
 
 

Classification of Text Documents and Extraction of Semantically Related Words using  

Hierarchical Latent Dirichlet Allocation 

 

 

BY 

Imane Chatri 

 

A thesis submitted to the Concordia 

Institute for Information Systems 

Engineering 

 

 

 

 

 

 

 

Presented in Partial Fulfillment of the requirements 

for the Degree of Master of Applied Science in Quality Systems Engineering 

at 

Concordia University 
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Abstract 

Classification of Text Documents and Extraction of Semantically Related Words using  

Hierarchical Latent Dirichlet Allocation 

 

Imane Chatri 

 

The amount of available data in our world has been exploding lately. Effectively 

managing large and growing collections of information is of utmost importance because of 

criticality and importance of these data to different entities and companies (government, security, 

education, tourism, health, insurance, finance, etc.). In the field of security, many cyber criminals 

and victims alike share their experiences via forums, social media and other cyber platforms [24, 

25]. These data can in fact provide significant information to people operating in the security 

field. That is why more and more computer scientists turned to study data classification and topic 

models. However, processing and analyzing all these data is a difficult task.  

In this thesis, we have developed an efficient machine learning approach based on 

hierarchical extension of the Latent Dirichlet Allocation model [7] to classify textual documents 

and to extract semantically related words. A variational approach is developed to infer and learn 

the different parameters of the hierarchical model to represent and classify our data. The data we 

are dealing with in the scope of this thesis is textual data for which many frameworks have been 

developed and will be looked at in this thesis. Our model is able to classify textual documents 

into distinct categories and to extract semantically related words in a collection of textual 

documents. We also show that our proposed model improves the efficiency of the previously 

proposed models. This work is part of a large cyber-crime forensics system whose goal is to 

analyze and discover all kind of information and data as well as the correlation between them in 

order to help security agencies in their investigations and help with the gathering of critical data.  
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Chapter 1: Introduction 

1.1. Background 

Over the last decade, the world has witnessed an explosive growth and change in 

information technologies. The rapid development of the Internet has brought about many 

changes. One of the main changes is the huge amount of information available for individuals. 

While this allows people to have access to a large amount of information available from different 

sources on the internet, people can easily get overwhelmed by this huge amount of information 

[4]. The need to organize, classify and manage data effectively is more urgent than ever. This is 

why many researchers have been focusing lately on textual documents modeling. Describing 

texts in mathematical ways will allow for the extraction and discovery of hidden structures and 

properties within texts and correlations between them [12]. That will help in the management, 

classification and extraction of relevant data from the internet. This will also immensely help in 

the field of cyber-security as much relevant information is shared on different online platforms. 

In fact, several studies have shown that many criminals exchange their skills, ideology and 

knowledge using various forums, blogs and social media [24, 25]. They can also use these online 

platforms to recruit members, spread propaganda or plan criminal attacks. Hence, there is an 

increasing need to automatically extract useful information from textual data and classify them 

under different and distinct categories. This will help in predicting, detecting and potentially 

preventing these criminal activities [12]. Machine learning techniques have been widely used for 

this purpose.  

Topic modeling provides methods for automatically organizing, classifying, searching 

large collections of documents. They help uncover the hidden topical patterns of the documents 

so that these documents can easily be annotated according to topics [26]. The annotations are 

then used to organize and classify the documents. Extraction of semantically related words 

within a collection of documents helps in the improvement of existing lexical resources [16]. 

Different methods have been used for language modeling purposes. The two main 

language modeling methodologies are: probabilistic topic models and vector space models [1]. 

Probabilistic topic models consider each document of a collection to be a finite mixture of 

distributions over topics where each topic is a distribution over words given a vocabulary set [2].  
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On the other hand, in Vector Space Model, each document is represented by a high 

dimensional vector where each vector can be seen as a point in a multi-dimensional space.  Each 

entry in the vector corresponds to a word in the text and the number at that entry refers to the 

number of times that specific word appeared in that specific document.  

1.2. Objectives 

The objective of this thesis is to extend the Latent Dirichlet Allocation model (LDA) [7, 

21] to account for hierarchical characteristics of documents. We also use a variational approach 

to infer and learn the model’s parameters. LDA has been shown to deliver superior results 

compared to other methods since it considers a text to be a distribution over many topics; which 

is true in real life. We extend the existing LDA model developed in [7, 21] to account for the 

hierarchical nature of documents and textual data. Variational techniques have also been proven 

to deliver good and precise results as well. Therefore, the inference and estimation parts are done 

following using a variational approach. The texts that we are going to verify our model with are 

extracted from the internet. This project is part of a large cyber-crime forensics system whose 

goal is to analyze and discover all kind of information and data as well as the correlation 

between them in order to help security agencies in their investigations and help with the 

gathering of critical data. For example, we assume that a terrorist used his Facebook account 

announcing his intentions to carry out a criminal activity in a touristic area in his hometown. 

Such a system will allow security agencies to receive an alert about this individual’s intentions. 

Once the alert is received along with its content, the investigators can use the system to find 

more information about the person, or find past similar threats and respond to it. 

1.3. Contributions 

Within this work, improvements have been brought to the hierarchical log-bilinear 

document model developed in [12]. We also developed another model that we call Hierarchical 

Latent Dirichlet model, which offers better and more precise results for document classification 

and extraction of semantically-related words. We used a variational approach to infer and learn 

the parameters of our model. We also tested the performance of our model using diverse 

documents collected from different sources on the internet.  
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1.4. Thesis overview 

This thesis is organized in the following way: 

- Chapter 2: we present and explore some of the most popular language modeling 

approaches. The most important ones presented in this section are the Latent semantic 

Indexing (LSI), the probabilistic Latent Semantic Indexing (pLSI) and the 

hierarchical log-bilinear model developed in [12]. 

- Chapter 3: we present the LDA model and develop the HLDA model. Moreover, we 

propose an inference and estimation approach for this model. 

- Chapter 4: we test our model with real world data collected from different sources on 

the internet.  

- Chapter 5: this part serves as a conclusion to this thesis. We recapitulate on our 

contributions and present some potential future works and areas of improvement.  
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Chapter 2: Literature Review 

Nowadays, with the increasing volume of information found from different sources on 

the internet, it becomes more and more important to efficiently organize and manage these pieces 

of information; hence the importance of good and efficient models. Many researchers have been 

focusing their research on textual documents modeling. In this chapter, we explore the main 

methods used in this matter, before we move on to describing the Latent Dirichlet Allocation 

model and its Hierarchical extension that we propose in the next chapter. 

