QOS-AWARE SERVICE COMPOSITION AND REDUNDANT
SERVICE REMOVAL

MiN CHEN

A THESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE OF DOCTOR OF PHILOSOPHY
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

JANUARY 2015

@© MIN CHEN, 2015

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared
By: Ms. Min Chen
Entitled: QoS-aware Service Composition and Redundant Service Removal

and submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy (Computer Science)

complies with the regulations of this university and meets the accepted standards

with respect to originality and quality.

Singed by the final examining committee:

Chair

Dr. Chun Wang

External Examiner

Dr. Weiming Shen

External to Program

Dr. Abdelwahab Hamou-Lhad]j

Examiner
Dr. Volker Haarslev

Examiner
Dr. Nematollaah Shiri

Supervisor

Dr. Yuhong Yan

Approved

Chair of Department or Graduate Program Director

20

Faculty of Engineering and Computer Science

il

Abstract

Automatic Service Composition (ASC) is the generation of a business process to fulfill
business goals that cannot be fulfilled by individual services. Planning algorithms
are frequently used to solve this problem. In addition to satisfying functional goals,
recent research is geared towards selecting the best services to optimize the QoS of
the business process results. It is a challenge to fulfill functional goals and achieve
QoS optimization at the same time.

In this thesis, we propose to combine a planning algorithm called GraphPlan,
with a systematic search algorithm like Dijkstra’s algorithm to achieve functional
goals and QoS optimization at the same time. The GraphPlan algorithm has the
advantages of easily modeling business logic, reusing the actions in one plan, and
planning parallel actions in a plan. The planning graph generated by the GraphPlan
algorithm is a compact representation of all execution paths, which makes it feasible
to apply Dijkstra’s principle. Two methods have been proposed to combine the
Graphplan with Dijkstra’s algorithm.

In the first method, we extend Dijkstra’s algorithm from working on a single
source graph to working on the extended planning graph whose nodes have multiple
sources. The advantage of this method is that it gets an optimal plan with the best
QoS value for the single criteria of throughput or response time in polynomial time.

However, this method does not provide a uniform graph structure (i.e., an extended

iv
planning graph with single or multiple tag, to generate an optimal plan for all kinds
of quality criteria).

In the second method, we improve the idea of combining the Graphplan with Di-
jkstra’s algorithm by providing a uniform graph structure to generate a QoS optimal
solution for all kinds of quality criteria. A Layered Weighted Graph (LWG) is gener-
ated and provides a uniform structure for the easy use of Dijkstra’s algorithm to find
an optimal plan for all kinds of quality criteria. By using multi-objective shortest
path algorithms, this method can be easily extended to solve QoS optimization on
multiple QoS criterion for service composition problem.

In this thesis, we also study redundant service removal to further optimize QoS
optimal solutions. The removal of redundant services does not worsen the QoS value
of the optimal solution. Fewer numbers of services indicates less execution costs to
invoke these services. A redundant service removal problem is modeled as an opti-

mization problem such that the optimal solution without redundancy is found.

Acknowledgments

I would like to express my deep gratitude to my supervisor Dr. Yuhong Yan for
accepting me as her PhD student so that I had an opportunity to study in the
Faculty of Engineering and Computer Science at Concordia University. She led me
into the domain of automated reasoning. Numerous support, valuable suggestions,
and patient guidance by Dr. Yuhong Yan led to my successful study at Concordia
University.

I might never start my academic career if Dr. Volker Haarslev, Dr. Abdelwahab
Hamou-Lhadj, and Dr. Nematollaah Shiri had not insisted on their approving of me.
I feel very grateful to their valuable comments about my work.

Finally, I wish to extend my deepest appreciation to my family members. No

words can express my eternal gratitude to them.

Contents

Contents vii
List of Algorithms X
List of Tables xi
List of Figures xiii
1 Introduction 1
1.1 Motivationo 2
1.2 Problem Statement 4
1.3 Thesis Overview 5

2 Background and Literature Review 7
2.1 Background 7
2.1.1 Web Service and Service Modeling 8

2.1.2 Quality of Service Lo 10

2.1.3 QoS-aware Service Composition 12

2.2 Literature Review o o 13
2.2.1 Web Service Composition Using the GraphPlan Algorithm . . 16

2.2.2 QoS-aware Service Composition Algorithms 20

2.2.3 Other Related Techniques 27

vii

CONTENTS viii

3 Anytime QoS-aware Service Composition over GraphPlan 32
3.1 Introductiono 32
3.2 Motivationo 34
3.3 Calculation of the QoS 35
3.4 Generation of Tagged Planning Graph 37

3.4.1 The Properties of QoSGraphPlan 42
3.5 Redundant Activitieso 44
3.6 Calculate the Other Single QoS Criteria 49
3.7 Under Multiple Criteria 52
3.8 BeamQoSGraphPlan with Beam Search 53
3.9 Summary of the Algorithms Developed 55
3.10 Empirical Results oo a7

3.10.1 Data Set o7

3.10.2 Implementation o7
311 Summary 63

4 QoS-aware Service Composition over GraphPlan through Graph

Reachability 64
4.1 Introduction 64
4.2 The Framework oo 66
4.2.1 Planning Graph Labeling 66
4.2.2 Graph Conversion 68
4.2.3 Plan Generationo 71
4.2.4 Main Algorithm 0L 71
4.3 Planning Graph Labelling 71
4.4 Graph Conversion Lo 74
4.5 Plan Generation Lo 80
4.6 Other Single QoS Criteria 86

CONTENTS ix

4.7 Experimental Results 87
4.8 Summary e 89
5 Redundant Service Removal in QoS-aware Service Composition 90
5.1 Introductiono 90
5.2 Motivation 91
5.3 Analysis of Redundant Service Removal 95
5.4 Model Redundant Service Removal Problem 97
5.5 Redundant Service Removal in QoS-aware Service Composition . . . 101
5.6 Experimental Results 106
D7 Summary ... oL .. 108
6 Conclusion 109
6.1 Summary 109
6.2 Future Worko 111
Bibliography 112

List of Publications 121

List of Algorithms

© o ~ O Ot = W N

—_
o

11
12
13
14

15
16
17
18
19

Dijkstra(Graph, source) 29
QoSGraphPlan(A, S0, g) « « - o v v v v i 39
ExpandGraph({(Py, A1, ..., Ai, By)) - o o 39
Fizedpoint({(Py, A1, ..., Ai, P)) o 0 oo 39
ExtractPlan({(Py, A1, ..., A, Po),g) o o o 40
RemoveRedundancy((FPo, A1,y ..y Any Pr)) o o v o o oo o oo 48
ExpandGraphMultiTag({(Py, A1, ...; Aiy P, g) o o o o o oo oo oo 51
QoSGraphPlanExt(A, S0, g) - -« v o i 51
ExpandGraphBeamWidth({Py, A1, ..., Ai, P),g) - 54
BeamQoSGraphPlan(A,sg,g) - .« « « « oo 55
QoSWISC(A,S0,9) « « v v v i e 71
PLPGGeneration(A,S0,g) -« « v v v i v 73
GraphConversion(PLPG,So,g) . . .« o v v v v v i i i i i it 76
PlanGeneration(LWG, A, g) . . . o o o oo 83
RedundancyRemoval(sol) 102
FindReduntS(sol) 103
ReduntSolver(sol,reduntS, Qopt) - - - - o o« « o oo 103
RemoveUselessServices(newSol) 104
CheckInvokability(newSol), 104

List of Tables

2.1
2.2

3.1

3.2

3.3

3.4
3.5

3.6
3.7

4.1
4.3

4.2

5.1

A set of available services 20

Dijkstra’s algorithm oo 30

The QoS value (numerator) and the utility value (denominator) for a
proposition at each proposition layer p € P, (i = 1,...,4) in the TPG

for Example 1 42
An example of multiple criteria tag L. 593
Top: example of the output indexing table; bottom: example of the
reverse indexing tableo 59
Results with the WSC09 Data Sets: our method /Paper [32]/Paper [74] 59
Our composition time: T1 with redundant services (Resp. Time/Through-
put); T2 without redundant services (Resp. Time/Throughput). . . . 61
Total execution price on the WSC09 Data Sets 61
Results considering aggregated value of execution price and reputation

on the WSC09 Data Sets 62

A set of available services 73

Changes made in Algorithm 14 for different single criteria (7, are

real values, k, k' > 0 are integers), 88
Results with the WSC09 Data Sets: 89
Services in the solution shown in Figure 5.2 92

xi

LIST OF TABLES xii

5.2
5.3
0.4

3.9

Response time before and after redundancy removal for Example 19 . 98
Redundancy removal for Example 11 106
Redundancy removal results for the solutions with optimal response
time: our method/random removal method in Section 3.5 107
Redundancy removal results for the solutions with optimal through-

put: our method /random removal method in Section 3.5 107

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6

Web service roles and operations [2]00
The planning graph for Example 1.
System architecture [74] Lo
Algorithm overview: 3 steps search |74]
Definition of variables and parameters [16]

The graph for Example 2. 0000

The tagged planning graph for Example 1.
An example to explain the scheduling of services over TPG
An example to explain redundant services
An example to explain redundant services
An example to explain multiple tags.
The multiple tags used for optimizing execution cost.

Semantic relationship between Web service input/output parameters .

The framework of our approach
An example of PLPG oo
The LWG converted from the PLPG in Figure 4.2
The partially labelled planning graph for Example 11.
The Layered Weighted Graph (LWG) for Example 12.

Plan Generation for Example 12.

xiil

41

o8

LIST OF FIGURES xiv

5.1 The tagged planning graph for Example 14 93
5.2 The TPG for the solution for Example 14 93
5.3 An EDAG with labelled levels for Example 11 96

5.4 The EDAG after ws is removed from Fig. 5.3 97

Chapter 1

Introduction

A Web service is a self-described, self-contained software module that completes
tasks, solves problems, or conducts transactions on behalf of a user or application.
Available Web services are posted across the Internet using a set of open standards
such as WSDL (Web Service Description Language) |67|, SOAP (Simple Object Ac-
cess Protocol) [66], and UDDI (Universal Description Discovery and Integration of
Web Services) [51]. With these open standards, Web services are automatically in-
vokable and interoperable. An increasing number of companies and organizations
implement their core business and outsource their application services over the In-
ternet. However, facing large and various users’ requests, it is impossible to fulfill
every request by a single existing service. For example, a user wants to make a travel
plan by booking a flight, a hotel room, and a taxi from the airport to the hotel in
the destination city.

Automatic Service Composition (ASC) is the generation of a business process to
fulfill business goals that cannot be fulfilled by individual services. A business process
is implemented as a composite service that typically assembles and invokes many pre-
existing services (e.g., travel-booking service is a composite service which invokes two
individual services, i.e., a flight booking service and a hotel booking service). The

travel-booking service is able to complete the business task (e.g., making a travel

CHAPTER 1. INTRODUCTION 2

plan, which is impossible for an individual service like the flight booking service or
the hotel booking service).

In addition to the fulfilled functional requirements, users are also concerned about
how well non-functional requirements are fulfilled. The performance of services is re-
flected by the non-functional properties of services (i.e., Quality of Services (QoS)).
QoS is specified in the service description using the standard language (e.g., Web
Service Level Agreement (WSLA) [36]). To quantitatively measure qualities of ser-
vices, several related aspects are often considered, such as response time, throughput,
and execution price. Achieving QoS optimization during ASC is called QoS-aware
service composition.

We study how to fulfill the functional goals and achieve QoS optimization simul-

taneously in QoS-aware service composition.

1.1 Motivation

Automated Service Composition (ASC) is studied under different assumptions [54,
59]. The most useful and practical problem is to connect stateless SOAP services
into a network by matching their parameters so that this network of services can
produce a set of required output parameters given a set of input parameters. This
is the composition problem studied in this thesis.

AT Planning algorithms are frequently used to solve ASC problems |56, 57, 81].
First, Al planning algorithms build a unique problem space where connections be-
tween actions are propositions and expressed in a compact way. Al planning algo-
rithms search the problem space to find a path from the initial state to a goal state.
Normally the planning algorithms stop at the first found feasible solution, which
corresponds to the shortest path. If the planning algorithms stop at a later time
after the first feasible solution is found, it is very possible to find other solutions

corresponding to longer paths.

CHAPTER 1. INTRODUCTION 3

In addition to satisfying business goals, recent research moves towards selecting
the best services to optimize the QoS measures, such as throughput and response
time, of the target business process. With QoS consideration, a shortest plan may
not be preferred because a longer plan may have better QoS values. For example, a
plan with three consecutive services may be faster than a plan with two consecutive
services, when the response time of the services vary. Therefore, we need to modify
the classic planning algorithm to become QoS aware to find a QoS optimized solution.

People have used algorithms like Dynamic Programming (DP) and Integer Pro-
gramming (IP) to find a QoS optimized solution |16, 32, 34|. However, Dynamic
Programming (DP) and Integer Programming (IP) are based on given linearized for-
mulations. Formulizing the business constraints into linear algebra is not straight-
forward. It involves the proper assignment of variables. Some adjustments may be
needed to make the relationship among variables linear. Hence, it is not straight-
forward to model service composition problems into DP or IP. Some of the models
(e.g., [34]) does not consider the possibility of reusing the same service in a plan.

People tend to solve the QoS-aware service composition problem in two steps. The
first step is to choose a control flow which becomes the template of the target business
process; services are selected for each task in the control flow in the second step. This
second step is the so-called service selection problem which is NP-complete |78, 80].
This kind of problem makes sense only if we have to use a predefined control flow.
Otherwise, we should decide control flow and services selection at the same time
in QoS-aware service compositions. This is because it is possible that some other
control flows with some other services can have a better QoS than the predefined
control flow can achieve.

Our motivation is to keep the advantage of the Al planning model, such as easily
modeling business logic, reusing the actions in one plan, planning parallel actions in
a plan, and extending AI planning from the ASC solver into the QoS-aware service

composition solver with the help of an optimization algorithm for the QoS. We are

CHAPTER 1. INTRODUCTION 4

motivated by combining a Al planning technique, called the Graphplan, with the
Dijkstra’s algorithm. From the optimization perspective, Dijkstra’s algorithm is an
optimization algorithm since it traverses a graph to find the optimal paths (i.e.,
the shortest paths) from a single source to the destination vertices. If we map the
QoS value into the distance, we can use Dijkstra’s algorithm to obtain the shortest
path that corresponds to a path with the optimal QoS value in terms of certain QoS

criteria.

1.2 Problem Statement

According to the type of information that can be used in service composition, Web
service composition problems can be viewed from three different levels [37], a signa-
ture level, a behavior description level, and a QoS description level.

In a signature level, WSDL is the standard used to describe Web services. A
service signature is made up of a set of operations that can be described in terms
of their inputs and outputs. Since a service in a signature is taken as a black box
with multiple inputs and multiple outputs, this type of service can be regarded
as a stateless service. Given a set of initial input parameters and a set of stateless
services, a Web service composition problem generates a sequence of sets of services to
produce the expected output parameters. Moreover, this type of service composition
is based on the assumption that each component service is an atomic service that
only contains one operation. If a service has more than one operation, each operation
is regarded as an atomic service to take part in service composition.

On a behavior description level, services consist of stateful business processes,
which specify multi-phase interactions/conversations with other services. Conversa-
tional services can be expressed using the standard behavioral description languages,
such as Web Service Business Process Ezecution Language (WS-BPEL) [15] and Web
Ontology Language for Services (OWL-S) [63]. The behavioral description language

CHAPTER 1. INTRODUCTION 5

uses constructs (e.g., sequential, conditional and flow) to describe the business pro-
cess of conversational service. Given a set of behavioral descriptions of Web services
and goal descriptions, the Web service composition problem on a behavior descrip-
tion level automatically generates a business to fulfill underspecified requirement,
such as data requirements or capability requirements. Data requirements specify the
expected data produced by a composite service. Capability requirements give a set
of capabilities that are specified in the expected order to be fulfilled.

On a QoS description level, the non-functional property (i.e., Quality of Services
(QoS)) is specified in the service description using standard language such as Web
Service Level Agreement (WSLA). QoS has several criteria including response time,
throughput, and execution price.

In this thesis, our work is done from a signature level and a QoS description level.
We use the planning technique called GraphPlan to study QoS-aware service compo-
sition so that functional goals and QoS optimization can be achieved simultaneously.
Graphplan can generate a plan with sequential and parallel actions. As for stateful
business processes at a behavior description level, conditional planning (to include
conditional constructs and loop constructs in a plan) is a special topic to study in
planning domain. [57| proposed an encoding method to re-define actions and propo-
sitions in the exclusive choice construct into preconditions and effects of actions that
can be used by planning graph. Using this encoding approach, the planning graph
can also handle the exclusive choice pattern. Though the planning graph does not
have a loop construct, actions are re-used when the planning graph is constructed.

The repeated sequential actions can be considered as an unfolded loop.

1.3 Thesis Overview

The rest of this thesis is organized as follows.

e Chapter 2 provides the background and literature review. This chapter intro-

CHAPTER 1. INTRODUCTION 6

duces the necessary background for the rest of the thesis. In particular, we
review Web service composition using the GraphPlan algorithm, QoS-aware
service composition algorithms, and related techniques that will be used in our

research.

e We study the QoS-aware service composition problem in Chapter 3 and Chapter
4. We are motivated to combine the GraphPlan technique with Dijkstra’s
algorithm to solve QoS-aware service composition problems. Two algorithms
are respectively proposed in Chapter 3 and Chapter 4. Experimental results

show both algorithms can find a solution with optimal QoS values.

e Chapter 5 studies the redundant service removal problem. We model the re-
dundant service removal problem as an optimization problem such that the

optimal solution without redundancy is found.

e Chapter 6 concludes the thesis with the summary and the discussion of the

future work.

Chapter 2

Background and Literature Review

2.1 Background

Service-Oriented Computing (SOC) is an promising paradigm that refers to com-
puting in Service-Oriented Architecture (SOA)|19, 20, 21, 49| which utilizes Web
services with standard interfaces as the constructs to build rapid and distributed
software applications. Automated Service Composition (ASC) which composes the

existing services to fulfill some complex functionality is one of the most studied topic

into a network by matching their parameters so that given a set of input parameters
this network of services can produce a set of required output parameters. This is
also the composition problem studied in this thesis. Quality of Service (QoS) is the
non-functional properties of services. When discussing service composition technolo-
gies in SOC, QoS is another important factor which influences the process of service
composition, as QoS is a significant concern for users. QoS-aware service composi-
tion targets satisfying not only functional goals but also QoS requirements such as
the optimization of QoS values in terms of certain QoS criteria. In this thesis, our

research focuses on the studying QoS-aware service composition problem.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 8

2.1.1 Web Service and Service Modeling

The term “Web service” has been defined in different ways. Papazoglou [53] describes
that a Web service is a self-describing, self-contained software module available via
a network, such as the Internet, which completes tasks, solves problems, or conducts
transactions on behalf of a user or an application. Another widely accepted definition
is specified by the World Wide Web Consortium (W3C) that a Web service is defined
as “a software application identified by a URI, whose interfaces and bindings are
capable of being defined, described, and discovered as XML artifacts. A Web service
supports direct interactions with other software agents using XML-based messages
exchanged via Internet-based protocols” [2].

The definition of Web service also reveals the work mechanism of Web services.
Web services work in the service-oriented architecture (SOA). The overview of SOA is
shown in Figure 2.1 [2]. There are three primary roles of SOA that communicate with
each other through three operations. The three primary roles are the service provider,
the service registry, and the service requester (client) and the three operations are

publish, find, and bind.

e The service provider is the owner of Web services and implements the func-
tionality of the service. The service provider is responsible for the publishing
of Web services on the service registry, including describing the information of
services and registering that information with the service registry hosted by a

service discovery agency.

e The service requester is the client who sends the request regarding the comple-
tion of certain functions to the service registry, searching for the services that

satisfy the requested functions, and subsequently invoking the services.

e The service registry is a directory of service descriptions. The service requester
uses the service registry to locate the service and obtain information for ser-

vices.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 9

Service
provide

Service
description

Publish Bind

Service
client

Service
registry

Service
description

Figure 2.1: Web service roles and operations |2]

Find

r'

This work mechanism of Web services in Figure 2.1 |2] is enabled by a number
of Web services supported by a set of open standards. These open standards include
the Web Service Description Language (WSDL) [67], the Simple Object Access Pro-
tocol (SOAP) [66], and the Universal Description Discovery and Integration of Web
services (UDDI) |51]. With these open standards, Web services are automatically
invokable and interoperable.

Service modeling relies on many factors [17]|. In this thesis, we consider the ser-
vices as stateless black boxes (no conversations). Conversations describe two-way
communication between a client and a Web service so as to maintain the state be-
tween calls to the Web service. The services expose themselves in WSDL descriptions
that do not include state information. We can associate semantic information to in-
puts and outputs using SAWSDL [65] and ontology supporting annotations described
using OWL [64].

Definition 1 Given a set D of concepts, service w is a tuple (in(w), out(w)), where

in(w) C D (resp. out(w) C D) denotes the inputs (resp. the outputs) of w.

For each service w with n operations oq,...,0, we may operate or function as
if we had n services w:oq, ..., w:o,. Currently, most services posted online are

this kind of service, that is, numerous services listed by webservicelist.com and

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 10

xmethods.net. Their functions span from checking stock prices, weather, driving
directions, to calculating currency exchange rates, or mortgages.

An output of one service could become an input of another service if they are
exactly the same concept or if the input concept subsumes the output concept. For
example, assume one service needs “vehicle” as one of its inputs. If another service

[4

outputs “vehicle” or “car”, the two services can be connected via their compatible

parameters.

2.1.2 Quality of Service

Quality of Service (QoS) is the non-functional property of a service. Normally, QoS
is specified in the service description using the standard language, such as a Web
Service Level Agreement (WSLA) [36]. If the QoS is given, the service model used

in our research corresponds to Definition 2.

Definition 2 Given a set D of concepts, a service w is a tuple (in(w), out(w), Q(w)),
where in(w) C D (resp. out(w) C D) denotes the inputs (resp. the outputs) of w,

and Q(w) is a finite set of quality criteria for w.

The above definition assumes each service has one operation. For a service w with

n operations oq,...,0, we may operate as if we had n services w : 01,...,w : 0,.
We use 0 = wy, ws, ..., w, to represent a network of connected services. If they are
connected in sequence, o0 = wy;ws; .. .;wy,, or in parallel, o = wy||wsl| ... ||wy.

Some commonly used quality criteria for a Web service w and their aggregated

values over o are listed as below [7, 28]:

e Response time Q;(w): the time interval between the receipt of the end of
transmission of an inquiry message and the beginning of the transmission of a

response message to the station originating the inquiry.

Q1(wy;...;wy,) = Z Q1 (w;) (2.1)

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 11

Q1(wy]| ... ||wn) = max Q1 (w;) (2.2)

e Throughput Q>(w): the average rate of successful message delivery over a

communication channel (e.g., 10 successful invocations per second).
Q2 (wy;. . .;wy,) = min Qs (w;) (2.3)
Qa2 (w1] - - . ||w,) = min Qo (w;) (2.4)
e Execution price Q3(w): the fee to invoke w.
Qs(wy, ..., wy) = Qs(w;) (2.5)
e Reputation (Q4(w): a measure of trustworthiness of w.

Qa(wy, ... ,wy) = %ZQ4(wi) (2.6)

e Successful execution rate Q5(w): the probability that w responds correctly

to the user request.

