    10    12    14    15    

16    18    19 

1

3 

1

7 

21    

20 

22    24    

23 

0.4286    1    0.8750    

2    2    0.5    0.3333 

10

% 

1     3     6     8     

4    11     7 

2     5 9    10    12    

14    15    16    

18    19 

13 1

7 

21    

20 

22  24  

23 

0.4286    1    0.8750    

2    2    0.50    

0.3333 

15

% 

3     7     

4 

5     2     8     6     

1     9 

11    12    14    

15    10    16    

18    19 

13 1

7 

21    

20 

23    

22    

24 

0.6667    0.50    

0.8750    2    2    

0.50    0.3333 

20

% 

1     2     6     

8     4    11     

5 

3  

7 

9    10    12    14    

15    16    18    19 

13 17 21    

20 

23    22    

24 

0.4286    1    0.8750    

2    2    0.50    

0.3333 

30

%   3     7     4   

5     1     2     

6     8     9  

11 

10    12    14    15    

16    18    19    20 

1

3 
17 21 

22  24  

23 

0.6667   0.4286    

0.875   2   2 1  

0.3333 

40

% 

4     7     3 5     1     6     

8     2     9    

11 

10    12    14    

15    16    18    

19    20 

13 17 21 
22  24  

23 

0.6667    0.4286    

0.8750    2   2    1    

0.3333 

 
 

Table 5.c: HRP𝟐+ : No link disruption – Partial node disruption 
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% of 

disruptio

n 

Partially Disrupted Nodes: HRP𝟐+ control 

Clusters q 

5

% 

1     2     6     8     

4    11     5 
3     7      

9    10    12    

14    15    16    

18    19 

13 
1

7 
20    21 

22    24    

23 

0.4286    1    

0.8750    2   2    

0.5000    0.3333 

10

% 

1     2     6     

8     4    11     

5 

3     

7 

9    10    12    14    

15    16    18    19 
13 17 20    21 

22    24    

23 

0.4286    1    

0.8750    2    2    

0.5    0.3333 

15

% 

1     2     6     

8     4    11     

5 

3     

7 

9    10    12    14    

15    16    18    19 
13 17 20    21 

22    24    

23 

0.4286    1    

0.8750    2    2    

0.5    0.3333 

20

% 

1     2     6     

8     4    11     

5 

3     

7      

9    10    12    14    

15    16    18    19 
13 17 20    21 

22    24    

23 

0.4286    1    

0.8750    2    2    

0.50    0.3333 

30

% 

1     2     6     

8     4    11     

5 

3     

7      

9    10    12    14    

15    16    18    19 
13 17 20    21 

22    24    

23 

0.4286    1    

0.8750    2    2    

0.50    0.3333 

40

% 

1     2     6     

8     4    11     

5 

3     7      
9    10    12    14    

15    16    18    19 
13 17 20    21 

22    24    

23 

0.4286    1   

0.8750    2    2    

0.5    0.3333 

 
 

Table 5.d: HRP𝟐+ control: No link disruption – Partial node disruption 

 

 

 Applying the four methods on a network  encountering partial disruption in both nodes 

and links 

 

% of 

disruption 

Partially Disrupted Links and Nodes: HRP𝟏+ 

Clusters q 

5% 1,4,7,3,2,5,8

,11 

6 9 10 12,14,16,17,18,20,21,19 13,15,22,24,23 .375,1,2,3,.25,.2 

10

% 

1 2,5,6,3,8,11,

9 

4,7 10,12,13,15,22,24,23,14 16 17,19,18,21,20 2,.4286,1,.25,2,.2 

15

% 

1 3 5 9 21 2,4,7,8,6 10,11,12,13,15,14,1

6,17 

18,20,19 22,24,23 2,2,1,2,1,1,0.5,0.6

667,0.3333 

20

% 

1 2,3,

4,7,

6 

5 8 9,1

0,1

1 

12,13,

14 

1

5 

16 17 18,20,

21 

19 22,2

4 

23 1,.6,2,3,.6667,1,3,

3,2,.6667,2,1,2 

30

% 

1,

4 

2,

5 

3 6 7,8,9 10 11 12,13,15,22,24,23

,14,16 

17 18 19,20,21 1.5,1.5,3,3,2,3,2,.3

75,2,2,.6667 

40

% 

1,

3,

6 

2 4 5 7 8,11,

9 

10 1

2 

1

3 

1

4 

15,23,

24 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

1.3333,2,2,

2,3,1.3333,

2,3,2,3,1,3,

2,3,3,2,2,1 

 
 

