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ABSTRACT

An Optimal Control Framework for Flight Management Systems

Jesus Villarroel

In the present day, the aviation sector is one of the largest contributor of carbon dioxide

emissions in the world. As air traffic growth is expected to outweigh the industry’s efforts

to reduce air pollution, the problem of minimizing fuel consumption in commercial flight

becomes of utmost importance. This thesis proposes an optimal control framework for the

optimization of aircraft trajectories in Flight Management Systems (FMS), focusing on the

problem known as the Economy Mode. This problem consists of minimizing the direct

operating cost of the flight in compliance with a crew-supplied cost index.

The objective of the FMS is to obtain optimal true airspeed references that will then be

followed by the pilot or the autopilot. The optimal top-of-climb and top-of-descent must be

computed as well. A novel approach is proposed based on solving the problem analytically

using a combination of Pontryagin’s maximum principle and the Hamilton-Jacobi-Bellman

equation. For the cruise phase, a sub-optimal algebraic solution for the true airspeed is

obtained in a state-feedback form, which reduces to the well-known maximum range case

when the cost index vanishes. For the climb and the descent, the sub-optimal speed is the

positive root inside the aircraft’s flight envelope of a 5th degree polynomial whose coefficients

involve only the state variables and the aircraft-specific coefficients, which can be found easily

with fast-converging algorithms such as Newton’s method. The exact optimal trajectories are

computed numerically using the shooting method, and simulations show that the sub-optimal

trajectories are close enough for all practical purposes. Moreover, the trajectories exhibit the

expected behavior regarding the locations of the top-of-climb and top-of-descent. Having

attained an analytic solution for the cruise and a computationally inexpensive formulation

for the climb and the descent, the need to have a performance database in the system is

eliminated thus making its implementation faster in real-time.
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Overall, the developments presented in this work not only provide a very efficient means

of implementing the optimal speed schedules in an on-board FMS, but also extend the theory

of aircraft performance to the more general minimum-cost case based on the cost index.
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Chapter 1

Introduction

1.1 Motivation

Carbon dioxide (CO2) emissions in the world have increased steadily during the last two

decades. According to the Netherlands Environmetal Assessment Agency, China emitted

10300 million metric tons of C02 in 2013 making it the largest emitter in the world, followed

by the United States at 5300 million metric tons [1]. The same report identifies international

transport as the most significant factor in global carbon emissions, a fact that is supported by

the U.S. Energy Information Administration [2], which states that the transportation sector

is the largest contributor of C2 emissions in the country, emitting around 2400 million metric

tons in 2013. In addition, recent research suggests that air traffic growth will outweigh the

industry’s efforts to reduce C02 emissions unless ticket prices begin to increase by at least

1.4% annually [3]. Furthermore, the decrease in oil prices by more than half in the end of

2014 is expected to have a negative impact on the environment in oil-importing countries,

as investment in alternate technologies is discouraged and consumers use more gasoline and

larger, less fuel efficient vehicles [4]. Taking all this information into account, the problem

of minimizing fuel consumption in commercial flights becomes of utmost importance and

could potentially reduce CO2 emissions by a significant amount. In an aircraft, the task of

optimizing its trajectory is carried out by the on-board flight management system.
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1.2 Flight Management System Description

Flight Management Systems (FMS) are the master computers of an aircraft. Since their

introduction in 1982, they have become a staple in every modern aircraft thanks to their

capability of significantly reducing the workload of the crew. This is done by interfacing with

all the navigation systems in order to produce the best possible measurements, providing the

tools for an easy flight plan assembly, synthesizing optimal trajectories and even guiding the

aircraft in order to follows those trajectories, amongst other things. All these functions are

readily accessible to the pilot through a single control panel called the Control Display Unit

(CDU) [5].

Figure 1.1: Block diagram of a Flight Management System.

A typical FMS consists of several subsystems as shown in Fig. 1.1 [6, 7]. A flight plan,

comprised of a series of waypoints describing latitude/longitude pairs and possibly speed,

time or altitude constraints (at or above, at or below, etc.), is put together by the Flight

Plan Management (FPM) module. It communicates with an up-to-date Navigation Database

containing a list of airports, their Standard Instrument Departure (SIDs) and Standard

Terminal Arrival Route (STARs) procedures, waypoints, airways and navigation aids. The

pilot inputs the desired flight plan and controls the FMS via the Control Display Unit (CDU).
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The Navigation block determines the best estimate of the position and velocity of the aircraft

as well as the wind velocity by merging the information from the Inertial Reference System

(IRS), Global Positioning System (GPS) and other navigation systems using Kalman filtering

techniques.

The Performance and Guidance module is the most relevant to this work. It is concerned

with generating a trajectory that minimizes a given performance measure, such as the rate

of climb (ROC), aircraft range and overall trip cost. The FMS assumes that the longitudinal

(vertical) and lateral dynamics of the aircraft can be decoupled. The different performance

modes available, named after the performance measure that they minimize, provide different

optimal trajectories., such as [7]:

• Economy (ECON) Mode: Minimize total operating cost of the flight (all fight

phases).

• Required Time of Arrival (RTA): Reach a waypoint at a specified time (all flight

phases).

• Long Range Cruise (LRC): Yield the trajectory that gives 99% of fuel efficiency

(cruise only).

• Maximum Endurance: Maximize the time that the aircraft can stay in the air with

the current fuel reserves (cruise only).

• Maximum Rate of Climb: Minimize the time to reach cruise altitude (climb only).

• Maximum Angle of Climb: Maximize the climb angle (climb only).

The longitudinal trajectory is in the form of an optimal true airspeed command, thrust

target, the top-of-climb (TOC) and top-of-descent (TOD) waypoints, with the cruising alti-

tude being a fixed, crew-entered value determined by Air Traffic Control (ATC). After the

optimization is carried out, the system predicts the estimated time of arrival, fuel remaining,

speed and altitude at each waypoint. Since commercial aircraft fly in quasi-steady flight
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conditions where accelerations are very small, the thrust is usually constrained to offset the

effect of the aerodynamic forces or is set to pre-determined climb or descent rating. As a

result, it can be computed in a straightforward manner once the speed is known, the latter

becoming the most important parameter involved in the optimization.

In a typical FMS, the optimized speed schedules for the different modes are computed

off-line and stored in the Performance Database, which also contains the data regarding

the aerodynamic, propulsion and fuel consumption of the aircraft necessary to carry out

performance predictions [6, 8]. The lateral path is generated based on the flight plan by

the Guidance block according to a fixed set of rules, which is then shown in the Multi-

function/Navigation Display. This module also sends pitch, thrust and steering commands

to the autopilot to ensure that the aircraft follows the computed lateral and longitudinal

trajectories. Other useful information, such as the desired track and cross-track error, is

calculated and displayed as well.

It is important to note that the FMS is a reference generator: It computes set-points that

are then furnished to a separate autopilot system whose task is to follow those targets using

the aircraft’s flight controls such as the elevator, ailerons and throttle. As a result, the FMS

can be thought of as an outer control loop in the control system, and the dynamics of the

aircraft associated with the speed and flight path angle can be neglected. Such dynamics

then become the concern of the inner loop consisting of the autopilot and auto throttle.

1.3 Economy Mode and Cost Index

The main focus of this thesis is the Economy (ECON) Mode, which is also the default mode

in a FMS and the most important. It is concerned with minimizing the total operating cost

of the flight, expressed by the performance measure

Total Operating Cost = CfΔf + CtΔt,

4



where Δf is the total weight of fuel consumed, Δt is the trip time, Cf is the cost of fuel per

unit of weight and Ct is the cost of the flight per unit time, comprising hourly maintenance

costs, flight crew salaries, leasing costs, amongst others [9, 10]. If Cf is factored from the

equation we get

Total Operating Cost = Cf

(
Δf +

Ct

Cf

Δt

)
= Cf (Δf + CIΔt)

Since Cf is constant, the problem of minimizing the total operating cost is equivalent to

minimizing the total cost in a fuel-equivalent form, expressed as follows:

Total Fuel-Equivalent Operating Cost = Δf + CIΔt (1.1)

Equation (1.1) computes the total operating cost in terms of a single parameter called the

Cost Index (CI) CI , which can be interpreted as the fuel-equivalent cost of time. A CI of zero

corresponds to a small Ct or a large Cf , which is equivalent to minimizing fuel consumption

disregarding time, while a maximum CI correspond to a large Ct which can be interpreted as

minimizing the trip time regardless of the amount fuel consumed. Thus, being a convenient

way of biasing the FMS between saving fuel or minimizing flight time, the ECON Mode finds

the optimal trajectory that minimizes (1.1) for a given, crew-entered CI [11].

Figure 1.2: Effect of CI on the longitudinal profile.
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The effects of CI on the longitudinal profile are well known. As depicted in Fig. 1.2,

increasing CI during climb makes the climb angle shallower and pushes farther the TOC,

while in descent the TOD starts later and the descent slope becomes steeper; during cruise

at a constant altitude, a higher CI simply increases the true airspeed and the aircraft burns

more fuel [9, 11, 12]. The opposite behaviors of the TOC and TOD might seem counter-

intuitive at first, since the descent can be thought as a climb backwards in time, but the

main difference between the two phases is the engine’s thrust setting: A high value known

as the maximum climb thrust is used while climbing, whereas a low value known as the idle

thrust is used while descending [13].

The CI’s units and range of allowable values vary depending on the FMS manufacturer

and aircraft type. For example, Boeing defines the cost index in dollars per hour divided by

cents per pound, as explained in [12]. In this work, it is assumed that CI is given in pounds

per seconds (lb/s).

1.4 Objective

As explained in Section 1.2, current FMS contain a Performance Database that stores the

optimal speed schedules for the aircraft in question, which are computed prior to the instal-

lation. The procedure used to generate this data is classified information. While storage

space might not be an issue in today’s systems, employing performance tables to obtain the

speed targets would often require interpolation between the sampling points, as opposed to

implementing a real-time scheme in which the optimal references would be computed directly.

In particular, analytic solutions require the least amount of storage space and computational

time. To the best of the author’s knowledge, most of the open literature regarding trajectory

optimization of aircraft either do not consider the performance modes present in a FMS,

or propose algorithms that require off-line computations or are too taxing for an on-board,

real-time implementation. As a result, finding an explicit, analytic feedback law for the

speed schedules would not only supply a very efficient means of implementation in a FMS,

6



but would also provide an elegant theoretical contribution to the performance analysis of

aircraft.

The objective of this thesis is to obtain state-feedback laws for the optimal true airspeeds

that generate cost-optimal trajectories in terms of CI for the different phases of flight, prefer-

ably as explicit analytic solutions, suitable for implementation in a real FMS. Sub-optimal

solutions are acceptable, provided that they are sufficiently close to the optimal and easily

implementable. The Range, Endurance, Maximum Rate of Climb and Minimum Rate of

Descent problems are also considered.

1.5 Literature Survey

1.5.1 Optimal Control

Optimal control theory is the branch of control systems that is concerned with finding the

control inputs for a system that optimize a given performance measure [14]. After determin-

ing the state-space representation of the system and defining the performance measure, an

Optimal Control Problem (OCP) is formulated and solved using different techniques. There

exists two main approaches to solving OCPs: The maximum principle which is based on

calculus of variations, and dynamic programming leading to the Hamilton-Jacobi-Bellman

(HJB) equation, based on Bellman’s principle of optimality. Nowadays, optimal control the-

ory is well known and documented, and several books have been released on the matter,

including [14–17].

The maximum principle was invented by Russian mathematician Lev Pontryagin et al.

in 1956, and first published in English in reference [18]. This approach yields a Two-Point

Boundary Value Problem (2PBVP) which can be solved analytically in some cases, but

generally require using a computer. An important drawback of the maximum principle is

that, since 2PBVPs specify some conditions at the initial time and others at the final time,

the optimal trajectories and controls attained are usually described in an open-loop fashion,
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that is, as a function of the time (or the independent variable used). Ideally, it would be

preferable if the control inputs were given in a state-feedback form, as it would be valid for

different initial conditions and it would account for deviations from the optimal trajectory

due to potential disturbances.

In 1957, at around the same time when the maximum principle was proposed, dynamic

programming was formulated by Richard Bellman and published in [19]. Based on the princi-

ple of optimality, this approach provides state-feedback targets but is more computationally

intensive. It demands more storage capacity, as the state-space must be partitioned into

a grid and processed every iteration to obtain the minimal cost-to-go [14]. Its continuous-

time equivalent is the HJB equation which involves a nonlinear Partial Differential Equation

(PDE) and a boundary condition that must be satisfied by the optimal cost. It has the same

advantage as dynamic programming of providing a state-feedback control law, but obtaining

an analytical solution to the HJB is usually very difficult, if not impossible, for most prob-

lems. Nevertheless, an important contribution regarding the solution of PDEs that has been

applied to the HJB equation is the development of viscosity solutions, proposed by P. Lions

et al. in [20] (viscosity solutions are not utilized in this work).

1.5.2 Flight Management Systems

The actual algorithms used in a real FMS to generate the performance database are classified

information. However, there exists some publications by Boeing and Airbus that provide the

intuition behind the speed schedules that are provided by the performance module of the

FMS. For example, [10] is a thorough discussion on aircraft performance by Boeing including

the different performance modes available for each phase of flight in detail, for which examples

in the form of plots and charts are provided without specifying the methodology to obtain the

speed targets. A series of articles published in Boeing Aero Magazine, cited in [11,12,21,22],

summarize the impact of different speed schedules on fuel and cost savings during takeoff,

climb, cruise and descent, including the effect of the CI on the TOC and TOD. Similar
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documents by Airbus include [9, 13].

In the open literature, Sam Lidén from Honeywell (a manufacturer of FMS) has been an

important contributor on the topic. In [6] he presents the history of FMS and their evolution

in time, while in [23] he discusses issues regarding the implementation of the RTA mode

in FMS, which involves computing the CI that meets a time arrival constraint at a given

waypoint. He has also published several patents, including [24] for a FMS that minimizes

operating costs including the arrival error, and [25] for a method for computing optimum

altitude steps considering the effect of winds.

Within Concordia University, a laboratory-based test bed for FMS is developed in [26]

based on a commercial flight simulation software to obtain the aircraft aerodynamic data.

A communication interface between this software and the FMS is developed, as well as a

graphical user interface to operate the test bed.

1.5.3 Optimal Control Applied to Aircraft Trajectory Optimiza-

tion

There has been several contributions in the open literature regarding the optimization of

aircraft trajectories in FMS since the 1980’s, most of which have been based on the theory of

optimal control, involving the definition of an OCP and solving it using the the techniques

mentioned in section 1.5.1.

The maximum principle has been the most applied approach to the optimization of aircraft

trajectories. Books such as [17, 27] apply this approach to the minimum fuel, minimum

time, maximum-range and maximum rate-of-climb for aircraft problems. Some of the first

algorithms for the generation of on-board minimum cost trajectories in FMS using an energy-

state aircraft model, where it is assumed that energy increases monotonically during climb,

stays constant during cruise and decreases monotonically during the descent, can be found

in [28–31]. ATC constraints in these works are either neglected or incorporated in the form

of step-climbs. Computing a CI that meets a time of arrival constraint at a certain waypoint,
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which is the strategy used by FMS in the RTA mode, is discussed using the Maximum

Principle in [32,33]. A more recent work discusses “next generation” FMS [34], assuming that

the aircraft stays very close to the optimal trajectory allowing to linearize the model about

the trajectory and to design a feedback autopilot. However, the cost functional discussed in

section 1.3 for the Economy mode is not considered, with a quadratic cost functional being

used instead.

Dynamic programming has also been considered in aerospace applications, in works such

as [35], in which issues such as the size of the solution space and enforcing constraints are

discussed. In [36] the Economy Mode is addressed and expanded by adding “at or before”

and “at or after” time constraints, along with several improvements to reduce computation

times. The generation of maximum-range trajectories during descent for commercial aircraft

in engine-out situations using dynamic programming has been considered in [37]. Very recent

publications include [38], in which minimum fuel trajectories are obtained for all flight phases

while taking the wind profile into account and ATC constraints. Finally, the HJB equation

has been applied to trajectory optimization of aerial vehicles, in works such as [39], where

an explicit solution is attained for the minimum time trajectory of a glider in a competition,

and [40], where a numerical method is developed to solve the HJB equation based on viscosity

solutions.

Finally, as a result of the increased computational power for on-board flight management

computers, other methods have emerged that do not rely on the classic optimal control theory.

Instead, these methods rely on converting the OCP into a nonlinear program, such as [41], or a

finite-dimensional optimization, as in [42], and solving the resulting problem using numerical

algorithms or specialized solvers. In [43], a method is developed to obtain the performance

bound of minimum time and minimum fuel descent trajectories, also considering the case of

RTA, and the optimal trajectory is generated using a numerical method known as the Gauss

pseudo-spectral method. Reference [44] considers the so-called inverse dynamics method

to generate minimum-time trajectories, in which the OCP is transformed into a nonlinear
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program and the optimal trajectory is parametrized using polynomials.

Even though the ECON problem has been treated extensively in the open literature, most

of the contributions are centered around the previously mentioned approaches which resort

to complicated numerical methods, and generally obtain time-dependent descriptions of the

optimal trajectories which require a-priori offline computations. To the best of the authors’

knowledge, there has been no attempt, at least in the open literature, to obtain explicit,

analytic solutions to the ECON problem in a state-feedback form. As a result, the following

methodology will be proposed to attain the objective of this work.

1.6 Methodology

The ECON mode will be formulated and solved as an OCP for each of the flight phases:

climb, cruise and descent. The model of an aircraft flying in the longitudinal plane will be

considered in state-space form, and assumptions will be made to simplify and make it more

tractable for algebraic manipulations. To solve the OCP, both the Pontryagin’s Maximum

Principle and the Hamilton-Jacobi-Bellman equation will be used.

To validate the attained solutions, the Two-Point Boundary Value Problems (2PBVPs)

derived from the Maximum Principle will be solved directly by the means of a shooting

method in Matlab and Simulink. The shooting method is an iterative algorithm that solves

2PBVPs by reducing them to initial value problems. This method is not suitable for a

real-time implementation, as it relies on integrating the governing equations of the 2PBVP

problem each iteration which is generally time consuming, and it requires an initial estimate

of the unknown initial conditions from practical experience or trial and error. However, the

trajectories resulting from the shooting method can be considered as optimal, which are then

compared to the ones generated by the proposed solutions. An aircraft model based on the

Gulfstream Aerospace’s G-IV aircraft is used for the simulations.
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1.7 Contributions

The following results are obtained in this thesis:

• The well-known true airspeed targets for maximum rate of climb, minimum rate of

descent, maximum range and maximum endurance are obtained by formulating each

scenario as an OCP and solving it by applying classical optimal control techniques.

From a theoretical point of view, this is the first time that these problems have been

approached from this perspective.

• For the cruise phase of the flight, a sub-optimal analytic expression in state-feedback

form is derived for the true airspeed in ECON mode. Moreover, when CI vanishes, the

solution reduces to the maximum-range speed which is known to be equivalent to the

minimum fuel per unit distance case. Simulation results show that the relative error

between the optimal cost (obtained by solving the OCP directly using the shooting

method) and the cost resulting from applying the analytic law is less than or equal to

1 · 10−2% for the cases presented in this thesis, making the sub-optimal approach good

enough for practical purposes. To the best of the author’s knowledge, this is the first

time that an algebraic expression has been proposed for the solution of this problem.

• For the climb and descent phases, a 5th degree polynomial in terms of the sub-optimal

speed is obtained, its coefficients involving only the states of the aircraft. The roots of

such polynomial can be found on-line by fast-converging algorithms such as Newton’s

method. The latter is arguably one of the simplest numerical methods available, making

this approach suitable for implementation in a real-time FMS. As in the cruise phase,

simulations show that, for the cases studied in this thesis, the relative error between

the optimal and sub-optimal cost is less than 1 · 10−3%, and therefore the sub-optimal

trajectory is close enough to the optimal one for practical purposes.
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1.8 Structure of the Thesis

Chapter 2 starts by the Theoretical Preliminaries, covering the basic background material

required for understanding the rest of the thesis. It is followed by Chapter 3, which formulates

and solves the OCPs for Maximum Endurance and ECON during the cruise phase. For the

latter, a sub-optimal analytic expression for the optimal speed is found, which is compared

to the solution obtained by the shooting method at the end of the chapter. Next, Chapter 4

applies the same treatment to the climb and descent phases, addressing the Maximum Rate

of Climb, Minimum Rate of Descent and ECON problems. A polynomial is found, one of

its roots being the sub-optimal speed target, which is also compared to the shooting method

solution following the same approach as in the cruise. Lastly, Chapter 5 draws the main

conclusions of this thesis and provides extensions for future work.
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Chapter 2

Theoretical Preliminaries

2.1 Aircraft Performance

The material covered in this section is based on [5, 45–48].

2.1.1 The International Standard Atmosphere (ISA) Model

Aircraft fly in the Earth’s atmosphere and, as a result, the latter has great influence on the

aerodynamic and propulsion properties of the airplane. The main variables that must be

considered in the atmosphere are the density ρ, viscosity μ and pressure p, all of which can

be considered as depending on the air temperature T . The real atmosphere is constantly

changing, so there does not exists a “normal” atmosphere, but the International Standard

Atmosphere (ISA) has been defined as a baseline to obtain standardized conditions from

which analyses can be made. A day whose conditions match the ones in the ISA model is

called a standard day.