Qs(wy, ... wy) = [[@s(wi) (2.7)

e Availability Q¢(w): the probability that w is accessible.
Qo(wr, ..., wn) = H Qs (w;) (2.8)

Please note that some of the above QoS criteria are negative, such as the higher
the value, the lower the quality. Response time and execution price are in this cat-
egory. The other criteria are positive, such as the higher the value, the higher the
quality. Throughput, reputation, successful execution rate, and availability are in

this category. When considering QoS-aware service composition for multiple QoS

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 12

criteria, people normally apply the Multiple Criteria Decision Making (MCDM)
technique |61] to solve this problem. A Simple Additive Weighting (SAW) [41] is
a common method used to aggregate multiple QoS values into a simple overal QoS
value. There are basically two phases to use SAW. The first phase is called the scal-
ing phase. Let the utility value U;(w,) be the scaled value of a quality 7 for a service
w;. For negative criteria, values are scaled according to Equation 2.9. For positive
criteria, values are scaled according to Equation 2.10.
Qi(w))=Q"" ¢ Qmaes — Qmin £ ()

Us(wy) = @™ | (2.9)

QP —Q;(w;) : max min
T gme. L Q" — Q] 0
Us(wy) = ¢ 94 | 7 (2.10)
1 if Q'Z(nax _ Q;nm =0
The second phase is called weighting phase. The overall quality score for a Web

service w; is defined in Equation 2.11:

Uw;) = Ui(wy) x W; (2.11)

where W; € [0,1] and Y W; = 1. W, represents the weight of criterion i.

2.1.3 QoS-aware Service Composition

Nowadays, an increasing number of companies and organizations implement their
core businesses and outsource their application services over the Internet. Some-
times, no single service can satisfy the functionality requested to accomplish a spe-
cific business goal. In such cases, a composite service which typically assembles and
invokes many pre-existing services to complete the business goal is necessary.
Automatic service composition is the generation of a business process to fulfill

business goals that cannot be fulfilled by individual services. Service composition is

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 13
defined as follows.

Definition 3 A service composition problem is a tuple (W, Diy, Do), where W is a

set of services, Dy, are the provided inputs, and D,y are the expected outputs.

QoS-aware service is the generation of a business process to both fulfill business
goals and achieve QoS optimization. In this thesis, we focus on the QoS-aware
service composition problem, as defined in Definition 4, where functional goals and

QoS optimization can be achieved at the same time.

Definition 4 A QoS-aware service composition problem is a tuple (W, Dy, Doy, Q),
where W is a set of services, Dy, are provided inputs, Do, are expected outputs, and

Q s a finite set of quality criteria.

2.2 Literature Review

Some existing work decomposes QoS-aware service composition into two sub-problems,
for example the service composition problem and QoS optimization problem. Since
functional goals need to be satisfied first, service composition needs to be performed
preceding QoS optimization. In such a case, the study of service composition and
QoS optimization become separate research branches, for example with automatic
service composition and service selection problems.

Automatic service composition has been widely studied |3, 18, 23, 33, 75|. Most
research is based on workflow techniques [12, 58, 60, 68| or AI planning techniques [45,
46, 47, 48, 71, 81]. For the former, a composite service is regarded as a workflow [13].
The definition of a composite service includes specifying the control flow and data
flow among atomic services. For the latter, each Web service can be specified by
its preconditions and effects in the planning context. The workflow methods are
mostly used when the request has given the defined the process model and look

for the atomic services to implement the process model. Al planning methods are

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 14

used when the request has no process model but does has a set of expected outputs,
constraints, or preferences. In recent years, service composition has been studied in
cloud computing environments [5, 26, 27, 35| with the rapid development of cloud
computing [4, 62].

A service selection problem |78, 80| has a predefined business process template
and each task in the business process can be fulfilled by a set of services with varied
QoS. The objective is to select a set of services that can optimize the QoS of the
entire process. This combinatorial optimization problem can be modeled as a multi-
dimension multi-choice 0-1 knapsack problem. Integer programming is a powerful
tool to solve it [80]. As this is an NP-complete problem, a heuristic search can
be applied to search the problem space only partially [6, 78]. A Genetic Algorithm
(GA) is another way to partially search the problem space |11]|. The advantage of GA
compared to integer programming is that the GA can deal with nonlinear constraints
of QoS requirements.

A service selection problem is also called a horizontal composition problem (versus
vertical composition)|29]. It models the problem as a constraint satisfaction problem
(CSP). Rooted on AI, a CSP can model hard constraints, for example the functional
requirements in ASC, and soft constraints, for example optimizing QoS in ASC. The
penalty of violating a hard constraint is infinite, versus a finite penalty to sub-optimal
QoS values. Therefore, the CSP algorithms search for a solution which minimizes
the penalty. Hassine et al. [29] proposes an interactive algorithm for solving the
problem with user inputs. Their model can be used to solve the vertical composition
problem as well. Nguyen et al. |[50] use fuzzy constraints to model service clients and
providers’ preferences. Services can communicate with each other to find an optimal
solution in a distributed manner. In [72], a model for QoS-satisfied predictions is
proposed based on the hidden Markov model (HMM) [43].

Instead of aggregating multi-criteria QoS values into an overall score according to

an MCDM (39, 44], a skyline technique can be used to calculate a set of dominating

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 15

services [9]. Yu et al. [76] considers computing a service skyline from uncertain QoS
values. Qi et al. [77] generates a service skyline composed of a specific set of services
that other possible service sets cannot dominate with respect to the QoS parameters.

In our work, we study the QoS-aware service composition problem where QoS
optimization and functional goals can be achieved at the same time. The Web
Service Challenge [7] targets this type of QoS-aware service composition problem,
such as the approaches proposed by the first place winning paper [32] and the second
place winning paper [74] of WSC09 [7]. However, both approaches generate more
redundant services. A later paper [34] from the authors of [32] considers that a sub-
graph of the service connection graph could be a solution. This is an incorrect idea
because the service connection graph contains states unreachable from the initial
state that do not need to be constructed. It also removes the possibility of reusing
actions in a plan. A heuristic search is also a commonly used approach for large
problem spaces [38].

Another QoS-aware service composition related problem is redundant service re-
moval. In most cases, there are redundant services that can be removed from the
optimal solution generated by QoS-aware service composition approach. The opti-
mal solution after redundancy removal will have less execution costs. Redundant

service removal problems have been addressed in ASC. Kwon et al. [40] proposes a

al. [30] also mentions redundant service removal in the composition of Web services.
However, as far as we know, almost all previous work on redundant service removal
problem is studied in the context of ASC rather than QoS-aware service composi-
tion. It is difficult to study redundant service removal problem in QoS-aware service
composition due to the functional overlapping of the chosen services. In our work,
redundancy removal problems are studied in the context of QoS-aware service com-
position to achieve bi-objectives: functional goals and QoS optimization.

In the following, we will review the techniques in the related research area. Web

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 16

service composition using the GraphPlan algorithm is presented in Section 2.2.1. In
Section 2.2.2, we review QoS-aware service composition algorithms. Finally, other

related techniques are presented in Section 2.2.3.

2.2.1 Web Service Composition Using the GraphPlan Algo-

rithm

AT planning [24] has been applied with success to service composition [14, 55], be-
cause a service composition problem can be mapped onto an Al planning prob-
lem. Following [81], it is possible to map a service composition problem (W, Dj,,
Doyt) to a planning problem P = ((S,W,7), Din, Do) with service inputs being
mapped to action preconditions (in(w) — pre(w)) and outputs to positive effects
(out(w) — ef fectst(w)). Plans can be encoded in any orchestration language with
assignment, sequence, and parallel operators, e.g., WS-BPEL [52]. Additionally,
planning graphs enable the retrieval of plans with parallel invocations. These can be

encoded using parallel operations (WS-BPEL flow).

Definition 5 Given a finite set L = {p1,...,pn} of proposition symbols, a planning
problem [24] is a triple P = ((S, A,7), So, g), where:

e S C2F is a set of states.

A is a set of actions, an action a being a tuple (pre, ef fects™) where pre(a) C L

and ef fectst(a) C L denote respectively the preconditions and the (positive)
effects of a.

v 18 a state transition function such that, for any state s € S where pre(a) C s,

v(s,a) = sUef fectst(a).

so € S and g C L are respectively the initial state and the goal.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 17

In Definition 5, pre(a) is the set of the propositions as the precondition of action a.
The definition in [24] takes into account predicates and constant symbols which are
then used to define states (ground atoms made with predicates and constants). A
predicate can be regarded as a Boolean-valued function on a subject which has the
value of true or false. A proposition is understood as a statement which affirms or
denies a predicate of a subject. We directly use propositions here because in the Web
service models we do not have predicates. In [24], an action also includes negative
effects. Since in Web service models we have only positive effects, we remove the
negative effects definition for clarity.

Different algorithms have been proposed to solve planning problems and to get
plans from them such as depending on whether they are building the underlying
graph structure in a forward (from the initial state) or backward (from the goal)
approach [24]|. The study in this thesis is based on an Al planning algorithm called
GraphPlan [8]. Recent works have demonstrated the suitability of this model for
ASC [57, 81]. GraphPlan is particularly interesting for our idea of applying Dijkstra’s
algorithm to it, because the planning graph used is a compact representation of all
the possible execution paths. This makes it possible to do a systematic search on
the planning graph.

A planning graph G is a directed acyclic leveled graph (see Fig. 2.2). The levels
alternate proposition layers P; and action layers A;. The initial proposition layer F,
contains the initial propositions (sg). An action a is put in layer A; iff pre(a) C P4
and then ef fectst(a) C P,. The multiple actions added into one layer are inde-
pendent in the sense that they could possibly be executed in parallel. The planning
graph actually explores multiple search paths at the same time while expanding the
graph. The construction of the planning graph stops at a layer P, if the goal is
reached (g C Py) or in case of a fixed point layer (P, = P;_1). A fixed point layer in
a planning graph G is a layer k such that P, = P,_; and Ay = Ax_1. In the former

case there exists at least a solution, while in the latter there is not. Solution(s) can

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 18

be obtained using a backward search from the goal. In GraphPlan, the solution is

layered as defined in Definition 6.

Definition 6 A plan is a sequence of sets of actions mi;ma; . .. T,, in which each
m (i=1,...,n) is a set of parallel actions (denoted with ||). m is applicable to sy.

m; 18 applicable to vy (s;_o,mi—1) wheni=2,...,n. g Cy(...(v(v(s0,m1),m2) ... 7).

We can understand that a plan transfers the system state from its initial state
s to an end state s, which contains the required goal g. The effects of the actions
in an action layer provide the preconditions of the actions in the next action layer.
The actions in one layer m; are parallel to each other. For example the effects of an
action should not be the precondition of another action. Finally, there is no loop in
a plan.

The GraphPlan approach contains two phases.

1. The planning graph construction phase builds the planning graph from F.
The graph construction algorithm stops when the goal is reached or a fixpoint
is reached. The complexity of this algorithm is polynomial in the size of the
planning problem [8]. If the goal is reached, the problem has a solution. We
come to the conclusion that the existence of a solution is detected in polynomial

time.

2. The second phase is to extract a solution using a backward search from the
goal layer. Normally the second phase is more costly. In the most general
cases (i.e., if the problem has negative effects), the backward search phase may
require backtracking and the complexity is NP-complete. If the problem only
has positive effects such as a service composition problem modeled as graph
planning problem, we see that backtracking is not needed [31]. Since negative
effects cause the existence of mutually exclusive for a pair of actions or propo-

sitions. No negative effects means no exclusions exist, and that backtracking

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 19

does not happen. During the backward search, we want to find a solution that
consists of a minimal set of services. Once the planning graph is constructed,
the length of the solution is known (i.e., the number of action layers in the
planning graph minus one). We can use a minimal hitting set algorithm [25]
to obtain the minimal number of services in each layer of solution. A hitting
set for a collection of sets C'is a set H C UgeeS such that H NS # {} for
each S € C. A hitting set problem is known as a NP-complete problem. What
we need is the hitting set with the smallest cardinality: a hitting set for C' is

minimal if and only if no proper subset of it is a hitting set for C.

Following 81|, it is possible to map a service composition problem (W, Dy,
Doy, @) to a planning problem P = ((S,W,~), Din, Doy) with service inputs being
mapped to action preconditions (in(w) — pre(w)) and outputs to positive effects
(out(w) — ef fects™(w)). Plans can be encoded in any orchestration language with
assignment, sequence, and parallel operators (e.g., WS-BPEL [52|). Additionally,
planning graphs enable us to retrieve plans with parallel invocations. These can be

encoded using parallel operations (WS-BPEL flow).

Example 1 A set of available services with their input/output parameters are listed
in Table 2.1 (modified from [34]). The composition query is (Din, Dowt) = ({A, B, C},
{D}). We use the GraphPlan approach to solve this service composition problem.
According to D;,, D, and the available services in Table 2.1, we construct a planning
graph as shown in Figure 2.2.

In Figure 2.2, the no-op actions are represented by dashed arrows. A no-op action
simply inherits a true proposition from a previous proposition layer. It has no cost. A
no-op action is preferred over a non no-op action during the plan extraction phase.
At an action layer, all the enabled actions can be added, including those possibly
added in the previous layers (the shaded actions in Fig 2.2). An action a at layer

A; takes the incoming arcs originating from its inputs at P;_1 and connects to its

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

v
>

9 (I -« OO m mMm O O @

Figure 2.2: The planning graph for Example 1.

20

outputs at P;. For erxample, wy, at Ay takes three arcs originating from its inputs

A, B and C at Py and connects to its output J at P;. To make the figure readable,

we do not draw all the no-op arcs on As, neither do we draw the arcs connecting

the shaded actions in the action layers after. Please notice that the graph achieves

the goal D at layer Ps. After the planning graph achieves the goal, we extract three

solutions starting from goal D at Py: {wq;we}, {we; ws;wr}.

Table 2.1: A set of available services
w; | inputs | outputs || w; | inputs | outputs
w1 A, B, C J Ws K H
Wa B, C E, F We J D
W3 C, E H wr H D
Wy C, F G wg G H

2.2.2 QoS-aware Service Composition Algorithms

Several algorithms have been proposed to solve the QoS-aware service composition

problem to fulfill functional goals and achieve QoS optimization at the same time.

We describe them below.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 21

Effective Pruning Algorithm

The first place winning paper |74 of Web Service Challenge 2009 (WSC09) |7| pro-
posed an effective pruning algorithm to for QoS-aware service composition to achieve
functional goals and QoS optimization at the same time. Figure 2.3 presents the
system architecture of this algorithm. The solid arrows shows the workflow of ini-
tialization. The initialization process (a) takes the input of the system including
the service description (WSDL file), the semantic annotation (OWL file), and QoS
description (WSLA file) to build the concept forest (b) and the service repository
(¢). The concept forest and the service repository are used to build an inverted index
table [1] as the fundamental data structures. Challenge client sends the request to
the system (el) and the request is forward to the filter (e2) that generates a sub-
graph. Making use of multiple threads techniques, two threads are used to search
the sub-graph to find the composition results satistfying the highest throughput and
the lowest response time separately (g). The composition results are sent back to
the challenge client (i).

In the system, the filter plays an important role in the system. The filter runs
a filter algorithm followed by a modified dynamic programing. The filter algorithm
generates a layered service graph. The layered service graph is a network of services
where the network is expanded layer by layer according to the matching relation
between input concepts and output concepts of services. When there is a layer of
services whose output concepts contain all the expected output concepts, the sub-
graph stops at this layer. In such a way, the filter algorithm filters out the rest of
services which are not necessary to be added into the layered service graph. However,
we found that the filter algorithm does not consider the possibilities of reusing services
when building the layered service graph. Therefore, the effective pruning algorithm
[74] may not find the optimal solution.

When constructing the layered service graph, modified dynamic programming is

proposed to find out the optimal throughput and response time for each concept and

CHAPTER 2.

Challenge Client

€1

BACKGROUND AND LITERATURE REVIEW

A 4

A 4

initialize

startQuery

result

Concept
Forest

Response
Time Process
Thread

Sub [Tttt >

Graph

N~

Composition System

A
i
1
1

A
i
!

!

Service
Repository

Process
Thread

Throughput

Figure 2.3: System architecture |74|

22

each service respectively through a concept map. In such a way, an inverted index

table mapping each concept with two services that provide this concept with the

optimal throughput and the optimal response time respectively is constructed. The

backward search makes use of the inverted index table to search the optimal plan

backward from the requested service to the service in layer 1. The principle of the

backward search is that it will always find an optimal service at layer k (1 < k < i)

for a concept as an input of a service at layer i. However, it causes the optimal plan

to contain more redundant services. A plan with an optimal QoS value does not

mean any sub-path of this plan needs to be optimal. More services indicate more

execution costs.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 23

A QoS-driven Approach

The second place winning paper 74| of WSCO09 [7] proposed a QoS-driven approach
for QoS-aware service composition. Figure 2.4 shows the overview of the algorithm.
The algorithm divides the composition task into three steps, breadth-first search,
semantic optimization, and QoS optimization.

During the breadth-first search, the algorithm first creates pairs of services {P,S}
where service P can directly invoke service S. Then the algorithm scans the set of
service pairs to generate a graph represented by a sequence of layers. Starting from
the provided parameters by the request, services are added into the first layer. The
output parameters of services in the current layers plus the available parameters
invoke services in the next layer. The breadth-first search continues this process
until all the available parameters contain the required parameters.

The second step of semantic optimization is to decrease the number of services.
The removal of redundant services to maintain the minimum number of services can
still produce the requested output parameters.

The last step of QoS optimization is to select services from many candidate ser-
vices, since the same functionality can be provided by different service characterized
with various QoS.

We find the QoS-driven approach has two shortcomings. Firstly, it is doubtful
that the QoS-driven approach can find the optimal solution. In the layered graph,
a service does not belong to the first k — 1 layers if this service belongs to the k"
layer. It eliminates the possibility of re-using services in a solution, which may find
a non-optimal solution. Secondly, the solution found by the QoS-driven approach
may contain more redundant services. In the third step of the QoS optimization, if
a parameter can be provided by several services, the search selects a service with the
optimal QoS value that provides this parameter. Since several parameters can be
produced by the same service and several services may have the same QoS values, the

QoS optimization may find an optimal solution containing some redundant services.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 24

Entire Search Semantic QoS
(Breadth-First) Optimization Optimization
* ~N 7 g * ~N 7 g

Figure 2.4: Algorithm overview: 3 steps search |[74]

After the redundant services are removed, the still functional solution works and has

the optimal QoS value.

Goal Programming Approach

Cui et al. [16] analyzes scenarios of Web service composition and models QoS-aware
service composition as a goal programming problem. Cui et al. [16] targets at solving
QoS-aware service composition in accordance with customers’ preferences.

In order to build the mathematical modeling, Cui et al. [16] first defined the
parameters and variables to be used in the model. Z, I, and O are the variables
representing a Web service, an input attribute, and an output attribute respectively.
m is the number of services. n is the number of attributes for each service where
n = max{|/|,|O|}. L is the maximal number of composition levels. Z;; means the
status of the j* Web service in the ¥ level of the composition where j = 1,...,m and
t=1,..., L. The other parameters and variables are defined as shown in Figure 2.5.
Among all the variables, Z;; is the decision variable. If Z;; = 1, Web service Z; is
selected in the iy, level. Otherwise, Z;; = 0.

Based on the defined variables and parameters, a set of objective functions is
defined. The objective functions are defined in terms of the optimized objectives. If
considering the execution price, the objective is to minimize the overall price of the
services in the composition.

L m
minz Z 215+ pj

=1 j=1

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 25

Z, web service that is currently available in the database;
lj .
Z,eZ;j=12,..ml=12,..,L
Iij the i input attribute of service Zj;i =lL..,nj=1,2,....m
ij the i output attribute of service Zj;i =1,...,mj=1,2,....,m
p; the fixed price for acquiring the service from Zj ;j=12,....m
tj the execution time of service Z/ 5] = 1,2,....m
f_/. the failure rate of service Z ; j = 1,2,....,m
q, the reliability of service Zj;j =1,2,....m
Co the maximum total cost that the customer is willing to pay for the services
T the maximal total execution time that the customer allows to accomplish the entire
0 process of services
Qo the minimal reliability that the customer allows for a service in the composition
0) the minimal overall reliability that the customer allows for the entire service complex,
where O, > O,

Figure 2.5: Definition of variables and parameters [16]

If the execution time is under consideration, the objective is to minimize the
total process time for executing the entire series of services. Since services at the
same level are assumed to be executed in parallel, the execution time 1, of the
services at ['" level is the maximum service execution time of the I** level, i.c., n; =
max;{t; - Z;;}. Therefore, the total execution time of services in the composition is
S°F max;{t; - Z;}. The total execution time can be reformulated into the following

linear function: .
min E m
=1

subject to

If reliability is under consideration, the reliability of the service composition is

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 26

the summation of the reliability of services included in the composition. The highest
reliability is the objective to be optimized. Since maximizing the overall reliability
corresponds to minimizing the product of the failure rates of the services in the

composition, the objective function to optimize the reliability is:

min fi
Z]'GS
where szes f;j is the overall failure rate of the services in the composition.

Also, a set of constraints are defined based on the defined variables and param-
eters. The hard constraints including input constraints, output constraints, and
the relationship of the outputs and the inputs between the levels are the functional
constraints that the service composition must satisfy.

Input constraint specifies that the inputs of the compositions should be included

in the inputs provided by the composition.

L m

ZZ[UZUZ[ZO i:1,2,...,n.

=1 j=1

Output constraint require that the outputs of the services in the composition

should contain all the expected output parameters.
L m
ZZOU'ZUZOM_L'O i:1,2,...,n.
=1 j=1

All the inputs of the services in the first level must be contained in the initial
inputs.

ZIUZUSI'LO ?::1,2,...,71.
j=1

Moreover, all the inputs of services at k" level must be contained in the initial

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 27

inputs and the outputs produced by services in previous levels.

m

k. m
Z Lij» Zgs1j — Z Z Oi; - Zi; < Iy

j=1 I=1 j=1
k=1,2,....L—1i=12,...,n.

Other constrains are soft constraints. Normally, soft constraints are the require-
ments regarding QoS. For example, the constraint on the total cost should not exceed

a certain value Cj.
L

NN I 721 < Cy

=1
In terms of the objective functions and constraints, [16] formulates three multi-

criteria scenarios according to the customers requirements.

2.2.3 Other Related Techniques
Dijkstra’s Algorithm

Dijkstra’s algorithm’s goal is to find the shortest paths from a single source in a
graph [42]. Dijkstra’s algorithm is a systematic search algorithm. If the graph is
finite, a systematic search means that the algorithm will visit every reachable state,
and keep track of states already visited to avoid infinite loops when the graph has
cycles. If the graph is infinite, the systematic search has a weaker definition. If a
solution exists, the search algorithm still must report it in finite time; however, if
a solution does not exist, it is acceptable for the algorithm to search forever. It is
known that the planning graph is finite and it takes polynomial time to construct
the planning graph. We are dealing with a finite graph in this thesis.

Suppose a graph G = (V, E) has every edge e € F labeled with a distance d(e).
Assuming the edge e is from a vertex v, we can also write it in the state-space

representation d(v, e).

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 28

For each vertex v, we define a cost-to-come function C' : V' — [0, 00]. For each
vertex, the value D*(v) is called the optimal cost-to-come from the initial vertex vy.
This optimal value is obtained by summing edge distance, over all possible paths
from v; to v and using the path that produces the least cumulative distance. If the
cost is not known to be optimal, it is written as D(v).

