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Abstract 

 

Conductive Ultrafiltration Membrane Fabrication via a Novel Vacuum-

Assisted Layer-by-Layer Assembly of Functionalized Carbon Nanotubes   

Farah Rahman Omi 

 

 

Membrane processes are currently used in several ways to purify water and wastewater. Because 

of their high performance and smaller footprint, membranes are likely to grow in importance as 

compared to other conventional technologies. Therefore, there is a critical need for development 

of improved membranes that have higher flux, greater selectivity, and are less prone to fouling. 

Recently, multiwalled carbon nanotube (MWNT) electrochemical (EC) filter was reported to be 

extremely effective as a point-of-use technology in achieving complete removal and inactivation 

of pathogens. In order to scale-up the electrochemical filtration technology to utilize it in a plant-

scale centralized water treatment plant, conductive nano-composite ultrafiltration membranes 

were developed in this project, through incorporating amine and carboxylic functionalized 

MWNTs (MWNT-NH2, MWNT-COOH) into polysulfone (PSf) substrates.  A novel fabrication 

method, vacuum-assisted layer-by-layer self-assembly was used for surface modification of 

polysulfone ultrafiltration membrane.  

 

First, the polysulfone membrane was functionalized with oxygen containing negatively charged 

functional groups through oxygen plasma treatment. In order to optimize the degree of 

functionalization of polysulfone membrane with increasing plasma duration, a comprehensive 

physicochemical characterization of the plasma treated membrane was performed by using ATR-

FTIR, XPS, contact angle, EKA and SEM analyses. Water permeability test was also conducted 

to investigate the differential performance of the plasma-treated membrane with increase in 

plasma treatment duration. The ATR-FTIR analyses revealed the peaks at specific wavelengths 

for hydroxyl, carboxyl and carbonyl functional groups, while the XPS results showed an increase 

in oxygen content of the pristine polysulfone from 18.6% to 30.7%, after being plasma treated. 
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The contact angle of the plasma-treated membrane dropped down to 44.2˚ from 68.6˚ of the 

pristine membrane and the EKA showed an increase in surface zeta potential from -22.5mV to -

42.8mV for varying plasma duration. Based on these analyses, 60s plasma treatment time was set 

as optimum for further modification of PSf membrane with MWNT.  

 

The MWNT modified PSf membrane was characterized with a SEM that showed the uniform 

distribution of MWNTs throughout the membrane thickness as well as a linear growth in 

membrane thickness with increasing number of MWNT bilayers. The water contact angle 

analyses revealed that the modified membrane became more hydrophobic with increasing 

number of bilayers. The modified membrane exhibited reasonable permeability, higher 

conductivity and high antifouling properties due to application of very low DC potential (0V-

3V). Due to high conductivity of the MWNT modified membrane an application of 3V DC 

voltage showed almost 100% inactivation of E. coli inactivation suggesting the effectiveness of 

the MWNT modified polysulfone membrane in controlling the biofouling in electrofiltration 

system. Moreover, this study showed over 99% degradation of methyl orange during 

electrofiltration that could contribute to reducing the organic fouling of the modified membrane. 

Overall, the new MWNT modified polysulfone membrane has huge potential to be used in large 

scale electrofiltration systems.  
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1. INTRODUCTION 

 

1.1 Motivation 

1.1.1 Water scarcity throughout the world 

Access to clean water and sanitation is a global challenge that needs to combat for ensuring basic 

needs worldwide.  As education, health, poverty and hunger are the critical functions of access to 

the safe water, the world need much strategic plans for sustainable resources. The growing 

population is proportional to the water scarcity, even worse the number is expected to reach 

almost 9.6 to 12.3 billion [1] at the end of this century while we have fixed sources of water 

(97% saline water and 3% fresh water). According to the WHO/UNICEF Joint Monitoring 

Programme (JMP) for Water Supply and Sanitation report (2012), 780 million people lack access 

to an improved water source that is approximately one eighth of the world’s population [2]. 

Another report (2014) by Intergovernmental Panel on Climate Change (IPCC) states that, 

approximately 80% of the world's population suffers serious threats to its water security which is 

measured by indicators including water availability, water demand and pollution [3]. Food and 

Agriculture Organization (FAO) estimated 70% of the total water use accounts for agricultural 

need while approximately 10% water use for industrial and 20% for domestic purpose. 

Groundwater is the crucial source for the food security and livelihood of the world’s population. 

Also groundwater-fed irrigation contributes more to the drinking water shortage risks than the 

surface water fed irrigations. The global pollution increment is limiting the access to the safe 

sources of water, making surface water sources more vulnerable to contamination with 

questionable applicability that people started depending on the groundwater facilities. The world 

is extracting 26% [4] of the ground water (compared to the total water abstraction) to serve the 

domestic, irrigation and industrial purpose of its inhabitants. Wherever available, people are 

using groundwater as a reliable source of drinking water.  Groundwater is subjected to many 

natural pollution sources as arsenic, nitrate and also contamination occurs due to landfill 

seepage, excessive use of fertilizers and pesticides etc. Consumption of groundwater is also a 

concerned issue as the amount of groundwater withdrawal is not recharged form external 

sources. In the era of concreting, surface water penetration throughout the soil media is neglected 
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and the earth lacks methods of utilizing the natural sources for groundwater recharge. The world 

requires more alternative sources of safe water and it requires ideas of using the surface water 

with proper treatment. Industrial processes produce huge quantities of wastewater that can also 

be a good alternative of usable water if it can be treated up to certain level. Not necessarily the 

alternative sources need to be used for drinking purpose; it can meet the need of agricultural, 

household and industrial purpose to an extent. Due to the limited reliable water sources and the 

sensitivity of unhygienic water towards human health, filtration membrane technology offers the 

best solution in present days.  

 

1.1.2 Increased stress on water treatment plant 

Potable water stress is one of the major environmental stresses of 21
st
 century. According to the 

FAO report, by 2025 approximately 1.8 million people living in urban areas will have absolute 

water scarcity, while two-third of the population might be under stressful condition. Another fact 

is that the water use may increase at a rate which is more than twice the rate of population 

growth. These facts clearly depict the necessity of alternative sources of water through treating 

both the surface water and wastewater. Not only wastewater treatment is encouraged for re-use, 

but also the treatment of wastewater needs to be done for protecting water bodies from unwanted 

pollution. Every industry that uses water for their production should have facilities for treatment 

of wastewater or it has to be transported and handled by the aerial treatment plant. In many cases 

there is no separate storm water collection network and it is often circulated in the central 

sewerage system. This surface water runoff is then treated with the grey water by considering the 

same chemical potential with the wastewater. Clearly the amount of clean water use for toilet and 

sanitation purpose as well as the laundry overwhelms the treatment plants with huge loads. 

Meanwhile the decentralization of the municipal wastewater treatment plant may play a role is 

reducing the wastewater stress.  

Membrane filtration is gaining popularity for industrial waste water treatment plants because of 

its smaller footprint and diversity of use. As the shortage of space is a serious consideration for 

any kind of industry, the membrane modules offers great advantage of minimizing the space 

requirement as well as an effective treatment option. Also it requires less energy if compared to 
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the conventional thermal separation processes as distillation, sublimation or crystallization. 

However, a major challenge related to membrane filtration is the membrane fouling that hinders 

the filtration rate and if the fouling is due to the biofilm growth then the water flux recovery is 

very difficult. The biofouling is the Achilles heel for any kind of membrane and thus the efforts 

are being taken by the researchers to develop antifouling membranes. Due to the membrane 

fouling problem the treatment plants are always challenged with the membrane cleaning and 

therefore a tradeoff remains between the membrane fouling and the performance lifetime. 

 

1.2 Electrically conductive membrane can be useful for the inactivation of microorganisms 

and organic matter degradation 

Membrane filtration technology offers physical separation of the unwanted particles, colloids, 

macromolecules and pathogenic microorganisms depending on the pore sizes of different types 

of membrane. The separation is mostly physical sieving for the microfiltration, ultrafiltration and 

nanofiltration except the reverse osmosis and forward osmosis membrane separation mechanism 

is termed as diffusion. Due to the size exclusion and diffusion depending on the membrane 

properties (pore size, hydrophilicity, hydrophobicity and membrane material); membrane 

filtration ensures higher rejection of both particulate and microorganisms. Membranes are 

unavoidably subjected to fouling which may occur due to the attachment of colloidal(clay, floc), 

biological (bacteria, fungi), organic (oil, polyelectrolyte, humic acid) and scaling by mineral 

precipitates [5]. Depending on the type of foulant attachment fouling is categorized as reversible 

(weak attachment, removable with strong shear force or backwashing) and irreversible (strong 

attachment, not removable with physical cleaning) fouling. The irreversible fouling includes the 

biofouling and organic matter fouling; both of them are considered as the most complex form of 

foulant as once they are formed, and it becomes very difficult to remove. The biofouling is 

referred to as active fouling because of its tendency of continuous growth of microorganisms that 

increases the biofilm layer thickness ultimately resulting into flux reduction. One of the ways to 

mitigate bio-fouling is through inactivation of micro-organisms, which prevents them from 

strongly adhering to the membrane surface as well as from reproducing. Researchers has been 

studied the effect of incorporating biocidal nanoparticle into membrane matrix such as titanium 

dioxide (TiO2) [6], zinc oxide (ZnO) [7], silver nanoparticle (Ag) [8], magnesium hydroxide 
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(Mg(OH)2) [9] and carbon based nanoparticles [10-12] and they found remarkable results of 

antifouling properties. Aluminum oxide (Al2O3) incorporation in polymeric membrane explicitly 

improved organic matter removal [13] as well as the manganese oxide(MnO) coating on ceramic 

membrane showed higher rejection of total organic carbon [14]. Another way of controlling 

fouling is through using conductive membrane where application of DC potential would results 

in inactivation of microorganisms and degradation of organic matters that cause fouling. 

Conductive nanocomposite materials have been widely used in fuel cell and batteries, especially 

the microbial fuel cells (MFCs) used for wastewater treatment. In these systems, conductive 

nanocomposites can be used as the anode material where they act as electrocatalysts and 

accelerate the electrochemical reaction. A conductive nanocomposite would be highly effective 

for the development conductive membranes for the electrochemical filtration system. Conductive 

polymeric nanocomposites, especially those with carbon nanomaterials, have been closely 

investigated due to their low cost. In a recent study, Vectis et al.(2011) [15] dispersed multiwall 

carbon nanotubes (MWNT) on polytetrafluoroethylene (PTFE) filter and found that at very low 

potentials (2 and 3V) MWNT filters exhibited more than 75% bacterial and 99.6% viral 

inactivation. In a follow-up study, Rahaman et al. reported complete removal (5.8 to 7.4 log) and 

significant inactivation of viral particles when  2 or 3V was applied to an electrochemical 

MWNT filter [16]. In a very recent study Gao et al.(2014) [17] reported higher (>99%) reduction 

of organic nitrobenzene by sequential reduction oxidation process through the conductive CNT-

PVDF membrane.  All these studies showed the efficacy of conductive membrane surface in 

reducing biofilm via inactivation of microorganism as well as in reducing organic fouling 

through organic matter degradation. Therefore, it is obvious that the development of conductive 

membranes and their application in electrofiltration system will add new functionality to the 

membrane industry. 

 

1.3 Layer-by-layer self assembly for surface modification of membranes 

Layer-by-Layer (LBL) deposition is a thin film fabrication technique in which films are formed 

by depositing alternating layers of oppositely charged electrolytes with wash steps in between. 

The layer-by-layer method has been used in several studies to develop a mechanically and 

chemically strong membrane [14, 18-20]. It includes dip, spray, and spin coating, and can be 
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followed by curing, which leads to cross-linking. Curing can be accomplished through heating, 

UV, or chemical means [21], and can lead to a membrane which is more chemically, thermally, 

and mechanically stable [22]. There are four types of interactions that hold the polyelectrolyte 

layers with the substrate membrane: electrostatic interaction [14, 19, 23], hydrophobic 

interaction [24], hydrogen bonding [25-27], and attraction through the van der waal’s force [28].  

As the name “dip-coating” suggests, a membrane prepared by this method is dipped into a 

homogeneous polyelectrolyte solution with the coating materials.  In the case of a thin film 

nanocomposite membrane, a polymeric membrane (usually prepared by phase separation) is 

dipped into a solution containing evenly dispersed nanoparticles. If nanoparticles have been 

functionalized, this can sometimes be accomplished with cross-linking: Pourjafar et al. reported 

on a PES/PVA/TiO2 membrane where phase separation-prepared PES membranes were coated 

with PVA, which were then dipped into a cross-linking solution containing glutaraldehyde (GA) 

which was able to link to the TiO2 nanoparticles [22]. Layer-by-Layer dip-coating depends on the 

electrostatic interactions between membrane and coating layers and leads to multilayer with 

monolayer precision [29-32]. Positively and negatively charged polyelectrolyte solutions are 

coated onto an electrode [29], for membranes its mostly the substrate. LBL coating can be done 

with metal oxide [14, 19, 30, 33], multiwall carbon nanotubes and [34] silver nanoparticles [35].  

A major downside of dip-coating is that it is very time-consuming and therefore it is not 

attractive at this time for scaling up to an industrial level.  Another downside is that, while the 

films created by dip coating can still be categorized as thin films (<100 nm), they are relatively 

thick, and this can hinder water permeability. 