The ISA assumes that the gravitational constant g is equal to its value at sea level and

defines the variation of T with altitude h based on empirical data. As shown in Fig. 2.1,

the ISA divides the atmosphere in three layers: The troposphere from sea level to 36150 ft.

where T decreases linearly, one section of the stratosphere called the tropopause from 36150
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Figure 2.1: ISA variation of the temperature with respect to altitude.

ft. to 82300 ft. where T remains constant, and the last region from 82300 ft. until 154000

ft. where T increases linearly.

Let

Ts = 518.69 ◦R

ps = 2116.2lb/ft 2

ρs = 0.002377slug/ft 3,

be the standard sea-level temperature, pressure and density, respectively. From the ISA

definition of temperature, the equation of state of a perfect gas and the hydrostatic equation,

it can be shown that in the troposphere the following expressions are valid:

T = Ts + ah (2.1a)

p = ps

(
T
Ts

)− g
aR

(2.1b)

ρ = ρs

(
T
Ts

)−( g
aR

+1)
, (2.1c)
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where

a = −0.00356 ◦R/ft

g = 32.17ft/s 2

R = 1718 lb ft slug−1 ◦R−1

are the temperature lapse rate, gravitational constant and gas constant for air, respectively.

Similarly, for the tropopause layer, let

h1 = 36150ft

T1 = 389.99 ◦R

p1 = 472.2lb/ft 2

ρ1 = 7.0539 · 10−4slug/ft 3,

be the altitude. temperature, pressure and density at the point where the tropopause starts,

then the temperature remains constant, and the pressure and density are given by:

p = p1e
− g(h−1)

RT (2.2a)

ρ = ρ1e
− g(h−1)

RT (2.2b)

Commercial aircraft never fly in the highest region of the stratosphere, therefore the

equations for that layer will not be covered here. The main factor that influences aerodynamic

forces is the density, making (2.1c) and (2.2b) the most important expressions for performance

analysis.

The ISA model is general enough to allow predicting the atmospheric conditions even

in a non-standard day. This is achieved by the means of the density altitude, which is the

altitude above sea level in a standard day at which the standard density would be equal to

the actual density experienced by the aircraft. In colloquial terms, it is the altitude that
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the aircraft “feels” in the ISA. Strictly speaking, the variable h used throughout this work

must correspond to the density altitude to account for ISA deviations. Then, if the density

altitude is known, parameters such as the density and pressure can be computed using the

formulas presented in this section. The density altitude can be computed in real aircraft from

the pressure altitude read by the altimeter and the outside air temperature, and performance

charts for determining its value are usually available to pilots [5]. The exact procedure to

obtain density altitude is beyond the scope of this work and will not be discussed further.

2.1.2 Aerodynamic Forces Acting on an Airplane

The aerodynamic forces are a consequence of the movement of a body immersed in a fluid;

they are caused by the pressure and shear stress exerted by the fluid on the body’s exposed

surfaces. For an aircraft flying in the longitudinal plane, the fluid is the air present in the

atmosphere and the main bodies that generate aerodynamic forces are the wings, the fuselage

and the nacelles. Such forces are the lift which is perpendicular to the free-stream velocity,

and the drag which is parallel to it. These components, along with the pitching moment

about a point where the forces are considered to act on the airfoil of the wing (normally

the quarter-chord point), will completely describe the physical effects on the body due to

aerodynamics, as shown in Fig. 2.2.

Figure 2.2: Aerodynamic forces acting on a wing.

It is standard practice in this area of expertise to describe the aerodynamic forces in terms

of coefficients, in such a way that two aircraft of identical geometric shape but different sizes
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exposed to the same flow conditions yield the exact same coefficient values, a fact that

propelled the creation of wind tunnels. The lift, drag and pitching moment are therefore

given by

L =
1

2
CL(α,Re,M)ρSv2 (2.3a)

D =
1

2
CD(α,Re,M)ρSv2 (2.3b)

Mo =
1

2
CMo(α,Re,M)ρScv2, (2.3c)

where it can be seen that the coefficients are assumed to depend on the angle of attack

α, Reynolds number Re and the Mach number M . The nature of these dependencies vary

according to the shape of the airfoil. There exists an underlying assumption: commercial

aircraft fly in a quasi-steady regime, meaning that accelerations and moments are very small,

and that the control surfaces deflect slowly and in small increases. As a result, it can

be assumed that control surface deflections do not effect aerodynamic forces. There are

more general models that account for these dependencies, but for performance analysis of

commercial aircraft, the equations presented here provide sufficient precision.

A functional relationship often used for the lift in aircraft performance is given by

CL = CL0(M) + CLα(M)α,

where CL0 and CLα are known aircraft-dependent functions. This expression is consid-

ered valid until the lift coefficient reaches a known maximum value CLmax , after which the

approximately-linear relationship between CL and α is broken and CL drops rapidly. If

this situation is reached, it is said that the aircraft has stalled, and we can compute the

corresponding stall speed by using CLmax and (2.3a) to obtain:

vs =

√
2W

ρSCLmax

(2.4)
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In (2.4) we have assumed that the lift equals the aircraft gross weight, an approximation

that is commonly used for commercial aircraft flying in quasi-steady conditions. It will allow

us to compute CL using the weight, resulting in a required angle of attack such that the lift

coefficient equation is satisfied.

The drag is expressed as a function of the lift coefficient as follows:

CD = CD,0 + CD,2C
2
L (2.5)

This well-known equation is called the drag polar. Generally speaking, the coefficients

CD,0 and CD,2 should depend on the Mach number, specially in transonic and supersonic flight

where shockwaves form around the wings, greatly increasing the drag. For most commercial

aircraft (which fly at a Mach number of less than 0.8), they can be assumed constant.

There exists well-known expressions to model the pitching moment coefficient CM0 . How-

ever, this work involves commercial aircraft flying in quasi-steady conditions where the rota-

tional dynamics of the aircraft can be neglected. As a result, the pitching moment coefficient

is not relevant to our discussion and will not be covered here.

2.1.3 Equations of Motion in the Longitudinal Plane

It is assumed that the Earth is flat and an inertial reference frame. As shown in Fig. 2.3,

the following coordinate systems are defined:

• The Earth coordinate system xeyeze, attached to the surface of the Earth at sea level

with ŷe pointing into the plane, such that the xeze plane becomes the longitudinal plane

in which the aircraft flies.

• The horizon coordinate system xhyhzh, whose origin is located at the center of gravity

of the aircraft and its axes stand parallel to the Earth axes.

• The body axes system xbybzb, which is attached to the airplane at its center of gravity,
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such that x̂b points along the nose of the aircraft and the ywzw plane is its plane of

symmetry (see Fig. 2.3).

• The wind axes system xwywzw, which moves with the airplane with the origin at its

center of gravity, and x̂w is in the same direction as the velocity vector v. It is tilted

relative to the horizon system by the flight path angle γ, and the body axes are tilted

with respect to the wind axes by the angle of attack α.

Figure 2.3: Coordinate systems for an aircraft flying in the longitudinal plane.

In the equations of motion derived below, the kinematic equations describe the position

(x,−h) of the aircraft with respect to the Earth coordinate system (note that ẑe points

towards the center of the Earth). Newton’s equations state that the sum of the forces shown

in Fig. 2.4 equal the time rate of change of linear momentum, and are written on the wind

axes system. Based on these considerations, it can be shown that the so-called wind axes
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state-space model of an aircraft flying in the longitudinal plane is given by

ẋ = v cos γ

ḣ = v sin γ

v̇ =
( g

W

)
(T cosα−D −W sin γ)

γ̇ =
( g

Wv

)
(T sinα + L−W cos γ)

Ẇ = −SFC(h, v, T )T,

(2.6)

Figure 2.4: Forces acting on an aircraft flying in the longitudinal plane.

where the control inputs are the angle of attack α and the engine thrust T , and L and D

are given by (2.3a) and (2.3b), respectively. The Specific Fuel Consumption (SFC), SFC ,

is explained briefly in Section 2.1.5. This model neglects rotational dynamics. However, as

explained in Section 2.1.2, commercial aircraft fly in quasi-steady conditions, and therefore

we can assume that moments are negligible.
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2.1.4 Flight Envelope

In Section 2.1.2 the stall speed, given by (2.4), was introduced. The stall speed becomes a

lower bound on the valid range of True Airspeeds (TAS) that the aircraft may fly at, for

a given value of altitude and weight. It makes sense to ask then if there exists an upper

bound on the TAS as well, and in which region of space can the aircraft sustain steady, level

flight. Such region is called the flight envelope, and is usually given by a curve plotted in

the speed-altitude plane consisting of the locus of maximum and minimum velocities, for a

particular weight.

An upper and lower bound on the TAS can be estimated as a consequence of the engine

limitations and drag characteristics of the airplane: Assume that the aircraft flies in steady,

level-flight. In (2.6), the derivatives of v and γ become zero, as well as γ. If we let T sin(α) <<

W and assume T cos(α) ≈ T , then the neglected dynamics yield the following balance of

forces:

L = W (2.7)

T = D (2.8)

Equations (2.7) and (2.8) are frequently used in the performance analysis of aircraft during

cruise. When in level flight, the amount of thrust needed to equal the drag as in (2.8) is

called the thrust required. Let the engine thrust T be constrained to a given range

Ti ≤ T ≤ Tmax(h), (2.9)

where the idle thrust Ti and maximum thrust Tmax are known for a particular engine. In

fact, the latter is normally a decreasing function of h in turbojet and turbofan engines, and

is specified in tabular or graphical form. Then, combining the expression for the drag (2.3b)
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and (2.8), we get:

T =
1

2
CDρSv

2

Substituting the drag coefficient (2.5) gives

T =
1

2

(
CD,0 + CD,2C

2
L

)
ρSv2,

which, after solving for CL in (2.3a) and accounting for (2.7), becomes:

T =
CD,0ρSv

2

2
+

2CD,2W
2

ρSv2
(2.10)

When T = Tmax(h), solving for v in (2.10) will yield the maximum and minimum velocities

for which the thrust can equal drag and level flight can be sustained, for each value of altitude

and weight. Normally, it is expected that solving (2.10) will yield two positive values for v,

the maximum and the minimum, until an altitude where the maximum thrust has decreased

to the point where both bounds coincide into a single, positive value. When that case

happens, we have reached the maximum altitude or absolute ceiling at which level flight can

be attained, with a rate of climb (ROC) equal to zero.

Generally speaking, it is expected that the stall speed vs is of larger magnitude than

the minimum v obtained using (2.10) for most altitudes. Moreover, in order to protect

the structural integrity of the airplane, real aircraft are also constrained to operate below

a maximum Mach number MMO and service ceiling hmax (defined as the height at which

ROC< 100 feet-per-minute). An accurate depiction of the flight envelope should therefore

account for these structural constraints as well as the stall speed and maximum speed due

to the thrust required limitation. A not to-scale drawing illustrating the shape of a typical

flight envelope is shown in Fig. 2.5.

To summarize, the flight envelope of the aircraft will yield constraints in its states and
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Figure 2.5: Sketch of a typical flight envelope.

control variables of the form:

h ≤ hmax

vmin(h,W ) ≤ v ≤ vmax(h,W )

Ti ≤ T ≤ Tmax(h)

(2.11)

One should also consider that the weight must be less or equal than a specified maximum

take-off weight.

2.1.5 Specific Fuel Consumption

The thrust specific fuel consumption, or simply Specific Fuel Consumption (SFC), is defined

for turbojet and turbofan engines as the weight of fuel burned per unit of thrust per unit of

time, so it can be thought of as a measure of how efficient the engine is at generating thrust

with respect to the amount of fuel consumed. From the weight dynamics in (2.6), we see

that

ff = −Ẇ = SFC(h, v, T )T, (2.12)

where f is called the fuel flow rate, and is the weight of fuel burned per unit of time. Solving

24



for SFC yields

SFC =
ff
T
, (2.13)

therefore the units of the SFC is [1/time]. It is accustomed to use hours as the unit of time

when specifying the SFC. For propeller and reciprocating engines, the SFC is defined in terms

of the engine shaft power instead of thrust. However, it is possible to convert the SFC for a

propeller-driven/reciprocating engine to an equivalent thrust specific fuel consumption and

vice versa. The reader should consult [46] for more details. As a result, we will consider

(2.13) as a general expression for SFC that encompasses all engine types.

Generally speaking, SFC is considered as a function of thrust, speed and altitude (to be

specific, it depends on the density, but the latter depends on height in the ISA model), and

may vary drastically from one engine to another. In the performance analysis literature,

simpler models are used where SFC may be constant, altitude-depending or a function of

both altitude and Mach number. This work will consider SFC to be a given function of h

SFC = SFC(h), (2.14)

where its dependency can be linear, quadratic or any other model that fits the data. Its

nature does not affect the results obtained in this thesis.

2.1.6 Cruise Performance

Maximum Range Speed

The range of an aircraft is defined as the total ground distance it can travel for a given

amount of fuel. To obtain the maximum range of an aircraft, one seeks to maximize its fuel

mileage or specific range, a measure of the distance traversed per unit weight of fuel. The

specific range is given by the ground speed (which we assume is equal to TAS due to the
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absence of wind) divided by the fuel flow rate, that is

rs ≡
v

ff
,

which, after substituting ff using (2.12), becomes:

rs =
v

SFCT
(2.15)

Note that (2.15) is in units of distance divided by fuel weight, as desired. Integrating rs

with respect to the weight from the initial gross weight W0 to the zero fuel weight W1 would

then yield the range:

Range =

∫ W0

W1

rsdW

There exists several approaches in the literature to estimate the range; we are interested,

however, in obtaining the maximum range speed, which as explained previously is the one that

maximizes (2.15). It can be shown that for jet-driven aircraft, under steady flight conditions

where (2.7) and (2.8) hold, the maximum range speed can be computed as follows [46]:

vrange =

(
2W

ρS

√
3CD,2

CD,0

)1/2

(2.16)

It must be emphasized once more that (2.16) is the groundspeed for maximum range,

which equals TAS under zero-wind conditions only. In addition, it is well-known that this

solution yields the best fuel economy: given a certain distance to cover, flying at (2.16)

ensures that the amount of fuel consumed per unit distance is minimized. This fact will be

remarked in Chapter 3 as a way to verify the ECON speed, which must match the minimum

fuel case when CI is zero.
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Maximum Endurance Speed

Endurance is defined as the amount of time an aircraft can fly with a given amount of fuel.

It is different from the concept of range in the sense that time is now the variable of interest,

not distance, and as a result endurance is more important in surveillance missions or when

executing holding patterns, where the aircraft’s autonomy is more important. The fuel flow

rate ff as defined in (2.12) plays the same role as the specific range in the case of endurance,

since minimizing it with respect to v yields the speed at which endurance is maximized.

Similar to the range, integrating the fuel flow rate with respect to the weight yields the

endurance.

As in the previous section it can be shown that, for jet-powered aircraft under steady

flight conditions, the speed for maximum endurance is given by the expression (see [46])

vendurance =

(
2W

ρS

√
CD,2

CD,0

)1/2

, (2.17)

which is the same value that minimizes the drag. It is tempting but incorrect to think that

maximizing endurance implies maximum fuel economy, since maximizing the time that the

aircraft can fly does not imply that it will reach its destination in a fuel-efficient manner.

Therefore, flying at the maximum range speed (2.16) will result in minimal fuel consumption

for the flight.

2.1.7 Maximum Rate of Climb and Rate of Descent Speeds

For an aircraft climbing (resp. descending) in quasi-steady flight conditions, the rate of climb

(resp. rate of descent) is defined as the vertical speed of the aircraft, given by

vvert =
v(T −D)

W
, (2.18)
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where

T =

⎧⎨⎩ Tc : γ > 0 (during climb)

Ti : γ < 0 (during descent)
.

In the previous expression Tc is the maximum climb thrust or thrust available, while Ti is

the idle thrust value. We assume that both are independent of v. To maximize vvert during

climb (resp. minimize during the descent), (2.18) is differentiated with respect to v and

equated to zero, known as the necessary condition of optimality (explained in section 2.2.1).

For steady flight conditions, the drag is given by [45]

D(h, v,W ) = d0(h)v
2 +

d1(h,W )

v2
,

where

d0 =
1

2
CD,0ρS

d1 =
2CD,2W

2

ρS
.

As a result, from differentiating (2.18) and setting it to zero, we get

T −D − vDv = 0,

in which we substitute the expression for the drag yielding

3d0v
4 − Tv2 − d1 = 0.

This expression can be solved for v2, which is given by

v2 =
T ±

√
T 2 + 12d0d1
6d0

,
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or, after replacing d0 and d1 and taking the positive sign:

v2 =
T +

√
T 2 + 12CD,0CD,2W 2

3CD,0ρS
(2.19)

Expression (2.19) computes the speed for the maximum rate of climb when T = Tc, and

similarly for the minimum rate of descent when T = Ti.

2.2 Optimization and Optimal Control

The material in this section is based on [14,17,27,49–51].

2.2.1 Necessary and Sufficient Conditions for Optimality

The necessary and sufficient conditions for solving a point-wise, finite-dimensional opti-

mization problem will be reviewed. Suppose that we want to minimize a given function

H : Rn × R
m → R, that is

min
u

H(x, u),

with respect to the decision variables or control vector u, which is of the form:

u = [u1 · · · um]
T

Assuming that there are no constraints on u and that the first and second partial deriva-

tives of H exist everywhere, then the necessary conditions for a minimum are [49]:

∂H

∂u
|u∗ = 0 (2.20a)

∂2H

∂u2
|u∗ ≥ 0 (2.20b)

Points u∗ that satisfy these conditions are called stationary points. Note that, since u is a

vector, condition (2.20a) implies that each component of the gradient ∂H/∂ui, i = 1, . . . ,m
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must vanish, and condition (2.20b) reads that the Hessian matrix ∂2H/∂u2 must be positive

semidefinite.

The sufficient condition for optimality is given by [49]

∂2H

∂u2
|u∗ > 0 (2.21)

For maximization problems, it can be shown that the sign in (2.21) must be negative.

If (2.21) is satisfied, then u∗ minimizes H. Note that (2.20b) and (2.21) differ only in the

greater or equal sign and, as a result, it is common practice to prove only (2.20a) and (2.21)

when solving optimization problems.

Note that H is a function of two variables: x and u. Often one wants to optimize a

multi-variable function with respect to only one of the variables, such as u. Such is the case

here, where the other variables are treated as constants and partial derivatives are used in

the necessary and sufficient conditions.

Condition (2.21) implies that the Hessian with respect to u of H must be positive definite.

A useful method for determining the positive definiteness of a matrix is by the means of

Sylvester’s criterion, which states that a symmetric matrix A is positive definite if and only

if its leading principal minors are all positive. The kth leading principal minor of a matrix

is defined as the determinant of its upper-left k-by-k matrix. As a result, to test the positive

definiteness of A, we compute the determinant of each k-by-k submatrix, including A itself.

All of these determinants must be positive for A to be positive definite.

For example, if we have a symmetric 2-by-2 matrix

A =

⎡⎣a b

b d

⎤⎦ ,
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then the following expressions must be satisfied:

a > 0

ad− b2 > 0

d > 0

This work will use the necessary and sufficient conditions presented in this section to

minimize a function called the Hamiltonian with respect to u, where the latter is subject to

strict inequality constraints. It is important to note that the existence of these constraints

does not invalidate the conditions presented here. For instance, suppose that u is constrained

to lie inside a set Ω, described by the vector g composed of p strict inequality constraints

Ω = {u : g(u) < 0} ,

then u∗ must satisfy (2.20a), (2.21) and gi(u
∗) < 0, i = 1, . . . , p. That is, u∗ must lie

in the interior of Ω, where the constraints g are not effective and can the problem can

be treated as an unconstrained one. Optimization of functions subject to less-or-equal or

equality constraints is not carried out in this thesis and therefore will not be covered in the

theoretical preliminaries.

2.2.2 Optimal Control Problem

An Optimal Control Problem (OCP) differs from a point-wise, finite-dimensional optimiza-

tion problem in two fundamental components: the existence of a dynamic system and the

performance measure.

A dynamic system could be a physical body (such as an aircraft) or any process whose

outputs vary dynamically as the inputs are applied. Such process needs a mathematical

description that accurately describes its response with respect to the control inputs. A well-
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known mathematical representation of dynamic systems is the state space representation, in

which the system is characterized by a set of state variables

ζ1(t), . . . , ζn(t),

and the control inputs

u1(t), . . . , um(t),

which are a function of time just like the states. Then, the relationship between the state

variables and control inputs is given by the set of Ordinary Differential Equations (ODEs)

ζ̇1(t) = f1(ζ1(t), . . . , ζn(t), u1(t), . . . , um(t), t)

ζ̇2(t) = f2(ζ1(t), . . . , ζn(t), u1(t), . . . , um(t), t)

...

ζ̇n(t) = fn(ζ1(t), . . . , ζn(t), u1(t), . . . , um(t), t),

or, in more compact form:

ζ̇(t) = f(ζ(t), u(t), t) (2.22)

In (2.22), we denote ζ = [ζ1 · · · ζn]T as the state vector, u = [u1 · · · um]
T as the control

vector and f = [f1 · · · fn]T as the dynamic function, which is generally nonlinear and time-

varying. The state space representation is widely used in control systems and provides a

universal framework for the analysis of dynamic systems. Section 2.1.3 will present a model

of an aircraft in state space form, which will be used in this work.