Initially, D*(v;) = 0. Each time a vertex ¢’ is visited, a distance is computed as
D(v') = D(v)* + d(v, e), in which e is the edge from v to v'. Here, D(v’) represents
the best cost-to-come known so far, but we do not write D* because it is not yet
known whether v" was reached optimally. In the search algorithm, we have a queue
to record all the vertices to visit. If v’ is visited again, which means a new path to
v’ is discovered, the cost-to-come value D(v’) may be updated if the new path has a
lower value.

The complexity of Dijkstra’s algorithm over a Graph G = (V, E) is O(|V]?)
without using a min-priority queue. The common implementation based on a min-
priority queue implemented by a Fibonacci heap and running in O(|E| + |V|log|V|)
is due to |22].

We can only describe the principle of Djikstra’s algorithm in this paper. The
following is an example to explain how to find single-source shortest paths in a
graph through Dijkstra’s algorithm. Algorithm 1 is the pseudo code of Djikstra’s
algorithm [70].

Example 2 Figure 2.6 is a graph with the arcs labeled with their lengths. Node A
18 the source vertex. Table 2.2 presents the steps through Digkstra’s algorithm to find
the shortest path from the origin A to any other destination vertex in the graph. In
Table 2.2, d(.) represents the distance of the node and p(.) represents the parent of
the node. The numbers in the first column of Table 2.2 show the number of steps to
perform Dukstra’s algorithm. Once we successfully find the shortest path from the
origin A to a node, the node is added into “Solved nodes” in Table 2.2. For example,

at step “57, “Solved nodes” is ABCFD because nodes A, B, C, F and D have found

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 29

Algorithm 1: Dijkstra(Graph, source)

1: dist[source] := 0;// Distance from source to source
2: for each vertex v in Graph do
3: if v # source then
dist[v] := in finity;// Unknown distance function from source to v
previous[v] := unde fined;// Previous node in optimal path from source
end if
add v to @Q; // All nodes initially in @ (unvisited nodes)
end for
while () is not empty do
10: w := vertex in @ with min dist[u];// Source node in first case
11: remove u from Q)
12: for each neighbor v of v do

13: alt := dist[u] + length(u,v);
14: if alt < dist[v] then

15: distv] := alt;

16: previous(v] = u;

17: end if

18: end for
19: end while
20: return dist] |, previous| |;

their shortest paths.

Figure 2.6: The graph for Example 2.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 30

Table 2.2: Dijkstra’s algorithm

Solved B C D E F
nodes | d(B)/p(B) | d(C)/p(C) | d(D)/p(D) | d(E)/p(E) | d(F)/p(F)

1 A 7/ A 9/A 00/~ 00/~ 14/A

2 AB iy 9/A 22/B 0o /- 14/A

3| ABC A /- 20/C 00 /- 11/C

1| ABCF A - 20/C 20/F A

5| ABCFD - - A 20/F -

6 | ABOCFDE | /- iy e e e

Linear Programming

Linear programming (LP) is an important optimization technique which is in the
form of constrained optimization. Constrained optimization is harder than uncon-
strained optimization because constrained optimization needs to satisfy several re-
quirement in addition to finding the optimal point of the function. More formally,
linear programming is defined as the problem of maximizing or minimizing a linear
objective function, subject to linear constraints. The constraints maybe equalities
or inequalities.

For example, find numbers x; and x, that maximize the sum of x; + x5 subject

to the constraints that

r1,x9 > 0
r1+315 < 6
3r1 + 2z, < 12
T+ x < 2

In this problem there are two unknown variables and five linear constrains. All
constrains are inequalities and linear because each inequality is in some linear func-
tion of the variables. The objective function is to maximize x, + xs.

Linear programming can be used in various fields of study, such as in business

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 31

and economics. It has proved to be very useful in the optimal resource allocation
problem. In this thesis, we use linear programming to solve redundant service removal

problems in QoS-aware service composition.

Chapter 3

Anytime QoS-aware Service

Composition over GraphPlan

3.1 Introduction

In this chapter, we study the kind of QoS-aware service composition problem that
fulfills functional goals and achieves QoS optimization at the same time. To fulfill
functional goals is the objective of automatic service composition problems. Al
Planning [24| has been applied with success to solve service composition problems |14,
55]. Different algorithms have been proposed to solve planning problems and get
plans from them such as depending on whether they are building the underlying
graph structure in a forward (from initial state) or backward (from goal) way [24].
Al planning algorithms search the problem space to find a path from the initial state
to a goal state. Normally the planning algorithms stop at the first found feasible
solution, which corresponds to the shortest plan. This actually implies the execution
time for each service is a unit. Thus, the shortest path has the shortest execution
time, hence the shortest response time. With QoS consideration, the shortest plan
may not be preferred because a longer plan may have better QoS values. For example,

a plan with three consecutive services may be faster than a plan with two consecutive

32

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 33

services, when the response time of the services vary. Therefore, we need to modify
the classic planning algorithm to become QoS aware to find a QoS optimized solution.

Dynamic Programming (DP) and Integer Programming (IP) have been used to
find a QoS optimized solution [16, 32, 34]. However, they are based on a given
linearized formulation. To formulize the business constraints into linear algebra is
not a straightforward process. It involves proper assignment of variables and some
adjustments may be needed to make the relation among the linear variables. Hence,
it is not straightforward to model service composition problem into DP or IP. IP is a
known NP-hard problem. With an IP solver, the optimal solution without redundant
services can be obtained. We also find that some of the models ([34] does not consider
the possibility of reusing the same service in a plan).

People also tend to solve the QoS-aware service composition problem in two steps.
The first step is to choose a control flow which becomes the template of the target
business process. Then the services are selected for each task in the control flow
in the second step. This second step, called the service selection problem, is NP-
complete |78, 80|. We find that this kind of problem makes sense only if we have to
use a predefined control flow. Otherwise, we should decide control flow and services
selection at the same time in QoS-aware service composition. This is because it is
possible that some other control flows with some other services can have better QoS
than a predefined control flow can achieve.

In this chapter, we propose to combine a systematic search algorithm like Dijk-
stra’s algorithm with a planning algorithm, GraphPlan, to achieve both functional
goals and QoS optimization at the same time. The use of the GraphPlan algorithm
keeps the advantages of the AI planning model for easily modeling business logic,
reusing the actions in one plan, and planning parallel actions in a plan.

The rest of this chapter is organized as follows. Section 3.2 gives the motivation
to combine Dijkstra’s algorithm with the GraphPlan algorithm. In Section 3.3, we

provide a way to uniform the calculation of different QoS criterion for the purpose

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 34

of aggregating multiple QoS values into one overall QoS value. In Section 3.4, a
QoSGraphPlan algorithm is proposed to get the optimal solution with the best QoS
value for a single criterion of throughput or response time in polynomial time. We
also discuss the properties of our algorithm in this section. Section 3.5 discussed
the redundant activities in the optimal solution. For the other QoS criteria, such
as execution time, reputation, successful execution rate, and availability, Section 3.8
extends QoSGraphPlan with beam search to get the optimal solution with best QoS
value for both single criterion problems and multiple criteria problems. Section 3.10
presents the results of the experiments with artificial data sets.. Finally, the conclu-

sion is given in Section 3.11.

3.2 Motivation

The planning graph is a key structure built by the GraphPlan technique to represent
the problem space. Since Dijkstra’s algorithm is a graph traversal algorithm, we are
motivated to combine Dijkstra’s and the GraphPlan technique by using Dijkstra’s
algorithm on the planning graph.

The principle of Dijkstra’s algorithm is to calculate the best cost-to-come value
for a vertex. If we think of a proposition as a vertex of the planning graph, we could
use the same principle to calculate the best cost-to-come value that is the best QoS
value for each proposition. Then, we could get the overall cost-to-come value for all
the goal propositions. And during the search, we could record the best path which
is the best plan.

The above idea is feasible because the planning graph can be understood as
a compact representation of all the execution alternatives. As all the applicable
actions are considered on each layer, the planning graph is built to model the whole
problem space until a solution is detected, rather than to solve a particular problem.

Therefore, we could visit all the reachable system states over the planning graph.

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 35

This makes Dijkstra’s principle work over the planning graph.

Yet, we need to overcome several difficulties. First of all, Dijkstra’s algorithm is
for single source situations (i.e., one edge represents one path between two vertices).
While in a planning graph, a service takes multiple inputs which could possibly come
from multiple services. Therefore, a cost value needs to be calculated from several
edges, instead of one. Second, the planning graph presents both parallel and sequen-
tial connections between services, while a normal graph does not represent parallel
connections. Third, different QoS criteria have different formulas for calculation. We
need to find a way to calculate the aggregated QoS over the planning graph. We

present our solution in the following subsections.

3.3 Calculation of the QoS

Some of the QoS criteria are negative (i.e., the higher the value, the lower the qual-
ity). Response time and execution price are in this category. The other QoS criteria
are positive (i.e., the higher the value, the higher the quality). Throughput, repu-
tation, successful execution rate, and availability are in this category. We want to
have a uniform way to compare the qualities, especially with the multiple criteria.
We apply a Multiple Criteria Decision Making (MCDM) technique [61] to aggregate
QoS value Q(w). First, we scale the value of a quality ¢ for a service w;. For neg-
ative criteria (i.e., response time and execution price), values are scaled according
to Equation 2.9. For positive and non multiplication criteria (i.e., throughput and
reputation), values are scaled according to Equation 2.10. For positive and multi-
plication criteria (i.e., successful execution rate and availability), values are scaled
according to Equation 3.1. The logarithm is used for multiplication criteria so that
the aggregated utility value for a network can be monotonic to the aggregated QoS
value. For all the criteria, the higher the quality value, the lower the utility value

U;(w;). Please notice that other papers like [79] and [10] do a similar conversion,

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 36

but their aggregate functions have the opposite monotonic direction (the higher the
quality value, the higher the utility value). This is because the classic Dijkstra’s
algorithm finds the “shortest distance” (lowest cost) over a graph. Therefore, we
calculate the utility value to make sure that lower utility value corresponds to better

quality.

ln(Q;"az)_ln(Qi(Wj)) if Qmax - Qmm ?é 0
In(QMez) _n(Qmin I3 7

Us(w;) = (@) —In(Q™") ' ‘ (3.1)
1 if Qmes — Qin = 0

Then, we use Equation 2.11 to calculate the overall quality score for each Web
service.

For a network of services o = wy, wo, ..., w,, we also want to get the aggregated
utility value. Equations 3.2 to 3.9 aggregate the single criterion values. We can easily
prove that Equations 3.2 to 3.9 sort the networks in the order that Equations 2.3
to 2.8 do. That means if o; is better than o, according to one QoS criterion, o

should be better than oy according to its correspondent utility criterion.

Up(wy;...5wy) = > Up(wy;) 3.2
Up(wr]] ... |Jwy,) = max Uy (w;) 3.3
Us(wy;. . .;w,) = max Us(w;) 3.4
Us(wi]|...||wn) = max Us(w;) 3.5

Us(wy,...,w,) =Y Us(w;)
Ug(wy, ..., w,) = £ 3 Uy(w;)
Us(wy, ..., w,) = Us(w;)
Us(wy, ..., w,) =) Us(w;)

If we want to compare a network of services ¢ = wy,...,w, under multiple

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 37

criteria, we need to get the single criteria utility values first, then aggregate them
into one general utility score. The aggregated utility value for ¢ is as Equation 3.10.
We need to apply a normalization before we can aggregate the utility values. For
throughput and reputation, the aggregated utility for single criterion is between [0,1].
For the other criteria, the aggregated utility for single criterion is between [0,n|. Thus

we need to divide these values by n [34].

Ule)= Y %Ui(a) x Wi+ Y Uilo) x W; (3.10)

i=1,3,5,6 i=2,4

where W; € [0,1] and Y W; = 1.

In the anytime QoS-aware service composition approach, we study QoS-aware
service composition under both single criterion and multiple criteria. For single
criterion problems, we can use either single QoS values or single utility values to
compare the plans. For multiple criteria problems, we should first calculate the
single utility values and then aggregate them into one general utility value using
Equation 3.10.

If the QoS value is represented as a range (e.g., |90-100|), we use a value (e.g., the
middle value between 90 and 100) as a representative of the set of values. Hence, we
can still use the above formulation to calculate the QoS of a network of connected

services.

3.4 Generation of Tagged Planning Graph

For simplicity, we present our algorithm using response time as the single quality
criterion. For example, the cost(a) in Algorithms 2-5 is either the QoS value (using
Equations 2.1 and 2.2) or the utility value (using Equations 3.2 and 3.3) of response
time for a service. Either way should get the same solution. The calculation of the

other QoS criteria is discussed in Subsection 3.6.

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 38

We can consider a classic Planning Graph is a Directed Acyclic Graph (DAG)
G = (V,E). It has two kinds of vertices V' = V4 U Vp, where V4 are the vertices
representing actions and Vp are the vertices representing propositions. Edges E =
(Vp x Va) U (V4 x Vp) connect the vertices. The edges (Vp x V4) connect the input
parameters with the actions, while (V4 x Vp) connect the actions with their output
parameters.

We associate a real value to every vertex of a planning graph and obtain a Tagged

Planning Graph (TPG):

Definition 7 A Tagged Planning Graph (TPG) is a Planning Graph G = (V, E)

with a cost function cost(V') for vertices, cost : V +— R, where R is the real numbers.

The tags on the action vertices are the QoS values (or utility values) for executing
the actions (i.e., cost(a) is the cost of executing an action a). The tags of the propo-
sition vertices are the QoS values (or utility values) for obtaining this proposition
(i.e., cost(p) is the cost of obtaining a proposition p).

Algorithm 2 called QoSGraphPlan is our main algorithm. It is modified from
the standard GraphPlan algorithm [24] to calculate TGP and extract a solution.
QoSGraphPlan repeats ExpandGraph (Algorithm 3) (line 2) until a fixed point
(Definition 8) is detected (line 7). When all the goals ¢ are satisfied and some of
them are generated by non no-op actions (line 3), which means a new solution is
found, the algorithm calls FxtractPlan (Algorithm 5) to extract the plan (line 4).
Extract Plan returns a solution only when it detects the found solution is better than
the best solution found so far. This makes QoSGraphPlan an anytime algorithm.
As time goes by, QoSGraphPlan can return better and better plans. When the fix
point is reached, QoSGraphPlan terminates.

Algorithm 3 expands the TPG by one layer. Line 1 gets all the enabled actions
for action layer 7. The enabled actions are those whose inputs are in the previous

proposition layer ¢ — 1. Each action has a tag ¢ which is the cost value. The P,

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 39

Algorithm 2: QoSGraphPlan(A, so, g)
Data: G = (P, Ay, Py, ..., A;, P;) is a planning graph; i=1;
1: repeat
2. G = ExpandGraph(Q);
3: if ¢ C P, and g generated by non no-ops then
4: print EztractPlan(G, g);
5
6

end if
1=1+1;
7. until Fizedpoint(G)
8 if ¢ Z P, then
9: print (;
10: end if

Algorithm 3: ExpandGraph({Po, A1, ..., A;, P;))
1 A; =A{(a,t)|pre(a) C P_1,a € A,t = cost(a)};
2. B,={(p,t)|3a € A; : p € ef fects(a),t = min, (max(cost(pre(a))) + cost(a)),
record a that generates t as the best parent of p};
3: for each a € A; do
4: link a with precondition arcs and effects arcs to pre(a) and ef fects(a) in

Pi1;
5. link a with each of its ef fects(a) in P;
6: end for

7. return (P, Ay, ..., A;, P);

Algorithm 4: Fizedpoint({Py, Ay, ..., A;, P;))
1: if P, = P,_; then
2: return true;
3: else
4: return false;
5. end if

layer contains the effects of A;. We want to calculate the cost-to-come value for each
p € P;. If an action a produces p, the cost of p is the maximum of the costs of all the
preconditions of a plus cost(a). If there are several actions to produce p, we choose
the action which can produce the minimal cost-to-come. This is what min, means
and this action is recorded as the best parent of p. If there is more than one parent

producing the best cost-to-come value, we can choose either one because both paths

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 40

Algorithm 5: ExtractPlan({Py, A1, ..., An, Pn), 9)
Data: U is the QoS value for the current best plan

1: U' = max(cost(l)), VI € g;
2: if U’ > U then

3: return ()

4: else

5: U=U'

6: end if

7. fori=n,...,1do

8: Select an action set m; = {a|a is the best parent of [,VI € g};
9: g={pre(a)|Va € m;};
10: end for

11: return 7

are equally the best. Lines 4 and 5 create the arcs between actions and propositions.

Algorithm 4 checks if a fixed point layer is reached.

Definition 8 A fized point layer in a TPG is a layer k such that for ¥i,i > k, layer
1 1s identical to layer k, i.e., P, = P, and A; = A;,.

P, = P, means the vertex-tag pairs are identical between P; and P,. Formally,
V(p,t) € P, (p,t) € P and V(p/',t') € Py, (p/,t') € P;. A; = Ay have similar meaning.
Theorem 2 in the following subsection shows we just need to check whether P, = P;_;
at a layer 3.

Algorithm 5 first calculates the cost for the whole plan in U’. For the response
time, it is the maximal cost of the all the goals U’ = max(cost(l)) (line 2). It uses U
to record the best cost value known so far. Only if the new cost U’ is lower than U,
the algorithm extracts the new plan (line 7-9), otherwise, it returns () (line 3). Since
when the TPG is built we record the best parent of a proposition, the extraction of a

new plan consists of retrieving the recorded best parent for each involved proposition.

Example 3 Figure 3.1 shows the TPG for the problem in Exzample 1. Fach propo-
sition node or action node is labeled by its tag, denoted as “QoS value/utility value”,

in the TPG. At the proposition layers, propositions are separated by dashed lines. w,

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 41

at layer Ay has a tag 800/1 because the response time of wy is 800, w.r.t the utility
value of 1. J is the output of wy and only wy at layer Ay produces J. According to
line 2 of Algorithm 3, max(cost(pre(wy)))+cost(w,) = 800. Therefore, J at layer P,
has the response time of 800, w.r.t the utility value of 1. Table 3.1 lists the value of
“QoS value/utility value’for each proposition over Py to Py. At the fized-point layer
Py, the goal D has its best response time 600. Using either the QoS values or the

utility values, the best solution is obtained through backtracking: {wa;ws; ws;wz}.

A (800/1) (800/1)
(0) Wy
""" B < (800/1)
h (0) 5 (100/0) (100/0) 5
0 T | € QU oo \fLo00r2)| G (wa] foor029
: (800/1) (0) Q E (600/0.71) E (600/0.71) E
0 TEA N w (100/0) (100/0)
¢ W, (100/0) | \cor07) |\ Fl =2 T == T Fo
(0 (100/0) N F ——————— (100/0) (100/0) (100/0)
(100/0) Wo STA R Se] (we | /T G
............... (100/0)
] (200/0)
(800/1) we] W NS YV 1+ | Y | 1 |
(100/0) N\ UA300/0.29) | (8091 L7 o ey | 1800/1)
(100/0) (100/0)
Py A P, A, P, Ay P3 Aq Pa

Figure 3.1: The tagged planning graph for Example 1.

Using QoSGraphPlan for throughput as single criterion. If we use QoS
value according to Equations 2.3 and 2.4, line 2 in Algorithm 3 should use ¢t =
min, (min(cost(pre(a)), cost(a))) to calculate the cost value. If we use utility value
according to Equations 3.4 and 3.5, t = max,(max(cost(pre(a)), cost(a))) should be

used. When we calculate the cost for the whole plan in line 1 of Algorithm 5,

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 42

Table 3.1: The QoS value (numerator) and the utility value (denominator) for a
proposition at each proposition layer p € P; (i = 1,...,4) in the TPG for Example 1

Proposition | Fy P P, P P,
A 0 0 0 0 0
B 0 0 0 0 0
C 0 0 0 0 0
D - - 900/1 900/1 | 600/0.29
E - 1 100/0 100/0 100/0 100/0
F - 1 100/0 100/0 100/0 100/0
G - - 200/0 200/0 200/0
J - 1 800/1 800/1 800/1 800/1
H - - 700/0.71 | 300/0 | 300/0

U’ = min(cost(l)),Vl € g should be used, if we are using QoS value, or U’ =
max(cost(l)),Vl € g should be used, if we are using utility value.

The QoSGraphPlan algorithm works well for response time and throughput when
they are considered as a single criterion. The QoSGraphPlan has polynomial time
complexity (proofs in the next section). The QoSGraphPlan considers the best plan
as the plan with the lowest cost. Practically, the QoSGraphPlan searches for the best
path to generate each proposition in the goal and puts all the best paths together
as a best solution. However, it is not necessary to use all the best paths to generate
the goal propositions because the QoS value for the whole plan is determined by
the worst path. It is possible that we can relax the best paths to some paths that
could share some services, which means lower execution costs with the same best
response time or throughput. We discuss the redundancy problem in Subsection 3.5.
Redundancy removal is only necessary when multiple criteria are considered. For

single criterion optimization, redundancy removal is not necessary.

3.4.1 The Properties of QoSGraphPlan

We present the properties of our QoSGraphPlan in this subsection.

Theorem 1 The time to expand a TPG to layer k is polynomial to the size of the

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 43

planning problem.

Proof: for a planning problem (A, sg, g) has a total of n propositions and m actions,
then Vi : | P;| < n. This is because even though a proposition may be associated with
different tags, a proposition can only appear once in P;. Thus |P;| < n. Further,
|A;] < m + n which include possibly n no-op actions. Therefore, the size of a TPG
with k layers is [so| + (m + 2n)k O.

Theorem 2 FEvery TPG has a fized point layer k, which is the smallest k such that
Pk,1 — Pk

Proof: Ay, depends only on P,. Thus P,y = P, implies A;,; = A, and conse-

quently Py, = Pj. Therefore, for Vi > k, A; = Ay, P, = P,. O
Theorem 3 QoSGraphPlan has polynomaial time complexity.

Proof: Theorem 1 shows the time to expand a TPG is polynomial to the size of
the problem. Theorem 2 proves the expansion of a TPG stops at a fixed point. Now
we only need to prove the solution extraction by Algorithm 5 is polynomial. The
complexity to get a solution by Algorithm 5 lies in retrieving the parents of the goals
on each layer, until reaching the initial layer. As the best parents are recorded during
the construction phase, it takes |g| < |D| operations to |g| parents at each layer. It
takes n < |A| loops to do the retrieval on n layers. Therefore, QoSGraphPlan is
polynomial. O

QoSGraphPlan is also an anytime algorithm. When it has finished, the best
response time value and a correspondent solution are produced. If the problem has
no solution, our algorithm can report no solution, as the graph plan algorithm.

Understanding the scheduling of services over TPG. When a service is as-
sociated with the response time in TPQG, a question that arises: when can the services
on the next action layers start? Is it after finishing all the services in the previous

action layer? One should understand that TPG constrains the input and output

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 44

dependency among the services. If the inputs of a service are produced, this service
can start. TPG does not show the time constraints among the services. Therefore, it
is possible that a service will start before all the services in the previous action layer
are finished. We use ; and || to represent the connections of the services in TPG.
However, this representation does not express the input and output dependency, nor

the starting sequences in the sense of scheduling.