Table 6.a: HRP𝟏+ : partial link disruption – Partial node disruption 
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% of 

disruption 

Partially Disrupted Links and Nodes: HRP𝟏+control 

Clusters q 

5% 
1     4     7     3     

6     2     5     8 

9    10    

11 

12    14    16    17    

18    20    21    19 
13   15 22  24  23 

0.1250    0.6667    

0.2500    1  

0.3333 

10

% 

1     4     3     6     

2     8    11     9 
5 7 

1

0 

12    14    16    17    18    

20    21    19 

13    15    22    24    

23 

0.3750    1  1   2    

0.25    0.20 

15

% 

1     4     7     3     

6     2     5     8 
9 10  11 

12    14    16    18    

20    21    17    13 
15    22    24   23 19 

0.2500    2    1.50    

0.3750    0.2500    

1 

20

% 

1     2     5   

6 

3    7     

4 

8     9    10    11    

12    13    14    16 
15 

17    19    

18    21 
20 

22    24    

23 

0.50    0.6667  

0.50    2   0.50   1    

0.3333 

30

% 
1 

2     5     

6     3 

4     7     8    

11     9 

10    12    13    14    

16    17    15    23 

1

8 

1

9 
20 21 22 

2

4 

2   0.50   0.60    

0.6250   3   3   2   

2    2   2 

40

% 
1 2 3 

4     7     8    10    

11     9     6     5 

12    14    16    17    19    

20    21    18 
13 15 

2

2 

2

3 
24 

3    2  2    0.50  

0.25    1.50   2  2    

2 

 
 

Table 6.b: HRP𝟏+control: partial link disruption – Partial node disruption 

 

 

 

 

% of 

disruption 

Partially Disrupted Links and Nodes: HRP𝟐+  

 

Clusters q 

5

% 

1     2     6     8     

4    11     5 

3     

7 

9    10    12    14    

15    16    18    19 

13 17 20    

21 

23    22    24 0.4286    1    0.8750    

2    2    0.5    0.3333 

10

% 

1     3     6     8     

4    11     7 

2     

5 

9    10    12    14    

15    16    18    19 

13 17 21  

20 

23    22    24 0.4286    1    0.8750    

2    2   0.5    0.3333 

15

% 

3     7     

4 

5     2     

8     6     

1     9 

11    12    14    15    

10    16    18    19 

13 17 21  

20 

23    22    24 0.6667    0.50  0.8750    

2    2  0.50    0.3333 

20

% 

1     2     3     

6     8    11     

5 

4     

7 

9    10    12    14    

15    16    19    18 

13 17 21  

20 

23    22    24 0.4286    1   0.8750    

2    2    0.5    0.3333 

30

% 

1     3     4     6     

8     2     7    11 

5 9    10    12    14    

15    16    18    19 

13 17 21  20 23    22    

24 

0.3750    2    0.8750    

2    2    0.5    0.3333 

40

% 

4     7     

3 

5     1     6     8     

2     9    11 

10    12    14    15    

16    18    19    20 

13 17 21  

20 

23    22    

24 

0.6667    0.4286    

0.8750    2    2    1    

0.3333 

 

 

 

Table 6.c: HRP𝟐+ : partial link disruption – Partial node disruption 
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% of 

disrupti

on 

Partially Disrupted Links and Nodes: HRP𝟐+ control 

 

Clusters q 

5% 
1     2     6     8     

4    11     5      

3     

7      

9    10    12    14    

15    16    18    19 

1

3 

1

7 

20    

21      

22    24    

23      

0.4286    1 

0.8750    2    2    

0.5    0.3333 

10

% 

1     2     6     

8     4    11     

5 

3     

7 

9    10    12    14    

15    16    18    19 
13 17 20    21 

22    24    

23 

0.4286    1    

0.8750    2    2    

0.5    0.3333 

15

% 

1     2     6     

8     4    11     

5 

3     

7 

9    10    12    14    

15    16    18    19 
13 17 20    21 

22    24    

23 

0.4286    

10.8750    2    2    

0.5    0.3333 

20

% 

1     2     6     

8     4    11     

5 

3     

7 

9    10    12    14    

15    16    18    19 
13 17 

20    

21 

22    24    

23 

0.4286    1  

0.8750    22    

0.5   0.3333 

30

% 

1     2     6     

8     4    11     

5 

3     

7 

9    10    12    14    

15    16    18    19 
13 17 

20    

21 

22    24    

23 

0.4286    1 

0.8750    2 2    

0.5    0.3333 

40

% 

1     2     6     

8     4    11     

5 

3     

7      

9    10    12    14    

15    16    18    19 
13 17 

20    

21 

22    24    

23 

0.4286    1    

0.8750    2    2    

0   0.3333 
 

 

Table 6.d: HRP𝟐+ control: partial link disruption – Partial node disruption 
 

 