The performance measure, or cost functional, mathematically defines the criterion that

will be used to quantitatively assess the performance of the system. A functional is a real-

valued function that takes arguments from a space of functions, effectively making it a “func-
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tion of a function”. In optimal control, cost functionals of the form

J(ζ(t0), u(t0), t0) =

∫ tf

t0

L(ζ(t), u(t), t)dt+ φ(ζ(tf ), tf ) (2.23)

are used, in which t0 and tf are the initial and final time, respectively, and φ and L are scalar

functions. For any initial state ζ(t0) and control function u(t) the state is driven by (2.22)

for t ∈ [t0, tf ], and the cost functional (2.23) assigns a real number to the resulting state and

control history. Then, J gives us a quantitative measure of the performance of the system

for that particular control input. Simple examples of cost functionals include those used in

minimum time problems

J =

∫ tf

t0

dt = tf − t0,

and quadratic cost functionals that minimize the energy spent by the control signal

J =

∫ tf

t0

uT (t)Ru(t)dt

Having defined its main components, an OCP is formulated as follows: find the optimal

control function u∗(t) that minimizes the cost functional (2.23), where the optimal state tra-

jectory ζ∗(t) is generated by the system dynamics (2.22) evaluated for u∗(t). The optimization

is also subject to initial and final conditions on the state, and constraints on ζ and u are

described as a set of admissible states Z and control inputs U , respectively. Mathematically,

we write:

J∗(t0) := inf
u(t)

{∫ tf

t0

L(ζ(t), u(t), t)dt+ φ(ζ(tf ), tf )

}
s.t.

ζ̇(t) = f(ζ(t), u(t), t)

ζ(t) ∈ Z, u(t) ∈ U

ζ(t0) = ζ0

ψ(ζ(tf ), tf ) = 0

(2.24)
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Note that, while the initial condition ζ0 and the initial time t0 are considered as given,

the final condition ζ(tf ) and the final time tf do not have to be specified. In (2.24) we

have written that the final state and time must satisfy equality constraints ψ(tf , ζ(tf )) = 0.

This encompasses the case where final conditions are given as well. In other words, we want

(tf , ζ(tf )) to belong to a target set :

S = {(ζ(tf ), tf ) : ψ(ζ(tf ), tf ) = 0} (2.25)

The final time tf is then defined as the smallest time such that (tf , ζ(tf )) enters S. The

different types of OCPs are then represented by the choice of S. For instance, a fixed-time,

free-endpoint problem has a target set of the form S = t1×R
n, with t1 known. It is important

to consider that S must be a closed set for tf to be well defined.

The two main approaches used for solving OCPs, the Maximum Principle and Dynamic

Programming, will be the subject of the following subsections.

2.2.3 Pontryagin’s Maximum Principle

The Maximum Principle is a technique that provides necessary conditions that must be met

by a minimizing control u(t). Assume an OCP of the form (2.24) with unspecified terminal

time tf . Then, the system dynamics (2.22) and the final state constraints are adjoined to the

cost functional (2.23) yielding

J̄ =

∫ tf

t0

[
L(ζ(t), u(t), t) + λT (t)

(
f(ζ(t), u(t), t)− ζ̇(t)

)]
dt

+ φ(ζ(tf ), tf ) + νTψ(ζ(tf ), tf ),

with λ(t) being n time-varying Lagrange multipliers or costates, and ν being also lagrange

multipliers of the same dimension as ψ. Define the Hamiltonian as:

H(ζ(t), u(t), λ(t), t) = L(ζ(t), u(t), t) + λT (t)f(ζ(t), u(t), t) (2.26)
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It follows from calculus of variations that the necessary conditions for obtaining an optimal

J∗ are [17]:

ζ̇ = f(ζ, u, t) (2.27)

λ̇ = −
(
∂H

∂ζ

)T

(2.28)

∂H

∂u
= 0 (2.29)

λ(tf ) =

(
∂φ

∂ζ
+ νT ∂ψ

∂ζ

)
|tf (2.30)(

∂φ

∂t
+ νT ∂ψ

∂t
+H

)
|tf = 0 (2.31)

ψ(ζ(tf ), tf ) = 0 (2.32)

Equations (2.27) and (2.32) are re-statements of the system dynamics and the final state

constraints, respectively. On the other hand, (2.28) and (2.30) have effectively augmented

the system by providing additional dynamics and boundary conditions for the costates, while

u must be a stationary point of H as stated in (2.29). Equation (2.31) results from the fact

that the final time is not prescribed. In summary, the resulting problem is called a two-point

boundary value problem (2PBVP) because the boundary conditions for the state are given at

the initial time ζ0, while the ones for the costates λf are given at the final time via (2.30).

The approach presented in this section is the most frequently used in the literature when

dealing with OCPs. However, its main disadvantage is that the optimal control policy is

specified as a function of the costates, which must be obtained by integrating (2.28) backwards

in time subject to their boundary conditions. As a result, the control input is obtained as

a function of time. The 2PBVP can be solved numerically using the celebrated shooting

method, which will be explained briefly in the next section.
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2.2.4 The Shooting Method

The shooting method is a numerical technique to solve 2PBVPs, such as the ones formulated

using the maximum principle, by reducing it to an initial value problem. Suppose we have a

system described by n first order ODEs with some boundary conditions given at the initial

time and others given at the final time, that is:

ζ̇(t) = f(ζ(t), t), t ∈ [t0, tf ]

ζi(t0), i = 1, . . . , q specified

ζj(tf ), j = q, . . . , n specified

Normally, if ζi(t0) were specified ∀i = 1, . . . , n, the trajectory ζ(t) would easily be gener-

ated by integrating the state equation with the help of a computer. The main idea behind

the shooting method is to guess an initial condition for the states ζj, integrate the ODEs to

obtain the corresponding trajectory, then guess a new (and hopefully more accurate) initial

condition based on the error between the values of ζj at tf and their prescribed ones. The

algorithm would stop when the error in the final conditions are small enough, or when the

difference between consecutive values of the initial conditions (also known as seeds) becomes

negligible.

Letting ζ(k)(t) denote the state trajectory at the kth iteration, the following pseudo-code

is an example of a generic shooting algorithm:

1. Choose initial seeds ζ
(0)
j (t0)

2. Let k = 0

3. Do:

(a) Simulate the system by integrating the equations forward

(b) εj = ζ
(k)
j (tf )− ζj(tf )
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(c) Compute next seed ζ
(k+1)
j (t0) as a function of ζ

(k)
l (t0), εl and l = q, . . . , n, using a

given update law

(d) k = k + 1

4. Until
∑n

j=q |εj| < tolerance OR k ≥ Max. Iterations

The 2PBVPs resulting from the Maximum Principle fit into the framework of the shooting

method: in this case, the dynamics of the costates J∗
ζ are appended to the ones of the original

state variables ζ to form an “augmented” system in which some boundary conditions will

be prescribed at the initial time, and others at the final time. The optimal control input u

is obtained at every time-step by solving for it using the necessary condition of optimality

(2.29) (which could have an algebraic solution or be a transcendental equation; the way it is

solved would depend on the problem). As a result, the methodology discussed in this section

applies to the Maximum Principle, making the shooting method an attractive approach to

numerically solving OCPs.

It is important to note that the system’s governing equations must be integrated until

the final time each iteration, which could be a time consuming process especially for complex

systems. In addition, it requires selecting ζ
(0)
j (t0) from practical experience or trial and error.

Thus, even though it can yield precise numerical solutions to 2PBVPs, it is not suitable for a

real-time system implementation. However, it can be used to validate sub-optimal solutions

to OCPs off-line, as is the case in this thesis.

The main challenges when implementing the shooting algorithm include selecting the

initial seed for the states ζj(t0), specifically if they do not have an obvious physical meaning,

and choosing an appropriate update law for the subsequent guesses. A generally accepted

expression for an update law is [27]

ζ
(k+1)
j (t0) = ζ

(k)
j (t0)−

n∑
l=q

βl

(
ζ
(k)
l (tf )− ζl(tf )

)
(2.33)

where βl are tuning parameters. This work will use update laws of such type. To illustrate
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the shooting method, consider the spring-damper system in Fig. 2.6 where m = 4 lb is the

body’s mass, k = 16 lb/s 2 is the spring constant and c = 4.8 lb/s. This system is described

by the state-space model

⎡⎣ζ̇1(t)
ζ̇2(t)

⎤⎦ =

⎡⎣ 0 1

−ω2
n −2ξωn

⎤⎦ ⎡⎣ζ1(t)
ζ2(t)

⎤⎦ , (2.34)

where the damping coefficient ξ and the natural frequency ωn are given by

ξ =
c

2
√
km

= 0.3

ωn =

√
k

m
= 2 rad/s.

Figure 2.6: Spring-damper system used for the shooting method example.

In (2.34), ζ1 is horizontal position of the body while ζ2 is its speed. Suppose that we

want to find an initial position ζ1(0) such that the body reaches ζ1(tf ) = 0 with speed

ζ2(tf ) = −0.35 ft/s (equivalent to 10.6 cm/s) within tf = 4 s. The left sign implies that the

direction of the velocity is towards the left. We assume that the body is released with no

initial speed, that is ζ2(0) = 0. Putting everything together we have the following initial and

final conditions

ζ1(0) unspecified, ζ1(tf ) = 0

ζ2(0) = 0, ζ2(tf ) = −0.35.
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The shooting method will be used to obtain ζ1(0). It follows the algorithm specified

above, where the update law for ζ
(k+1)
1 (0) is based on (2.33) and is given by

ζ
(k+1)
1 (0) = ζ

(k)
1 (0)− β1

(
ζ
(k)
1 (tf )− ζ1(tf )

)
− β2

(
ζ
(k)
2 (tf )− ζ2(tf )

)
,

where β1 = 1 and β2 = −0.8 s, which were tuned using trial and error. The stopping

tolerance was set to 0.1. Table 2.1 shows the progression of ζ
(k)
1 (0) and the sum of the

errors ε throughout the algorithm, which was executed in Matlab. The initial seed was set

to ζ
(0)
1 (0) = 2.5 ft. It can be concluded that the algorithm converged in 5 iterations, and

the desired initial condition was found to be ζ1(0) = 1.87 ft. For this initial condition, the

corresponding final conditions were ζ1(tf ) = 0.08 ft and ζ2(tf ) = −0.35 ft/s, which are close

enough to the desired values.

Table 2.1: Shooting method progression for the spring-damper system example.

Iteration (k) ζ
(k)
1 (0) in ft Error (ε)

1 2.5 0.23
2 2.29 0.18
3 2.12 0.15
4 1.98 0.11
5 1.87 0.09

2.2.5 The Hamilton-Jacobi-Bellman Equation

The Hamilton-Jacobi-Bellman (HJB) equation results from the application of Bellman’s Prin-

ciple of Optimality using a dynamic programming approach. Such principle states that:

“An optimal policy has the property that whatever the initial state and ini-

tial decision are, the remaining decisions must constitute an optimal policy with

regard to the state resulting from the first decision” [52].

The principle of optimality allows us to derive optimal control inputs in a state-feedback

law : given an initial state ζ1, the optimal control is determined solely by the cost from that
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state until the final state ζf . Based on the cost functional (2.23), define the cost-to-go as:

J(ζ(t), u(t), t) =

∫ tf

t

L(ζ(t), u(t), t)dt+ φ(ζ(tf ), tf ) (2.35)

For a given initial state and time (ζ(t), t), and control input u(t), t ∈ [t, tf ], equation

(2.35) returns the cost to be incurred from that given point until the final time, using the

prescribed control history. The additive property of the optimal cost-to-go allows splitting

it as follows, for some time increment Δt:

J∗(ζ(t), t) = inf
u(τ),t≤τ≤t+Δt

{∫ t+Δt

t

L(ζ(τ), u(τ), τ)dτ + J∗(ζ(t+Δt), t+Δt)

}
(2.36)

In (2.36) the superscript ∗ denotes that the cost-to-go is optimal. It can be shown that,

by letting Δt converge to zero and using Taylor series, (2.36) yields a partial differential

equation that must be satisfied by the optimal cost-to-go, given by

0 = J∗
t (ζ(t), t) + min

u(t)
H(ζ(t), u(t), J∗

ζ (ζ(t), t), t), (2.37)

with

H(ζ(t), u(t), J∗
ζ (ζ(t), t), t) = L(ζ(t), u(t), t) + J∗

ζ ζ̇ , (2.38)

and boundary condition:

J∗(ζ(tf ), tf ) = φ(ζ(tf ), tf ) s.t. (ζ(tf ), tf ) ∈ S (2.39)

Equation (2.37) is the celebrated HJB equation, , with H being the Hamiltonian. A

subscript as in J∗
t denotes the partial derivative of J∗ with respect to t, and similarly for

the rest of the variables. Note that the boundary condition (2.39) is satisfied only in the

target set, which is given by (2.25). If an optimal u∗ that minimizes H is found using the
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necessary and sufficient conditions stated in section 2.2.2, then it is guaranteed that such

function minimizes J .

2.2.6 Combining the Hamilton-Jacobi-Bellman Equation with the

Maximum Principle

The Maximum Principle can be used in conjunction with the HJB equation to solve a given

OCP. Both approaches are connected by the means of the Hamiltonian. Comparing H in

(2.37) with (2.26), it can be shown that, as expected, the partial derivatives of the optimal

cost-to-go J∗
ζ correspond to the costates that appear in the Maximum Principle, that is

J∗
ζ (t) = λT (t). (2.40)

As a result of (2.40), equations (2.28), (2.30) and (2.31) can be used to obtain information

regarding the time evolution and the final values of the partial derivatives of the optimal

cost. Thus, when solving OCPs analytically a combination of the Maximum Principle and

the HJB equation provides the best insight regarding the optimal solution. In subsequent

developments, (2.26), (2.28) and (2.30) will be written as follows:

H(ζ(t), u(t), J∗
ζ (t), t) = L(ζ(t), u(t), t) + J∗

ζ (t)f(ζ(t), u(t), t) (2.41)

J̇∗
ζ = −

(
∂H

∂ζ

)T

(2.42)

J∗
ζ (tf ) =

(
∂φ

∂ζ
+ νT ∂ψ

∂ζ

)
|tf (2.43)

An important result that greatly simplifies the analysis of OCPs using the HJB equation

is that, if the Hamiltonian (2.38) is not an explicit function of time (i.e. ∂H/∂t = 0) and the

final time tf is free, then H must vanish along the optimal trajectory, implying that J∗
t = 0
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and the HJB equation reduces to [14]

0 = min
u(t)

H(ζ(t), u(t), J∗
ζ (ζ(t), t)) (2.44)

As explained previously, the main advantage of the HJB equation is that it yields an

optimal control function in state-feedback form. However, solving this equation analytically

is extremely difficult. Nevertheless, there exist OCPs of practical interest, such as some of

the problems presented in this thesis, for which the HJB can be solved. The result is an

algebraic solution for the state-feedback controller, which is arguably the most desirable type

of solution for implementation purposes.
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Chapter 3

Optimal Solutions for Cruise

3.1 Assumptions

Section 2.1.3 presented the equations of motion of an aircraft flying in the longitudinal plane.

In order to make (2.6) more tractable for performance computations, some assumptions must

be made based on the quasi-steady flight conditions in which modern commercial aircraft fly.

Such tractability is important if one wants to find an analytical solution to the resulting OCP;

otherwise, the mathematical expressions involved would be too complicated to manipulate

algebraically.

The assumptions made for the cruise segment of the flight are the following:

• The aircraft flies at a given, constant altitude constrained by Air Traffic Control (ATC)

as is the case with real FMS. This assumption makes γ, γ̇ and ḣ equal to zero.

• The altitude, speed and thrust values lie in the interior of the flight envelope given by

the constraints (2.11). As a result, we do not need to enforce them in the mathematical

formulation of the OCP.

• The angle of attack α is small, allowing to write cosα ≈ 1 and sinα ≈ α. This

assumption is standard practice in performance analysis for commercial aircraft.
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• The component of the thrust perpendicular to the velocity vector, Tα, is much smaller

than L and W . The thrust force is usually around one order of magnitude smaller than

the weight, therefore multiplying it by a small angle will effectively make it negligible.

• Accelerations are negligible due to the steady-flight condition, and as a result we can

assume that v̇ is approximately zero. Moreover, as explained previously in Section 1.2,

the FMS is not charged with reaching the optimal setpoints using the aircraft’s flight

controls, so we can take v as a control signal, leaving its dynamics to the autopilot.

In light of these assumptions, the simplified aircraft model for steady level flight in the

longitudinal plane is obtained as

ẋ = v

Ẇ = −SFCD

(3.1)

L = W (3.2)

T = D (3.3)

The last two equations come from v̇ and γ̇ being equal to zero, using the assumptions

mentioned above (including Tα << W ). Note that they allow computing the required

control inputs to follow a given aircraft configuration in steady level flight. On one hand,

(3.2) effectively constrains the angle of attack to a value such that the lift balances the weight

at any given altitude and airspeed. On the other hand, (3.3) states that the thrust required to

sustain steady level flight will always be equal to the drag, implying that the thrust setpoint

provided by the FMS is easily computed during cruise provided that the optimal TAS is

found.

44



From (2.3a) and (3.2) we can solve for the lift coefficient as follows:

L = W =
1

2
CLρSv

2

CL =
2W

ρSv2
(3.4)

Substituting (3.4) into the drag coefficient (2.5) yields

CD = CD,0 + CD,2

(
2W

ρSv2

)2

,

which is then used in conjunction with (2.3b) to obtain the equation for the drag in quasi-

steady flight regime

D =
1

2
CD,0ρSv

2 +
2CD,2W

2

ρSv2
(3.5)

Note that under the assumptions made, the drag becomes a function of h (indirectly

through the density ρ), v and W . In subsequent developments (3.5) will be written as a

function of TAS as follows:

D(h, v,W ) = d0(h)v
2 +

d1(h,W )

v2
(3.6)

Obviously, the coefficients d0 and d1 are given by:

d0 =
1

2
CD,0ρS

d1 =
2CD,2W

2

ρS

(3.7)

3.2 Maximum Endurance OCP

To illustrate the usefulness of formulating optimization problems involving dynamic systems

in the framework of the optimal control theory, this section will present a simple problem:

obtaining the TAS that maximizes the endurance of the aircraft during cruise.
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Suppose that the aircraft weight Wc at TOC is given, and that Wd is the final weight

at which descent can be safely carried out in a given mission. The maximum endurance

problem seeks to maximize the amount of time that the aircraft can stay in the air, that is,

it maximizes the functional

J =

∫ td

tc

dt,

where the final time td has to be free for the problem to make sense. Since no final value

for the range x(td) is prescribed, the ẋ equation in (3.1) becomes irrelevant, reducing the

dynamics to a 1st order system. As a result, the OCP formulation is given by:

J∗ = max
v(t),td

∫ td

tc

dt

s.t.

Ẇ = −SFCD

W (tc) = Wc,W (td) = Wd

(3.8)

The following theorem states the solution to OCP (3.8).

Theorem 3.2.1. The optimal solution to OCP (3.8) is given by

v2 =
2W

ρS

√
CD,2

CD,0

, (3.9)

and the optimal cost-to-go J∗ is

J∗ =
1

2SFC

√
CD,0CD,2

log

(
W

Wd

)
. (3.10)

Proof. We begin by writing the Hamiltonian as shown in (2.41)

H = 1− J∗
WSFCD, (3.11)
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which, in accordance with both the Maximum Principle and the HJB equation approach,

must be maximized with respect to v(t) (because this is a maximization problem). The

necessary condition explained in Section 2.2.1 is used

∂H

∂v
= −J∗

WSFCDv = 0

In the above equation, Dv denotes the partial derivative of the drag with respect to the

speed. It follows that either J∗
W , Dv or both must vanish for every t. However, from the

sufficient condition for optimality, we get

∂2H

∂v2
= −J∗

WSFCDvv < 0,

implying

J∗
W > 0, (3.12)

since SFC is positive and D is convex with respect to the speed. As a result, the necessary

condition becomes

Dv = 0 (3.13)

Using (3.6) as the expression for the drag, condition (3.13) can be used to solve for the

optimal v:

2d0v −
2d1
v3

= 0 → v4 =
d1

d0

Considering (3.7), the speed for maximum endurance is obtained as

v2 =
2W

ρS

√
CD,2

CD,0

,

which is equal to (3.9) and coincides with (2.17) as presented in Section 2.1.6. In this case,

the value of this approach is that it allows obtaining an expression for the optimal cost-to-go,

which must satisfy the HJB equation (2.37). Since H does not depend explicitly on time and
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td is free, then from (2.44) we get that the HJB equation

0 = J∗
t (ζ(t), t) + min

v(t)
H(ζ(t), v(t), J∗

ζ (ζ(t), t), t),

reduces to

min
v(t)

H(ζ(t), v(t), J∗
ζ (ζ(t), t), t) = min

v(t)
{1− J∗

WSFCD} = 0 (3.14)

that is, the Hamiltonian must vanish along the optimal trajectory. The boundary condition

for the cost-to-go is obtained by applying (2.39) to this problem, that is:

J∗(td) = 0 s.t. W (td) = Wd (3.15)

Moreover, using (2.42) from the Maximum Principle, we obtain an equation for the time

derivative of J∗
W , given by

J̇∗
W = − ∂H

∂W
= J∗

WSFCDW

= J∗
WSFC

4CD,2W

ρSv2
, (3.16)

where (3.5) was used for the drag. From (3.14) evalauted at the optimal v, we can solve for

J∗
W

J∗
W =

1

SFCD
,

where the drag must be evaluated at the optimal v. Substituting (3.9) into (3.5) yields

D = 2W
√
CD,0CD,2 (3.17)

When (3.17) is replaced into J∗
W we get

J∗
W =

1

2WSFC

√
CD,0CD,2

(3.18)
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To prove that J∗
W satisfies (3.16), the time derivative of (3.18) is taken using the state

equation for Ẇ and (3.17) for D to obtain

d

dt

(
1

2WSFC

√
CD,0CD,2

)
= −

2SFC

√
CD,0CD,2Ẇ(

2WSFC

√
CD,0CD,2

)2 =
SFCD

2W 2SFC

√
CD,0CD,2

,

which, after considering (3.18) and (3.17) becomes

SFCD

2W 2SFC

√
CD,0CD,2

=
SFCD

W
J∗
W = 2SFC

√
CD,0CD,2J

∗
W .