Spin-coating and spray-coating are gaining popularity as these techniques have some advantages 

over dip-coating. Spray-coating requires less time, and provides higher control and homogeneity 

over dip coating.  Liu et al. [34] developed CNT-bound polyelectrolyte membrane by spray-

assisted layer-by-layer (LBL) technique and reported improved flux and enhanced antifouling 

properties for commercial polyethersulfone membrane. A number of studies have been 

performed on development of spray assisted LBL membrane for fuel cell application [36], proton 

exchange membrane [37] and supercapacitor [38]. Spin coating entails putting a small amount of 

the solution in the middle of the substrate, and then spinning the substrate at a very high speed, 

using the centripetal force created by this motion to evenly spread the coating. Also the spin 
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coating technique does not allow the layers to diffuse into one another due to the high air shear 

and rotational speed in contrast to dip coating [36]. To the best of our knowledge, spin-coating 

has not been used thus far in nanocomposite membranes for water treatment, however, the 

possibility of a spin-coated nanocomposite membrane was demonstrated by Jiang et al., in which 

the authors were able to uniformly coat a silica thin film with LaB6(lanthanum hexaboride) 

nanoparticles [39]. Similar improvements of dip-coated membrane modification could be 

investigated with spin-coated membranes as the latter is more versatile for scaling up. 

 

1.4 Objectives  

The objective of this study was to develop conductive membrane through incorporating MWNT 

onto polysulfone substrate membrane and to demonstrate its application in electrochemical 

filtration systems to reduce the membrane fouling. Leading steps to reach this objective are 

detailed below: 

1. Plasma treatment of substrate polysulfone membrane to functionalize the membrane 

surface with oxygen containing functional groups and optimization of plasma treatment 

time through contact angle measurement, SEM pore size analyses, permeability 

measurement, XPS analyses and FTIR analyses; 

2. Selection of appropriate solution chemistry for N-ethyl-N′-(3-dimethylaminopropyl) 

carbodiimide hydrochloride(EDC) and  N-Hydroxysuccinimide(NHS) also named as 

EDC-NHS initiated amine reactive NHS ester formation on the functionalized 

polysulfone membrane which creates conjugate stable bond when contacted with 

nanomaterials with specific functional groups; 

3. Selection of conductive nanomaterials (MWNT-NH2 and MWNT-COOH) and their 

concentration for uniform dispersion in aqueous solutions and optimizing the solution 

quantity for each layer formation; 

4. Evaluating the effect of increasing number of bilayers by analyzing the membrane 

performance characteristics measured by conductivity, permeability, antimicrobial 

activity and organic matter degradation ability. 
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1.5 Organization of the dissertation 

This dissertation comprises five sections in a chronological order, which was designed to assist 

the reader of this paper in understanding without any difficulties. In addition, a reference of 

publications has also been presented. 

Section-1 deals with general introduction of the topics, existing challenges that have been faced 

and objectives of the study. 

Section-2 describes the reviewed literature, which covers the description of membrane 

technology, different type of membrane characteristics, modification of membrane surface for 

additional functionality, recent studies of layer by layer self assembly and its application in water 

filtration, fouling challenges faced by membrane technology and expectation from the developed 

conductive membrane for water filtration. 

Section-3 includes the materials used in this study, methodology of the study and performance 

investigation techniques. A briefs explanation of the membrane surface characterization 

techniques and protocols followed during the experiment have been presented here. Also the 

membrane performance evaluation with consecutive steps is mentioned clearly with reference to 

ensure the accuracy of protocol. 

Section-4 covers the results of the membrane characteristic and performance evaluation with 

detailed discussion of each finding. The discussion includes comparison of the results with 

previous research findings and the evidences found in this study. 

Section-5 contains conclusions of the current study, and Section-6 addresses the 

recommendations for further investigations. 
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2. BACKGROUND AND LITERATURE REVIEW 

 Membrane filtration theory is contingent on engineering aspects of mechanical and 

physical sieving through the size exclusion of molecules. Due to its efficiency compared to the 

conventional water treatment processes (distillation, crystallization etc.); membrane technology 

is widely used for both industrial and domestic purposes. Though there is an interest going on 

using inorganic membrane (ceramic membrane, metal oxide membrane etc.), polymeric 

membranes occupied majority of applications due to their cheap, flexibility in use, variety in 

material and property and so on. There is a variety of polymeric materials available for ultra 

filtration membrane preparation including cellulose acetate, cellulose tri acetate, 

polyacrylonitrile, polyvinyl chloride, polyamide, polysulfone, polyethersulfone, polyimide, 

polyvinylidenefluoride, etc. Most of these polymers used in membrane present high specific 

surface area and the membrane modules greatly reduce the size of the plants if compared to the 

conventional treatment plant. The few factors that define a membrane’s effectiveness are 

permeability, pore structure, selectivity, hydrophilicity, and mechanical stability. Polymeric 

membranes are favored for their ease of fabrication and their low cost [21], however, their 

disadvantages are that the polymers most commonly used, namely polysulfone (PSf) and 

polyethersulfone (PES), are hydrophobic, which can lead to reduced flux and increased fouling.   

Polymeric membranes also have an inherent tradeoff between flux and rejection, and they have a 

much lower selective rejection than inorganic membranes such as those made of ceramic, glass, 

carbon, or zeolites. Furthermore, recently there have been several novel approaches in membrane 

technology in order to create reactive membranes, including membranes that are antimicrobial, 

conductive and catalytic. However, they have the major advantage of costing one to three orders 

of magnitude less than these membranes [40]. Surface pore size, cross-section morphology, skin 

layer thickness, and hydrophilicity contribute to a membrane’s permeability [41] and rejection 

properties, and in nanocomposite mixed matrix membranes (MMMs), surface modification with 

nano-sized particles is used to alter these membrane properties. Membrane characteristics such 

as thermal, chemical, and mechanical stability can also be improved. 

Plasma treatment is a method of modifying ultra thin material’s surfaces without changing the 

bulk physical or chemical properties which involves intake of less chemical reagent for the 
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modification [42]. This method of surface modification is easy to control, relatively cheaper and 

scalable as the modifications are repetitious. 

2.1 Different type of nanomaterials used in membrane fabrication   

 

The incorporation of different types of nanoparticles in nanocomposite membranes with various 

increments in membrane performance will be discussed in this section. Membranes with 

integrated metal oxide nanoparticles can have increased water diffusion due to the nanoparticles 

inherent hydrophilicity.  Unfortunately, uniform dispersion can be a difficult task because of 

their very high surface energy and a tendency to agglomerate, which can lead to inhomogeneities 

in the membrane and inconsistencies in gathered data [43]. Metal oxide nanoparticles have also 

been extensively used as coating for ceramic membranes in hybrid ozonation-filtration processes 

[14, 18]. Byun et al. compared the effectiveness of Mn, Ti, and Fe oxide, and determined that the 

membranes coated with Mn oxide had superior flux recovery and the greatest reduction in total 

organic carbon (TOC) [14]. 

The nanoparticle most extensively studied in water treatment membranes is titanium oxide 

(TiO2).  TiO2 is super-hydrophilic, anti-bacterial, and has photo catalytic properties. The organic-

inorganic composite membranes made with TiO2 have been shown to have superior 

permeability, hydrophilicity, mechanical stability, and anti-fouling properties when compared to 

their purely polymeric counterparts [44]. It is also semi-conductive and often used as a coating 

on ceramic membranes because of its ability to prevent the growth of biofilm [45, 46]. 

Membranes with integrated nano-TiO2 typically use its photo catalytic properties to produce 

hydroxyl radicals which would oxidize organic materials and prevent membrane fouling [47]. 

The exact mechanism by which TiO2 kills bacteria was reported on by Sunada et al [6]. Cao et al. 

found that the size of TiO2 size affects the structure and performance of a PVDF/TiO2 

membrane.  They found that the antifouling abilities of a nanocomposite membrane with 10 nm 

TiO2 particles were remarkably better than a membrane with 28 nm TiO2 particles [48]. 

A very popular category of nanoparticle that is often used in membranes is carbon-based 

nanomaterials, such as carbon nanotubes, graphene, and fullerenes.  Carbon nanotubes are the 

most studied type of carbon nanomaterial, though much of the research that has been done so far 

on water filtration using carbon nanotubes has been done using coated filters rather than 
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nanocomposite membranes. However, the future of membranes with carbon nanotubes is very 

bright, as their very large surface area to volume ratio makes them highly antimicrobial, and they 

have an added advantage of being conductive [49, 50], which allows them to be used in 

electrochemical filtration systems [15, 16, 51]. There are two types of carbon nanotubes: single-

walled nanotubes and multi-walled nanotubes. Multi-walled nanotubes are more commonly used 

in membranes because they are less expensive and have large surface area. Theoretical results 

suggest that membranes consisting of vertically aligned carbon nanotubes are very promising for 

water filtration membranes. Also simulations have suggested that flow through carbon nanotubes 

should be nearly frictionless.  However, the challenges of fabricating such a membrane are still 

great and have yet to be overcome [47]. Recently, the use of functionalized carbon nanotubes has 

gained interest as the functional groups improve the solubility, dispersion and optical properties 

[52].  

Another carbon-based nanomaterial commonly used is graphene. Graphene is very inexpensive 

and has higher chemical stability, strong hydrophilicity, adsorption capabilities, and is 

photocatalytic. It is generally coated onto membranes using the layer-by-layer technique[53].  It 

can also enhance the conductivity of polymeric sheets, especially when added with a conductive 

polymer, such as PANI. [54]  Graphene oxide nanosheets, which are sheets of single-atom-thick 

graphene that have been modified to contain carboxyl, hydroxyl, and epoxide functional groups 

have exceptional potential in the field of membrane technology [53]. 

Interestingly, aluminum oxide is one of the lesser studied nanoparticles, surprising due to its 

superior performance when compared to TiO2 and ZrO2 for hydrophilicity, porosity, compaction 

grade, and flux.  However, it does not possess the photo catalytic properties of TiO2, so may be 

less versatile.  Most of the research that has been done on alumina and alumoxane nanoparticles 

for membrane technology has been with ceramic membranes [55, 56], as well, there have been a 

few notable studies regarding polymeric/aluminum oxide nanocomposite membranes.  Yu et al. 

reported in 2011 on a nano-sized Al2O3/PVDF membrane that had tripled water flux when 

compared to the control, while almost no loss of rejection capabilities [57]. Yan et al. have 

published three successive papers [13, 58, 59] about phase inversion-prepared Al2O3/PVDF 

nanocomposite membranes. The membranes had improved hydrophilicity and anti-fouling 

properties while the porosity, rejection, and the molecular weight cut-off (MWCO) were not 
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significantly affected [57].  The rejection of organic contaminants was also improved once a 

steady state was reached [13]. 

Iron oxide nanoparticles have been shown by Raciny et al. to improve the Cu(II) rejection 

capabilities of a membrane.  Iron oxide nanoparticles have also been used in several reactive 

membranes due to their interesting magnetic and electrical properties [60, 61].  

Zinc oxide is hydrophilic, antibacterial [7], UV resistant, a semiconductor [62], and has a high 

specific surface area [62, 63]. PVDF/ZnO [64] , PSf/ZnO [63] and PES/ZnO [62] nanocomposite 

membranes have been created that exhibited highly improved hydrophilicity and permeability.  

Balta et al. [62] have suggested that zinc oxide is an alternative to TiO2, as it is considerably 

cheaper and shows similar improvement to nanocomposite TiO2 membranes in terms of 

hydrophilicity and antifouling at a much lower nanoparticle concentration. 

Silver is another commonly used nanoparticle for nanocomposite membranes: silver 

nanoparticles are widely known to be antimicrobial, and there are commercial home water 

systems currently available which use membranes or filters coated with silver nanoparticles, and 

these are reported to remove 99.99% of pathogens [8].  They have also been shown recently to 

improve hydrophilicity in polymeric membranes [65] and change the porous structure of 

membranes [66].  However, there are considerable problems with the leaching of silver 

nanoparticles into the membrane’s effluent.  It’s been shown by Basri et al. that the leaching of 

silver can be lessened by more even dispersion of silver nanoparticles, which can be 

accomplished by adding polyvinylpyrrolidone (PVP) and 2, 4, 6-triaminopyrimidine (TAP) to 

the casting solution [67]. Mollahosseini et al. showed that smaller silver nanoparticles led to 

membranes with higher antibacterial activity [66]. 

Clay nanoparticles have occasionally been used in mixed matrix membranes because they are 

naturally abundant and inexpensive [68]. It has been reported that they change the internal pore 

structure of a membrane, creating long, finger-like pores, increase hydrophilicity, increase 

thermal stability, and decrease fouling [68, 69]. 

Zeolites change the porous structure of the membrane [70], but are more commonly incorporated 

into membranes for gas separation [71, 72]. However, the super-hydrophilicity of ZnO [73] can 

lead to ultra filtration membranes with improved permeability and rejection [70, 73, 74].   

Of the many types of commercially available nanoparticles, only the few mentioned above have 

been extensively studied for use in membrane technology for water treatment.  However, there 
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have been several studies on the lesser used nanoparticles that show great potential.  For 

example, Dong et al. reported that Mg(OH)2 nanoparticles improve the removal E. coli removal 

[9].  Davies et al. reported that magnesium oxide nanoparticles (MnO) are effective for use in 

ceramic ozonation-filtration membranes [14], and acrylic acid nanoparticles were used by 

Himstedt et al. to create novel pH-responsive membranes [75]. Many composite nanomaterials 

have also been studied: Vatanpour et al. reported on an anti-fouling PES membrane with TiO2-

coated MWNTS [76].  