2.1. Bag of Words assumption 

The bag of words model is a representation by which a text is described by the set (bag) 

of its words, without taking into account the order of the words or the grammar. It does however 

keep track of the frequency of occurrence of each word. Bag of words is used in document 

classification where the occurrence of each word is used as a feature for training a classifier. 

After developing the vectors for each document, terms are weighed. The most common method 

of term weighing is tf-idf, which reflects how important a word is to a document.  

The TF-IDF weight is a statistical measure used to evaluate the importance of a word to a 

document in a corpus. The importance increases proportionally to the number of times a word 

appeared in a document. The TF-IDF weight is made up of two terms: the term frequency TF and 

the Inverse Document Frequency (IDF). In the tf-idf scheme proposed in [22], a basic vocabulary 

of words is chosen, and for each document in the collection, a count is formed based on the 

number of occurrences of each word. This term frequency count, known as TF, is compared 

afterwards to an inverse document frequency count (IDF), which represents the number of 

occurrences of a word in the entire collection of documents [22]. The IDF is a measure of how 

important a word is or in other words, how much information the word provides. The TF-IDF 

weight is computed by multiplying TF by IDF, and thus gives us a composite weight for each 

term in each document. The end result is a term-by-document matrix X that contains the TF-IDF 

values for each document in the corpus [22].  
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Although the TF-IDF method results in the reduction of documents of arbitrary length to 

fixed-length lists of numbers and allows for the identification of sets of words that are 

discriminative for documents in the corpus, it has many disadvantages that overshadow the cited 

advantages. TF-IDF does not considerably reduce the description length of documents and 

reveals very little about the internal statistical structure. It also makes no use of semantic 

similarities between words and assumes that the counts of different words provide independent 

evidence of similarity. Also, polysemy is not captured by this method: since any given word is 

represented as a single point in space, each occurrence of that word is treated as having the same 

meaning. Therefore, the word “Bank” would be treated the same in “the West Bank” and bank as 

the financial institution. In order to address these limitations, several other dimensionality 

reduction techniques have been proposed. Latent Semantic Indexing [10, 19] is among these 

techniques and will be introduced later in this chapter. 

2.2. Unigram Model and Unigram Mixture Model 

Under the unigram model [23], each document is modeled by a multinomial distribution. 

A word has no impact on the next one. For a document d consisting of N distinct words w, it is 

denoted as follows: 

 ( )  ∏ (  )

 

   

 

Let us consider the following example for the sake of understanding. We have a 

document with the following text: “This is a sentence”. Each and every single word is considered 

on its own. The unigram would be:  

 

The Unigram Mixture Model adds a topic mixture component z to the simple unigram 

model [23]. Under this model, each document is generated by choosing a topic z first and then 
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generating N words that are independent from the conditional multinomial p(w|z). The 

probability of a document d is written in the following way: 

 ( )  ∑  ( )∏ (  | )

 

   
 

 

Figure 1 illustrates both the unigram and the unigram mixture models. This model 

assumes that each document exhibits exactly one topic and that words distributions are 

representations of topics. This assumption is very limiting in the sense that a document exhibits 

most usually many topics. This makes the unigram mixture model ineffective.  

 

 

Figure 1: Unigram and Unigram mixture models. 

 

2.3. Latent Semantic Indexing 

Latent Semantic Indexing (LSI) is an indexing and information retrieval method to 

identify patterns in the relationships between terms in a corpus of documents. LSI assumes that 

the words in the documents have some latent semantic structure. The semantic structure between 

synonyms is more likely to be the same while it will be different for polysemy words. It also 

assumes that words that are close in meaning will appear in similar documents [10, 19].  

The frequency of each word appearing in the document is computed and then a matrix 

containing word counts per document is constructed. The method uses then a mathematical 

technique known as singular value decomposition (SVD) to reduce the dimensionality of the data 

while preserving the similarity structure and key information presented in the matrix [15]. The 
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assumption behind it is that similarities between documents or between documents and words are 

estimated more reliably in the reduced representation of the data than the original. It uses 

statistically derived values instead of individual words. This method is capable of achieving 

significant compression in large collections of documents, while still capturing most of the 

variance in the collection [1]. Besides recording which keywords a document contains, it 

examines the whole document collection to see which other documents contain these words. 

Documents that have many words in common are considered to be semantically close and vice-

versa. So, LSI performs some kind of noise reduction and is able to detect synonyms and words 

referring to the same topic. It also captures polysemy; which is when one single word has more 

than one meaning (e.g. bank).  

The first step in LSI is to come up with the matrix that represents the text [1]. Each row 

represents a unique word and each cell refers to the number of occurrences of that corresponding 

word. Cell entries are subject to some preliminary processing whereby each cell frequency is 

weighted so that the word’s importance in that specific document is accounted for along with the 

degree to which the word type is relevant to the general topic. We then apply SVD to the matrix 

[1]. It reduces the dimensionality of our representation while preserving the information. The 

goal is to find an optimal dimensionality (semantic space or number of categories) that will cause 

correct inference of the relations. These relations are of similarity or of context sensitive 

similarity. We then move to measure the similarity in the reduced dimensional space. One of the 

most used measures is the cosine similarity between vectors. The cosine value between two 

column vectors in the matrix reflects the similarity between two documents.  

LSI does offer some advantages and overcomes many limitations of the TF-IDF method: 

it captures synonymy and polysemy, filters some of the information and reduces noise [1, 15]. It 

does, however, have many limitations among which we can cite the following: 

- LSI assumes that words and documents are generated from a Gaussian distribution 

where a Poisson distribution has actually been observed for term frequencies. Indeed, 

SVD is designed for normally-distributed data; which makes it inappropriate for 

count data (such as term-by-document matrix) [10].  

- Computational expensiveness of LSI: we can consider LSI as computationally 

expensive and intensive. The computational complexity of calculating the SVD of a 
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matrix M as performed by this method is O [m × n × min (m, n)], where m and n are 

the number of rows and columns in M, respectively. So, for large documents 

containing a large vocabulary set, such computation is unfeasible [20].  

An alternative to LSI, known as pLSI or Probabilistic Latent Semantic Indexing, was 

developed by Hofmann [19]. We discuss it next. 