This is the same expression as (3.16) with v2 substituted by (3.9). The obtained J∗
W also

satisfies (3.12), the sufficient condition to maximize the Hamiltonian. The optimal cost-to-go

is therefore obtained by integrating (3.18) with respect to W :

J∗ =
1

2SFC

√
CD,0CD,2

∫
1

W
dW =

log(W )

2SFC

√
CD,0CD,2

+ C

The constant C is determined by the boundary condition (3.15), which must be satisfied

by J∗:

J∗(Wd, td) =
log(Wd)

2SFC

√
CD,0CD,2

+ C = 0 → C = − log(Wd)

2SFC

√
CD,0CD,2

As a result, the optimal cost function is

J∗ =
1

2SFC

√
CD,0CD,2

log

(
W

Wd

)
.

By adopting an analytic approach to solving OCPs, it was possible to solve the maximum

endurance problem for an aircraft in cruising flight, recovering the well-known result for the

maximum endurance speed presented in Section 2.1.6, and also obtaining the expression for

the optimal cost-to-go (3.10). It seems reasonable then to apply the same set of tools to the

ECON problem in order to solve for the most economical speed target in terms of CI. Such
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is the purpose of the next section.

3.3 Economy Mode OCP for Cruise

Section 3.3.1 will derive and solve the ECON mode OCP for cruise in longitudinal flight,

followed by section 3.3.2 which shows that the approach can be extended to handle turns in

the lateral plane.

3.3.1 Longitudinal Flight

Problem Formulation

The ECON mode for cruise will now be formulated as an OCP with a structure as in (2.24).

As explained in Section 1.3, its purpose is to minimize the total operating cost of the flight,

given by (1.1). This performance measure can be rewritten as a cost functional in integral

form as

J =

∫ td

tc

(ff + CI)dt

Here, td is the unspecified time at which the TOD is reached, and tc is the time at which

the cruise phase begins. The fuel flow rate ff , defined in (2.12), becomes

ff = SFCD,

after (3.3) is taken into account. When ff is substituted into the cost functional, we get

J =

∫ td

tc

(SFCD + CI)dt (3.19)
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The ECON OCP during cruise can now be stated as follows:

J∗ = min
v(t),td

∫ td

tc

(SFCD + CI)dt

s.t.

ẋ = v(t)

Ẇ = −SFCD

x(tc) = xc, x(td) = xd

W (tc) = Wc

(3.20)

Optimal solution

The following result gives the solution to this problem.

Theorem 3.3.1. The optimal solution to the economy mode OCP stated in (3.20) is given

by

v =

√√√√CI +
√
C2

I + 12(1− J∗
W )2SFC

2CD,0CD,2W 2

(1− J∗
W )SFCCD,0ρS

, (3.21)

where the time derivative of J∗
W is given by

J̇∗
W = (J∗

W − 1)
4SFCCD,2W

ρSv2
, (3.22)

with final condition

J∗
W (td) = 0. (3.23)
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Proof. To solve (3.20), the Hamiltonian

H(ζ(t), v(t), J∗
ζ (ζ(t), t), t) = L+ J∗

ζ ζ̇

= SFCD + CI + J∗
xv − J∗

WSFCD

= (1− J∗
W )SFCD + J∗

xv + CI (3.24)

must be minimized with respect to v(t) (because this is a minimization problem), implying

that the necessary condition for optimality must be satisfied:

∂H

∂v
= (1− J∗

W )SFCDv + J∗
x = 0,

which allows solving for J∗
x yielding

J∗
x = −(1− J∗

W )SFCDv. (3.25)

From the sufficient condition for a minimum, we get

∂2H

∂v2
= (1− J∗

W )SFCDvv < 0,

which is equivalent to

(1− J∗
W ) > 0,

resulting in

J∗
W < 1,

because SFC is a positive quantity independent of v, and the curvature of the drag as a

function of the speed is positive. Next, note that the Hamiltonian (3.24) is not an explicit

function of time, and that td is unspecified. As a result, the HJB equation

0 = J∗
t (ζ(t), t) + min

v(t)
H(ζ(t), v(t), J∗

ζ (ζ(t), t), t),
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reduces to

min
v(t)

H(ζ(t), v(t), J∗
ζ (ζ(t), t), t) = 0, (3.26)

that is, J∗
t = 0. We substitute (3.24) into (3.26) to obtain

min
v

{(1− J∗
W )SFCD + J∗

xv + CI} = 0,

or, at the optimal speed

(1− J∗
W )SFCD + J∗

xv + CI = 0.

After replacing J∗
x from the necessary condition (3.25) and the drag from (3.6), we obtain

the following polynomial in terms of v:

(1− J∗
W )SFCD − (1− J∗

W )SFCvDv + CI = 0 (3.27)

≡ (1− J∗
W )SFCd0v

4 − CIv
2 − 3(1− J∗

W )SFCd1 = 0 (3.28)

This biquadratic equation can be solved easily by letting z = v2, leading to

(1− J∗
W )SFCd0z

2 − CIz − 3(1− J∗
W )SFCd1 = 0,

whose solution can be found by the formula

z =
CI +

√
C2

I + 12(1− J∗
W )2SFC

2d0d1

2(1− J∗
W )SFCd0

.

Since C2
I + 12(1 − J∗

W )2SFC
2d0d1 > C2

I , and CI can only take positive values, it is true

that
√

C2
I + 12(1− J∗

W )2SFC
2d0d1 > CI . Therefore the solution with the negative sign is

eliminated as it would yield a complex solution for z. To express it in terms of more physically
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meaningful quantities, the expressions for d0 and d1 are substituted using (3.7) to obtain

v2 =
CI +

√
C2

I + 12(1− J∗
W )2SFC

2CD,0CD,2W 2

(1− J∗
W )SFCCD,0ρS

.

This equation computes the TAS that minimizes the operating costs of the cruise phase

analytically as a function of W , CI , ρ and J∗
W . Note that J∗

x does not appear in this equation

(a predictable result since the initial and final conditions of x are fixed), making J∗
W the

only unknown in (3.21). Using the costate equation (2.42) and the Hamiltonian (3.24) allows

studying the time derivative of J∗
W . We get

J̇∗
W = − ∂H

∂W
= (J∗

W − 1)
4SFCCD,2W

ρSv2

Considering the general form of an OCP in (2.24), there is no terminal cost making the

terminal cost function φ = 0 and, since x(td) is the only prescribed final condition, the

terminal constraint function ψ = x − xd. Then the final value of J∗
W is given by (2.43) as

follows:

J∗
W (td) =

(
∂φ

∂W
+ ν

∂ψ

∂W

)
|td = 0

Remark: When CI = 0, the solution sought is the airspeed for minimum fuel per unit

distance, which is known to coincide with the maximum range solution [17]. This is indeed

the case if CI vanishes in (3.21), yielding

v =

√√√√2W

ρS

√
3
CD,2

CD,0

, (3.29)

which is identical to the maximum range speed presented in equation (2.16) of the theoretical

preliminaries.
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Deriving a sub-optimal control law

Considering that J∗
W must be less than one as specified in (3.3.1), we will now proceed to

make the assumption that J̇∗
W is negligible, allowing to approximate J∗

W by its final value,

zero, as per (3.23). This assumption implies that either the product SFCCD,2W is small or

that ρSv2 is large in (3.22). SFC and CD,2 are generally very small quantities, whereas W , S,

and v tend to be large. As an example, let CD,2 = 0.08, S = 950 ft 2 and SFC = 1.92× 10−4

1/s. These values were taken from the G-IV aircraft model used in the simulations, which is

presented formally in section 3.4.1. Moreover, let W = 74600 (the maximum takeoff weight

for this aircraft) and ρ = 1.07× 10−3 slug/ft 3, the density at 25000 ft obtained using (2.1c).

For the following values of v, we obtain these results for SFCCD,2W , ρSv2 and their quotient

v = 650 ft/s : SFCCD,2W = 1.15 lbf/s, ρSv2 = 4.29× 105 lbf, Quotient = 2.68× 10−6 1/s

v = 700 ft/s : SFCCD,2W = 1.15 lbf/s, ρSv2 = 4.98× 105 lbf, Quotient = 2.31× 10−6 1/s

v = 750 ft/s : SFCCD,2W = 1.15 lbf/s, ρSv2 = 5.72× 105 lbf, Quotient = 2.01× 10−6 1/s.

It can be seen that, for this example, SFCCD,2W is considerably smaller than ρSv2,

therefore the assumption that J̇∗
W is negligible, leading to J∗

W ≈ 0, is reasonable from a

physical point of view. Under these considerations, it is possible to derive a sub-optimal

feedback law for v after substituting J∗
W = 0 in (3.21), yielding

v =

√√√√CI +
√
C2

I + 12SFC
2CD,0CD,2W 2

SFCCD,0ρS
. (3.30)

A validation of the assumption J∗
W ≈ 0 is made in section 3.4 by solving the OCP using

the shooting method numerically, and comparing its optimal trajectory with the sub-optimal

one obtained using (3.30). However, prior to presenting the validation results, it will be

shown that the results obtained in this section are also valid when the aircraft is turning,

provided that its bank angle is small.
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Remark 2: Having neglected J∗
W , it is possible to determine the minimum and maximum

values of CI such that the aircraft remains inside the flight envelope. From (3.27) with

J∗
W ≈ 0, we can solve for CI to obtain

CI = SFCd0v
2 − 3SFCd1

v2
.

If the above equation is evaluated at the minimum speed vmin and the maximum speed

vmax, which are part of the flight envelope as shown in (2.11), the corresponding CIs will be

the minimum and maximum, respectively.

3.3.2 Extension to Lateral Flight

The previous section discussed the case of an aircraft flying in cruise at constant altitude while

minimizing the flight’s operating cost. In this section, the effect of turning on the aircraft’s

Economy Mode performance will be studied. Turns usually happen during the cruise when

transitioning from one waypoint to another, and are produced by banking the aircraft by

deflecting the ailerons that are located on the wings. An FMS decouples longitudinal and

lateral dynamics. Nevertheless, this section will account for the lateral dynamics in the OCP

and verify that under the right assumptions it is in fact possible to carry decouple both

dynamics.

We want the aircraft to perform a coordinated turn starting at a point in the horizontal

plane, called the Initial Turn Point (ITP), by tracing a curve in space with a given turn

radius and Turn Center (TC) until the given Final Turn Point (FTP) is reached, at which

longitudinal flight is resumed. The situation is depicted in Fig. 3.1, where θ is the heading

angle and μ is the bank angle. Both μ and the true airspeed v are to be determined by the

FMS. We assume that the aircraft is at the ITP at the initial time. Under these conditions,
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Figure 3.1: Aircraft flying in a horizontal plane.

it can be shown that the dynamics in (2.6) can be extended to [47]:

ẋ = v cos(θ) cos(γ)

ẏ = v sin(θ) cos(γ)

ḣ = v sin(γ)

V̇ =
g

W
(T cos(α)−D −W sin(γ))

γ̇ =
g

Wv
[(T sin(α) + L) cos(μ)−W cos(γ)]

θ̇ =
g

Wv cos(γ)
(T sin(α) + L) sin(μ)

Ẇ = −SFCT

(3.31)

We proceed to make the following assumptions, most of which coincide with the longitu-

dinal case:

• The aircraft flies at a given, constant altitude constrained by Air Traffic Control (ATC)

as is the case with real FMS. This assumption makes γ, γ̇ and ḣ equal to zero.
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• The altitude, speed and thrust values lie in the interior of the flight envelope given by

the constraints (2.11). As a result, we do not need to enforce them in the mathematical

formulation of the OCP.

• The angle of attack α is small, allowing to write cosα ≈ 1 and sinα ≈ α. This

assumption is standard practice in performance analysis for commercial aircraft.

• The component of the thrust perpendicular to the velocity vector, Tα, is much smaller

than L and W .

• Accelerations are negligible due to the steady-flight condition, and as a result we can

assume that v̇ is approximately zero.

• The bank angle μ is sufficiently small such that cos(μ) ≈ 1.

Under these assumptions, (3.31) simplifies to

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ =
g

Wv
L sin(μ)

Ẇ = −SFCT

L = W

T = D

(3.32)

In addition to the last two constraints, we must enforce that

L sin(μ) =
Wv2

gr
, (3.33)

which implies that the horizontal component of the lift must provide the centripetal force

used for performing the turn of radius r as shown in Fig. 3.2, where ŷw and ẑw are part of

the wind axes system. Note that, after the turn radius is given and the above constraint is
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enforced, the the equations for x and y in (3.32) become irrelevant to the problem, as μ is

constrained such that the FTP is reached at some point in time.

Figure 3.2: Centripetal force in a coordinated turn.

Note that the last assumption allows using (3.6) as an expression for the drag. Strictly

speaking, it should be modified such that

D(h, v,W ) = d0(h)v
2 +

d1(h,W )

v2 cos2(μ)
,

where d0 and d1 are given by (3.7). However, since cos(μ) ≈ 1, the above expression simplifies

to (3.6).

Putting everything together, we can formulate the OCP

J∗ = min
u(t),td

∫ td

tc

(SFCD + CI) dt

s.t.

θ̇ =
g

Wv
L sin(μ)

Ẇ = −SFCD

θ(0) = θ0, θ(tf ) = θf

W (0) = W0,
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where u = [ v μ ]T , and θ0 and θf are known as the inbound and outbound course respectively.

Briefly considering L cos(μ) = W instead of L = W in (3.32), and from (3.33), we can solve

for μ as a function of v, yielding

tan(μ) =
v2

rg
. (3.34)

In addition, using (3.33) allows writing θ̇ as

θ̇ =
v

r
.

As a result, the problem reduces to one unknown and the OCP for lateral flight is given

by

J∗ = min
v(t),td

∫ td

tc

(SFCD + CI) dt

s.t.

θ̇ =
v

r

Ẇ = −SFCD

θ(0) = θ0, θ(tf ) = θf

W (0) = W0.

(3.35)

The following result states the solution of this OCP.

Theorem 3.3.2. The optimal solution to the OCP stated in (3.35) is

v =

√√√√CI +
√
C2

I + 12(1− J∗
W )2SFC

2CD,0CD,2W 2

(1− J∗
W )SFCCD,0ρS

(3.36)

Proof. The Hamiltonian is given by

H = SFCD + CI + J∗
θ

v

r
− J∗

WSFCD. (3.37)
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The necessary condition for optimality is

∂H

∂v
= (1− J∗

W )SFCDv +
J∗
θ

r
= 0, (3.38)

which allows solving for J∗
θ /r as follows:

J∗
θ

r
= −(1− J∗

W )SFCDv (3.39)

Similar to the longitudinal case, the sufficient condition or a minimum results in

∂2H

∂v2
= (1− J∗

W )SFCDvv > 0,

from which we obtain

J∗
W < 1 (3.40)

Noting that H is not a function of time and td is unspecified, the HJB equation reduces

to infv H = 0. By substituting (3.39) into (3.37) evaluated at the optimal speed, and making

the expression equal to zero, we get

(1− J∗
W )SFCD − (1− J∗

W )SFCvDv + CI = 0. (3.41)

This expression is identical to (3.27). The speed that satisfies this equation is

v2 =
CI +

√
C2

I + 12(1− J∗
W )2SFC

2CD,0CD,2W 2

(1− J∗
W )SFCCD,0ρS

,

which is the same as (3.21).

The optimal μ is solved as a function of v using (3.34). As a result, we can conclude

that, for a small μ, the speed that minimizes operating costs during cruise does not change,

and the same results that were shown in section 3.3.1 apply to the lateral case as well. The
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remainder of the chapter will present the shooting algorithm used for validation purposes

and the simulation results.

3.4 Validation Results

3.4.1 Aircraft Model Used for the Simulations

The aircraft model used for all simulations in this work was borrowed from [46], and is

based on the Gulfstream-IV (G-IV) business jet by Gulfstream Aerospace equipped with two

Rolls-Royce Tay 611-8 turbofan engines. The drag coefficients, wing planform area, SFC and

thrust characteristics are

CD,0 = 0.015

CD,2 = 0.08

S = 950 ft 2

SFC = 0.69 1/h

Ts = 27700 lbf

Ti = 200 lbf

m = 1.

The parameters Ts, Ti and m are not used for cruise, but are necessary for the modeling

of maximum climb thrust and idle thrust in Chapter 4. The aircraft operating limits, taken
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from [53], are given by

Maximum Takeoff Weight = 74600 lbf

Maximum Zero-Fuel Weight = 49000 lbf

Service Ceiling(hmax) = 45000 ft

MMO = 0.88.

When choosing initial and final conditions for the simulations, it is important to ensure

that the aforementioned limits are respected.

3.4.2 Shooting Method for Cruise

The general approach described in Section 2.2.4 will be adapted to solve (3.20) numerically.

From the cruise dynamics (3.1) and (3.22), the augmented system is formed by

ẋ = v

Ẇ = −SFCD

J̇∗
W = (J∗

W − 1)
4SFCCD,2W

ρSv2

x(tc) = xc, x(td) = xd

W (tc) = Wc,W (td) unspecified

J∗
W (tc) unspecified, J∗

W (td) = 0,

(3.42)

where v is computed at every time-step using (3.21) (recall that J∗
x has been solved as a

function of the other variables in (3.25), therefore its dynamics do not have to be included in

the augmented system). The goal of the shooting method is to simulate (3.42) for different

J∗
W (tc) until one is found for which J∗

W (td) = 0. Following the same notation as in Section

2.2.4, the following pseudo-code states the shooting algorithm for this particular OCP:

1. Choose J∗
W

(0)(tc):
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(a) Estimate an initial value for the speed v(tc) from practical experience.

(b) Solve for J∗
W from (3.27) and evaluate at t = tc, yielding the following estimate:

J∗
W

(0)(tc) = 1 +

(
CI

SFC(D − vDv)

)
|tc (3.43)

2. Let k = 0

3. Do:

(a) Simulate (3.42) until x(t) = xd, then td = t

(b) Compute ε = J∗
W

(k)(td)− J∗
W (td)

(c) Compute the next seed J∗
W

(k+1)(tc) using the update law

J∗
W

(k+1)(tc) = J∗
W

(k)(tc)− βε (3.44)

(d) k = k + 1

4. Until |ε| < tolerance OR k ≥ Max. Iterations

Instead of proposing J∗
W

(0)(tc) which is difficult to correlate with the physical variables

of the problem, it is more convenient to estimate an initial cruise speed v(tc) from practical

experience and then solve for J∗
W

(0)(tc) using (3.43). β is a tuning parameter and was chosen

to be equal to one for this problem. The algorithm presented in this subsection, as well as

another algorithm that applies the sub-optimal feedback law (3.30), have been implement

in Matlab and Simulink. The implementation code and block diagrams can be found in

Appendix A.

A simulation will now be carried out for the purpose of comparing the exact optimal

trajectory found using the shooting method with the one using the sub-optimal feedback

law.
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3.4.3 Comparison between the optimal and sub-optimal trajecto-

ries

For this example the following initial and final conditions are used:

tc = 0 s

hc = 25000 ft

xc = 0 mi

xd = 2000 mi

Wc = 70000 lb

Fig. 3.3 compares the sub-optimal true airspeeds with the optimal ones obtained using

the shooting method for different CIs as a function of the aircraft range (time was not used

for the horizontal axis as it changes significantly depending on CI, whereas the range is the

same for all cases). The solid lines represents the optimal solution whereas the dashed lines

represent the sub-optimal one. For a CI of zero both lines are identical. This is an expected

result because the approximation that J∗
W ≈ 0 becomes irrelevant when CI vanishes, as shown

in Section 3.3. In fact, the obtained speed profile corresponds to the maximum range speed.

The optimal and sub-optimal references start to change when CI is different than zero.

This is due to the approximation J∗
W ≈ 0 being less precise at the start of the simulation,

leading to a more pronounced difference between the optimal and sub-optimal speed. How-

ever, as the final time is reached, this assumption becomes more valid until t = td, where

expressions (3.21) and (3.30) become identical. This is verified in Fig. 3.4 where J∗
W is plot-

ted as a function of the range. As a result, it can be said that the sub-optimal control law is

a good approximation for short range flights, and becomes less precise for longer distances.