Example 4 Figure 3.2 shows a planning graph with six services and their input and
output parameters. The response time of each service is shown in the underneath
parenthesis. For clarity, we do not draw the duplicated services and the no-ops at the
action layers. Assume we want two goals dg and d;. Service ws can possibly start
at the time point 40 when wy or ws is not finished, as at the time point 40 its input
is ready. The best solution to this problem is {(wy;wy)||(ws; we)} and the optimal

response time is max (7T (dg), T'(d7)) = max(90,250) = 250.

Figure 3.2: An example to explain the scheduling of services over TPG

3.5 Redundant Activities

QoSGraphPlan calculates the lowest cost for each proposition, including the goals.
QoSGraphPlan simply combines all the best paths to produce the individual goals

together as a solution. This is the best solution in the sense that each goal is

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 45

generated with the lowest cost. However, it is not necessary to use all the best paths

to generate the goal propositions. Please check the following example.

Example 5 Figure 3.3 shows a planning graph with three services wy,ws, w3 and
their input and output parameters. The initial layer has di and dy and the goal layer
has two goals d3 and ds. There is one no-op action to connect ds in Py and Py layers.

For clarity, we do not draw the duplicated services at the action layers.

Figure 3.3: An example to explain redundant services

By our TGP technique, the best value for ds is 100 and the best path to pro-
duce it is {w;}. Similarly, the best value for ds is 220 and the best path to pro-
duce it is {wq; w3}. QoSPlanGraph puts the two paths together to get the solution
{(w1]|ws);ws}. The response time for the whole plan is determined by the longest
path which is T=220. If we consider the whole plan, we do not need to maintain
the best path for d;. This means we can remove w; from the solution. After the
removal, we will get d3 at T—120 which does not change the QoS value for the whole

plan. We give a redundancy definition as below.

Definition 9 A plan without redundant services is a plan for which removing any

action causes unsatisfied goals or increased utility value.

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 46

Redundancy exsits when we directly combine the best paths for each goal proposi-
tion. Without considering the execution price, redundancy removal does not change
the optimal QoS value for the whole plan. However, redundancy removal implies
reducing execution price. A full discussion on multiple criteria QoS optimization is
in Subsection 3.7. In the rest of this subsection, we present a redundancy removal
algorithm which can remove redundant services while keeping single QoS criterion for

a solution unchanged. Now we focus on the solution from QoSGraphPlan (Def. 10).

Definition 10 A solution tagged planning graph STPG is a subgraph of TPG

with all the actions in a solution and the propositions connecting these actions.

A solution graph removes the actions which are not in the solution and the

propositions which do not connect actions in the solution from TPG.

Definition 11 A reproduced proposition is a proposition which has more than

one parent action in a STPG.

Proposition 1 A necessary condition for an action a to be redundant is that all its
post conditions in STPG are reproduced propositions (i.e., ¥p € (post(a) N STPG),

p is a reproduced proposition).

With Proposition 1, if all the post conditions of an action a can also be produced
by at least one other action in the STPG, it is possible to remove a from the plan.
However, this is only a necessary condition of redundancy. Redundancy also depends

on the QoS values of the other actions. Please check the following example.

Example 6 Figure 3.4 is similar to Figure 3.3, only wy is added. The goals are
{ds,dg}. The best value for dg is 240 which is the highest value among the goals.
The best solution is {(w||ws); (ws||wg)}. There are no redundant services, because if
any of them is removed, either some goals are not satisfied or the QoS value increases.

If we change the QoS value for wy to T=100, the best value for dg is 200. Then the

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 47

QoS wvalue for the entire plan becomes 220 and wy is redundant. This is because if

we remove wy, the QoS value for the whole plan will not change.

Figure 3.4: An example to explain redundant services

Example 6 shows that not only the connection relations but also the QoS values
determine whether a service is redundant. It is not possible to determine whether a
service is redundant except by trying it out. Algorithm RemoveRedundancy (Alg. 6)
scans the STPG from the goal layer towards the initial layer to probe whether a
service is redundant by removing it from the STPG and computing whether the QoS
value is changed. It uses Proposition 1 to pick the possible redundant services in a
layer (line 2). The second condition in line 2 happens after some services are removed
which may leave some propositions that are not used by any services (ref. description
about line 11). We try to remove a possible redundant service and compute the QoS
value for the goals (line 4). If the QoS value for the plan changes, the removed
service is added back (line 5-6). If not, the arcs pointing to it are removed (line 8).
A proposition that has no descendants is removed as well (line 11). A lean solution
is returned in line 13.

RemoveRedundancy scans the STPG once from the goal layer towards the initial

layer. Its complexity is polynomial.

Theorem 4 The complexity of RemoveRedundancy is polynomial.

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 48

Algorithm 6: RemoveRedundancy({Py, A1, ..., An, Pn))

Data: (P, Ay, ..., An, P,)) is a STPG
1: fori=mn,...,1do
2. A} ={alVa € A, a is a possible redundant services V a that has no
descendants };
for Va € A} do
remove a from the graph and calculate QoS values for the goals;
if the QoS for the plan worsened then
add a back;
else
remove the arcs pointing to a;
end if
10: end for
11: remove Vp € P; that has no descendants, remove the arcs pointing to p;
12: end for
13: return (FPp, Ay, ..., Ay, P))

Proof: Algorithm RemoveRedundancy needs n loops to scan the STPG graph
(Py, A1, ..., Apn, Py) once. To remove one service a from a layer i, we need to re-
compute the QoS value from the layer i to the top layer n, which needs one scan.
Maximally there are |A| services at a layer to remove. Therefore, it needs maximally
|A| xn loops to remove all the services at a layer. Therefore, we need |A|xnxn loops
in total. n’s upper bound is |A|. Therefore, the complexity of RemoveRedundancy
is |[A]2. O

RemoveRedundancy results in a lean solution without redundant services. In the
cases where there are multiple removable services, RemoveRedundancy removes the
one it confronts first. Which service is the best to remove is beyond discussion in
this subsection, because a second QoS criterion should be used to find the optimal
one.

For response time and throughput we have the following proposition.

Proposition 2 For response time and throughput as a single criterion, Algo-

rithms 2 to 6 can get composition solutions without redundancy, as well as the globally

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 49

optimized QoS value in polynomial time.

3.6 Calculate the Other Single QoS Criteria

The previous subsection calculates the optimal response time and throughput when
they are used as a single criterion. In this section, we show how to calculate execu-
tion price, successful execution rate, and availability when they are used as
a single criterion. Different from response time and throughput, each service con-
tributes to these QoS values of the plan equally, regardless of sequential or parallel

connections. Please see the following example.

Example 7 Reusing Figure 3.4 for execution cost. Assuming all the numbers rep-
resent the execution costs we can compute ¥p € post(a), for execution price cost(p) =
max(cost(pre(a))+cost(a). QoSGraphPlan reports a best solution {(w1||ws); (wa||wsz)}
for a best execution cost 460. If we use ws to generate both ds and dy and remove

wy from the solution, we reduce the execution cost to 360.

Example 7 shows that if we use QoSGraphPlan for the execution price, it may
not get the correct optimal QoS value. This is because QoSGraphPlan calculates
the best path for each goal proposition independently and puts together these paths
as the optimal solution. For the criteria in this subsection, all the services in the
solution contribute to the QoS of the whole plan equally. Therefore, removal of any
services affects the QoS of the whole plan.

We can still use RemoveRedundancy to remove redundancy. The result of Re-
moveRedundancy is still a lean solution. However, RemoveRedundancy removes the
redundant services in the sequence of inspection. When there are choices to remove
different services, RemoveRedundancy does not do optimization. Therefore, the so-
lution obtained after RemoveRedundancy may not have globally optimized the QoS

value either. We have the following proposition.

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 50

Proposition 3 For execution price, reputation, successful execution rate,
and avatlability as single criteria, Algorithms QoSGraphPlan and RemoveRedun-
dancy can get composition solutions without redundancy in polynomial time, but they

do not guarantee getting a globally optimized QoS value.

In order to extend our method to be able to calculate the correct optimal QoS
value for execution price, reputation, successful execution rate and avail-
ability, we modify the tags of the propositions to record all the possible paths. We
use multiple tags for one proposition p. A tag t; represents one execution path that
leads to p, and has a list of parents and a QoS value t; = ({t;.parent;}, t;.v). Please

see the following example.

Example 8 Figure 3.5 shows multiple tags are used for calculating execution price
on a TPG. FEach tag of a proposition corresponds to one path leading to the proposi-

tion. A tag records the parent actions and the cost to generate the proposition.

{({w,}, 100), {({w,, w,}, 240),
({w,}, 120)} ({w,, w,}, 260)}

(120) (100)
{({w,}, 120)} {({w, ws}, 220)}

Po Ay P A, P,

Figure 3.5: An example to explain multiple tags.

In the multiple tag situation, we use Algorithm 7 to replace Algorithm 3 to expand
the TPG. Algorithm 7 calculates all the tags in line 2, which is the only difference
to Algorithm 3.

QoSGraphPlanFEzt is the extended version of QoSGraphPlan which uses Algo-
rithm 7 to generate the TPG. QoSGraphPlanEzt probes all the combinations, which

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 51

Algorithm 7: ExpandGraphMultiTag({Fy, A1, ..., Ai, P;), 9)

1. A; = {(a,t)|pre(a) € P_1,a € A,t = cost(a)};

2 P ={(p,{t;})|Fa € A; : p € ef fects(a),{t;} is all the possible tags};
3: for each a € A; do

4: link a with precondition arcs to pre(a) in P;_s;

5. link a with each of its ef fects(a) in P;

6: end for

7. return (P, Ay, ..., A;, P));

Algorithm 8: QoSGraphPlanFExt(A, so, g)
Data: G = (R, Ay, Py, ..., A;, P;) is a planning graph; i—1;

1: repeat

2: G = ExpandGraphMultiTag(G, g);

3: if ¢ C P, and g generated by non no-ops then
4: print FEuxtractPlan(G, g);

5. end if

6 1=1+1;

7. until Fizedpoint(Q)
8 if g Z P, then

9: print (;

10: end if

can be huge. Assume a proposition at layer ¢ has k tags in average and a service
can be enabled by [paths from layer ¢. An output of this service has k x [tags.
Therefore, a proposition at layer 7 + 1 has k x [tags. If the graph expands to 7 + 2
layer, a proposition at 7 + 2 layer has k x [2 tags. If a graph has n layers and k = 1
at layer 0, a proposition has [" tags at layer n. [and n are bounded by |A| (A is
the set of services). Therefore, QoSGraphPlanFEaxt has exponential complexity. We
propose a beam search algorithm in Subsection 3.8 to solve the exponential problem.

We have the following proposition for the properties of QoSGraphPlanFExt.

Proposition 4 QoSGraphPlanExt gets a composition solution without redundant
services and with the best QoS value for execution price, reputation, successful exe-

cution rate, and availability as single criterion in exponential time.

CHAPTER 3. ANYTIME QQOS-AWARE SERVICE COMPOSITION 52
@lon (@0 @.on
,0 o\ — [Ju@ N0
"""" B -.w BT -W1 B
oo\ o @\ Taony [(@on \
C C C
,,,,, w@o \ (w]) [2o | w@o
(owg | @00 frow, whsoorm| 199 fiw,, wel900/1),
900/1)} W. ({w,, wy ,wyh, ({w,, wz ,w,}, 1000/1),
———————————————————— 3 1000/1)} > (fwy, W, , Wy W5}
\ s, 6oy [P £ (600/0.71) 7\66,0/5‘-’29)?, "
(800/1) 100/0)} (twy 200/00 | (] E
Y\ o T e) YN 200 — (
N B R w,), 100/0)}
N why, | ooy /| w0000 | (200/0) -
100/0} | — [|
Cw, e e NSO . 6 - _{wa}, 100/0)} |
(100/0) G m {({wa, wu}. 900/1)} | We G
{w,, (100/0)) (100/0) /| {({wy, w,}, 900/1)}
900/1)} - {({w,}, 800/1)} J
------------------ w w {({w,}, 800/1)}
] 7 7J) |\ W w S50
g({)g/i 300/0.29) {({W/zﬁwa},) (300/0.29) (o wg,
---------------- 700/0.71), 700/0.71),
w2, ({0, W, S
700/0.71) (100/0) 300/0.71)} (100/0)
IDO Al Pl AZ PZ A3 P3 A4 P4

Figure 3.6: The multiple tags used for optimizing execution cost.

Example 9 Suppose the quality criteria given in Table 2.1 is the execution cost.
Figure 3.6 shows the multiple tags for each p € P; (i = 0,...,4) in the expanded
tagged planning graph for Example 1. At proposition layers in the TPG, propositions
are separated by dashed lines. The tag of J at Py is {({w1},800/1)} because there
is only one execution path {w1} up to layer Py that leads to J. The best solution

is {we; wy; wg; wr} with the minimal execution cost of 600, w.r.t. the utility value of

0.29.

3.7 Under Multiple Criteria

When we need to consider multiple QoS criteria, we aggregate them into a utility
value according to Equation 3.10. We use the utility values to compare the different
paths. As different QoS criteria have different formulas to calculate their values, we

need to calculate the individual QoS values separately at each search step before

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 53

aggregating them. Therefore, for a proposition in the TPG, the label can be as

shown in following example.

Example 10 Assume proposition p has two paths to reach {wy,ws} and {wq,ws, wy}.
Table 3.2 shows the QoS values and the aggregated utility value for the two paths. We
can represent the tags as {({wq,wq}, 10,20, 30,...,0.6), ({wq, ws, ws}, 15,20,35,...,0.8)}.

Compared by their utility values, {wy,ws} is better than {wy, ws,wy}.

Table 3.2: An example of multiple criteria tag
paths QL | Q2 | Q3| ... | Utility
{wy, we} 10 | 20 | 30 | ... 0.6
{wy,ws,wy} | 15 | 20 | 35 | ... 0.8

As we try all the combinations, we can get the best solution which has no redun-
dant services to remove at the end. When the combinations are huge, we can use

heuristics to tackle the problem as developed in the next subsection.

3.8 BeamQoSGraphPlan with Beam Search

To solve the combination explosion problem, we incorporate QoSGraphPlan with
beam search. Beam search uses a breadth-first search to build its search tree [69]. At
each level of the tree, beam search generates all successors of the states at the current
level, sorting them in increasing order of heuristic cost. However, it only stores a
predetermined number of states at each level (called the beam width). The greater
the beam width, the fewer states that are pruned. With an infinite beam width,
no states are pruned and the beam search is identical to the breadth-first search.
The beam width bounds the memory required to perform the search. Since a goal
state could potentially be pruned, beam search sacrifices completeness (the guarantee
that an algorithm will terminate with a solution, if one exists) and optimality (the

guarantee that it will find the best solution).

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 54

We use beam search to keep only a few of the best tags for each proposition. We
propose a heuristic function in our application as denoted by Equation 3.11. The
heuristic function is a weighted sum of two functions. The first function U ({¢;.parents})

is the utility value of the path. UaEtj.parents ef fect(a)Ng

is the number of goal

Uaetj .parents effeCt(a)mg‘
lg]

lgl—

propositions that the outputs of services on the path can satisfy.
is the percentage of unsatisfied goals, which acts as an estimation of the distance from
current proposition to a goal state. A ¢; with lower heuristic value is a better choice.
Suppose K is the beam width. We use fo to represent the top K tags sorted by
h(t;).

BeamQoSGraphPlan uses beam search to keep only top K tags for each search
step. K is the beam width. We use Algorithm 9 to replace Algorithm 3 to expand
the plan graph. Line 2 of Algorithm 9 includes the function to select the top K tags
for a proposition. Therefore, BeamQoSGraphPlan includes Algorithm 2, 9, 4, and 5.

h(t;)| = ki x Y _ Ui({t;parents})
|g| - ‘Uaetj.parents 6ff€Ct(CL) N g

9]
where ki + ko = 1 (3.11)

+k52 X

Algorithm 9: ExpandGraphBeamWidth({Py, A1, ..., Ai, P;), g)
1. A, = {(a,t)|pre(a) € P_1,a € A,t = cost(a)};
2: P ={(p,QF)[Ba € A; : p € ef fects(a) , QF is the set of top K tags associated
with proposition p};
for each a € A; do
link @ with precondition arcs to pre(a) in P;_y;
link a with each of its ef fects(a) in Pj;
end for
return (P, Ay, ..., A;, P);

Beam@QoSGraphPlan can be used to solve the tag explosion problem for both

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 35

Algorithm 10: BeamQoSGraphPlan(A, sg, g)
Data: G = (P, Ay, Py, ..., A;, P;) is a planning graph; i=1;
1: repeat
2: G = ExpandGraphBeamWidth(G, g);
3: if ¢ C P, and g generated by non no-ops then
4: print EztractPlan(G, g);
5
6

end if
1=1+1;
7. until Fizedpoint(G)
8 if ¢ Z P, then
9: print (;
10: end if

single criterion and multiple criteria problem. It is a heuristic algorithm. It does not

guarantee optimal QoS and its solution may include redundant services.

3.9 Summary of the Algorithms Developed

As a summary, we list the properties of all the algorithms in this paper as below.

QoSGraphPlan:

e QQoSGraphPlan uses Algorithms 2, 3, 4, and 5 to first construct a TPG and

then extract a solution from the TPG.

e QoSGraphPlan is best used for throughput and response time as single crite-

rion (best QoS value, with redundant services).

e If used for execution price, reputation, successful execution rate, and availabil-
ity as single criterion, its solution may have redundant services and may not

have the optimal QoS value.
e Complexity: polynomial.

e Use RemoveRedundancy (Alg. 6) to remove redundancy.

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 56

QoSGraphPlanExt:

e QoSGraphPlanFExt uses Algorithm 2, 7, 4, and 5 to first construct a TPG
with multiple tags and then extract a solution from the multiple-tag TPG.

e It is best used for execution price, reputation, successful execution rate, and

availability as single criterion.
e Complexity: exponential.

e The solution does not have redundant services and guarantees the optimal QoS

value.
BeamQoSGraphPlan:

e BeamQoSGraphPlan uses Algorithms 2, 9, 4, and 5 to incorporate QoSGraphPlan

with the beam search.

e [t is best used for execution price, reputation, successful execution rate, and

availability as single criterion, or all the multiple criteria cases.
e Heuristic algorithm.
e Solution may have redundant services and may not have the optimal QoS value.
e Use RemoveRedundancy (Alg. 6) to remove redundancy.
RemoveRedundancy:

e RemoveRedundancy as presented in Algorithm 6 removes redundant services

from a solution to obtain a lean solution without redundancy.
e It is used for redundant service removal for single or multiple criteria.
e The solution after redundancy removal is not cost-optimized.

e No guarantee to get the optimal QoS value.

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION S7

3.10 Empirical Results

3.10.1 Data Set

The data set used in our evaluation is generated by the test set generator in Web
Service Challenge 2009 (WSC09) [7]. The data generator generates a service com-
position problem through the generation of Web services in a WSDL file, ontology
concepts in an OWL file, and QoS values for Web services in a WSLA file. The
WSDL file is annotated with a simple extension mechanism to link to the ontology
definition in the OWL file, instead of using full-fledged SAWSDL [65]. The Web
service parameters are instances (“things" in an OWL file) of the semantic concepts
in OWL files. The user can control the generated dataset by specifying the number
of services, the number of concepts, and the number of solutions and their length
(in action steps). Given those parameters, the generator randomly creates a set of
concepts and selects a subset of these concepts as the goals. Then, the generator
returns several groups of solutions at given lengths. When generating a group of
solutions, the generator prepares a set of inputs and outputs at each time step. A
set of services are then generated, each of which can independently use these input-
s/outputs. Thus, a group of solutions are generated. Within a group, some services
can directly substitute for others as they use the same input set and produce the
same outputs. The generator randomly adds a lot of “padding” Web services around
the services used in solutions. These “padding” services do not have the outputs that
can be used by the services within a solution. Each Web service in the data set has

a throughput and a response time defined in a WSLA file.

3.10.2 Implementation

We have implemented all the algorithms presented in this paper. We have also

developed a verification tool to check the correctness of the obtained solutions. We

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 58

have used a technique similar to those developed in [73] to flatten the semantics and
index the data. This has proved to be important in speeding up the algorithms. It
works as the following example.

In the example in Figure 3.7, there are 4 concepts. “Machine” subsumes the
concept “Vehicle”, and “Vehicle” subsumes “Car” and “Motorcycle”. Web service A
has an output “Ford 1986 Red” which is an instance of “Car” and Web service B
accepts an input “An old Vehicle” which is an instance of “Vehicle”. By checking
the semantic relationships, we can know that the output of Web service A can be

acceptable by Web service B because “Car” is also a kind of “Vehicle”.

OWL

Web Service B Vehicle

Input:An old vehicle
AT
Output: ...

Web Service A

oim el Motorcycle
vehicle 4
Y
Ford 1986 GM 1985 Yamaha
Red Blue 2002

Figure 3.7: Semantic relationship between Web service input/output parameters

Input: ...
Output: Ford 1986 Red

Rather than checking the relationship map in OWL every time we need to find
a list of invokable services, we build two indexing tables as shown in Table 3.3. The
indexing tables are stored as hash tables so that we can look up the services or the

parameters in constant time.

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 29

Service | Outputs of the Services || Input Concept | Services
A Car, Vehicle, Machine Car o
B - Vehicle B
Machine

Table 3.3: Top: example of the output indexing table; bottom: example of the
reverse indexing table

Empirical Results

As the WSCO09 data sets and the results are posted at |7]|, we are able to compare
our results with the first place winning paper [32] and the second place winning
paper [74] in terms of the response time and the throughput of the solutions. WSC09
has five data sets. Dataset 1 has 500 services and 5,000 concepts. Dataset 5 has
15,000 services and 100,000 concepts. The other datasets have 4,000-8,000 services
and 40,000-60,000 concepts. Every data set has a WSLA file to describe response
time and throughput of services. Other QoS values, such as execution price and
reputation, are not available. For the experimental purpose, we take the values of
response time and throughput as some other QoS values. We run the experiments

on a laptop with Intel(R) Core(TM)2 2.60GHz Duo CPU and 3.00GB of RAM. The

algorithms are implemented in Java.

Table 3.4: Results with the WSC09 Data Sets: our method/Paper [32|/Paper [74]

Datasetl | Dataset2 | Dataset3 | Dataset4 Datasetb
Resp. Time | v /V /v |V VIV | VIV IV | VIV YV VIV IV
#Services 8/5/18 21/20/52 | 10/10/18 | 42/93/133 | 32/32/4772
#Redunt. 3/0/13 1/0/32 0/0/8 2/53/93 0/0/4740
Throughput | v/ /v /v |V /V IV | VIV IV |V /V /- VIV IV
#Services 5/7/9 21/25/36 | 30/26/81 | 65/73/159 | 32/45/4772
#Redunt. 0/2/4 1/5/16 4/0/55 3/11/94 0/13/4740

In Table 3.4, we use QoSGraphPlan to work on throughput and response time

as single criterion. To refine the solutions, we use RemoveRedundancy to remove

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 60

redundant services. We show whether the correct best QoS values can be calculated
(the checkmarks), how many services are in the solution (the lines of #Services), and
how many services are redundant (lines of #Redunt). We can see that QoSGraphPlan
can find the correct QoS values for all the five datasets, as the first place winner does.
Our method generates solutions without redundant services or very few redundant
services (< 4) in the solutions on all data sets.