Nanoparticles are often blended with one another or functionalized to give them more desirable 

properties.  Specifically, functionalization of nanoparticles allows for homogeneous dispersion 

and cross-linking with polymers.  MWNTs, which are naturally hydrophobic, can be acid-

oxidized to make them more hydrophilic, which can improve dispersion in the casting solution as 

well as the final membrane’s hydrophilicity [77]. Razmjou et al. demonstrated a considerable 

improvement in fouling behavior when they compared PES/non-functionalized TiO2 to 

PES/functionalized TiO2 nanocomposite membranes [78]. Composite nanomaterials such as 

TiO2-coated MWNTs for fouling reduction [76] and PANi-coated iron oxide nanoparticles for 

the removal of toxic metal ions [79] have been explored. 

 

2.2 Preparation and Characteristics of Nanocomposite Ultra filtration 

Membranes 

2.2.1 Mixed matrix membrane 

Most polymeric membranes are created by phase separation by the Loeb-Souririjan process.  In 

this process, a polymer solution (known as the casting solution) is spread onto a support layer 

and subsequently dipped into a non-solvent bath (usually of purified water, though it has been 

shown by Oh et al. that the non-solvent used can affect the membrane’s pore structure [80]). The 

solvent most commonly used in this process is N-methyl-2-pyrrolidinone(NMP) [81].  A rapid 

exchange between solvent and non-solvent takes place, and consequently a solid membrane is 

formed.  The resulting membrane is asymmetric and can usually be classified as a microfiltration 

(MF), ultra filtration (UF), nanofiltration (NF), or reverse osmosis (RO) membrane [5]. For MF 

and UF membranes, an extremely thin, highly microporous, active layer is formed on a thicker 

microporous support layer with larger pores.  In ultra filtration membranes formed by this 
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process, the support layer is more open and often has finger-like pore structures that stretch from 

just below the active layer to the underside of the membrane.   

 

Figure 2.1: Schematic representation of RO and UF membrane 

 

 Zimmerman et al. [82] first proposed a composite polymeric/zeolite mixed matrix membrane for 

gas separation and their theories have since been adapted to create MMMs for water treatment.  

A modifying chemical that acts as a pore-forming agent [81] is added to the casting solution, and 

is subsequently incorporated into the polymer matrix, thus justifying the name ‘Mixed Matrix 

Membrane.’  The casting solution additives are usually derived empirically, and many 

manufacturers will not reveal their ‘recipe’, for membrane casting has become a carefully 

determined art.  The additives in the past have usually been bulk-sized, however it has been 

determined more recently that when particles of nano-dimensions are added, the benefits to a 

membrane’s hydrophilicity, permeability, and anti-fouling characteristics can be much greater. 

As well, the addition of nanoparticles can change the membrane’s internal pore structure, often 

enlarging the finger-like voids beneath the active layer [48, 68, 83]. Generally, the polymer 

concentrations in the casting solution are in the range of 15 – 20 wt.% [5]; the nanoparticle 

concentrations typically range from 1 – 7 wt.%.  However, there have been several cases where 

ultralow nanoparticle concentrations (as low as 0.01% [73]) have been shown to improve 

membrane features [62, 73, 76, 77, 84]. Larger quantities of nanomaterials are often found to 

create unsuccessful membranes because of the agglomeration and sedimentation of 

nanomaterials [48, 63, 69, 73]. 
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Figure 2.2: Schematic representation showing different types of membrane modification [85] 

 

Nanomaterials can be immobilized in the polymer matrix in one of two ways: either with [85] or 

without cross-linking.  Either of these can occur when nanoparticles are added to the casting 

solution, but cross-linking can only occur when the nanoparticles have first been functionalized 

by coating with organic coatings through physical and/or chemical means [78], and/or a ‘cross-

linker’ is added.  For example, Wu et al. added triethanolamine (TEOA) to the casting solution in 

a brominated polyphenylene oxide (BPPO)/MWNT membrane, and the TEOA cross-linked with 

the MWNTs and the polymer [85].  When no cross-linking occurs, the nanoparticles are simply 

‘entrapped’ in the polymer matrix [47, 86, 87].  It is desirable that the nanomaterials are cross-

linked into the matrix because once formed, cross-links are extremely difficult to break.  In 
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comparison with covalently bonded and entrapped nanomaterials, there is a far smaller risk of 

nanomaterials leaching into the effluent and posing environmental hazards. 

There are several challenges that exist in the fabrication of mixed matrix membranes. First, due 

to the high surface energy and strong intra-particle interaction of nanoparticles [88], it is difficult 

to attain homogeneous nanoparticle dispersion using conventional methods [78] in the casting 

solution, and thus in the polymer matrix.  Additionally, some of the nanomaterials used are 

hydrophobic and tend to agglomerate in water.  Uneven dispersion in the casting solution can 

also lead to a reduction in antifouling abilities, because the rougher membrane surface that is 

created favors the attachment of foulants [78].  Another challenge is that the inherent trade-off 

between permeability and rejection still exists to an extent (though far less than with purely 

polymeric membranes), and often the rejection capabilities of a membrane are slightly 

compromised when nanoparticles are added and permeability increases.  It should be noted that 

these two complications can be directly related to one another – uneven dispersion can lead to 

uneven pores which decrease the membrane’s rejection. These problems can sometimes be 

alleviated by the functionalization of the nanomaterials, or by the addition of another additive in 

the casting solution [67, 68]. 

2.2.2 Surface modification of membrane by plasma treatment 

Plasma treatment is a reactive surface modification technique where positive and negative ions, 

electrons, radicals react and collide with the presence of electric potential. Plasma contains these 

highly excited species that can etch and alter the surface properties of the plasma induced 

substrate.  The surface after plasma treatment attains properties as surface cross linking [89], 

functionalization [90], surface grafting [91] and long time plasma treatment can lead to surface 

degradation [92]. Plasma treatment can penetrate to first few molecular layers of the substrate 

that can cause physical or chemical modification of the surface. The extent of plasma induced 

modification is dependent of some parameters as precursor gas type, applied radiofrequency 

(RF) power, system pressure, distance between the plasma source and substrate surface and most 

importantly treatment time [93]. Usually plasma treatment is done by a wide variety of non-

polymerizable gases as Ar, He, N2, O2, CO2, H2O etc., while the treatment by using the 

polymerizable gases as vinyl containing monomer (allyl alcohol, allayloamine and acrylic acid) 

is referred as plasma polymerization [94]. 
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Polysulfone membranes are widely used for microfiltration and ultrafiltration membrane 

application due to its high mechanical stability and resistance to harsh thermal and chemical 

conditions. Though polysulfone membrane is hydrophobic in nature, there are investigations that 

reports improvement on hydrophilicity can be done by chemical means [95]. Also plasma 

treatment of polysulfone membranes without any noticeable degradation is very promising for 

modification of hydrophilic membrane [96, 97]. The hydrophilicity is increased with oxygen 

containing gas (O2, CO2 and H2O) induced plasma through generation of hydrophilic functional 

groups as hydroxyl, carboxyl and carbonyl groups that are rich in atomic oxygen [96-98].  

The wettabilility measured by the contact angle after plasma treatment of polysulfone membrane 

shows improvement with the increase in plasma treatment time [96]. The change in pore size of 

the membrane surface after the plasma induction is different for different plasma gases as well as 

membrane materials. One study on polyethersulfone(PES) membrane used argon plasma and 

found no visible change on pore size after plasma treatment [99]. Another study of argon plasma 

on polyvinyldenefluoride (PVDF) membrane shows a subsequent increase in pore size with the 

increase in treatment time [100].  

The permeability of plasma treated membrane also shows variable result with varying plasma 

parameters (i.e. applied pressure, flow rate, precursor gas, exposure time) and highly depends on 

membrane material. The argon plasma treatment of PVDF membrane shows an increase in 

permeability with increasing plasma treatment time form 0 to 120s [100] whereas the CO2 

plasma on polysulfone membrane shows decrease in permeability till 2 minute of exposure time 

and then it shows increase in permeability after 2 minute plasma [97]. This permeability 

reduction behavior of polysulfone membrane was further explained by the deposition of treated 

membrane material into the pore of the membrane in the early stage of treatment (less than 2 

min) and then longer treatment time resulted in pore enlargement and water flux( 200% increase 

after 10min plasma) due to the progressive ablation.  

The concerned limitation of plasma treatment is the instable nature of the plasma induced surface 

which limits their long term application. The most accepted hypothesis behind this fact is that the 

polar functional groups generated by plasma treatment tend to reorient from the topmost layer 

towards the bulk that is explained as ‘aging’ effect or ‘hydrophobic recovery’ [101]. As the 

plasma treatment not only generates polar groups but also increase the surface roughness, which 
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also contributes to the surface hydrophilicity. The aging effect occurs due to the random 

oxidation of the polar groups when exposed to the ambient atmosphere which can be influenced 

by the external contamination. Longer time plasma is more prone to aging effect as it shows 

approximately 50% loss of oxygen content while shorter time plasma shows negligible effect 

[102]. Studies of H2O plasma treatment on polysulfone membrane shows 100% wettability even 

after storage in ambient air for 16 month [98]. 

 

2.3 Vacuum filtration assisted Layer by layer (LBL) Self Assembly 

Layer by layer method has been used widely for last two decades for fabricating composite films 

for various applications. This technique was developed by Iler in 1966 where he explained 

alternate negative and positive layers can be deposited into glass like structure which has highly 

controlled thickness [103]. Although it was pioneered by Iler but the importance of this 

technology was not realized until Decher and coworkers redeveloped the LBL strategy in early 

1990s [103]. As mentioned earlier, LBL is a versatile and elegant method of fabricating ultrathin 

films depending on the required functionalities of the film. The elementary units of LBL self 

assembly can be comprised of a variety of material including colloidal particles [104], synthetic 

polymers [105], block co polymers [106], polymeric microgels [107], biomacromolecules [108], 

nanocrystals [109], carbon nanomaterials [109] etc. The layer by layer is galvanized by certain 

interaction forces as electrostatic interactions, coordination bonds [110], hydrogen-bonds [111], 

halogen-bonds [112], charge-transfer interactions [113], biospecific interactions [114], guest–

host interactions [115], cation-dipole interactions [116], and the combined interaction of the 

above forces. The conventional layer by layer techniques offered so far are dip, spin and spray 

coating as shown in the Figure 2.3. 
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Figure 2.3: Schematic image of Layer by layer self assembly fabrication technique (a) Dip 

assisted layer by layer, (b) Spin assisted layer by layer and (c) spray assisted layer by layer [117] 

 

Present study offers a novel approach of vacuum filtration assisted layer by layer self assembly 

for development of a conductive membrane surface. This technique of developing ultrathin film 

is also called as vacuum assisted self assembly (VASA). VASA are mostly used for 

manufacturing mechanically stable free standing films of polyelectrolytes or nanomaterials. But 

in this method the proposed material has to be of high aspect ratio and also should have high 

dispersibility in the solvent to generate stable dispersion. These requirements limit the choice of 

materials as in most cases the fibrous material fits in this criteria. The carbon nanotubes are one 

of the ideal choices for this VASA technique as it has high aspect ratio and can prepare stable 

dispersions with a wide range of solvents [118]. The films prepared by VASA method can be 

controlled by the sonication time of the solution, solution volume and the degree of the 

vacuum[119]. Several work on development of self assembly of cellulose nanocrystal as well as 
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cellulose nanocrystal/ grapheme oxide hybrid films were successfully used the vacuum filtration 

[119, 120]. These studies present the first attempt for creating free standing, crack free and 

iridescent films using the VASA by simply controlling dispersibility in aqueous solution. In 

another study, Compton, Putz, Brinson and Nguyen [121] developed composite graphene 

oxide/polymer laminate sheets through the VASA method. In another study Liu, Aksay, Choi, 

Kou, Nie, Wang and Yang [122] successfully used graphene/metal oxide multilayered 

nanocomposites to generate self assembly for electrochemical or energy storing devices. As 

carbon nanomaterials show high aspect ratio, huge specific surface area and electrical 

conductivity, they are widely used for electrochemical or energy storage devices. Although there 

is several studies of using VASA method for self assembly, emphasis was given more on single 

layered nanocomposite film rather than layer by layer constructed film. 

The LBL technique is very well known for its green chemistry as it requires the water soluble 

material thus avoiding the use of chemicals for preparing mechanically stable films. Hyder et al. 

reported vacuum filtration assisted layer by layer technique of MWNT-polyaniline (PANi) 

nanocomposite free standing electrode development for energy storage [123]. To the best of our 

knowledge, this study is the first to report vacuum filtration assisted layer by layer self assembly 

of functionalized MWNT (MWNT-NH2 and MWNT-COOH) on a functionalized polysulfone 

support membrane to modify a conductive surface of an ultra filtration membrane. The purpose 

of developing the conductive surface is to provide electrochemistry driven antifouling property 

and organic matter degradation properties of the membrane. 

2.4 Highly Successful Nanocomposite Membranes for Ultrafiltration 

2.4.1 Non-Reactive Membranes 

 

Non-reactive nanocomposite membranes can be defined as a membrane in which the property is 

enhanced by nanoparticles only through physicals means, namely by hydrophilic enhancements, 

physical adsorption, changes in membrane morphology, and creation of preferential flow paths 

by way of molecular sieves.  

