
Survivable Virtual Network Redesign and

Embedding in Cloud Data Center Networks

Yiheng Chen

A Thesis

in

The Department

of

Concordia Institute for

Information

Systems Engineering

Presented in Partial Fulfillment of the

Requirements for the Degree of Master of Applied

Science (Information System Security) at Concordia

University

Montreal, Quebec, Canada

February 2015

© Yiheng Chen, 2015

ABSTRACT

Survivable Virtual Network Redesign and Embedding in

Cloud Data Center Networks

Yiheng Chen

Today, the cloud computing paradigm enables multiple virtualized services to co-exist on

the same physical machine and share the same physical resources, hardware, as well as energy

consumption expenses. To allow cloud customers migrate their services on to the cloud side, the

Infrastructure Provider (InP) or cloud data centre operator provisions to its tenants virtual

networks (VNs) to host their services. Virtual Networks can be thought of as segmenting the

physical network and its resources, and such VN requests (or tenants) need to be mapped onto

the substrate network and provisioned with sufficient physical resources as per the users'

requirements. With this emerging computing paradigm, cloud customers may demand to have

highly reliable services for the hosted applications; however, failures often happen unexpectedly

in data-centers, interrupting critical cloud services. Consequently, VN or cloud services are

provisioned with redundant resources to achieve the demanded level of service reliability. To

maintain a profitable operation of their network and resources, and thus achieve increased long

term revenues, cloud network operators often rely on optimizing the mapping of reliable cloud

services. Such problem is referred to as in the literature as "Survivable Virtual Network

Embedding (SVNE) '' problem. In this thesis, the survivable VN embedding problem is studied

and a novel cost-efficient Survivable Virtual Network Redesign algorithm is carefully designed,

presented, and evaluated. Subsequently, we distinguish between the communication services

provided by the cloud provider and study the problem of survivable embedding of multicast

services; we formally model the problem, and present two algorithms to reactively maintain

multicast trees in cloud data centers upon failures.

iii

Contents

List of Figures

Abbreviations

iv

1 Introduction 1

1.1 Background and Motivation . 1

1.1.1 Problem Definitions . 4

1.1.2 Reasoning and Optimizations 5

1.2 Thesis Organization . 7

2 Preliminaries and Related Work 8

2.1 Failure Senarios and Protection Methods 8

2.1.1 Type of Failures . 8

2.1.2 Protection Methods . 9

2.2 Virtual Network Redesign and Embedding 10

2.2.1 Related Work on Virtual Network Redesign and Embedding 11

2.2.2 Virtual Network Redesign Solutions and limitations 14

2.2.3 Resource Sharing techniques 16

2.3 Multicast Virtual Network . 19

3 Survivable Virtual Network Redesign and Embedding 22

3.1 Introduction . 22

3.2 Problem Definition . 25

3.3 The SVN Redesign Problem . 28

3.3.1 Limitations of Conventional VN Redesign Techniques 28

3.3.2 Illustrative Example . 31

3.4 Prognostic Redesign Approach (Pro-Red) : 33

3.4.1 Theoretical Foundation . 33

3.4.2 Pro-Red Algorithm : . 36

3.5 The SVN Embedding . 41

3.6 Numerical Results . 44

3.7 Conclusion . 48

4 Post-Failure Restoration for Multicast Services in Data Center
Networks 50

4.1 Introduction . 50

v

iv

4.2 Network Model and Problem Description 51

4.2.1 Network Model . 51

4.2.2 Understanding the impact of failure on MVNs 54

4.2.3 The MVN Restoration Problem 57

4.2.3.1 Problem Formulation 57

4.2.3.2 Complexity Analysis 60

4.3 Path-Convergence Method for finding a backup source 61

4.4 Hop-to-Hop Terminal Finding Algorithm 63

4.5 Numerical Results . 66

4.6 Conclusion . 68

5 Conclusion and Future Work 70

5.1 Conclusion . 70

5.2 Contributions . 71

5.3 Future Work . 72

Bibliography 74

v

List of Figures

1.1 Virtual Network Embedding Problem 4

2.1 Failure in the Substrate Network 9

2.2 Survivable Virual Network Redesign Schemes 11

2.3 Resource Sharing techniques in SVN embedding phrase 17

3.1 Substrate Network and Virtual Network Representation 26

3.2 Designing and Embedding Reliable VNs 29

3.3 Theoretical Foundation . 33

3.4 Designing Reliable VNs . 35

3.5 Step-by-Step SVN Redesign Algorithm. 40

3.6 Comparison between Pro-Red, 1-Redundant and K-Redundant Scheme. 49

4.1 Network Model . 51

4.2 Impact of a Substrate Node or Physical Link Failure 55

4.3 Muticast VN Maintenance Approaches Comparision Test Results . 69

5.1 Advantage of Terminal Nodes Migration 73

vi

Abbreviations

BG - Backup Group

DFS - Distribyted File-Systems

DVBMT - Delay- and Delay-Variation Bounded Multicast Tree

FDP - Failure Dependent Protection

FIP - Failure Independent Protection

HPC - High Performance Computing

IaaS - Infrastructure as a Service

InP - Infrastructure Provider

MVN - Multicast Virtual Network

NP-hard - Non-deterministic Polynomial-time hard

PaaS - Platform as a Service

QoS - Quality of Service

SaaS - Software as a Service

SDN - Software Define Network

SLA - Service Level Agreement

SMVN - Survivable Multicast Virtual Network

SMVNE - Survivable Multicast Virtual Network Embedding

SP - Service Provider

SVN - Survivable Virtual Network

VDC - Virtual Data Center

VL - Virtual Link

VM - Virtual Machine

VN - Virtual Network

VNE - Virtual Network Embedding

vii

WG - Working Group

viii

Chapter 1

Introduction

1.1 Background and Motivation

The Internet has made significant impact on our society, business models and our

daily lives. As a new paradigm for the future Internet, cloud computing has drawn

the attention of the general public in recent years. In simple terms, cloud com-

puting is capable to create a virtual environment which allows both software and

hardware to be shared by multiple-users via the Internet. With cloud computing,

businesses are no longer required to incur investment on purchasing hardware and

software licenses in order to deploy their services and applications. Moreover, hu-

man expenses can also be reduced since the operating and maintaining cost will

be shifted to the cloud side [1].

Today, there are two main players in the cloud computing market; namely, the

Service Provider (SP) and the Infrastructure Provider (InP). The former allows

cloud users access to the cloud service via the Internet; whereas, the latter man-

ages infrastructures and leases physical resources to SP [2]. According to the type

of services, cloud service scenarios can be classified into three main types: Infras-

tructure as a Service (IaaS), in which the InPs split their resources and outsource

1

them to the SPs; for instance Amazon EC2 and Microsoft Azure are the appli-

cations that would provide such service. Platform as a Service (PaaS), it offers

a framework which systems users can build on, such as Google Apps Engine [2].

Last but not least, Software as a service (SaaS); instead of purchasing applica-

tions running them locally, SaaS allows a software to be shared among users via

the Internet; an example is GRIDS Lab Aneka[3]. In this thesis, a role of InP is

assumed, and IaaS services, precisely Virtual Network (VN) service, are served to

SPs based on their demands.

The InP provides an environment that allows Virtual Machines(VM) coexist on

the same physical machine. Through a VMs management software “Hypervisor”,

the InP is able to create, run and allocate resources for VMs. By sharing infras-

tructures, the operating cost and hardware investment can be greatly reduced.

VMs demand a minimum level of hardware specifications, typically in terms of

CPU capacity, memory, disk space, etc. In order to host multiple VMs in one

server, the server has to have sufficient physical resources. We address the VM

placement action as “Virtual Machine Embedding”. In addition, cloud customers

may migrate their network services to the cloud, thus Virtual Networks(VNs) need

to be embedded with more requirements on bandwidth, delay and so on. Hence,

the placement of VN becomes critical as good mapping solutions may cost less and

result in better service admissibility in a data center. Accordingly, it is important

for cloud vendors to optimize the placement of services to improve their revenue.

The optimal placement of cloud services, referred as “Virtual Network Embedding

(VNE)”, is known to be -Hard [4].

Now, cloud users may deploy certain critical services on the resources they leased,

but the hosting servers may break down for a variety of reasons. When they do

,VNs would get disconnected and the services would be disrupted. Hence, it is

very important for cloud vendors to provide certain degree of reliability to their

hosted VNs in the datacenter. In fact, most of the major cloud sevice provider

gaurantee their customers a certain level of QoS (Quality of Service), donoted as

2

“Service Level Agreement (SLA)”[5]. For example, Microsoft Azure promises its

users 99.9% availability of their virtualized services. To obtain such highly reli-

able service level, certain level of resource redundancy is required. The problem

of embedding a virtualized service with reliability is referred as “Survivable Vir-

tual Network Embedding (SVNE)”. There are two common failure scenarios in a

cloud datacenter: Substrate node failure and substrate link failure. In both cases,

redundancy needs to be provided in order to restore the failed services. Similar

to working resources, the redundant resources also need to be mapped onto the

substrate network, either before or after a failure; we call former “proactive protec-

tion”, as it reserves resources to be ready for for future failures; and we refer the

latter “reactive restoration”, since it finds alternative mapping solutions to restore

the VN services after a failure. Indeed, the mapping of redundant resources would

complicate the problem.

There are many SVNE solutions proposed by recent research papers; depending

on the failures considered, some work focus on the failure of physical links[6–9],

whereas others tackle the problem of node failures[10–17]; In this thesis, only fa-

cility node (servers for example) failures are considered, the reasons are two folds:

On one hand, link failures have been addressed in plenty of literatures, and the

techniques introduced can be reused in the light of network virtualization; On the

other hand, node failures effect the virtualized services running on the failed server

directly, thus triggering VM migration to re-place those VMs and the correspond-

ing virtual links must be re-mapped to resume the service. This is a variation of

VNE problem, thus it is also considered to be NP-hard. Moreover, some work

have been done to solve the SVNE problem in case of facility node failures in

the substrate network. In [10, 16, 18–22] node mapping and link mapping meth-

ods are developed for embedding a reliable-virtual-network, the resource sharing

techniques are explored to reduce the cost for embedding redundant resources.

However, in those work, redesigning survivable virtual network has never received

enough attention; though in [11] [12], backup resources are augmented only when

the overall availability does not meet the requirement, nonetheless cost efficient

3

is never considered for SVN redesign. Therefore, a technique is needed to design

VN requests, taking sharing of resources into account, and output a survivable

VN that can be embedded with least cost. In the first part of the thesis, a cost-

efficient-oriented survivable virtual network redesign algorithm is proposed, which

designs a VN request at virtual level, considering the future resource sharing in

the embedding phase. In the second part of this thesis, we address the problem of

Multicast Virtual Network (MVN) failures, and a novel reactive protection method

is developed to protect the embeded MVNs from node failures.

1.1.1 Problem Definitions

(a) Non-Survivable Virual Network (b) Substrate Network

Figure 1.1: Virtual Network Embedding Problem

The Substrate Network : We represent the substrate network as an undirected

graph denoted by Gs = (N ,L), where N is the set of substrate facility nodes, and

L is the set of substrate links. Facility nodes are connected to the network via

network nodes (routers/switches). Each substrate facility node n ∈ N is associated

with a finite computing capacity, denoted by cn. Similarly, each substrate link l

∈ L has a finite bandwidth capacity, denoted by dl. Figure 1.1(b) illustrates a

substrate network with 6 facility nodes, each with a CPU capacity varying from

2-10 units (represented by the number in parenthesis above each facility node).

Similarly, bandwidth on the substrate links interconnecting the network nodes

4

exhibit a range from 2 to 9 units of bandwidth on each (represented by the number

in parenthesis above each substrate link).

The Virtual Network (VN) : A Virtual network represents a client’s request

to deploy an application in a cloud data center. It consists of a set of virtual nodes

(virtual machines), interconnected with virtual links. The virtual links correspond

to the communication requirements between the virtual nodes in a given VN re-

quest. We denote a VN as a graph Gv = (V ,E), where V represents the set of

virtual nodes, each with a CPU demand of cv, and e is the set of virtual links,

each with a bandwidth demand of de. Figure 1.1(a) shows an example of a VN

request with 3 virtual nodes and links, in addition to their associated CPU and

bandwidth demands, respectively.

Given the VN request, the VNE problem aims to map this request onto the sub-

strate network while providing enough resource as demanded. On one hand, each

substrate element has independent capacity; on the other hand, each VN request

has specific resource requirement[23]. Hence, the problem is to find a minimal cost

solution for each VN request. The formal definition of virtual network embedding

is described as follows:

Problem Definition 1. Given a substrate network Gs = (N,L), and a VN request

Gv = (V ,E). Find the optimal embedding solution of Gv = (V ,E), such that cost

of resources spent in the substrate network is minimized, while guaranteeing the

capacity on the substrate network elements are not violated.

1.1.2 Reasoning and Optimizations

Many research work has been done to solve the VNE problem presented above. As

this problem is proven to be NP − hard[4] , much research focuses on developing

heuristic and meta-heuristic methods and solutions [23]. With these VNE tech-

niques, the mapping of VN requests should be able to obtain low-cost solutions,

and thus yield higher VN requests admission. Consequently, the long term revenue

5

is increased for InP, and the rental cost for VN customers can be lowered.

Today, most cloud vendors guarantee their users with high level of service avail-

ability; for instance, services that are hosted on Amazon EC2 are promised to

have 99.95 % availability; users can get 10% - 30% of their service credits back,

if the reliability level of their virtual services are violated. To achieve such high

level of service survivability, resource redundancy to virtualized services need to be

deployed at provisioning time or post-failure. On one hand, InPs are required to

deliver highly reliable VNs, thus redundancy must be deployed; on the other hand,

without a proper embedding technique, such redundancy may not be cost-efficient

[24]. Such problem is known as “Survivable Virtual Network Embedding”. As

SVNE problem can be divided into primary resource embedding and backup re-

source embedding, and the former alone is a NP −hard problem (virtual network

embedding problem), thus survivable virtual network embedding problem is even

harder to solve.

Numerous research work have attemptted to address the SVNE problem. Similar

to the VNE problem, most of the work relax it by solving the embedding in more

than one step. Moreover, mathmetical models [10–12, 16, 18–22] proposed but

most of them are either not scalable or non-linear. Consequently, heuristics[10,

12, 16, 18, 20] are introduced and acceptable solutions can be achieved.

In this thesis, we make two main contributions on SVNE problem, and are sum-

marized as the following:

• A cost-efficient SVN redesign algorithm is proposed to solve the survivable

VN redesign problem, and a mathmetical model is presented to embed a

given SVN assuming single facility node failures.

• We consider multicast cloud services and in particular present embedding

and maintenance techniques when such services are hosted by a cloud data

center.

6

1.2 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, related background

knowledge are introduced; specifically, the type of failures in the cloud datacenter,

and corresponding protection methods. Also, each processing stage in SVNE is

discussed in this Chapter. The characterization of VNs are discussed at the end

of this Chapter. Chapter 3 studied the survivable VN redesign taking the sharing

techniques into account, a novel design method is proposed and compared against

conventional redesign schemes. Multicast virtual network is being considered in

Chapter 4, two multicast-tree maintance algorithms are designed to reactively

restore multicast VNs from node failures, while ensuring the delay constraints are

satisfied. Finally, conclusion and future work are presented in Chapter 5.

7

Chapter 2

Preliminaries and Related Work

2.1 Failure Senarios and Protection Methods

Fault-tolerance is a major concern of datacenter operators[25]. To protect virtu-

alized services from failures, failure senarios must be studied as well as the com-

monly deloyed countermeasures. In this subsection, the related work and recent

researches are surveyed.

2.1.1 Type of Failures

Both substrate links and substrate nodes may fail, and all virtualized services

that are running on top of them would be interupted. If a physical server fails,

all VMs that are being hosted on it will be shut down. Figure.2.1 illustrates how

a facility node (server) failure will affect the Virtual Machine (V1) running on top

of it. Similarly, the disconnection of a physical link may suspend all virtual links

that traverse through it. As shown in Fig.2.1, the physical link failure disconnects

the communication between VM V5 and V6. Therefore, we classify the substrate

failures as ”Link Failure” and ”Node Failure”, where the latter can be further

subdivided as ”Network Node Failure” and ”Facility Node Failure”[18]. ”Network

Nodes” usually refer to networking devices such as routers, switches, whereas

8

V1

V2

V3

V4

V6

V5

Facility Node
Failure

Embedded virtual link
connections

Network
substrate

Cloud applicationsService A Service B

Embedded VN overlays
(virtual DCS)

Network Node
Failure

Link Failure

Network
Node

Virtual
facility node

Facility
node

Legend

Substrate link Substrate
Connection

Figure 2.1: Failure in the Substrate Network

”Facility Nodes” refer to servers that host virtual machines. In Fig.2.1, a failure

of a network node would terminate all the comunications which traverse through.

In terms of the scale of failures, there are ”Regional Failure”[26], which effect

multiple substrate elements, including nodes and links, at a time; and ”Signle

Failure”, which means only one substrate element outage, it can be either signle

server break down or single link disconnection. In this thesis, only a single facility

node failure is assumed.