2.4. Probabilistic Latent Semantic Indexing (PLSI) 

This method is based on a statistical latent class model of count data. Unlike the Latent 

Semantic Indexing, pLSI has a solid statistical foundation and defines a proper generative model 

using concepts and basics of probability and statistics. The main idea is to construct a semantic 

space where the dimensionality of the data is not high [19]. After that, words and documents are 

mapped to the semantic space, thus solving the problem of high dimensionality and reflecting the 

existing relationships between words. The algorithm used to map the data to the semantic space 

is the Expectation-Maximization algorithm.  

A document in PLSI is represented as a document-term matrix, which is the number of 

occurrences of each distinct word in each document. Besides words and documents, another set 

of variables is considered in this model; which are topics [2]. This variable is latent or hidden 

and has to be specified beforehand. The goal of PLSI is to use the representation of each 

document (aka the co-occurrence matrix) to extract the topics and represent documents as 

mixture of them [2]. Two assumptions are made by this model: bag of words assumption and 

conditional independence. Conditional independence means that words and documents are 

conditionally independent given the topic. They are coupled together only through topics. 

Mathematically speaking, it means the following: 

 (   | )   ( | ) ( | ) 

where d is a document, w is a word and z is a topic.  

The PLSI method models each word in a document as a sample from a mixture model. 

The mixture components represent topics. So, each word is generated from a single topic and the 

different words appearing in a document may be generated from different topics [19]. In the end, 

each document from the corpus is represented as a probability distribution over topics. It relaxes 

the assumption made in the mixture of unigrams model that each document is from one and only 
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one topic. Latent variables, which are topics, are associated with observed variables (words). 

pLSI, similarly to LSI, aims to reduce the dimensionality of the data but achieves this by 

providing probabilistic interpretation rather than just mathematically like it is the case for LSI. 

The following steps describe the generative process for documents [2, 8]:  

- A document d is selected with probability p(d). 

- For each word w in the document d: 

 A topic z from a multinomial conditioned on the document d is 

selected. Probability is  ( | ) 

 We select a word w from a multinomial conditioned on the chosen 

topic z. Probability is  ( | ) 

The pLSI model is illustrated in figure 2. 

 

Figure 2: pLSI model 

This graphical model assumes that a document d and a word w are conditionally 

independent given an unobserved topic z: 

 (    )   ( )∑ (  | )  ( | )

 

 

where  ( | ) represents mixture weights for the topics for a particular document and so 

captures the fact that a document may be generated from different topics.  

pLSI addresses some of the major limitations of LSI: it greatly reduces time complexity 

and achieves a higher computing speed thanks to the use of the EM algorithm and it also has a 
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strong statistical and probabilistic basis. However, it still has its own disadvantages mainly the 

fact that it has no prior distribution for an unseen document. Another limitation of pLSI is that 

the number of parameters that should be estimated grows linearly with the number of documents 

in the training set. This leads to unstable estimation (local maxima) and makes it computationally 

intractable due to huge matrices.  

2.5. Hierarchical Log-Bilinear Document Model 

2.5.1. Log-Bilinear Document Model 

This model [12] learns the semantic word vectors from term document data. Under this 

model, each document is modeled using a continuous mixture distribution over words indexed by 

a random variable    A probability is assigned to each document d using a joint distribution over 

the document and the random variable  . Each word is assumed to be conditionally independent 

of the other words given    Hence, the probability of a document is written as follows:  

 ( )  ∫ (   )   ∫ ( )∏ (  | )  

 

   

          ( ) 

where N is the number of words in a document d and    is the ith word in d. A Gaussian 

prior is used on     (  | ) is defined as the conditional probability and is defined by a log-linear 

model with parameters R and b. The model uses bag-of-words representation to represent a 

document in which words appear in an exchangeable way. The fixed vocabulary set is denoted as 

V and has a size of V. The energy function uses a word representation matrix R ∈ R (β x |V |) 

where each word w is represented as a one-hot vector in the vocabulary V and has a β-

dimensional vector representation φw = Rw that corresponds to that word’s column in R. We 

also add a bias bw for each word in order to capture word frequency differences. With all these 

parameters in hand, the log-bilinear energy assigned to each word is written in the following 

way: 

 (         )            

We get the final word distribution using softmax and we write it as: 

 ( |     )  
   (  (         ))

∑    (  (            ))  ∈ 

 
   (       )

∑    (         )  ∈ 
 



11 
 

2.5.2. Learning 

Online documents are, in most of the cases, classified into different categories. This 

model takes into account the hierarchical nature of texts with the objective of gathering semantic 

information at each level of the hierarchy of documents. Here, we refer to a node in the hierarchy 

as m, which has a total number of Nk children denoted as mk. Each child node is itself a 

collection of documents made of Ntk documents [12]. All documents are assumed to be 

conditionally independent given a variable jk .  

Considering this, the probability of node m can be written as follows: 

 ( )  ∏∏∫ (   
)  (   

|   
)

   

   

  

   

     ∏∏∫ (   
|   

)

   

   

  

   

    
 

We consider each integral as a weighted average for each value of    . This is dominated by 

one of the values that we call ̂
  

 [13]. jk̂ is an estimate of    for each document around which 

the posterior distribution is highly peaked. The equation becomes: 

   jkjkjkjkjk dpddp |ˆ|    

We develop it further:  

 ( )  ∏∏ ( ̂  |   )

   

   

  

   

 ∏∏ ( ̂  ) (   | ̂  )

   

   

  

   

 ∏∏ ( ̂  ) ∏  (   | ̂  )

    

   

   

   

  

   

 

 

As said previously, m is a node and has a total number of    children denoted as   . Each 

child node is considered to be a documents collection composed of     documents which are 

supposed to be conditionally independent given a variable ̂
  

. 