The first place winners [32] generate zero redundant services in some datasets,
but much more redundant services in the other datasets, especially when they com-
pute throughput. [32| uses Dijkstra’s principle to calculate the optimal value while
searching all composition alternatives. It uses a table to record all the enabled ser-
vices at a time step. All the enabled services and parameters have a current best
quality value, which is a similar idea to ours. However, the planning graph is a much
more matured graph designed for planning than the graph in [32]. For example, for
a planning problem, one should be able to reuse the same action multiple times in
the plan, otherwise one may not find an existing solution. [32] seems to filter out this
possibility because the actions are not reused in their graph. Also, without using
the concept of no-op, [32]’s graph loses the information about which services could
have produced a proposition, which is important in order to remove the redundant
services.

The second place winners |74]| fail to find the correct QoS for Dataset4 and pro-
duce comparably more redundant services on all the datasets than our method and
the first place winner. This is because [74] uses a simple breadth first search which
could get only sequential solutions. Therefore, [74] is not able to get the optimal
QoS value correctly, if some services can be concurrently executed.

According to the comparison, the QoSGraphPlan algorithm can find a solution
that contains fewer redundant services and has the optimal throughput or response
time on all data sets. RemoveRedundancy algorithm working on an optimal solution

makes the solution contain no redundant services.

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION

Table 3.5: Our composition time: T1 with redundant services (Resp. Time/Through-

put); T2 without redundant services (Resp. Time/Throughput).

Datasetl | Dataset2 | Dataset3 | Dataset4 Datasetb
Comp T1 (ms) | 90/75 470/449 | 531/535 2209/4176 | 1787/1951
Comp T2 (ms) | 157/105 | 517/494 | 533/1502 | 2248/8318 | 1791/2028

In Table 3.5, we show the composition time with redundant services (Comp T1,
time used by QoSGraphPlan) and without redundant services (Comp T2, time used
by QoSGraphPlan and RemoveRedundancy) for both response time and throughput.
We can see that the computation time of removing redundant services (i.e., T2-
T1), is comparatively small compared to the time spent in finding a solution with
redundant services (Comp T1) on all data sets. As no source code is provided by

the WSC09 teams, we cannot compare our composition time with theirs’ on one

machine.
Table 3.6: Total execution price on the WSC09 Data Sets
Solution Datasetl | Dataset2 | Dataset3 | Dataset4 | Datasetb
Before Total 80000 | 344000 | 82000 | 729000 | 319000
removing | execution price
redundant #Services 7 38 12 85 45
services | Comp T1 (ms) 219 2740 1675 5977 5032
After Total 67000 | 208000 | 62000 | 339000 | 218000
removing | execution price
redundant #Services 5 20 10 42 32
services | Comp T2 (ms) 225 2744 1678 5987 5045

In Table 3.6, we use Beam@QoSGraphPlan on the execution price as single crite-
rion'. We show the solution with the minimal total execution price for each data
set, how many services are in the solution (the lines of #Services) and composi-

tion time before and after removing redundant services. We use RemoveRedundancy

'We take the value of throughput of a service as its execution price for this experiment.

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 62

to remove redundant services from the solution. As for the heuristic function in
BeamQoSGraphPlan, we only consider the QoS of execution price. In Equation 3.11,
we set k1 = 0.8, ks = 0.2, and beam width K = 5 for the heuristic function.
According to the results in Table 3.6, the Beam@QoSGraphPlan algorithm can
find a solution with the minimal execution price on all datasets. RemoveRedundancy

algorithm can remove redundant services from the solution. Redundancy removal

reduces the total execution price of a solution.

Table 3.7: Results considering aggregated value of execution price and reputation on
the WSCO09 Data Sets

Solution Datasetl | Dataset2 | Dataset3 | Dataset4d | Datasetb
Utility value 0.391 0.393 0.327 0.405 0.357
Before #Services 10 27 12 83 44
removing | Comp T1 (ms) 323 4086 1905 7801 5190
redundant Total 93000 | 228000 | 92000 | 761000 | 352000
services execution prlce
Average 331 307.04 | 351.67 | 313.73 | 330.68
reputation
Utility value 0.391 0.374 0.314 0.392 0.345
After #Services 10 18 10 43 34
removing | Comp T2 (ms) 326 4089 1908 7811 5204
redundant Total 93000 | 151000 | 68000 | 381000 | 244000
services execution prlce
Average 331 324 45 342 318.37 | 321.47
reputation

In Table 3.7, we use BeamQoSGraphPlan on execution price and reputation as

multiple criteria’?. In Equation 3.10, we set W; = 0.5 for the execution price and
Wy = 0.5 for the reputation to calculate the aggregated utility value of execution price
and reputation. In Equation 3.11, we set k; = 0.8, ks = 0.2 and beam width K =5
to calculate the heuristic function. Table 3.7 shows the utility value, the number

of services (the lines of #Services) in the best solution, and the composition time

2We take the value of throughput of a service as its execution price, and the value of response
time as its reputation for this experiment.

CHAPTER 3. ANYTIME QOS-AWARE SERVICE COMPOSITION 63

before and after removing redundant services (Comp T1 and Comp T2 respectively).
We use RemoveRedundancy to remove redundant services from the solution.
According to the results in Table 3.7, BeamQoSGraphPlan algorithm can find the
solution with the optimal aggregated QoS values of execution price and reputation
on all datasets. The RemoveRedundancy algorithm can remove redundant services

from the optimal solutions.

3.11 Summary

In this section, we present a new way to solve the QoS-aware service composition
problem. We use Dijkstra’s algorithm on the planning graph to optimize the QoS,
satisfying the functions goals at the same time. We extend Dijkstra’s algorithm to
handle multiple source graphs like the planning graph. We discuss how to calculate
the optimal QoS values for different single criterion problems, as well as multiple
criteria problems. For throughput and response time as single criterion, we have a
polynomial algorithm to get the optimal QoS value, and a solution without redundant
services. For the other single criterion problems and the multiple criteria problems,
we have only an exponential algorithm. In this case, we use the beam search which is
a heuristic algorithm to get feasible solutions. As our algorithms search for an optimal
solution during the process of constructing the planning graph, they belong to the
category of anytime algorithms that return better solutions if they keep running for

a longer time.

Chapter 4

QoS-aware Service Composition over

GraphPlan through Graph
Reachability

4.1 Introduction

In this chapter, we improve the idea of combining the GraphPlan algorithm with
Dijkstra’s algorithm to solve QoS-aware service composition problems. One disad-
vantage of the method proposed in Chapter 3 is that there is no uniform graph
structure to solve the problem for all kinds of QoS criteria. The tagged planning
graph with single tags is built for single quality criterion of throughput or response
time while the tagged planning graph with multiple tags is built for other single
quality criterion or multiple criteria. In this chapter, we propose a method in which
Dijkstra’s algorithm works with a uniform structure to find an optimal solution for
any single QoS criterion or multiple QoS criteria.

We find that it is hard to directly use Dijkstra’s algorithm on the planning graph.
The way that the planning graph is extended for the use of Dijkstra’s algorithm suits

for the calculation of certain quality criterion (e.g., response time and throughput).

64

CHAPTER 4. COMPOSITION THROUGH GRAPH REACHABILITY 65

For the calculation of other quality criterion (e.g., execution cost, availability, and
reputation), the approach of using Dijkstra’s algorithm on the extended planning

graph has exponential time complexity.

Definition 12 Graph reachability is the ability to reach one vertex from other

vertices within a graph.

If a vertex is able to be reached by one vertex, we call it simple graph reach-
ability. There also exists the case that a vertex is reachable from several parent
vertices together. In such case, we call it complex graph reachability, which is
the case in the planning graph.

The planning graph can be traversed if actions and propositions are considered
as vertices. The QoS value can be mapped to the cost-to-come value of the vertex.
It is possible to use Dijkstra’s algorithm to traverse the graph to search for a plan
with the optimal QoS value.

In this section, we are motivated to change the graph reachability by graph conver-
sion. Graph conversion generates a converted graph with simple graph reachability
from a extended planning graph with complex graph reachability. The objective of
Dijkstra’s algorithm is to find costs of the shortest paths from a single vertex to a
single destination vertex. Since each vertex in a graph with simple graph reachability
is able to be reached from another single vertex, it is convenient to use Dijkstra’s
algorithm on a converted graph with simple graph reachability. To do so, we need
to overcome some difficulties. First of all, a suitable formula to calculate the cost-to-
come value for each vertex is important. It is because the QoS value is mapped into
the cost-to-come value. The calculation of QoS value for different QoS criteria follows
different formula. Secondly, two types of vertices in the planning graph (i.e., action
vertices and proposition vertices) lead to complex graph reachability. An action ver-
tex and a proposition vertex correspond to a service and an input/output parameter

accordingly. A service is invokable when all its inputs are available. Edges link the

CHAPTER 4. COMPOSITION THROUGH GRAPH REACHABILITY 66

input parameters of a service to this service itself. Hence, an action vertex may be
reachable from several propositions at the same time. Complex graph reachability
makes it difficult to apply Dijkstra’s algorithm. We need to find a way to change the
graph reachability in planning graph for easily using Dijkstra’s algorithm.

The rest of this chapter is organized as follows. Section 4.2 gives the framework
of this method. Section 4.3, Section 4.4, and Section 4.5 elaborate each step of the
proposed method using response time as the single QoS criterion. In Section 4.6, we
discuss how to get the optimal solution for other single QoS criterion. Section 4.7
presents the results of the experiments with artificial data sets. We end up with a

conclusion in Section 4.8.

4.2 The Framework

The improvement is achieved by graph conversion that bridges the GraphPlan tech-
nique and Dijkstra’s algorithm. For the sake of simplifying graph reachability, graph
conversion builds a converted graph, called the Layered Weighted Graph (LWG),
from the extended planning graph constructed by the GraphPlan technique. LWG
contains all the information presented in the planning graph. Also, LWG has simple
graph reachability which makes it easy to use Dijkstra’s algorithm. The framework

of our approach is presented in Figure 4.1.

4.2.1 Planning Graph Labeling

In the first step, a Partially Labelled Planning Graph (PLPG) is generated to rep-
resent the problem space. The PLPG extends the classic planning graph in the way
that each proposition is associated with a set of labels. PLPG only labels proposi-
tion vertices rather than action vertices in the classic planning graph. This is why
PLPG is called partially labeled. However, TPG proposed in Section 3.4 tags both

proposition vertices and action vertices in the classic planning graph.

CHAPTER 4. COMPOSITION THROUGH GRAPH REACHABILITY 67

Phases: Step 1 Step 2 Step 3

Planning Graph Plan

graph conversion generation
labelling

Change graph
reachability

Use Dijkstra’s
algorithm

Purpose:

Figure 4.1: The framework of our approach

Definition 13 A labelt is a triple (a, L,, C,), where a is an action enabled at action
layer Ay, L, is the layer number (L, = k), and C, is a real number representing the

cost for a to be enabled.

A label describes a situation when an action is enabled (i.e., the action, the layer
number where this action is enabled, and the cost to enable this action). In order to
easily get the information contained in ¢, functions act(t), layer(t), and cost(t) are
defined such that act(t) = a, layer(t) = L,, and cost(t) = C,. The layer number
L, needs to be included in the situation because there are re-used actions in the
planning graph. The situation when action a is enabled at action layer A; is different

from the situation when a is enabled at a different action layer A; (j # 7).
Definition 14 A label t is a label of proposition p if p € ef fects(act(t)).

A label t of a proposition p associates p with a situation (described by t) when p
is produced. A parent action a of p is fast retrieved from the parent label by function

act(t), i.e., a = act(t).

Definition 15 The Partially Labelled Planning Graph (PLPG) is a Planning Graph
G = (V4 UVp, E) where each proposition p € Vp at proposition layer P; is associated
with a set of labels T of p, i.e., T = {t|p € ef fects(act(t)) N0 < layer(t) < i} .

CHAPTER 4. COMPOSITION THROUGH GRAPH REACHABILITY 68

In the PLPG, the labels of proposition p at proposition layer P; records all the
situations when p is produced at the current proposition layer or any previous propo-
sition layer. Labelling each proposition in the PLPG is for the aim of retrieving paths
that can produce this proposition in the future. The retrieved paths are composed

of actions and obtained through the backward search.

Partially Labelled Planning Graph (PLPG)

The composition query: — 1(1,0,0)}
On = {A,B] {0,00) A

Doui= {0} .

w; | inputs | outputs | Q, — AN N B |IW]liw. 1120
W, A C 120

w, AB C ol | N N\ r / — Nyruveaw
W, C D 50 |—

Figure 4.2: An example of PLPG

Figure 4.2 shows a simple example of how to generate a PLPG from a composition
query and a set of services. In Figure 4.2, “(),” denotes a QoS value (e.g., response
time in million seconds). “I ” is a supposed action for any input in D;,. Proposition
C' at proposition layer P; has two labels (wq, 1,120) and (ws, 1,80). This is because

C' is generated by w; and ws at layer P;.

4.2.2 Graph Conversion

In the second step, a Layered Weighted Graph (LWGQG) is converted from a PLPG.
The purpose of a LWG is to simplify graph reachabilty for the ease of using Dijkstra’s
algorithm. We are able to use a simple path in a LWG to represent a plan for the
planning graph problem. A plan in the planning graph represents a solution for the
original service composition problem. A simple path means the path is a sequence of

vertices rather than a sequence of sets of vertices. Simple graph reachability makes

CHAPTER 4. COMPOSITION THROUGH GRAPH REACHABILITY 69

the simple path possible. Simple graph reachability is achieved in LWG by the proper
design of vertices.

A vertex v in a LWG is a set of ordered pairs where each ordered pair (p,t)
consists of a proposition p and a label ¢ of p. An ordered pair (p, t) records a situation,
described by t, to produce p. In a vertex v, an ordered pair (p,t) is designed for the
fast retrieving of the parent action (contained in t) for each proposition p. Let T, and
P, be the set of all labels and propositions contained in v respectively. Therefore, a
vertex v describes a situation to produce a set of propositions P,. In a vertex v, we
require that no label can be replaced by any other in the set of labels T,. Otherwise,
more actions are enabled to produce the propositions contained in v which indicates

more execution costs.

Definition 16 A vertex v in a LWG is a set of ordered pairs, i.e.,
v=A{(p,t)|p € act(t) where p is a proposition and t is a label of p}
Any label t in v satisfies that:
vteT,, ft' €T, — {t}: (ef fects(act(t)) N P,) C ef fects(act(t'))

where T, (resp., P,) is the set of all labels (resp., propositions) in v.

Since an action can produce more than one proposition, it is possible that the
labels of several propositions in v are the same or several labels in v contain the same
action. According to Definition 16, for a label ¢ in v, we are only interested in the
portion of propositions in P, that actions in ¢ can produce, i.e., ef fects(act(t)) N P,.
If there is another label ¢ in v, action in ¢ can also provide this portion of propositions
(i.e., (ef fects(act(t)) N P,) C ef fects(act(t'))). In such a case, ' can replace t in v.

A LWG as defined by Definition 17 contains only one type of vertices.

Definition 17 The Layered Weighted Graph (LWG) is a connected graph whose
vertices are placed in hierarchically arranged layers Vi, ..., V,. Fach edge (v',v),
which is associated with a weight w(v',v), connects only vertices in successive layers.

Fach weight w is a set of labels in v, i.e., w = {t|t € T, Nv € V; : layer(t) = i}.

CHAPTER 4. COMPOSITION THROUGH GRAPH REACHABILITY 70

A LWG is a layered graph. Vertices in a LWG are linked to vertices at adjacent
layers. For a weight w assigned to edge (v/, v) where v" and v are at layers V;_; and V;
respectively, all the labels in w come from v. Also, each label in w contains an action
that is enabled at action layer A; in the corresponding PLPG. The weight w actually
bridges the path from v’ to v. w — (v',v) indicates that actions in w are enabled
to support the path going from v’ to v. We will propose an appropriate method to
make this support reasonable. For example, v’ provides all the propositions in the
preconditions of actions in w and v contains all the propositions in the postcondition

of actions in w.

a9 ¢l (w,,1,120)

Al (1,00 [(W,2,50) | LWG
B| (1,0,0) i

(,/1/211,80}} C (W2,1,80) A

PLPG

{(w,,1,120),
(w,,1,80)}

Figure 4.3: The LWG converted from the PLPG in Figure 4.2

Figure 4.3 presents a LWG that is converted from the PLPG in Figure 4.2. The
dashed arrow shows the direction to gerenate the LWG. At beginning, we generate
vertices at layer V5 from proposition layer P, in the PLPG. Since D is the expected
output parameter, each vertex at layer V5 has only one ordered pair which takes D as

the proposition. Starting from proposition layer P, which contains all the expected

CHAPTER 4. COMPOSITION THROUGH GRAPH REACHABILITY 71

output parameters to construct the LWG quickly filters out the propositions and the

actions that have no contribution to produce the expected output parameters.

4.2.3 Plan Generation

In the third step, we use Dijkstra’s algorithm to calulate the cost-to-come value for
each vertex in the LWG then we extract the plan with the best cost-to-come value

through backtracking.

4.2.4 Main Algorithm

Algorithm 11 is the main algorithm. First, we build a partially labelled planning
graph G to represent the problem space (line 1). Then, we check if G can achieve
all goals (line 2-3). If all goals are achieved, G is converted into a layered weighted

graph GC (line 4) and a plan with the best cost-to-come value is generated (line 5).

Algorithm 11: QoSWSC(A, s, g)

1: G = PLPGGeneration(A, sg, g);
n = max{i|P; € G};
if ¢ C P, and g generated by non no-ops then
GC = GraphConversion(G, sg, g);
7 = PlanGeneration(GC);
print 7;
end if
if ¢ Z P, then
print (;
end if

_.
@

4.3 Planning Graph Labelling

Algorithm 12 builds the PLPG layer by layer. For simplicity, we use response time as

a single quality criterion. The cost of action a is the response time of a. Originally,

CHAPTER 4. COMPOSITION THROUGH GRAPH REACHABILITY 72

we assume all the given propositions are the effects of a dummy service I and the
cost of I is 0 (line 1). Line 4 to line 23 generates action layer A; and proposition
layer P; until a fixed point is detected. Fizedpoint(G) is a function to check if a fixed
point layer is reached. A fixed point in PLPG is a layer k such that for Vi(i > k),
A; = A, and P, = P,. Line 5 gets all the enabled actions for action layer A;. The
enabled actions are those whose inputs are in the previous proposition layer P;_;.
SA; is a set of re-used or newly enabled actions contained in A; (line 6). SP; is a set
of propositions that are the effects of SA; (line 7). P, contains all the propositions
that are the effects of actions in A; (line 8). Line 9 - 17 calculates the labels for each
proposition in P;. We use T;(p) to denote the labels of p at proposition layer P;. If
proposition p in P; also belongs to P;_; — SP (line 10), this means p is inherited from
P,_1 and p is not re-produced in P; by some actions in A;. Therefore, the labels of
p in P; is the same as the labels in P;_; (line 11). If proposition p in P; belongs to
both P;_; and SP (line 12), it means p is re-produced in P;. The labels of p are its
labels at P;_; plus the labels composed of actions in SA that can produce p (line
13). If proposition p belongs to SP other than P, ; (line 14), this means p is a newly
generated proposition. The labels of p are composed of newly enabled actions that

can produce p (line 15). Line 19 and 20 create arcs between actions and propositions.

Example 11 A set of available services with their input/output parameters and
response time in milliseconds are listed in Table 5.1. The composition query is
(Din, Dowt) = {A, B},{D,G}). We construct a PLPG as in Figure 5.2.

In Figure 5.2, we do not draw the no-op actions. This is because a no-op action
inherits a true proposition from a previous proposition layer and has no cost. Ac-
cording to Algorithm 12, we calculate SA; at each action layer (the shaded actions
in Figure 5.2). To make the figure readable, we only draw the arcs connecting to or
from the shaded actions in the action layers. Please notice that the graph reaches
the fized point at layer As. There are four solutions: {wi;ws,wy}, {wy, we; ws;wy},

{wr, wo; wa, ws; w3}, and {ws; wa, ws; ws}.

CHAPTER 4. COMPOSITION THROUGH GRAPH REACHABILITY 73

Algorithm 12: PLPGGeneration(A, so, g)
1 Py ={(p.T))Ip € 50, T) ={(1,0,0)} };

2: SP = sp;

3 1=1;

4: repeat

5. A; ={al|pre(a) C P_y,a € A};

6: SA;={ala € A; ANpre(a) NSP # 0};

7. SP = Ugesaef fects(a);

80 P,={p|Fda€ A;:pe€effects(a)};

9: for each p € P, do

10: if pe P,_; — SP then

11: Ti(p) = Ti—1(p);

12: else if p € P,_1 N SP then

13: Ti(p) = Ti-1(p) U{(a,i,Cy)|Fa € SA:p € ef fects(a)};
14: else if p€ SP — P,_, then

15: Ti(p) ={(a,7,Cy)|Fa € SA:p € ef fects(a)};
16: end if

17: end for

18: for each a € A; do

19: link a with precondition arcs to pre(a) in P;_s;
20: link a with to each of its ef fects(a) in P;;
21: end for
22: 1=1+1;

23: until Fizedpoint(Q)
24: return (Py, Ay, ..., Apn, Po);

Table 4.1: A set of available services

w; | inputs | outputs |)1 | w; | inputs | outputs | ()¢
w1 A C,E 120 | wy E G 10
Wa A, B E, J 30 Ws B, J C 70
w3 C D 50

Theorem 5 Algorithm 12 PLPGGeneration has polynomial time complezity.

Proof: The principle of GraphLabel is to expand a PLPG layer by layer until a
fixed point layer k is reached. For a planning problem (A, s, g) has a total of n

propositions and m actions, then Vi : |P;| < n. This is because even though a

CHAPTER 4. COMPOSITION THROUGH GRAPH REACHABILITY 74

{(10,0)}

Figure 4.4: The partially labelled planning graph for Example 11.

proposition may be associated with different labels, a proposition can only appear
once in P;. Thus |P;| < n. Further, |A;] < m + n which include possibly n no-op
actions. Therefore, the size of a PLPG with k layers is [so| + (m + 2n)k. The time
to expand a PLPG to layer k is polynomial to the size of the planning problem.

Therefore, GraphLabel has polynomial time complexity. O.

4.4 Graph Conversion

Graph conversion converts a PLPG into a LWG. One the one hand, a LWG is a
“layered” graph since the PLPG is composed of alternating proposition layers and
actions layers. Similar to a PLPG, a LWG is built layer by layer. In terms of
proposition P; in the PLPG, layer V; in the LWG is generated. Assume P, and
Py are the proposition layers in the PLPG that contains goal and initial inputs
respectively. Different from a PLPG, the construction of a LWG starts from V,, to
where V,, and Vj correspond to P, and F, respectively. Since the goal of a PLPG is
also the objectives for a LWG to achieve, it is easy to decide vertices in V,, such that
each vertex at V,, contains all goal propositions. We use V,, as the starting point for

the construct of a LWG.

CHAPTER 4. COMPOSITION THROUGH GRAPH REACHABILITY 75

One the other hand, a LWG with simple graph reachability contains only one
type of vertices. In a LWG, a vertice v, as defined in Definition 16, at V; represents
the connectivities between actions at A; and propositions at P; in the corresponding
PLPG. For a proposition p in v, we can quickly find the parent action a of p when p
is located at proposition layer P; in the corresponding PLPG. In a LWG, vertices are
linked to vertices at adjacent layers. Parent vertices of v at V;_; are located at V;_;.
When generating the parent vertices of v, we treat the ordered pairs in a vertex v

separately:

e Some labels in the ordered pairs in v contain actions that are not enable at A;.
These ordered pairs are kept in the parent vertices of v. Since actions in these

labels will be enabled at any other layer A; (0 < j <).

e Some labels in the ordered pairs in v contain actions that are enabled at A;.
To support these actions to be enabled, the parent vertieces of v must provide
all the propositions in the preconditions of the enabled actions. We call the
propositions in the preconditions are newly-added propositions in the parent
vertices. We use a weight w to record these labels that contain enabled actions
in v. The weight w is assigned to the edge (v/,v) to bridge the path from v to

V.