For this example, it is possible to quantify how sub-optimal the analytical solution is by

computing the total cost. Noting that SFCD = −Ẇ in (3.19), the total cruise cost in units
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Figure 3.3: Comparison between the optimal and sub-optimal cruise speeds for different
cost indexes. The solid line represents the optimal solution, while the dashed line is the
sub-optimal one.
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Figure 3.4: Costate J∗
W in cruise as a function of the range for different cost indexes.
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of weight can be obtained as:

J = W (tc)−W (td) + CI(td − tc)

Table 3.1 provides a comparison between the optimal and sub-optimal laws of the fuel

consumed, time elapsed and cost computed using the above formula, for the same values of

CI used for the plots. The error column shows the percent relative error of the sub-optimal

cost with respect to the optimal one, as specified by the formula:

Error (%) =

∣∣∣∣Sub-optimal cost−Optimal cost

Optimal cost

∣∣∣∣ · 100 (3.45)

It can be concluded that the discrepancy between these two laws does not introduce

significant changes in the optimal cost, therefore the sub-optimal analytical solution is, in

this example, close enough to the optimal one for practical purposes.

Table 3.1: Cruise fuel, time and cost comparison for different values of CI.

Fuel (lb) Duration (min) Cost (lb) Error (%)

CI = 0
Optimal 14407.0 250.5 14407.0

0
Sub-optimal 14407.0 250.5 14407.0

CI = 0.3
Optimal 14630.0 225.0 18679.2

2.4 · 10−3

Sub-optimal 14613.7 225.9 18679.6

CI = 0.6
Optimal 15202.6 203.5 22529.9

3.8 · 10−3

Sub-optimal 15161.9 204.7 22530.8
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Chapter 4

Optimal Solutions for Climb and

Descent

4.1 Assumptions

Similar to the approach taken in Chapter 3, this section presents the assumptions made

to simplify the aircraft dynamics (2.6) during the climb and descent phases of the flight.

The purpose of simplifying these equations is to allow solving the OCPs in this chapter

analytically, which would be too difficult to do if the expressions involved are not tractable

enough. Most of the assumptions made in this section are very similar to the ones made in

the cruise phase. They will be repeated here for the sake of clarity.

The assumptions made for the climb and descent segments of the flight are the following:

• The altitude and speed values lie in the interior of the flight envelope given by the

constraints (2.11). As a result, we do not need to enforce them in the mathematical

formulation of the OCP.

• During climb, the thrust is constrained to be equal to a given, known value Tc(h) known

as the maximum climb thrust. Similarly, during the descent, the thrust is equal to a

known value Ti known as the idle thrust.
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• The angle of attack α and the flight path angle γ are small, allowing to write cosα ≈ 1

and sinα ≈ α, and similarly for γ. This assumption is standard practice in performance

analysis for commercial aircraft.

• The component of the thrust perpendicular to the velocity vector, Tα, is much smaller

than L and W . The thrust force is usually around one order of magnitude smaller than

the weight, therefore multiplying it by a small angle will effectively make it negligible.

• Climb and descent occur under steady flight conditions and as a result we will assume

that v̇ and γ̇ are zero. As explained in Section 1.2, the FMS supplies optimal references

that are then followed by the autopilot using the aircraft’s flight controls. Therefore,

we can take v and γ as control signals, leaving their dynamics to the autopilot.

Taking these assumptions into consideration, we obtain the simplified aircraft model for

quasi-steady climb and descent in the longitudinal plane

ẋ = v

ḣ = vγ

Ẇ = −SFCT

(4.1)

L = W (4.2)

T = D +Wγ, (4.3)

Since L = W from (4.2), equations (3.5), (3.6) and (3.7) are valid to compute the drag

during the climb and descent. The last relation to consider is the constraint on the thrust:

T =

⎧⎨⎩ Tc(h) : γ > 0 (during climb)

Ti : γ < 0 (during descent)
, (4.4)
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which will be applied in conjunction with (4.3) depending on the flight phase. Ti is considered

constant and known for a particular aircraft, whereas Tc(h) will follow the relation proposed

in [46, 48] for turbojet and turbofan engines:

Tc(h) = Ts

[
ρ(h)

ρs

]m

(4.5)

In the above expression, Ts stands for the sea-level maximum climb thrust rating. Ts and

m are given for a particular aircraft, and ρ obeys the ISA equations (2.1c) and (2.2b).

4.2 Maximum Rate of Climb and Minimum Rate of

Descent OCPs

4.2.1 Maximum Rate of Climb

The OCP for maximum rate of climb can be stated as follows: It is desired to climb from

a given initial altitude h0 where the FMS is engaged to the desired cruise altitude hc in

minimum time. The point xc at which hc is reached is unspecified and constitutes the TOC,

and γ > 0. As in (4.4), the thrust must be equal to Tc and γ is subject to the constraint

(4.3). From there, we can solve for γ yielding:

γ =
Tc −D

W
(4.6)
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This leaves v as the single control input. In mathematical form the OCP is given by:

J∗ = min
v,tc

∫ tc

0

dt

s.t.

ẋ = v

ḣ = vγ

Ẇ = −SFCTc(h)

x(0) = x0

h(0) = h0, h(tc) = hc

W (0) = W0

γ =
Tc −D

W
> 0

(4.7)

The solution of this OCP is stated in the following theorem.

Theorem 4.2.1. The optimal solution for the maximum ROC problem (4.7) is given by

v =

√
Tc +

√
T 2
c + 12CD,0CD,2W 2

3CD,0ρS
. (4.8)

Proof. The Hamiltonian

H = 1 + J∗
xv + J∗

hvγ − J∗
WSFCTc (4.9)

must be minimized with respect to v. The necessary condition for optimality yields

∂H

∂v
= 0

≡ J∗
x + J∗

h (γ + vγv) = 0,

where γv is the partial derivative of γ with respect to v. The expression (4.6) can be differ-
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entiated with respect to v to get

γv =
∂γ

∂v
= −Dv

W
, (4.10)

which is substituted into the necessary condition to get

J∗
x + J∗

h

(
γ − vDv

W

)
= 0. (4.11)

Note, however, that the following information can be obtained using the costate equations:

J̇∗
x = −∂H

∂x
= 0, (4.12)

and

J̇∗
h = −∂H

∂h

= J∗
W (SFCh

Tc + SFCTch)− J∗
hvγh. (4.13)

Moreover, since the terminal cost is φ = 0 and the terminal constraint function is ψ =

h− hc, we get:

J∗
x(tc) = (φx + νψx)|tc = 0 (4.14)

As a result, J∗
x is zero for all t and is eliminated from (4.11) yielding:

J∗
h

(
γ − vDv

W

)
= 0

Since J∗
h has nonzero dynamics as in (4.13), it cannot be zero for all t, therefore

γ − vDv

W
= 0,
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which, after substituting γ from (4.6) and the drag from (3.6), yields

Tc −D − vDv = 0

≡ 3d0v
4 − Tcv

2 − d1 = 0.

This equation is solved for the optimal speed obtaining

v2 =
Tc ±

√
T 2
c + 12d0d1
6d0

,

or, after replacing d0 and d1 from (3.7) and taking the positive sign:

v2 =
Tc +

√
T 2
c + 12CD,0CD,2W 2

3CD,0ρS

This equation yields the optimal speed that maximizes the ROC of the aircraft. It co-

incides with (2.19) with T = Tc, which is the expression commonly found in literature.

Obtaining expressions for J∗
h, J

∗
W and J∗ is not relevant to this discussion, but they could be

obtained by formulating and solving the rest of the equations.

It remains to verify the sufficient condition to minimize H, which is found by taking the

partial derivative of (4.11) with respect to v (keeping in mind that J∗
x is zero) and substituting

(4.10), yielding

∂2H

∂v2
= J∗

h

[
γv −

1

W

∂

∂v
(vDv)

]
=

J∗
h

W
[−Dv − (Dv + vDvv)]

= −J∗
h

W

(
6d0v +

2d1
v3

)

This partial derivative must be greater than zero. It follows that either

J∗
h < 0 and

(
6d0v +

2d1
v3

)
> 0,
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or

J∗
h > 0 and

(
6d0v +

2d1
v3

)
< 0,

but, since (6d0v + 2d1/v
3) is always positive as it involves only positive terms, the sufficient

condition reduces to

J∗
h < 0. (4.15)

Since H does not depend explicitly on time and tc in unspecified, the HJB equation

reduces to infv H = 0. It follows from (4.9) evaluated at the optimal speed that

1 + J∗
xv + J∗

hvγ − J∗
WSFCTc = 0,

from which we solve for J∗
h to obtain

J∗
h =

−1 + J∗
WSFCTc

vγ
. (4.16)

To satisfy (4.15), (4.16) must be less than zero. Since γ > 0 from (4.7) and v must be

positive, we get

−1 + J∗
WSFCTc < 0,

from which a constraint on J∗
W is obtained as

J∗
W <

1

SFCTc

(4.17)

Equation (4.17) implies that J∗
W is positive and smaller than a very small value, since

SFCTc is a generally a large quantity.

To close this section, we verify that the maximum ROC speed also coincides with the

solution for minimum fuel consumption. Consider the OCP (4.7), but with the minimum
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fuel cost functional:

J∗ = min
v,tc

∫ tc

0

SFCTcdt (4.18)

The Hamiltonian changes to

H = (1− J∗
W )SFCTc + J∗

xv + J∗
hvγ.

However, since the term (1 − J∗
W )SFCTc does not depend on v, the necessary condition

remains the same as (4.11). Furthermore, the same reasoning as the ROC problem can be

followed: J∗
x satisfies (4.12) and (4.14) vanishing from the necessary condition, and yielding

(4.8) for the optimal speed. The only equation that changes is J̇∗
h and the constraint on J∗

W

arising from the sufficient condition of optimality.

4.2.2 Minimum Rate of Descent

The minimum rate of descent problem is a very similar problem to the one discussed for

climb. This time, the starting point xd is unspecified, and the aircraft must descend from

cruise altitude to a final value where the performance module of the FMS is disengaged and

the approach phase begins. This takes place at a given final range xf . Define the distance

traveled as

x̃ = x− xd,

resulting in the dynamics and initial and final conditions

˙̃x = v cos(γ)

x̃(td) = 0

x̃(tf ) = xf − xd.
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This change of variables allows formulating the OCP in standard form, given by

J∗ = max
v,tf

∫ tf

td

dt

s.t.

˙̃x = v cos(γ)

ḣ = v sin(γ)

Ẇ = −SFCTi

x̃(td) = 0

h(td) = hc, h(tf ) = hf

W (td) = Wd,

(4.19)

where T = Ti and

γ =
Ti −D

W
. (4.20)

The solution of OCP (4.19) is stated in the following theorem.

Theorem 4.2.2. The optimal solution to OCP (4.19) is given by

v =

√
Ti +

√
T 2
i + 12CD,0CD,2W 2

3CD,0ρS
. (4.21)

Proof. Define the Hamiltonian

H = 1 + J∗
x̃v + J∗

hvγ − J∗
WSFCTi (4.22)

from which the necessary condition of optimality can be obtained as follows:

∂H

∂v
= J∗

x̃ + J∗
h (γ + vγv)
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Using the same approach as in the maximum ROC case, it can be shown that

γv = −Dv

W
, (4.23)

which is substituted into the necessary condition yielding

J∗
x̃ + J∗

h

(
γ − vDv

W

)
= 0. (4.24)

Analogous to the climb problem, the costate equations yield

J̇∗
x̃ = −∂H

∂x̃
= 0 (4.25)

J∗
x̃(tf ) = 0, (4.26)

and

J̇∗
h = −∂H

∂h

= J∗
WSFCh

Ti − J∗
hvγh (4.27)

It follows from (4.25) and (4.26) that J∗
x̃ is zero for all t, and (4.24) reduces to

J∗
h

(
γ − vDv

W

)
= 0.

Given that J∗
h has the dynamics specified in (4.27), it cannot be zero for all t and the

resulting equation can be solved for the minimum rate of descent speed in the same manner

as in the climb:

γ − vDv

W
= 0
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Substitute (4.20) to get

Ti −D − vDv = 0

≡ 3d0v
4 − Tiv

2 − d1 = 0,

which is solved for v yielding

v2 =
Ti ±

√
T 2
i + 12d0d1
6d0

=
Ti +

√
T 2
i + 12CD,0CD,2W 2

3CD,0ρS

The second partial derivative of H with respect to v is given by

∂2H

∂v2
= J∗

h

[
γv −

1

W

∂

∂v
(vDv)

]
= −J∗

h

W

(
6d0v +

2d1
v3

)
,

which must be less than zero according to the sufficient condition of optimality. Since (6d0v+

2d1/v
3) contains only positive terms, it follows that

J∗
h > 0. (4.28)

In the same fashion as in the climb, the HJB equation reduces to infv H = 0 which allows

solving for J∗
h using (4.22) evaluated at the optimal v and equated to zero yielding

J∗
h =

−1 + J∗
WSFCTi

vγ

The above expression must be greater than zero to satisfy (4.28). Since γ is negative dur-
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ing the descent and v is positive, the numerator must be negative resulting in the constraint

J∗
W <

1

SFCTi

. (4.29)

Equation (4.21) yields the minimum ROD speed and is very similar to (4.8), with the

difference that Tc is changed to Ti. It also coincides with (2.19) with T = Ti. Moreover, just

like in the climb phase, it can be shown that (4.21) is equivalent to the minimum fuel descent

speed. The procedure to prove this statement is identical to the one followed in the previous

subsection, and will not be repeated here.

4.3 Economy Mode OCP for Climb

The ECON mode for climb will now be derived and solved as an OCP. While it might seem

tempting to formulate such problem by modifying the ROC minimum fuel cost functional

(4.18) by adding CI to the running cost, the truth is that doing this will not change the

original problem. The Hamiltonian (4.9) would only be changed by the addition of CI , which

would disappear when the partial derivative w.r.t. v is taken for the necessary condition.

As a result, the same procedure developed in Section 4.2.1 would hold and the speed target

would remain unchanged.

The reason why this happens is because if the climb phase is considered alone without

regard to the rest of the flight, reaching cruise altitude in minimum time is already equivalent

to minimizing the fuel consumed during that phase, therefore using CI to quantify a tradeoff

between these two criteria becomes meaningless. To obtain a relevant formulation, the impact

of the climb phase on the rest of the flight must be considered, i.e. we will study the effect of

choosing a given climb speed and flight path angle on the overall operating cost of the flight.

To take the rest of the phases into account, the cost-to-go from the TOC until the end

of the flight must be added to the climb cost functional using the principle of optimality
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as discussed in Section 2.2.5. However, doing so would require computing the optimal cost-

to-go function of the cruise OCP (3.20), which involves finding analytic expressions for the

costates J∗
x and J∗

W by solving the ODE (3.22) and the HJB equation subject to its boundary

condition. Then, we would have to add the cost-to-go of the descent. This is obviously a

very difficult proposition. Nevertheless, the objective of the next subsection is to develop

a formulation that takes the cost-to-go into account an approximate manner, resulting in a

meaningful OCP that can be approached analytically to obtain the cost-optimal speed.

Problem Formulation Using the Principle of Optimality

Suppose that it is desired for the aircraft to climb from a given initial point (x0, h0) to a

prescribed cruise altitude hc. The TOC, xc, and the final time tc are unspecified and must

be determined such that the operating costs are minimized. The initial climb weight W0 is

known. From Section 1.3, we know that the total operating cost of the flight can be expressed

in terms of the fuel flow rate ff as

J =

∫ tf

0

(ff + CI) dt, (4.30)

which is split into the three phases of flight:

J =

∫ tc

0

(ffcl + CI) dt+

∫ td

tc

(ffcr + CI) dt+

∫ tf

td

(ffd + CI) dt (4.31)

The terms ffcl , ffcr and ffd denote the fuel flow rate during climb, cruise and descent

respectively. Then, according to the principle of optimality defined in (2.36), we get

J∗ = inf
v,tc,0≤t≤tc

{∫ tc

0

(ffcl + CI) dt+ J∗
cr,d(tc, ζ(tc))

}
, (4.32)

where

J∗
cr,d = inf

v,tc≤t≤tf

{∫ td

tc

(ffcr + CI) dt+

∫ tf

td

(ffd + CI) dt

}
.
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The functional J∗
cr,d computes the optimal cost-to-go from tc until the end of the flight,

and comprises both the cruise and the descent costs. To simplify the problem, we will assume

that the descent cost is negligible when compared to the cruise cost. This is a reasonable

assumption when considering that most commercial flights spend most of the time cruising,

in addition to the thrust being small during the descent. As a result, the impact of the

cruise on the overall flight time and fuel consumption is more significant than the descent.

Furthermore, we know from Section 3.3 that the cruise cost is given by

Jcr(tc) =

∫ td

tc

(SFCD + CI)dt =

∫ td

tc

(ffcr + CI)dt.

Generally speaking, for a fixed cruise altitude, ffcr changes slowly as the weight decreases

due to fuel burnt and the speed is modified accordingly obeying (3.21). If ffcr is computed

for W = W0, the total cruise cost-to-go can be estimated as follows:

J∗
cr(tc) = inf

vcr

{∫ td

tc

(SFCD + CI)dt

}
≈ (ffcr |W0 + CI)(td − tc).

Let us approximate (td − tc) by the expression

(td − tc) ≈
xd − xc

vcr
,

where vcr stands for the cruise speed and can be estimated by evaluating (3.30) at W0.

Putting everything together, we will approximate J∗
cr,d ≈ J∗

cr, and from (4.32) the following

cost functional is obtained for the climb phase

J∗(0) ≈ inf
v,tc

{∫ tc

0

(ffcl + CI) dt+ (ffcr + CI)
xd − xc

vcr

}
, (4.33)

where ffcr = SFCTc, and ffcr , vcr are assumed to be evaluated at W0. Then, the ECON
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Climb OCP can be stated mathematically as follows:

J∗(0) = min
v,tc

{∫ tc

0

(SFCTc + CI) dt+ (ffcr + CI)
xd − xc

vcr

}
s.t.

ẋ = v

ḣ = vγ

Ẇ = −SFCTc

x(0) = x0

h(0) = h0, h(tc) = hc

W (0) = W0,

(4.34)

where γ satisfies (4.6) and Tc is given by (4.5).

Optimal solution

The following result gives the solution to OCP (4.34).

Theorem 4.3.1. The optimal solution to the ECON mode OCP for climb stated in (4.34)

is given by the solution v of the equation

[(1− J∗
W )SFCTc + CI ] (Tc −D − vDv)− J∗

xv
2Dv = 0, (4.35)

where γ is obtained from (4.6), J∗
x is given by

J∗
x = −ffcr + CI

vcr
, (4.36)

and the time derivative of J∗
W equals

J̇∗
W = −

(
J∗
xv

W

) (
d0v

4 − Tcv
2 − d1

3d0v4 − Tcv2 − d1

)
, (4.37)
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with final condition

J∗
W (tc) = 0. (4.38)

Proof. Define the Hamiltonian as

H = (1− J∗
W )SFCTc + J∗

xv + J∗
hvγ + CI . (4.39)

To minimize (4.39) with respect to v, the necessary condition for optimality must be

satisfied:

∂H

∂v
= J∗

x + J∗
h (γ + vγv) = 0

Substitute γv from (4.10)to get

J∗
x + J∗

h

(
γ − vDv

W

)
= 0 (4.40)

Up to this point, the minimum-cost problem seems identical to the maximum ROC one

from Section (4.2.1). In fact, (4.40) and (4.11) are the same. However, the problem changes

drastically once the costate J∗
x is taken into account. We get:

J̇∗
x = −∂H

∂x
= 0 (4.41)

Moreover, since there is a terminal cost

φ(x) = (ffcr + CI)
xd − x

vcr
, (4.42)

and

ψ(h) = h− hc, (4.43)
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then the following value for J∗
x is obtained:

J∗
x(tc) = J∗

x = (φx + νψx)|tc = −ffcr + CI

vcr

The main difference between this OCP and the maximum ROC is that J∗
x does not vanish,

but has a constant, known value given by the above equation. The costate J∗
W can be solved

directly as a function of the rest of the variables from (4.40) yielding

J∗
h = −

(
J∗
x

γ − vDv

W

)
, (4.44)

therefore we do not have to compute its time derivative or final value. For J∗
W , the costate

equation gives

J̇∗
W = − ∂H

∂W
= −J∗

hvγW (4.45)

Differentiating (4.6) with respect to W yields

γW =
1

W 2
(−DWW − Tc +D) .

From (3.5)

DW =
4CD,2W

ρSv2
,

which is substituted into γW along with (3.6) and (3.7) to get

γW =
1

W 2

(
−4CD,2W

2

ρSv2
− Tc + d0v

2 +
d1
v2

)
=

1

W 2

(
−2d1

v2
− Tc + d0v

2 +
d1
v2

)
= − 1

W 2

(
Tc − d0v

2 +
d1
v2

)
(4.46)
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Substituting (4.46) into (4.45) results in

J̇∗
W =

(
J∗
hv

W 2

) (
Tc − d0v

2 +
d1
v2

)
.