Nanoparticles are most often used in non-reactive membranes to enhance membrane 

hydrophilicity. This improves multiple membrane functions, leading to reduced fouling [64, 124, 
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125] and enhanced permeability.  Inorganic and organic fouling can be reduced with increased 

hydrophilicity because the most significant attractive force that causes foulant deposition is the 

hydrophobic force [126], and a hydrophilic membrane surface will attract water molecules rather 

than foulants. Most non-reactive nanocomposite membranes have been created for antifouling 

purposes [9, 57, 63, 64, 69, 70]. While complete avoidance of fouling is impossible, membranes 

with incorporated hydrophilic nanoparticles often have fouling that is mostly reversible, and flux 

can be recovered when the membrane is cleaned. This is usually due to the increased 

hydrophilicity that prevents fouling adhesion, and can also be due to changes in roughness [57] 

or repulsive electrostatic forces [70]. In some cases, flux can be recovered almost completely.  

This was demonstrated by Liang et al., whose ZnO/PVDF membrane recovered almost 100% of 

its original flux (as opposed to a 78% recovery with a neat PVDF membrane) when 6.7 wt.% 

hydrophilic ZnO was added to the casting solution [64]. 

Contrary to the hydrophilic membranes mentioned above, there has been research that suggests 

that extremely hydrophobic, low surface energy membrane surfaces can also mitigate irreversible 

fouling. This is especially true in cross-flow systems: on a low surface energy membrane, the 

Van der Waals force that binds foulants to the membrane surface is very weak, and the shear 

force created by the transverse flow can potentially wash away these foulants [127].    

Membrane surfaces can physically adsorb undesirable compounds, leading to their removal, and 

this effect can be enhanced by nanomaterials due to their extremely high surface area when 

compared to bulk materials. Mierzwa et al. and Ghaemi et al. have reported on the effect of the 

addition of clay nanomaterials into polymeric membranes. The modified membranes 

demonstrated enhanced removal of organic compounds, and it is hypothesized that adsorption to 

the internal surface area is the mechanism by which this occurs. It’s important to mention that 

more often than not, the prevention of adsorption is more desirable because adsorption can be 

synonymous with fouling, especially in terms of biofilm formation. Thus, most of the 

hydrophilic membranes mentioned above aim to limit adsorption. 

General membrane morphology can be altered upon the addition of nanomaterials which can 

cause a variety of changes: the alteration of pore size and shape can lead to increased 

permeability, selectivity, or enhanced mechanical, thermal, or chemical strength. Dong et al. 

reported that adding Mg(OH)2 to PVDF membranes (with poly ethylene glycol as an additive in 
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the casting solution) had the effect of creating a higher number of pores in the membrane surface 

and almost eliminating the larger pores. They have suggested that the increased number of pores 

was due to the hydrophilicity of the casting solution and the increased uniformity was due to the 

increased viscosity of the casting solution. Additionally, more macrovoids could be seen in the 

membrane cross-section (also attributed to casting solution hydrophilicity). Combined, these 

factors lead to a membrane with improved permeability and anti-fouling propensity [9]. Clay and 

zeolite nanoparticles, when added to the casting solution, result in a membrane with long, finger-

like voids [68, 70].  It is not clear whether these voids are desirable for fouling characteristics, as 

Mierzwa et al. found in a recent study; however, the large spaces in the membrane result in a less 

dense membrane and therefore improved permeability [68]. 

Changed membrane morphology upon addition of nanomaterials can also improve mechanical 

strength.  This is especially important in reverse osmosis and other high pressure systems, where 

membranes are subjected to harsh conditions for extended periods of time, and the resulting 

membrane compaction can lead to irreversible fouling.   

One extremely important factor in successful membrane fabrication is nanoparticle 

concentration. Generally, membrane characteristics will improve with increasing nanomaterial 

concentration up to an optimal concentration, beyond which performance will diminish. The 

optimal nanomaterial concentration is entirely dependent on the materials involved: optimal 

concentrations have been found to range anywhere between 0.1 wt% [73, 79] and 15 wt% [70] 

and higher. Excessive nanomaterial concentration often causes agglomeration in the casting 

solution, resulting in a higher frequency of membrane defects, causing  more sparse pores, larger 

pores, low flux, and poor selectivity [73]. Too-high concentrations can also weaken the 

mechanical stability of the membrane [63] and can result in a more compacted membrane 

structure which reduces permeability [64]. 

2.4.2 Reactive Membranes 

2.4.2.1 Antimicrobial Membranes 

Biofouling of membranes can be reduced by antimicrobial membranes, as the inactivation of 

bacteria and viruses prevents the growth of biofilm on membrane surfaces.  For many years, 
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chlorine has  been the most popular antimicrobial product used, however, many pathogens show 

resistance to chlorine and chlorine produces disinfection byproducts (DBP) that are toxic to 

humans [128]. Nanoparticles such as CNTs, metal oxides, and silver have been shown to create 

antimicrobial membranes when incorporated into both polymeric and inorganic membranes. 

Antimicrobial nanomaterials can be naturally occuring antimicrobial substances (such as silver), 

metal oxide nanoparticles (MNPs) or novel engineered nanoparticles (ENPs) (such as ZnO, 

TiO2).  

The mechanism of microbial inactivation by nanomaterial varies greatly depending on the 

materials involved: interaction between microbial cells and antimicrobial nanomaterials can lead 

to damage and inactivation of the microbes. The antimicrobial nanomaterials can inactivate 

microbes by interrupting/disrupting cell membranes (for example, partitioning transmembrane 

electron transfer), by oxidizing cell components, or by producing a secondary product (such as 

reactive oxygen species or dissolved heavy metal ions) [8]. As well, photocatalytic production of 

reactive oxygen species by some nanoparticles inhibits antimicrobial activity; there will be a 

detailed discussion of this mechanism shortly.   

Silver (Ag) ions and Ag-based compounds are well-known for their microbial toxicity at both the 

bulk and nano-scale; however, the exact mechanism has not yet been definitively determined. 

Already, commercial home water systems currently available which use membranes or filters 

coated with silver nanoparticles; these systems are reported to remove 99.99% of pathogens [8]. 

Several mechanisms for silver's antimicrobial activity have been hypothesized. Li et al. found 

evidence indicating that silver nanoparticles inhibit bacterial growth and thus kill the cells by 

destroying bacterial membranous structure. Two other possible mechanisms that explain the 

antimicrobial activity of silver nanoparticles (nAg) are (i) the penetration of nAg ions inside the 

bacterial cell leading to DNA damage and (ii) the release of antimicrobial Ag
+
 ions by 

dissolution of nAg particles [8, 129].  While there are many advantages of incorporating Ag 

nanoparticles into membranes, at this time, researchers doubt its potential for long-term 

application for commercial purposes due to the unavoidable issue of leaching. Leaching can 

happen due to physical damage or improper fabrication technique, but it also occurs due to the 

natural dissolution of Ag
+
 ions which is necessary bacterial inactivation. This poses multiple 

problems: Most importantly, the natural dissolution of silver causes membranes to lose their 

functionality. As well, health problems can be caused by excessive levels of silver ions in 
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drinking water [130]. It’s been shown by Basri et al. that the leaching of silver can be lessened 

by more even dispersion of silver nanoparticles, which can be accomplished by adding 

polyvinylpyrrolidone (PVP) and 2, 4, 6-triaminopyrimidine (TAP) to the casting solution [67].  

Mollahosseini et al. showed that smaller silver nanoparticles led to membranes with higher 

antibacterial activity [66].  

Carbon nanomaterials such as fullerenes, graphene oxide, and carbon nanotubes also have 

excellent potential for water treatment membrane technology because of their antimicrobial 

properties. Fullerenes are currently mostly recognized for their use in biomedical applications 

while the other carbon nanomaterials mentioned above have proven their efficacy for membrane 

improvement. Multi-walled carbon nanotubes (MWNTs) generally exhibit less antimicrobial 

activity than single-walled carbon nanotubes because of their smaller diameters [131]. However, 

SWNTs appear to perform with reduced antimicrobial capacity when embedded within a 

polymeric membrane: a study by Zhao et al. suggests that this reduction is due to the polymer 

wrapping [132]. Furthermore, Kang et al. [133]  have suggested that the size of carbon nanotubes 

(CNTs) is a key factor governing their antibacterial effects. This suggests that the main CNT-

cytotoxicity mechanism is the cell membrane damage by direct contact with CNTs. Evidence 

also suggests that generation of oxidative stress can trigger CNTs’ toxicity to microorganisms 

[133].  Hu et al. have confirmed the antimicrobial activities of graphene oxide and reduced 

graphene oxide [134], though to the best of our knowledge, these materials have not been used in 

any membranes specifically for antimicrobial uses. However, they have, very recently, been used 

in polymeric membranes to dramatically enhance permeability, hydrophilicity, anti-fouling, 

selectivity, and mechanical strength [135, 136].  

As well, naturally occuring antimicrobial peptides and chitosans have been recently engineered 

into nanoparticles [137, 138]. Studies showed that nano-scale chitosan and peptides exhibit 

antimicrobial effects towards bacteria, viruses, and fungi [139, 140]. A recent study by Cooper et 

al. reported on the development of  chitosan-polycaprolactone (PCL) nanofibrous membranes to 

utilise the natural antimicrobial property of chitosan. The modified membrane was prepared by 

electro-spinning and consisted of chitosan- PCL fibres of 200-400nm diameter [141]. It 

demonstrated improved bacterial adhesion when compared to the unmodified membranes, 

greatly improved water flux and 100% removal of 300nm particulate with 25 wt. % chitosan-
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PCL membrane [141].   

 

 Zero valent iron(Fe
0
) nanoparticles have strong bactericidal effect under de-aerated conditions 

and were found to be effective for the inactivation of a wide range of bacteria [142, 143]. 

Physical disruption of the cell membranes and the creation of oxidative stress by producing 

reactive oxygen species are believed to be the mechanisms of antibacterial activity and the Fe
0
 

nanoparticles show higher antibacterial activity when compared to Ag nanoparticles [142]. Fe
0
 

nanoparticles are mostly used in permeable reactive barrier for groundwater purification but 

could potentially replace other nanomaterials used in water filtration membranes due to its lower 

toxicity to human and its cost effectiveness. 

It is important to realize that biofilm formation is a complex problem and there are several 

factors which control a membrane’s anti-biofouling activity: specifically, a membrane’s 

hydrophilicity, its surface charge, and its antimicrobial activity [144]. Liu et al. found that 

membranes that prevented the adhesion of microbes to the membrane surface were better for 

preventing fouling than membranes with only anti-bacterial activity, and that the membranes that 

were most effective in preventing biofouling had were both anti-adhesive and anti-microbial. 

They also found that membrane hydrophilicity was a worse predictor of bacterial adhesion than 

was the membrane surface charge. A negative surface charge was most effective for preventing 

the adhesion of microbial foulants, and they ascertain that hydrophilicity should not be used as 

the sole factor in predicting a membrane’s anti-fouling characteristics, as it so often is [144].  

2.4.2.2 Photocatalytic Membranes 

The introduction of photo catalytic nanoparticles into membranes can greatly reduce organic 

scaling [145, 146] and biofouling [45, 147-151], leading to increased long-term water 

permeability of a membrane.  It can also remove NOM from the water being treated, which is of 

particular importance in MF and UF filtration, which suffer from poor NOM removal due to the 

extremely small particle size of NOM[152]. Photocatalysis can be achieved with semiconducting 

materials, and has been described in detail by Likodimos et al [153].  Briefly, when 

semiconductors absorb a photon of energy greater than their own band gap energy, an electron-

hole pair is created.  This process needs to be activated by UV or sunlight.  These unstable 

electron-hole pairs will either recombine or react with the surrounding media.  Nano-sized 
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photocatalysts are advantageous over bulk-sized materials because both the hole and the electron 

(as opposed to one or the other, as is the case bulk materials) are available for interaction [21].  

The electrons released by the light source bind with oxygen to become superoxide radical anions.  

Then, the surface of the semiconductor is positively charged, and binds with electrons from the 

water molecules.  A product of this reaction is hydroxyl radicals (-OH). These two compounds 

destruct materials by oxidation in the water such as organic compounds [151].  Photocatalytic 

semiconducting materials can also be antibacterial: reactive oxygen species (such as hydroxyl) 

can damage the cell wall or organism[21] and/or a lipid peroxidation reaction can occur, 

effectively inactivating cells [151].  The exact mechanism of photo catalytic bacterial 

inactivation on films was recently reported on by Pulgarin et al.[147]. Titanium oxide 

nanoparticles are most commonly used for photo catalytic membranes, but zinc oxide [154] and 

ferric oxide can also be used [21].  Both polymeric [148, 151, 155] and ceramic [45] substrates 

have been used for this purpose.  Though polymeric membranes have all of the advantages 

discussed earlier, when used in a photo catalytic system, the inevitable long-term outcome is the 

degradation of the organic compounds in the polymeric membrane [21]. Both mixed matrix 

membranes and coated membranes have been used in photo catalytic systems [151]. 

Titanium oxide (TiO2) is the most studied nanomaterial for its antifouling and biocidal functions 

as a photo catalytic semiconductor. TiO2 demonstrates antimicrobial activity by producing 

reactive oxygen species (such as hydroxyl free radicals) and by forming peroxide under UV-A 

irradiation via oxidative and reductive pathways [149]. Recent studies have reported on the 

efficacy of nano-sized TiO2 particles in killing viruses such as poliovirus 1, hepatitis B virus, 

herpes simplex virus, and MS2 bacteriophage [8]. Damodar et al. prepared a modified PVDF 

with 0-4 wt.% TiO2 in the casting solution and found that the modified membranes had improved 

permeability, antibacterial properties, photo catalytic properties, and antifouling properties [148].  