According to proposition layer P;_; in the corresponding PLPG, each proposition
may be associated with several labels. For the newly added propositions in the parent
vertices, it is possible to generate several sets of ordered pairs for these propositions.
Therefore, a vertex v may have several parent vertices. Finally, the construct of a
LWG stops at layer Vj.

Algorithm 13 describes how a PLPG is converted into a LWG. The inputs of
Algorithm 13 are the PLPG G, the given inputs sy, the goal g. Initially, each
vertex layer is set to be an empty set (line 1-3). Since it is easy to figure out which

propositions should be contained in a vertex, e.g., the goal propositions g, we start

CHAPTER 4. COMPOSITION THROUGH GRAPH REACHABILITY

76

Algorithm 13: GraphConversion(PLPG, sy, g)

Data: PLPG = (P, Ay, Py, ..., Ay, P,) is a partially labelled planning graph,

L W W W W W W WN NN DN DN DN DN DN DN DN = e e e e e e e
I S A T A rul < B S I Al T i e B S Al I v

so is the initial state; g is the goal;
fori=1,...,ndo
Vi = 0;
end for
Vo =A{vlvisavertex N\P,=gAT, CT,(p)};
1=n,;
repeat
for ecach v € V; do
w={tt € T, : layer(t) = i};
if w = () then
v’ is a copy of v;
LayerUpdate(V;_y, Vi, V', w, v);
else
op’ ={(p.1)|(p, 1) € v Alayer(t) <i};
PRE = e, pre(act(t)):
Trre = Upeprp Tie1(p);
OP = {oplop is a set of ordered pairs A P,, = PRE NT,,, C Tprg};
for op € OP do
ST = {t|t € T,, Nlayer(t) =i — 1};
SP =U,csr effects(act(t))
CT = {t|t € w : pre(act(t)) N SP # 0},
if CT = T(Oﬂ)) then
v' = op’ + op;
if v is a vertex then
LayerUpdate(V;_1, Vi, v/, w, v);
end if
end if
end for
end if
end for
i=i—1;

cuntil i =1

- {(p’ (17070))‘27 € 50});

cw = {t|t € T, : layer(t) = 1};
: for each v € V| do

LayerUpdate(Vy, Vi, v, w, v);

. end for
: return (Vp, ..., V,);

CHAPTER 4. COMPOSITION THROUGH GRAPH REACHABILITY 7

from P, to build the LWG. We generate V,, in the LWG according to P, in the PLPG
(line 4). As for any vertex v in V,,, each ordered pair in v takes a proposition p in g
as the first entry and a label of p as the second entry. Therefore, we can quickly find
a set of actions to produce g in terms of v. Once we have vertex layer V; (initially,
line 5 shows ¢ = n), we build the the vertex layer V;_; (line 6-25). For each vertex v
in V;, all parent vertice of v linked to v with the same weight w. The weight w are
composed of the labels in v that are enabled at layer ¢ (line 8).

If w is empty, no actions in v can be enabled such that no propositions in v are pro-
duced at layer . In such cases, the parent vertex v’ is a copy of v (line 10). This is be-
cause that actions in v are enabled at a layer k (k < i). LayerUpdate(V;_1, Vi, V', w,v)
(line 11) is a function that adds the newly generated parent vertex v’ into vertex layer
Vi1, links v with its parent vertex v/, and associates the edge (v/,v) with a weight
w.

If w is not empty (line 12), some propositions in v are produced since their parent
actions are enabled at layer 7. In the LWG, (v',v) — w means v’ can provide all
preconditions of actions in w (also in v) such that these actions are enabled in wv.
Let op’ be a set of ordered pairs in v where the label of each ordered pair (p,t) in
op/ contains an action that can not be enabled at layer i (line 13). For a vertex v at
layer V;, we consider the parent vertex v’ of v from two respectives: op’ and v — op/

(line 12-22):

e For op/, op’ is kept in the parent vertex v’. This is because the labels in op’ are

not enabled at layer i but at some previous layer k (k < 7).

e For v — op/, the label t for each ordered pair (p,t) in v — op’ must contain an
action that is enabled at layer V;. We calculate a situation that can enable
actions in v — op’ (i.e., actions in w). Also, this situation is added into the

parent vertex v’ to support enabled actions in v through w.

There are many situations to enable actions in v — op’. Let PRE be the set

CHAPTER 4. COMPOSITION THROUGH GRAPH REACHABILITY 78

of propositions that are the preconditions of actions in w (line 14). Tpgrg is the
label sets of PRE at proposition layer P;_; (line 15). In terms of PRE and Tpgrg,
a family of the ordered pair sets OP is generated to describe all the situations to
produce all propositions in PRE (line 16). For each ordered pair set op € OP, we
check if op is the ordered pair set to enable all the actions in w. ST is the set of
labels in op whose actions are enabled at layer V;_; (line 18). SP is the effects of
actions in ST (line 19). In terms of op, CT is a set of labels in w whose actions
can be actually enabled at layer V; (line 20). If C'T is equal to w, it means op is
the right ordered pair that every action in w can be enabled at layer V; (line 21).
In this case, we assume that the parent vertex ¢’ is the union of op and op’ (line
22). If v/ is also a vertex (line 23), no actions in v’ can be replaced. Then, ¢’ is a
parent vertex. LayerUpdate(V;_1,V;, v, w,v) is invoked to update vertex layer V;_q,
add the edge (v/,v), and associates (v',v) with weight w (line 24). Otherwise, v’ is
not a parent vertex of v. For an initial proposition, we suppose its parent action is
I and the cost of I is 0. Therefore, the parent label for each initial proposition is
(1,0,0). Vp has only one vertex v" where v’ takes initial inputs sy as the key values
and each key is mapped to the parent label (7,0,0). v’ is linked to each vertex v in
Vi. LayerUpdate(Vy, Vi, v, w,v) is invoked to update vertex layer V5 , add the edge
(v',v), and associates (v',v) with weight w (line 35).

In a LWG, each vertex is able to be reached by another one vertex. It is easy
to use Dijkstra’s algorithm on the LWG. A path from the single source vertex to
a vertex in V,, corresponds to a plan. Actions in the same vertex are enabled in
parallel. Actions in different vertices are enabled in the order of when vertices can

be reached. All the parent vertices of a vertex v is generated from v.

Proposition 5 Let v be a vertex at vertex layer V;. V' is a set of parent vertices
of v (e, VI ={v'|v € V,_y : v is a parent of v}). For Vv' € V', there is only one

weight w such that (v',v) — w.

CHAPTER 4. COMPOSITION THROUGH GRAPH REACHABILITY 79

Proposition 5 specifies that any edge that links a parent with v’ is associated with
the same weight. The reason is that all labels in w come from labels in v and each

of these labels contains an action that is enabled at layer A; in the corresponding

PLPG.

Proposition 6 Let v be a verter at layer V;. If V' is a parent vertex of v (i.e.,

(v, v) = w), we have Py = P, —J,.,, ef fects(act(t)) + U, pre(act(t)).

Proposition 6 states the relation among the propositions in the parent vertex v/,
the propositions in v, and the propositions in the preconditions of actions in the
weight w that is assigned to the edge (v',v). Assume v and v’ are at layer V; and
V;_1 respectively, all actions in w are enabled at layer A; in the corresponding PLPG.
Proposition 6 shows that propositions in the parent vertex v’, denoted as P,/, removes
the propositions produced by actions in w, denoted as |J,,, ef fects(act(t)). Also,
Proposition 6 guarantees that P, must contains the preconditions of actions in w,

denoted as (J,.,, pre(act(t)), to support actions in w to be enabled at layer A,.
Theorem 6 Algorithm 13 GraphConversion has polynomial time complexity.

Proof: GraphConversion converts a PLPG with k layers, n propositions, and |A|
actions, into a LWG. The conversion process starts from the top layer k. A vertex
in LWG contains a set of propositions and a set of actions called parent actions that
produce propositions in the vertex. The maximal number propositions in one vertex
is n, and each proposition is maximally produced by |A| services. The maximal
number of combination of parent actions that can produce n propositions in one
vertex is |A[". A vertices layer in LWG contains maximal |A|" x n vertices. Since a
LWG has k layers, the maximal number of vertics in a LWG is |A|" xn x k. Therefore,

the time complexity of GraphConversion is |A|™ x n x k.

CHAPTER 4. COMPOSITION THROUGH GRAPH REACHABILITY 80

Example 12 According to Algorithm 13, the PLPG in Figure 5.2 is converted into
the LWG as shown in Figure 4.5. Due to the space limit, we only present the propo-
sittons and the actions in the PLPG that are involved in construct of the LWG. The
dashed arrow in the middle of Figure 4.5 separates the LWG (on the upper side)
with the PLPG (on the lower side). The dashed arrow also denotes the direction to
generate the layers of LWG (i.e., from V3 to Vy). Firstly, two vertices are generated
at vertex layer V3 in terms of propositions D and G at Ps in the PLPG. Then, V5
15 generated in terms of V3 and Py. For example, we generate the parent vertices for
verter v = {(D, (ws, 3,50)), (G, (w4,2,10))} at V5. Since only ws in v is enabled at
Az in the PLPG, the weight w = {(ws,3,50)} is the label set mapping to the edges
linking v’s parent vertices with v. Hence, op’ = {(G, (wy4,2,10))} is the mapping set
which will be kept in parent vertices of v. ws produces D and has the input C'. We
have PRE = {C}. The label set of C' at layer Py is {(wy,1,120), (ws,2,70)}, then
OP = {(C, (w1, 1,120)), (C, (w5, 2,70))}. In terms of op = {(C, (w1, 1,120))}, ST is
the empty set since no label whose action can be enabled at Vo. Then, SP 1is also
an empty set. In such case, C'T" is an empty set since no service in the weight w
can be enabled. Hence, op = {(C, (wy,1,120))} is discarded. Similarly, we calcu-
late ST, SP, and CT for op = {(C,(ws,2,70))}. We have the result that CT is
equal to w = {(ws,3,50)}. Hence, op = {(C, (ws,2,70))} is the right ordered pairs.
v =op+op ={(C,(ws,2,70)), (G, (wyg,2,10))} is a vertex and recorded as a parent
of v. We continue the calculation until the vertex layer Vi. Vi contains only one
verter v = {(A, (1,0,0)),(B,(1,0,0))} who takes initial inputs as keys. Finally, we

connect v with each vertex in Vi to complete graph conversion.

4.5 Plan Generation

We perform plan generation on a LWG. Plan generation contains two steps: forward

search and backtracking.

CHAPTER 4. COMPOSITION THROUGH GRAPH REACHABILITY 81

c| w,1,120) | gy
32’SO)(W 2
E| (Wy,1,120) «210) | p| (W,,2,50) D| (W,,2,50)
8 19
\\Mx‘“’ \ | (W,1,120) | {w,2,50)(W,2,10)} |G| (W,2,10) G| (W,2,10)
0
> \\W”‘ﬁm\\ E| (W,130) <:| e
N 2t
Al (,0,0) /\/ 8] (1,00

{(w,

(|,0,0) \(VVQJ (W2’1,30) 5'2170)(W412'10)}
4 D| (W,,3,50)

E| (W,1,120) (Ws,2,70) | {(W,,3,50)}

@

O

B[(00) | (Wy270(W,2100 [6] (Wa210) 6 (We210
1| (W,1,30)
E| (W,1,30)

_______________ (W3:3r50)} PLPG

Py A P, A, P, A, P3

Figure 4.5: The Layered Weighted Graph (LWG) for Example 12.

During forward search, we use the Dijkstra’s algorithm to calculate the cost-to-
come value for each vertex v. The principle behind the calculation is based on the
actions in the weights assigned to the edges. If a vertex v’ can reach v, it indicates
that v’ contains the preconditions to enable all the actions in the weight assigned to
edge (v',v) such that v contains the propositions produced by these actions in the
weight. Also, the calculation needs to look at the service models to identify that
a proposition belongs to the precondition or the post-condition of an action. The
forward search starts from layer 1} to layer V,, because each vertex V| contains the
initial state and each vertex V), contains the goal. Since each vertex contains a set
of propositions, the cost-to-come value for each vertex v is considered as the optimal
QoS value to obtain all the propositions in v. Let r(v) be a function to get the
cost-to-come value for each vertex v. Since different quality criterion has different
calculation for QoS value, the format of the cost-to-come value for v is different

in terms of quality criteria. Accordingly, the method for choosing the cost-to-come

CHAPTER 4. COMPOSITION THROUGH GRAPH REACHABILITY 82

value for v varies. For simplicity, we use response time as a single quality criterion
in Algorithm 14. We will discuss other quality criterion in Section 4.6. Let C} be
the QoS value for obtaining proposition p in v. If the response time is the quality
criterion, the cost-to-come value r(v) is a set of QoS values (i.e., r(v) = {C}|p € P,}).
If there is an execution path leading to a vertex v, the QoS value for obtaining the
propositions in v through this path is calculated by accumulating the QoS values of
actions assigned to the edges in this path. If there are several paths leading to a
vertex v, the optimal path is the path that produces all the propositions in v with
the minimum response time. Since the response time to obtain all the propositions in
v is actually decided by the proposition obtained with the maximum response time
(i-e., max{C}}), the optimal path makes max{C}} have the minimum value among
all the paths. Hence, r(v) is calcuated by accumulating the QoS values of actions
assigned to the weights on the optimal path.

Backtracking starts from the vertex v at V,, with the optimal cost-to-come value.
This is because any vertex V,, contains the goal. As for quality criterion of response
time, a vertex v at V,, has the optimal cost-to-come value if the maximum QoS value
of a proposition in v is minimum as compared to any other vertex at V,,. We extract
an execution path from the LWG through backtracking. The execution path starting
from a vertex at V{ to a vertex at V,, corresponds to an optimal plan for the planning
problem. The plan is retrieved by extracting the actions in the weights assigned to
the edges in the path. Actions are enabled in the order of the weights to be extracted,
while actions in one weight are enabled in parallel.

Algorithm 14 describes how to find a best plan from the LWG. First, we calculate
the cost-to-come value for each vertex at layer Vj. V[contains only one vertex v that
includes all the initial inputs. We assume the cost to obtain each proposition in v
is zero (line 1-3), since no action needs to be enabled to produce any propsosition
in v. Next, the cost-to-come values for vertices are calculated layer by layer and the

calcuation goes from Vj to V,, (line 14-18). For any vertex v at proposition layer V;,

CHAPTER 4. COMPOSITION THROUGH GRAPH REACHABILITY

83

Algorithm 14: PlanGeneration(LWG, A, g)

Data: LWG = (V, ..., V,) is a layered weighted graph; A is a set of actions;

g is the goal;

1: for each v € Vj; do

2. r(v) ={0,...,0};

3: end for

4: 1 =1;

5. repeat

6: for each v eV, do

7 V' ={V'|(v',v) € E;};

8: if w = () then

9: The only parent v’ is recorded as the best parent of v;
10: r(v) =r();

11: else

12: v = ming Ly, {max{C:|CY € CalQoS(v',v,w) : t, € w}};
13: v’ is recorded as the best parent of v;
14: r(v) = CalQoS (v, v, w);

15: end if

16: end for

17 1=1+4+1;

18: until i = n;

19: v = minv_elvn{maxcgeT(v){Cﬁp € P,}};

20: for i =n,...,1 do

21 = ey, act(t);

22: v’ in V,_; is the best parent of v;

23: v =10;

24: end for

25: return T;

we calculate the cost-to-come value r(v) in terms of all of its parent vertices (line

6-16). V' contains all the parent vertices of v (line 7). If weight w = (), no action

needs to be enabled to reach v from any parent v’ (line 8). Then v has only one

parent v’ who has the same content as v. v is recorded as the best parent of v

and r(v) = r(v') (line 9-10). Otherwise, some action in weight w has to be enabled

to reach v from any parent v’ (line 11). For vertex v reachable from its parent v’

the QoS value for obtaining the propositions in v from v’ is calculated by function

CalQoS(v',v,w). CalQoS(v',v,w) uses Equation 4.1 calculates the QoS value for

CHAPTER 4. COMPOSITION THROUGH GRAPH REACHABILITY 84

obtaining each proposition in v from v’ through w.

o maXp’epre(act(t;)){C;,’} + cost(ty), ift, €w

p

(4.1)

/ .
cy, otherwise

where ¢, denotes the label mapped to p in vertex v.

Equation 4.1 treats each proposition from case to case.

e If {) € w for proposition p, it means the action in ¢ is enabled in v such
that p is produced. The cost of p, i.e., C}, is the maximal costs of all of the

preconditions of action act(t;) plus cost(t).

o Ift) ¢ w for proposition p, the action in t, is not enabled in v such that p is not

produced. The cost of p in v is the same as the cost of p in v/, i.e., C, = C;;/.

The cost to reach v from ¢’ is actually decided by the maximum cost of p produced
in v and the action in parent label of p is enabled by the propositions in v’. This is
what max{C}|Cy € CalQoS(v',v,w) : t; € w} means at line 12. If there are several
parent vertices to reach v, we choose the parent v' which causes the minimum cost
to reach v (line 12). v’ is recorded as the best parent (line 13) and CalQoS(v', v, w)
as the cost-to-come value of v (line 14).

Backtracking starts from the selected vertex in V,,. The extraction of an optimal
plan consists of retrieving the path that can reach this vertex with minimum cost

(line 19-24).
Theorem 7 Algorithm 14 PlanGeneration has linear time complexity.

Proof: PlanGeneration contains two steps: using Dijkstra’s algorithm to traverse
the graph from the initial layer 0 to the top layer k, and extract a plan through

backtracking. For a LWG with |E| edges and V vertices, Dijkstra’s algorithm traverse

CHAPTER 4. COMPOSITION THROUGH GRAPH REACHABILITY 85

each vertex through the edges from the initial vertex layer by layer. Sine the LWG is
a layer graph and each vertex has only one parent vertex, Dijkstra’s algorithm scans
each edge once when it reaches the goal vertex. In total, Dijkstra’s algorithm scans
|E| edges to reach the destination vertex. For the extraction phase, PlanGeneration
extracts one path at each layer. Since there are k layers in the LWG, it takes k
operations to extract a plan. Therefore, the time complexity of PlanGeneration is

|E|+ k. O

Example 13 Following Example 12, the dotted arrow in Figure 5.3 shows the trace
of backtracking for plan generation. The solid arrow below the table of available

services shows the direction to apply the Digkstra’s algorithm on the LWG.

@]

(W,,1,120) | 120

//14/2
Available services (M,q ;’1»50/
E|(W,1,120) | 120 <o,
W, | inputs | outputs | Q1 ,LQ\\ W,) %
N [W, 2,120) [120]y, 250 D| (W32,50) 170 | {} D| (W,,2,50) | 170
w,| A GE | 120 NN = ¥ W,,2,10) | 4
1 > o g E| (W,1,30) | 30 (W, 2,100 6] (Wy2,10) | 40 G| (W,,2,10) | 40
w,| AB | EJ |30 \\\M\'
Al (1,0,0) |0 7 B| (1,0,0) 0 Ty,
w,| ¢ D 50 W)
3 B[(10,0) | 0| 1y, 311,30} 1| (w,1,30) | 30 h/'eiojoj
1,
w,| E G 10 BN L0, ¢ W,1120) [120| Z 1 c| (w,,2,70) | 100 {(W,,3,50)}| D| (W5,3,50) | 150
NN VD W,2,10) | 40 [¢------
W | BJ C 70 \%‘Q 8] (100 | 0 \\“MVQ/ (W,,2,10) G| (W,,2,10) | 40
> \\o/f’ i w,130) |30 | 7
SN E| (W,,1,30) | 30 u/
Vo V, Vv, V3

Figure 4.6: Plan Generation for Example 12.

We use Algorithm 14 to calculate the value of each vertez in Figure 5.5. For a ver-
tex v in Figure 5.3, the QoS values of propositions are shown in the rightmost column
in v. For example, the value of vertex v = {(G, (w3, 2,50)), (D, (w4, 2,10))} at Vs is
{C%,,CE} = {170,40}. v has two parents v' and v". w = {(ws,2,50), (wy,2,10)}
15 mapped to any edge at Fo that links a parent with v.

This means both ws and

we are enabled when a path goes from a parent to v through an edge. We use

If
we choose v' at Vi with the QoS value of (C%,C%) = {120,120} to reach v, we
get C% = max{C¥%} + cost(ws,2,50) = 120 + 50 = 170 and C¥% = max{C%} +

CalQoS(v',v,w) to calculate the cost-to-come wvalue from a parent v' to v.

CHAPTER 4. COMPOSITION THROUGH GRAPH REACHABILITY 86

cost(wy, 2,10) = 120+10 = 130. Hence, CalQoS(v',v,w) = {C},C&} = {170,130}.
If we choose v" at Vy with the QoS value of (CY,C%') = {120, 30} to reach v, we
get CalQoS(v",v,w) = {C},CE} = {170,40}. Since the parent v" reach v with the
minimum response time, v" is recorded as the best parent and CalQoS(v",v,w) as
the best value of v. Similarly, we calculate the values for other vertices and record
the best parents accordingly. The best solution {ws; wy, ws; w3} is obtained by retriev-
ing the path through the dotted arrow in Figure 5.3. The response time of the best

solution is 150 milliseconds.

4.6 Other Single QoS Criteria

If throughput is considered as a single QoS criteria in Algorithm 14, we use Equation
3 and Equation 4 to calculate cost-to-come value for vertices. We also change the
calculation in the corresponding places in Algorithm 14. Line 2 sets the cost-to-
come value for a proposition in V; as the maximum throughtput among all actions
(i.e., maxgeq C,). To calculate the cost-to-come value of proposition p, we replace

Equation 4.1 with Equation 4.2.

oo min{miny epre(act(en) {CY }, cost(th)}, if t) € w

p

(4.2)

cy, otherwise

Line 12 should be v/ = max,L,,{min{C?|C" € CalQoS(v',v,w) : t! € w}}.
The min function in line 2 means the cost-to-come value of v that can be reached
from v’ is decided by the minimum throughput of all propsitions in v. If there are
several parent vertices, we choose the parent v’ that can reach v with the maximum
cost-to-come. This is what function max,cy, means in line 12. Line 19 should be
v = ma:v;elvn{mincger(v){Cﬂp € P,}}, since the vertex with the maximum cost-to-

come at layer V,, must be contained in the best plan.

CHAPTER 4. COMPOSITION THROUGH GRAPH REACHABILITY 87

For other quality criteria, we count the QoS values in terms of all the actions
included in the plan. If an action presents twice in a plan (i.e., a re-used action),
this action is only considered once for the calculation of the QoS values of vertices
on the plan. Let A, be a set of actions that are enabled on the path to produce
propositions in v. We add the calcluation of A, for each vertex v in Algorithm 14.
For the only vertex v in Vj, we add A, = {} after line 2. For vertex v at other layer
Vi (i > 0), we add the calculation of A, somewhere between line 6 to line 18. If w = ()
(line 8), we add A, = A, after line 10. Otherwise, we add A, = A, U{act(t)|t € w}
after line 14. Table 4.3 lists other changes that have to be made accordingly in
Algorithm 14.