 Applying the four methods on a network  dealing with partial disruption in links and 

complete failure in nodes 

 
% of 

disruption 

Complete Disruption in Nodes and Partially disrupted Links: HRP𝟏+ 

Clusters q 

5% 1,4,7,3,6,2

,5,8 

9 1

0 

1

1 

12,13,14,16,17,19,

21,20 

15,22,24,23 1

8 

0.25,1,0,1,.25,.25,1 

10

% 

1,4,7,3,

2,8 

5 6 9,10,12,13,15,2

3,24,22 

1

1 

1

4 

16,17,19,21,20,18 .5,1,1,.125,0,0,0 

15

% 

1 2,3,6,3,7

,4 

8 9,10,11,12,14,1

5,22,24 

1

3 

 

1

6 

17 1

8 

19,21,

20 

2

3 

1,.1667,0,.125,0,2,0,2,.333,0 

20

% 

1,4,2

,6 

3 5 7 8,9,10,11,12,14,

16,17 

13,15,

23,22 

18 1

9 

20,21 2

4 

.5,0,2,0,.375,.25,0,0,0,0 

30

% 

1,3,7

,6,8,

11,9 

2 4 5 1

0 

12,1

4 

13 1

5 

1

6 

17,19,1

8 

2

0 

2

1 

2

2 

2

3 

2

4 

.4286,2,0,2,2,.5,0,0

,0,.6667,2,2,0,0,0 

40

% 

1 2 3 4 5 6 7 8,11,

9 

12,

13 

1

4 

15,

23 

16 

17 

18 19 20 21 22 24 2,0,2,1,0,2,0,.6

667,2,1,0,1,.5,

0,1,0,0,1,0 

 
Table 7.a: HRP𝟏+ : partial link disruption – complete node disruption 
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% of 

disruption 

Complete Disruption in Nodes and Partially disrupted Links: HRP𝟏+control 

Clusters q 

5% 

1     4     7     

3     6     2     

5     8 

9    10    

11 

12    13    15    

22    24    14    

16    17 

18    20    21    

19 
23 

0.1250    0.6667    0.2500    

0.2500  0 

10

% 

1     4     3     

2     6     8    

11     9 

5 7 
1

0 

12    14    16    

17    18    20    

21    19 

13    15    22    24   

23 

0.1250         0         0    2.0000    

0.2500    0.2000 

15

% 

1     4     7     

3     6     2     

5     8 

9 

10    12    13    

15    14    23    

24    22 

1

1 

16    17    18    20    

21 
19 

0.2500    1.0000         0    

1.0000         0         0 

20

% 

1     2     

5     6 

3 

7 
4 

8     9    10    11    

12    13    14    

16 

1

5 

17    

19    

21    

18 

2

0 

22    24    

23 

0.2500    0.5000         0    

0.2500    2.0000    0.2500         

0    0.3333 

30

% 
1 

2     4     7     

8     6     5     

9    10 

3 
1

1 

12    14    16    

17    13    15    

23    22 

1

8 

1

9 

2

0 
21 

2

4 

0    0.1250         0         0    

0.2500    1.0000         0         0         

0         0 

40

% 
1 2 3 

4     7     

8     9 
5 6 

10    12    

13    15    

14    16    

17    19 

1

1 

1

8 

2

0 

2

1 

2

2 

2

3 

2

4 

1     0      0    0.50        0       0    

0.3750      0    2    1      0      0         

0 

 

 

Table 7.b: HRP𝟏+control: partial link disruption – complete node disruption 

 

 

 

% of 

disruption 

Complete Disruption in Nodes and Partially disrupted Links: HRP𝟐+  

Clusters q 

5% 1     2     6     

8     4    11     

5 

3  7 9    10    12  14    

15    16  23 13    

17    19    

21    20 

18 22  

24 

0.4286    1    0.3750    0.2500         0    

0.5 

10

% 

1     7     8  3    11     

9    10     5 

2 4 6 12    13    15    

23    22    24 

14 16    19    18    

20    21 

17 0.6250         0    2    2   0.1667         

0    0.4    2 

15

% 

1 2     

6     

5 

3 4 7 8 9 10    12    

14    15    

16    18    

19    20 

11 13 17 21 22    24    

23 

0    0.3333    1       0     0       0    1    

1    1    2    2    1    0.3333 

20

% 

1     9    10     2     

3     6     8    11 

4 5 7 12    14    18    

19    16    20    

21    17 

13 15 22 23 24 0.6250         0    2   2 0.1250     0       

0    0   0    0 

30

% 

1     2     5     

8     4     9    

10    12 

3 6 7 11 13 14 15 16 17    

18    

19    

20 

21 22 23 24 0.75    0    2  2    0    1    

1       0         0    0.2500    

1      0     0  0 

40

% 

1 2 3 4 5 6 8     9    10    

12    14    15    

22     7 

11 13 16 17 18 19 20 21 23 24 0  0   0   1 1  

1    1.1250    

2   2  1   0   

0  0 1 1 0 1 

Table 7.c: HRP𝟐+ : partial link disruption – complete node disruption 
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% of 

