
Neural Networks as Pseudorandom Number Generators

Mark Goldsmith

A Thesis

in The Department

of

Computer Science

Presented in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy of Computer Science at

Concordia University

Montreal, Quebec, Canada

April 2015

c© Mark Goldsmith, 2015



CONCORDIA UNIVERSITY
SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By:

Entitled:

and submitted in partial fulfillment of the requirements for the degree of

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

 Chair

 External Examiner

 External to Program

 Examiner

Examiner

Thesis Supervisor

Approved by

Chair of Department or Graduate Program Director

Dean of Faculty

Mark Goldsmith
Neural Networks as Pseudorandom Number Generators

Doctor of Philosophy (Computer Science)

Dr. Jamal Bentahar

Dr. Pierre L'Ecuyer

Dr. Pawel Góra

Dr. Peter Grogono

Dr. Sudhir Mudur

Dr. Vašek Chvátal

April, 2015



Abstract

Neural Networks as Pseudorandom Number Generators

Mark Goldsmith

Concordia University, 2015

This thesis brings two disparate fields of research together; the fields of artificial neural

networks and pseudorandom number generation. In it, we answer variations on the

following question: can recurrent neural networks generate pseudorandom numbers?

In doing so, we provide a new construction of an n-dimensional neural network that

has period 2n, for all n. We also provide a technique for constructing neural networks

based on the theory of shift register sequences. The randomness capabilities of these

networks is then measured via the theoretical notion of computational indistinguisha-

bility and a battery of statistical tests. In particular, we show that neural networks

cannot be pseudorandom number generators according to the theoretical definition of

computational indistinguishability. We contrast this result by providing some neural

networks that pass all of the tests in the SmallCrush battery of tests in the TestU01

testing suite.
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Chapter 1

Introduction

This thesis brings two disparate fields of research together; the fields of artificial neural

networks and pseudorandom number generation. In it, we answer variations on the

following question: can recurrent neural networks generate pseudorandom numbers?

We will see that the answer to this question depends on how we measure randomness,

and what kind of restrictions are placed on the neural networks in question.

The artificial neurons that we study are threshold functions based on the model of

McCulloch and Pitts [55]. Although these models should not be confused with truly

biological neurons, the work in this thesis is loosely inspired by ongoing research on

EEG (electroencephalogram) analysis and the study of epileptic seizures.

Motivation: EEG and Chaos

In attempts to study epilepsy, selected patients are monitored continuously for days

at a time. During these periods, EEG or ECoG (electrocorticogram) recordings are

made. EEG recordings come from placing multiple electrodes on the scalp of the

patient. ECoG recordings produce far more accurate data, but they require invasive

surgery to place a grid of electrodes directly on the cortex.

Neurologists specialized in epilepsy are trained to read EEG/ECoG recordings, so that

mere visual inspection allows them to tell with a reasonable degree of accuracy when

a seizure might have occurred. A frequent occurrence is a transition from a ‘chaotic’,

‘random-like’ EEG before the seizure (the pre-ictal state) to a more organized sustained

rhythm of spikes or sharp waves during the seizure (the ictal state). A few examples

of such claims follow:

“Neonatal electrographic seizures consist of paroxysmal events character-
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ized by the sudden appearance of recognizable, repetitive wave forms that

evolve in amplitude and frequency, and then wane. The location of the

seizure may be focal, confined to one hemisphere, or may spread to the

opposite hemisphere. In contrast, the EEG background of the normal

newborn is irregular and without clear periodicity.” [46]

“The results revealed that epileptic EEG had significant nonlinearity whereas

normal EEG behaved similar to Gaussian linear stochastic process.” [60]

“To illustrate this concept, we may assume, for simplicity, that at least

two states are possible: an interictal one characterized by a normal, ap-

parently random, steady-state of ongoing activity, and another one that

is characterized by the paroxysmal occurrence of asynchronous oscillations

(seizure).” [47]

“This behavior (of STLmax) indicates a gradual preictal reduction in chaotic-

ity, reaching a minimum shortly after seizure onset.” [32]

“Abrupt state transitions from highly complex, irregular to less complex,

almost periodic dynamics appear to be a characteristic feature of many

dynamical disorders including epilepsy...” [43]

Figure 1.1: A one second sample of a typical EEG reading of a healthy brain.