ZnO nanoparticles also inhibit bacterial growth during biofilm production due to the production 

of H2O2 during photocatalysis [156]. As well, Brayner et al. reported that biofilms became 

disorganized upon contact with ZnO nanoparticles [157].  Chen et al. reported that the addition 

of doped silver reduced the ionization energy of acceptors in ZnO, thus, Ag
+
 ions could enhance 

the antimicrobial activity of ZnO. Bai et al. found in their recent research that the hierarchical N-

doped ZnO “nut-like” nanostructured material can enhance the photo catalytic activity in 



 

26 
 

comparison to commercial ZnO powder and thus demonstrate strong antibacterial ability under 

visible light irradiation. These points emphasize the great potential of ZnO nanostructured 

membranes for water purification [158]. 

Chae et al. found that carbon nanomaterials also have potential for use in photo catalytic 

membranes: when testing C60 fullerenes, SWNTs and MWNTs, they found that all three types of 

carbon nanomaterials enhanced degradation of 2-chlorophenol (2CP) (an organic compound), 

and that a smaller nanomaterial diameter was linked with more enhanced 2CP degradation [159]. 

Typically, photo catalytic nanoparticles are incorporated into membranes either by (i) the 

deposition of a coating through a dipping method, or (ii) by the entrapment of nanoparticles into 

a polymeric matrix through nanoparticle addition to the casting solution [151]. Usually,  the bond 

between TiO2 and substrate is formed by physical adsorption, electrostatic interaction, or 

hydrogen bond interaction [160].  None of these bonds are as strong as chemical bonds, so the 

membranes can have problems with leaching and loss of functionality.  Lei et al. successfully 

created a membrane where the TiO2 nanoparticles were chemically bonded into a PVA matrix by 

applying a heat treatment to the modified membrane [160].  PVA is inexpensive and has inherent 

chemical properties that allow it to form bonds well with TiO2, making it the ideal polymer for 

this purpose.  The modified membrane exhibited long-term functionality because of its cross-

linking. 

Photocatalysis in membranes presents some limitations not present in a photocatalysis slurry 

system. When the nanoparticles are immobilized on/in a membrane, the number of active 

catalyst sites are reduced, and mass transfer becomes more limited [161]. Thus, some researchers 

doubt the functionality of a photo catalytic membrane. However, a photo catalytic membrane 

presents the major advantage of being a one-step process, where further separation of 

photocatalyst and effluent is not required. Additionally, the fact that the process can be triggered 

by sunlight gives this one-step the unique opportunity to leave an extremely small environmental 

footprint, especially if a low pressure membrane system is used.  

2.4.2.3 Membranes for Electrochemical Filtration 

Electrochemicalfiltration systems can be compared to an electrolytic cell where filtration 

membranes mostly work as an anode. Specifically, the membrane surface must be conductive, as 
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it have been found by research that a small current run through a filtration system can very 

dramatically reduce fouling. The reactions that makes the electrochemical filtration system work, 

are mainly dependent and usually occur in the membrane surface. If membrane nanomaterials 

and/or polymers are electrically conductive, then the membrane can be used as a electrochemical 

filtration cell. The chemical reactions can be driven by an externally applied voltage, as in 

electrolysis, or the voltage can originate from chemical reactions, as occurs in electrochemical 

filtration. Redox (oxidation-reduction) reactions are the most prominently occuring reactions in 

this type of filtration process which produce reactive oxygen species (ROS) and thus the 

microorganisms are believed to be killed or inactivated. 

Obviously, carbon nanotubes as conductive nanomaterials were the first candidates for 

experimentation in the development of conductive membranes. Firstly, there was a idea of 

dispersing carbon nanotubes onto the support polymeric membrane [10-12]. Thus, the support 

membrane was expected to show more or less conductive properties due to the conductivity  of 

the CNTs.  In their first study, Vectis et al. determined that at very low potentials (2 and 3V) 

MWNT filters exhibited more than 75% bacterial and 99.6% viral inactivation [15]. In a follow-

up study, Rahaman et al. reported complete(5.8 to 7.4 log)  removal and significant inactivation 

of MS2 viral particles when  2 or 3V was applied to an electrochemical MWNT filter [16].  

Recently, De Lannoy et al. developed a highly electrically conductive polymeric ultra filtration 

membrane composed of PVA crosslinked with carboxylated MWNT and succinic acid that 

showed an electrical resistivity as low as 2.8×10
−4

 Ω m, pure water flux of 1440 L/m
2
 h at 

pressures of 550 kPa, and triple-point initial contact angles as low as 40° with high hysteresis 

[50].  

2.4.2.4 Stimuli-Responsive Membranes 

Stimuli-responsive membranes are designed to change their physicochemical properties in 

response to the change in temperature, pH, ionic strength, light, electric and magnetic fields, and 

chemical cues. Porous and non-porous stimuli-responsive membranes currently have a large 

number of applications as sensors, separation processes and drug delivery systems. These 

membranes are very important for the development of the functional membranes which can show 

reversible change in polarity or conformation and for these membranes stumuli responsive 

polymers are considered as the building blocks [162]. 
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Generally, stimuli-responsive membranes can be prepared by casting a blend of stimuli- 

responsive polymers or by surface modification by grafting of the membranes. Also, molecular 

recognition gating membranes, which are able to open and close pores using volume phase 

transition and can recognise specific ions with its receptors, have been introduced in the stimuli-

responsive membrane categories which is mainly composed of molecularly imprinted 

polymers(MIPs). The MIPs have had molecular memory introduced to them, thus it becomes a 

selective binder of template molecule which can change the mass transfer properties of the 

membrane [162]. Recently, Liu et al. presented a gating membrane with poly((N-

isopropylacrylamide-co-acryloylamidobenzo-18-crown-6)(poly(NIPAM-co-AAB18C6)) 

copolymer chains as functional gates with a large number of crown ether units which were 

provided to detect Pb
2+

 ions and treat trace amounts of Pb
2+ 

from wastewater [163].    

2.5 Potential Risks associated with Nanocomposite Membranes 

There are several remaining issues that impede us launching nanomaterials into usage in the 

environmental engineering industry. Long-term investigations and development stages have been 

undertaken in the fuel cell, battery, and biomedical fields, and this work has yet to be done with 

nanocomposite water treatment membranes. Stimuli-responsive nanocomposite materials are 

gaining popularity in biomedical applications which are operated in a controlled manner to 

assure minimum risk of exposure. As the nanomaterials used to serve this purpose are mostly 

engineered nanoparticles (ENPs) and show certain levels of toxicity, care should be taken in 

advance to determine the fate and transport of the nanoparticles.  

Nanomaterials such as single-walled carbon nanotubes exhibit dermal toxicity due to increased 

oxidative stress on the skin of the exposed workers involved in the manufacture of the 

nanomaterials [164]. When SWNTs were tested on mice skin, Murray et al. found that free 

radical generation, oxidative stress, and inflammation were the main causes of dermal toxicity 

[165]. Long term exposure to MWNTs can also lead to irreversible oncogenic cancerous 

transformation of human bronchial epithelial cells and tumorigenicity [166]. 

Acid-functionalized carbon nanotubes have been found to be more toxic than the pristine CNTs 

when tested in vitro lung tumor cell [167]. The toxicity is also contingent on the size of the 

nanomaterials: a study by Liao et al. on graphene oxide suggests that the smaller GO shows 
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higher hemolytic activity (abnormal breakdown of red blood cells) while the aggregated GO 

shows lowest hemolytic activity [168]. Coated nanoparticles can eliminate hemolytic activity: it 

was found that chitosan-coated GO can nearly eliminate hemolytic activity [168]. Despite the 

vast research that has been done on the beneficial antimicrobial effects of silver nanoparticles, 

research has shown that subcutaneous (skin layer beneath the dermis and epidermis) AgNP 

injections were found to affect the cells in the kidney, liver, spleen, lung tissue, heart tissue and 

endothelial cells of the blood-brain barrier due to the agglomeration of the NPs [169]. Also long 

term exposure to nAg can cause argyria, a blue–gray discoloration of the skin and other organs 

[99]. 

While the studies mentioned above tested the toxicity of nanomaterials individually, there has 

been little research on the toxicity of nanocomposite membranes. Ahmed et al. developed water 

filtration nitrocellulose membranes coated with a nanocomposite containing 97% (wt. %) of 

polyvinyl-N-carbazole (PVK) and 3% (wt. %) of SWNT and performed toxicity test against 

fibroblast cells (wound healing cells). The results depict non-toxic behavior of fibroblast cells 

when subjected to PVK:SWNT(97%:3%) -coated membranes as opposed to the toxic behavior of 

SWNT(3%) coated membranes [170]. 

Studies on the toxicity of nanomaterials demonstrate a certain level of toxic effects from micro 

level to higher level organisms. As the use of nanoparticles is increasing in various emerging 

fields of applications, the membranes that incorporate nanoparticles should pass the toxicity test. 

In water filtration, toxicity tests should be performed alongside other membrane characterization 

and usefulness tests. As well, studies regarding the release of nanomaterials from water treatment 

membranes and their route of exposure, fate, and transport have to be done in a standardized 

manner to avoid exaggeration due to varying methods and give us an accurate picture of the 

amount and danger of nanoparticles that could be released by these processes. 

2.6 Technical Hurdles and Current Limitations 

One of the largest technical hurdle in producing phase separation-produced mixed matrix 

membranes is the difficulty in the even dispersion of nanoparticles in a polymer matrix due to the 

tendency of nanoparticles to agglomerate[171]. This is most difficult with hydrophobic 

nanoparticles such as carbon nanotubes, where the Van der Waal’s interaction will attract the 
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carbon nanotubes to each other and cause them to be insoluble and, at worst, undispersable [21, 

172]. Functionalization of carbon nanotubes can improve their dispersability, especially when 

the functionalizing polymer is identical or similar to the polymer matrix into which it is being 

mixed.  

While solutions that do not have perfect dispersion of nanomaterials can still have functionality, 

they often have reduced mechanical properties [173]. Sonication is the method that is almost 

always used to disperse nanomaterials in mixed matrix membranes, and optimization of the 

sonication time and amplitude can improve the dispersion [173]. Additionally, it can be more 

difficult to disperse higher quantities of nanomaterials because of the increased tendency to 

agglomerate. Often, when mixed matrix membranes with different nanomaterial concentrations 

are created and tested in a study, improvements in hydrophilicity and fouling reduction will 

reach a maximum with one of the mid to higher-level concentrations, then decrease at the highest 

concentrations [64, 69, 70]. Uneven nanoparticle dispersion is thought to be a main reason 

behind this. 

However, other fabrication routes for nanocomposite membranes also have flaws and limitations 

.For example, layer-by-layer deposition is becoming increasingly popular because of its high 

potential to give membranes functionality. However, the coating is usually achieved by dip-

coating, which is a highly time consuming process. Briefly, an electrode (the substrate) must be 

alternately in cationic and anionic solutions, and be soaked in de-ionized water between steps. 

Each soaking takes between 30 and 60 seconds [29], and due to the extremely thin layer created 

by each soaking, this must be repeated many times. Even a scaled-up process would be highly 

time-consuming. Alternatives to the traditional dip-coating are spray-coating and spin-coating, 

which may be more useful for industrial purposes.  

As discussed earlier, nano-coated ceramic membranes have potential for functionality because of 

their high chemical and mechanical strength. However, their biggest drawback is that they 

cannot easily be used in formations other than flat sheet membranes, such as hollow fiber 

membranes, which provide a much higher surface area to volume ratio, necessary in treatment 

plants which do not have unlimited space. Ceramic membranes can be formed in hollow fiber 

formations. However, ceramic membranes are usually coated, therefore it would be nearly 
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impossible to coat something in the hollow fiber formation, or to shape a coated flat sheet 

membrane into a hollow fiber formation. 

Another drawback of functionalized nanoparticles is the loss of functionalization with time, 

especially with silver and copper nanocomposite materials, where the degradation of silver is 

necessary for the membrane’s functionalization [129, 174]. For these membranes to be useful in 

the long-term in real-world applications, a regeneration process would have to be devised. 
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3. MATERIALS AND METHODS 

3.1. Materials  

3.1.1 Chemical Reagents and Membranes 

Polysulfone membranes were purchased from SEPRO Membranes (PS20, thickness 165µm) and 

used as a support membrane for developing conductive membrane. N-Ethyl-N′-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC, assay ≥ 98%), MES monohydrate 

(BioXtra, assay ≥ 99% (T)) and N-Hydroxysuccinimide (NHS, 98%) were purchased from 

Sigma Aldridge, St. Louis, USA. Amine and carboxylic acid functionalized multiwalled carbon 

nanotubes (MWNT-NH2 and MWNT-COOH) were purchased from Cheap Tubes (99% purity, 

8-13 nm diameter and 3-30 µm length). Nonionic surfactant, triton X 100 was purchased from 

Sigma Aldridge, St. Louis, USA. Reagent grade hydrochloric acid, potassium hydroxide, methyl 

orange, sodium chloride, and sodium hydroxide were also purchased from Sigma Aldridge.  