4.7 Experimental Results

We use WSC09 data set |7|, as explained in Section 3.10. WSCO09 has five data
sets denoted as D1-D5 in Table 4.2. Dataset 1 has 500 services and 5,000 concepts.
Dataset 5 has 15,000 services and 100,000 concepts. The other data sets have 4,000-
8,000 services and 40,000-60,000 concepts.

We compare our method QoSW SC with method QoSGraphPlan or method
QoSGraphPlanExt presented in Chapter 3 in terms of the quality of the solutions.
QoSGraphPlan is used when the single quality criterion is response time or through-
put. QoSGraphPlanFExt as an extension of QoSGraphPlan is used to calculate the
best QoS value for the single criterion of execution price, reputation, successfull rate,
or availability. In Table 4.2, we show whether the correct QoS values can be cal-
culated (the checkmarks). We can see that method QoSW SC can find the correct
QoS values for all the five data sets. In Chapter 3, We find QoSGraphPlanFExt
can not find the solution with the best QoS value for these criteria. This is be-
cause QQoSGraphPlanFExt uses a heuristic search while searching the best solution

for these criteria. The heuristic method may find the local optimal rather than the

Table 4.3: Changes made in Algorithm 14 for different single criteria (r,r" are real values, k, k' > 0 are integers)

QoS criteria

format of r(v)

line 2

line 12

line 19

exe. price

r

r(v) =0

v = max,, . {r(v)) + > cost(t)}

tew:
act(t)g A,

v =max,}, r(v)

reputation

(r k)

r(v) = (0,0)

I -1 r’+Cw
v = IIlaXU/GV k’+||waU/H

where C,, = > cost(t)

tew:
act(t)g A,

v =max,ey, {3}

succ. exe. rate

availability

r(v) =1

v = max,, Ly {r(v') x [] cost(t)}

tew:
act(t)¢ A,

v = max;elvn r(v)

ALI'MTAVHOVHY HAVHD HONOYHL NOILLISOdINOD ¥ HHLdVHD

88

CHAPTER 4. COMPOSITION THROUGH GRAPH REACHABILITY

global optimal solution.

Table 4.2: Results with the WSC09 Data Sets:

method QoSW SC' /method QoSGraphPlan (QoSGraphPlanExt)

D1 D2 D3 D4 D5
Resp. Time | vV /v |V /V | VIV | VIV |V /V
Throughput | v/ /v | V/V | V/V | V/V | V/V
Exec. price |V /V | V/= |V /= |V /= |V /-
Reputation | v/ /— |V /= |V /= |V /= |V /-
Succ. rate VIV V= | V)= | V= |V/-
Availability | v/vV |V /= |V /= |V /— |V /-

4.8 Summary

89

In this chapter, we take advantage of graph reachability and use GraphPlan tech-

nology combined with Dijkstra’s algorithm to solve QoS-aware service composition

problem. The solution generated by our approach can satisfy both the functional

requirements and the requirement of QoS optimization. Our approach can find the

global optimal solution for all kinds of QoS criteria. One advantage of our approach

is that it reduces the possibilities of combinatorial explosion to a large degree when

exploring the graph for a best plan. The other advantage is that our approach can be

easily extended by using multi-objective shortest path algorithms to solve QoS op-

timization on multiple QoS criteria for service composition problems. In the future,

we will study the extension of our work for multiple QoS criteria.

Chapter 5

Redundant Service Removal 1n

QoS-aware Service Composition

5.1 Introduction

In this chapter, we study the redundancy removal problem to further optimize the
QoS optimal solutions obtained by QoS-aware service composition algorithms, where
QoS-aware service composition achieves functional goals and QoS optimization at the
same time.

The QoS-aware service composition problems can be classified into single QoS
criterion problems or multiple QoS criteria problems. To solve multiple QoS criteria
problems, people use a preemptive model where multiple single criterion problems
are solved in a sequence of priorities or a non-preemptive model where an aggregated
score is calculated as a single criterion for optimization. Sometimes, execution cost
is not in the list to optimize. In this case, many composition algorithms can get
the solutions with optimal QoS values. However, the solutions obtained can possibly
contain redundant services, the removal of which does not worsen the QoS value of the
solution. For example, in the literatures using Web Service Challenge (WSC) open

data sets |7], e.g., [32], |74], and QoSGraphPlan approach proposed in Chapter 3,

90

CHAPTER 5. REDUNDANT SERVICE REMOVAL 91

we find that all the algorithms generate redundant services with almost every data
set. The removable services can be over 30% of the services in a solution in some
cases. Surprisingly, this very common problem is ignored by all the WSC participants
and is not considered in the evaluation of the WSC results. In reality, even if the
execution cost is not under consideration to reduce the number of services included
in the solution without worsening the QoS performance is a reasonable requirement.
This is our motivation to do this research.

In this chapter, for simplicity, we consider response time or throughput as the first
optimal criterion in this paper. Execution cost can then be considered as the second
criterion in the preemptive model. We model the redundancy removal problem as an
integer programming problem. Though solvable using a standard solver, we present
an algorithm to solve the problem in this specific context and it proves to have better
performance than a standard integer programming solver. We also present the results
of our data experiments. Experimental results show that our method can find the
cost-optimized solution by removing redundant services and the optimal response

time (or throughput) of the solution is guaranteed.

5.2 Motivation

Our previous work in Chapter 3 combined a planning algorithm called the Graph-
Plan [8] with Dijkstra’s algorithm to solve the single QoS criterion service composi-
tion problem. When a second QoS criteria is under consideration, we find the removal
of some services from the solution will further optimize the QoS value of the second
QoS criteria while keeping the satisfaction of functional goals and optimization of
the first QoS criterion untouched. We will explain in detail what triggered us with

the following example.

Example 14 A set of available services are presented in Table 5.1. A composi-

tion query is (Din, Dowt) = ({A, B,C},{K,L,J}), and its objective is to optimize

Table 5.1: Services in the solution shown in Figure 5.2

CHAPTER 5. REDUNDANT SERVICE REMOVAL

Service | inputs | outputs | response time | cost
wy A D, E 40 20
Wy B F 20 30
W3 C G, 1 120 30
Wy D N, H 30 20
ws EF H T 70 30
We G M, J 100 20
wy G J 120 20
wg H K 50 30
Wy 1 L 20 30
W10 J Q 30 30

92

response time. Figure 5.1 shows the Tagged Planning Graph (TPG) for this service
composition problem. For clarity, we do not draw the duplicated services if they have
appeared in the previous action layers. In Figure 5.1, each service is labelled with its
response time, and each proposition is labeled with the optimal response time to obtain
it. The computation of the optimal response time of each proposition is similar to
the classic Dijkstra’s algorithm, except now the optimal value depends on several in-
puts. The solution with optimal response time {(wq||ws||ws); (w4||ws||ws); (ws||wg)}
18 generated by retrieving the recorded best parents for each goal. The TPG of the
solution is shown in Figure 5.2. The TPG in Figure 5.2 actually removes the services
and propositions that do not exist in the solution from the TPG in Figure 5.1. The
response time of the solution is 220 because this is the mazimum response time to
obtain the individual goals. The execution cost of the solution is 240 by adding up all
the costs of the services in the solution. The bold arrows in Figure 5.1 and 5.2 are
the optimal paths to get Dyy. no-op 1s a dummy activity to keep the service layers

and the parameter layers interleaving. no-op takes 0 time and 0 cost to erecute.

The service composition problem is an Al planning problem without negative
effects. It is known that it is a polynomial time problem [31]. It is also known that

it takes polynomial time to construct a Planning Graph [8|. The QoSGrpahPlan

CHAPTER 5. REDUNDANT SERVICE REMOVAL 93

(120) (220) (30) (250)

Response time=220
Execution cost=240

Figure 5.2: The TPG for the solution for Example 14

algorithm can solve a single QoS criterion (i.e., throughput or response time), service
composition problem with throughput or response time in O(Jw|?) time complexity?,

where w is the set of services.

Example 15 Let us check the solution in Fig. 5.2. When the total execution cost
for the solution is taken into consideration, we find it is possible to reduce the total
cost without worsening the optimal response time by removing some services. Please
check the following two cases:

Case 1: wy is removed. The final solution becomes { (w1 ||wz||ws); (ws||wg); (ws]]

wy)}. The total cost of the solution is reduced to 220 while the response time of the

1Other constraints apply for the other single criteria.

CHAPTER 5. REDUNDANT SERVICE REMOVAL 94

solution remains 220.
Case 2: ws and wo are removed. The final solution becomes {(wy||ws); (wy||we);
(ws|lwg)}. The total cost of the solution is reduced to 180 while response time of the

solution remains 220.

In Section 3.5 of Chapter 3, we detected the existence of redundant services in
an optimal solution. The optimal solution is valid because it satisfies the functional
goals, and has an optimal QoS value. However, it is necessary to remove the redun-
dant services, because the removal can reduce the execution cost. After checking the
papers using the same data sets (e.g. |32] and |74]) we found this is a common prob-
lem. Surprisingly, people seem satisfied after obtaining a solution with the optimal
QoS value without further studying this problem. We consider that the fundamental
reason for this problem is that execution cost is not one of the criteria to optimize.
In reality, even if execution cost is not under consideration, to reduce the number
of services included in the solution without worsening the QoS performance is a
reasonable requirement.

Intuitively, the redundant services are due to the reproduction of the outputs by
multiple services. For example, output H is produced by both w,; and ws, which
brings the possibility to remove one of them. However, due to the complexity of how
the outputs of wy and ws are used, it is difficult to make a decision without checking
the whole solution carefully.

In this chapter, we propose a method to use the execution cost as a second
criterion to further optimize the solution obtained from optimizing the first criterion ?.
Our method can be extended to solve more general multiple criteria optimization

problems with a preemptive model.

2Limit to throughput and response time in this thesis

CHAPTER 5. REDUNDANT SERVICE REMOVAL 95

5.3 Analysis of Redundant Service Removal

We extend the definition of a Direct Acyclic Graph (DAG) G = (V, E) to represent

a solution to a QoS-aware composition query.

Definition 18 An Eztended Direct Acyclic Graph (EDAG) EG = (V, E) is a direct
acyclic graph with alternating levels of vertices V,, and vertices V;, where V- =V, UV

is the verter set and E = (V, x Vi) U (Vi x V,) is the edge set.

Similar to a planning graph, a EDAG is a layered graph with alternating levels of
proposition vertices and service vertices. However, an EDAG contains two dummy
service vertices which do not exist in a planning graph. The two dummy service
vertices are added into an EDAG as a single source vertex and a single destina-
tion vertex. We assume that the dummy service corresponding to the single source
vertex provides the initial inputs parameters, while the precondition of the dummy
service corresponding to the single destination vertex consists of the expected output
parameters.

In an EDAG, we label the levels starting from level 0 where P, is a level of vertices
V, and S, is a level of vertices V;. The precondition of each service at layer S; (i > 0)
is provided by services at layer S;_;.

We map a solution to an EDAG in the following way:

e The vertices V,, are the parameter vertices.

The vertices V; are the service vertices.

The edges V,, x V; connect the input parameters with the services.

The edges Vs x V,, connect the services with their output parameters.

The initial input of the solution is considered to be a dummy service with () as

its inputs and D;,, as its outputs.

CHAPTER 5. REDUNDANT SERVICE REMOVAL 96

e The expected output of the solution is considered to be a dummy service with

D,u: as its inputs and) as its outputs.

Example 16 Fig. 5.3 shows the EDAG for the solution in Fxample 11. Dy and D¢

are the two dummy services.

So Po S1 P1 S2 P2 S3 P3 S4

Figure 5.3: An EDAG with labelled levels for Example 11

Definition 19 A parameter is a key parameter, if it is used as an input parameter

of a service in the EDAG .

One condition of a redundant service is as follows:

Definition 20 A service is redundant if all its key outputs are reproduced by some

other services.

Example 17 w4 has one key output H, and H is reproduced by ws. Therefore wy is
a redundant service. ws has two key outputs H and I, both of which are reproduced

by some other services. Therefore, ws is a redundant seruvice.

Redundant services can be possibly removed without worsening the optimal QoS
value. The removal can cause some other services to become useless and can be also

removed. Please check the following example.

CHAPTER 5. REDUNDANT SERVICE REMOVAL 97

So Po S1 P1 S2 P2 S3 P3 S4

Figure 5.4: The EDAG after wjs is removed from Fig. 5.3

Example 18 After removing service ws from Fig. 5.3, the new EDAG is shown in
Fig. 5.4. Obviously, wy is not a redundant service anymore and wy can be further

remowved because its only output is not a key output.

Therefore, we have the following proposition:

Definition 21 A service is useless and remowvable if none of its outputs is a key

parameter.

Removing services from a solution may worsen the optimal QoS value for a solu-

tion. Please check the following example.

Example 19 Change the response time of wg in Example 11 to 25. Table 5.2
shows response time before and after redundancy removal. Response time of the
solution increases after service wy is removed. Hence, wy cannot be removed from
the solution. After removing service wo and service ws, response time of the solution
remains optimal. Since removing services implies reducing cost, the solution after

removing wy and ws becomes the optimal solution.

5.4 Model Redundant Service Removal Problem

Assume a solution sol with optimal response time contains n services {wy, ..., w,}.

The total number of concepts m = |C|, where C is the concept set. We model the re-

CHAPTER 5. REDUNDANT SERVICE REMOVAL 98

Table 5.2: Response time before and after redundancy removal for Example 19

Solution | Goal | Execution path | Response time
Before K {wy; wy; ws} 120
removing | L {w|Jwa; ws;we} | 130 145
service J {ws; we} 145 | (solution)
After K {w||wa; ws;ws} | 160
removing | L {w|Jwa; ws;we} | 130 160
wy J {ws; we} 145 | (solution)
After K {wy; wg; ws } 120
removing | L {ws; we} 140 145
Wy, W J {ws; we} 145 | (solution)

dundant service removal problem as an integer programming problem (X, D, C, f(sol)),
where X is the variable set, D is the domain set, C' is the constraint set and f(sol)

is the objective function on sol.

Definition of variables and domains of the model

Variable set X = { X, X1,..., X, X,q1} corresponding to the set of services in sol,

where

e X, (1 <i<n)isregarded as a real services w; (1 <i <n) in sol
e X is a dummy service corresponding to D;,

e X, 1 is a dummy service corresponding to D,

e Each variable X; has a tuple (X, L;, I;, O;, Xi ., X;.c), where:

— X, 1s the variable to identify whether service w; is included in the final
solution. When X;, = 1, service w; remains in sol; when X, = 0, service

w; is removed from sol.
— L; is the variable corresponding to the level where service w; is located

— I, is the 1 x m array representing the input attributes of w;. I;; = 1, when

the 5! attribute is an input of w;, otherwise 0.

CHAPTER 5. REDUNDANT SERVICE REMOVAL 99

— O, is the 1 x m array representing the output attributes of w;,. O;; =1,

when the j% attribute is an output of w;, otherwise 0.
— X, is the response time of service w;.

— X, . 1s the execution cost of service w;.

Objective function

The objective function f is the minimum total cost of the solution.

f=min{} X Xic} (5.1)

Constraints

C' is the constraint set that contains all the constraints sol needs to satisfy after

redundancy removal.

e Initial inputs constraint: X, should always be included in sol because this

dummy service provides the initial inputs of the composition query.

Xo, =1 (5.2)

e Goal constraint: X, ; should always be included in sol because this dummy

service’s inputs are the goals and should always be satisfied.

Xpiro =1 (5.3)

e Service invokable constraint: Each service except the dummy service X, needs

to be invokable in sol.

KX Iy < Z Xiv - Oy (5.4)

Li<Lk

CHAPTER 5. REDUNDANT SERVICE REMOVAL 100
where k=1,...,n+1,7=1,....,m,and 1 =0,...,n.
e Constraint on the key output parameter: Each real service in the final sol has
to at least produce one key parameter.

Xk.v : Z

J=1

O Y Xi,v-fij] > X (5.5)

Li>Lk

where k=1,...,nandt=2,...,n+ 1.

This constraint needs a little explanation. When X, , = 0, service wy is re-
moved from sol. We have X}, - Z;”:l [ij . ZL,->Lk Xy I; } = (0 because none

of the outputs of wy, is produced.

When X, =1, service wy, is not removed from sol. We check every output of

wy. For the j*" attribute of wy,

Okj " Dopior, Xiw L (5.6)
.
> 1 if Og; at least matches an input of

services at an upper level L; (L; > L)

=0 otherwise

\

Therefore, if wy, at the level Ly is able to at least produce one parameter which
matches an input of services at an upper level L; (L; > Ly), we get the following

equation
m

Xk.v : Z

J=1

Oy - Z Xiy - Iij] >1

L;>Ly

e Constraint on response time: The optimal response time of the solution needs

to be guaranteed after redundancy removal.

Lmaac

> max{Xi, - Xis|Li = h} = Q: (5.7)
h=1

CHAPTER 5. REDUNDANT SERVICE REMOVAL 101

where (), is the optimal response time of the solution, h denotes a level in the

solution and L,,q, = max{L;|1 <i <n}.

Based on the constraints and objective function defined, the redundant service

removal model can be formulated:
f(sol) = min{z Xiw: Xich
i=1

subject to the constraints (5.2) through (5.7).
When throughput is the first QoS criterion, the variable X;, is changed into X,
which corresponds to the throughput of service w;. Equation 5.7 is replaced with the

constraint on the throughput:

Lmaz

I}{l_llll m}jn{Xi‘v - XiplLi =h} =0, (5.8)

where @), is the optimal throughput of the solution.

5.5 Redundant Service Removal in QoS-aware Ser-
vice Composition

According to the model in the previous subsection, we can use a standard integer
programming solver to find a solution. Under the worst case, the time complexity
of the standard solver would be the same as that of the exhaustive search. If the
size of the service set in sol is n, the complexity is 2”. In the context of redundancy
removal, we will present an algorithm with less time complexity in this subsection.
The intuition behind our algorithm is that we probe the removal of all the com-
binations of redundant services. For each combination of redundant services, we
remove redundant services in the combination and useless services afterwards. We

will pick a solution which keeps the same response time (or throughput) and has

CHAPTER 5. REDUNDANT SERVICE REMOVAL 102

minimal execution cost. Since the redundant services are normally just part of the
total services, our algorithm has less time complexity.

Suppose we are removing redundant services from a solution sol with optimal
response time, where sol contains n real services and D, (resp. D,y;) corresponds
to service wy (resp. service wy,y1) located at the lowest (resp. highest) level of sol.
Algorithm 15 RedundancyRemoval is the main algorithm. Initially, we have the
optimal response time @, (line 1) and the cost-minimized solution optSol is sup-
posed to be the original solution sol (line 2). Algorithm 16 FindReduntS (line 3)
searches for all redundant services in sol. If there are redundant services, Algo-
rithm 17 ReduntSolver (line 5) is called to remove redundant services and useless
services in order to find a cost-minimized solution optSol whose response time is still

optimal.

Algorithm 15: RedundancyRemoval(sol)

1: Qopt is the optimal response time of sol;
optSol < sol;
reduntS < FindReduntS(sol);
if reduntS # () then

optSol <— ReduntSolver(sol, reduntS, Qop);
end if
return optSol,

Algorithm 16 Find ReduntS searches for all redundant services reduntS satisfying
Proposition 20. L; denotes the level where service w; is located in solution sol. If all
key outputs of service w; are contained in the union of outputs of other services at
level L; (L; < L;)(line 3), w; is a redundant service (line 4).

Algorithm 17 ReduntSolver removes redundant services and finds a cost-minimized
solution with the optimal response time. For each possible combination of redundant
services (line 3), a new solution newSol is generated by removing redundant services

in the combination from sol (line 5). Algorithm RemoveUselessServices (line 6)

searches for useless services in current solution newSol and removes these useless

CHAPTER 5. REDUNDANT SERVICE REMOVAL

103

Alg

orithm 16: FindReduntS(sol)

1:

2

3:

reduntS + 0;
: fori=1ton do
if |wz’.0ut N (ULj>Liwj.in)_
Uw]-#wi/\LjSLiwj.ouA =0 then
reduntS < reduntS U {w;}
end if
end for
return reduntS;

Alg

orithm 17: ReduntSolver(sol, reduntS, Qopt)

1
2
3

10:
11:
12:
13:
14:
15:
16:
17:
18:

19
20

: optSol < sol;

: minCost is the total cost of sol;

. for embReduntS € 2SI — [} do

newSol < sol,;

newSol < newSol — cmbReduntS;

RemoveU selessServices(newSol);

isInvokable <— CheckInvokability(newSol);

if Response time of newSol = (),,x then
1sOpt < true;

else
1sOpt < false;

end if

if isInvokable = true and isOpt = true then
if The total cost of newSol < minCost then

minCost < The total cost of newSol;
optSol < newSol;

end if

end if

: end for

: return optSol;

services from newSol. If each service in newSol is invokable, this means newSol can

achieve the goals. Thus, newSol is also a solution (line 7). Line 8 checks whether the

response time of newSol is optimal. If functional invokable solution newSol with the

optimal response time (line 13) has lower execution cost (line 14), newSol becomes

the current cost-minimized solution optSol (line 16).

CHAPTER 5. REDUNDANT SERVICE REMOVAL 104

Algorithm 18: RemoveUselessServices(newSol)

1: maz L < max{L;|w; € newSol — {wy, wp41}}:
2: for [= maxL,...,1do

3: setS <+ {w;|w; locates at level [of newSol};
4: uselessS <+ 0

5. for w; € setS do

6: if |wi.0ut N (ULj>Liwj.in)’ = @ then

7 uselessS < uselessS U {w;};

8: end if

9: end for

10: newSol < newSol — uselessS,

11: end for

12: return

Algorithm 19: CheckInvokability(newSol)
1: fort=1ton+1do

2 if Wi — UL,<1,Wjou| > 0 then

3 return false;

4: end if

)

6

: end for
: return {rue;

Algorithm 18 RemoveU selessServices removes useless services from current so-
lution newSol. We search for useless services from level maxL that is the highest
level where real services are located in newSol (line 1). If none of the outputs of
service w; is an input of services at an upper level L; (L; > L;) or a goal (line 6),
w; is a useless service (line 7). Line 2 - line 11 removes useless services from newSol
level by level.

Algorithm 19 C'heckInvokability checks whether each service is able to be invoked

and the solution newSol can achieve the goals (line 2).
Theorem 8 The composite service is correct after redundancy removal.

Proof 1 In the redundant service removal model, initial inputs constraint (Equa-
tion 5.2), goal constraint (Equation 5.3) and service invokable constraint (Equa-

tion 5.4) guarantees the composite service generates the expected outputs for the given

CHAPTER 5. REDUNDANT SERVICE REMOVAL 105

initial inputs such that the goal is satisfied. Algorithm 19 CheckInvokability imple-

ments this functionality of the composite service.

The complexity of the RedundancyRemoval is as Theorem 9. The proof is omit-

ted.

Theorem 9 The complexity of RedundancyRemoval is 2, where k is the number

of redundant services.

In the worst case, the maximal number of redundant services is the total number
of services in a solution sol. However, it is impossible that all services in a solution
sol are redundant. Hence, the number of redundant services k is considerably less
than the number of the services in sol. The proposed redundant removal algorithm

is normally faster than a standard integer programming solver.