Of course, ‘chaotic’ and ‘random-like’ are two very distinct mathematical ideas. Chaos

is a formal, well-defined mathematical property that a dynamical system may or may

not possess ([13], [63]). A dynamical system is a deterministic mapping from some

state space to itself. Chaotic dynamical systems must be sensitive to initial conditions

(commonly known as the butterfly effect), but this sensitivity is not sufficient for a

dynamical system to be chaotic.

A commonly used tool for measuring this sensitivity in a dynamical system is its

spectrum of Lyapunov exponents ; each Lyapunov exponent in the spectrum can be

thought of as a measurement of the sensitivity to initial conditions at specific points

in the state space of the system, along a certain direction. The work of Takens [70]
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showed how the dynamics of an underlying dynamical system can be estimated from

a time series of data representing a partial trajectory on a state subspace. Wolf et

al. [79] used this idea to develop an algorithm for approximating the spectrum of

Lyapunov exponents of the underlying dynamical system. This eventually led to a

flood of research claiming that Wolf et al.’s algorithm could be used for predicting

epileptic seizures:

“The mean values of L (largest average Lyapunov exponent) for all elec-

trodes in the postictal state are larger than the ones in the preictal state,

denoting a more chaotic state postictally.” [31]

“Nonlinear techniques showed that the trajectory of the EGG signals ap-

peared to be more regular and organized before the clinical onset of the

seizure than were the ones in the normal state. The results of this work in-

dicate that the EEG becomes progressively less chaotic as seizures advance,

with respect to the estimation of the short-term maximum Lyapunov ex-

ponents (STLmax), which is a measure of the order or disorder (chaos) of

signals.” [8] (in reference to [31])

“The Lyapunov exponent (λ1) is a measure of the average amount of pre-

dictability over time of the EEG signal, which we believe relates to what

is characterized by the morphologic regularity ratings we have made man-

ually. λ1 is a measure used in non-linear dynamic analysis (Ott, 1993).

While in theory, a positive λ1 can be used to identify the existence of

chaos (assuming deterministic, non-transient dynamics), our goal is not to

determine whether chaos is present but to use λ1 as a potentially clinical

useful tool and to better define seizure therapeutic adequacy by quantifying

the degree of morphologic regularity of the seizure.” [37]

“Among the important measures of the dynamics of a linear or nonlinear

system are the Lyapunov exponents that measure the average information

flow (bits/sec) a system produces along local eigendirections through its

movement in its state space. Positive Lyapunov exponents denote genera-

tion of information while negative exponents denote destruction of informa-

tion. A chaotic non-linear system possesses at least one positive Lyapunov

exponent, and it is because of this feature that its behavior looks random,

even though as a system it is deterministic.” [8]

In contrast to chaotic dynamical systems, which map states deterministically over

time, a random process evolves (nondeterministically) according to some probabilistic
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laws. The nondeterminism is the point worth emphasizing here; visiting a state that

has already been seen does not necessarily allow us to predict anything about its

successor.

When presented with some time series, it may be difficult to distinguish which kind of

process is at the heart of the underlying system [76].

Consider the following two time series plots:
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Figure 1.2: Time series A and B. Are they ‘random’?

To the mathematically untrained eye, these may both look ‘random’ or ‘chaotic’. How

can we deduce whether or not there is any determinism at play? One method is

to embed the time series into two dimensional space by plotting successive pairs

(x0, x1), (x1, x2), (x2, x3), . . ., where x0, x1, x2, . . . is the original time series. In the

cases above, the determinism of the second system is revealed:

4



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Embedding of Time Series A

A
(t+

1)

A(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Embedding of Time Series B

B
(t+

1)

B(t)

The first time series in Figure 1.2 is ‘truly‘ random data coming from atmospheric

noise [1], the latter was generated by the simple but chaotic Tent map, T : [0, 1] →
[0, 1], defined by:

T (x) =

2x if x < 0.5;

2(1− x) if x ≥ 0.5.

Things become much more complicated in the case of EEG data, in which nothing is

known about the correct embedding dimension or time that should elapse between ad-

jacent samples. However, the main idea remains the same: try to embed the provided

time series data into some dimension and extract the determinism; a truly random

source will look like noise in all dimensions. Other techniques for finding properties

of the possibly deterministic underlying generator of time series data can be found

in [68].