2.1.2 Protection Methods

There are two main types of failure countermeasures, namely Protection and

Restoration[27]. Protection reserves backup resources proactively, the redundant

9

backup resources are always assigned before actual failure. These resources would

keep inactive until failure happens. On the other hand, restoration protects VNs

in a reactive manner. It is only activate after failure happens, and it is called on

demand to search for alternative mapping solution for the failed element(s).

In reactive approach, there is no redundancy provided, therefore, the embedding

cost of VNs that are running reactive restoration is definitely less than it of VNs

assigned with redundancy, hence it may allow substrate network to admit more

VN requests. However, upon failures, reactive approach does not gaurantee 100%

recovery of disrupted VNs, as it may not be able to find a feasible solution; whereas

proactively protected VNs can always be reconnected.

In terms of post-failure recovery capability, there are Failure Dependent Protec-

tion (FDP)[28, 29] and Failure Independent Protection (FIP)[10, 19–22]. In FIP,

each primary node will be assigned a specific backup node, such that upon failure

occurence, the primary can only be migrated to that backup host. In compari-

son, FDP allows working hosts to have different backup hosts in different failure

scenarios, and sometimes even working nodes are allowed to migrate [14]. In this

thesis, only FIP methods are considered.

2.2 Virtual Network Redesign and Embedding

In a typical Survivable Virtual Network Embedding solution, two design stages

are performed, namely ”reliable virtual network redesign” and ”survivable virtual

network embedding”. In the redesign stage, a given Virtual Network would be

augmented with redundant computational and bandwidth resources, such that

any facility node failure can be tolerated. The resulting graph is called ”Sur-

vivable Virtual Network”, and sometimes it is referred to ”Survivable Virtual

Infrastructure”[16]. In the embedding stage, the reliable-virtual-network from

the previous stage would be mapped onto the substrate network. While embed-

ding, it is important to make sure that the resources are shared and total cost is

minimized[18].

10

(a) Non-Survivable Virual Network (b) 1-Redundant Survivable
Virual Network

(c) K-Redundant Survivable Virual Network

Figure 2.2: Survivable Virual Network Redesign Schemes

2.2.1 Related Work on Virtual Network Redesign and Em-

bedding

Many work in the literature has been devoted towards understanding and charac-

terizing failure in cloud data center networks [24], [30]. From these studies, we can

conclude that failure in data center networks can happen due to single or multi-

ple network components failures (facility nodes, links, switches/routers), and the

incurred financial losses are real. This means that the cloud provider must invest

additional resources to mitigate substrate network failures, and fulfil the promises

of reliability and availability to the hosted tenants’s applications and services. In

[30], the authors focus on characterizing servers failure rate. The authors analyzed

these failure characteristics using a real data center over the period of 14 months,

and concluded that hard-disks are the most dominant reason behind server fail-

ures, and that 8% of all servers in a data center are expected to fail within a

year. Further, the authors have also looked at successive failure rates, meaning

11

the probability that a failed server would fail again after repair, and it was found

that successive failure rates are quite high. For a 100 servers data center where

4 machines has failed more than once in 14 months; it was found that 20% of all

repeat failures happen within a day of the first failure; while 50% happen within

two weeks. Indeed, the estimated repair cost for a typical data center with more

than 100,000 servers is estimated in millions of dollars; not to mention the incurred

penalty cost due to affected services disruption.

In this regard, survivability against facility node failure is of paramount impor-

tance, particularly in the case of critical services that don’t tolerate failure. Indeed,

this problem has attracted significant attention from the literature; here we can

distinguish between single facility node failure [16], [18], [14], [15], and multiple

facility nodes failure [17], [13], [10]. In the case of single facility node failure, the

authors of [18] introduce a two-step approach to fully restore a VN from any single

facility node failure. Mainly, their approach consists of augmenting the VN request

with a 1-redundant or k-redundant backup nodes (where k represent the number

of critical nodes). The resultant SVN is then mapped onto the substrate network

by placing virtual nodes in a given VN on distinct substrate nodes, while aiming

to minimize the overall embedding cost. For this purpose, the authors introduce

two backup-sharing techniques to minimize the incurred backup-bandwidth cost,

namely cross-sharing and back-up sharing. The same problem is tackled in [16],

here the authors consider the SVN to be given, and their aim is to map the SVN

onto the substrate network while minimizing the amount of idle backup band-

width. The virtual nodes in a given VN maybe be mapped on the same substrate

nodes, as long as their corresponding backup nodes are mapped on distinct nodes;

this guarantees survivability against any single facility node failure. To embed

the SVN onto the substrate network, two embedding heuristics are presented: A

disjoint and a coordinated virtual node and virtual link mapping. For the disjoint

embedding approach, a set of feasible node mapping solutions is first enumerated,

then this set is passed on to an ILP model that picks the node mapping solution

with the lowest reserved backup bandwidth, while the coordinated embedding

12

adopts a link packing approach. Further, in [14], the authors present a novel ap-

proach for redesigning an SVN, denoted as Enhanced VN (EVN), and distinguish

between failure-dependent and failure-independent EVN. The failure-independent

EVN is similar to the 1-redundant SVN, while the failure-dependent EVN aims

at minimizing the amount of idle backup resources by relaxing the constraint that

only failed nodes will migrate. Instead, for each different failure-event, virtual

nodes (primaries and backups) within a given VN will be re-arranged (migrated)

differently to resume a working VN. Note that such approach incurs a consider-

able amount of migration overhead that can potentially cause a longer down-time.

Moreover, in [15] the authors also adopt the 1-redundant SVN scheme to create an

Auxiliary Protection Graph (APG). The APG is next embedded onto the substrate

network using a tabu-search meta-heuristic with cross-sharing and backup-sharing

to minimize the backup footprints.

As for survivability against multiple facility node failure [17], [13], [10], the VN

is augmented with the minimum number of backup nodes needed to guarantee a

reliability degree r under a given probability of failure p. Further, in [17] and [10],

the authors employ sharing across VNs in order to circumvent the inconvenience

of idle resources. As for [13], the authors employ survivability at the inter-data

center level, where a local protection approach is introduced to eliminate backup

bandwidth over wide-area network.

Equal effort has been devoted towards inaugurating effective protection schemes

against substrate link failures [6], [22], [7], [21]. Here protection schemes can be

mainly categorized as link-based and path-based protection. Further, few work in

the literature tackled the case of correlated failure [31], [32], that is the case of

single ”regional” failure that brings down multiple substrate nodes and links at

the same time. Substrate nodes and links that fail together are also referred to as

”shared risk group”. Here risk groups are considered to be given and protection

schemes are tailored for the case of a single risk group (regional) failure. A thor-

ough taxonomy of the various failure scenarios and existing protection methods

can be found in [33].

13

2.2.2 Virtual Network Redesign Solutions and limitations

Two redesign topologies are commonly deployed in the literature, namely 1-Redundant

and K-Redundant.

A. 1-Redundant scheme[18]

In 1-Redundant scheme, one backup virtual machine is added to the original vir-

tual network, connecting all primary virtual nodes via backup virtual links. When

any of these primary virtual node fails, it migrates the redundant virtual machine

through VM migration, and continue communicating with other virtual nodes us-

ing the backup virtual links. Figure 2.2(a) shows an example of a VN request,

which is consist of 3 VMs interconnected by virtual links. In Fig. 2.2(b), the

given VN is redesigned using the 1-Redundant method, the virtual node B is the

redundant virtual machine, and it is connecting virtual node 1, virtual node 2 and

virtual node 3 via virtual backup link {B, 1}, {B, 2} and {B, 3} respectively. As-

sume a failure occured on virtual node 1, backup virtual node B will then take over

the role of virtual node 1, and establish connections with node 2 and 3 through

link {B, 2} and link {B, 3}; as B, in this example, has to re-connect the service

assuming any primary node can fail and thus it must be able to replace the failed

VM, clearly node B has to be provisioned with the maximal amount of compu-

tational resources among all the primary VMs; in this example backup node B

has to reserve 5 units of CPU. Similarly, the amount of backup bandwidth which

is required to be reserved on backup links also need to be calculated such that,

when backup node is replacing the disconnected VM, the backup virtual links will

have sufficient bandwidth to establish network connections with the neighbors of

the disconnected VM. For example, when failure occures and bring down primary

node 1, and B will be activated to replace node 1. To resume the communi-

cations between B to 2 and B to 3, virtual backup link {B, 2} and link {B, 3}

must also have enough reserved bandwidth to replace primary link {1, 2} and link

{1, 3} respectively. Hence, we temperorarily allocate virtual backup link {B, 2} a

14

bandwidth amount of 1 and link {B, 3} 3 units of bandwidth. However, in the

case of node 3 failure, link {B, 2} must have 2 units of bandwidth to recover the

connection between node 2 and 1. Therefore, due to the fact that {B, 2} will be

activated when either node 1 or 3 fails, we assign this link a bandwidth demand

of 2, which is the maximal among the bandwidth demand in both cases.

B. K-Redundant scheme[18]

In K-Redundant scheme, K (K equals to the number of critical nodes) in number

of backup virtual machines which are added to the original virtual network; here,

unlike the 1-Redundant scheme, in which a backup node connects to all primary

virtual nodes, each backup node in K-Redundant only connects to the neighbors

of the primary node it protects. In other words, each primary node is assigned a

backup VM, and this backup VM also has virtual links connecting all its neigh-

bors. Figure 2.2(c) shows an example of a K-Redundant design, where the given

VN in Fig. 2.2(a) is provisioned with 3 backup nodes. B1, B2 and B3; they

are assigned to replace VM 1, VM 2 and VM 3 respectively. As each backup

node protects one primary VM only, the computational resource which needs to

be reserved is equal to the CPU requirement of the corresponding primary VM,

rather than the max of the CPU demand of all VMs as in the 1-Redundant. For

example, in 2.2(c), backup node B1 only needs to reserve 3 units of CPU, as it

only protects node 1. Moreover, since backup nodes do not require to connect to

all VMs, it is more flexible in the embedding phase. However, since more VMs

are used in this solution, the amount of reserved CPU units will always be higher

than 1-Redundant solution.

C. Current Redesign scheme Limitations

So far, research work that address the SNVE problem considering single node fail-

ure always emphasise on the SVN mapping solutions, and pay less attention on

15

the survivable redesign phrase of VN requests. In fact, the SVN design is an im-

portant factor that could decide the cost of a VN request. However, most existing

literature simply apply either the 1-Redundant or the K-Redundant scheme.[16].

No research, however, has a clear SVN redesign method, that is able to specify

the exact number (n, 1 ≤ n ≤ K) of backup nodes of a given VN should have and

how are they connecting to the original VN in a cost-efficient way. In this thesis,

an SVN redesign algorithm is introduced in Chapter 3, in order to address this

issue.

2.2.3 Resource Sharing techniques

After provisioning VN requests with redundant resources at the VN level, the ob-

tained SVN will be required to be embedded onto the substrate network. However,

as redundant node(s) and link(s) are added to the VN, they may consume large

amount of physical resources. As a consequence, the entire SVN may be rejected

by the cloud operator, due to insufficient bandwidth and computational resource.

Hence, it is very important to explore the opportunities of sharing backup re-

sources, as a mean to increase the network availability. In fact, recent research[34]

shows the data transfer and exchange between VMs count for 80 % of the total

traffic in a data center. Thus, by sharing the bandwidth capacity between VMs,

we may reduce the traffic congestion within a data center, and eventually boost

the VN requests admission. In this subsection, two bandwidth sharing techniques

are introduced.

A. Backup Sharing [18]

To explore bandwidth sharing, we first identify a working-group, denotes asWG(v)

and a backup-group BG(v) for each VM v ∈ Nv. A working-group WG(v) con-

tains virtual links that are connecting VM v itself and its neighbors. For instance,

in Figure 2.3, l{v1,v2} and l{v2,v4} are the working-group of virtual node v2. A

backup-group BG(v) represents the set of virtual backup links that are going to

16

Figure 2.3: Resource Sharing techniques in SVN embedding phrase

be activiated after the failure of node v. They are usually connecting v’s backup

VM and v’s neighbors [18]. In Fig. 2.3, the backup-group of VM v4 has link

l{v2,B} and l{v3,B}. Upon the failure of v4, it migrates to VM B and continues

communicating with v2 and v3 via l{v2,B} and l{v3,B}.

Given the backup-group of each virtual node, it is obvious that links in different

backup-groups will not be activiated at the same time, as we only consider single

node failure. Hence, if the mapping of the virtual links in different backup-groups

have common substrate links, the bandwidth resource reserved on that specific

physical link can be shared, and only the maximal amount needs be allocated. In

Figure 2.3, l{v1,B} is in BG(v2) and BG(v3), whereas l{v1,B} can be in the backup-

group of v1 and v4. Therefore, those two virtual links will never be activated

simultaneously, thus upon the link mapping, l{v1,B} and l{v2,B} pass through two

common substrate links l{D,C} and l{C,B}, on which the reserved bandwidth can

be shared. Therefore, we allocate only 1 unit of backup bandwidth on substrate

links l{D,C} and l{C,B}, whereas without sharing 2 units must be reserved on them.

17

We denote such type of sharing ”backup share”[18].

B. Cross Sharing [18]

Upon the failure of a facility node, the VM(s) running on top of this node will fail

as well, and the communications between this VM and other VMs in the same vir-

tual network are disconnected. As a result, there will be some bandwidth released

from those disconnected communications which then can be reused by the backup

virtual links, only if the disconnected virtual primary links are in WG(v) and the

backup virtual links are in BG(v). For instance, in Figure 2.3, l{v3,v4} and l{v3,B}

are in WG(v4) and BG(v4) respectively, so the failure of v4 will disconnect l{v3,v4},

which is mapped on substrate link l{E,F}; the amount of bandwidth reserved on it

will be released, and since l{v3,B} will be activated after the failure, the released

1 unit of bandwidth on substrate link l{E,F} can be reused by l{v3,B}, therefore,

there is no need to provision backup on l{E,F}. We classify such bandwidth sharing

stragegy as ”cross share”[18].

C. Current Resource Sharing Methods Limitations

In existing SVNE solutions, resources sharing normally happens in the embedding

phase, and is encouraged throughout the whole process, in both node mapping

and link mapping. To achieve optimal solution for the embedding problem, one

must add both cross share and backup share as constraints to reduce the mapping

cost. The mapping of both primary and backup resources would be decided with

the objective of maximizing shared resources. This attempt puts the SVN embed-

ding into an awkward position, as the SVN intends to be embedded in a way that

the shared resources are maximized; on the other hand, the resources can only be

shared once the mapping solution are given. This fact slows down the execution

of the SVNE solutions. Therefore, the challenge is to find a time-efficient search

technique that utilizes resources sharing as much as possible. Hence, a prognostic

18

SVN redesign technique ”ProRed” is proposed in this thesis, the highlight of this

technique is its ability to consider the resource sharing while augmenting backup

resources to the original VN, as if the redundant resources in the output SVN can

”predict” sharing at the virtual level. Consquently, upon the embedding phase,

the sharing does not need to be involved, and solutions can be found rapidly.

2.3 Multicast Virtual Network

One-to-many communication is quite common in multiple applications and ser-

vices hosted in cloud data center networks [35–41]. For instance, High Perfor-

mance Computing1 (HPC) applications often need to distribute a large amount of

data from storage to all compute nodes [39]. Web-search services are another ex-

ample of multicast services that consist of redirecting incoming search-queries to a

set of indexing servers [44]. Further, bandwidth-hungry Distributed File-Systems

(DFS) are common data center applications [37], [45], [46]. DFS divides files into

fixed-size chunks to be replicated and stored in different servers for reliability [35],

[37]. Moreover, multicasting can be employed for the distribution of executable

binaries among participating servers in map reduce-like cooperative computation

systems [35], [36].

Services with a one-to-many communication mode can be easily treated as unicast

by replicating the transmission to each receiver, or as broadcast by flooding the

data throughout the network [47]. However, if the multicast of data is occurring in

high volumes (e.g. HPC applications), then replacing these multiple unicast mes-

sages by a single multicast message can incur great benefits in terms of reducing

the computation efforts at the source node, greatly shrinking bandwidth consump-

tion in the network, and subsequently increasing the application’s throughput and

enhancing its response time. Similarly avoiding the use of broadcasting can al-

leviate unnecessary processing to detect and reject irrelevant traffic from nodes

1HPC applications are conventionally employed in distributed parallel computers such as
supercomputers and grid-computing. However, the emergence of cloud computing has triggered
significant attention around the possibilities of migrating HPCs to the cloud [42, 43].

19

outside the multicast group. Hence, for network operators that host multicast

services with heavy traffic, it is imperative to have efficient multicast support in

their data center networks.

IP Multicast [48] is the traditional implementation of multicast in the Internet.