disruption 

Complete Disruption in Nodes and Partially disrupted Links: HRP𝟐+ control 

Clusters q 

5

% 

1     2     6     

8     3     9    

11     5 

4     

7      

10    12    14    

15    16    18    

19    20 

13 17 21 

22    

24    

23      

0.3750    1.0000    0.8750    

2.0000    2.0000    1.0000    

0.3333 

10

% 

1     2     6     

8     4     9    

10     5 

3   7 
1

1 

12    13    15    

22    24 

16    18    

19    20    

21 

17 
2

3 

0.6250    1.0000    2.0000    

0.2000         0    0.4000    2.0000         

0 

15

% 

1     2     6     

8     4    11     

5 

3   

7 

9    10    12    13    

15    22    23    14 

16    17    

19    21 
18 

2

0 
24 

0.4286    1.0000    0.1250    

0.2500    1.0000         0         0 

20

% 
1 2 3 

4   

7 
5 

6     8     9    

10    12    14    

15    16 

11 13 

17    

19    

18    

21 

2

0 

22    

24    

23      

1.0000    1.0000    1.0000    

0.5000    1.0000    1.1250    

2.0000    2.0000    0.2500         0    

0.3333 

30

% 

1     2     6     

8     9    10     

7     3 

4 5 
1

1 

12    13    

15    22    

23 

1

4 

16    17    

19    21 

18  

20 

2

4 

0.6250    1.0000    2.0000    

2.0000    0.2000    1.0000    

0.2500    0.5000         0 

40

% 

1     2     6     

8     4    11     

9    10 

3 5 7 
12   13  

15   22 

1

4 

16    

17    

19    

21 

1

8 

2

0 

2

3 

2

4 

0.7500    2.0000    2.0000    

2.0000    0.2500         0    0.5000    

2.0000         0         0    1.0000 

 

 

Table 7.d: HRP𝟐+ control: partial link disruption – complete node disruption 

 

 

 Applying the four methods while network  is facing  partial disruption in nodes and 

complete failure in links 

 

 

% of 

disruption 

Complete Disruption in Links and Partially Disrupted Node: HRP𝟏+ 

Clusters q 

5% 
1,4,7,3,6,2,

5,8 

9,10,12,13,14,16,18

,20 
11 

15,22,24,

23 
17 19,21 .1429,.5,1,.25,2,1 

10

% 

1,4,7,3,6,2

,5 
8 9,10,11 

12,13,15,23,24,

22,14 
16 

17,19,20,21,

18 
.1423,2,.6667,.2857,2,.2 

15

% 

1,2,5,

6,4 
3 7 11 

2

0 

8,9,10,12,14,16

,17,13 

15,22,24,

23 
18,19,21 .6,2,3,1,1,.5,.25,.3333 

20

% 
1 

2,5,8,11,6,7

,4 
3 9 

1

0 

12,13,15,23,24,

22 
14 16 

17,18,20,21,

19 
1,.5714,1,2,3,.1667,1,2,.2 

30

% 
1 

2,5,6,3,8,

9,11 
4 7 

10,12,14,15,23,

24,22 

1

3 

1

6 
17 18,19,21 20 2,.4286,2,2,.2857,0,3,2,1,1 

40

% 

1,3,6,2,

8,11,7 
4 5 9 10 12 

1

3 

14,15,

22,23 
16 17 18 19 20 21 24 

.1429,0,1,1,2,3,1,.75,3,

2,2,2,1,1,1 

 

 

Table 8.a: HRP𝟏+ : partial node disruption – complete link disruption 
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% of 

disruption 

Complete Disruption in Links and Partially Disrupted Nodes: HRP𝟏+control 

Clusters q 

5% 
1     4     7     3     6     2     

5     8 
9  10  11 

12    14    16    17    

13    19    21    20 
15 18 22  23  24 

0.1250    

0.6667    

0.3750    2    1    

0.3333 

10

% 

1     3     4     

2 
5 

6     8     9    10    

11     7 

12    14    16    17    18    20    

21    19 

13    15    22    

24    23 

0.5    2   0.5    

0.25    0.2 

15

% 

1     4     7     3     

6     2     5     8 
9 

10    12    13    14    

16    17    18    20 
11 15    22    24  23 19 21 

0.25    2    0.5    

1    0.25    2    

2 

20

% 

1     2     6     3     

7 
4 5 8   9 

10    11    12    13    

14    16    17    19 

15    22    

24    23 
18 20 21 

0.4   1    1  

1.50    0.50    

0.25    2    2   

2 

30

% 
1 

2     5     6     3     

8    11     9 

4 

7 

10    12    13    14    

15    23    22 

16    17    

18 
19 20 21 24 

1    0.4286    

0.50    0.2857    

0.6667    2   2    

2    1 

40

% 
1 2 3 4   7 5 6 8 

9    10    11    12    

14    16    13    15 

17    19    18    

21    20 
22 23 24 

1    2    1    

0.50    2    1 3    

0.3750       0    

2    2    2 

 

 