The notions of chaotic dynamical systems and random processes meet in the concept

of pseudorandomness, in which deterministic systems have properties usually observed

by a random process.

The question

In July 2009, in a seminar held at Concordia University, Nithum Thain asked whether

some initial configuration could cause Conway’s Game of Life [17] to evolve in a way

resembling a partial seizure, proceeding from an erratic flutter of apparently unpre-
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dictable patterns to sustained rhythmic changes that would begin in a small part of

the grid and gradually spread, synchronized, over a larger area before subsiding to give

way to the initial erratic mode. In the discussion that followed, a variation emerged:

Could a recurrent neural network behave like this?

More concretely, in this thesis we aim to find recurrent neural networks with state

trajectories that are pseudorandom. Such a network would, by definition, be deter-

ministic, yet still have have random-looking output. We will use a battery of tests

in the TestU01 suite ([41], [42]) for testing pseudorandom output. The main reason

for this choice is the obvious one: we would like the output to look random, and this

is precisely what these tests check for. Another reason for this choice is consistency;

other measurements such as Wolf et. al’s algorithm for estimating the spectrum of

Lyapunov exponents depend on too many parameters that have to be tweaked on a

case by case basis [21]. The tests in TestU01 are robust, highly standardized, widely

used, and difficult to pass.

The problem of using neural networks to generate pseudorandom output was studied

briefly by Elyada and Horn [15]. We will see several constructions of neural net-

works that improve on their results; namely maximal neural networks, which are n-

dimensional neural networks whose periods are all of length 2n, and shift register neural

networks, which are neural networks based on shift register sequences, sometimes re-

ferred to as linear feedback shift registers. The problem was also discussed in Hughes’

Bachelor’s thesis [30], in which a relaxation of the classical recurrent neural network

model was considered.

Thesis structure

The basic unit of computation in our neural networks, the neuron, is a linear thresh-

old function, sometimes referred to as a perceptron. Understanding these functions

is essential to understanding the capabilities and limitations of neural networks; in

Chapter 2 we survey some useful results on threshold functions that are commonly

found in the literature.

Chapter 3 explores neural networks as dynamical systems, with a particular emphasis

on neural networks that have trajectories with long periods. The problem of finding

long period neural networks can be thought of as the complement of a problem solved

by Hopfield, who found conditions under which a neural network has fixed points [28].

Three constructions of maximal neural networks are presented; the first comes from

Arimoto and Ueda [74], the second is by Orlitsky [67], and the third is new work by
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Chvátal and Goldsmith [10]. We will see that the neural networks resulting from these

constructions are isomorphic.

We end Chapter 3 by building neural networks based on the theory of shift regis-

ter sequences. This will allow us to construct another class of neural networks that,

although not maximal, still have long enough trajectories for the purpose of pseudo-

random number generation.

In Chapter 4 we evaluate neural networks as pseudorandom number generators using

two different measures of randomness. The first is that of computational indistin-

guishability. We present a proof by Chvátal, Goldsmith, and Yang, showing that

neural networks without hidden neurons cannot be pseudorandom number generators,

in a theoretical sense. We contrast this result by pitting some of the neural networks

of Chapter 3 against a battery of empirical statistical tests in the TestU01 package

([41], [42]). Finally, we show how we can modify certain neural networks in order to

pass these tests, when some of the neural network is hidden.

The main new results presented in this thesis are: a new construction of maximal

neural networks (section 3.1.3); a construction of neural networks based on shift reg-

ister sequences (section 3.2.1); a proof that neural networks are not pseudorandom

number generators in the context of computational indistinguishability (section 4.1.1);

and a description of several neural networks that pass all of the statistical tests in

the SmallCrush battery in TestU01 (section 4.2). Some other new results include a

proof showing that the three known maximal neural networks are all isomorphic (sec-

tion 3.1.4), and a new proof of the lower bound on cross-correlation in maximal neural

networks (section 3.1.6).

7



Chapter 2

Boolean and Threshold Functions

In this chapter, we survey some well-known properties of threshold functions. Most of

the results in this section can be found in [58]. Other sources are [74], [4], and [3].

The connection with neural networks, as we shall see at the end of this chapter, is that

threshold functions are commonly used to model neurons in artificial neural networks.