3.1.2 Glassware and Labware 

All glassware (i.e., flasks, vials, bottles, etc.) was cleaned in the laboratory basin following a 

detergent wash, acetone wash, acid wash, and a minimum of three DI water rinses. The super de-

ionized (DI) water was generated by using Milli-Q filtration setup from Millipore (Molsheim, 

France) and was used throughout the membrane modification steps. 

3.1.3 Bacterial Cells and Nutrients 

For antimicrobial tests E. coli (Top 10, pGEN-GFP, LVA) were collected from McGill 

University and LB Broth (Lauria-Botani. Difco
TM

, Miller), agar (Microbiology grade) and 

ampicillin were purchased from Sigma Aldridge. 

3.2 Methods 

3.2.1 Substrate membrane cleaning and plasma treatment of membrane 

The polysulfone membranes were cleaned with a solution prepared by mixing 0.5% nonionic 

surfactant triton X 100 in DI water. The membranes were soaked in the solution for 24 hours and 

then rinsed for several times with DI water. The clean membranes were air dried with an air 
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knife for 15 min and then placed in a dessicator for 1 hour and prior to plasma treatment. The dry 

membranes were placed in a plasma chamber (PICO, Diener Electronic GmbH + Co. KG, 

Ebhausen, Germany), connected to O2 gas cylinder. Prior to the activation of plasma generator 

the membranes were allowed to rest on the O2 gas stream for 10 min in order to eliminate the 

impurities from the plasma chamber. The flow rate of O2 gas was maintained to 20sccm which is 

a function of pressure and thus the pressure remained in a range of 0.8-1.0 mbar. The power used 

for plasma generation was 100 W and the membranes were treated for 30s, 60s, 90s, 120 and 

180s to functionalize the surface with negatively charged functional groups (i.e., carboxyl, 

carbonyl or hydroxyl groups). After the plasma treatment the O2 gas was allowed to flow through 

the plasma chamber for 30 min to avoid any reaction between the remaining free radicals and air 

[175]. Then the membranes were immediately stored under vacuum condition. 

 

 

 

Figure 3.1: Polysulfone surface plasma treatment generates free radicals that eventually convert 

into negative charged functional groups upon exposure to O2/air mixture 

 

3.2.2 EDC/NHS cross-linking of the membrane functional groups 

The polysulfone develops oxygen containing functional groups after the oxygen plasma 

treatment. For layer by layer membrane modification, charged surface plays a very important 

role to initiate the electrostatic interaction. Though the plasma treatment is very efficient for 

surface functionalization, the stability of these groups is time dependent. Thus EDC/NHS cross-

linking was used in this experiment to create the amine reactive esters which facilitates the 

http://www.plasma.de/
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reaction between the carboxylic functional groups present on the membrane and the MWNT-

NH2.  A recently reported protocol by Perreault et al. [176] was used in this study for EDC/NHS 

cross-linking on the surface of the membrane. The membranes were placed in glass petri dishes 

and taped with a waterproof tape leaving the active side exposed to air. The membranes were 

then exposed to a solution of 4 mM EDC, 10 mM NHS, 0.5 M NaCl in 10 mM MES buffer 

(adjusted pH of 5) for 1 hr. This procedure ensures the activation of amine reactive esters on 

negatively charged functional groups of the plasma treated polysulfone membranes. Finally, the 

membranes were rinsed twice with DI water to remove the excess EDC/NHS solution from the 

membrane. 

 

3.2.3 MWNTs solution chemistry and pH adjustment 

For dispersion, DI water is used as the background solution and the multi-walled carbon 

nanotubes (Positively charged MWNT-NH2 and negatively charged MWNT-COOH) were added 

to prepare an electrolyte solution of concentration of 0.05 mg/mL. The suspensions of MWNT-

NH2 and MWNT-COOH were probe sonicated using a Branson 3510 ultrasonic cleaner at 50% 

amplitude for 3 hours to form stable dispersion. Prepared MWNT solutions were subjected to 

dialysis against DI water for 24 hours to remove any byproducts and residuals. Figure 3.2 

represents the zeta potential of the MWNT-COOH and MWNT-NH2 solutions with different pH 

range. During the experiment, MWNT-NH2 and MWNT-COOH solutions were stable at around 

the pH range of 2 to 4 respectively, as in the other pH solutions, a concerned amount of 

aggregation was observed. The pH of the MWNT-NH2 and MWNT-COOH solutions were 

adjusted to 2.5 and 3.5, respectively with the aid of 1M, 100mM and 10mM hydrochloric acid 

consecutively. The pH-adjusted solutions were sonicated for 1 hour prior to use in vacuum 

filtration assisted LBL assembly. During sonication an ice bath was used to avoid overheating of 

the solution. 
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Figure 3.2: Zeta potential of MWNT-COOH and MWNT-NH2 at different pH.  

 

3.2.4 Vacuum-assisted LBL self-assembly of MWNT-NH2 and MWNT-COOH 

First, an acidic and positively charged MWNT (MWNT-NH2, pH 2.5) solution was filtered 

through 47-mm diameter plasma treated polysulfone membrane by using a vacuum filtration 

apparatus. Due to the vacuum filtration the adsorption of MWNTs occurs by electrostatic 

interaction that is facilitated by transport of MWNT through convection force. The process 

continues with the incorporation of another layer of negatively charged MWNT (MWNT-

COOH, pH 3.5) through solution filtration onto the membrane, already containing the positively 

charged MWNT layer. The different pH values of the solutions were chosen to ensure enough 

effective charge of the positively charged MWNT and negatively charged MWNT solution for 

electrostatic interaction. After depositing each layer of the positively charged MWNT/negatively 

charged MWNT, 5mL of DI water was filtered through the membrane to wash away any residual 

pH solutions.  The modified membrane with a desired number of bilayers was finally washed 

twice with DI water to eliminate the effect of pH solutions on the membrane. 
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Figure 3.3: Schematic diagram of VF assisted LBL self assembly of CNTs on polysulfone 

membrane 

 

3.3 Membrane Characterization: Chemical and Morphological 

3.3.1 Zeta potential measurements  

The zeta potential of the MWNT-NH2 and MWNT-COOH suspensions as a function of pH was 

measured by Zeta potential analyzer (Brookhaven Instruments Corp., US). The suspensions for 

zeta potential analyses were prepared from a very stable dispersed solution (probe sonicated for 3 

hours) of MWNTs in DI water and diluted into 0.0001mg/L concentration. The pH values were 

adjusted to 2, 4, 6 and 8 by using 100mM HCl and 100mM NaOH in order to determine the pH 

effect on suspension stability. 
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3.3.2 Scanning electron microscopy (SEM) analyses 

Scanning electron microscopy (JEOL, JSM-7600 TFE, Japan) was used to take images of the 

membrane surface and the cross section of the membrane. The surface images of the modified 

membrane reveal the tubular structures of the MWNTs. The cross sectional images were taken to 

verify the fingerlike structures of polysulfone membrane at the bottom and a thin compact layer 

of MWNTs. Also the uniformity of carbon nanotube layer was verified from the surface 

morphology of the modified membrane. 

3.3.3 Fourier Transform Infrared (FTIR) spectroscopy analyses 

Attenuated total reflection-Fourier transform infrared spectroscopy (Nicolet 6700 / Smart iTR, 

Thermo Scientific, US) was used for a qualitative analyses of the functional groups on 

polysulfone membrane after plasma treatment. The intensity of the peaks on certain specified 

wavelengths verify the incorporation of functional groups on the polysulfone membrane.  

3.3.4 X-ray photoelectron spectroscopy analyses 

X-ray photoelectron spectroscopy analyses (XPS, SK-Alpha, Thermo Scientific, US) was also 

performed on the plasma treated membrane to observe the change in the percentage of oxygen 

content after the plasma treatment for different time intervals (i.e., 30s, 60s, 90s and 120s).  

3.3.5 Electrokinetic analyses 

The electrokinetic analyses (Anton Paar, Graz, Austria) was also performed on the pristine and 

plasma treated membrane (30s, 60s and 90s) to determine the surface charge of the membranes 

after being exposed to plasma treatment for different time intervals. The EKA analyses were 

performed at a pH value of 8. 

3.3.6 Contact Angle Measurements 

The hydrophobicity of the membranes modified with CNT was compared with that of the 

pristine and plasma treated PSf membranes by measuring contact angle using a VCA Optima 

Contact Angle Surface Analyses System (AST Products, Inc., Billerica, MA, USA). In order to 

measure the contact angle, images were taken in a dynamic mode for a 1µm water droplet on the 
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sample (Figure 3) surface for 2s. The pictures were then analyzed by using software (AST 

Products, Inc., Billerica, MA, USA) to suit the shape profile of the water droplet on the sample 

surface for computing the contact angle. For each sample seven consecutive measurements were 

taken and the average values are reported as representative measurements. 

 

 

Figure 3.4: Shape profile of 1µl water droplet on membrane surface during contact angle 

analyses in dynamic mode  

 

3.3.7 Bilayer stability and MWNT leaching studies 

The stability of the MWNT layers has been examined by using the protocol of Liang et al [100] 

where membranes were exposed to harsh physical and chemical stresses. The chemical stress 

was amplified by immersing the modified membrane for 15 minute in an acidic solution of pH 2 

(0.01M HCl), a basic solution of pH 12 (0.01M NaOH) and a saline solution of 5M NaCl. This 



 

39 
 

step was followed by a thorough rinsing with DI water to wash away the extra solutions from the 

membrane and then the membrane was air dried. The physical stress was applied on the 

membrane through immersing the membrane in 10 mL DI water and bath sonicated (Branson 

8510R-MTH) for 2 minute. After applying the physical and chemical stresses, the membrane 

contact angles were determined to evaluate the stability of the MWNT layers on modified 

membranes.  

3.3.8 Membrane thickness measurements 

The thickness of the modified membrane with MWNT bilayers was measured by using a 

profilometer (Dektak XT) and verified by determining thickness from SEM images of the cross-

sectional view of the membranes (Figure 3.5). The thickness measurements provide an overall 

idea about the uniformity of MWNT layer. For taking cross sectional SEM images of the 

membrane, the polysulfone layer was separated from the support layer. Then the membrane was 

broken by putting it into liquid nitrogen and by pulling it from two sides. 

 

Figure 3.5: Cross sectional SEM image for thickness measurement  

 

MWNT-COOH and 

MWNT-NH2 bilayer 

Polysulfone 

Membrane 
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3.4 Membrane Performance Evaluation 

3.4.1 Electrical conductivity measurements of the membranes 

Electrical conductivity of the membranes was measured by two different ways. In both of which 

the resistivity of the membrane was measured and the conductivity was calculated using the 

following equation, 

 

Conductivity = 1/ Resistivity 

 

The first method required a modified membrane strip of 1cm x 4cm and a laboratory grade 

multimeter-voltage (Mastercraft, USA) detector. The probe tips of a multimeter-voltage detector 

were placed on different spaces of the membrane strip along the length and the resistance values 

were recorded. The recorded values of membrane resistance were then used to calculate the 

membrane conductivity. The more accurate measurements were obtained by using the vander 

pauw method (4-points-4TS, Sigmatone-302, USA). The 4-point probe tip penetrates through the 

cross-section and provides a value of sheet resistance, which is further multiplied by the 

thickness of the MWNT layer to obtain the resistivity of the membrane. For each membrane 5 

consecutive measurements were taken across the membrane surface and the average value was 

taken as a representative for that particular membrane. 

3.4.2. Membrane permeability measurements 

Permeability of the membrane was measured by using an Amicon 10-mL stirred ultrafiltration 

cell (Amicon 8010, Millipore, Cole Permer, US). The membranes were wet before use. A 

2.54cm coupon was cut by using the membrane cutter (Power punch maxi set, Spearhead 130) 

and precompacted for 30minute under a pressure of 30psi to obtain a steady flow rate. Then to 

record the pure water flux we operated the stirred cell with DI water at 30psi with continuous 

stirring of 300rpm. Several measurements were taken within 1h of operation. The permeability 

for ultrafiltration membrane has been calculated by the following equation[177], 

 

Lp = Jv / ΔP 
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Where Jv is referred as volumetric filtrate flux (volume flow rate per membrane area) or 

hydraulic permeability as the solvent is water and ΔP is the transmembrane pressure driving 

force.  

3.4.3 Membrane selectivity determination 

Membrane selectivity is a very important property that determines membrane performance. For 

ultrafiltration membrane it is termed as molecular weight cut off (MWCO) that happens due to 

the size exclusion of solutes due to their higher molecular weight. The MWCO of the membrane 

should be lower than the molecular weight of the molecules that are aimed for rejection. In order 

to determine the membrane selectivity, rejection tests were accomplished by challenging the 

membrane against polyethylene glycol (Mv 20KD) solution. Briefly, the solutions were prepared 

at a concentration of 1gL
-1

(Polymer source, Montreal, Quebec, Canada) and were filtered 

through the modified membrane via the stirred ultrafiltration cell after precompaction for 30 min. 

The collected permeation was analyzed for total organic carbon (TOC) using a TOC analyzer 

(TOC VCPH/CPN, Shimadzu corp., Japan). The rejection was then calculated by the concentration 

of total organic carbon present in permeate and feed solution. 