The model can be learned by maximizing the probability of observed data at each node. The 

parameters are learned by iteratively maximizing p(m) with respect to θ, word representation R 

and word frequency bias b: 
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 ̂  ̂  ̂     ∏∏ ( ̂  ) ∏  (   | ̂  )

    

   

   

   

  

   

                  ( ) 

Now we mathematically solve the learning problem by maximizing the logarithm of the 

function. We get: 

   ( ( ))     ∑ ∑*   . ( ̂  )/  ∑    . (    | ̂  )/

    

   

+

   

   

  

   

 

 ̂   depends only on the document jkd (collection of words wtkN ), therefore the log 

likelihood of  ̂   is : 

 ( ̂  )     . ( ̂  )/  ∑    . (    | ̂  )/

    

   

 

                  .   (  ̂  
 )/     (

 

√  
*   ∑    . (    | ̂  )/

    

   

 

 ( ̂  )    ̂  
     (

 

√  
*   ∑    . (    | ̂  )/

    

   

          ( ) 

where λ is a scale parameter of the Gaussian. Similarly, the log likelihood for R and b is 

written in the following way: 

 (   )  ∑ ∑*   . ( ̂  )/  ∑    . (    | ̂  )/

    

   

+

   

   

  

   

                 ( ) 

Here, R and b are concerned with the whole collection of documents. That is why it 

depends on kN which is the number of children of the node m, and tkN which is the number of 

each child’s documents. Now we take the partial derivatives to get the gradients. The gradient for 

jk̂ is written in the following way: 
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  ̂  
 ∑ (     

 ∑    

  ∈ 

 (  | ̂  ))     ̂            ( )

    

   

 

The other derivatives are written in the following way:  

   
 

  (   )

   
 ∑∑ ∑ ( ̂       ∑   

 ∈ 

 ( | ̂  ))                  ( )

    

   

   

   

  

   

 

   
 

  (   )

   
 ∑∑    (  ∑   

 ∈ 

 ( | ̂  ))                          ( ) 

   

   

  

    

 , R and b are therefore updated at each step of the iteration as follows: 

   
       

       
 

  
      

      
 

  
      

      
 

The estimation of the model’s parameters is based on optimizing the values of  , R and b. 

This is done using Newton’s method. This iterative process is repeated until convergence is 

reached. Then, the related words are extracted by computing the cosine similarities between 

words, using word representation vectors derived from the representation matrix R. The cosine 

similarity between two words   and   is computed in the following way: 

           (     )  
       

‖   ‖‖   ‖
 

    

‖  ‖‖  ‖
 

where    and    are the representation vectors of the words    and    respectively.  
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Chapter 3: Hierarchical Extension of 
Latent Dirichlet Allocation  

3.1. Latent Dirichlet Allocation 

3.1.1. Intuition and Basic notation 

LDA [7, 21] was an important advancement in the field of topic models and is considered as 

a catalyst for the development of many other models. It was developed to address the issues and 

limitations of the pLSI as presented in [3]. The general idea behind LDA is that documents 

exhibit multiple topics. Latent in the name of the method (Latent Dirichlet Allocation) is to 

indicate that the actual topics are never observed, or in other words, provided as input to the 

algorithm. They are rather inferred by the model. For documents, those hidden variables reflect 

the thematic structure of the collection that we do not have access to.  

In this part, we will use the same notation considered in [7]. We define the following terms:  

- A word: basic unit of our data. It is an item from a vocabulary. Words are represented 

using vectors that have one component equal to 1 and all the rest is equal to 0.  

- A document: set of N words denoted by w =(                ). 

- A corpus: collection of M documents represented by D. 

 

3.1.2. LDA model 

LDA is a generative probabilistic model of a set of documents. The basic assumption is that a 

single document might exhibit multiple topics [7, 21]. A topic is defined by a distribution over a 

fixed vocabulary of words. So a document might exhibit K topics but with different proportions. 

Every document is treated as observations that arise from a generative probabilistic process; 

which includes hidden variables (or topics in our case). The next step is to infer the hidden 

structure using posterior inference by computing the conditional distribution of the hidden 

variables given the documents [21]. We can then situate new data into the estimated model. The 

generative process of LDA for a document w in a corpus D is the following [7]: 
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1- Choose N (number of words) such that N follows a Poisson distribution. 

2- Choose  , which represents the topic proportion, such that it follows a Dirichlet 

distribution.  

3- For each of the N words     

i. Choose a topic    such that               ( ). Basically, we 

probabilistically draw one of the k topics from the distribution over topics 

obtained from the previous step. 

ii. Choose a word    from  (  |     ), a multinomial probability 

conditioned on the topic   . 

This generative model emphasizes the assumption made that a single document exhibits 

multiple topics. The second step reflects the fact that each document contains topics in different 

proportions. Step (ii) tells us that each term in the document is drawn from one of the k topics in 

proportion to the document’s distribution over topics as determined in step (i).  

The graphical model shown in figure 3 illustrates the Latent Dirichlet Allocation model as 

introduced in [7]. The nodes, in graphical directed models, represent random variables. A shaded 

node indicates that the random variable is observed. The edges between the different nodes 

indicate possible dependence between the variables. The plates or rectangular boxes denote 

replicated structure. Under the LDA model, documents are represented as random mixtures over 

topics where each topic is a distribution over words. The variables    and    are word-level 

sampled for each word in each document. The figure below represents a graphical representation 

of the LDA model.  The outer plate in the figure 3 represents documents, while the inner plate 

represents the repeated choice of topics and words within a document.  
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Figure 3: Graphical representation of the LDA model.   represents the topic proportion. w is a 

word in a document while z is the topic assignment. 

 

In order for us to understand the diagram above, we proceed from the outside in as it is 

best understood that way. β represents topics and is considered to be a distribution over terms 

following a Dirichlet distribution. We consider k topics. Considering the D plate now, we have 

one topic proportion for every document ( ), which is of dimension K since we have K topics. 

Then, for each word (moving to the N plate),      represents the topic assignment. It depends on 

  because it is drawn from a distribution with parameter  .      represents the nth word in the 

document d and depends on      and all the Betas.  

The probability of each word in a given document given a topic and the parameter   is 

given by the following equation:  

 (  |   )  ∑  (  |    )

 

   

 (  | )          (  ) 

where  (  | )represents the probability of the word    under topic    and  (  |    ) is the 

probability of choosing a word from a topic     



17 
 

A document, which is a probabilistic mixture of topics where each topic is a probability 

distribution over words, has a marginal distribution given by the following equation: 

 ( |   )  ∫ ( | )∏ (  |   )  

 

   

 

                                           ∫ ( | )∏ ∑  (  |    )

 

   

 (  | )  

 

   

          (  ) 

A corpus is a collection of M documents and so taking the product of the marginal 

distributions of single documents, we can write the marginal distribution of a corpus as follows: 

 ( |   )  ∏ ( |   )

 

   

  ∏∫ ( | )∏ ∑  (  |    )

 

   

 (  | )       (  )

 

   

 

   

 

where   is a document level parameter and z and w are word level parameters. 

3.1.3. Dirichlet Distribution 

The Dirichlet distribution is a distribution over an k-dimensional vector and can be viewed as 

a probability distribution on a k-1 dimensional simplex [3, p.76]. A simplex in probability can be 

thought of as a coordinate system to express all possible probability distributions on the possible 

outcomes. Dirichlet distribution is the multivariate generalization of the beta distribution. 