If J∗
h is replaced by (4.44) one obtains the expression

J̇∗
W = −

(
J∗
xv

W 2

) (
Tc − d0v

2 + d1
v2

γ − vDv

W

)

in which γ is substituted using (4.6) and D by (3.6) yielding

J̇∗
W = −

(
J∗
xv

W

) (
Tc − d0v

2 + d1
v2

Tc −D − vDv

)

= −
(
J∗
xv

W

) (
Tc − d0v

2 + d1
v2

Tc − 3d0v2 +
d1
v2

)

= −
(
J∗
xv

W

) (
d0v

4 − Tcv
2 − d1

3d0v4 − Tcv2 − d1

)

Its final value is given by

J∗
W (tc) = (φW + νψW )|tc = 0.

We will now apply the same result from optimal control theory that we used in the cruise

problem to simplify the HJB equation. Since H and φ are not explicit functions of t and tc

is unspecified, the HJB equation

0 = J∗
t +min

v
H,

reduces to

min
v

H = 0.
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Replacing the Hamiltonian (4.39) into the HJB equation yields

min
v

{(1− J∗
W )SFCTc + J∗

xv + J∗
hvγ + CI} = 0,

or, at the optimal speed

(1− J∗
W )SFCTc + J∗

xv + J∗
hvγ + CI = 0. (4.47)

Substitute (4.44) into (4.47) to yield

(1− J∗
W )SFCTc + J∗

xv + CI −
J∗
xvγ(

γ − vDv

W

) = 0.

The above expression can be further manipulated to obtain an equation in terms of v,

J∗
W and γ as follows:

[(1− J∗
W )SFCTc + CI + J∗

xv]

(
γ − vDv

W

)
− J∗

xvγ = 0

≡ [(1− J∗
W )SFCTc + CI ]

(
γ − vDv

W

)
− J∗

xv
2Dv

W
= 0

Using (4.6) yields

[(1− J∗
W )SFCTc + CI ] (Tc −D − vDv)− J∗

xv
2Dv = 0.

Remark: As opposed to the cruise phase, if CI vanishes in (4.35) then the Maximum

ROC solution presented in Section 4.2.1 is not attained, which was shown to be equivalent

to the minimum fuel case for a standalone climb. This happens as a result of the interaction

between climb and cruise phases. The only way for both speeds to coincide is to ignore the

cruise cost-to-go, which would make J∗
x vanish in (4.40) thus recovering the Maximum ROC

solution, regardless of the value of CI .
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Deriving a sub-optimal control law

Equation (4.35) gives the exact solution to the speed that minimizes operating costs, but

requires deriving an expression J∗
W . We would like to obtain a simplified, sub-optimal ex-

pression that does not depend on J∗
W and that can be solved either analytically or by the

means of a fast-converging numerical method for implementation in a FMS.

Note that the right bracket term in (4.37) involves a quotient of two expressions that

are in a similar order of magnitude. The term v4 is usually large, as well as Tcv
2 (and d1

since it involves a term in W 2, see (3.7)). On the other hand, the left bracket from (4.37)

results in a very small quantity, since W >> v. Note that the constant J∗
x is also small as

vc >> ffcr +CI . We will therefore assume that the left bracket term in (4.37) is much smaller

than the right one, therefore W >> vJ∗
x and J̇∗

W ≈ 0.

To validate these assumptions with an example, we will use the G-IV model presented in

section 3.4.1. Suppose that the aircraft is at 5000 ft, where ρ = 2×10−3 slug/ft 3 as computed

using (2.1c) and Tc = 24867 lbf calculated from (4.5). The aircraft gross weight is W = 70000

lbf and the desired cruise altitude is hc = 25000 ft. For CI = 0, the cruise fuel fuel flow rate

is ffcr = 1.07 lbf/s and the optimal speed is vcr = 536.48 ft/s. These values were obtained

using the CruiseOptimalSPeedAndFuelFlow.m function from Appendix A. Then from (4.36)

we get J∗
x = −0.002 and, referring to (4.37), the following values of the left bracket term,

right bracket term and J̇∗
W are obtained for different climb speeds

v = 750 ft/s : Left bracket = −2.15× 10−5, Right bracket = −393.15, J̇∗
W = −8.40× 10−3

v = 800 ft/s : Left bracket = −2.29× 10−5, Right bracket = −4.31, J̇∗
W = −9.86× 10−5

v = 850 ft/s : Left bracket = −2.43× 10−5, Right bracket = −1.93, J̇∗
W = −4.69× 10−5.

The considerations written above make sense from a physical point of view. As a result,

we will make the assumption that J̇∗
W is negligible and J∗

W is approximately zero for all t as
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in (4.38).This assumption allow simplifying (4.35) to

(SFCTc + CI)(Tc −D − vDv)− J∗
xv

2Dv = 0,

which yields a 5th degree polynomial in terms of v

(SFCTc + CI)

(
Tc − d0v

2 − d1
v2

− 2d0v
2 + 2

d1
v2

)
− J∗

xv
2

(
2d0v − 2

d1
v3

)
= 0

≡ (SFCTc + CI)
(
Tcv

2 − 3d0v
4 + d1

)
− 2J∗

x(d0v
5 − d1v) = 0

≡ 2J∗
xd0v

5 + 3(SFCTc + CI)d0v
4 − (SFCTc + CI)Tcv

2 − 2J∗
xd1v − (SFCTc + CI)d1 = 0

(4.48)

Equation (4.48) constitutes a sub-optimal feedback law for the optimal speed v. When

compared to (4.35), it has the advantage that it does not require prior knowledge of J∗
W .

An expression for v cannot be found analytically, but computing a positive real root of a

polynomial such as (4.48) that lies within the flight envelope of the aircraft can be achieved

numerically in a few iterations using an algorithm such as Newton’s method. The exact

methodology used for on-board implementation is not discussed in this thesis. Instead, to

evaluate the accuracy of the sub-optimal policy, Matlab is used to compute the required root

of (4.48), and the resulting trajectory is compared to the numerical solution found via the

shooting method as described in the next section.

4.4 Validation of Climb Results

All simulations conducted in this section use the aircraft model presented in Section 3.4.1.
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4.4.1 Shooting Method for Climb

Following the procedure of Section 3.4.2, we form the augmented system with the specified

initial and final conditions from (4.1) and (4.37) as follows:

ẋ = v

ḣ = vγ

Ẇ = −SFCTc

J̇∗
W = −

(
J∗
xv

W

) (
d0v

4 − Tcv
2 − d1

3d0v4 − Tcv2 − d1

)
x(0) = x0, x(tc) unspecified

h(0) = h0, h(tc) = hc

W (0) = W0,W (tc) unspecified

J∗
W (0) unspecified, J∗

W (tc) = 0

(4.49)

As explained previously, J∗
x is constant and given by (4.36) and J∗

h has been solved in

terms of the other variables in (4.44). At each time-step, the control inputs v and γ are

obtained by solving (4.6) and (4.35) simultaneously. The following pseudo-code discusses the

algorithm of the climb shooting method:

1. Compute J∗
x from (4.36), with ffcr and vcr evaluated at hc, W0.

2. Choose J∗
W

(0)(0):

(a) Estimate an initial value for the speed v(0) based on experience

(b) Compute γ(0) from (4.6)

(c) Solve for J∗
W from (4.35) and evaluate at t = 0, yielding the following estimate:

J∗
W

(0)(0) =

[
1 +

CI

SFCTc

− J∗
xv

2Dv

SFCTc (Tc −D − vDv)

]
|t=0 (4.50)

3. Let k = 0
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4. Do:

(a) Simulate (4.49) until h(t) = hc, then tc = t

(b) Compute ε = J∗
W

(k)(tc)− J∗
W (tc)

(c) Compute next seed J∗
W

(k+1)(0) using the update law:

J∗
W

(k+1)(0) = J∗
W

(k)(0)− βε (4.51)

(d) k = k + 1

5. Until |ε| < tolerance OR k ≥ Max. Iterations

Estimating v(0) then solving for J∗
W

(0)(0) is easier than proposing a value for J∗
W

(0)(0)

directly, as the former has a direct physical meaning and can be guessed from experience.

β is a tuning parameter and equals one for this problem. Appendix B contains the code

developed in Matlab to implement this method, as well as the sub-optimal law from (4.48).

In what follows, both approaches will be compared in simulations.

4.4.2 Comparison between the optimal and sub-optimal trajecto-

ries

For this demonstration we use the following initial and final conditions, where xd is relevant

only to compute the cost:

x0 = 0 mi

xd = 1000 mi

h0 = 2000 ft

hc = 25000 ft

W0 = 73000 lb
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Figure 4.1: Comparison between the optimal and sub-optimal climb speeds for different
cost indexes. The solid line represents the optimal solution, while the dashed line is the
sub-optimal one.
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The result of the simulation is displayed in Fig. 4.1, where the optimal speed profiles are

compared for different values of CI. The solid line represents the shooting method solution

and the dashed line represents the sub-optimal one. It can be determined by inspection that

the distance between each pair of curves is not significant. Moreover, Fig. 4.2 shows a plot

of J∗
W as a function of time for each of the examples, where we can verify that its value

stays below 8× 10−3throughout the simulation, making it very close to zero. As a result, the

assumptions made in section 4.3 that lead to (4.48) are valid.

To quantify the impact of the small discrepancies between the optimal and sub-optimal

speeds as well as the value of J∗
W , Table 4.1 compares the fuel consumed, time elapsed,

range and cost incurred during the phase for each example. The cost was computed by

manipulating (4.33) to obtain

J = W (0)−W (tc) + CItc +

(
ffcr + CI

vcr

)
(xd − xc) .

Table 4.1: Climb fuel, time, range and cost comparison for different values of CI.

Fuel (lb) Duration (min) Range (mi) Cost (lb) Error (%)

CI = 0
Optimal 748.19 3.71 36.38 8244.63

1.21 · 10−4

Sub-optimal 746.96 3.70 36.22 8244.64

CI = 0.3
Optimal 769.17 3.83 38.90 10232.23

4.89 · 10−4

Sub-optimal 767.30 3.82 38.68 10232.28

CI = 0.6
Optimal 795.99 3.99 41.80 12056.17

6.64 · 10−4

Sub-optimal 792.97 3.97 41.48 12056.25

Note that, as CI increases, the time spent in the climb phase is larger. While this

might seem incorrect at first, it is important to remember that spending more time in the

climb results in less time spent during the cruise, which reduces the overall flight time.

This interaction between climb and cruise is measured in the cost. Secondly, a climb time

of approximately 3.8 might seem unreasonable. However, as explained in [46], the G-IV

airplane used in this simulation is a very high performance business jet with an unusually

high thrust-to-weight ratio, making it capable of reaching the desired height in the specified

time. Moreover, in real flights aircraft must go through standard departure procedures and
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Figure 4.2: Costate J∗
W in climb as a function of time for different cost indexes.

a series of speed and altitude constraints after takeoff that add to the overall duration of

the takeoff and climb phases [21]. The problem formulation in this thesis neglects these

constraints allowing the aircraft to climb in an unconstrained manner, and as a result it

reaches the desired cruise altitude in a short amount of time.

Overall, it can be seen in Table 4.1 that the relative error resulting from the cost difference

between both control laws, computed as in (3.45), can be considered negligible for practical

purposes. Moreover, increasing CI results in a longer range, pushing the TOC farther, which

is the expected behavior as shown in Fig. 1.2 of section 1.3. This is also attested in Fig. 4.3

which shows the vertical profile of the aircraft as an range-altitude plot, generated using the

sub-optimal solution, for the different values of CI. Finally, a noticeable change in the flight

path angle during the phase can be appreciated from the graph.
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Figure 4.3: Climb vertical profile for different values of CI.

4.5 Economy Mode OCP for Descent

Formulating a descent OCP presents the same challenge as the climb, in the sense that the

interaction between the descent and the other flight phases must be taken into account in

order to achieve a meaningful result. However, if the descent is observed as a climb phase

carried out backwards in time, it is possible to apply a similar approach to the one used in

section 4.3, as explained below.

Problem Formulation Using the Principle of Optimality

During the descent, it is desired to go from an initial cruise altitude hc to a specified final

point (xf , hf ) where the FMS is disengaged and the approach phase begins. The TOD, xd,

and the final time tf are unknown and must be determined such that the operating costs

are minimized. The initial descent weight Wd is considered given (the aircraft cruises before
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descending, therefore when xd is known Wd will be automatically determined). We go back

to (4.32) which expresses the overall trip cost in integral form. Instead, this work proposes

applying the same approach as the climb by solving the descent backwards in time, with the

cruise cost-to-go added as a terminal cost function. Define

τ(t) = tf − t, (4.52)

which implies

dτ

dt
= −1

τ(0) = tf ≡ τf (4.53)

τ(tc) = tf − tc ≡ τc (4.54)

τ(td) = tf − td ≡ τd (4.55)

τ(tf ) = 0. (4.56)

As a result, we can rewrite (4.32) in terms of τ yielding

J∗ = inf
v,τd,0≤τ≤τd

{∫ τd

0

(ffcl + CI) dτ + J∗
cr,cl(τd, ζ(τd))

}
, (4.57)

where

J∗
cr,cl = inf

v,τd≤τ≤τf

{∫ τc

τd

(ffcr + CI) dτ +

∫ τf

τc

(ffcl + CI) dτ

}
.

In a similar manner as in section 4.3, we will assume that the climb cost is negligible

when compared to the cruise, allowing to express J∗
cr,cl as the cruise cost only. This is a

stronger assumption than neglecting the descent with respect to the cruise, which becomes

specially inaccurate in short flights. Longer flights, however, spend most of the time in the

cruising segment, with the other two phases making a very small portion of the overall trip.

As a result, the developments presented in this section can be considered valid for longer,
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transcontinental flights.

As a result of the new time variable in (4.52), system dynamics (4.1) change to

dx

dτ
= −v

dh

dτ
= −vγ

dW

dτ
= SFCTi.

(4.58)

The initial and final conditions, specified in the initial paragraph of this subsection, must

also change to match τ :

t τ

x(td) = xd x(τd) = xd unspecified

x(tf ) = xf x(0) = xf

h(td) = hc h(τd) = hc

h(tf ) = hf h(0) = hf

W (td) = Wd W (τd) = Wd

W (tf ) = Wf W (0) = Wf unspecified

Following the same procedure as in the climb, the optimal cruise cost is approximated by

J∗
cr(τd) = inf

v,τd≤τ≤τc

{∫ τc

τd

(ffcr + CI) dτ

}
≈ (ffcr + CI)

xd − xc

vcr
,

which allows substituting J∗
cr,cl ≈ J∗

cr into (4.57) to obtain the descent cost functional

J∗(0) ≈ inf
v,τd

{∫ τd

0

(SFCTi + CI) dτ + (ffcr + CI)
xd − xc

vcr

}
. (4.59)
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In (4.59), ffcr and vcr are computed at a given initial descent weight Wd and

ffd = SFCTi.

Before stating the OCP formally, an additional change of variables has to be made to

account for the fact that W (τ) is known at the final time τd, but not at τ = 0. Define the

fuel consumed as

W̃ (τ) = W (τ)−Wf , (4.60)

such that its dynamics are the same as W (τ) and its initial and final conditions become

W (0) = Wf unspecified ≡ W̃ (0) = 0 given

W (τd) = Wd given ≡ W̃ (τd) = Wd −Wf unspecified

The ECON Descent OCP can then be stated mathematically in terms of the new variables

τ and W̃ as follows:

J∗(0) = min
v,τd

{∫ τd

0

(SFCTi + CI) dτ + (ffcr + CI)
xd − xc

vcr

}
s.t.

ẋ = −v

ḣ = −vγ

˙̃
W = SFCTi

x(0) = xf

h(0) = hf , h(τd) = hc

W̃ (0) = 0,

(4.61)

In (4.61), γ satisfies (4.20) and Ti is constant. Note the slight abuse of notation, where
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ẋ denotes the derivative of x with respect to τ , and the same applies to the rest of the state

variables.

Optimal solution

The following theorem states the solution to OCP (4.61).

Theorem 4.5.1. The optimal solution to the ECON mode OCP for descent stated in (4.61)

is given by the solution v of the equation

[
(1 + J∗

˜W
)SFCTi + CI

]
(Ti −D − vDv) + J∗

xv
2Dv = 0, (4.62)

where γ is obtained from (4.20), J∗
x is given by

J∗
x =

ffcr + CI

vcr
, (4.63)

and the time derivative of J∗
˜W

equals

J̇∗
˜W

=

(
J∗
xv

W

) (
d0v

4 − Tiv
2 − d1

3d0v4 − Tiv2 − d1

)
, (4.64)

with final condition

J∗
˜W
(τd) = 0. (4.65)

Proof. The procedure presented in this section mirrors the one shown in the climb ECON

problem. The Hamiltonian is defined as

H = (1 + J∗
˜W
)SFCTi − J∗

xv − J∗
hvγ + CI , (4.66)

98



which is minimized with respect to v by satisfying the necessary condition

∂H

∂v
= −J∗

x − J∗
h (γ + vγv) = 0.

Substitute γv using (4.23) to obtain

J∗
x + J∗

h

(
γ − vDv

W

)
= 0. (4.67)

Equation (4.67) is identical to (4.40), the necessary condition for the climb. The costate

J∗
x is constant since

J̇∗
x = −∂H

∂x
= 0. (4.68)

In this OCP, the terminal cost is

φ(x) = (ffcr + CI)
x− xc

vcr
, (4.69)

and

ψ(h) = h− hc. (4.70)

As a result of J∗
x being constant, its value is given by its boundary condition, which yields

J∗
x(τd) = J∗

x = (φx + νψx)|τd =
ffcr + CI

vcr
.

When compared to (4.36), the above equation differs only in the positive sign. Solving

for J∗
h in (4.67) gives

J∗
h = −

(
J∗
x

γ − vDv

W

)
, (4.71)

therefore we do not need to study its time derivative and final value. For J∗
˜W
, we get

J̇∗
˜W

= − ∂H

∂W̃
= J∗

hvγ˜W (4.72)

99



Differentiating (4.20) with respect to W̃ yields

γ
˜W = γW =

1

W 2
(−DWW − Ti +D) .

Using the same procedure as the climb phase, (3.5) is differenciated with respect to W

and substituted into γ
˜W along with (3.6) and (3.7) to get

γ
˜W = − 1

W 2

(
Ti − d0v

2 +
d1
v2

)
. (4.73)

Substitute (4.73) into (4.72) to obtain

J̇∗
˜W

= −
(
J∗
hv

W 2

) (
Ti − d0v

2 +
d1
v2

)
,

which results in the following equation after accounting for (4.20) and (4.71)

J̇∗
˜W

=

(
J∗
xv

W

) (
d0v

4 − Tiv
2 − d1

3d0v4 − Tiv2 − d1

)
.

Again, it is important to remember that in this OCP the time derivatives are with respect

to τ . The final value of this costate is given by

J∗
˜W
(τd) =

(
φ
˜W + νψ

˜W

)
|τd = 0.

We have that (4.66) and (4.69) do not depend explicitly on τ and τd is unspecified,

therefore the HJB equation

0 = J∗
τ +min

v
H,

reduces to

min
v

H = 0.
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Replacing the Hamiltonian (4.66) into the HJB equation yields

min
v

{
(1 + J∗

˜W
)SFCTi − J∗

xv − J∗
hvγ + CI

}
= 0,

or, at the optimal speed

(1 + J∗
˜W
)SFCTi − J∗

xv − J∗
hvγ + CI = 0. (4.74)

Substitute (4.71) into (4.74) to get

(1 + J∗
˜W
)SFCTi − J∗

xv + CI +
J∗
xvγ(

γ − vDv

W

) = 0

≡
[
(1 + J∗

˜W
)SFCTi + CI

] (
γ − vDv

W

)
+

J∗
xv

2Dv

W
= 0,

or, after using (4.20)

[
(1 + J∗

˜W
)SFCTi + CI

]
(Ti −D − vDv) + J∗

xv
2Dv = 0.

Remark: The same situation happens in descent as in the climb regarding the minimum

fuel solution. If CI is zero in (4.62), the minimum ROD speed shown in Section 4.2.2 is not

obtained. The only way for both solutions to coincide is to eliminate the terminal cost in the

OCP, making J∗
x vanish in (4.67).

Deriving a sub-optimal control law

Equation (4.62) yields the exact solution to the optimal true airspeed v, provided that J∗
˜W

is known a-priori. Following the same procedure as the climb, assumptions will be made to

derive a simplified polynomial that can be solved for a sub-optimal control input in state

feedback form.
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It will be assumed that the left bracket term in (4.64) is much smaller than the rightmost

one, implying that W >> J∗
xv, then J̇∗

˜W
≈ 0. Using the G-IV model presented in 3.4.1, an

example will be shown to validate this assumption. Suppose h = 5000 ft, corresponding to a

density of ρ = 2× 10−3 slug/ft 3, the desired cruise altitude is hc = 25000 ft and the aircraft

gross weight is W = 70000 lbf. For CI = 0, the cruise fuel fuel flow rate is ffcr = 1.07 lbf/s

and the optimal speed is vcr = 536.48 ft/s, as computed using the CruiseOptimalSPeedAnd-

FuelFlow.m function from Appendix A. Recall from the aircraft model that Ti = 200 lbf.