2.1 Boolean functions

A boolean function is a function that maps binary strings to bits:

Definition 2.1:

An n-dimensional boolean function is a function f : {0, 1}n → {0, 1}.

Alternatively, it will sometimes be more convenient to use {−1, 1} as our set of symbols

instead of {0, 1}, in which case we have

Definition 2.2:

An n-dimensional boolean function is a function f : {−1, 1}n → {−1, 1}.

For now, let us consider boolean functions f : {0, 1}n → {0, 1}. We can think of a

boolean function as a truth table, or as a labelling of the vertices of the n-dimensional
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hypercube. The points of {0, 1}n that f maps to 1 are the true points of f , and the

points mapped to 0 are the false points of f .

Example 2.1:

Consider the 3-dimensional boolean function f : {0, 1}3 → {0, 1} defined by the fol-

lowing truth table:

x1 x2 x3 f(x1, x2, x3)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

We can view this boolean function as the 3-dimensional hypercube, where the true

points of f are colored black, and the false points colored white.

010

001

000 100

Figure 2.1: The boolean function f and coordinate system.

�

Notation 2.1:

For x in {0, 1}n, we let x be the result of flipping all the bits of x. More precisely,

if x = (x1, x2, . . . , xn), then x = (1− x1, 1− x2, . . . , 1− xn).

For an n-dimensional boolean function f , we use f(x1, . . . , xn) instead of the more

cumbersome

f(x1, . . . , xn)

to denote the result of applying f and then flipping its output. We refer to f as

the complement of f .
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Another function of interest first flips its input, and then applies f . We denote

this new function by f , so that

f(x1, . . . , xn) = f(x1, . . . , xn).

We use ∨ to denote logical disjunction. The conjunction of two boolean values x1

and x2 is denoted by x1x2; this is equivalent to multiplication with the boolean

values viewed as integers and will help minimize the use of brackets to indicate

precedence. Finally, the xor of x1 and x2 is denoted by x1 ⊕ x2. It is defined such

that x1 ⊕ x2 = (x1x2) ∨ (x1x2).

2.2 Threshold functions

Threshold functions are a particular class of boolean functions.

Definition 2.3:

An n-dimensional boolean function f : {0, 1}n → {0, 1} is a linear threshold func-

tion if there exist n real numbers w1, w2, . . . , wn and another real number θ such

that f can be expressed as

f(x1, . . . , xn) =

1 if
∑
xiwi ≥ θ

0 if
∑
xiwi < θ.

The values w1, w2, . . . , wn are the weights and θ is the threshold of f .

This definition may be generalized to threshold functions that are not necessarily

linear. However, since we will only be considering linear threshold functions, we will

simply refer to them as threshold functions.

Definition 2.4:

A threshold function f with weights w1, w2, . . . , wn and threshold θ is non-

degenerate if for every (x1, x2, . . . , xn) in {0, 1}n we have
∑
wixi 6= θ.
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w1, w2, . . . , wn−1, θ2 − θ1 and threshold value θ2. We will show that g is identical to f

defined in (2.1).

When the last input is 0, we have

g(x1, . . . , xn−1, 0) =


1 if

∑n−1
i=1 wixi > θ2;

0 if
∑n−1

i=1 wixi < θ2,

which implies that g(x1, . . . , xn−1, 0) = f1(x1, . . . , xn−1) for every (x1, . . . , xn−1) in

{0, 1}n−1. By equation (2.1), we have f(x1, . . . , xn−1, 0) = f1(x1, . . . , xn−1). We con-

clude that f(x1, . . . , xn−1, 0) = g(x1, . . . , xn−1, 0) for every (x1, . . . , xn−1) in {0, 1}n−1.

Similarly, when the last input is 1, we have

g(x1, . . . , xn−1, 1) =


1 if

∑n−1
i=1 wixi + θ2 − θ1 > θ2;

0 if
∑n−1

i=1 wixi + θ2 − θ1 < θ2,

which implies that g(x1, . . . , xn−1, 1) = f2(x1, . . . , xn−1) for every (x1, . . . , xn−1) in

{0, 1}n−1. By equation (2.1), we have f(x1, . . . , xn−1, 1) = f2(x1, . . . , xn−1). We con-

clude that f(x1, . . . , xn−1, 1) = g(x1, . . . , xn−1, 1) for every (x1, . . . , xn−1) in {0, 1}n−1.�

We will use a special case of the following Corollary later in Section 2.2.3.