Dirichlet distributions are often used as prior distributions. The probability density of a k-

dimensional Dirichlet distribution over a multinomial distribution    (          ) is defined 

as follows: 

   (       )  
 (∑    )

∏  (  ) 

∏ 
 

    
 

   

 

        are the parameters of the Dirichlet. Each one of them can be interpreted as a prior 

observation count for the number of times topic k is sampled in a document. Placing a Dirichlet 

prior on the topic distribution allows us to obtain a smoothed topic distribution. Here, the topic 

weight vector is drawn from a Dirichlet distribution 
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3.1.4. Inference and Estimation 

The key inference problem to be solved here is computing the posterior distribution of the 

hidden variables given a document, which is 

   (   |     )  
 (     |   )

 ( |   )
          (  ) 

In the estimation part, the problem is to choose α and β that maximize the log likelihood 

of a corpus. The distribution  (   |     ) is intractable to compute. We know that a K-

dimensional Dirichlet random variable   can take values in the (K-1) simplex and has the 

following probability density on this simplex [3 p 76]:  

 ( | )  
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We now substitute this expression in equation 11 to get the following equation:  

     ( |   )  
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 ∏ ∑ ∏(     )
  

 
 

   

 

   

           (  )

 

   

 

It is noteworthy to mention that  (  |    )           (  | )    . We make use of the 

variational inference to approximate the intractable posterior  (   |     ) with the variational 

distribution: 

 (   |   )   ( | ) ∏ (  |  )

 

   

          (  ) 
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Figure 4: New LDA model with free parameters. 

 

We choose variational parameters to resemble the true posterior. The new optimization 

problem is the following:  

(     )           ( (   |   )|| (   |     ))          (  ) 

We then compute the values of α, β, γ and ϕ following a method known as variational 

Expectation-Maximization; which is detailed in the next section.  

LDA is considered as a very important advancement in topic modeling but fails to illustrate 

the hierarchical structure of documents. In the next section, we propose an extension to the LDA 

model that accounts for this hierarchical structure. We call the newly proposed model 

Hierarchical Latent Dirichlet Allocation (HLDA).  

3.2. Hierarchical Latent Dirichlet Allocation 

3.2.1. Intuition and basic notation 

Wanting to account for the hierarchical nature of documents, we decided to extend the 

LDA model by proposing a new model that we would call Hierarchical Latent Dirichlet 

Allocation (HLDA). The general intuition behind it is, as we stated before, that documents are 

often classified under different categories and also that one single document might exhibit more 

than one topic. We define the following terms:  

- A word: basic unit of our data. It is an item from a vocabulary. Words are represented 

using vectors that have one component equal to 1 and all the rest is equal to 0.  

- A document: set of N words denoted by  d =(               ) 
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- A corpus: collection of d documents represented by D =(               ) 

- A collection of corpora m= (                ) 

Dk =(                   ) and     (                       ) 

3.2.2. Generative Process 

HLDA is a generative probabilistic model of a set of corpora. One of the basic assumptions is 

that a single document might exhibit multiple topics. A topic is defined by a distribution over a 

fixed vocabulary of words. So a document might exhibit K topics but with different proportions. 

The generative process for our model for a corpus is the following: 

1- Draw topics               ( )      ∈ *       +  

For each corpus         ∈  *        + of the collection m: 

2- Choose N (number of words) such that N follows a Poisson distribution. 

3- For each document: 

i. Choose  , which represents the topic proportion, such that it follows a Dirichlet 

distribution. 

ii. Call GenerateDocument(d) 

Function: GenerateDocument(d): 

1- For each of the N words     

i. Choose a topic    such that               ( ). Basically, we 

probabilistically draw one of the k topics from the distribution over topics 

obtained from the previous step. 

ii. Choose a word    from  (  |     ), a multinomial probability 

conditioned on the topic   . 

This generative process emphasizes the two basic assumptions and intuitions on which this 

model was developed. It takes into account the hierarchical structure of documents and 

highlights the fact that each document might exhibit more than one topic.  

Figure 5 illustrates the HLDA model. The outer plate represents a corpus. The middle plate 

represents documents, while the inner plate represents the repeated choice of topics and words 

within a document. 
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Figure 5: Hierarchical Latent Dirichlet Allocation Model.   represents the topic 

proportion. w is a word in a document while z is the topic assignment. 

 

β represents topics and is considered to be a distribution over terms following a Dirichlet 

distribution. We consider k topics. We consider the outer plate Nk: each one of these represents a 

set of documents. Moving now to the M plate now, we have one topic proportion for every 

document ( ), which is of dimension k since we have k topics. Then, for each word (moving to 

the N plate),      represents the topic assignment. It depends on   because it is drawn from a 

distribution with parameter  .      represents the nth word in the document d and depends on 

     and all the Betas.  

The probability of each word in a given document given a topic and the global parameter   is 

given by the following equation:  

 (  |   )  ∑  (  |    )

 

   

 (  | )         (  ) 

where  (  | )represents the probability of the word    under topic    and  (  |    ) is the 

probability of choosing a word from a topic     A document, which is a probabilistic mixture of 

topics where each topic is a probability distribution over words, has a marginal distribution given 

by the following equation: 

 ( |   )  ∫ ( | )∏ (  |   )  
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                                           ∫ ( | )∏ ∑  (  |    )

 

   

 (  | )          (  )

 

   

 

A corpus is a collection of M documents and so taking the product of the marginal 

distributions of single documents, we can write the marginal distribution of a corpus as follows: 

 ( |   )  ∏ (  |   )

 

   

  ∏∫ (  | )∏ ∑  (   |    )

 

   

 (  |  )       

 

   

 

   

 

where     are global parameters controlling the k multinomial distributions over words,   is 

a document level parameter and z and w are word level parameters. 