Then from (4.63) we get J∗
x = 0.002 and, referring to (4.64), the following values of the left

bracket term, right bracket term and J̇∗
˜W

are obtained for different descent speeds

v = 350 ft/s : Left bracket = 1.00× 10−5, Right bracket = −0.91, J̇∗
˜W

= −9.10× 10−6

v = 400 ft/s : Left bracket = 1.15× 10−5, Right bracket = −0.09, J̇∗
˜W

= −1.02× 10−6

v = 450 ft/s : Left bracket = 1.29× 10−5, Right bracket = 0.12, J̇∗
˜W

= 1.48× 10−6.

We can conclude from this example that the above considerations appear reasonable from

a physical point of view. As a result, we assume that J̇∗
˜W

is negligible and that J∗
˜W

≈ 0,

which is its final value according to (4.65). In light of this assumption, (4.62) is simplified to

(SFCTi + CI) (Ti −D − vDv) + J∗
xv

2Dv = 0,

which yields a 5th degree polynomial in v given by

−2J∗
xd0v

5 + 3(SFCTi + CI)d0v
4 − (SFCTi + CI)Tiv

2 + 2J∗
xd1v − (SFCTi + CI)d1 = 0. (4.75)

The sub-optimal equation (4.75) differs with respect to the climb solution (4.48) because

Tc was replaced by Ti and the signs of the terms involving J∗
x are symmetric. Nevertheless, J∗

x

itself is negative during climb and positive during descent, so when replaced in the respective

equations the opposite signs cancel resulting in the same expression for both phases, with
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T = Tc for climb and T = Ti for descent. Equation (4.75) involves only the speed, J∗
x and the

state variables, therefore it can be thought of as a state-feedback law. To obtain the optimal

v, a numerical method has to be implemented for finding the roots of a polynomial.

The validation scheme designed to demonstrate the accuracy of the result and of the

assumption J∗
W ≈ 0 will be presented in the next section.

4.6 Validation of Descent Results

All simulations conducted in this section use the aircraft model presented in Section 3.4.1.

4.6.1 Shooting Method for Descent

To form the augmented system, the dynamics in terms of τ are taken from (4.58), that is, with

W (τ) instead of W̃ (τ). The latter was used to correctly formulate the OCP in a standard

form as in (2.24), where all initial conditions are specified. However, a value for the weight

W is required for the aerodynamic calculations. In the simulations we will assign a value to

W (0) = Wf . In a practical setting the final aircraft weight Wf cannot be known in advance,

but this modification of the problem does not invalidate the results since the measurements

that assess the optimality of the solution are the amount of fuel consumed during the phase

and the phase duration. Moreover, J∗
W = J∗

˜W
, therefore the conclusions drawn for the former

also apply to the latter.
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The augmented system is formed from (4.58) and (4.64), resulting in

ẋ = −v

ḣ = −vγ

Ẇ = SFCTi

J̇∗
W =

(
J∗
xv

W

) (
d0v

4 − Tiv
2 − d1

3d0v4 − Tiv2 − d1

)
x(0) = xf , x(τd) unspecified

h(0) = hf , h(τd) = hc

W (0) = Wf ,W (τd) unspecified

J∗
W (0) unspecified, J∗

W (τd) = 0,

(4.76)

where the control inputs are obtained at each time-step by solving (4.20) and (4.62) simul-

taneously, with J∗
˜W

= J∗
W . The system (4.76) is given in terms of τ , but the results can be

recovered forward in time by mirroring the plots with respect to the time axis. The algorithm

implements the following pseudo-code:

1. Compute J∗
x from (4.63), evaluating ffcr and vcr at hc and Wf .

2. Choose J∗
W

(0)(0):

(a) Estimate an initial value for the speed v(0) from practical experience

(b) Compute γ(0) from (4.20)

(c) Solve for J∗
W from (4.62) and evaluate at τ = 0, yielding the following estimate:

J∗
W

(0)(0) = −
[
1 +

CI

SFCTi

+
J∗
xv

2Dv

SFCTi (Ti −D − vDv)

]
|τ=0 (4.77)

3. Let k = 0

4. Do:
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(a) Simulate (4.76) until h(τ) = hc, then τd = τ

(b) Compute ε = J∗
W

(k)(τd)− J∗
W (τd)

(c) Compute next seed J∗
W

(k+1)(0) using the update law:

J∗
W

(k+1)(0) = J∗
W

(k)(0)− βε (4.78)

(d) k = k + 1

5. Until |ε| < tolerance OR k ≥ Max. Iterations

The tuning parameter β equals one for this problem. An example will now be shown that

compares the numerical solution with the sub-optimal one resulting from (4.75). The Matlab

code that implements the algorithms is presented in Appendix C.

4.6.2 Comparison between the optimal and sub-optimal trajecto-

ries

The initial and final conditions for this exercise are

xc = 0 mi

xf = 1000 mi

hc = 25000 ft

hf = 2000 ft

Wf = 55000 lb,

where xc is only relevant to compute the cost. As explained previously, the simulation is

carried out backwards in time, but the plots presented in this section have been corrected to

show the results forward in time. Fig. 4.4 compares the optimal speed profile as a function of

time for different values of CI, with the solid line representing the shooting-method and the
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Figure 4.4: Comparison between the optimal and sub-optimal descent speeds for different
cost indexes. The solid line represents the optimal solution, while the dashed line is the
sub-optimal one.
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dashed line representing the sub-optimal law. There is no discernible difference between each

pair of curves: they look identical to the naked eye. In addition, a plot of J∗
W as a function of

time for each CI is shown in Fig. 4.5 (recall that the plots are being shown forward in time,

therefore J∗
W starts at zero, which is its “final value” when the problem is solved backwards

in time). We have that |J∗
W | < 3 × 10−3, which validates the assumption that J∗

W ≈ 0. It

can be shown that the sign changes in J̇∗
W occur in the right bracket term of (4.64), which

does not happen in the climb because Tc is much larger than Ti.

In Table 4.2 the fuel consumed, time elapsed, range and cost incurred are compared for

each example. Just like in the climb section, the cost was computed from (4.59), manipulated

as follows:

J = W (τd)−W (0) + CIτd +

(
ffcr + CI

vcr

)
(xc − xd)
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Figure 4.5: Costate J∗
W in descent as a function of time for different cost indexes.

Note that, as CI increases, the fuel consumed during the descent decreases, which might

appear as incorrect. However, spending less time in the descent (which translates into less

107



Table 4.2: Descent fuel, time, range and cost comparison for different values of CI.

Fuel (lb) Duration (min) Range (mi) Cost (lb) Error (%)

CI = 0
Optimal 32.02 13.92 66.18 6337.76

0
Sub-optimal 32.02 13.92 66.18 6337.76

CI = 0.3
Optimal 25.85 11.24 62.33 8684.42

1.15 · 10−4

Sub-optimal 25.83 11.23 62.31 8684.43

CI = 0.6
Optimal 19.31 8.39 54.14 10761.87

1.86 · 10−4

Sub-optimal 19.24 8.36 54.03 10761.89

fuel consumed the descent) implies that more time is spent cruising, thereby increasing the

overall trip fuel consumption in favor of a shorter flight time. Secondly, the descent phase

takes much longer than the climb, which lasted about 3.8 minutes in the example of section

4.4.2. This is a direct result of the idle thrust being much smaller than the maximum climb

thrust because, as shown in (2.18), the rate of descent depends on the difference between

the thrust and the drag. For a small T = Ti, this difference is not as significant as the case

T = Tc and therefore the resulting vertical speed is smaller.
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Figure 4.6: Descent vertical profile for different values of CI.
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Overall, Table 4.6 shows that the relative error, computed as in (3.45), can be considered

negligible for practical purposes Moreover, the expected behavior for the TOD, depicted in

Fig. 1.2 of section 1.3, is recovered: increasing CI results in a shorter range pushing this

waypoint farther and making the cruise phase longer. This is also attested in Fig. 4.6 which

shows the descent profile as a range-altitude plot, generated using the sub-optimal solution

for each value of CI. An important difference between the climb and descent is that there

is no noticeable change in the flight path angle in the latter. In fact, the TOD and the

final waypoint seem to be connected by a straight line. This finding is considered in the

next section, where a scheme is proposed to estimate the TOD waypoint during the cruise

segment of the flight.

4.7 Practical consideration: Estimation of the Top-of-

Descent

The descent solution proposed in this work has been attained by proposing an OCP that is

solved backwards in time. This approach has allowed to obtain sub-optimal expressions for

the speed and flight path angle that minimize operating costs. However, real aircraft do not

fly backwards in time, thus the TOD waypoint must be estimated a-priori during the cruise

segment. This waypoint can be estimated following the approach presented in this section.

Looking at the simulation results, it can be concluded that the descent flight path angle

does not change significantly during the phase. Suppose that we can approximate γ by a

constant value. Then we have the situation depicted in Fig. 4.7. For a constant γ, the

following relation is satisfied

tan(γ) = −hc − hf

xf − xd

,

where the negative sign results from the descent angle being negative. Then, we can solve
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Figure 4.7: Estimating the top-of-descent.

for the descent range yielding

(xf − xd) = −hc − hf

tan(γ)
(4.79)

Provided that γ is nonzero (which is the case in the descent phase), then (4.79) allows

computing the TOD which equals xd, because xf is known. During cruise, estimations of

the optimal descent v and γ can be made using (4.75) and (4.20) evaluated at the current

aircraft gross weight. Then, using those estimates, (4.79) gives an approximate TOD. As the

aircraft approaches the real xd, its gross weight converges to the real weight at the start of

the descent phase, Wd. As a result the estimate of the TOD will converge to the real TOD.

The only assumption made here is that γ can be approximated by its value at the start of

the descent but, as shown in the simulations, this is a perfectly reasonable assumption.

110



Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis has presented a novel approach for solving the Economy Mode problem in FMS.

Using techniques from optimal control theory and algebraic manipulations, an analytic sub-

optimal solution has been found for the true airspeed that minimizes operating costs for the

cruise phase of the flight. For climb and descent, finding a root of the resulting polynomial

that lies in the flight envelope of the aircraft is proposed for on-board implementation using

an iterative approach, such as Newton’s method. In all the examples shown, the relative

error between the optimal and the sub-optimal costs is less than 1 · 10−2%, which is small

enough to be considered negligible in practical scenarios.

The merits of the contributions of this thesis are:

• The airspeed target is in a state-feedback form, thereby avoiding time dependencies

that require offline computations which are common in the open literature and in some

implementations. Moreover, a state-feedback law is more robust in the sense that will

correct small deviations from the optimal trajectory due to possible disturbances. From

a control systems point of view, the FMS under this scheme works as an outer feedback

loop, while the inner loop consists of the autopilot.
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• Solving for the speed directly eliminates the need of having a performance database

storing the optimal speed schedules in the system. Thus, errors due to interpolation

between points are avoided and the implementation becomes faster. If a performance

database is needed, a look-up table can be created as a function of CI and the state

variables using the proposed sub-optimal equations.

• The climb and descent solutions are not analytic, but the roots of the polynomial

involved can be found using very simple numerical methods, such as Newton’s method.

To ensure a fast convergence, the speed computed at the previous time-step can be

used. This is an effective solution because, as shown in the simulations, the optimal

speed does not change much over small periods of time. In fact, the FMS does not have

to obtain new targets at a very high frequency. The flight management computer would

have plenty of time to compute the next set-point numerically between time-steps.

• From a theoretical standpoint, this formulation provides a significant contribution as it

falls in line with the well-known performance theory present in most books today. Using

this methodology, the maximum-range solution has been recovered when CI vanishes

during cruise, and (3.30) extends the theory naturally and elegantly to a more general

case where CI is not zero. In addition, it unifies all the well-known performance results,

such as maximum endurance and rate of climb, under a single approach.

From this work we can conclude that:

• Practically relevant problems such as the FMS Economy Mode can be formulated as

optimal control problems that can be treated analytically, provided that the correct

assumptions and simplifications are made. While the cruise formulation was simple

enough to perform algebraic manipulations, the climb and descent problems required

that the terminal cost (which is the optimal cost-to-go of the cruise phase) be approx-

imated by a simpler expression involving the cruise fuel flow evaluated at the initial

aircraft weight. This allowed approaching the problem analytically, something that
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would have been otherwise impossible. As a result, making the right assumptions is an

important step in profiting from the optimal control techniques described in this work.

• The behavior of the TOC and TOD, stated but not derived formally in publications

such as [10, 11], can be verified and explained using Bellman’s principle of optimality,

which models the correlation between the time spent climbing/descending and the time

spent cruising. In addition, because each phase utilizes different thrust settings, their

impact on the overall fuel consumption and flight time is different. As a result the

placement of these two waypoints becomes an important factor in the optimization.

Considering the climb and descent as isolated phases would not have yielded the same

results: in fact, as shown in Chapter 4, the inclusion of the cost index into the problem

does not make sense until the influence of the cruise phase is taken into account.

5.2 Extensions

Several extensions to this work can be proposed for future research, namely:

• Account for wind speeds during the flight. In reality, the existence of wind is one of

the most important factors in a commercial flight, thus the assumption that the wind

speed is zero is the strongest one in this work. Suppose that vw denotes the speed of the

headwind (pointing in the direction of −x̂h, which is part of the horizon axes system

as defined in section 2.1.3), then the ẋ equation from the aircraft model in (2.6) would

change to [47]

ẋ = v cos(γ)− vw,

with ḣ and the dynamic equations being unchanged. The aerodynamic forces and

specific fuel consumption would remain as functions of the true airspeed. Therefore the

assumptions and OCPs in this thesis would have to account for this modified state-space

model. Even for this simple modification, it will not be possible to obtain a polynomial

in the cruise phase that is solvable analytically because cross terms that multiply v and
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vw appear in the HJB equation. A similar problem would be present in the climb and

descent phases. The equations of motion for more complex wind scenarios are discussed

in [47].

• Study the impact of the flight length on the validity of the assumptions made to obtain

the sub-optimal solutions. For each flight phase, the costate J∗
W (or J∗

˜W
for the descent)

was approximated by zero, which is its final value. This assumption is less valid for

longer flights. On the other hand, when using the principle of optimality, the assump-

tion that the optimal cost-to-go for the rest of the flight can be approximated by the

cruise cost holds only for long flights, where the cruise phase dominates. As a result,

an interesting extension would involve finding the best compromise between the flight

length and the error due to these assumptions between the sub-optimal trajectory and

the optimal one.

• Find better approximations for J∗
W . Note that making J∗

W ≈ 0 is a zero-order Taylor

series expansion in the backward time variable τ , around τ = 0, which is the final

condition. However, if its time derivative J̇∗
W could be estimated at the final time, then

a first-order Taylor series expansion could be made about that point yielding a better

estimate for this costate. A potential drawback of this approach is that the resulting

expression would depend on time. As a result, when substituting J∗
W on the optimal

solutions, a time-dependent state-feedback law would be obtained.

• Consider transition periods between phases. Note that the optimal speed for the climb

found using (4.35) does not coincide with the cruise optimal solution (3.21) when h = hc,

and similarly between cruise and descent. Therefore, a period has to exist between these

phases where the aircraft transitions from one speed target to the other. Initially, this

period could be handled by the autopilot. However, it would be an interesting extension

to find the optimal way to change phases, based on the theory of optimal control.

• Extend the formulation to support step climbs during cruise. The main idea is to allow
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the aircraft to change between ATC-allowed flight levels during cruise to account for

changes in its optimum altitude. Current FMS already support step-climb, but they

must be initiated manually by the pilot. An interesting optimal control formulation

would be finding the “best” point to change altitude while cruising.

• Explicitly account for state and input constraints in the mathematical formulation,

given by the flight envelope of the aircraft. While the current assumption that all

points lie inside the flight envelope is valid for most practical scenarios, it is important

to guarantee that the aircraft does not exceed its structural limits specially when flying

at a high CI value. Using the current formulation, either one can compute CI to

ensure the constraints are verified (see remark 2 in section 3.3 ) or, otherwise, these

constraints must be enforced after the optimal set-points are found. To obtain an

optimal trajectory when close to the boundaries of the flight envelope, the constraints

must be explicitly incorporated in the optimal control problem.

• Compute the optimum altitude, defined as the height where operating costs are mini-

mal. Current FMS compute this value.

• Formulate and solve a Required Time of Arrival (RTA) problem. This mode was

mentioned in Section (1.2), and its purpose is to ensure that a particular waypoint

is reached within a prescribed time window. It would also allow accounting for strict

time of arrival constraints at the destination airport. From an optimal control point of

view, these situations would imply that the final times in the OCPs are now prescribed.

Accounting for these modifications is out of the scope of this thesis, and a preliminary

approach could be to change CI such that the given time constraint is satisfied.
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Appendix A

Validation Code for the Cruise Phase

The code developed for validation purposes is composed of the following Matlab and Simulink

files:

atmosphere standard.m

This function returns the International Standard Atmosphere (ISA) temperature, pressure

and density at a given altitude h. It follows the model in Section 2.1.1. The code is shown

below.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % Filename : atmosphere standard .m

4 %

5 % Purpose : Returns the I n t e r n a t i o n a l Standard Atmosphere c h a r a c t e r i s t i c s at

the g iven

6 % dens i ty a l t i t ude , in impe r i a l un i t s .

7 %

8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9

10 f unc t i on [ temperature , pres sure , dens i ty ]=atmosphere standard (h)

11

12 % Obtain atmosphere parameters at a g iven a l t i t u d e f o r standard sea l e v e l
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13 % cond i t i on s :

14 % Ts=518.69 R

15 % ps=2116.2 lb / f t ˆ2

16 % rho s =2.3769e−3 s l u g s / f t ˆ3

17

18 i f ( ( h>=0) && (h<=36150) ) % Troposphere

19 temperature = 518.69 − 3 .5662 e−3∗h ;

20 pre s su r e =1.1376e−11∗ temperature ˆ5 . 2 56 ;

21 dens i ty = 6.6277 e−15∗ temperature ˆ4 . 2560 ;

22 e l s e i f ( ( h>36150) && (h<=82300) ) % Stra to sphere I

23 temperature = 389 . 9 9 ;

24 pre s su r e = 2678.4∗ exp (−4.8063e−5∗h) ;

25 dens i ty = 1.4939 e−6∗pre s su r e ;

26 e l s e i f (h>82300) % Stra to sphere I I

27 temperature = 389.99+5.4864 e−4∗(h−65617) ;

28 pre s su r e = 3.7930 e90∗ temperature ˆ−34.164;

29 dens i ty = 2.2099 e87∗ temperature ˆ−35.164;

30 end

31

32 end

aircraft data.m

This script contains the drag coefficients, specific fuel consumption and thrust data of the

aircraft model used for the simulations, specified in Section 3.4.1. The source code is displayed

below.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % Filename : a i r c r a f t d a t a .m

4 %

5 % Purpose : Contains the drag c o e f f i c i e n t s , s p e c i f i c f u e l consumption and

thrus t c h a r a c t e r i s t i c s o f an a i r c r a f t modeled a f t e r the Gulfstream

123



Aerospace ’ s G−IV j e t .

6 %

7 % Model source : J . D. Anderson . A i r c r a f t Performance and Design . Chapter 5 ,

Airp lane Performance : Steady F l i gh t . Pages 199−232.

8 %

9 % Source f o r operat ing l im i t s : http : //www. gu l f s t r eam . com/ a i r c r a f t / gu l f s t ream−

g450

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

11

12 % Some d e f i n i t i o n s :

13 M HOUR TO SEG = 3600 ;

14

15 % Gulfstream Aerospace ’ s G−IV data :

16 SFC = 0.69/M HOUR TO SEG; % (1/ s ) . At 30000 f t .

17 Cd0 = 0 . 0 1 5 ;

18 Cd2 = 0 . 0 8 ;

19 S = 950 ; % ( f t ˆ2) .

20 T0 = 2 ∗ 13850 ; % Each Rol l s−Royce Tay 611−8 eng ine i s rated at

13850 ( l b f ) at sea l e v e l .

21 Ti = 200 . 0 ; % ( l b f ) .

22 m = 1 ;

23 Mmo = 0 . 8 8 ; % Maximum operat ing Mach .

24

25 % Make sure that the i n i t i a l c ond i t i on s do not exceed these l im i t s :

26 % Maximum usab le f u e l weight = 29500 lb .

27 % Maximum take−o f f weight = 74600 lb .

28 % Maximum zero f u e l weight = 49000 lb .

29 % Serv i c e c e i l i n g = 45000 f t .

shooting method cruise.m

This script loads the model from aircraft data.m, sets the shooting method and simulation

parameters, and implements the pseudo-code shown in Section 3.4.2. The desired initial,
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final conditions, CI and initial speed estimate must be specified in this file as well. The

sub-optimal trajectory given by (3.30) is obtained as well. To perform all these functions,

the script makes use of Simulink models sim 2pbvp cruise.mdl and sim analytic cruise.mdl.

The code is shown below. It is important to note that the costate J∗
W is named lambda2 in

the implementation.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % Filename : shoot ing method c ru i s e .m

4 %

5 % Purpose : Implements the shoot ing method f o r the c r u i s e phase . Also s imu la t e s

the system s im an a l y t i c c r u i s e . mdl which implements the sub−optimal

ana l y t i c s o l u t i o n .

6 %

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8

9 % Run the s c r i p t f o r the a i r c r a f t model :

10 a i r c r a f t d a t a ;

11

12 % Some d e f i n i t i o n s :

13 Ts = 0 . 1 ; % Simulat ion sampling time .

14 CI = 0 . 0 ;

15 M MILE TO FT = 5280 ; % Conversion from mi l e s to f e e t .

16 rhosea = 0 .002377 ; % ( s lug / f t ˆ2) sea l e v e l dens i ty .