However, this former suffers from many limitations which have inhibited its ubiq-

uitous use. These limitations are mainly concerns of security, scalability, and flow

control [49]; many of which have been alleviated and tackled in data center net-

works owing to the emergence of Software Defined Networks (SDNs) [49]. SDN

provides a vantage point to network and applications information, allowing the

detection and handle of diverse service classes with distinct QoS requirements

(i.e. delay-sensitive multicast services). Further, it enables the support of multi-

cast in commodity-switches that lack built-in support. This emerging networking

paradigm has surpassed the mere potential to enable multicast in data center net-

works, rendering a fertile ground to innovate and enhance its adoption.

To this extent, multicast in data center networks has become a prominent research

topic [35, 37, 40, 41, 49–51], with particular attention to the resource allocation

problem of MVNs [40, 41, 50, 51]. The former consists of allocating physical re-

sources to the Virtual Machines (VMs) running a tenant’s service, and routing

the traffic flow between them via substrate paths. In the case of a multicast ser-

vice, this embedding problem differs from the classical (unicast) VNE problem

in many aspects; mainly, a multicast VN comprises two types of virtual nodes

(machines): the multicast source node and a set of multicast recipient nodes (ter-

minals). The traffic flow routing now consists of building a multicast distribution

tree between the multicast source and terminals in order to avoid redundant traffic.

Also, multicast services that involve real-time communication entail stringent QoS

requirements, such as end-delay and delay-variation constraints. Another QoS re-

quirement that both unicast and multicast VNs share is a demand for reliability

guarantees; that is a reassurance that the hosted service will remain up and run-

ning despite any network component failure. Failure in the physical infrastructure

is common due to a multitude of reasons [52] that can affect one or many network

component. In fact, it can either attain a facility node (servers), a network node

20

(e.g. router/switch), or a substrate link.

Although the problem of survivable unicast VNs has been widely discussed [33],

the impact of failure on multicast services differs in several aspects, which ulti-

mately inhibit the applicability of existing unicast protection schemes. Indeed,

in this case, restoring a failed service component is not solely restricted to find-

ing a backup that matches the failed component’s resource demands, but also to

connect this backup to the rest of the multicast service while satisfying its QoS

requirements, and maintaining a low cost distribution tree. Therefore, this work

is dedicated towards studying the problem of reliable MVNs in failure-prone data

center networks, and propose a novel post-failure restoration scheme with tree

maintenance. Our work is different from the relevant literature [40], since our

proposed protection scheme capable of restoring MVNs against any single facility

node or substrate link failure. Further, our tree maintenance component guaran-

tees that the restored solution maintains a low cost tree that respects the delay

constraints of the restored MVN services. Our numerical results prove that our

suggested approach outperforms existing protection schemes in terms of achievable

long-term revenue.

In Chapter 4, an effort has been put on embedded multicast virtual networks

considering the case of single node failure.

21

Chapter 3

Survivable Virtual Network

Redesign and Embedding

3.1 Introduction

Network virtualization is a key enabler of the multi-tenancy concept [25], where

multiple network architectures and services can run on top of the same physical

infrastructure. With network virtualization, the problem of allocating resources

to the various tenants emerges as a challenging problem. This problem is formally

known as the Virtual Network Embedding problem (VNE), which is proven to be

NP-Hard [4]; therefore, numerous efforts have been devoted towards inaugurat-

ing effective heuristics for solving it [19, 20, 53–55]. The main weakness in these

suggested approaches, in addition to the lack of a guarantee on the quality of the

obtained solution, is that they assume that the physical infrastructure is available

at all times, which renders most of the work in the area of VNE inapplicable in

scenarios where network component failures can occur. Failures in the physical

infrastructure are common due to a multitude of reasons [56]. In fact, the year

2013 has witnessed multiple cloud outages[57]; one of which got hold of the famous

Amazon’s EC2 cloud, causing 5 million dollars in revenue loss for a single hour of

22

offline time. With millions of dollars at stake, attention converged towards solv-

ing the Survivable Virtual Network Embedding problem (SVNE) [6, 7, 14–18, 31].

Given that the SVNE problem is a variation of the VNE problem, it is also NP-

Hard. Hence, most of the relevant literature relax the problem by targeting one

network component failure type: facility node failures, network node failures, or

link failures, as illustrated in Figure 2.1. Some further simplify the problem by

considering that a single network component can fail at any given point in time.

In this Chapter, we consider the case of single facility node failures. When a fa-

cility node fails, the hosted virtual node(s) needs to migrate to a backup facility

node, as well as its associated connections to other virtual nodes belonging to

the same virtual network (VN). One way of achieving this failure recovery is by

redesigning the VN request into a Survivable VN (SVN), and then mapping the

resultant SVN onto the physical network. This redesign consists of augmenting the

original VN with backup nodes. Each backup node is in charge of protecting one

or many primary nodes. Hence, backup virtual links must be established between

each backup node and the neighbors of the primary nodes it protects. Upon the

failure of a facility node which hosts a virtual node v, v will migrate to its associ-

ated backup node, which will then resume the communication with v’s neighbors.

The augmented backup virtual nodes and links need to be provisioned with suf-

ficient computing and bandwidth capacity to recover from any facility node failure.

The survivable redesign technique encloses multiple challenges. Chief among these

challenges is deciding how many backup nodes to use and how to allocate these

backup nodes to the primary nodes in each VN such that we minimize the backup

footprints in the substrate network. This problem is of paramount importance

since these provisioned resources will remain idle until failures occur. Hence, over-

provisioning can greatly impact the network’s ability to admit future requests.

Indeed, the cost-efficient survivable redesign problem against single facility node

failures has recurred multiple times in the literature [16], [18], [14], [15]. However,

in all of the previous contributions, the number of backup nodes is fixed to either

23

1 or k, k being the number of critical nodes in a given VN. In addition, to cir-

cumvent the inconvenience of idle resources, these latter introduce various backup

resource sharing opportunities which can be exploited in the substrate network

upon mapping the resultant SVN. In this Chapter, we argue that fixing the num-

ber of backup nodes to either 1 or k could yield infeasible or even costly mapping

solutions. We provide several motivational examples to support our proclama-

tion. Moreover, we observe that all of the aforementioned redesign techniques are

agnostic to the backup resource sharing in the substrate network, where this re-

sponsibility is delegated to the adopted mapping algorithm. This is problematic,

since given that the SVNE is NP-Hard[4], adding more constraints for backup

resource sharing will surely yield a more complex model. Hence, the existing lit-

erature solve this problem by relaxing the SVNE algorithm [6, 7, 14–18, 31]. For

instance, by solving the virtual node mapping and virtual link mapping disjointly

[6], [16], [7], [17], [14], [15] or by performing the primary and backup mapping

in a sequential fashion [6], [31], [18], [14]. Multiple other decomposition schemes

can be applied; however, it is these very same relaxation techniques that sacrifice

the quality of the obtained solution. This results in costly embedding solutions

that are incapable of exploiting backup resource sharing in the substrate network,

and lead to a substantial amount of backup idle resources that limit the cloud

provider’s long term revenue.

In light of the above, we introduce Pro-Red; a novel prognostic redesign approach

that explores the space between 1 and k and promotes backup resource sharing at

the VN level. Hence, it alleviates this concern from the embedding algorithm and

achieves cost-efficient SVNs using abridged mapping techniques. Pro-Red adopts

a unique approach for the redesign; not only does it determine the augmented

number of backup nodes and their connections to the primary nodes, but also

their actual positioning in the VN such that it minimizes the provisioned cost at

the substrate level. Hence, its prognostic property lays in its ability to foretell the

backup resource sharing at the VN level, prior to the embedding phase. Our nu-

merical results prove that our suggested approach yields significant gain in terms

of increasing the substrate network’s admission rate, decreasing the amount of idle

24

bandwidth in the substrate network, and boosting the overall revenue of the cloud

provider.

In this Chapter, we focus on the case of single facility node failure. Our work

is different since mainly we prove that while existing techniques tend to fix the

number of back-up nodes to either 1 or k, in this Chapter we present firm motiva-

tional examples that prove that in many cases the 1 or k redundant schemes can

yield infeasible or costly mapping solutions. Hence, we introduce a novel redesign

technique that is capable of exploring the space between 1 and k. Further, while

all of the existing work employs backup-sharing during the embedding phase, we

swerve from this conventional approach and take the backup-sharing to the VN

level by designing SVN with inherit back-sharing properties. This allows us to

embed the SVN as a VN without the complication of backup-sharing concerns

that surely yield a more complex mapping.

The rest of this Chapter is organized as follows: Section 2.2.1 is dedicated for

highlighting related work in the literature. In Section 3.2, we formally present the

SVN redesign problem for single facility node failure. Section 3.3 presents firm

motivational examples that prove the misfits of conventional redesign techniques.

In Section 3.4, we introduce the theocratical foundation of Pro-Red, and then

present its step-by-step procedural details. Section 3.5 introduces our SVN em-

bedding model that complements the features of Pro-Red. Section 3.6 is dedicated

for the numerical results. We conclude this Chapter in Section 3.7.

3.2 Problem Definition

1. The Substrate Network : We represent the substrate network as an undi-

rected graph denoted by Gs = (N ,L), where N is the set of substrate facility

nodes, and L is the set of substrate links. Facility nodes are connected to the

network via network nodes (routers/switches). Each substrate facility node n

25

V3

(a) Virtual Network

(6) (8)

10

10

1010

(10) (10)

(10) (10)S 3

S 1 S 2

S 4

(b) S ubstrateNetwork

V2 V3

B1

(c) S urvivableVirtual Network

(6) (8)

(8)V1

(4)

1 2

V1

(4)

1 2
2

1 2

V2

Figure 3.1: Substrate Network and Virtual Network Representation

∈ N is associated with a finite computing capacity, denoted by cn. Similarly,

each substrate link l ∈ L has a finite bandwidth capacity, denoted by dl. Fig-

ure 3.1 illustrates a substrate network with 4 facility nodes, each with a CPU

capacity of 10 units (represented by the number in parenthesis above each fa-

cility node). Similarly, we observe that the substrate links interconnecting the

network nodes exhibit 10 units of bandwidth capacity each (represented by the

number in parenthesis above each substrate link).

2. The Virtual Network (VN) : A Virtual network represents a client’s request

to deploy an application in a cloud data center. It consists of a set of virtual

nodes (virtual machines), interconnected with virtual links. The virtual links

correspond to the communication requirements between the virtual nodes in a

given VN request. We denote a VN as a virtual graph Gv = (V ,E), where V

represents the set of virtual nodes, each with a CPU demand of cv, and e is the

set of virtual links, each with a bandwidth demand of de. Figure 3.1 shows an

example of a VN request with 3 virtual nodes and links, in addition to their

associated CPU and bandwidth demands, respectively.

3. Problem Definition 1: Given the VN request, the SVNE problem aims

to map this request onto the substrate network while providing survivability

against single facility node failures. This can be done by redesigning the VN

request into an SVN, which consists of augmenting the VN with backup nodes

and provisioning enough bandwidth and CPU resources to recover from any

26

facility node failure. The problem of designing reliable VNs encloses two major

concerns: First, deciding how many backup nodes are needed to protect a given

VN, and second, determining which backup node will be in charge of protecting

which set of critical nodes. These two concerns highly depend on the substrate

network capacity. On one hand, provisioning a high number of backup nodes

and links greatly decreases the substrate network’s admission rate, since these

resources will remain idle until failure occurs. On the other hand, limiting

the number of backup nodes to a pre-determined constant may yield infeasible

mapping solutions. Hence, finding the optimal design of reliable VNs consists

of finding the tradeoff between the amount of backup resources provisioned and

the efficient utilization of the substrate network. The SVN redesign problem

can thus be formulated as follows:

Problem Definition 2. Given a substrate network Gs = (N,L), and a VN

request Gv = (V ,E), Find the optimal redesign d of the given VN request Gv

into a reliable VN (SVN), such that the amount of backup idle resources in the

substrate network is minimized, while guaranteeing survivability against single

facility node failure.

One way to solve the problem is by enumerating all possible designs d ∈ D, where

each d can contain between 1 to k backup nodes. For any given i (2 ≤ i ≤ k), there

could exist multiple designs d. These designs are represented by the different ways

the V virtual nodes are divided into i clusters, where each cluster is protected

by a single backup node. This is similar to the various ways n distinct objects

can be distributed into m different bins with k1 objects in the first bin, k2 in the

second, etc. and k1 + k2 +km = n. This indeed is obtained by applying the

multinomial theorem where
∑

k1+k2+...+km=n

(
n

k1+k2+...+km

)
= mn. Therefore, for V

virtual nodes and i backup nodes, there are |V |i different mapping designs. Once

the set of all possible designs d is enumerated, it can be fed to an ILP model to

determine the optimal design d that achieves the lowest amount of backup idle

resources in the substrate network. It is important to note that in order for the

model to determine the optimal design, it requires to solve the SVNE for each

27

design d; this renders the problem NP-Hard.

In this regard, we reformulate the problem to seek a redesign approach that pro-

motes backup sharing in the substrate network, hence it is inheritably capable of

minimizing the backup footprints. In section 3.4, we introduce a heuristic-based

redesign approach that renders such prognostic SVNs.

3.3 The SVN Redesign Problem

3.3.1 Limitations of Conventional VN Redesign Techniques

One of the most commonly adopted redesign techniques for recovery against single

node failure are formally known as the 1-redundant and k-redundant schemes. In

the case of the 1-redundant scheme, the VN request is augmented with a single

backup node that needs to be connected to the neighbors of each critical node

via backup virtual links. Next, the resultant SVN is embedded onto the substrate

network while forcing the primary and backup nodes in a given SVN to occupy

distinct substrate nodes. This ensures that a single substrate node failure will

not affect more than one virtual node in the same VN request. Figure 3.2(c)

illustrates the case where the VN request presented in Figure 3.2(a) is augmented

with a single backup node b1, as per the 1-redundant scheme. The backup node

must be provisioned with the maximum CPU demand of all the critical nodes, so

it can assume any single facility node failure. Hence 8 units of CPU is reserved

on backup node b1. Moreover, for each backup virtual link connecting b1 to any

critical node v, it is sufficient to reserve the maximum bandwidth demand on v’s

adjacent links, since backup link (b1,v) will only be activated upon the failure of

one of v’s neighbors. For example, the backup link (b1,v1) will only be activated

in the case where virtual node v2 or v3 fails. In the case where v2 fails, 1 unit

of bandwidth is required to resume the communication on backup link (b1,v1).

Similarly, in the case where v3 fails, it will also migrate to b1 and communicate

28

10

10

1010

(10) (10)

(10) (10)S 3

S 1 S 2

S 4

V1 V2

B1

1

2

Cross-Share

Backup-Share

0

V3

2 Working

Paths

Backup

Paths

2

(a) Backup Resource Sharing

1

1 1

1

V1

V3

1

V4

1

1

1

V2

B1

(b) 1-Redundant SVN

V1

V3

1

V4

1

1

1

V2

1

1

1
1

B1B2

1

1

1

1

(c) 2-Redundant SVN

1 1

1

1

1

1
1

(5) (5) (5)

(5) (5) (5)

V2 B1

Released

Working

Paths

Primary

Working Paths

Backup

Paths

S 1 S 2 S 3

S 4 S 5
S 6

V1

V4 V3

(d) 1-Redundant SVN Embedding Solution (1)

(5) (5) (5)

(5) (5) (5)

V1 V2
B1

B2

1 1

1

1

1

11

Released

Working

Paths

Cross-Share
Cross-

Share

S 1 S 2 S 3

S 4

V3V4

S 5 S 6

(e) 2-Redundant SVN Embedding

(5) (5) (5)

(5) (5) (5)

V2B1

1 1

11

21

V3

1

Released

Working

Paths

Cross-share Cross-share

2

Reserved

Bandwidth

S 1 S 2 S 3

S 4 S 5 S 6

V1

V4

(f) 1-Redundant SVN Embedding Solution (2)

Figure 3.2: Designing and Embedding Reliable VNs

with v1 with 2 units of bandwidth. Given that at any point in time either v2 or v3

would fail, it is sufficient to reserve 2 units of bandwidth on the link connecting b1

to v1. The set of backup links that are activated simultaneously upon the failure of

a virtual node v are denoted as the Backup-Group of v (BG(v)) [18]. For instance,

the BG(v1) contains backup links (b1,v2) and (b1,v3). Similarly, the backup group

29

of BG(v2) and BG(v2) is (b1,v1).

Now, for the k-redundant scheme, the VN is augmented with k backup nodes,

where k represents the number of primary critical nodes. In this case, each backup

virtual node protects a single primary node, and hence it only connects to its

neighbors via backup virtual links. Each backup node along with its associated

backup links will be provisioned with the same amount of resources as the primary

node it protects and its adjacent links, respectively.

When a facility node fails, only the affected node will be disconnected from the

substrate network. However, its adjacent network node and substrate links will

remain active and capable of routing traffic. Thus, upon the failure of a facility

node that hosts a virtual node v, the bandwidth on the original working paths

that connect v to its neighbors in the substrate network will be released, and

hence becomes available. This released bandwidth can thus be reused by the

corresponding backup paths of v’s backup node. Such type of sharing is known

as cross− sharing [18] between working and backup paths. Each virtual node v

is associated with a working-group (WG(v)) that contains the set of v’s working

paths. For instance, the WG(v1) contains (v1,v2) and (v1,v3). Hence, the BG(v1)

can reuse the bandwidth of the WG(v1) upon v1’s failure through cross-sharing.