Corollary 2.1:

Let g be an (n− 1)-dimensional threshold function. Then the n-dimensional function

f , defined as

f(x1, . . . , xn) = xng(x1, . . . , xn−1) ∨ xng(x1, . . . , xn−1)

is threshold.

Proof:

By Lemma 2.1, g and g are both threshold can be realized with the same weights. The

result follows by Theorem 2.1. �

Example 2.3:

The 3-dimensional threshold function g given as

12



g

yields the 4-dimensional threshold function

f(x1, x2, x3x4) = x4g(x1, x2, x3) ∨ x4g(x1, x2, x3),

which looks like

x4g(x1, x2, x3) x4g(x1, x2, x3)

Where the coordinate system is given as

0100

0010

0000 1000

0101

0011

0001 1001

�

2.2.1 Assumability

The notion of assumability provides us with a necessary and sufficient condition for a

boolean function to be threshold.

Definition 2.5:

A boolean function f : {0, 1}n → {0, 1} is assummable if for every k (not necessarily

distinct) true points x1,x2, . . . ,xk in {0, 1}n and k (not necessarily distinct) false

points y1,y2, . . . ,yk in {0, 1}n we have

k∑
i

xi 6=
k∑
i

yi. (2.2)

The next theorem is well known and dates back to [9] and [14]. The proof given here

is from [3].
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Theorem 2.2:

A boolean function is threshold if and only if it is assumable.

Proof:

Suppose f is a non-degenerate threshold function with weights w1, w2, . . . , wn and

threshold θ. Let x1,x2, . . . ,xk and y1,y2, . . . ,yk be arbitrary true and false points of

f , respectively. Then we have

n∑
i=1

wix
j
i > θ >

n∑
i=1

wiy
j
i j = 1, 2 . . . , k.

Summing over all j, we get

k∑
j=1

n∑
i=1

wix
j
i > kθ >

k∑
j=1

n∑
i=1

wiy
j
i ,

which gives
n∑
i=1

wi

k∑
j=1

xji > kθ >
n∑
i=1

wi

k∑
j=1

yji .

Therefore,
n∑
i=1

wi

(
k∑
j=1

xji −
k∑
j=1

yji

)
> 0,

which allows us to conclude the inequality in (2.2).

Conversely, suppose f is not threshold. Let x1,x2, . . . ,xr and y1,y2, . . . ,ys be the

true and false points of f , respectively. We construct an rs × n matrix A, where the

rows of A are the vectors xj − yk, for j = 1, 2, . . . , r and k = 1, 2, . . . , s. Suppose

Aw > 0 has a solution. Then for j = 1, 2, . . . , r and k = 1, 2, . . . , s we would have

n∑
i=1

wix
j
i >

n∑
i=1

wiy
k
i .

This contradicts our assumption that f is not a threshold function. Therefore, Aw > 0

has no solutions. By Theorem A.1 of the Appendix (page 104), there exists a non-

zero vector z in Rrs with nonnegative entries such that ATz = 0. Furthermore, since

A consists of rational numbers (integers, in fact), we may assume that z has integer

entries. Relabelling the elements of z according to the ordering of the vectors in A,

for j = 1, 2, . . . , r and k = 1, 2, . . . , s there are nonnegative integers zjk, at least one of

which is nonzero, such that for i = 1, 2, . . . , n we have∑
j,k

zjk(x
j
i − yki ) = 0.

14



Thus, we have ∑
j,k

zjk(x
j − yk) = 0,

which shows that f is not assumable. �

Example 2.4:

The n-dimensional xor function f : {0, 1}n → {0, 1}, defined as

f(x1, x2, . . . , xn) =


0 if

∑
xi ≡ 0 (mod 2);

1 if
∑
xi ≡ 1 (mod 2),

is not a threshold function for n ≥ 2. To see why, let

x = (0, 0, 0, 0, . . . , 0),

x′ = (1, 1, 0, 0, . . . , 0),

y = (1, 0, 0, 0, . . . , 0),

y′ = (0, 1, 0, 0, . . . , 0).

g

Figure 2.2: The 3-dimensional xor function, which cannot be linearly separated.