 ( |   )  ∏∏∫ (   | )∏ ∑  (    |    )

 

   

 (  |   )         (  ) 

 

   

 

   

  

   

 

3.2.3. Inference 

Now that we have the equations that describe our model, we have to infer and estimate the 

parameters. The key problem to be solved here is computing the posterior distribution of the 

hidden variables given a corpus. Thus, the posterior distribution we are looking for is 

 (     |   ). We have:  (     |   )   (   |     )   ( |   ) then: 

 (   |     )  
 (     |   )

 ( |   )
          

This distribution is intractable to compute. We know that   has a Dirichlet distribution. We 

now substitute the expression of the Dirichlet in the node equation (equation 19) to get the 

following equation:  
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(Note: we have  (  |    )           (  | )    ) 

The posterior distribution is the conditional distribution of the hidden variables given the 

observations. For us to find the posterior distribution of the corpus given the hidden variables, 

we can find the posterior distribution of the hidden variables given a document and repeat it for 

all the documents of the corpus in hand. The hidden variables for a document are: topic 

assignments z and topic proportions     So the per document posterior is given by: 

 

 (   | )  
 ( | )∏  (  | ) (  |    ) 

   

∫  ( | )∏ ∑  (  |    ) 
    (  | ) 

   

           

which is intractable because of the denominator.  

3.2.4. Variational Inference 

Exact inference is not possible here so we can only approximate. We follow a variational 

approach to approximate. The variational method [3, page 462] is based on an approximation to 

the posterior distribution over the model’s latent variables. In variational inference, we do make 

use of the Jensen’s inequality [3, page 56] to obtain an adjustable lower bound on the log 

likelihood of the corpus. We consider a family of lower bounds, indexed by a set of variational 

parameters. These parameters are chosen by an optimization procedure that finds the tightest 

possible lower bound. We can get tractable lower bounds by bringing some modifications to the 

hierarchical LDA graphical model. First, we remove some of the edges and nodes. The 

problematic coupling between   and   is due to the relation between  , w and z [7]. We also 

remove the Corpora plate since we can solve our problem by considering all documents making 



24 
 

up a given corpus individually. Maximizing for a corpus means we are maximizing for every 

document in the corpus in hand. So by ignoring the relationship between  , w and z and the w 

nodes and by removing the corpora plate, we end up with a simplified HLDA model with free 

variational parameters. The new model is shown in figure 6. 

 

Figure 6: Graphical model representation used to approximate the posterior in HLDA 

This allows us to obtain a family of distributions on the latent variables that is characterized 

by the following distribution:  

 (   |   )   ( | )∏ (  |  )

 

   

 

The Dirichlet parameter   and the multinomial parameters (       ) are free variational 

parameters and the distribution is an approximation of the distribution p.  

We make use of the Kullback-Leiber divergence [3, page 55] which is a measure that finds 

the distance between two probability distributions. Here we need to find the distance between the 

variational posterior probability q and the true posterior probability p: 

  ( (   |   )|| (   |     )) 

Our goal would be to minimize as much as possible this difference so that the approximation 

gets as close as possible to the true probability. Our optimization problem is the following: 

(     )          ( (   |   )|| (   |     ))        (  )    

We make use of Jensen’s inequality to bound the log probability of a document [3, page 56]. 
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    ( |   )     ∫∑ (     |   )  

 

     ∫∑
 (     |   )  (   )
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 ∫∑ (   )     (     |   )   ∫∑ (   )     (   )  
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                          ∫∑  (   )     (   )      
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We introduce a new function: 

 (   |   )    ,    ( | )-    ,    ( | )-    ,    ( |   )-   ( ) 

Then               ( |   )   (   |   )   ( (   |   )|| (   |     )) 

As we can see from the figure 7 [3], minimizing KL  can be achieved by maximizing 

 (   |   ) with respect to   and    

 

Figure 7: Illustration from [3]. 

We expand the lower bound (look for detailed derivations in appendix 3 and get the 

following expanded equation: 
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where   is the digamma function [3, page 130]. The objective of variational inference here is 

to learn the variational parameters   and  .  

We start by maximizing  (   |   ) with respect to      which is the probability that the nth 

word is generated by the latent topic i. We have ∑         so we use Lagrange multipliers for 

this constrained maximization. Rewriting  (   |   ) (equation 22) and keeping only the terms 

containing     , we get the following equation: 

     
 ∑     . (  )   (∑   

 
   )/      ∑                 ∑                    (∑        ) 

Deriving      
 with respect to      and setting the derivative to 0 gives us the following 

equation (see appendix 4 for detailed derivations): 

          
    ( (  )) 

We then maximize  (   |   ) with respect to  . Rewriting  (   |   )  (equation 22) and 

keeping only the terms containing   gives us:  
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Taking the derivative of this equation with respect to   and setting to zero gives us the 

following updating equation (see appendix 4): 
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        ∑    

 

 

3.2.5. Parameter Estimation 

Now that we have estimated the variational parameters   and  , we need to estimate our 

model parameters   and   in such a way that they maximize the log likelihood of the data, given 

a corpus. We do this using the variational Expectation-Maximization (EM) procedure [3, page 

450]. This EM method maximizes the lower bound with respect to the variational parameters   

and  . It then considers some fixed values for   and   and goes on to maximize the lower bound 

with respect to the model parameters   and  . In the E-step of the EM algorithm, we determine 

the log likelihood of all our data assuming we know   and  . In the M-step, we maximize the 

lower bound on the log-likelihood with respect to   and  .  

- E-step: for each document in the corpus, we find the optimal parameters   
  and   

 . 

Finding the values of these parameters allows us to compute the expectation of the 

likelihood of our data.  

- M-step: we maximize the lower bound on the log likelihood with respect to the model 

parameters   and  :  (   )  ∑     (  |   ) 
   . This corresponds to finding 

maximum likelihood estimates for each document under the estimated posterior 

computed in the first step of the algorithm.  

The E-step and M-step are repeated until we reach the conversion of the log likelihood lower 

bound.  

In this part, we introduce the document index d and we use the variational lower bound as an 

approximation for the intractable log likelihood. We use the Lagrange multipliers [3, page 707] 

in here as well and maximize  (   |   ) with respect to   and  . We use the index d for 

documents. We start by rewriting the expression of  (   |   ) (equation 22) keeping only the 

terms containing   and including the Lagrange multiplier   under the constraint ∑        
   . 