Moreover, given that a single node might fail at any point in time, the backup paths

belonging to different backup groups can share their bandwidth in the substrate

network. Such type of sharing is referred to as backup − sharing [18]. Figure

3.2(a) shows a mapping solution for the 1-redundant SVN presented in Figure

3.2(c) over the substrate network in Figure 3.2(b). We observe that for backup

link (b1,v3), 4 units of bandwidth needs to be reserved, since the substrate links

that route this backup path do not overlap with any other appropriate backup or

working paths. However, backup paths (b1,v1) and (b2,v2) overlap over substrate

link {s2,s4}; and given that these backup paths belong to distinct backup groups,

only 2 units of bandwidth need to be reserved on substrate link {s2,s4}, rather

than 3 due to backup-sharing. Moreover, backup path (b1,v1) further overlaps with

working path (v1,v2) on substrate link {s1,s2}; hence 0 units of bandwidth needs

to be reserved on this substrate link via cross-sharing.

30

The problem with the 1-redundant and k-redundant schemes is that by forcing

the number of backup nodes to be either 1 of k, we may end-up with infeasible

or costly mapping solutions. This is due to the fact that the substrate might not

have enough bandwidth capacity to route the traffic between 1 backup node to the

neighbors of all critical nodes, in the case of the 1-redundant scheme. Whereas, in

the case of the k-redundant scheme, a substantial amount of CPU resources remain

idle until a failure occurs, since k-redundant requires as many backup nodes as

primary critical nodes, not to mention the large number of backup virtual links

needed to associate each backup node with its appropriate primary critical node.

This motivates the need for a cost-efficient redesign technique that is capable of

exploring the space between 1 and k, and finding the balance between the amount

of provisioned CPU and bandwidth to yield feasible and cost-efficient embedding

solutions.

3.3.2 Illustrative Example

To further illustrate the inconvenience of the conventional redesign techniques,

consider the case of a 4 nodes VN in Figure 3.2, where each virtual node is con-

sidered to be critical. Using the 1-redundant scheme, we augment this VN with

a single backup node, connected to the neighbors of all critical nodes via backup

virtual links, as illustrated in Figure 3.2(b). Now, consider a substrate network

with 6 facility nodes interconnected via substrate links, each with a bandwidth

capacity of 1 unit, as shown in Figure 3.2(d). Given the 1-redundant SVN, there

exist no feasible mapping solutions on the aforementioned substrate network. For

instance, consider embedding the SVN using the mapping solution illustrated in

Figure 3.2(d). When the substrate node s1 fails, the virtual node v1 migrates to b1

which needs to communicate with virtual nodes v2 and v4. b1 is capable of reach-

ing virtual node v2 through path {s3 → s2}. However, the substrate network’s

capacity, with the current embedding solution inhibits b1 from reaching node v4,

since the working path of {v3-v4} remains operational, occupying the 1-unit of

31

bandwidth on the substrate link {s4-s5}. This renders the embedding solution il-

lustrated in Figure 3.2(d) infeasible. By examining all possible mapping solutions

of the 1-redundant SVN on the given substrate network, we find that they are all

infeasible. This is because the 1-redundant scheme connects a single backup node

to the neighbors of all critical nodes. Hence b1’s bandwidth demand along with

the given substrate network capacity, inhibits b1 from protecting this VN against

any single node failures.

On the other hand, consider the case where the aforementioned VN is augmented

with 2 backup nodes b1 and b2, as shown in Figure 3.2(c). b1 assumes the failure of

critical nodes v1 and v2, and b2 replaces v3 and v4 in case any of them failed. Upon

embedding the resultant SVN, we notice that this reliable design does indeed yield

a feasible solution and requires 0 units of reserved bandwidth due to cross-sharing,

as illustrated in Figure 3.2(e). For example, consider the case where the facility

node s1 fails; subsequently, v1 will migrate to b1, and that latter needs to resume

v1’s communication with v2 and v4. The failure of virtual node v1 leads to the

release of the active bandwidth on working paths {s1-s2} and {s1-s4} connecting

virtual node v1 to v2 and v4, respectively. The released bandwidth will be reused

by b1 to reach v2 and v4 through cross-sharing. By employing cross-sharing for

all other virtual node failures in the given VN, we can conclude that indeed the

2-redundant SVN requires 0 unit of reserved bandwidth.

Further, consider the same substrate network, where link {s2 → s5} has a capacity

of 2 units, as illustrated in Figure 3.2(f). In this case, we can indeed find a feasible

embedding solution for the 1-redundant SVN with a provisioned bandwidth cost

of 2 units, whereas the 2-redundant scheme still requires 0 units of provisioned

bandwidth.

These motivational examples prove our proclamation that by forcing the number

of backup nodes to be either 1 or k, we might end up with infeasible or costly

mapping solutions. Whereas when we augment the VN with i (1 ≤ i ≤ k) backup

nodes (i = 2 in the above example), we achieve a balance between the amount of

backup bandwidth and CPU that needs to be reserved. In fact, this balance yields

a feasible solution, when the 1-redundant and k-redundant fail to find one.

32

This motivates the need for a redesign approach that is capable of finding that

balance, rather than being fixed to either 1 or k backup nodes. By exploring the

space in the range between 1 and k, we can obtain lower-cost mapping solutions,

and increase the network’s admissibility. This is one of Pro-Red’s unique capa-

bilities. Another advantage of Pro-Red is that it redesigns the VN in a way to

promote the backup bandwidth sharing at the substrate network. In the next

section we present Pro-Red’s theoretical foundation that enables it to fulfil these

two promises.

3.4 Prognostic Redesign Approach (Pro-Red) :

3.4.1 Theoretical Foundation

V1
1

V2
V1 V2

1 1
V1 V2

1 1

1

B1

B2

(a) (b) (c)

Figure 3.3: Theoretical Foundation

In this section, we present the theoretical foundation on which Pro-Red’s redesign

technique is established. We begin our explanation with a motivational example:

Consider a 2 nodes VN illustrated in Figure 3.3(a). Augmenting the VN with a

single backup node, using the 1-redundant scheme, requires 2 units of reserved

bandwidth (as shown in Figure 3.3(b)). By employing an effective embedding

approach, this estimated bandwidth cost could be minimized at the substrate

network level via cross-sharing and backup-sharing. Observe, however, that by

placing this backup node along the path connecting v1 and v2, the resulting SVN

will require 0 additional units of bandwidth once embedded into the substrate

network. This is due to the fact that by placing the backup node in between

its associated primary nodes, we force the primary path that routes the traffic

33

between v1 and v2 in the substrate network to pass through b1
1. Subsequently, if

either one of these primary nodes fail, the backup node will cross-share (reuse) the

released primary bandwidth. It should be noted here that this redesign approach

is indeed prognostic to backup resource sharing, as it is able to predict (promote)

the cross-sharing (bandwidth reuse) at the VN level. Indeed, throughout our

numerical results, we show that Pro-Red achieves considerable gains in terms of

reducing the total bandwidth cost against the conventional redesign techniques,

and greatly decreasing the network’s blocking ratio.

We build on this motivational example to formulate a novel redesign technique that

determines the location of backup nodes in the VN, such that cross-sharing and

backup-sharing can be fully exploited in the substrate network. Placing the backup

node between every two virtual nodes is definitely costly in terms of idle CPU

resources. Hence, we resort to clustering a subset of virtual nodes into distinct

sets, where nodes in a particular set are covered by a single backup node. In

each set, the backup node is positioned such that the maximum amount of backup

resource sharing is guaranteed upon the embedding. This clustering technique can

thus create a balance between the amount of provisioned backup nodes and links.

To create a set, we begin by selecting the virtual node with the highest degree.

This allows a larger number of primary virtual nodes to be clustered within a

single set, which can substantially decrease the amount of reserved CPU resources.

Once the starting node is identified, we place the backup node on the adjacent link

with the highest bandwidth demand, which guarantees the most backup resource

sharing. To support this analysis, consider the following example illustrated in

Figure 3.4. Let v1 be the node with the highest nodal degree 3. Its adjacent links

have a bandwidth demand of a, b and c respectively. We assume (without loss of

generality) :

a > b+ c > b > c (3.1)

In order to protect V1, we need to place a backup node on one of its adjacent links.

In this case, we have 3 different scenarios, we can either place the backup node on

1Note that once a backup node is placed between v1 and v2, the associated working path
connecting v1 and v2 in the substrate network will be routed differently.

34

V
1

a

a

b c

(a) Total Cost = 2a + b + c

V
1

a

b c

b

b a+c-b

(b) Total Cost = 2a + b + 2c

V
1

a

b

c

ca+b-c

(c) Total Cost = 2a + 2b + c

V
1

a

a

b c

b+c-a

(d) Total Cost = a + 2b + c

Figure 3.4: Designing Reliable VNs

the link with bandwidth demand a, b, or c. These different scenarios are illustrated

in Figure 3.4(a), 3.4(b), and 3.4(c), respectively. Notice that in the case where the

backup node is placed on the link with the highest bandwidth demand a (shown

in Figure 3.4(a)), 0 units of reserved bandwidth is needed. In fact, by placing the

backup node on this former link we can always achieve the lowest total cost, since

upon failure the backup node is able to reach all of v1’s neighbors by fully reusing

the released bandwidth through cross-sharing. Whereas, by placing the backup

node on the link with bandwidth demand b (shown in Figure 3.4(b)) additional

bandwidth needs to be reserved in order to reach v1’s neighbors. In fact, since b

< a, the backup node can never reach v1’s neighbor at link a without reserving an

additional (a - b) units of bandwidth. The same applies to reach v1’s neighbor at

link c, hence an overall (a + c - b) units of bandwidth needs to be reserved. This

renders a total cost of (2a + b + 2c), which is obviously more expensive that the

redesign solution presented in Figure 3.4(a). Note that in the case where a ≤ (b

35

+ c), and a is the link with the highest bandwidth demand; to place the backup

node on link a, a total of (b + c - a) must be reserved, as illustrated in Figure

3.4(d). However, this solution still renders the lowest total bandwidth cost.

3.4.2 Pro-Red Algorithm :

Algorithm 1 Pro-Red: Prognostic Redesign Heuristic

1: Given V (U,E) /*Virtual Network Topology*/
2: /*Set cover flag for nodes and links to false*/
3: for (u ∈ U) do
4: u.covered = false;
5: end for
6: C = { }; /*Initialize the list of covered nodes*/
7: while (—C— ¡ U) do
8: Ĉ = {U} - C;
9: Step 1: Find Starting Node
10: v1 = GetNodeWithHighestNodeDegree(Ĉ);
11: L = GetAllAdjacentLinks(v1, Ĉ);
12: Step 2: Find Starting Link
13: e = GetHighestBW (L);
14: v2 = GetTheOtherNode(v1, e);
15: Step 3: Create a new Set
16: s = CreateSet(v1, v2, e);
17: C = C ∪ {s};
18: end while

In this section, we present the SVN redesign heuristic that is founded on the the-

ories and observations presented in Section 3.4.1. The objective of this algorithm

is to assign a backup node for each critical node in the given VN topology; we

refer to a critical node that is assigned to a backup node as covered (or protected).

Initially, all the virtual nodes in the VN topology are considered as uncovered;

hence, we initialize the virtual nodes with a cover flag set to false. Next, we define

two new sets C and Ĉ that are updated at the end of every iteration with the

list of covered and uncovered nodes, respectively. The process terminates when C

contains all the critical nodes in the VN request. At each iteration, the algorithm

creates a single set. We define a set as an ensemble of critical nodes protected by a

single backup node. To create a set, we first need to identify a starting point, from

which a set will begin and grow. Based on the previous observations presented

36

in Section 3.4.1, the starting point is defined by node v1 with the highest nodal

degree in the list of uncovered nodes Ĉ, and its adjacent link e with the highest

bandwidth demand. Next, the algorithm invokes the CreateSet function that re-

turns a set s which contains the critical nodes covered by the newly discovered

set.

In Algorithm 2, we highlight the procedural details of the CreateSet function.

It begins by creating a new backup node b to be placed between the edge nodes

(v1, v2) of link e. To exploit cross-sharing, link e will be replaced by two backup

virtual links ê1 and ê2 that position backup node b in between nodes v1 and v2.

This would force the primary virtual link connecting nodes v1 and v2 to be routed

through b. Hence, if any one of them failed, the released bandwidth on links ê1

and ê2 can be reused by backup node b. Initially, the CPU demand of b is set

to the maximum CPU demand of critical nodes v1 and v2 (line 6). Also, the

bandwidth demand on link ê1 is set to the sum of the bandwidth demands of v1’s

adjacent links, subtracted by the bandwidth demand of link e (line 4), since that

latter will be released and cross-shared (reused) upon failure of node v1. The same

applies when assigning the bandwidth demand on link ê2 (line 5). Subsequently,

nodes v1 and v2 are now protected (covered) by backup node b. Once this set is

established, we need to grow it in order to cover the highest number of adjacent

nodes possible without incurring too much additional backup bandwidth. First,

we need to include all the adjacent leaf nodes in the set, otherwise leaf nodes will

be left uncovered, or would require a dedicated backup node, which is seemingly

not cost efficient. To cover leaf nodes, we need to adjust the bandwidth demand

on links ê1 and ê2, appropriately, with enough bandwidth to assume the failure

of any leaf node, as well as the CPU demand of backup node b. Finally, the al-

gorithm will also attempt to cover non-leaf neighbors nodes of v1 and v2 using

backup-sharing. Meaning, without reserving any additional bandwidth on backup

virtual links ê1 and ê2. Given a non-leaf neighbor node v′ of v1, if the sum of the

bandwidth demand on n′’s adjacent links, including link (v′,v1) is smaller than

the reserved bandwidth on link ê1, and excluding link (v′,v1) is smaller than the

bandwidth demand on link (v′,v1); further, if (v
′,v1) is the link with the highest

37

Algorithm 2 CreateSet(virtual node v1, virtual node v2 virtual link e)

1: s = {};
2: Step 4: Create a new backup node b

3: ê1 = new virtual link(v1,b);
4: ê2 = new virtual link(v2,b);
5: setCPU(b,max(v1,v2));
6: dê1 = dê2 = de;
7: if (Sum(GetAdjacentLinksBandwidth(v1)) ≥ 2de) then
8: dê1 = Sum(GetAdjacentLinksBandwidth(v1)) - de;
9: end if

10: if (Sum(GetAdjacentLinksBandwidth(v2)) ≥ 2de) then
11: dê2 = Sum(GetAdjacentLinksBandwidth(v2)) - de;
12: end if
13: v1.covered = v2.covered = true;
14: l.covered = true;
15: s = s ∪ {v1,v2};
16: Step 5: Protect Adjacent Leaf Nodes
17: T = v1.getAdjacentLeafNodes()
18: while (!T.isEmpty) do
19: t = T .next();
20: t.covered = true;
21: s = s ∪ {t};
22: setBW (ê1,max(dê1 ,d(v1,t)));
23: setCPU(b,max(b,t));
24: end while
25: Repeat the same while loop for Adjacent leaf nodes of v2
26: Step 6: Protect Adjacent non-leaf Nodes
27: R.addAll(getAdjacentNonLeafNode(v1));
28: R.addAll(getAdjacentNonLeafNode(v2));
29: while (v1.hasAdjacentNonLeafNodes()) do
30: r = R.next();
31: if ((2d(v1,r) ≥ Sum(GetAdjacentLinksBW (r)))&&
32: (dê1 ≥ d(v1,r) && (r.hasAdjacentLeafNodes() = null)) then
33: r.covered = true;
34: s = s ∪ r;
35: setCPU(b,max(b,t));
36: end if
37: end while
38: Repeat at line 21 for v2
39: return s;

38

bandwidth demand among v′’s adjacent links, then v′ could be included in v1’s set

and subsequently protected by backup node b without incurring any additional

backup bandwidth via backup-sharing. Finally, the algorithm returns the set of

nodes that are covered by the newly created set s. The CreateSet function has a

complexity of O(n), which renders the complexity of Pro-Red’s redesign heuristic

to be O(n2), since we call the CreateSet function for each uncovered node in the

VN request.

To further illustrate the enactment of Pro-Red’s redesign algorithm, consider the

VN topology presented in Figure 3.5(a). The algorithm begins by identifying a

starting node and link, which in this case are node v7 with link {v4,v7}, since they

correspond to the node with the highest degree, and its adjacent link with the

highest bandwidth demand. Next, a set is created by placing a backup node b1 on

link {v4,v7}, as shown in Figure 3.5(b). This implies that nodes v4 and v7 are now

protected by backup node b1. Since the sum of the adjacent links to v4 (excluding

link {v4,b1}) is smaller than the bandwidth on link {v4,b1}, 0 units of bandwidth

is required to protect node v4. When v4 fails, the bandwidth on the substrate

paths that are routing virtual links {v4,b1), (b1,v7}), {v4,v3}) and {v4,v5}) will be

released. Now, v4 will migrate to b1 and that latter needs to resume v4’s commu-

nication with v3, v5 and v7; b1 will thus reuse 8 units of released bandwidth on the

path connecting b1 to v7 to reach v7. Similarly, b1 will reuse 2 units of released

bandwidth on {v4,b1) and {v4,v3}) to reach v3, and 3 units on {v4,b1) and {v4,v7})

to reach v7.