Table 8.b: HRP𝟏+control: partial node disruption – complete link disruption 

 

 

 

 

% of 

disruptio

n 

Complete Disruption in Links and Partially Disrupted Nodes: HRP𝟐+  

Clusters q 

5

% 

1     2     6     

8     4     9    

10     5 

3  7 11 12    13    15    22    

23    24 

14    16    18    19    

20    21    17 

0.6250    1.0000    

2.0000    0.3333    

0.1429 

10

% 

3     1     6     

8     2     7     

9    11 

4 5 10    12    14    

15    16    18    

19    20 

13 17 21 22  24   23 0.6250    2    2    

0.8750    2   2    1   

0.3333 

15

% 

2 3     1     8     

6    11    10    

12    13 

4 5 7 9 14    15    16    18    

19    20    23    21 

1

7 

22 

24 

1    0.8750    1    1 1    

2    0.5   2    0.5 

20

% 

1   3 2     6     8     

7     4     9     

5 

10    12    14    

15    22    23    

16    24 

11 13 17    19    

18    20 

21 0.5000    0.1429    

0.3750    1  2   0.2500    

1 

30

% 

1     2     6     8     

3     7     9  10   

4 5 11 12    15    14  23 16  

22  17 24    

13 18    

19 

20   

21 

0.5    1    2    1    0.25    

2    0.5    0.5 

40

% 

1 2     3     5     6     

8     7     9    10 

4 11 12 13 14    15    16  21  

23    17    19     

18  

20 

22  

24 

0    0.5    1    2    1         

0    0.2857    0.5  0.5   

 

Table 8.c: HRP𝟐+ : partial node disruption – complete link disruption 
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% of 

disruptio

n 

Complete Disruption in Links and Partially Disrupted Nodes: HRP𝟐+ control 

Clusters q 

5

% 

1     3     6     

8     4    11     

5     2 

7 
9    10    12    14    

15    16    18    19 
13 17 

20    

21      

22    24    

23 

0.3750    2    0.8750    

2    2    0.5    0.3333 

10

% 

1     2     6     

8     4    11     

5 

3   7 
9    10    12    14    15    

16    23    13 

17    19    

21    18    

20 

22   24 
0.4286    1    0.3750    

0.2    0.5 

15

% 

1     2     6     8     4     

9    10    11 
3   7 5 

12    13    15    

23    22    24 

14    16    18    19    

20    21    17 

0.5    1    2    0.1667    

0.1429 

20

% 
1 3 4 5 

6     8     2     9    

10    12    14     

7 

11 
13    15    22    

23    24 

16    18    19    

20    21    17 

1    1    1    2    1.1250    

2    0.2   0.1667 

30

% 

1     2     6     8     9    

10     7     4 
3 5 11 

12    14    15    

16    18    19    

20    23 

13 17 21 
22  

24 

0.6250    2   1    2    

0.75   2    2    1    0.5 

40

% 

1     2     6     8     

4     9    10    

12 

3 5 7 
1

1 

13    15    22    23    

24 

14    16    17    19    

21    20    18 

1    2   1    2    1    0.2    

0.1429 

 

Table 8.d: HRP𝟐+ control: partial node disruption – complete link disruption 
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Appendix (II) 

HRP𝟏+ 

Matlab Code for HRP1+ 

 

 

 

for situ=1:9 

     
    for N = start:step:fin 
        connect= zeros(N,N); 
        connect(:,1)=linspace(1,N,N); 
        switch situ 
            case 1 
                % No disruption 
                tic 
                x=tx; 
                wx=x; 
                [q,result]= fhrplink(connect,x,W,Q,wx); 
                fprintf('\n\n Case %6.0f \n',situ); 
                result 
                q 
                toc 
            case 2 
                % Node no disruption – link complete disruption 
                tic 
                result = []; 
                q = []; 
                x = []; 
                x = tx; 
                [s_node,f_node]=find(x==1); 
                rnd_dist1 = randi([1 length(s_node)],n_dist,1); 
                x(s_node(rnd_dist1),f_node(rnd_dist1))=0; 
                wx=x; 
                [q,result]= fhrplink(connect,x,W,Q,wx); 
                fprintf('\n\n Case %6.0f \n',situ); 
                result 
                q 
                toc 
            case 3 
                % Node complete disruption – link no disruption 
                tic 
                result = []; 
                q = []; 
                x = []; 
                wx = []; 
                x = tx; 
                [s_node,f_node]=find(x==1); 
                rnd_dist2 = randi([1 fin],n_dist,1); 
                x(rnd_dist2,:)=0; 
                x(:,rnd_dist2)=0; 
                wx=x; 
                [q,result]= fhrplink(connect,x,W,Q,wx); 
                fprintf('\n\n Case %6.0f \n',situ); 
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                result 
                q 
                toc 
            case 4 
                % Node complete disruption – link complete disruption 
                tic 
                result = []; 
                q = []; 
                x = []; 
                wx = []; 
                x = tx; 
                x(s_node(rnd_dist1),f_node(rnd_dist1))=0;              
                rnd_dist2 = unidrnd(fin,1,n_dist); 
                x(rnd_dist2,:)=0; 
                x(:,rnd_dist2)=0; 
                wx=x; 
                [q,result]= fhrplink(connect,x,W,Q,wx); 
                fprintf('\n\n Case %6.0f \n',situ); 
                result 
                q 
                toc 
            case 5 
                % Node no disruption – link partial disruption 
                tic 
                result = []; 
                q = []; 
                x = []; 
                wx = []; 
                x = tx; 
                wx=x; 
                