17

18 % Shooting method parameters :

19 t o l e r an c e = 1e−5; % Tolerance on the f i n a l cond i t i on o f lambda2 .

20 e r r o r = 1e3 ; % D i f f e r e n c e between f i n a l lambda2 and

lambda2f .

21 i t e r = 1 ; % I t e r a t i o n count .

22 maxiter = 30 ; % Maximum number o f i t e r a t i o n s .

23 beta = 1 ; % Used in the update law o f lambda2 .

24 lambdas20 ( 1 : maxiter ) = 0 . 0 ; % Store i n i t i a l va lue s o f lambda2 here .
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25

26 % I n i t i a l and f i n a l c ond i t i on s :

27 hc = 25000 ; % ( f t ) .

28 x0 = 0 . 0 ;

% ( f t ) .

29 xf = 1000∗M MILE TO FT; % ( f t ) .

30 W0 = 70000; % ( l b f ) .

31 lambda2f = 0 ; % % Known boundary

cond i t i on o f lambda2 .

32

33 % Estimate an i n i t i a l va lue f o r the speed :

34 V0 = 900 ;

35

36 % ISA and drag computations :

37 [ ˜ , ˜ , rho , ] = atmosphere standard ( hc ) ;

38 d0 = 0.5∗Cd0∗ rho∗S ;

39 d1 = 2∗Cd2∗W0∗W0/( rho∗S) ;

40 D = d0∗V0ˆ2 + d1/V0ˆ2 ;

41

42 % Compute i n i t i a l va lue o f lambda2 from V0 :

43 i f (CI ˜= 0)

44 lambda20 = 1 + CI/(SFC∗(D − 2∗d0∗V0ˆ2 + 2∗d1/V0ˆ2) ) ;

45 e l s e

46 % lambda2 cannot be equal to 1 . When CI i s zero , i t i s bes t to

es t imate a smal l va lue f o r lambda20 .

47 lambda20 = 1e−3;

48 end

49 lambdas20 ( i t e r ) = lambda20 ;

50

51 % Begin loop :

52 whi le ( e r r o r > t o l e r an c e ) && ( i t e r <= maxiter )

53 sim ( ’ s im 2pbvp cru i s e ’ ) ;

54 i t e r = i t e r + 1
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55

56 % Next seed f o r lambda20 :

57 e r r o r = abs ( lambda2 ( end )−lambda2f ) ;

58 lambda20 = lambda20 − beta ∗( lambda2 ( end )−lambda2f ) ;

59 lambdas20 ( i t e r ) = lambda20 ;

60 end

61

62 % Display a warning i f the maximum number o f i t e r a t i o n s was reached :

63 i f ( i t e r >= maxiter )

64 di sp ( ’Maximum number o f i t e r a t i o n s reached . Check value o f e r r o r ’ ) ;

65 end

66

67 % Simulate the ana l y t i c sub−optimal s o l u t i o n :

68 sim ( ’ s im an a l y t i c c r u i s e ’ ) ;

69

70 % End o f s c r i p t .

sim 2pbvp cruise.mdl

This Simulink model, shown in Fig. A.1, implements the 2PBVP given by (3.42), where

v at each time-step is computed using (3.21). The blocks x, W, lambda2, V and t store

those variables in the Matlab workspace for further analysis. The block aircraft2pbvp is

a Matlab Level-2 S-Function that specifies the dynamics of the system to Simulink. This

function must comply with a specific template1, and its implementation does not provide

additional information regarding the developments of this thesis. As a result, source code for

the S-functions will not be provided.

1For more information regarding Matlab Level-2 S-Functions, consult the following website: http://www.
mathworks.com/help/simulink/sfg/writing-level-2-matlab-s-functions.html
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Figure A.1: Simulink block diagram of the cruise 2PBVP.

sim analytic cruise.mdl

This system, depicted in Fig. A.2, is used to obtain the sub-optimal trajectories resulting

from applying the feedback law (3.30). The blocks aircraft cruise and optimal controller are

Level-2 S-Functions, the latter making use of the script CruiseOptimalSpeedAndFuelFlow.m,

shown below.

Figure A.2: Simulink block diagram of the sub-optimal cruise validation system.

CruiseOptimalSpeedAndFuelFlow.m

This function is a direct implementation of (3.30). For a given cruise altitude h, W , and CI,

the function returns the sub-optimal cruise speed and the cruise fuel flow, which is equal to

ff = SFCD. This information will be used during climb and descent to compute the constant

value of J∗
x . The code is presented below.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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2 %

3 % Filename : CruiseOptimalSpeedAndFuelFlow .m

4 %

5 % Purpose : Computes the sub−optimal c r u i s e speed f o r minimum operat ing cos t s ,

as we l l as the c r u i s e f u e l f low at the g iven weight .

6 %

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8

9 f unc t i on [vTAS, f f c ]=CruiseOptimalSpeedAndFuelFlow (h ,W, CI , Cd0 ,Cd2 ,SFC, S)

10

11 % ISA computation :

12 [ ˜ , ˜ , dens i ty ] = atmosphere standard (h) ;

13

14 vTAS = sq r t ( ( CI+sq r t (CI∗CI + 12∗SFC∗SFC∗Cd0∗Cd2 .∗W.∗W) ) . / (SFC∗Cd0∗S∗ dens i ty

) ) ;

15

16 % Compute c r u i s e f u e l f low :

17 d0 = 0.5∗Cd0∗ dens i ty ∗S ;

18 d1 = 2∗Cd2∗W∗W/( dens i ty ∗S) ;

19 f f c = SFC∗( d0∗vTAS∗vTAS + d1/(vTAS∗vTAS) ) ;

20

21 end
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Appendix B

Validation Code for the Climb Phase

The climb implementation makes use of atmosphere standard.m, aircraft data.m and CruiseOp-

timalSpeedAndFuelFlow.m from Appendix A. The following scripts and systems are exclusive

to the climb phase:

shooting method climb.m

This script is analogous to shooting method cruise.m, and its code can be found below. As

its name implies, it implements the shooting method provided in Section 4.4.1, and then

computes the sub-optimal trajectory resulting from the application of the control law (4.48).

Desired initial and final conditions must be specified inside this script. For the simulations,

it runs systems sim 2pbvp climb.mdl and sim analytic climb.mdl. Note that J∗
x is referred

to as lambda1 and J∗
W is called lambda3 in the code.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % Filename : shoot ing method c l imb .m

4 %

5 % Purpose : Implements the shoot ing method f o r the cl imb phase . Also s imu la t e s

the system s im ana l y t i c d e s c en t . mdl which implements the sub−optimal

s o l u t i o n .

6 %
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7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8

9 % Run the s c r i p t f o r the a i r c r a f t model :

10 a i r c r a f t d a t a ;

11

12 % Some d e f i n i t i o n s :

13 Ts = 0 . 2 ; % Simulat ion sampling time .

14 CI = 0 . 0 ;

15 MDEG TO RAD = pi /180 ; % Conversion from degree s to rad ians .

16 M MILE TO FT = 5280 ; % Conversion from mi l e s to f e e t .

17 rhosea = 0 .002377 ; % ( s lug / f t ˆ2) sea l e v e l dens i ty .

18

19 % Shooting method parameters :

20 t o l e r an c e = 1e−4; % Tolerance on the f i n a l cond i t i on o f lambda3 .

21 e r r o r = 1e3 ; % D i f f e r e n c e between f i n a l lambda3 and

lambda3f .

22 i t e r = 1 ; % I t e r a t i o n count .

23 maxiter = 30 ; % Maximum number o f i t e r a t i o n s .

24 beta = 1 ; % Used in the update law o f lambda3 .

25 lambdas30 ( 1 : maxiter ) = 0 . 0 ; % Store i n i t i a l va lue s o f lambda3 here .

26

27 % I n i t i a l and f i n a l c ond i t i on s :

28 h0 = 2000 ; % ( f t ) .

29 hc = 25000 ; % ( f t ) .

30 x0 = 0∗M MILE TO FT; % ( f t ) .

31 W0 = 70000; % ( l b f ) .

32 lambda3f = 0 . 0 ; % Known boundary cond i t i on o f

lambda3 .

33

34 % Estimate an i n i t i a l va lue f o r the speed :

35 V0 = 780 . 0 ; % ( f t / s ) .

36

37 % ISA , th rus t and drag computations :
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38 [ ˜ , ˜ , rho ] = atmosphere standard ( h0 ) ;

39 d0 = 0.5∗Cd0∗ rho∗S ;

40 d1 = 2∗Cd2∗W0∗W0/( rho∗S) ;

41 D = d0∗V0ˆ2 + d1/V0ˆ2 ;

42 Dv = 2∗d0∗V0 − 2∗d1/V0ˆ3 ; % Der iva t i ve o f D with r e sp e c t to V.

43 Tclimb = T0∗( rho/ rhosea ) ˆm;

44

45 % I n i t i a l gamma corre spond ing to V0 :

46 gamma0 = as in ( ( Tclimb − D)/W0 ) ;

47

48 % Compute lambda1 and i n i t i a l lambda3 :

49 [M,vTAS,vKTAS,vKEAS,vKCAS, f f c ] = CruiseOptimalSpeedAndFuelFlow (hc ,W0, CI , Cd0 ,

Cd2 ,SFC, S) ; % Estimated c r u i s e TAS and f u e l f low .

50 lambda1 = − ( f f c + CI ) /vTAS;

51 lambda30 = 1 + CI/(SFC∗Tclimb ) − lambda1∗V0∗V0∗Dv/(SFC∗Tclimb ∗(W0∗

gamma0 − V0∗Dv) ) ;

52 lambdas30 ( i t e r ) = lambda30 ;

53

54 % Run the i t e r a t i v e p roc e s s :

55 whi le ( abs ( e r r o r ) > t o l e r an c e ) && ( i t e r <= maxiter )

56 sim ( ’ s im 2pbvp cl imb ’ ) ; % Run the system .

57 i t e r = i t e r + 1

58

59 % Next seed f o r lambda30 :

60 e r r o r = lambda3 ( end )−lambda3f ;

61 lambda30 = lambda30 − beta ∗ e r r o r ;

62 lambdas30 ( i t e r ) = lambda30 ;

63 end

64

65 ROCfpm = ROC. ∗ 6 0 ; % Change ROC to f e e t per minute .

66

67 % Display a warning i f the maximum number o f i t e r a t i o n s was reached :

68 i f ( i t e r >= maxiter )
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69 di sp ( ’Maximum number o f i t e r a t i o n s reached , p o s s i b l y without a s o l u t i o n ’ ) ;

70 end

71

72 % Simulate the sub−optimal s o l u t i o n :

73 sim ( ’ s im ana l y t i c c l imb ’ ) ;

74

75 ROC hjbfpm = ROC hjb . ∗ 6 0 ; % Change ROC to f e e t per minute .

76

77 % End o f s c r i p t .

sim 2pbvp climb.mdl

This model implements the 2PBVP (4.49). To compute v and γ at each time-step, (4.6) and

(4.35) must be solved simultaneously. This task is carried out using GetControlsClimb.m,

provided in the next subsection, in conjunction with Matlab function fsolve.m1, which solves

systems of nonlinear equations of the form F (u) = 0. The block aircraft2pbvp is a Level-2

S-Function implementing the dynamics of the system. See Fig. B.1.

Figure B.1: Simulink block diagram of the climb 2PBVP.

1For more information on fsolve.m, visit: http://www.mathworks.com/help/optim/ug/fsolve.html
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GetControlsClimb.m

This function is meant to be used in conjunction with Matlab’s function fsolve.m. The code

evaluates (4.6) and (4.35) at a given u = [ v γ ]T . Using fsolve.m, these two expressions are

continuously evaluated until both equal zero, in which case the optimal point is found.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % Filename : GetControlsClimb .m

4 %

5 % Purpose : Returns the value o f the system o f non l i n ea r equat ions that must be

so lved to get the opt imal c on t r o l s (V,gamma) , at u . For use with f s o l v e .

6 %

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8

9 f unc t i on output = GetControlsClimb ( rho ,W, lambda1 , lambda3 ,SFC,Cd0 ,Cd2 , S , Tclimb ,

u , CI )

10

11 % u conta in s V and gamma:

12 V = u(1) ;

13 gamma = u (2) ;

14

15 % Drag components :

16 d0 = 0.5∗Cd0∗ rho∗S ;

17 d1 = 2∗Cd2∗W∗W/( rho∗S) ;

18

19 % Return the system o f non l i n ea r equat ions eva luated at u :

20 output = ze ro s (2 , 1 ) ;

21

22 Dv = 2∗d0∗V − 2∗d1/(Vˆ3) ; % Der iva t i v e o f the drag .

23 output (1 ) = ((1− lambda3 ) ∗SFC∗Tclimb + CI ) ∗( s i n (gamma) − V∗Dv/W) −

lambda1∗V∗V∗Dv/(W∗ cos (gamma) ) ;

24 output (2 ) = Tclimb − ( d0∗V∗V + d1/V/V) − W∗ s i n (gamma) ;

25
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26 end

sim analytic climb.mdl

This system, shown in Fig. B.2, is used to generate the sub-optimal climb trajectories

resulting from applying the feedback law (4.48). To obtain the roots of the 5th degree

polynomial, Matlab function roots.m is used2, and an iterative loop is carried out to find

the solution that lies within the operating limits of the aircraft. The blocks aircraft climb

and optimal controller are Level-2 S-Functions implementing climb dynamics and the sub-

optimal controller, respectively.

Figure B.2: Simulink block diagram of the sub-optimal climb validation system.

2More information regarding roots.m can be found at the website:http://www.mathworks.com/help/
matlab/ref/roots.html
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Appendix C

Validation Code for the Descent Phase

The descent implementation makes use of atmosphere standard.m, aircraft data.m and CruiseOp-

timalSpeedAndFuelFlow.m from Appendix A, as well as the following scripts and systems:

shooting method descent.m

Just like in the previous appendices, this script implements the shooting method provided in

Section 4.6.1, and then computes the sub-optimal trajectory resulting from the application of

the control law (4.75). Desired initial and final conditions must be specified inside this script.

For the simulations, it runs systems sim 2pbvp descent.mdl and sim analytic descent.mdl.

Note that J∗
x is referred to as lambda1 and J∗

W is called lambda3 in the code.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %

3 % Filename : shoot ing method descent .m

4 %

5 % Purpose : Implements the shoot ing method f o r the descent phase . Also

s imu la t e s the system s im ana l y t i c d e s c en t . mdl which implements the sub−

optimal s o l u t i o n .

6 %

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8
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9 % Run the s c r i p t f o r the a i r c r a f t model :

10 a i r c r a f t d a t a ;

11

12 % Some d e f i n i t i o n s :

13 Ts = 0 . 2 ; % Simulat ion sampling time .

14 CI = 0 . 6 ;

15 MDEG TO RAD = pi /180 ; % Conversion from degree s to rad ians .

16 M MILE TO FT = 5280 ; % Conversion from mi l e s to f e e t .

17

18 % Shooting method parameters :

19 t o l e r an c e = 1e−4; % Tolerance on the f i n a l cond i t i on o f lambda3 .

20 e r r o r = 1e3 ; % D i f f e r e n c e between f i n a l lambda3 and lambda3f .

21 i t e r = 1 ; % I t e r a t i o n count .

22 maxiter = 30 ; % Maximum number o f i t e r a t i o n s .

23 beta = 1 ; % Used in the update law o f lambda3 .

24 lambdas30 ( 1 : maxiter ) = 0 . 0 ; % Store i n i t i a l va lue s o f lambda3 here .

25

26 % I n i t i a l and f i n a l c ond i t i on s :

27 hc = 25000 ; % ( f t ) .

28 hf = 2000 ; % ( f t ) .

29 xf = 0∗M MILE TO FT; % ( f t ) .

30 Wf = 70000; % ( l b f ) . ”Given” f i n a l weight

at end o f f l i g h t , which becomes an i n i t i a l c ond i t i on .

31 lambda3f = 0 . 0 ; % Known boundary cond i t i on o f lambda3 .

32 % REMINDER: The descent i s so lved backwards in time !

33

34 % Estimate an i n i t i a l va lue f o r the speed :

35 V0 = 520 . 0 ; % ( f t / s ) .

36

37 % ISA and drag computations :

38 [ ˜ , ˜ , rho ] = atmosphere standard ( hf ) ;

39 d0 = 0.5∗Cd0∗ rho∗S ;

40 d1 = 2∗Cd2∗Wf∗Wf/( rho∗S) ;
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41 D = d0∗V0ˆ2 + d1/V0ˆ2 ;

42 Dv = 2∗d0∗V0 − 2∗d1/V0ˆ3 ; % Der iva t i ve o f D with r e sp e c t to V.

43

44 % I n i t i a l gamma corre spond ing to V0 :

45 gamma0 = as in ( ( Ti − D)/Wf ) ;

46

47 % Compute lambda1 and i n i t i a l lambda3 :

48 [M,vTAS,vKTAS,vKEAS,vKCAS, f f c ]=CruiseOptimalSpeedAndFuelFlow (hc ,Wf, CI , Cd0 ,Cd2 ,

SFC, S) ; % Estimated c r u i s e TAS and f u e l f low .

49 lambda1 = ( f f c + CI ) /vTAS; % Pos i t i v e f o r descent .

50 lambda30 = −1 − CI/(SFC∗Ti ) − lambda1∗V0∗V0∗Dv/(SFC∗Ti ∗(Wf∗gamma0 − V0∗

Dv) ) ;

51 lambdas30 ( i t e r ) = lambda30 ;

52

53 % Run the i t e r a t i v e p roc e s s :

54 whi le ( abs ( e r r o r ) > t o l e r an c e ) && ( i t e r <= maxiter )

55 sim ( ’ s im 2pbvp descent ’ ) ;

56 i t e r = i t e r + 1

57

58 % Next seed f o r lambda30 :

59 e r r o r = lambda3 ( end )−lambda3f ;

60 lambda30 = lambda30 − beta ∗ e r r o r ;

61 lambdas30 ( i t e r ) = lambda30 ;

62

63 end

64

65 RODfpm = ROD. ∗ 6 0 ; % Change ROD to f e e t per minute .

66

67 % Display a warning i f the maximum number o f i t e r a t i o n s was reached :

68 i f ( i t e r >= maxiter )

69 di sp ( ’Maximum number o f i t e r a t i o n s reached , p o s s i b l y without a s o l u t i o n ’ ) ;

70 end

71
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72 % Simulate the sub−optimal s o l u t i o n :

73 sim ( ’ s im ana l y t i c d e s c en t ’ ) ;

74

75 ROD hjbfpm = ROD hjb . ∗ 6 0 ; % Change ROD to f e e t per minute .

76

77 % End o f s c r i p t .

sim 2pbvp descent.mdl

The model in Fig. C.1 implements the 2PBVP (4.6.1). Just like in the climb, v and γ

are computed at each time-step by solving (4.20) and (4.62) simultaneously with the aid of

using GetControlsDescent.m and fsolve.m. The block aircraft2pbvp is a Level-2 S-Function

implementing the dynamics of the augmented system.

Figure C.1: Simulink block diagram of the descent 2PBVP.

GetControlsDescent.m

This function is meant to be used in conjunction with Matlab’s function fsolve.m. The code

evaluates (4.20) and (4.62) at a given u = [ v γ ]T . Using fsolve.m, these two expressions are

continuously evaluated until both equal zero, in which case the optimal control is found.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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2 %

3 % Filename : GetControlsDescent .m

4 %

5 % Purpose : Returns the value o f system o f non l i n ea r equat ions that must be

so lved

6 % simul taneous ly in order to get the opt imal c on t r o l s (V,gamma) . For use with

f s o l v e .

7 %

8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9

10 f unc t i on output = GetControlsDescent ( rho ,W, lambda1 , lambda3 ,SFC,Cd0 ,Cd2 , S , Ti , u ,

CI )

11

12 % u conta in s V and gamma.

13 V = u(1) ;

14 gamma = u (2) ;

15

16 % Drag components :

17 d0 = 0.5∗Cd0∗ rho∗S ;

18 d1 = 2∗Cd2∗W∗W/( rho∗S) ;

19

20 % Return the system o f non l i n ea r equat ions eva luated at u :

21 output = ze ro s (2 , 1 ) ;

22

23 Dv = 2∗d0∗V − 2∗d1/(Vˆ3) ; % Der iva t i v e o f the drag .

24 output (1 ) = ((1+lambda3 ) ∗SFC∗Ti + CI ) ∗( s i n (gamma) − V∗Dv/W) + lambda1∗V∗V∗Dv

/(W∗ cos (gamma) ) ;

25 output (2 ) = Ti − ( d0∗V∗V + d1/V/V) − W∗ s i n (gamma) ;

26

27 end
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sim analytic descent.mdl

This system is used to generate the sub-optimal descent trajectories resulting from applying

the feedback law (4.75). roots.m is used to get the roots of the 5th degree polynomial. The

blocks aircraft descent and optimal descent are Level-2 S-Functions implementing descent

dynamics and the sub-optimal controller, respectively. See Fig. C.2.

Figure C.2: Simulink block diagram of the sub-optimal descent validation system.
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