Now to protect virtual nodes v7, we observe that the sum of its adjacent links is

12, which implies that 3 additional units of bandwidth must be reserved on link

{v7,b1} in order to protect node v7. This is because when v7 fails it migrates to b1,

that latter now needs to go through the path connecting b1 to v7 and then cross-

share the released bandwidth on the paths connecting v7 to v6, v8 and v9. Now,

given that only 8 units of bandwidth is released on {v7,b1}; hence, 3 additional

units must be reserved to fully protect v7.

Next, the set is grown by adding the adjacent leaf nodes of v4 and v7. The only

39

7

1
2

V1

V2
V3

8

3

V6

3

8

V4

V

8

5

4
6

V7

V8

V9

(a)

Initial Set 1

Backup 1
0

3

7

8

1
2

3

8

3

5

4
6

V1

V2

V4

V6

V7

V8

V9

V3

8

(b)

3

Set 1 Finished

Backup 1

3

7

8

1
2

3

8

3

5

4
6

V1

V2

V4

V6

V7

V8

V9

V3

8

(c)

Set 2 Finished

3

7

1
2

3

8

V1

V2

V4
V3

Set1
Set 1

7

38

3

5

4
6

V6

V7

V8

V9

8Backup 2

8

7

(d)

3

7

8

2

3

8

5

V1

V2

V4

V8

V3

8

Set1

Set 1

Set 2

Set 3 Finished

8 5

4

6V7

V8

V9

8

8

6

(e)

Figure 3.5: Step-by-Step SVN Redesign Algorithm.

leaf node found is v5 which will be added to the set, and subsequently incurs 3

additional units of bandwidth to be reserved on link {v4,b1}. Finally, the potential

of adding non-leaf nodes is explored. Indeed, we find that only node v3 can be

added to the set with no additional bandwidth, as shown in Figure 3.5(c). When

no additional nodes can be further added to the set, the set becomes saturated.

40

Subsequently, the CreateSet function returns set s1 with backup node b1 protect-

ing virtual nodes v3, v4, v5, and v7, which leaves 5 critical nodes in the given VN

uncovered. Hence, a new set is initiated starting with node v2, since it represents

the next uncovered node with the highest nodal degree. The same process repeats,

and returns set s2 with backup node b2 protecting virtual nodes v1, v2, and v6, as

shown in Figure 3.5(d). Finally, set s3 is created with backup node b3 covering

nodes v8 and v9, illustrated in Figure 3.5(e). Once all critical nodes are protected,

the algorithm terminates. At the end, we obtain 3 sets with 3 backup nodes pro-

tecting 9 critical nodes with only 12 units of reserved bandwidth.

It is important to note that if we were to employ the 1-redundant scheme, then

a single backup node b needs to connect to each virtual node; hence a total of

9 backup links are needed. This means that potentially 47 units (sum of all

bandwidth demand in the given VN) of bandwidth needs to be reserved to connect

b to the virtual nodes. Here, the actual amount of reserved backup bandwidth in

the substrate network depends on the quality of the adopted SVNE approach. It

can indeed be substantially reduced with a highly-efficient embedding approach

that exploits cross-sharing and back-sharing; or it can get aggravated if the backup

node was poorly placed far from the primary virtual nodes, requiring multiple hops

to reach them. Versus in the case of ProRed, placing the backup nodes along the

paths connecting the primary nodes guarantees the predicted cross-sharing that

the resultant SVN will enjoy once embedded onto the substrate network.

3.5 The SVN Embedding

Upon obtaining the redesigned VN, the next step is to embed this latter onto

the substrate network. Since the SVNE problem is NP-Hard, we adopt a disjoint

mapping approach, where we preform the node mapping first and then the link

mapping. For the node mapping, we use the VMP algorithm in [16] to find a

set of M feasible node mapping solutions. Note both the primary and backup

41

node placement is performed jointly. For the link mapping, we formulate an ILP

model that will select the lowest cost mapping solution m ∈ M , and determine

its corresponding link mapping solution. Given our prognostic redesign, our ILP

model assumes as input the backup resource sharing identified during the redesign

phase. Our link mapping model is thus formulated as follows:

• Parameters:

Gs(N,L) : substrate network with N nodes and L links.

Gv(V , E) : virtual network with V virtual nodes and E virtual links.

Ê : the set of backup virtual links ê ∈ Ê.

M : the set of all node mapping solutions m ∈ M .

S : the list of constructed sets s ∈ S.

δmn,n =





1, if v is mapped onto substrate node n in m,

0, otherwise.

σs
ê =





1, if backup link ê belongs to set s,

0, otherwise.

γê : the amount of bandwidth to be reserved on ê.

• Decision Variables:

xm =





1, if node mapping solution m is chosen,

0, otherwise.

y
e,m
i,j =





1, if e is mapped on substrate link (i, j) in m,

0, otherwise.

y
ê,m
i,j =





1, if ê is mapped on substrate link (i, j) in m,

0, otherwise.

ti,j : the primary traffic mapped on substrate link (i, j).

t̂i,j : the backup traffic reserved on substrate link (i, j).

42

• Mathematical Model:

Min
∑

(i,j)∈L

(ti,j + t̂i,j)

Subject to

∑

m∈M

xm = 1 (3.2)

y
e,m
i,j ≤ xm ∀e ∈ E,m ∈ M, (i, j) ∈ L. (3.3)

ti,j =
∑

m∈M

∑

e∈E

y
e,m
i,j de ∀(i, j) ∈ L. (3.4)

y
ê,m
i,j ≤ xm ∀ê ∈ Ê,m ∈ M, (i, j) ∈ L. (3.5)

t̂i,j ≥ [
∑

m∈M

∑

ê:σs
ê
=1

y
ê,m
i,j γê ∀s ∈ S] ∀(i, j) ∈ L. (3.6)

ti,j + t̂i,j ≤ dl ∀l : (i, j) ∈ L. (3.7)

xm, y
e,m
i,j , y

ê,m
i,j ∈ [0, 1] ∀m ∈ M, e ∈ E, ê ∈ Ê, (i, j) ∈ L. (3.8)

ti,j, t̂i,j ≥ 0 ∀(i, j) ∈ L. (3.9)

We aim at minimizing the overall bandwidth cost for the given SVN mapping

solution. This encourages the model to select a node mapping solution where the

nodes are not too widely spread. Hence, we set the model’s objective function to

minimize the sum of primary and backup traffic on the substrate links. Two flow

conservation constraints are needed to route the primary and backup virtual links.

The details of these constraints have been omitted due to space limitation. Con-

straint (3.2) forces the model to select a single node mapping solution. Constraint

(3.3) indicates that a primary link mapping solution will only be constructed for

43

the chosen node mapping solution. Constraint (3.4) measures the primary traffic

routed on every physical link in the substrate network. Constraint (3.5) indicates

that a backup link mapping solution will only be constructed for the chosen node

mapping solution. Constraint (3.6) measures the backup link traffic routed on

every physical link in the substrate network. Notice that for every given link, the

amount of backup bandwidth reserved is the max of the sum of backup bandwidth

provisioned within each given set. This is because our approach enables backup

sharing among the backup virtual links belonging to distinct sets, since these latter

will not be activated at the same time. Constraint (3.7) ensures that the sum of

the primary and backup bandwidth routed on each substrate link does not violate

its capacity.

3.6 Numerical Results

We evaluate the performance of Pro-Red against the 1-redundant and k-redundant

schemes for various metrics: Blocking Ratio, Average Cost, Revenue and Execu-

tion Time. We adopt two different substrate network topologies to conduct this

evaluation. The substrate networks used for our simulation are FatTree (K=4)

[25], in addition to a randomly generated network [58] R, with 36 nodes and 48

links. In both these substrate networks, we set the CPU capacity of each host

node to 48 units, and the bandwidth capacity on the substrate links is set to 750

units. We perform the redesign and mapping of VNs in an online fashion, upon

the arrival of each request. Hence, we assume that the VNs arrival and departure

follow a Poisson distribution. The VN requests are randomly generated, where

the size of each VN can range between 2 to 8 virtual nodes. Each virtual node

can be connected to any other virtual node in the VN request with a probability

of 50%. The CPU demand of the virtual nodes is set to be in the range [1:5], and

the bandwidth demand on the virtual links is in the range [10:50]. To conduct the

comparison with 1-redundant and k-redundant, we employ the same embedding

44

approach presented in section 3.5; however, we replace Constraint (3.6) with Con-

straint (10) that performs cross-sharing and backup-sharing [18]:

∑
m∈M

∑
ê:∈BG(v) y

ê,m
i,j de:{v,d(ê)} -

∑
m∈M

∑
e:∈WG(u) y

e,m
i,j dê ≤ ˆti,j ∀ (i, j) ∈ E, v

∈ V (10)

In all test cases, the results are averaged over 5 runs.

1. Blocking Ratio : The first metric we evaluate is the blocking ratio. We vary

the load of the poisson process between 4 to 16 and run Pro-Red, 1-redundant

and k-redundant over the same distribution and generated VN list. The results

are shown in Figure 3.6(a) and 3.6(b). We observe that for FatTree (K = 4),

Pro-Red achieves a lower blocking ratio over 1 and k-redundant. This gain is

mainly attributed to Pro-Red’s ability to explore the space between 1 and k.

Since FatTree connects each host node to the substrate network with a single

substrate link, this architecture puts 1-redundant at a great disadvantage, as

the backup node is forced to go through a single substrate link in order to reach

the neighbors of all the critical nodes in a given VN. Indeed, we observe that

Pro-Red achieves 51% lower blocking ratio over 1-redundant when the load

on the substrate network is equal to 8. Similarly, we observe that Pro-Red

achieves 40% lower blocking ratio over k-redundant when the load is equal to

6. Though k-redundant does not concentrate the backup bandwidth load on

a single substrate link, its redesign technique requires as many backup nodes

as the number of critical nodes in a VN request, which renders a substantial

amount of CPU and bandwidth demand to associate each backup node with

its corresponding primary virtual node. Whereas Pro-Red maintains a balance

between the number of allocated backup nodes and links, thus its blocking ratio

prevails over its peers. Given that the FatTree topology does not allow Pro-Red

to employ its prognostic redesign technique, we further compare these 3 redesign

techniques over a randomly generated topology to evaluate the advantage of

this property. We observe that Pro-Red achieves encouraging gain in terms

45

of decreasing the blocking ratio. We find that as we increase the load to 16,

1-redundant and k-redundant’s blocking ratio becomes at least 50%, while Pro-

Red’s blocking ratio remains below 20%. In this case, Pro-Red achieves a 60%

gain. The rich interconnection of the random network topology enables Pro-

Red from exercising its prognostic redesign technique, i.e. finding node mapping

solutions that are capable of placing the backup node in between its associated

primary virtual nodes. Hence, Pro-Red is capable of greatly decreasing the

incurred bandwidth cost for each VN, and subsequently increasing the network’s

admissibility.

2. Average Cost : For a given VN, the cost is measured using the objective

function of the SVN embedding model presented in Section 3.5, which repre-

sents the sum of the primary and backup bandwidth cost incurred by this VN

in the substrate network. For each of the aforementioned techniques, we aver-

age the cost of the admitted VNs as we vary the load. First, we compare the

average cost obtained by Pro-Red against 1 and k-redundant using FatTree.

Again, we observe that in addition to Pro-Red’s lower blocking ratio, it can

also achieve a lower average cost. This greatly motivates the inconvenience of

fixing the number of backup nodes to either 1 or k. Further, as we compare the

average cost over the randomly generated topology, we observe that Pro-Red’s

unique redesign technique enables it to greatly decrease the average cost over

the substrate network. While the gain over 1-redundant is between 8 and 17%;

however compared to k-redundant, Pro-Red achieves a constant gain of 30%.

Pro-Red’s prognostic redesign technique for backup resource sharing enables it

to achieve this gain, while 1-redundant and k-redundant falls short due to their

agnostic approach.

3. Revenue : Revenue is an important metric that highly complements the block-

ing ratio metric. A low blocking ratio does not necessarily implicate a high

revenue. This is because the concerned model may only be capable of admit-

ting small-size VNs with low CPU demands. When in fact, large size VNs

with substantial CPU requirements are more profitable to the cloud provider.

In this regard, we measure the revenue obtained using Pro-Red, versus the

46

1-redundant and k-redundant schemes. Given that the aim of the metric is

to evaluate each of the aforementioned techniques’s ability to admit large and

profitable VNs, we measure the revenue of each admitted VN in function of

its overall CPU demands and size using the following equation: Revenue =
∑

v∈V cv + πv —V—. We observe that for the FatTree network presented in

Figure 3.6(e), Pro-Red achieves encouraging results, with a 59% gain over 1-

redundant and 31% gain over k-redundant for a load of 12. Similarly, Figure

3.6(f) presents the obtained results over the random network. We observe that

as we increase the load, Pro-Red’s revenue gain increases. In fact, for a load

of 16, Pro-Red achieves 40% revenue gain over both 1 and k-redundant. This

gain is mainly attributed to ProRed’s unique redesign properties, which sig-

nificantly reduce the average cost, and hence leverage the efficient utilization

of the substrate network. Subsequently, ProRed is capable of admitting larger

and more profitable VNs in comparison with the 1 and k-redundant schemes.

4. Execution Time : Finally, we measure the runtime of embedding a single

SVN by varying its size between 2 to 8 virtual nodes, and we compare the

execution time of the 3 redesign techniques over the FatTree network (illustrated

in Figure 3.6(g)). We observe that the runtime of 1 and k redundant follows a

step increase as we vary the size of the SVN. This is due to its cross-sharing and

backup-sharing (Constraint 10) that measures the allocated bandwidth on each

substrate link for each primary virtual node during the embedding phase. The

size of this constraint grows more complex as the number of virtual nodes in

the SVN increases. However, our prognostic redesign technique alleviates this

load from the embedding algorithm, which is reflected in the linear execution

time achieved by Pro-Red. Pro-Red returns the sets of backup nodes and their

associated backup links, as well as the amount of required backup resources

to be reserved, while promoting backup resource sharing. Hence, all of these

information will serve as an input to the model, rather than being explored at

the embedding phase. This alleviated load is reflected in the runtime gain that

Pro-Red achieves.

47

3.7 Conclusion

In this Chapter, we presented Pro-Red a novel prognostic redesign technique for

survivable virtual networks against single facility node failures. Pro-Red swerves

from the dogmatic redesign techniques that fix the number of backup nodes to

either 1 or k. Further it is equipped with a unique property that enables it to

design SVNs that can highly promote backup resource sharing once embedded

in the substrate network. This property lays in positioning of the backup nodes

in the SVN such that backup-sharing and cross-sharing can be fully exploited.

We compared Pro-Red against 1-redundant and k-redundant schemes, and we

show that it achieves significant gains in terms of decreasing the blocking ratio,

achieving lower average cost and substantially higher revenue, in considerably

lower execution times.

48

4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Load

B
lo

c
k
in

g
 R

a
ti
o

ProRed
1-Redundant
K-Redundant

(a) Blocking Ratio - R

4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Load

B
lo

c
k
in

g
 R

a
ti
o

ProRed
1-Redundant
K-Redundant

(b) Blocking Ratio - FatTree

4 6 8 10 12 14 16
300

350

400

450

500

550

600

650

700

Load

A
v
e
ra

g
e
 C

o
s
t

ProRed
1-Redundant
K-Redundant

(c) Average Cost - R

4 6 8 10 12 14 16
900

950

1000

1050

1100

1150

1200

1250

1300

Load

A
v
e
ra

g
e
 C

o
s
t

ProRed
1-Redundant
K-Redundant

(d) Average Cost - FatTree

(e) Revenue - FatTree

(f) Revenue- R

2 3 4 5 6 7 8
0

1

2

3

4

5

6

7
x 10

4

Virtual Nodes

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

ProRed
1-Redundant
K-Redundant

(g) Execution Time - FatTree

Figure 3.6: Comparison between Pro-Red, 1-Redundant and K-Redundant
Scheme.
49

Chapter 4

Post-Failure Restoration for

Multicast Services in Data Center

Networks

4.1 Introduction

Most of the existing work on either the VNE or the SVNE does not characterize

the mode of communication among virtual machines belonging to the virtualized

service. In fact, characterizing the mode of communications in the VNs will ben-

efit the optimization of VN embedding. There are different types of VN requests

depending on the type of applications running on. Namely, One-to-one Commu-

nication VN(unicast), One-to-many Communication VN(multicast) and all-to-all

Communication VN(broadcast). VNs in different categories have different ways of

transmitting data. For instance, in a unicast VN, the a sender only sends files to a

signle receiver; whereas in multicast VN, a sender distributes the same copy of file

to a group of receiver[59]. Hence, in unicast VNs, each communication must be

delicated a set of physical paths with sufficient bandwidth capacity; however, the

routing of communications in multicast VNs may share bandwidth, as all receiver

will obtain the exact same file from the sender.