wx(s_node(rnd_dist1),f_node(rnd_dist1))=5.*wx(s_node(rnd_dist1),f_node(rnd_d

ist1)); 
                [q,result]= fhrplink(connect,x,W,Q,wx); 
                fprintf('\n\n Case %6.0f \n',situ); 
                result 
                q  
                toc 
            case 6 
                % Node Partial disruption – link no disruption 
                tic 
                result = []; 
                q = []; 
                x = []; 
                wx = []; 
                x = tx; 
                wx=x; 
                wx(rnd_dist2,:)=5.*wx(rnd_dist2,:); 
                wx(:,rnd_dist2)=5.*wx(:,rnd_dist2); 
                [q,result]= fhrplink(connect,x,W,Q,wx); 
                fprintf('\n\n Case %6.0f \n',situ); 
                result 
                q    
                toc 
            case 7 
                % Node partial disruption – link partial disruption ----> 
                % HAS PROBLEM 
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                tic 
                result = []; 
                q = []; 
                x = []; 
                wx = []; 
                x= tx; 
                wx=x; 
                

wx(s_node(rnd_dist1),f_node(rnd_dist1))=5.*wx(s_node(rnd_dist1),f_node(rnd_d

ist1)); 
                wx(rnd_dist2,:)=5.*wx(rnd_dist2,:); 
                wx(:,rnd_dist2)=5.*wx(:,rnd_dist2); 
                [q,result]= fhrplink(connect,x,W,Q,wx); 
                fprintf('\n\n Case %6.0f \n',situ); 
                result 
                q   
                toc 
            case 8 
                % Node complete disruption – link partial disruption 
                tic 
                result = []; 
                q = []; 
                x = []; 
                wx = []; 
                x = tx; 
                wx=x; 
                x(rnd_dist2,:)=0; 
                x(:,rnd_dist2)=0; 
                

wx(s_node(rnd_dist1),f_node(rnd_dist1))=5.*wx(s_node(rnd_dist1),f_node(rnd_d

ist1)); 
                [q,result]= fhrplink(connect,x,W,Q,wx); 
                fprintf('\n\n Case %6.0f \n',situ); 
                result 
                q    
                toc 
            case 9 
                % Node partial disruption – link complete disruption 
                tic 
                result = []; 
                q = []; 
                x = []; 
                wx = []; 
                x = tx; 
                wx=x; 
                x(s_node(rnd_dist2),f_node(rnd_dist2))=0;               
                wx(rnd_dist2,:)=5.*wx(rnd_dist2,:); 
                wx(:,rnd_dist2)=5.*wx(:,rnd_dist2); 
                [q,result]= fhrplink(connect,x,W,Q,wx); 
                fprintf('\n\n Case %6.0f \n',situ); 
                result 
                q      
                toc 
        end 
    end 
end      
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function [q,result]= fhrplink(connect,input,W,Q,wx) 
while (max(card) <= W || max(q) >= Q) 
    K = length(x); %  
    for i=1:K 
        x(i,i)=0; 
        w(i,i)=0; 
    end     
    %%%q(s) calculation%%% 
    q = zeros(1,K) ; 
    alpha =zeros(1,K);  
    c=[]; 
    q_temp=[]; 
    rn=[]; 
    for i=1:K 
        rn=x(i,:)+x(:,i)'; 
        c(i)=length(find(rn~=0)); 
        q(i)=c(i)/card(i); 
        q_temp(i)=q(i); 
    end 
    if (K == 2 || max(card)> W ) 
        break; 
    end 
    %%%%%%%q(s) calculation%%%%%% 
    q_opt = 2000* ones(1,K); 
    w_opt = 2000* ones(1,K); 
    w_temp = 1* ones(1,K); 
    q_opt_max =1000 ; 
    neigh_opt_1 = 0 ; 
    neigh_opt_2 = 0 ; 
    neigh_opt_1_2 = 0; 
    neigh_opt_2_2 = 0; 
    %%%% FINDING THE q STAR%%%%  
    for i = 1 : K-1        
        for j = i+1:K 
            if ((x(i,j)== 1 || x(j,i)== 1) && (card(i)+card(j))<= W &&  q(i) 