We get: 

   ∑               

     

  ∑  (∑       

 

   

+

 

   

 

Taking the derivative with respect to      , we get: 
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   represents the Kronecker delta which is equal to 1 when      and 0 if the condition is 

not true. We set the derivative to be 0 and solve the equation to get: 

     ∑      

   

  
   

We similarly rewrite the lower bound by keeping only the items containing α.  
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Taking the derivative of   , we get the following equation: 
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In order for us to find the maxima, we write the Hessian [3, page 167]: 
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Detailed derivations can be found in appendix 5. The previously described variational 

inference procedure is summarized in the following algorithm, with appropriately initialized 

points for   and   . 
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Input: Number of topics K, corpus of Nk documents 

Output: the model parameters 

main() 

initialize α and η 

// E-step: find   
  and   

  

for each corpus D of node m do 

 for each document d of D do 

 initialize     
( )

   ⁄     for all n and i 

 initialize     
( )

       for all i 

 loglikelihood:=0 

  while not converge do 

   for n=1 to N do 

    for i=1 to K do  

        
(   )

      
   ( (  )) 

   normalize     
(   )

 such as ∑     
(   ) 

      

       
(   )

    ∑     
(   ) 

        for all i 

  end while 

 loglikelihood := loglikelihood +  (       ) 

end for 

// M-step 

For each document d of D do 

 for i=1 to K do 

  for j=1 to V 

        ∑                 

  endfor 

  normalize    such that the sum is 1 

 endfor 

endfor 

Estimate α 

if loglikelihood converged then 

 return parameters 

else  

 do E-step 
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Chapter 4: Experimental Results 

In this section, we present experimental results we got using our model on real data and 

compare them with the hierarchical log-bilinear document model [12] and the LDA model [7]. 

We also present results of the extraction of semantically related words from a collection of 

words. It is worth mentioning that our model’s parameters in the code were initialized as follows: 

the betas and gammas were given an initial value of zero, the phis were initialized to 0.25 and the 

values of alpha were randomly generated by the program.  

4.1. Finding Semantically Related Words 

4.1.1. Data 

The data is a collection of documents gathered from the online encyclopedia Wikipedia. 

The data was obtained through the use of “Wikipedia export”, that allows the export of Wiki 

pages to analyze the content. Some of the other data we are using in carrying out this experiment 

are collected from online forums and social platforms. The texts are categorized into specific 

categories and the plain text is retrieved. We then proceed to the removal of all stop words and 

non-English words. All nouns are converted to their roots in order to eliminate the redundancy of 

a root word present under multiple forms. For instance, the word murderer would become 

murder and the word crimes would become crime.  

The data are all related to the crime category. The hierarchy of this corpus of documents 

is shown in figure 8.  

Many of the documents related to Rape and Internet Fraud were gathered from online 

forums dealing with these topics where users share their stories with the audience. 
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Figure 8: Hierarchy of our data. 

 

4.1.2. Results 

We find the semantically related words by calculating the cosine similarities between 

words from the word representation vectors ϕ [12]. The similarity between two words    and    

with representation vectors   and    is given by:  

          (     )   
     

‖  ‖ ‖  ‖
 

Table 1 reports the experimental results on words learned under the “Crimes” category.  

Word Convict Score Arrest Score charge score 

Similar Words sentence 0.975 sentence 0.894 convict 0.917 
 charge 0.917 convict 0.832 sentence 0.896 
 plead 0.863 imprison 0.814 plead 0.835 
 arrest 0.832 jail 0.746 accuse 0.770 

Word investigate Score accuse Score kill score 

Similar Words acknowledge 0.797 deny 0.871 shoot 0.850 
 conduct 0.755 allege 0.824 murder 0.829 
 report 0.741 charge 0.770   

Table 1: Semantically related words at node "Crimes" 

 

Crimes 

Fraud 

Bank Fraud 

458 
documents 

Internet 
Fraud 

423 
documents 

Rape 

570 
documents 

War 
Crimes 

428 
documents 
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Table 2 reports the experimental results on words learned under the “Rape Crimes” category.  

 

Word jail Score kidnap Score assassinate score 

Similar Words sentence 0.815 abduct 0.857 execute 0.846 
 convict 0.758 torture 0.758 murder 0.735 
 imprison 0.751 Rape 0.702 wound 0.715 
 arrest 0.746   stab 0.710 

Word rape Score assault Score scream score 

Similar Words assault 0.822 Rape 0.822 shout 0.803 
 abduct 0.748 molest 0.714 taunt 0.767 
 drug 0.738   yell 0.751 
 kidnap 0.702     

Table 2: Semantically related words at node "Rape Crimes" 

 

Table 3 reports the experimental results on words learned under the “War Crimes” category.  

 

Word cleanse Score Fire Score incarcerate score 

Similar Words raze 0.736 Shoot 0.761 project 0.740 
 massacre 0.714 Gun 0.752 convict 0.728 
 kill 

incite 
0.710 
0.701 

Bomb 0.730 plead 0.727 

     await 0.715 

Word imprison Score Prosecute score explode score 

Similar Words arrest 0.815 Criminalize 0.838 bomb 0.775 
 flee 0.790 Pending 0.779 detonate 0.735 
 sentence 0.736 Face 0.761 wound 0.733 
 extradite 0.727 Penalize 0.759   
   Punish 0.715   

Table 3: Semantically related words at node "War Crimes" 
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The results in these tables demonstrate that our model performs well in finding words that are 

semantically related in a collection of documents. This can be explained by the ability of our 

model to account for the hierarchical structure of documents. Also, the variational approach 

helps in giving good estimates for the model by picking a family of distributions over the latent 

variables with its own variational parameters instead of inferring the approximate inference; 

which is hard to compute. We present next the results we got concerning the classification of 

textual documents.  

 

4.2. Textual Documents Classification 

4.2.1. Results 

The most frequently used words for each class are extracted and suggest a strong correlation 

between them given a specific topic. They capture the underlying topics in the corpus we 

assumed in the beginning. The top 20 most frequently used words for each of our classes are 

shown in table 4. 

Looking at the results presented in table 4, we can easily map the four classes to the 

topics we assumed in the beginning since the words discovered have a strong correlation with the 

topics. We can assume now that class 1 is for Bank Fraud, class 2 for War Crimes, class 3 refers 

to Internet Fraud while the fourth class refers to Rape.  

4.2.2. Performance Evaluation 

In order for us to evaluate the performance of our classification model, we look at the 

ability of the model to correctly categorize the documents and separate or predict classes. We do 

represent the results we got using a confusion matrix, which shows how predictions are made by 

the model. The columns represent the instances in a predicted class and the rows represent the 

instances in an actual class. The confusion matrix of the HLDA model as applied to our data is 

shown in table 5. 

From this confusion matrix, we can compute the precision and the recall. Precision and 

recall are used to measure the performance of a classification model. Both of them are based on a 

measure of relevance.  