50

Therefore, embedding a multicast VN using a unicast VN mapping algorithm

will not encourage the bandwidth sharing in MVN(Multicast Virtual Network)

communications, thus not cost-efficient. Moreover, different types of VNs may

have specific requirements other than just physical resource capacity. For example,

MVNs that are running online gaming platform require the same data sent by

source node, to be delivered to all terminals within a sepcific delay range, and the

delay variation of all terminals must respect a pre-defined threshold.

The rest of this Chapter is organized as follows: Section 4.2 is dedicated for

formally defining the MVN restoration problem and studying the impact of failure

on embedded MVNs in data center networks. In Section 4.3, we propose a path-

convergence for restoring source node failure. Section 4.4 presents our hop-to-hop

algorithm to restore a MVN against any terminal node failure. Section 4.5 is

dedicated for the numerical evaluation. We conclude this Chapter in Section 4.6.

4.2 Network Model and Problem Description

4.2.1 Network Model

In this section, we formally define the MVN Restoration problem by describing

the network environment and the various components involved. Next, we study

the impact of failure on this service class.

(1)

s

t1

t2

(3)
2

2

(1)

(a) MVN

A B

C D

(30) (40)

(20)(10)

10

1010 10

(b) Substrate

A B

C D

(30) (40)

(20)(10)

10

1010 10

s

t1

t2

(c) MVNE

Figure 4.1: Network Model

51

1. The Substrate Network: We represent the substrate network as an undi-

rected graph, denoted by Gs = (N ,E), where N is the set of substrate nodes,

and E is the set of substrate links. Each substrate node n ∈ N is associated

with a finite computing capacity, denoted by cn. Similarly, each substrate link

e ∈ E has a finite bandwidth capacity, denoted by be. Figure 4.1(b) illustrates

a substrate network with 4 substrate nodes and links. The resource capacity of

the substrate nodes and links is represented by the number next to each node

or link, respectively.

2. The MVN Request: A MVN represents a client’s request to deploy an ap-

plication with a one-to-many communication mode in a cloud data center. It

consists of a single source node s, and a set of terminal nodes T . The source

node is connected to all terminal nodes via virtual links. The set of all virtual

links is denoted by E ′. Every virtual link e′ ∈ E ′ requires a specific amount

of bandwidth, denoted by b′. For the sake of simplicity, we assume that the

bandwidth demand between the source and each terminal node is the same. In

addition, each virtual node is usually associated with computation demands,

denoted by dv. We note that one of the most important properties for multicast

VNs is delay; particularly for applications that involve real-time communica-

tion. Here, it is important that the source node reaches all terminals within

an acceptable delay, denoted by γ. Moreover, the delay variation between all

terminal nodes in a given VN must also respect a given threshold δ, in order

to ensure correctness and synchronization among all terminal nodes. Without

the delay-variation constraint, some terminal nodes might fall behind in the

multicast session, which can potentially degrade the QoS of the hosted appli-

cation. For instance, consider the case of a distributed database system that is

constantly updated with new information. A large delay-variation between the

terminal nodes that host the databases, will lead to unfairness, inconsistencies

and possibly lead to incorrect computations [60]. A multicast VN is thus de-

noted by Gv = (s, T , b′, γ, δ).

We define the transmission delay between the source and a terminal node t ∈

52

T to be the sum of the delays experienced at every edge (e.g. queueing delay,

propagation delay, transmission delay, and processing delay) along the path

from the host of the source to that of the terminal t. Hence, if we denote the

delay at edge e ∈ E as d̂e, then the delay between the source s and a terminal t is

equal to
∑

e∈P(s,t)
d̂e ; where P(s,t) represents the physical path between the host

of s and t respectively. The transmission delays of the edges in the substrate

network can be measured using SDN with OpenFlow network monitoring sys-

tems (e.g. OpenNetMon [61]). However, for simplicity, we assume throughout

this Chapter that the transmission delay is uniform across all substrate links,

and hence it reduces to the count of hops along the path between the source

and any terminal node.

Figure 4.1(a) represents a multicast VN with two terminal nodes, t1 and t2. The

resource demands of each virtual node is denoted by the number in parenthesis

on each node; and that of the substrate links by the digits placed on each link.

We assume that the end-delay requirement of this VN is set to 2 hops, while

the differential delay requirement is set to 0.

3. A Multicast VNE (MVNE) Solution A MVNE solution indicates the map-

ping of a VN request onto the substrate network that respects the the virtual

nodes and links’s resource demands, and satisfies the QoS requirements, mainly

end-delay and differential-delay constraints. The MVNE problem can be log-

ically divided into two subproblems: Virtual Node Mapping (VNM) (source

and terminal nodes), and Virtual Link Mapping (VLM). That latter consists

of a multicast tree m rooted at the source of the VN request and spans all the

terminal nodes. Figure 4.1(c) illustrates a MVNE solution of the given MVN

over the 4-nodes substrate network.

Given a cost function φm, finding the optimal MVNE for a given MVN can be

formulated as follows:

Min
∑

m∈M

φm

53

Subject To

m ∈ M (4.1)

Here, φm is a function of substrate link utilization, and m represents a feasible

mapping m = (mN ,mE) ∈ M of the VN request. Note that a mapping m holds

the solution for the two subproblems:

(1) Virtual Node Mapping (VNM): mN : (s, T) −→ N

(2) Virtual Link Mapping (VLM): mE: E ′ −→ P ; P represents the set of paths

that form the multicast tree.

In [62], the problem of embedding MVN is investigated in data center networks.

Due to its NP-Hard nature (as shown in ??), the authors proposed a novel 3-

Step approach for solving this mapping problem[62]. Throughout this Chapter,

we assume that the MVNE solutions are given (using our 3-Step Embedding tech-

nique), and our work is mainly focused on understanding the impact of failure on

this service class, and proposing a tailored restoration technique that can mitigate

against any network component failure.

4.2.2 Understanding the impact of failure on MVNs

To understand the impact of failures on MVNs, we look at how a failure affects

each component of a multicast service; that is source node, terminals nodes and

the links that compose the distribution tree. As we have previously mentioned,

failures in data center networks can either affect a substrate facility node, a sub-

strate link, or a network node. In this Chapter, we only consider the case of a

facility node or a substrate link failure. Here, it is important to note that when a

facility node fails, only the affected node(s) will be disconnected from the substrate

network. However, its adjacent network node (router/switch) and substrate links

will remain active and capable of routing traffic. One way to protect a multicast

VN against a facility node failure is by augmenting the latter with backup nodes,

and then embed the resultant graph onto the substrate network while provisioning

54

s t1

t2

E

A B

C D

(50)

(50) (50)

(50)(0)

10
10

10

10

1010 10

(a) Terminal Node Failure

s

t1

t2

E

A B

C D

(50)

(50) (50)

(50)(0)

10
10

10

10

1010 10

(b) Post-Failure Restoration

s

t1

t2

E

A B

C D

(50)

(50) (50)

(50)(0)

10
10

10

10

1010 10

(c) Tree Link Failure

s

t1

t2

E

A B

C D

(50)

(50) (50)

(50)(0)

10
10

10

10

1010 10

(d) Tree Maintenance

Figure 4.2: Impact of a Substrate Node or Physical Link Failure

enough backup resources. As for the failure of substrate links, this can be miti-

gated by constructing an edge-disjoint backup tree. Such a scheme is commonly

known as proactive protection, since the backup nodes and links are instated prior

to any failure. While this offers a certain degree of reliability, it is also fairly costly

since the provisioned resources for these backup nodes and links remain idle until

failures occur. An alternative approach could be to restore the affected resource(s)

upon failures. Such a ”reactive approach” is more cost-efficient as it eliminates idle

resources in the network, but it may fail to find backups for the failed resource(s)

due to scarcity in the network at the moment when the failure occurred.

When a failure affects a substrate node hosting a terminal VM, the restoration

scheme necessitates finding a backup that can host the failed VM with sufficient

resources. In addition, when the failed terminal belongs to a delay-sensitive MVN,

the path used to connect the backup to the rest of the multicast tree must also

maintain the MVN’s QoS requirements; that is it must be within the end-delay

constraint, and satisfies the differential-delay with the remaining working termi-

nals. Figure 4.2(a) illustrates the case of a terminal node failure. Here, the failure

55

of substrate node C brought down terminal t1 of the 2-terminals MVN illustrated

in Figure 4.1(a). Given the substrate network’s capacity, E is the only substrate

node that has enough resources to host t1. Now to connect t1’s new host to the rest

of the MVN, the path used to reach E must be within the end-delay constraint

of 2, and satisfies the differential delay to the rest of the working terminals; the

working terminal in this case is t1. Hence, we need to connect E to the remaining

working tree with exactly 2 hops given the differential-delay constraint of 0 for the

MVN in question. Subsequently, the only feasible restoration solution in this case

is to connect E to the multicast tree via the substrate path {A-B-E}, as illustrated

in Figure 4.2(b). On the other hand, when a failure affects a substrate node host-

ing the source of a MVN, it mandates a look-up for a backup node that can host

the failed source, as well as a multicast tree reconstruction that spans all existing

terminals and respects the QoS requirements. Finally, in the event of a substrate

link failure, this latter will detach an entire subtree, thereby disconnecting one or

many terminal nodes connected via this subtree to the multicast source. Figure

4.2(c) illustrates the case where substrate link {A − B} fails, thereby detaching

the subtree rooted at B, disconnecting terminals t1 and t2.

When restoring a MVN, it is not solely sufficient to find the backup node that

maintains the service’s QoS, but it is also important to consider the cost of the

resultant tree. It is in the network provider’s best interest to minimize the embed-

ding cost of the hosted services in the aim of maximizing both his/her revenue,

as well as the network’s admissibility. For instance, after restoring terminal t1

post-failure of its original host B, the resultant tree shown in Figure 4.2(b) is

more costly than the pre-failure multicast tree of the given MVN. An alternative

solution (illustrated in Figure 4.2(d)) could be to re-route the traffic to t2 via

substrate path {A − B −D}, thereby maintaining the MVN’s QoS requirements

while achieving a lowest-cost tree. In the light of the above, we can conclude a

key observation: Multicast VN restoration demands both a service repair to re-

store the failed element, as well as a multicast tree maintenance to reconstruct the

lowest-cost tree that maintains the requested QoS.

56

4.2.3 The MVN Restoration Problem

4.2.3.1 Problem Formulation

In this section, we mathematically formulate the MVN Restoration Problem.

Given the initial MVN embedding solution and the failed node, we attempt to

find a new server for the failed node and re-connect the multicast tree with lowest

cost. Our proposed MVN restoration model achieves the following two objectives:

• MVN Repair : which consists of restoring the failed service component,

be it failure of the source node or any terminal node in the multicast tree.

• Tree Maintenance : which ensures that the MVN repair does not violate

the requested QoS, and yields a lowest-cost tree.

Our model assumes as input a substrate network, and a set of MVNE solutions

for the hosted multicast services. When a failure occurs, the restoration model is

invoked for each affected MVN in the aim to repair the affected service components,

and restore a low-cost delay-bounded multicast tree. Hence, our objective function

is presented in Equation 4.2.

Minimize
∑

(i,j)∈E

t′i,j (4.2)

Here, t′i,j represents the set of substrate links that composes the restored multicast

tree. First we begin by repairing the failed terminal node using Equation 4.3.

∑

n′∈N ′

yvñ,n′ = 1 ∀v ∈ T, ñ ∈ Ñ (4.3)

Ñ represents the set of failed substrate nodes, N ′ = N − Ñ represents the set of

active substrate nodes, and yvñ,n′ is a variable that denotes the relocation of failed

57

terminals. yvñ,n′ is a boolean variable that indicates whether terminal node v that

was hosted on a failed substrate node ñ ∈ Ñ has relocated to an active substrate

node n′ ∈ N ′. This constraint is used to ensure the embedding of the failed source

node or failed terminal node(s).

x0
v,n is a boolean input that denotes the pre-failure node mapping solution of the

affected MVN. We identify the set of post-failure active virtual nodes by those

who were embedded on an unaffected substrate node n ∈ N ′. Subsequently, a

new node mapping solution will be obtained that we represent with the following

decision variable x1
v,n′ .

New Node Mapping Solution :

x1
v,n′ = yvn,n′ + x0

v,n′ .(1−mv) ∀v ∈ {s, T}, n ∈ N, n′ ∈ N ′ (4.4)

∑

n′∈N ′

x1
v,n′ = 1 ∀v ∈ {s, T} (4.5)

∑

v∈{s,T}

x1
v,n′ ≤ 1 ∀n′ ∈ N ′ (4.6)

Equation 4.4 is used to indicate the new node mapping solution. Note how yvn,n′

loops over all n ∈ N in order to fetch the new node mapping solution for failed

virtual nodes, whereas maintaining the initial embedding solution (in the case of

no migration) is restricted to the virtual nodes hosted on active substrate nodes.

Further, observe that the new node mapping solution ensures that every virtual

node in a particular MVN request is mapped on a distinct substrate node in order

to reduce the impact of failures via Equations 4.5 and 4.6. Further, it is imperative

to ensure that the new node mapping solution respects the substrate network’s

capacity constraints. Hence, we develop the following substrate nodes capacity

constraints.

58

Substrate Nodes Capacity Constraints :

c′n = cn + (
∑

v∈{s,T}

∑

n′∈N ′

yvn,n′ .dv) ∀n ∈ N ′ (4.7)

∑

v∈{s,T}

x1
v,n.dv ≤ c′n ∀n ∈ N ′ (4.8)

Here, it is important to release the resources provisioned for a particular virtual

node in case this latter has migrated, as presented in Equation 4.7. To comple-

ment the node mapping solution, a link mapping solution must be constructed to

route the traffic between the relocated terminals and the multicast source.

Multicast Tree Reconstruction :

∑

j:(i,j)∈E

qvi,j −
∑

j:(j,i)∈E

qvj,i = x1
v,i − x1

s,i ∀i ∈ N ′, v ∈ T (4.9)

∑

i∈S

∑

j∈S

∑

v∈T

q′vi,j ≤ |S| − 1 ∀S ⊂ N ′, 2 ≤ |S| ≤ N ′ (4.10)

Equations 4.9 represents the flow conservation constraint to reconstruct the mul-

ticast tree, whereas constraint 4.10 ensures that the constructed tree is cycle-

free (subtour elimination constraint). Next comes the multicast tree maintenance

constraint to guarantee that the newly constructed multicast tree satisfies the

end-delay constraint via Equation 4.11, as well as the delay-variation constraint

represented in Equations 4.11-4.14, where θmin and θmax represent the minimum

and maximum delay experienced in the constructed multicast tree, respectively.

Multicast Tree Maintenance

∑

(i,j)∈E

q′vi,j ≤ γ ∀v ∈ {T} (4.11)

59

∑

(i,j)∈E

q′vi,j ≥ θmin ∀v ∈ {T} (4.12)

∑

(i,j)∈E

q′vi,j ≤ θmax ∀v ∈ {T} (4.13)

θmax − θmin ≤ δ ∀v ∈ {T} (4.14)

Finally, the newly constructed tree must also respect the substrate link’s capacity

constraints as presented below. Note if two terminals share the same substrate

link (i, j) towards the source, the bandwidth requested for the given MVN is provi-

sioned once over (i, j) since intermediate nodes in multicast trees copy-and-forward

the traffic towards the leafs.

Substrate Link Capacity Constraints

zi,j ≥ q′vi,j ∀v ∈ T, (i, j) ∈ E (4.15)

zi,jb
′ − ti,j ≤ t′i,j ∀(i, j) ∈ E (4.16)

t′(i,j) ≤ be ∀e : (i, j) ∈ E (4.17)

4.2.3.2 Complexity Analysis

Given a substrate network G = (N,E) and a set of hosted MVNs denoted by M ,

the MVN Restoration problem can be formally defined as follows:

60

Problem Definition 3. When a failure affects any MVN m ∈ M , find an optimal

restoration solution for m that maintains the MVN’s end-to-end delay γ and delay-

variation constraint δ with the remaining working terminals, while achieving the

lowest-cost multicast tree.

The MVN Restoration problem is NP-Hard, since when failure occurs, the problem

becomes that of finding a Delay- and Delay-Variation Bounded Multicast Tree

(DVBMT)[63]. In the case of a source or a terminal node failure, the goal of

the DVBMT is to find the delay-constrained lowest cost tree that reconnects the

new backup node and the rest of the MVN service components (active virtual

nodes). Given the NP-Complete nature of this problem, in the next section we

propose two alternative techniques for restoring MVNs against single facility node

failure. Here, we separate the failure of terminal node from that of a source node,

since a terminal node failure only requires reconnecting the backup of the failed

terminal to the rest of the multicast tree, whereas a source node failure entails

reconstructing the entire multicast tree from the newly found source. The details

of the proposed algorithms are elucidated in the following sections. We leave for

future work the quest to mitigate against substrate links failure.