 

Rejection (%) = 1- CPermeate / CFeed 

3.4.4 Organic matter degradation using the conductive membrane in an electro filtration unit 

In order to determine the efficiency of organic matter degradation, methyl orange was used as a 

model organic compound in a background solution of 10 mM NaCl. More details about the 

experimental protocol can found elsewhere Liu and Vecitis [178]. An influent solution of methyl 

orange with a concentration of 14µM in 10 mM NaCl was prepared to conduct the 

electrochemical filtration test. The membrane was placed in an electrofiltration unit with active 

side facing the anode. Then the influent flow rate was set to 1.5 mL min
-1

 and DI water was used 

to flush the tubing and calibrating the flow rate. After flow rate calibration, the influent was 

filtered through the modified VF-assisted LBL membranes (5, 10, 15 and 20 bilayer) 

consecutively at a constant flow rate of 1.5 mL min
-1

 by means of a peristaltic pump (Masterflex, 

Cole Permer, US). The external wires of cathode and anode of the electro filtration unit was 

connected to a DC power supply (Agillent, Germany). The effluent was collected and analyzed 
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with an UV-Visible-NIR spectrophotometer (Perkin Elmer, Lambda 750) to determine the 

concentration of methyl orange from the absorption values at 464 nm. 

3.4.5 Bacterial inactivation by using conductive membrane in an electro-filtration cell 

 

Bacterial inactivation experiments were carried out by following the procedure of Vecitis, et al. 

[15]. Briefly, the procedure includes several steps starting from overnight bacterial culture, then 

preparing E. coli solution for antimicrobial test and finally preparing plates for determining 

active bacterial cell concentration through plate counting. 

 

For preparing the plates, a nutrient solution containing LB (25mg/L), and agar (15g/L) in DI 

water was prepared and the solution was autoclaved. After autoclaving, 2 mL of amphicilin 

(25g/L) was added in the solution and cooled it for 1 h. Then approximately 8-9 ml of solution 

was poured into each petri dish, left them in the safety cabinet for an hour to be cooled before 

storing them in a refrigerator (upside down). 

 

In order to prepare the bacterial solution, one single bacterial colony was added in 50 mL 

autoclaved LB (25g/L) solution containing amphicilin (50 mg/L) and incubated overnight at 

37˚C. Then 1ml solution from the overnight bacterial culture was mixed with 50 ml LB solution 

containing 50 mg/L of amphicilin and the solution was incubated again for 2.5 h at 37.5˚C. Then 

the bacterial suspension was undergone centrifugation at 15000 rpm for 3 min and after 

discarding the solution, 20 mL of 0.9% NaCl solution was used for the wash step. The washing 

of the pellet through centrifugation was done 3 times consecutively followed by subsequent 

vortex mixing. The optical density of the E. coli cell suspension was maintained to 0.3 at 600 nm 

in order to ensure the cell concentration of 10
6
 CFU/mL. 

 

The plate counting method was used for quantifying the cells inactivated through 

electrochemical oxidation. 3mL of bacterial solution was permeated through the membrane using 

a vacuum filtration unit. Firstly no voltage was applied through the electrochemical filtration 

setup for non electrochemical experiments and the sieved bacteria remained on the membrane. 

For the electrochemical experiments the filtration casing was filled with the isotonic salt solution 

and a potential difference of 0-3V was applied to electrolyze the system. Then the membrane 

http://www.perkinelmer.ca/


 

43 
 

was taken out of the cell and rinsed with isotonic (0.9% NaCl) salt solution and subsequently 

sonicated for 7 min in a water bath sonicator. The final solution after the bath sonication was 

then diluted serially. From the diluted solutions, 200µL solution was spread onto the agar plates 

and incubated overnight. The number of active cell was determined by counting the number of 

colonies formed on the agar plate as shown in Figure 3.6. 

 

 

Figure 3.6: Plate counting for (A) 0V, (B) 1V, (C) 2V and (D) 3V electrofiltration membrane for 

a specific dilution factor 
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4. RESULTS AND DISCUSSION 

4.1 Optimization of O2  plasma treatment for membrane functionalization 

 

4.1.1 Morphological characterization of membranes 

The effect of O2 plasma treatment on surface morphology of polysulfone membrane was 

analyzed through scanning electron microscopy (SEM). The SEM images display an increased 

pore size and pore density with increasing plasma treatment time (Figure 4.1). For each sample 4 

images were taken at different location to see the uniformity of the pore size as well as 

distribution. The average pore diameter of pristine polysulfone membrane was measured be 26.2 

nm while the 60s plasma treated polysulfone membrane was measured to be 38 nm. These 

increased pore size and pore density are attributed to oxygen absorption in the pores and making 

new pores through surface oxidization of membrane.  
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Figure 4.1: SEM images of (A) pristine polysulfone membrane, (B) pristine polysulfone 

membrane with marked pore diameter, (C) 60s plasma treated membrane and (D) 60s plasma 

treated membrane with marked pore diameter 

 

4.1.2 ATR-FTIR analyses of membranes 

The Attenuated total reflectance- Fourier transform infrared (ATR-FTIR) spectra reveals the 

chemical changes of pristine polysulfone membrane due to plasma treatment. In general, the 

pristine polysulfone membrane surface contains different functional groups such as C-C stretch, 

asymmetric S=O, Symmetric S=O, C=C and C-O-C stretch and after being plasma treated some 

carbonyl stretch as C=O and acid functional group O-H are expected to appear. Figure 4.2 

represents the ATR-FTIR spectra for the pristine and plasma treated polysulfone membranes.  
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Figure 4.2: Attenuated total reflectance- Fourier transform infrared (ATR-FTIR) spectra for 

pristine and plasma treated polysulfone membrane with peak identification 

 

The spectra for polysulfone membrane clearly indicates the peaks at 1100 cm
-1

 (C-C stretch), 

1300 cm
-1

 (asymmetric S=O stretch), 1232 cm
-1

 (C-O-C stretch), 1800 cm
-1

 (C=C stretch) and 

1143 cm
-1

 (symmetric stretch) corresponding to the previously mentioned functional groups. 

After being O2 plasma treated carbonyl functional group (C=O) and polymeric O-H bend appear 

on the spectra at wave frequency of 1740 cm
-1

 and 1540 cm
-1

, respectively. Generally, with 

increase in plasma treatment time the peak broadens except some exceptions that might be 

observed due to the polysulfone membrane heterogeneity even though the polysulfone is 

resistant to etching with mass losses of 2 mg cm
-2

s
-1

 for a high energy plasma [179]. 
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Table 4.1: Experimental and literature frequencies for specific functional groups 

Specification of 

membrane 

Experimental 

Frequencies (cm
-1

) 

Literature Frequencies 

(cm
-1

) [129, 175, 180] 

Possible peak 

assignments 

Polysulfone 

Membrane 

1100 

1300 

1143 

1232 

1800 

1100 

1294.4, 1300 

1143.5 

1232.8,1180 

1800 

C-C stretch 

S=O asymmetric stretch 

S=O symmetric stretch 

C-O-C stretch 

C=C stretch 

O2 plasma 

functionalization 

1540 

1740 

1300-1600 

1650-1750 

Polymeric O-H bend 

C=O stretch 

 

 

4.1.3 XPS analyses of membranes 

X-ray photoelectron spectroscopy (XPS) analyses illustrate the surface composition of pristine 

polysulfone and the O2 plasma treated polysulfone membrane as shown in Figure 4.3. The 

percentage of oxygen content, compared to carbon and sulfur is plotted as a function of plasma 

treatment time. The plasma etching initiates the degree of functionalization of the membrane 

surface and as a result the oxygen content increases with increasing plasma duration. The pristine 

membrane contains an oxygen content of 18.5% while the 30s plasma treated membrane exhibits 

about 29.5%. There is an increase of 11% after 30s plasma etching compared to that of pristine 

polysulfone membrane. The curve reaches a plateau after 30s of plasma treatment and continues 

gradual increment for 60s, 90s and 120s plasma treated membrane. This implies the evolution of 

carboxyl, carbonyl and hydroxyl groups onto the membrane surface due to the plasma etching. 
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Figure 4.3: Percentage of membrane surface atomic oxygen content compared to sulfur (S) and 

carbon(C) as a function of O2 plasma treatment time, analyzed by XPS  

 

4.1.4 Water contact angle / wettability of membranes 

The water contact angle of the plasma treated polysulfone membrane decreased with the increase 

in plasma treatment time (Figure 4.4). The polysulfone membrane has an average contact angle 

of 68.6, consistent with previously reported observations and the value reduces to 44.2 after 

being plasma treated for 180s. The change is contact angle is significant up to 90s of plasma 

treatment time but the values remain almost the same for any further increase in plasma 

treatment time. The decrease in the contact angle confirms the increase in oxygen functional 

groups onto the membrane surface. Oxygen containing functional groups increase the membrane 

hydrophilicity which leads to the gradual decrease in water contact angle (i.e., wettability 

increases).  
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Figure 4.4: Water contact angle for different plasma treatment time duration 

 

4.1.5 Permeability of the plasma treated membranes 

The water permeability of the plasma treated membranes is measured in a stirred cell and the 

values are reported in Figure 4.5. The water flux decreased after 30s of plasma treatment but the 

values increased with increasing plasma treatment time. Although there are increase in functional 

groups after 30 s plasma treatment and the membrane has higher hydrophilicity than the pristine 

membrane, this result seems odd to fit here. Moreover, in most previously reported studies, 

plasma treatment improves water flux of polymeric membranes [100]. This behavior can be 

explained by the drying up of membrane during plasma treatment and the wetting time after 

plasma treatment wasn’t enough to observe the effect of membrane hydrophilicity [181]. 

However, for any further increase in plasma treatment time (e.g., 60 s to 180 s) the water 

permeability increases due to increase in pore diameters. The increase in water flux is obvious as 

the values increases from 463 Lmh/bar (for pristine membrane) to 966 Lmh/bar (for 180s plasma 

treated membrane). 
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Figure 4.5: Water flux for different plasma treated time 

 

4.1.6 Electrokinetic analyses (EKA) of the membranes 

Another method of confirming the evolution of functional groups through plasma treatment is 

the measurement of zeta potential of the membrane (i.e., the net effective charge on the 

membrane surface). The isoelectric point of  polysulfone membrane is found to be at pH 3 and 

the membrane surface becomes more negative with increasing pH beyond pH 3 [96]. In order to 

confirm the oxygen plasma initiated functionalization, electrokinetic analyses of the plasma-

treated membrane was performed. The analyses is performed at pH 8 since the oxygen 

containing functional groups are negative and at this pH the zeta potential is believed to be more 

negative with increase in plasma treatment time. At pH 8 the pristine polysulfone showed a zeta 

potential of -22.5 and a sharp increase in zeta potential (-36.28) is observed for the plasma-

treated membrane for 30s. The curve soars up steadily for 60s and 90s plasma treatment time and 

the zeta potential becomes -41.28 and -42.8, respectively. The differential increase in zeta 
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potential confirms the increase in negatively-charged oxygen containing functional groups in the 

membrane surface. 
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Figure 4.6: Electrokinetic analyses for the plasma treated membrane at pH 8 

 

Based on the analyses performed the plasma treatment time for polysulfone membrane was 

optimized to be 60 s. Although  30s plasma treatment showed a significant addition of functional 

groups onto the membrane surface but a decrease in permeability restrained this study to 

optimize 30s as the plasma treatment time. The higher plasma treatment time is usually not 

preferred as with increased plasma intensity the top dense layer of polysulfone membrane may 

get oxidized and therefore, the overall selectivity of the membrane may be compromised with 

increasing membrane pore sizes. 
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4.2 Vacuum filtration assisted LBL modified polysulfone membrane characterization  

4.2.1 SEM images of MWNT modified membranes 

The SEM image (Figure 4.7) clearly depicts the carbon nanotubes on the VF assisted LBL 

modified polysulfone membrane surface. The modified membrane surface morphology illustrates 

uniform distribution of carbon nanotubes. However the nanotubes were not horizontally aligned 

to create atomic layers. It is not possible to differentiate between different functionalized carbon 

nanotubes in the SEM images but due to the high aspect ratio of carbon nanotubes, the 

orientation may initiate accumulation and aggregation. 

 

 

Figure 4.7: SEM images of the MWNT-NH2/MWNT-COOH modified VF-LBL self assembled 

membrane  
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4.2.2 Water contact angle of VF-LBL modified membranes 

The contact angle of the modified membranes as a function of surface modification and number 

of bilayer is presented in Figure 4.8. The 60s plasma-treated polysulfone membrane was used for 

the surface modification through VF assisted LBL assembly and thus it serves as a control with a 

contact angle of 56.3˚. The plasma-treated membrane was treated with EDC/NHS solution for 

converting the unstable oxygen containing functional groups to stable amine reactive ester 

groups which made the membrane more hydrophilic. The membrane contact angle after the 

EDC/NHS treatment became 48.1˚, indicating improved hdrophilicity compared to the control, 

plasma treated membrane. The incorporation of carbon nanotubes through LBL self-assembly 

made the membrane surface hydrophobic due to the higher hydrophobicity of the carbon 

nanotubes as it lacks sufficient polar groups to show water affinity. The 5 bilayer MWNT 

membrane showed a contact angle of 92.8˚ which is almost doubled the contact angle of 

EDC/NHS modified membrane. With increasing the number of MWNT bilayers the contact 

angle increased to 102.9˚, 114.3˚ and 116.5˚, respectively for 10, 15 and 20 bilayers, indicating 

higher hydrophobicity. Although hydrophobic membrane are very prone to fouling[182], the 

modified membrane will be used in an electrofiltration cell where, applied voltage will be the 

dominant factor in controlling fouling events. 
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Figure 4.8: Water contact angle for the VF-LBL modified membranes 

 

4.2.3 Thickness of modified membranes 

It is expected that incorporating MWNT bilayer will increase the thickness of the modified 

membrane. The SEM images of the cross section of the modified membranes were taken to 

analyze the thickness of the LBL film. The SEM images in Figure 4.9 displays uniformity of 

thickness throughout the membrane cross section and the Figure 4.10 shows a linear increase of 

MWNT layer with increasing the number of bilayer. The average thickness for 5, 10, 15 and 20 

bilayer membrane is 3.02µm, 6.6µm, 10.3µm and 14.3µm, respectively. For a single bilayer the 
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5, 10, 15 and 20 bilayer membranes display an average thickness of 302 nm, 330 nm, 343.3 nm 

and 357.5 nm, respectively. The atomic layer of horizontally aligned carbon nanotubes should be 

around 10-15 nm as the diameter of the nanotubes are 8-13nm. But the average length of the 

carbon nanotubes is 3-30µm and due to its high aspect ratio it is very difficult to align CNTs 

horizontally or even vertically. The nanotube curls during the LBL deposition and orient 

themselves in a different pattern. The orientation of carbon nanotubes makes it nearly impossible 

to obtain an atomic layer thickness. Therefore, the actual average thickness of a bilayer is 

significantly higher than the thickness calculated from the atomic layer thickness (i.e., 30 nm). 