Example 20 We apply Algorithm 15 to Fxample 11. The objective is to minimize
the cost of the solution on the condition that optimal response time is guaranteed.

Initially, the optimal response time Qo of the solution is 220 and minCost =
240.

Redundant service set reduntS = {wy,ws}, because all key parameters generated
by wy and ws are reproduced. And 2SI — LV = Ly, {ws), {wy, ws}} contains
all the possible combinations of redundant services in reduntsS.

Table 5.3 shows the probes to remove each of the combinations. For example, if
{wy} is removed (see row 1), no useless services are generated (row 2). The services
in newSol are shown in row 3. Fach service in newSol is invokable and newSol can
achieve the goals (row 4). The new solution has the same response time 220 (row 5).
Ezecution cost is reduced to 220 (row 6). When {ws} is removed, ws becomes useless.
After removal, we can see the mew solution has the same response time 220. The
execution cost is reduced to 180. We pick this solution {(w||ws); (w4||ws); (ws||we)}

as the new optimal solution.

CHAPTER 5. REDUNDANT SERVICE REMOVAL 106

Table 5.3: Redundancy removal for Example 11

cmbReduntS {wy} {ws} | {wyg, ws}
uselessS 0 {ws} {ws}
Services {wy, we, ws, | {wy,ws, | {wy,ws,
in newSol Ws, We, Ws, | Wy, W, | Wg, Ws,
wg} ws, wg} U)g}
checkInvokable true true false
optQ(newSol) 220 220 -
cost(newSol) 220 180 -

5.6 Experimental Results

A service in the data sets is provided with response time and throughput. Its execu-
tion cost is not available. To deal with this situation, we use the value of throughput
as the value of execution cost for a service if removing redundant services from a so-
lution optimized with response time. Conversely, when removing redundant services
from a solution with optimal throughput, we take the value of response time as the
value of execution cost for a service.

After analyzing the composition results posted at |7], especially the composition
results of the first place winner [32] and the second place winner |74], we find re-
dundant services exist in almost all the results for all the data sets. Though all the
presented algorithms can find a solution with the correct optimal response time (or
throughput), service redundancy is a quite common problem in their solutions. We
use the results of the second place winner [74] as the original solutions to test our
method. This is because these results contain more redundant services than any
other solutions posted at [7].

We compare our method with the redundant service removal method presented
in Section 3.5. The redundant service removal method presented in Section 3.5 ran-
domly selects a redundant service to remove and further removes any useless services,

as long as the removal does not worsen the QoS value or renders the solution invalid.

CHAPTER 5. REDUNDANT SERVICE REMOVAL

107

Table 5.4: Redundancy removal results for the solutions with optimal response time:
our method/random removal method in Section 3.5

D1 D2 D3 D4 D5
Original solution Resp. Time 500 1690 760 1470 4070
produced Exec. Cost 126000 | 322000 | 80000 | 562000 | 432000
by [74] #Services 13 27 52 41
Keep Resp. Time v v v v
Our Exec. Cost 73000 | 248000 | 75000 | 453000 | 342000
method #Services 8 21 42 33
Redunt. #Services 4 8 13 4
Random removal | Keep Resp. Time v v v v
method in Exec. Cost 112000 | 301000 | 75000 | 556000 | 414000
Section 3.5 #Services 5) 20 40 32

Table 5.5: Redundancy removal results for the solutions with optimal throughput:
our method /random removal method in Section 3.5

D1 D2 | D3 D4 D5
Original solution Throughput 15000 | 6000 | 4000 | 2000 | 4000
produced Exec. Cost 1810 | 6300 | 7490 | 13600 | 9720
by |74| #Services 7 24 31 53 41
Keep Throughput v v v v v
Our Exec. Cost 1200 | 5190 | 4840 | 10960 | 7500
method #Services 5 20 21 40 30
Redunt. #Services 2 4 8 12 5
Random removal | Keep Throughput v v v v v
method in Exec. Cost 1730 | 5350 | 7290 | 12880 | 9330
Section 3.5 #Services 5) 20 15 42 32

This method cannot guarantee to find a cost-optimized solution after redundancy

removal.

Table 5.4 shows the results over the solutions with optimal response time. The

check marks on the row "Keep Resp. Time" mean that the redundancy removal

maintains the optimal value. The row "Redunt. # Services" shows the number of

redundant services when starting our algorithm. "Redunt. # Services" determines

CHAPTER 5. REDUNDANT SERVICE REMOVAL 108

the time complexity. "# Services" shows the number of services in the solutions.
Comparing the "# Services" before and after the removal, we can see the removed
services count from 9% to 38% of the total services in the original solutions. "Exec.
Cost" shows the execution cost of the solution. Noticeably, our method can give
better execution cost than the redundant service removal method in Section 3.5.
Similarly, Table 5.5 shows the results over the solutions with optimal throughput.
Please note that less numbers of services may have the higher execution cost because
the execution cost of the services are different. Thus, a solution with less services

may cost may than a solution with more services.

5.7 Summary

In this chapter, we study the redundant service removal problem in (QoS-aware ser-
vice composition, where QoS-aware service composition achieves functional goals and
QoS optimization at the same time. When execution cost is not used to optimize the
solutions, it is possible that the solutions may contain redundant services. Even if
execution cost is not the criterion to optimize, it is a better choice to remove unnec-
essary services from the solution, which reduces the execution cost of the solution.
Therefore, we recommend using our method as a last step to further optimize the
solution obtained by other methods. We try to solve this problem in the context of
redundancy removal, though we can model this problem as yet-another IP problem
and use a standard IP solver to solve it. In fact, the proposed redundant removal

algorithm is normally faster than a standard integer programming solver.

Chapter 6

Conclusion

6.1 Summary

In this thesis, we study QoS-aware service composition problem that can achieve
functional goals and QoS optimization simultaneously. We also study redundant ser-
vice removal problem which is a derived problem of QoS-aware service composition.

As for the QoS-aware service composition problem, we are motivated to combine
a planning algorithm, called GraphPlan, with a systematic search algorithm like
Dijkstra’s algorithm to achieve both functional goals and QoS optimization at the
same time. We propose two methods to combine the GraphPlan with Dijkstra’s
algorithm.

In the first method, we extend Dijkstra’s algorithm from working on a single
source graph to working on the extended planning graph whose nodes have multiple
sources. The advantage of this method is that this method gets optimal plan with the
best QoS value for the single criteria of throughput or response time in polynomial
time. However, this method does not provide a uniform graph structure (i.e., an
extended planning graph with single or multiple tags) to generate an optimal plan
for all kinds of quality criteria.

In the second method, we improve the idea of combining the Graphplan with

109

CHAPTER 6. CONCLUSION 110

Dijkstra’s algorithm by providing a uniform graph structure to generate a QoS op-
timal solution for all kinds of quality criteria. A Layered Weighted Graph (LWG) is
converted from an extension of a planning graph. A LWG provides a uniform struc-
ture for the ease of using Dijkstra’s algorithm to find an optimal plan for all kinds of
quality criteria. By using multi-objective shortest path algorithms, this method can
be easily extended to solve QoS optimization on multiple QoS criterion for service
composition problems.

In the second strategy, we employ three steps to combine the GraphPlan algo-
rithm with Dijkstra’s algorithm. First, a Partially Labeled Planning Graph (PLPG)
is generated to represent the problem space. The PLPG extends the classic planning
graph in the way that each proposition is associated with a label. Next, a Layered
Weighted Graph (LWG) is converted from the PLPG. The purpose of the PLPG
is to simplify graph reachability for the ease of using Dijkstra’s algorithm. In the
last step, we use Dijkstra’s algorithm on the LWG to obtain a solution with best
QoS value. The contribution is our approach can find the global optimal solution
for all kinds of QoS criteria. One advantage of our approach is it reduces the pos-
sibilities of combinatorial explosion to a large degree when exploring the graph for
a best plan. The other advantage is our approach can be easily extended by using
multi-objective shortest path algorithms to solve QoS optimization on multiple QoS
criteria for service composition problem.

In this thesis, we also study redundant service removal to further optimize the
QoS optimal solutions. The removal of redundant services does not worsen the QoS
value of the optimal solution. Fewer number of services indicates lower execution
costs to invoke these services. A redundant service removal problem is modeled as

an optimization problem such that the optimal solution without redundancy is found.

CHAPTER 6. CONCLUSION 111

6.2 Future Work

We plan to use multi-objective path traversal algorithms to solve QoS-aware service
composition problem based on multiple QoS criterion, since we have proposed to
build a Layered Weighted Graph (LWGQG) for the ease of use Dijkstra’s algorithm.
The graph reachability in the LWG is the same as it is in an normal graph which
means one vertex in the graph can be reachable from any other vertex through
one edge rather several vertices through several edges. We plan to start from a
comparatively simple case such as to optimize two type of QoS criteria. We can
use bi-objective path traversal algorithms. Then, we can use multi-objective path
traversal algorithms to study multiple QoS optimization cases for QoS-aware service

composition.

Bibliography

1]

12|

13l

4]

[5]

[6]

7]

Aiello, M., Platzer, C., Rosenberg, F., Tran, H., Vasko, M., Dustdar, S.: Web
service indexing for efficient retrieval and composition. In: Proc. of Enterprise

Computing, E-Commerce, and E-Services. pp. 63-63 (2006)

Alonso, G.: Web Services: Concepts, Architectures and Applications. Springer
Verlag (2004)

Amin, J., Sundararajan, E., Othman, Z.: Cloud computing service composition:
A systematic literature review. Expert Systems with Applications 41(8), 3809
3824 (2014)

Armbrust, M., Fox, A., et al., R.G.: A view of cloud computing. Communica-

tions of the ACM 53(4), 50 58 (2010)

Bastia, A., Parhi, M., Pattanayak, B.K., Patra, M.R.: Service composition using
efficient multi-agents in cloud computing environment. Intelligent Computing,

Communication and Devices pp. 357-370 (2015)

Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz, R.: Heuristics for

qos-aware web service composition. In: Proc. of ICWS. pp. 72-82 (2006)

Bleul, S.: Web service challenge rules (2009)

’

http://ws-challenge.
georgetown.edu/wsc09/downloads/WSC2009Rules-1.1.pdf

112

BIBLIOGRAPHY 113

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Arti-
ficial Intelligence Journal 90(1-2), 225-279 (1997)

Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proc. of

ICDE. pp. 421-430 (2001)

Bouguettaya, A., Yu, Q., Liu, X., Malik, Z.: Service-centric framework for a
digital government application. IEEE T. Services Computing 4(1), 3-16 (2011)

Canfora, G., Penta, M.D., Esposito, R., Villani, M.L..: An approach for qos-
aware service composition based on genetic algorithms. In: Proc. of GECCO.

pp. 1069-1075 (2005)

Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan, M.C.: Adaptive and
dynamic service composition in eflow. Advanced Information Systems Engineer-

ing pp. 13 31 (2000)

Casati, F., Sayal, M., Shan, M.C.: Developing e-services for composing e-

services. Advanced Information Systems Engineering (2001)

Chan, K., Bishop, J., Baresi, L.: Tech. rep., Dept Computer Science, University
of Pretoria (2007)

Committee, O.W.S.B.P.E.L.W.T.: Web services business process execution
language version 2.0 - oasis standard (2007), http://docs.oasis-open.org/

wsbpel/2.0/varprop

Cui, L., Kumara, S., Lee, D.: Scenario analysis of web service composition
based on multi-criteria mathematical programming. Service Science 3(4), 280

303 (2011)

Duan, Y., C., N.N., Bo, H., Donghong, L.., Feng, F.W., Wencai, D., Junxing, L.:
A survey on the categories of service value/quality /satisfactory factors. Com-

puter and Information Science pp. 141-152 (2015)

BIBLIOGRAPHY 114

[18] E., P., Y., R., M., E.P.; A, S.: Web service composition methods: A survey. In:
Proc. of the International MultiConference of Engineers and Computer Scientists

(March 14-16 2012)

[19] Erl, T.: Service-Oriented Architecture (SOA): Concepts, Technology, and De-
sign (2005)

[20] Erl, T.: SOA: Principles of Service Design, vol. 1. Upper Saddle River: Prentice
Hall (2008)

[21] Erl, T., Gee, C., et al., J.K.: Next Generation SOA. Prentice Hall (2014)

|22 Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved opti-
mization problems. Journal of the ACM (JACM) 34(3), 596-615 (1987)

[23] G., S.T., Vrakas, D., Vlahavas, I.: A survey of service composition in ambient

intelligence environments. Artificial Intelligence Review 40(3), 247-270 (2013)

[24] Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice.
Morgan Kaufmann Publishers (2004)

[25] Greiner, R., Smith, B., Wilkerson, R.: A correction to the algorithm in reit-
eraAZs theory of diagnosis. Artificial Intelligence 41(1), 79-88 (1989)

[26] Gutierrez-Garcia, J.O., Sim, K.M.: Agent-based service composition in cloud
computing. Grid and distributed computing, control and automation pp. 1-10

(2010)

|27| Gutierrez-Garcia, J.O., Sim, K.M.: Agent-based cloud service composition. Ap-
plied intelligence 38(3), 436-464 (2013)

[28] Haddad, J.E., Manouvrier, M., Rukoz, M.: Tqos: Transactional and qos-aware
selection algorithm for automatic web service composition. IEEE T. Services

Computing 3(1), 73-85 (2010)

BIBLIOGRAPHY 115

[29]

[30]

[31]

[32]

[33]

[34]

[35]

136]

37]

Hassine, A.B., Matsubara, S., Ishida, T.: A constraint-based approach to hori-
zontal web service composition. In: Proc. of ISWC. pp. 130-143 (2006)

Hewett, R., Kijsanayothin, P., Nguyen, B.: Scalable optimized composition of
web services with complexity analysis. In: Proc. of IEEE International Confer-

ence on Web Services (ICWS). pp. 389 396 (2009)

Hoffmann, J., Nebel, B.: The FF Planning System: Fast Plan Generation
Through Heuristic Search. Journal of Artificial Intelligence Research 14, 253-302
(2001)

Huang, Z., Jiang, W., Hu, S., Liu, Z.: Effective pruning algorithm for qos-aware
service composition. In: Proc. of IEEE Conference on Commerce and Enterprise

Computing (CEC’09). pp. 519 522 (2009)

Immonen, A., Pakkala, D.: A survey of methods and approaches for reliable

dynamic service compositions. Service Oriented Computing and Applications

8(2), 129-158 (2014)

Jiang, W., Zhang, C., Huang, Z., Chen, M., Hu, S., Liu, Z.: Qsynth: A tool for
qos-aware automatic service composition. In: Proc. of ICWS. pp. 42-49 (2010)

Jula, A., Sundararajan, E., Othman, Z.: Cloud computing service composition:
A systematic literature review. Expert Systems with Applications 41(8), 3809
3824 (2014)

Keller, A., H., L.: The wsla framework: Specifying and monitoring service
level agreements for web services. Journal of Network and Systems Management

11(1), 57 81 (2003)

Kil, H.: Efficient web service composition: from signature-level to behavioral
description-level. Tech. rep., The Pennsylvania State University, USA (2010),
phD thesis

BIBLIOGRAPHY 116

[38] Kil, H., Nam, W.: Anytime algorithm for qos web service composition. In: Proc.

of WWW (Companion Volume). pp. 71-72 (2011)

|39] Kornyshova, E., Salinesi, C.: Mcdm techniques selection approaches: State of
the art. Computational Intelligence in Multicriteria Decision Making pp. 22-29
(2007)

[40] Kwon, J., Kim, H., Lee, D., Lee, S.: Redundant-free web services composition
based on a two-phase algorithm. In: Proc. of IEEE International Conference on

Web Services. pp. 361-368 (2008)

[41] L, H.C., Yoon, K.: Multiple Criteria Decision Making. Lecture Notes in Eco-

nomics and Mathematical Systems, Springer-Verlag (1981)
[42] LaValle, S.M.: Planning Algorithms. Cambridge (2006)

[43] Li, Z., Fang, H., Xia, L.: Increasing mapping based hidden markov model for
dynamic process monitoring and diagnosis. Expert Systems with Applications

41(2), 744-751 (2014)

|[44] Massam, B.H.: Multi-criteria decision making (mcdm) techniques in planning.

Progress in planning 30, 1-84 (1988)

[45] McDermott, D.V.: Estimated-regression planning for interactions with web ser-
vices. In: Proc. of the 6th international conference on Al planning and schedul-

ing (2002)

[46] Mcllraith, S.A., Son, T.C., Zeng, H.: Semantic web services. IEEE intelligent
systems 16(2), 46 53 (2001)

[47] Medjahed, B., Bouguettaya, A., Elmagarmid, A.K.: Composing web services on
the semantic web. The VLDB journal 12(4), 333 351 (2003)

BIBLIOGRAPHY 117

[48] Narayanan, S., MclIlraith, S.A.: Simulation, verification and automated compo-

sition of web services. In: Proc. of the 11th international conference on World

Wide Web (May 2002)

[49] Newcomer, E., Lomow, G.: Understanding SOA with Web Services (Indepen-
dent Technology Guides). Addison-Wesley Professional (2004)

[50] Nguyen, X.T., Kowalczyk, R., Phan, M.T.: Modelling and solving qos compo-
sition problem using fuzzy discsp. In: Proc. of ICWS. pp. 55 62 (2006)

[51] OASIS: Uddi version 2.04 api specification (2007), http://uddi.org/pubs/

3

ProgrammersAPI-V2.04-Published-20020719.htm

[52] OASIS: Web services business process execution language (ws-bpel) (2007),

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

[53] Papazoglou, M.P.: Web Services: Principles and Technology. Pearson Education
(2008)

[54] Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented
Computing: a Research Roadmap. International Journal of Cooperative Infor-

mation Systems 17(2), 223-255 (2008)

|55 Peer, J.: Web Service Composition as Al Planning — a Survey. Tech. rep.,
University of St.Gallen (2005)

|56] Pistore, M., Traverso, P., Bertoli, P.: Automated Composition of Web Services
by Planning in Asynchronous Domains. In: Proc. of ICAPS. pp. 2-11 (2005)

[57|] Poizat, P., Yan, Y.: Adaptive composition of conversational services through

graph planning encoding. In: Proc. of IsoLA. pp. 35-50 (2010)

BIBLIOGRAPHY 118

[58]

[59]

[60]

|61]

|62]

|63]

|64]

|65]

(6]

[67]

Ramasamy, R.K., Chua, F.F., Haw, S.C.. Web service composition using win-
dows workflow for cloud-based mobile application. Advanced Computer and

Communication Engineering Technology pp. 975-985 (2015)

Rao, J., Su, X.: A survey of automated web service composition methods. In:
Proc. of 1st Int. WS on Semantic Web Services and Web Process Composition,

SWSWPC (2004)

Schuster, H., Georgakopoulos, D., Cichocki, A., Baker, D.: Modeling and com-
posing service-based and reference process-based multi-enterprise processes. Ad-

vanced Information Systems Engineering pp. 247-263 (2000)

Triantaphyllou, E.: Multi-Criteria Decision Making: A Comparative Study.
Springer (2000)

Velte, T., Velte, A., Elsenpeter, R.: Cloud Computing, a Practical Approach.
McGraw-Hill, Inc. (2009)

W3C: Owl-s: Semantic markup for web services (2004), http://www.w3.org/
Submission/0OWL-S/

W3C: Owl web ontology language overview (2004), http://www.w3.org/TR/
owl-features/. Retrieved 2011-06-30

W3C: Semantic annotations for wsdl and xml schema (sawsdl) (2007), http:
//www.w3.org/TR/sawsdl/. Retrieved 2011-06-30

W3C: Soap version 1.2 part 1: Messaging framework (second edition) (2007),
http://www.w3.org/TR/soapl2-partl/#intro. Retrieved 2011-06-30

W3C: Web services description language (wsdl) version 2.0 (2007), http://wuw.
w3.org/TR/wsd120/. Retrieved 2011-06-30

BIBLIOGRAPHY 119

[68] Wang, J., Korambath, P., Altintas, I., Davis, J., Crawl, D.: Workflow as a ser-
vice in the cloud: Architecture and scheduling algorithms. Procedia Computer

Science 29, 546-556 (2014)

|69] Wikipedia: Beam search. http://en.wikipedia.org/wiki/Beam_search, re-
trieved 2011-09-02

[70] Wikipedia: Dijkstra’s algorithm. http://en.wikipedia.org/wiki/Dijkstra’
27_algorithm, retrieved 2011-06-30

[71] Wu, D., Sirin, E., Hendler, J., Nau, D., Parsia, B.: Automatic web services
composition using shop2. Maryland univ college park dept of computer science

(2006)

[72] Wu, Q., Zhang, M., Zheng, R., Lou, Y., Wei, W.: A qos-satisfied prediction
model for cloud-service composition based on a hidden markov model. Mathe-

matical Problems in Engineering (2013)

[73] Yan, Y., Xu, B., Gu, Z.: Automatic service composition using and/or graph.
In: Proc. of CEC/EEE. pp. 335-338 (2008)

[74] Yan, Y., Xu, B., Gu, Z., Luo, S.: A qos-driven approach for semantic service
composition. In: Proc. of IEEE Conference on Commerce and Enterprise Com-

puting (CEC’09). pp. 523-526 (2009)

[75] Yang, S., Ma, S.P., Kuo, J.Y., FanJiang, Y.Y.: A survey on automated service
composition methods and related techniques. In: Proc. of IEEE Ninth Interna-

tional Conference in Services Computing (SCC) (June 24-29 2012)

|76] Yu, Q., Bouguettaya, A.: Computing service skyline from uncertain qos. IEEE
T. Services Computing 3(1), 16-29 (2010)

BIBLIOGRAPHY 120

[77] Yu, Q., Bouguettaya, A.: Efficient service skyline computation for composite
service selection. Knowledge and Data Engineering, IEEE Transactions 25(4),

776-789 (2013)

[78] Yu, T., Zhang, Y., Lin, K.J.: Efficient algorithms for web services selection with
end-to-end qos constraints. ACM Transactions on the Web (TWEB) 1(1) (2007)

[79] Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality
driven web services composition. In: Proc. of WWW. pp. 411 421 (2003)

[80] Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang,
H.: Qos-aware middleware for web services composition. IEEE Trans. Software

Eng. 30(5), 311-327 (2004)

[81] Zheng, X., Yan, Y.: An Efficient Web Service Composition Algorithm Based on
Planning Graph. In: Proc. of ICWS. pp. 691-699 (2008)

List of Publications

The following publications were made during the course of the thesis study:

[1] Chen, M., and Yan, Y.: QoS-aware Service Composition over Graphplan through
Graph Reachability. In: Proceedings of 11th IEEE International Conference on
Services Computing (SCC), June, 2014, USA.

[2] Chen, M., and Yan, Y.: Redundant Service Removal in QoS-aware Service Com-
position. In: Proceedings of 19th IEEE International Conference on Web Services
(ICWS), June, 2012, USA.

[3] Yan, Y., Chen, M., and Yang, Y.: Anytime QoS Optimization over the Plan-
Graph for Web Service Composition. ACM SAC, March, 2012, Italy.

[4] Chen, M., Poizat P. and Yan, Y.: Adaptive Composition and QoS Optimiza-
tion of Conversational Services through Graph Planning Encoding. Web Services
Handbook 2012, Springer.

|5] Yan, Y., Chen, M.: Anytime QoS-Aware Service Composition over the Plan-
Graph. Journal of Service Oriented Computing and Applications, June Springer,

2013. http://dx.doi.org/10.1007/s11761-013-0134-6.

121