4.3 Path-Convergence Method for finding a backup

source

In this section, we propose an alternative approach for finding a backup node

upon the failure of the primary source. Our suggested approach consists of a

receiver-driven path-convergence lookup. The search begins from each terminal

node onwards; where at iteration k, all nodes at k hops from any terminal are

explored. The search persists until all the terminals converge to a single node that

satisfies the source’s resource demands, or until the maximum number of hops is

reached, which is equal to the end-delay threshold γ.

61

Algorithm 3 FindBackupSource Algorithm(Gs,Gv,M)

1: Step 1: Explores k hop neighbors
2: k = 1; /*Initialize hop count to 1*/
3: C = {}; /* Initialize candidate solutions list*/
4: for (t ∈ T) do
5: St = t;
6: end for
7: while ((C 6= ∅) —— (k ≤ γ)) do
8: for each (t ∈ T) do
9: S ′ = exploreAllNeighbors(St);

10: for each (w ∈ S ′) do
11: if (!hasSufficientBW(P(t,w))) then
12: S ′.remove(w);
13: else
14: if (isCandidateNode(w)) then
15: Ct = Ct ∪ w

16: end if
17: end if
18: end for
19: St = S ′;
20: end for
21: C = ∩k

k−δCt;
22: k++;
23: end while
24: Return getLowestCostSolution(C);

The procedural details of the proposed method are illustrated in Algorithm 3. It

begins by initializing the hop count k to 1 and creating |T | lookup sets to store

the new nodes explored by each terminal t ∈ T . At the beginning, each set will

contain one distinct terminal node, since the search will begin from each terminal

node until they all converge to a single feasible substrate node. Next, while k is

less than the end-delay threshold δ, each terminal t will explore all neighbors at k

hops from t’s host. The substrate path used to reach any neighbor w is validated

against the bandwidth demand of the MVN. If the path’s capacity is below the

requested bandwidth, then the node will not be aggregated to the corresponding

lookup set as it will yield an infeasible link embedding solution. Similarly, a vali-

dation process is initiated at each newly-explored neighbor w to ensure that this

latter satisfies the resource demands of the source. If valid, then w will be added

to the candidate solutions set Ct explored by the corresponding terminal t. Once

62

all terminals are done exploring their neighbors at the kth hop, the set of all nodes

found between [k-δ,k] hops by each terminal are compared to find a single common

nodes. The aforementioned range guarantees that the set of paths used to reach

the backup source satisfies both end-delay and differential-delay constraints. If

multiple common nodes where found, the algorithm returns the one that yields

the lowest cost tree. The complexity of our proposed approach is O(γ.|T |.|N |).

4.4 Hop-to-Hop Terminal Finding Algorithm

In the event of a terminal node failure, a hop-to-hop terminal finding algorithm

is triggered from the source and a set of ”assisting” terminal nodes. Assisting

terminals are those that can contribute to the backup terminal lookup. Not all

terminal nodes can contribute to the search, particularly those that lie on the

bounds of a tree with a height equivalent to the end-delay threshold. Since in

this case any neighboring node will violate the end-delay constraint. The need for

foragers is to be able to find a backup for the failed terminal and connect it to

the rest of the multicast group while reusing most of the existing tree. However,

in the case of delay-sensitive applications, assisting terminals alone might fail to

find a backup; hence the need to include the source node in the backup terminal

search.

The terminal backup finding algorithm begins by finding the acceptable range

R; R being the minimum and maximum acceptable delay of the path connecting

the backup terminal to the rest of the working tree. This latter will be used to

determine the ”assisting terminals” set, as well as terminate the search on any path

that exceeds R’s upper bound. Algorithm 4 illustrates the procedure to compute

the acceptable range. Given θmin and θmax as the minimum and maximum delay

in the remaining working tree, the newly found path that will connect the backup

to the multicast group must remain in the range between θmin and θmax in order

to not violate the end-delay and differential-delay constraints of the overall tree.

However, it could be that the working tree does not exhaust the delay thresholds,

63

hence if θmax is less than the differential-delay constraint δ, then the path to the

terminal backup must not exceed (θmin + δ), unless its value is larger than the

end-delay constraint γ, then R’s upper bound becomes γ. Whereas in the case

where θmax is greater than the δ, then R = [θmax − δ,θmax + δ)]; unless the upper

bound violates γ, then R’s upper bound would be restricted to the value of γ.

Algorithm 4 GetAcceptableRange(Gv,M ,T̂)

1: let R denote the acceptable range
2: let θmin and θmax denote the min and max end-delay in the remaining working

tree
3: if (δ ≥ θmax) then
4: R.setLowerBound(1);
5: if (θmin + δ ≥ γ) then
6: R.setUpperBound(γ);
7: else
8: R.setUpperBound(θmin + δ);
9: end if
10: end if
11: if (δ ¡ θmax) then
12: R.setLowerBound(θmax − δ);
13: if ((θmax + δ) ≥ γ) then
14: R.setUpperBound(γ);
15: else
16: R.setUpperBound(θmax + δ);
17: end if
18: end if
19: Return R;

Algorithm 5 illustrates the Hop-to-Hop backup terminal finding algorithm. It be-

gins by initializing the weight on the substrate links to 0 in case they belong to the

multicast tree, and 1 otherwise. This weight distribution encourages the selection

of a terminal backup path that reuses the current multicast tree, hence renders a

low cost tree. Now given R, the set of assisting terminal nodes is identified as any

terminal node whose path to its immediate neighbors does not violate R’s upper

bound; in addition of course to the source node. Next, a candidate solutions set C

is initialized, where each time an assisting node finds a candidate substrate node

within the acceptable range R, it computes the cost of the path followed to reach

this node; which is the sum of the weights on the substrate links used. Then, the

node is stored with its appropriate cost in C. Note that if this latter has already

64

Algorithm 5 FindTerminalBackup Algorithm(Gs,Gv,M ,T̂)

1: R = GetAcceptableRange(Gv,M ,T̂);
2: k = 1;
3: Step 1: Initialize weight on substrate link
4: for each (e ∈ E) do
5: if (e ⊂ ME) then
6: e.weight = 0;
7: else
8: e.weight = 1;
9: end if
10: end for
11: Step 2: Identify the set of assisting terminal nodes
12: Ss = {};
13: Q = s;
14: for each (t ∈ T) do
15: if (—Ps,t— + 1 ≤ R.upperBound()) then
16: St = t;
17: Q = Q ∪ t;
18: end if
19: end for
20: Step 3: Begin Hop-to-Hop look-up
21: while ((C 6= ∅) —— (k ≤ R.upperBound())) do
22: for (each v ∈ Q) do
23: S ′ = exploreAllNeighbors(Sv);
24: for each (w ∈ S ′) do
25: if (—P(v,w)— ⊂ R) then
26: w.cost =

∑
e∈P(v,w)

e.weight;

27: Cv = Cv ∪ w;
28: end if
29: end for
30: Sv = S ′;
31: end for
32: C = ∪

|Q|
v=1Cv;

33: k++;
34: end while
35: Return getLowestCostSolution(C);

65

been found, and the computed cost is lower than the one stored in C, then the

corresponding node’s cost is simply updated. The Hop-to-Hop lookup consists of

having each assisting terminal node explore its immediate neighbors iteratively

until a solution is found. When all foragers are done looking at all their neighbors

at the kth hop, the set C is checked to see if any solution is found at hop k. If

more than one solution is found, the algorithm returns the one with the lowest

cost. The hop-to-hop lookup terminates when a solution is found, or until all the

lookup paths have exceeded R’s upper bound. If we denote R’s upper bound by

K, then the complexity of our proposed algorithm is O(K.|T |.|N |).

4.5 Numerical Results

We evaluate the performance of our algorithms against the model for various met-

rics: Blocking Ratio, Restoration Ratio, Total Revenue and Execution Time. We

adopt two different substrate network topologies to conduct this evaluation. The

substrate networks used for our simulation are FatTree (K=4) [25], as it is a com-

monly deployed datacenter network. We set the CPU capacity of each host node

to 64 units, and the bandwidth capacity on the substrate links is set to 5000 units.

We perform the mapping of MVNs using the same approach as in [59] in an online

fashion, upon the arrival of each request. Hence, we assume that the VNs ar-

rival and departure follow a Poisson distribution. The VN requests are randomly

generated, where the size of each VN can range between 2 to 12 terminal nodes.

The CPU demand of the virtual nodes is set to be in the range [1:8], and the

bandwidth demand on the virtual links is in the range [10:100]. To conduct the

simulation of failures, we let one substrate node to fail periodically, and recovery

before next failure takes place. If the failed substrate node has VMs running on it,

those VMs will be disconnected from their MVNs. To restore those failed MVNs,

our algorithms and model are called after each failure. A comparison is presented

in this section using metrics like Blocking Ratio, Restoration Ratio, Total Rev-

enue and Execution Time. All results we collected are averaged over multiple runs.

66

Blocking Ratio: Blocking Ratio measures the number of failed MVN embedding

attempt over a total of 50 incoming MVN requests. In this Chapter, although both

Algorithms and model use the same embedding method initially, the restoration

process would yeild different re-mapping solutions after failures, thus resulting dif-

ferent re-embedding cost. This metric is used to test the ability to achieve low-cost

tree after failures. As shown in Figure 4.3(a), the overall trend of blocking ratio

is raising as the Poisson Load increases. Clearly our algorithms almost achieved

the same results as the model. This is due to the algorithms’ ability to reuse the

old links and explore sharing, hence, most of the time it is able to achieve optimal

or suboptimal solution. At Load 4, 8 and 10, it is estimated that our algorithms

have 5% higher blocking rate, this is because algorithms were not able to find the

lowest cost solutions in some failure cases, consquently, the available rsources were

tight compared to them of our model. Hence when new MVN requests came, some

were rejected due to the lack of resources.

Restoration Ratio: We measure the percetage of successful recovery after fail-

ures using Restoration Ratio. As we obesrve, the number of failure in one run

is usually between 50 120. At load 4 and 6, both Algorithm and model could

restore 100% of the failed MVNs. However, as load increases, we can observe the

restoration ratios for both Algorithm and model are decreasing. That’s because

the amount of available resources is limitted when the load is high. Overall, our

Algorithm is able to obtain the same level(above 98.5 %) of restoration ratio as

the model.

Execution Time: As both methods we proposed are reactive approaches, the

execution time is a crucial metric to show how fast a method can restore a failure.

If the execution of a method is too high, the disconnection time of MVN becomes

significant and put SLA at risk. In Figure 4.3(c), we can observe a dramatic

performance difference between our algorithms and model; the execution time of

algoritms ranges from 3 ms to 10 ms, whereas the model normally takes 420 ms

to 470 ms for one run, which is at most 140 times slower than the algrithms. This

67

is due to the efficient searching techniques of our algorihms.

Total Revenue: In this Chapter, we also measure the total revenue to show ben-

efit they gain for the InP. We assume the revenue of one MVN depends on its total

resource requirement. The revenue of a MVN can be gained only if this MVN is

successfully embedded. However, if the failure of a MVN can’t be restored, 25% of

its revenue will be sustracted as a penalty. Figure 4.3(d) shows the total revenue

of both algorithms and model. At load 4, model was able to obtain approximately

8% higher total revenue as it has less blocking than algorithms. For the rest of the

loads, Algorithms and model achieves close results. Hence, overall, we conclude

that the Algorithms not only is able to achieve close performance as the model in

terms of the revenue gain, but it is much more efficient in terms of execution.

4.6 Conclusion

In this Chapter, Multicast Network in data centers is discussed and the failure

scenarios are analysed. The Survivablility of Multicast Virtual Network problem

is then investigated and formally defined. To address this problem, we presented

a mathametical model, which can be used to find recovery solutions in case any

node failures in a reactive manner. In addition, two alternative techniques, namely

”Path-Covergence source node finding” and ”Hop-to-Hop terminal finding”, are

introduced to solve the source node failure and terminals failure respectively. We

compared our model with algorithms, the results show that our Algorithms are

able to run much more efficient while maintaning close performance.

68

4 6 8 10 12 14 16
11

12

13

14

15

16

17

Load
B

lo
c
k
in

g
 R

a
ti
o

Tree Maintenance Algorithms

Tree Maintenance Model

(a) Blocking Ratio

4 6 8 10 12 14 16
97

97.5

98

98.5

99

99.5

100

Load

R
e

s
to

ra
ti
o

n
 R

a
ti
o

 i
n

 (
%

)

Tree Maintenance Algorithms

Tree Maintenance Model

(b) Restoration Ratio

4 6 8 10 12 14 16
0

100

200

300

400

500

600

700

Load

E
x
e

c
u

ti
o

n
 T

im
e

(m
s
)

Tree Maintenance Algorithms

Tree Maintenance Model

(c) Execution Time in (ms)

4 6 8 10 12 14 16
750

800

850

900

950

1000

1050

1100

1150

1200

1250

1300

Load

T
o
ta

l
R

e
v
e

n
u

e

Tree Maintenance Algorithm

Tree Maintenance Model

(d) Total Revenue

Figure 4.3: Muticast VN Maintenance Approaches Comparision Test Results

69

Chapter 5

Conclusion and Future Work

5.1 Conclusion

This dissertation has explored several aspects of the survivalbility of virtual net-

work in cloud data center. Two main issues, namely the survivable VN redesign

and embedding problem, and multicast VN maintenance problem, are addressed

in Chapter 3 and Chapter 4 respectively.

In Chapter 3, the optimization problem of the survivable virtual network redesign

and embedding problem is dicussed and formally defined. The weakness of current

survivable design schemes and resource sharing techniques are illustrated via some

illustrative examples. To overcome this drawback, our prognostic VN redesign al-

gorithm is developed, along with its theoretical foundations. With the introduced

SVN embedding model in this Chapter, we compared our algorithm with the

1-Redundant and the K-Redundant schemes, and results show our algorithm out-

perform current redesign solutions inn terms of cost, addmission, execution time

and revenue.

In Chapter 4, Multicast Network in data centers is discussed and the failure sce-

narios are analysed. The Survivability of Multicast Virtual Network problem is

then investigated and formally defined. To address this problem, we presented a

70

mathematical model, which can be deployed to reactively find recovery solutions in

case of both source node failure or termial node failure. In addition, two alterna-

tive techniques, namely “Path-Covergence source node finding” and “Hop-to-Hop

terminal finding”, are introduced to solve the source node failure and terminals

failure respectively. We compared our model with our Algorithms, the results

show that our Algorithms are able to run much more efficient while maintaning

close performance.

5.2 Contributions

The contributions of this thesis are summarized as follows:

• Develped a Survivable Virtual Network Redesign Algorithm that determines

the survivable design of a VN considering sharing techniques.

• Presented a Survivable Virtual Network embedding model that optimizes

the embedding solution of a given SVN and a node mapping solution.

• Compared our redesign algorithm against the existing redesign schemes,

1-Redundant and K-Redundant. The results show our method is able to

achieve higher admission and revenue; meantime keeps the embedding cost

and execution time in a lower level.

• Introduced a mathmetical model to reactively maintain a multicast VN tree

in cloud data centers.

• Developed two novel algorithms as an alternative approach to do multicast

tree maintenance. Through the test results, our algorithms have proven to

have much less execution time but close performance compared to the model.

71

5.3 Future Work

In our future study of survivability of VN, it would be interesting to cover fail-

ure of elements into our problem for the future work. Thus far, research on

VN/SVN embedding are either seen virtual nodes as VMs, which have compu-

tation and storage resource demands, or consider the virtual topology as “Virtual

Data Center(VDC)”, which consist of VMs and network elements. To the best of

our knowledge, both assumptions share the same principle and can be protected

from failures using the same method. In “Virtual Data Center(VDC)”, VMs and

network elements are differentiated and embedded on physical servers. Similarly,

in conventional VN, even though there are only VMs, but though NFV (Network

Functions Virtualization), network elements can be virtualized on top of VMs.

With that being said, the separation of network elements and facility elements

provides InPs a better view of resources demand variation, and to achieve better

optimization of VNE. Therefore, for our future work, we would like to consider

the survivable redesign and embedding of “Virtual Data Center(VDC)”.

Regarding the work of multicast VN maintenance, we figured the drawback of

our approach, is that we can not gaurantee the restoration for all failure cases,

especially when the capacity state of the network elements is limited. In fact,

this is also a common weakness of the reactive restoration. Hence, in our future

work, we aim at finding a technique that would improve the chance of successful

restoration. As we investigated on the unsuccessful restoration cases, we found

that by enabling the migration of one or more working terminal node(s), the

multicast tree can be recovered. The following example is used to demonstrates

our statement:

Recall our 2-terminals MVN (presented in Figure 4.1(a)) hosted in a 5-nodes sub-

strate network as shown in Figure 5.1(a). The failure of terminal node t2 kicks

off a reactive look-up for a valid backup node that can assume the role of t2 and

restore the affected service. Given that the MVN in question has an end-delay re-

quirement of 2, then t2 can migrate to substrate nodes D or E while satisfying the

72

s

t1

t2

E

A B

C D

(50)

(50) (50)

(50)(50)

10
10

10

10

1010

(a) No Feasible Restoration

s

t1

t2
E

A B

C D

(50)

(50) (50)

(50)(50)

10
10

10

10

1010

(b) Migration-Aware Restoration

Figure 5.1: Advantage of Terminal Nodes Migration

end-delay constraint. However, with the additional differential-delay constraint of

0, there are no possible ways to restore t2 while maintaining the requested QoS.