> Q && q(j) > Q) 
               [q_temp(i)]= merging(i,j,x,card); 
               if (q_temp(i) <= q_opt(i) && w_temp(i) >= w(i,j)) 
                    q_opt(i) = q_temp(i) ; 
                    w_temp(i) = w(i,j); 
                    neigh_opt(i) = result(j,1); 
                    neigh_opt2(i) = j; 
               end 
            end 
        end 
        if (q_opt(i)< q_opt_max) 
           q_opt_max = q_opt(i)  
           neigh_opt_1 = result(i,1); 
           neigh_opt_1_2=i 
           neigh_opt_2 =neigh_opt(i); 
           neigh_opt_2_2=neigh_opt2(i) 
        end 

         
    end 
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    if (length(card)<=(length(input)/W)+1 || length(card) < neigh_opt_1_2 || 

length(card) < neigh_opt_2_2) 
        break; 
    end 
    if (neigh_opt_1_2 ~= 0 || neigh_opt_2_2 ~= 0) 
        if (card(neigh_opt_1_2)+card(neigh_opt_2_2))> W 
            n=1; 
        end  
    end 
    %%% FINDING THE q STAR %% 
    neigh_opt_1; 
    neigh_opt_2; 
    if (neigh_opt_1_2== 0 || neigh_opt_2_2== 0) 
        break; 
    end 

  
    %%%Merging%%   
    x(neigh_opt_1_2,:)=x(neigh_opt_1_2,:)+x(neigh_opt_2_2,:); 
    x(:,neigh_opt_1_2)=x(:,neigh_opt_1_2)+x(:,neigh_opt_2_2); 
    x(neigh_opt_2_2,:)=[]; 
    x(:,neigh_opt_2_2)=[]; 
    x(x==2)=1; 
    w(neigh_opt_1_2,:)=w(neigh_opt_1_2,:)+w(neigh_opt_2_2,:); 
    w(:,neigh_opt_1_2)=w(:,neigh_opt_1_2)+w(:,neigh_opt_2_2); 
    w(neigh_opt_2_2,:)=[]; 
    w(:,neigh_opt_2_2)=[]; 
    w(w==2)=1; 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Cardinality 

Expression 
    card_new=[]; 
    card_new=card; 
    card_new(neigh_opt_1_2) = card_new(neigh_opt_1_2) + 

card_new(neigh_opt_2_2); 
    card_new(neigh_opt_2_2)=[]; 
    card = card_new ; 
     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Cardinality Expression 

Calculation 
     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Node Mapping %%%%%%%%%%%%%%%%%%%%%%%% 
    neigh_opt_1=result(neigh_opt_1_2,1); 
    neigh_opt_2=result(neigh_opt_2_2,1); 
    temp1=find(result(result(:,1)==neigh_opt_2,:)); 
    temp2=result(result(:,1)==neigh_opt_2,temp1); 
    temp3=find(result(result(:,1)==neigh_opt_1,:)); 
    

result(result==neigh_opt_1,length(temp3)+1:length(temp3)+length(temp2))=temp

2; 
    result(result(:,1)==neigh_opt_2,:)=[] 
    n=n+1 

  

  

  
end 
ec=length(x(x==1)); 
end 

function [q,card,x]= merging(i,j,x,card) 
neigh_opt_1=i; 
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neigh_opt_2=j; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Merging%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
x(neigh_opt_1,:)=x(neigh_opt_1,:)+x(neigh_opt_2,:); 
x(:,neigh_opt_1)=x(:,neigh_opt_1)+x(:,neigh_opt_2); 
x(neigh_opt_2,:)=[]; 
x(:,neigh_opt_2)=[]; 
x(x==2)=1; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Cardinality Expression%%%%%%%%%%%%%%%%%%%%% 
card_new = card(neigh_opt_1) + card(neigh_opt_2); 
card(neigh_opt_1)=card_new; 
card(neigh_opt_2)=[]; 
%%%%%%%%%%%%%%%%%%%%%%%%q(s) calculation%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
rn=x(i,:)+x(:,i)'; 
c=length(find(rn~=0)); 
q=c/card_new; 

  
end 
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Appendix (III) 

HRP𝟐+ 

 

Matlab Code for HRP2+ 

 

 

 

function [fq,result]= f2hrp2link(connect,input,W,Q,wx) 
 

while (K > 0) 

     
    %%%q(s) calculation%%%%% 

     
    X=0; 
    w_temp=1; 
    cont=0; 
    j1=-1; 
    for i=1:K 
        for j=1:S(i) 
            r=ls(i,j); 
            [w]= merging2(i,r,x,nb); 
            if (w > X) && (nb(i)+nb(r) <= W) && (w > Q)  && wx(i,r)<=w_temp 
                X=w 
                i1=i 
                j1=r 
                cont=1; 
            end 
        end 

         
        for j=1:P(i) 
            r=lp(i,j); 
            [w]= merging2(i,r,x,nb); 
            if (w > X) && (nb(i)+nb(r) <= W) && (w > Q)  && wx(i,r)<=w_temp 
                X=w 
                i1=i 
                j1=r 
                cont=1; 
            end 
        end 
    end 

     
    if cont == 0 
       break; 
    end 

     
    if j1 == -1 
        break; 
    end 

     