 



34 
 

 

Class 1 Class 2 Class 3 Class 4 

Identity Genocide Alert  Rape 

Theft Civil Notification Trauma 

Cash Murder Scam Cousin 

Account Weapon Phishing Drug 

Invest Destroy Identity Drink 

Liability Military Credit Sex 

Exchange Attack Card Touch 

Stock Crime Malware Suicide 

Market Victim Virus Murder 

Fraud Extermination  Spyware Attack 

Finance Massacre Spoofing Violence 

Laundering Kill Insurance Depression 

Money Fight Hack Virgin 

Charge Kidnap Payment Brother 

Forge Civilian Marry Victim 

Cheque Atrocity Immigration Assault 

Estate Humanity Email Pregnant 

Trade War Complain Consent 

Fund Refugee Bank Molest 

Tax Execute Offer Abuse 

Table 4: Top 20 most used words for our classes. 

 

 BANK 

FRAUD 

WAR 

CRIMES 

INTERNET 

FRAUD 

RAPE 

BANK FRAUD 410 6 2 40 

WAR CRIMES 150 256 0 22 

INTERNET 

FRAUD 

75 3 279 66 

RAPE 186 30 0 354 

Table 5: Confusion Matrix for our data using HLDA. 

 

Precision is a measure of the accuracy provided that a specific class has been retrieved. It 

is the ratio of the number of relevant records retrieved (known as true positives) to the total 

number of relevant and irrelevant records retrieved (true positives and false positives) by the 
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model. Recall, on the other hand, measures the ability of a model to select instances of a certain 

class from a dataset. It is ratio of the number of relevant records retrieved (true positives) to the 

total number of relevant records (true positives and false negatives) in the dataset.  

We compute below the precision and recall of our model and we compare it in the same table 

with the performance of the hierarchical log-bilinear document model and the LDA model.  

 

 Our Model Hierarchical-Log-Bilinear 

Model [19] 

 LDA 

Model 

 

Precision 0.79 0.75  0.77  

Recall 0.71 0.68  0.71  

Table 6: Precision and recall results obtained for our data using HLDA. 

 

As we can see, our model performs better than the hierarchical Log-Bilinear model as both the 

precision and the recall are higher. A high precision indicates a high percentage of retrieved 

instances that are relevant. A high recall indicates a high fraction of relevant instances that are 

retrieved. We can also see that our model has a better precision compared to the LDA model. 

This can be explained by the hierarchical nature of our model and its ability to capture more 

relevant results.  

We can use now both the precision and recall scores to compute the F measure. F-score 

or F-measure is another tool to measure the performance of a document classification model. It 

takes into account both the recall and precision and gives us one single value. It is computed 

using the following equation: 

     
                

                
 

We compute the F-score for our model and compare it with both the hierarchical statistical 

model and the LDA model. We get the following values:  

 Our model LDA Hierarchical-Log-

Bilinear Model [19] 

  

F-score 0.75 0.73 0.71   

Table 7: F-score obtained for our data using HLDA 
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Another useful measure used to evaluate the performance of a model is the accuracy, 

which is the overall correctness of the model. It indicates how close the predictions are to the 

actual results. It is calculated by dividing the sum of correct classifications made by the model 

(true positives and true negatives) over the total number of classifications (true positives, true 

negatives, false positives and false negatives).  

The accuracies for our model as well as for the hierarchical statistical model and the LDA 

models are shown in the table below: 

 Our model LDA Hierarchical-Log-

Bilinear Model [19] 

  

Accuracy 0.86 0.85 0.82   

Table 8: Accuracy results obtained for our data using HLDA. 

We do notice that the accuracy for our model is higher than the hierarchical log-bilinear 

model and so are the precision and recall. This is because of the superiority of the variational 

method in estimating the parameters for the model. The difficulty of calculation originates from 

the complexity of inferring the approximate inference described in section 2. The variational 

method works around this problem by picking a family of distributions over the latent variables 

with its own variational parameters.  
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Chapter 5: Conclusion and Future Work 

 

In this thesis, we have described the Hierarchical Latent Dirichlet allocation topic model and 

implemented it for our platform. HLDA is based on the intuitive assumption that a single 

document can exhibit multiple topics and that documents in the real world are organized in a 

hierarchy. It also makes the assumption that words are fully exchangeable (bag of words 

assumption). We followed a variational approach in inferring and learning the different 

parameters since the exact inference is intractable. We validated our approach by testing out our 

model on real data gathered from Wikipedia and other online forums. The results we got show 

that our model outperforms both the hierarchical log-bilinear document model and the LDA 

model in correctly classifying/ categorizing text documents. The performance of the models was 

based on comparing the accuracy, the precision and recall of the three models. Every one of 

these three performance measures was better for our model than it was for the hierarchical log-

bilinear document model. We also compared the performance of our model with the LDA model 

and we were able to get a better precision and accuracy scores. We also got good results in 

extracting semantically related words from a collection of documents. We have also brought 

some improvements to the hierarchical log-bilinear document model developed in [12]. We 

introduced two regularization terms in order to constrain the model and to prevent over fitting; 

thing that will allow for better and more precise results in classifying our text documents.  

Future potential work could include extending the model to consider and work with other 

languages as well (Spanish, Arabic, French, Chinese…). That would allow for better information 

extraction for our cyber security project. We can also take into account the dynamic nature of the 

web by extending the model to different online settings such as adding, updating or deleting a 

document. This will keep our results up-to-date. We can also integrate ontological concepts into 

our existing model. Ontologies are defined as collections of human-defined concepts and terms 

for a specific domain. They specify relevant concepts as well as semantic relations between 

them. This can improve the results concerning both the classification of documents and the 

extraction of correlated words. 
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Appendices 

1. Distribution for hierarchical Statistical Document Model 
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2. Partial Derivative 
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3. Lower Bound Expansion 

We have:  

 (   |   )    ,    ( | )-    ,    ( | )-    ,    ( |   )-   ( ) 

The first item could be written in the following form: 
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According to [3, page 687], we have: 
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Similarly, we write the third item: 
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The last term H(q) can be rewritten in the following way: 
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Now that we have the detailed derivations of each of the four terms, we can expand the lower 

bound: 
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4. Learning the variational parameters 
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We take the derivative of    with respect to   : 
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We set the derivative to be 0 and we get: 
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5. Estimating the parameters 

We start by rewriting the lower bound keeping only the terms containing   and we use 

Lagrange multipliers. 
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This derivative depends on the    terms (such that    ), so in order for us to find the 

maxima, we use the Hessian that is written in the following way: 
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