One possible solution for this problem could be to re-embed the failed MVN from

scratch. Such an approach is seemingly unpleasant as it disrupts the entire service.

A more promising solution is to encourage migrating some parts of the working

MVN to widen the search space. Figure 5.1 highlights this advantage. Clearly, by

migrating the working terminal t1 to substrate node D, it is now possible to mi-

grate the failed terminal t2 onto substrate node E and reconstruct a multicast tree

that interconnects both terminals to the source while satisfying both end-delay

and differential-delay requirements.

With the motivation of improving our algorithm, in the future work, we intend to

re-design our approach considering migrations of working terminals, we name such

approach “Migration-Aware Tree Maintenance”. We believe this new approach is

able to achieve better results in terms of restoration and total revenue.

73

Bibliography

[1] R. Griffith A. Joseph R. Katz A. Konwinski G. Lee Davidpatterson

Arielrabkin I. Stoica M. LArmbrust, A. fox and M. Zaharia. ”A View of

Cloud Computing”. 53(4):50–58, 2010.

[2] J. Caceres L. Vaquero, L. Merino and M. Lindner. ”A Break in the Clouds:

Towards a Cloud Definition”. volume 39, pages 50–55. ACM SIGCOMM

Computer Communication Review, 2009.

[3] C. Yeo R. Buyya and S. Venugopal. ”Market-Oriented Cloud Computing:

Vision, Hype, and Reality for Delivering IT Services as Computing Utilities

”. The 10th IEEE International Conference on High Performance Computing

and Communications, 2008.

[4] D. Andersen. ”Theoretical approaches to node assignment”. Computer Sci-

ence Department, page 86, 2002.

[5] Amazon Web Services. ”Amazon EC2 SLA page”. Available: http://aws.

amazon.com/ec2/sla/, 2013. Accessed: June 1, 2014.

[6] M. Rahman et al. ”Survivable virtual network embedding”. In NETWORK-

ING 2010, pages 40–52. Springer, 2010.

[7] H. Yu et al. ”Migration based protection for virtual infrastructure survivabil-

ity for link failure”. In OFC 2011. IEEE, 2011.

[8] J. Shamsi and M. Brockmeyer. ”Qosmap: Achieving quality and resilience

through overlay construction ”. 4th International Conference on Internet and

Web Applications and Services, ICIW 09, 2009.

74

[9] C. Phillips X. Zhang and X. Chen. ”An overlay mapping model for achiev-

ing enhanced qos and resilience performance”. 3rd International Congress

on Ultra Modern Telecommunications and Control Systems and Workshops

(ICUMT), 2011, 2011.

[10] H. Yu L. Li B. Dong H. Di, V. Anand and Q. Meng. ”Reliable virtual infras-

tructure mapping with efficient resource sharing”. In Communications, Cir-

cuits and Systems (ICCCAS), 2013 International Conference on, volume 1,

pages 198–202. IEEE, 2013.

[11] M. Zhani M. Rabbani and R. Boutaba. ”On achieving high survivability in

virtualized data centers”. volume E97-B, pages 10–18. IEICE Trans. Com-

mun, 2014.

[12] M. Jabri Q. Zhang, F. Zhani and R. Boutaba. ”Venice: Reliable Virtual Data

Center Embedding in Clouds”. INFOCOM, 2014.

[13] H. Yu L. Li L. Dan D. Hao, V. Anand and S. Gang. ”design of reliable

virtual infrastructure using local protection”. In Computing, Networking and

Communications (ICNC), 2014 International Conference on, pages 63–67.

IEEE, 2014.

[14] B. Guo et al. ”Survivable virtual network design and embedding to survive a

facility node failure”. Journal of Lightwave Technology, 32(3):483–493, 2013.

[15] Q. Hu et al. ”Survivable network virtualization for single facility node failure:

A network flow perspective”. Optical Switching and Networking, 10(4):406–

415, 2013.

[16] J. Xu et al. ”Survivable virtual infrastructure mapping in virtualized data

centers”. In IEEECLOUD 2012, pages 196–203. IEEE, 2012.

[17] W. Yeow et al. ”Designing and embedding reliable virtual infrastructures”.

ACM SIGCOMM Computer Communication Review, 41(2):57–64, 2011.

[18] H. Yu et al. ”Cost efficient design of survivable virtual infrastructure to

recover from facility node failures”. In ICC, pages 1–6. IEEE, 2011.

75

[19] NM. Chowdhury et al. ”Virtual network embedding with coordinated node

and link mapping”. In INFOCOM, pages 783–791. IEEE, 2009.

[20] M. Chowdhury et al. ”ViNEyard: Virtual network embedding algorithms

with coordinated node and link mapping”. TON, 20(1):206–219, 2012.

[21] T. Guo, N. Wang, K. Moessner, and R. Tafazolli. ”Shared backup network

provision for virtual network embedding”. In Communications (ICC), 2011

IEEE International Conference on, pages 1–5. IEEE, 2011.

[22] MR. Rahman and R. Boutaba. ”SVNE: Survivable virtual network embedding

algorithms for network virtualization”. 2013.

[23] M. Till Beck H. de Meer A. Fischer, JF. Botero and X. Hesselbach. ”Virtual

Network Embedding: A survey”. Communications Surveys and Tutorials,

15(4), 2013.

[24] N. Jain P. Gill and N. Nagappan. ”Understanding network failures in data

centers: measurement, analysis, and implications”. In ACM SIGCOMM Com-

puter Communication Review, volume 41, pages 350–361. ACM, 2011.

[25] NM. Chowdhury et al. ”A survey of network virtualization”. Computer

Networks, 54(5):862–876, 2010.

[26] M. Farhan Habib Biswanath Mukherjee and Ferhat Dikbiyik. ”Network

adaptability from disaster disruptions and cascading failures”. Communi-

cations Magazine, IEEE, 2014.

[27] L. Sahasrabuddhe S. Ramamurthy and B. Mukherjee. ”Survivable wdm mesh

networks”. Journal of Lightwave Technology, 21(4):870–883, 2003.

[28] V. Anand X. Liu H. Di G. Sun H. Yu, C. Qiao. ”Survivable virtual infrastruc-

ture mapping in a federated computing and networking system under single

reginal failures”. GLOBECOM, pages 1–6, 2010.

[29] K. Wolfgang H. Sandra, A. Xueli and K. Andreas. ”Path protection with

explicit availability constraints for virtual network embedding”. In Personal

76

Indoor and Mobile Radio Communications (PIMRC), 2013 IEEE 24th Inter-

national Symposium on, pages 2978–2983. IEEE, 2013.

[30] K. Vishwanath and N. Nachiappan. ”Characterizing cloud computing hard-

ware reliability”. In Proceedings of the 1st ACM symposium on Cloud com-

puting, pages 193–204. ACM, 2010.

[31] H. Yu et al. ”Survivable virtual infrastructure mapping in a federated comput-

ing and networking system under single regional failures”. In GLOBECOM

2010, pages 1–6. IEEE, 2010.

[32] M. Tornatore C. Chuah C.Meixner, F. Dikbiyik and B. Mukherjee. ”Disaster-

resilient virtual-network mapping and adaptation in optical networks”. In Op-

tical Network Design and Modeling (ONDM), 2013 17th International Con-

ference on, pages 107–112. IEEE, 2013.

[33] A.Khan S.Herker and X. An. ”Survey on Survivable Virtual Network Em-

bedding Problem and Solutions”. In ICNS 2013, The Ninth International

Conference on Networking and Services, pages 99–104, 2013.

[34] N. Jain S. Kandula C. Kim P. Lahiri D. Maltz P. Patel A. Greenberg, J. Hamil-

ton and S. Sengupta. ”VL2: a scalable and flexible data center network”. In

ACM SIGCOMM Computer Communication Review, volume 39, pages 51–62.

ACM, 2009.

[35] J. Wu S. Su D. Li, Y. Li and J. Yu. ”Esm: efficient and scalable data center

multicast routing”. 20:944–955, 2012.

[36] K. Chen at al. ”Survey on routing in data centers: insights and future direc-

tions”. Network, IEEE, 25(4):6–10, 2011.

[37] D. Li et al. ”RDCM: Reliable data center multicast”. In INFOCOM, 2011

Proceedings IEEE, pages 56–60. IEEE, 2011.

[38] J. Cao et al. ”Datacast: a scalable and efficient reliable group data delivery

service for data centers”. Selected Areas in Communications, IEEE Journal

on, 31(12):2632–2645, 2013.

77

[39] T. Chiba et al. ”Dynamic load-balanced multicast for data-intensive applica-

tions on clouds”. In CCGrid, pages 5–14. IEEE, 2010.

[40] V. Anand D.Liao, G. Sun and H.Yu. ”Efficient Provisioning for Multicast

Virtual Network under Single Regional Failure in Cloud-based Datacenters”.

KSII Transactions on Internet and Information Systems (TIIS), 8(7):2325–

2349, 2014.

[41] V. Anand D.Liao, G. Sun and H.Yu. ”Survivable provisioning for multicast

service oriented virtual network requests in cloud-based data centers”. Optical

Switching and Networking, 2014.

[42] A. Gupta el al. ”The Who, What, Why and How of High Performance Com-

puting Applications in the Cloud”. Technical report, HP Labs, Tech. Rep.,

2013.[Online]., 2013.

[43] K. Jackson et al. ”Performance analysis of high performance computing ap-

plications on the amazon web services cloud”. In In IEEE CloudCom, pages

159–168. IEEE, 2010.

[44] L. Barroso et al. ”Web search for a planet: The Google cluster architecture”.

Micro, Ieee, 23(2):22–28, 2003.

[45] S. Ghemawat et al. ”The Google file system”. In ACM SIGOPS Operating

Systems Review, volume 37, pages 29–43. ACM, 2003.

[46] T. White. ”Hadoop: the definitive guide”. O’Reilly, 2012.

[47] M. Mike. ”Multicast in the data center overview”. 2013.

[48] B. Lyles H. Kassem C. Diot, BN. Levine and D. Balensiefen. ”Deployment

issues for the ip multicast service and architecture”. Network, IEEE, 14(1):78–

88, 2000.

[49] K. Praveen A. Iyer and V. Mann. ”Avalanche: Data center Multicast using

software defined networking”. In COMSNETS, pages 1–8, 2014.

78

[50] Y. Miao et al. ”Multicast virtual network mapping for supporting multiple

description coding-based video applications”. Computer Networks, 2012.

[51] M. Zhang et al. ”Mapping multicast service-oriented virtual networks with

delay and delay variation constraints”. In GLOBECOM 2010, IEEE, pages

1–5. IEEE, 2010.

[52] U.Budnik. ”Lessons Learned from Recent Cloud Outages”. Available: http:

//www.rightscale.com/blog/enterprise-cloud-strategies/

lessons-learned-recent-cloud-outages, 2013.

[53] Y. Zhu et al. ”Algorithms for Assigning Substrate Network Resources to

Virtual Network Components”. In INFOCOM, pages 1–12, 2006.

[54] M. Yu et al. ”Rethinking virtual network embedding: substrate support for

path splitting and migration”. ACM SIGCOMM, 38(2):17–29, 2008.

[55] J. Lischka et al. ”A virtual network mapping algorithm based on subgraph

isomorphism detection”. In Proceedings of the 1st ACM workshop on Virtu-

alized infrastructure systems and architectures, pages 81–88. ACM, 2009.

[56] U. Budnik. ”Lessons Learned from Recent Cloud Outages”. Available: http:

//www.rightscale.com/blog/enterprise-cloud-strategies/

lessons-learned-recent-cloud-outages, 2013.

[57] JR. Raphael. ”The worst cloud outages of 2013”. Avail-

able:http://www.infoworld.com/slideshow/107783/

the-worst-cloud-outages-of-2013-so-far-221831, 2013.

[58] A. Medina et al. ”BRITE: An approach to universal topology generation”.

In Modeling, Analysis and Simulation of Computer and Telecommunication

Systems, 2001. Proceedings. Ninth International Symposium on, pages 346–

353. IEEE, 2001.

[59] C. Assi S. Ayoubi, K. Shaban. ”Multicast virtual network embedding in

cloud data center with end delay and delay variation constraints”. OSA/OFC

/NFOEC, 2014.

79

[60] P. Sheu et al. ”A fast and efficient heuristic algorithm for the delay-and de-

lay variation-bounded multicast tree problem”. Computer Communications,

25(8):825–833, 2002.

[61] C. Doerr N. L. M. van Adrichem and F. A. Kuipers. ”OpenNetMon: Network

Monitoring in OpenFlow Software-Defined Networks”. In Network Operations

and Management Symposium (NOMS). IEEE, 2014.

[62] Sara Ayoubi, Khaled Shaban, and Chadi Assi. ”Multicast Virtual Network

Embedding in Cloud Data Centers with End Delay and Delay Variation

Constraints”. In 7th IEEE International Conference on Cloud Computing

(CLOUD 2014). IEEE. (Accepted), 2014.

[63] George N Rouskas and Ilia Baldine. ”Multicast routing with end-to-end delay

and delay variation constraints”. In INFOCOM’96. Fifteenth Annual Joint

Conference of the IEEE Computer Societies. Networking the Next Generation.

Proceedings IEEE, volume 1, pages 353–360. IEEE, 1996.

80

	signature page.pdf
	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Background and Motivation
	1.1.1 Problem Definitions
	1.1.2 Reasoning and Optimizations

	1.2 Thesis Organization

	2 Preliminaries and Related Work
	2.1 Failure Senarios and Protection Methods
	2.1.1 Type of Failures
	2.1.2 Protection Methods

	2.2 Virtual Network Redesign and Embedding
	2.2.1 Related Work on Virtual Network Redesign and Embedding
	2.2.2 Virtual Network Redesign Solutions and limitations
	2.2.3 Resource Sharing techniques

	2.3 Multicast Virtual Network

	3 Survivable Virtual Network Redesign and Embedding
	3.1 Introduction
	3.2 Problem Definition
	3.3 The SVN Redesign Problem
	3.3.1 Limitations of Conventional VN Redesign Techniques
	3.3.2 Illustrative Example

	3.4 Prognostic Redesign Approach (Pro-Red) :
	3.4.1 Theoretical Foundation
	3.4.2 Pro-Red Algorithm :

	3.5 The SVN Embedding
	3.6 Numerical Results
	3.7 Conclusion

	4 Post-Failure Restoration for Multicast Services in Data Center Networks
	4.1 Introduction
	4.2 Network Model and Problem Description
	4.2.1 Network Model
	4.2.2 Understanding the impact of failure on MVNs
	4.2.3 The MVN Restoration Problem
	4.2.3.1 Problem Formulation
	4.2.3.2 Complexity Analysis

	4.3 Path-Convergence Method for finding a backup source
	4.4 Hop-to-Hop Terminal Finding Algorithm
	4.5 Numerical Results
	4.6 Conclusion

	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Contributions
	5.3 Future Work

	Bibliography

	body.pdf
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Background and Motivation
	1.1.1 Problem Definitions
	1.1.2 Reasoning and Optimizations

	1.2 Thesis Organization

	2 Preliminaries and Related Work
	2.1 Failure Senarios and Protection Methods
	2.1.1 Type of Failures
	2.1.2 Protection Methods

	2.2 Virtual Network Redesign and Embedding
	2.2.1 Related Work on Virtual Network Redesign and Embedding
	2.2.2 Virtual Network Redesign Solutions and limitations
	2.2.3 Resource Sharing techniques

	2.3 Multicast Virtual Network

	3 Survivable Virtual Network Redesign and Embedding
	3.1 Introduction
	3.2 Problem Definition
	3.3 The SVN Redesign Problem
	3.3.1 Limitations of Conventional VN Redesign Techniques
	3.3.2 Illustrative Example

	3.4 Prognostic Redesign Approach (Pro-Red) :
	3.4.1 Theoretical Foundation
	3.4.2 Pro-Red Algorithm :

	3.5 The SVN Embedding
	3.6 Numerical Results
	3.7 Conclusion

	4 Post-Failure Restoration for Multicast Services in Data Center Networks
	4.1 Introduction
	4.2 Network Model and Problem Description
	4.2.1 Network Model
	4.2.2 Understanding the impact of failure on MVNs
	4.2.3 The MVN Restoration Problem
	4.2.3.1 Problem Formulation
	4.2.3.2 Complexity Analysis

	4.3 Path-Convergence Method for finding a backup source
	4.4 Hop-to-Hop Terminal Finding Algorithm
	4.5 Numerical Results
	4.6 Conclusion

	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Contributions
	5.3 Future Work

	Bibliography