  
  %%% q(s) calculation%%%%  
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    neigh_opt_1 = i1 ; 
    neigh_opt_2 = j1 ; 
    neigh_opt_1_2 = i1; 
    neigh_opt_2_2 = j1; 

     
    %%%%%% FINDING THE q STAR %%%%%% 
    neigh_opt_1; 
    neigh_opt_2; 
    if (neigh_opt_1_2== 0 || neigh_opt_2_2== 0) 
        break; 
    end 

  
    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Merging%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
    x(neigh_opt_1_2,:)=x(neigh_opt_1_2,:)+x(neigh_opt_2_2,:); 
    x(:,neigh_opt_1_2)=x(:,neigh_opt_1_2)+x(:,neigh_opt_2_2); 
    x(neigh_opt_2_2,:)=[]; 
    x(:,neigh_opt_2_2)=[]; 
    x(x==2)=1; 
    K = length(x); 
    for i=1:K 
        x(i,i)=0; 
    end  
    %%%% Cardinality Expression 
    S=[]; 
    ls=[]; 
    P=[]; 
    lp=[]; 
    q=[]; 
    nb(neigh_opt_1_2)=nb(neigh_opt_1_2)+nb(neigh_opt_2_2); 
    nb(neigh_opt_2_2)=[]; 
    for i=1:K 
        S(i)=length(find(x(i,:)==1)); 
        ls(i,1:length(find(x(i,:)==1)))=find(x(i,:)==1); 
        P(i)=length(find(x(:,i)==1)); 
        lp(i,1:length(find(x(:,i)==1)))=find(x(:,i)==1); 
        q(i)=S(i)+P(i); 
        e(i)=1; 
    end 
     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Cardinality Expression Calculation 
     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Node Mapping %%%%%%%%%%%%%%%%%%%%%%%% 
    neigh_opt_1=result(neigh_opt_1_2,1); 
    neigh_opt_2=result(neigh_opt_2_2,1); 
    temp1=find(result(result(:,1)==neigh_opt_2,:)); 
    temp2=result(result(:,1)==neigh_opt_2,temp1); 
    temp3=find(result(result(:,1)==neigh_opt_1,:)); 
    

result(result==neigh_opt_1,length(temp3)+1:length(temp3)+length(temp2))=temp

2; 
    result(result(:,1)==neigh_opt_2,:)=[] 
 n=n+1    
end 
fq=q./nb; 
% ec=length(x(x==1)) 
end 
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function [w]= merging2(i,j,x,nb) 
neigh_opt_1=i; 
neigh_opt_2=j; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Merging%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
x(neigh_opt_1,:)=x(neigh_opt_1,:)+x(neigh_opt_2,:); 
x(:,neigh_opt_1)=x(:,neigh_opt_1)+x(:,neigh_opt_2); 
x(neigh_opt_1,neigh_opt_2)=0; 
x(neigh_opt_2,neigh_opt_1)=0; 
K = length(x); 
for i=1:K 
    x(i,i)=0; 
end 
rn=x(neigh_opt_1,:)+x(:,neigh_opt_1)'; 
x(neigh_opt_2,:)=[]; 
x(:,neigh_opt_2)=[]; 
x(x==2)=1; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Cardinality Expression%%%%%%%%%%%%%%%%%%%%% 

  
% q=length(find(rn~=0)); 
q=sum(rn); 
nb(neigh_opt_1)=nb(neigh_opt_1)+nb(neigh_opt_2); 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%q(s) calculation%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
w=q/nb(neigh_opt_1); 
end 
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Appendix (IIII) 

HRP𝟏+control and 

HRP𝟐+control 

Control step code for HRP1+control and HRP2+control 

 

function [cric,ls]= control(x,result) 
K = length(x); 
[M N] = size(result); 
cric=[]; 
for i=1:K 
    x(i,i)=0; 
end  
for i=1:K 
    ls(i,1:length(find(x(i,:)==1)))=find(x(i,:)==1); 
end 
 for i=1:M 
     for j=1:N 
         if result(i,j)~=0 
             temp_x=result(i,j); 
             ch=ls(temp_x,:); 
             for k=1:length(ch) 
                 if ch(k) ~= 0 
                     [pr pc]=find(result==ch(k)); 
                     if pr~=i 
                         [qr qc]=find(cric==temp_x); 
                         if isempty(qr) 
                            cric=[cric;temp_x]; 
                         end 
                     end 
                 end 
             end 
             temp_x=[]; 
             ch=[]; 
         end 
     end 
 end 
 end 

 