 

Figure 4.9: SEM images of the thickness profile for (A) 5 bilayer, (B) 10 bilayer, (C) 15 bilayer 

and (D) 20 bilayer polysulfone-CNT membrane developed by vacuum filtration assisted LBL 

assembly 

(A)  (B) 

(C) (D) 
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The linearity of the curve in Figure 4.10 suggests that even though the orientation of the carbon 

nanotube is ensured, with increasing the number of bilayer the thickness of the MWNT LBL film 

increases consistently. Due to the low concentration of the MWNTs the aggregation of nanotube 

was also prevented. Another fact that explains the non-atomic layer distribution is that due to the 

vaccum filtration of the solution all MWNTs were forced to deposit on the membrane whereas 

for other LBL techniques (dip, spray and spin) usually the electrostatic force dominates the 

deposition. In this study, in addition to electrostatic interactions several other interactions such as 

hydrophobic interaction, vander walls attraction and the hydrogen bonding were dominant to 

hold the bilayers onto the base polysulfone membrane. There is no escape for the excess 

nanotubes that are not bound by the electrostatic interaction, rather depositing the total amount of 

nanotubes that leads to a thicker layer. 
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Figure 4.10: Thickness of the VF-LBL MWNT modified membrane with increasing number of 

bilayers 
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4.2.4 Electrical conductivity of the VF-LBL MWNT modified membranes 

One of the main objectives of this research was to develop a conductive membrane for 

electrofiltration system. The electrical conductivity of the modified membranes with different 

bilayers was measured and presented in Figure 4.11. As shown in Figure 4.11, the conductivity 

of the membrane increases (i.e., resistivity decreases) with the increasing the number of bilayer. 

The total amounts of MWNTs in per unit cm
2
 incorporated into 5, 10, 15 and 20 bilayer 

membranes were .26mg, .52 mg, .78 mg and 1.04 mg respectively. With the amount of MWNTs 

added the conductivity of the modified membrane surface was found as high as 4.1 x 10
3
 s/m, 

which is in the same order of magnitude of graphite. Even with the lowest amount of MWNTs 

(used in the 5 bilayer membrane), it exhibits a very high conductivity of 3.8 x 10
3
 s/m-almost the 

same as that of the 20 bilayer membrane. However, with increasing the number of bilayer the 

conductivity increases slightly. The increase in conductivity indicates improvement in MWNT 

network its electron transfer capacity. One particular advantage of the LBL modified conductive 

membrane is that it allows investigation of the effect of increasing MWNT concentration with 

controlled thickness of layers while other method such as crosslinking encounters difficulties in 

depositing MWNTs uniformly over the membrane surface[50]. 
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Figure 4.11: Electrical conductivity of the VF-LBL MWNT modified membrane as a function of 

number of MWNT bilayer  

 

4.3 Performance of MWNT modified membranes  

4.3.1 Water permeability and of the modified membranes 

For any membrane filtration process, water permeability and selectivity (solute rejection) are the 

two most important parameters in determining the performance of the membrane. There is 

always a trade-off between permeability and selectivity in which as the selectivity increases, 

permeability decreases and vice versa. The pure water fluxes of the membranes with respect to 

different stages of modification are shown in Figure 4.12. The percentage (%) change in 

permeability is presented to demonstrate the effect of modification. The 60s plasma treated 

membrane was found to have a 5% increase in permeability compared to the pristine polysulfone 

membrane. With incorporation of MWNTs the permeability decreases except the 5 bilayer 

membrane. The permeability decreased 22% for 10 bilayer membrane and 30% and 37%   for 15 

and 20 bilayer membranes, respectively. In general, for pressure filtration processes, the 
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membrane industry has a silent approval on permeability reduction less than 50% after 

modification if the membrane attributes unique properties. The flux reduction occurs due to the 

increase in membrane thickness that provides additional hydraulic resistance. Moreover, the 

intrinsic hydrophobicity of the carbon-based nanomaterials contributes to the flux reduction.  
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Figure 4.12: Pure water flux of the modified membranes with different number MWNT bilayers. 

Control means 60s plasma treated polysulfone membrane without CNT bilayer. Here the 

experiments were conducted with a constant transmembrane pressure of 30 psi at room 

temperature and all the results were calculated in terms of pristine polysulfone membrane 

 

4.3.2 Solute rejection of the modified membranes 

The selectivity of the membranes was determined by using a low molecular weight (20KD) 

polyethylene glycol (PEG) through a molecular weight cutoff (MWCO) experiments. As can be 

found in Figure 4.13, the pristine membrane achieved only 19% rejection of the PEG molecules 
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of this specific molecular weight. The selectivity of the modified membranes exhibits a 

significant increase in selectivity; the 5 bilayer membrane showed 71% of PEG rejection. With 

increasing the number of bilayer, the solute rejection increased only slightly. The highest 

rejection was observed with 20 bilayer membrane (76%). The higher solute rejection of MWNT 

modified membrane may be attributed to the adsorption of the PEG on the surface of carbon 

nanotubes. The functional groups of carbon nanotubes offers more adsorption sites for the PEG 

and thus the concentration reduces on the permeate side. The results suggest that higher rejection 

can be achieved with this modified membrane- even 100% rejection would be possible for higher 

molecular weight compounds. 
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Figure 4.13: Comparison of selectivity (20KD PEG) of the pristine polysulfone membrane with 

the modified MWNT coated PSf membrane.  
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4.3.3 Removal of model organic compound by using MWNT conductive membrane in an 

electrofiltration system  

The electrochemical filtration for organic matter degradation is defined by three primary steps: 

mass transfer, physical adsorption and the electron transfer mechanism [178]. The influent 

concentration of methyl orange is 14µM and the membrane was challenged with this 

concentration at a flow rate of 1.5 ml/min. The mass transfer of the influent and physical 

adsorption on the carbon nanotube surface is important for the oxidation of organic matter with 

the application of electrical potential (3V). For the different bilayer membrane the conductivity is 

different and thus the electron transfer rate is different. In this study the electrical potential was 

kept constant to visualize the effect of different bilayer membrane. The methyl orange 

degradation results are very promising and shown in figure 4.14. The pristine membrane shows 

21% removal and the mechanism is only physical adsorption and sieving. Although the carbon 

nanotube concentration is very low for the 5 bilayer membranes but the organic matter removal 

becomes 98%. The membranes achieved 99% removal with the increase of bilayer. The results 

prove that the electron transfer at 3V was sufficient enough to achieve 98-99% removal. The 

electro-oxidation of methyl orange is explained by the direct oxidation as well as indirect 

oxidation depending on the anode potential[178]. The direct oxidation takes place when the 

physical adsorption of methyl orange on the CNT anode takes place and the rapid electron 

transfer accelerate oxidation as a function of anode potential. 
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Figure 4.14: Removal of methyl orange through electrochemical filtration with hydrodynamic 

flow conditions 

 

4.3.4 Inactivation of microorganisms (antimicrobial activity) of by using MWNT membrane in an 

electrofiltration cell 

To examine the inactivation of microorganism with different applied potential the experiments 

has been done for one specific type of membrane. The 10 bilayer membrane has been used as 

control membrane as it shows consistent performance and the MWNT concentration is modest. 

The baseline loss of E. coli membrane integrity due to the MWNT toxicity was determined as 

31.2%. The MWNT toxicity is due to its needle like structure that can rapture the cell membrane 

of microorganism and eventually inactivation and killing. The bacterial inactivation through 

electro-oxidation can also be explained as physical adsorption and oxidation of the 

microorganism cell membrane. As the anode potential increases to 1V, 2V and 3V the 

inactivation of E. coli also increases to 91.9%, 94.3% and 100%. These values indicate complete 

inactivation of the microorganism. Thus the results of this microbial inactivation are very 
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significant and can reduce the biofouling tremendously which can be easily washed through 

tangential shearing during cross flow shearing. 
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Figure 4.15: Electrochemical loss of E. coli viability versus applied potential 

 

4.3.5 Stability of the MWNT LBL films under physical and chemical stresses 

The stability of the LBL deposition was determined by physical (bath sonication) and chemical 

(low pH, high pH and salt concentration) stress test and the change in their contact angle was 

shown in figure 4.16. There is a slight increase in contact angle with the destructive physical test 

which can be caused by subsequent etching of the modified surface. There was no visible change 

in nanotube layer distortion though the physical stress is able to change the orientation of the top 

layer that leads to the higher hydrophobicity as well as increase in contact angle. There is no 

sharp decrease in contact angle for the chemical test and the chemical stress lowers the contact 

angle. At pH 2 the H
+
 ions are able to decrease the charge density of the MWNT-COOH and the 

same effect is seem in pH 12 where OH
-
 ions can affect the charge density. For NaCl the contact 

angle became 82.9˚ from the control membrane having 102.9˚. This effect can be explained by 
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the dissociation of Na
+
 and Cl

-
 ion that can combine with the MWNT-COOH and thus affecting 

the charge density of the charged MWNT-COOH layer. This result demonstrates insignificant 

changes under harsh chemicals and which is due to the charge distribution of the MWNT-COOH 

layer. Although the membrane shows slight increase and decrease but due to the higher value of 

hydrophobicity the results can be marked as stable and there is no possible mechanism of carbon 

nanotube dissociation on this stress tests. 
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Figure 4.16: Contact angle after physical (Sonication) and chemical stress (pH 2, pH 12 and 5M 

NaCl) 
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5. CONCLUSIONS 

By using the plasma treatment, polysulfone membrane was successfully functionalized with the 

oxygen containing functional groups and thus the wettability of the membrane was improved. 

Alongside with contact angle analyses that show improved wettability, several other analyses 

such as SEM, ATR-FTIR, XPS, EKA and permeability measurement confirmed the successful 

functionalization of polysulfone membrane. The contact angle analyses of plasma induced 

polysulfone membrane after EDC/NHS treatment has been found to be reduced and thus the 

membrane became more hydrophilic as well as stable amine reactive ester groups were created. 

After the membrane functionalization, the vacuum assisted layer by layer self assembly of 

MWNT-NH2 and MWNT-COOH was used to generate desired number of MWNT bilayers. 

Characterization of the membrane surface showed highly hydrophobic membrane surface due to 

the inherent hydrophobicity of the carbon nanotubes. The thickness profile of different bilayer 

membrane presented linear behavior while the atomic layer deposition was difficult to ensure 

due to the high aspect ratio and orientation of the carbon nanotubes. The modified membrane 

surface exhibited excellent conductivity (4.1x 10
3
 s/m), which is in the same order of magnitude 

of graphite. The conductivity showed slight increase with the increasing the number of bilayer as 

higher concentration of nanotube improves the electron transport network. The permeability 

trend of the modified membrane was slightly downward while the selectivity of the modified 

membrane has been improved significantly. The tradeoff between permeability and selectivity is 

well accepted fact for membrane industry as well as the membrane showed antifouling properties 

for long-term use. The developed membrane exhibits some unique properties to overcome the 

flux reduction (fouling) through high organic matter degradation and 100% bacterial inactivation 

aided with electrochemical filtration at very low electrical potential. The modified membrane 

was also found to be very stable against physical and chemical stresses. These results suggest the 

application of this modified conductive ultrafiltration membrane in a large scale water treatment 

plant will provide high quality product water (free of any pathogenic microorganisms).  
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6. RECOMMENDATIONS FOR FUTURE STUDIES 

In this study plasma treatment has been used for the membrane functionalization as the plasma 

has the least impact on membrane bulk property, however there are many other methods such as 

physical adsorption by coating, graft polymerization etc. The effect of other type of surface 

modification technique is still to investigate for identifying the ultimate stability of the 

conductive layer. Moreover, additional characterization to determine the interaction between the 

membrane and nanomaterial as well as the each bilayer interaction can serve the optimization of 

the interaction forces. Due to the lab scale operation the effect of the permeability and rejection 

was only tested in a flow through dead end filtration setup. The influence of cross flow filtration 

system on longer term use and membrane stability under continuous flow mode need further 

study for scaling up this membrane application to commercial grade. The membrane was tested 

with controlled solution whereas in real life application the water may contain a variety of 

contaminants. Therefore further study should be performed to investigate the membrane 

performance by challenging with real source water rather than known concentration of 

contaminants. 
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