Then f(x) = f(x′) = 0, and f(y) = f(y′) = 1 and x + x′ = y + y′. So f is not

assumable and therefore not a threshold function. �

The inability of a threshold function to compute the xor of its inputs was first illus-

trated by Minsky and Papert in 1969 [56], where they referred to threshold functions

as perceptrons, a name given by Rosenblatt [64].

Somewhat ironically, the xor will play a special role for us; it is a very handy tool when

it comes to randomness ([20], [45], [80], [19]) and we will go through some trouble to

embed this function into the neural networks constructed in later chapters.
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2.2.2 Number of threshold functions

Let N(n) denote the number of threshold functions of dimension n. The numbers

of threshold functions have been determined computationally (see [58] and [59]) for

n = 1, 2, . . . , 9, and are given here:

n N(n)

1 4

2 14

3 104

4 1882

5 94572

6 15028134

7 8378070864

8 17561539552946

9 144130531453121108

Table 2.1: Number of threshold functions for n = 1, . . . , 9.

Although a precise formula for N(n) is not known, useful lower and upper bounds

have been found. A lower bound derived in [58] is

N(n) > 2
n(n−1)

2
+32.

We are more concerned with an upper bound, which we will now derive. What follows

can be found in the work of Winder [78], Cover [12], and Muroga [58].

Definition 2.6:

Let Y be a subset of Rn. A dichotomy of Y is its partition into two disjoint sets.

A dichotomy (Y +, Y −) of a subset of Rn is linearly separable if there are numbers

x1, x2, . . . , xn+1 such that

n∑
j=1

xjyj > xn+1 whenever (y1, y2, . . . , yn) ∈ Y +,

n∑
j=1

xjyj < xn+1 whenever (y1, y2, . . . , yn) ∈ Y −.
(2.3)

Lemma 2.2:

A set of m points in Rn admits at most 2
∑n

i=0

(
m−1
i

)
linearly separable dichotomies.
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Proof:

Let D(m,n) denote the maximum number of linearly separable dichotomies of a set of

m points in Rn and let R(m,n) denote the maximum number of open regions in Rn

that can be demarcated by m hyperplanes passing through the origin. We claim that

(i) D(m,n) ≤ R(m,n+ 1).

To justify this claim, consider any set Y of points y1, y2, . . . , ym in Rn, let D denote

the set of linearly separable dichotomies of Y , and let R denote the set of open regions

in Rn+1 that are demarcated by the m hyperplanes

∑n
j=1y

i
jxj − xn+1 = 0 (i = 1, 2, . . . ,m) (2.4)

which pass through the origin. We will prove (i) by exhibiting a one-to-one mapping

from D to R. (Actually, the mapping that we will exhibit is a one-to-one correspon-

dence between D and R, which implies that (i) holds with the sign of equality; however,

the inequality is all we need in proving the lemma.) If a linearly separable dichotomy

(Y +, Y −) of Y satisfies (2.3), then (x1, x2, . . . , xn+1) belongs to one of the open regions

that belong to R and this is the region that we assign to (Y +, Y −). If this region is

also assigned to a linearly separable dichotomy (W+,W−) of Y defined by

n∑
j=1

vjyj > vn+1 whenever (y1, y2, . . . , yn) ∈ W+,

n∑
j=1

vjyj < vn+1 whenever (y1, y2, . . . , yn) ∈ W−,

then

n∑
j=1

yijvj − vn+1 > 0 if and only if
n∑
j=1

yijxj − xn+1 > 0,

n∑
j=1

yijvj − vn+1 < 0 if and only if
n∑
j=1

yijxj − xn+1 < 0,

and so W+ = Y +, W− = Y −.

Next, we claim that, for all choices of positive integers m and n, we have

(ii) R(m,n) ≤ R(m− 1, n) +R(m− 1, n− 1).

To justify this claim, consider any m pairwise distinct hyperplanes in Rn that pass

through the origin; call one of these hyperplanes ‘new’ and call the other m − 1
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hyperplanes ‘old’. Since all the old hyperplanes are distinct from the new hyperplane,

each of them intersects the new hyperplane in a linear subspace of dimension n − 2;

these at most m−1 linear subspaces of dimension n−2 (at most m−1 since distinct old

hyperplanes may intersect the new hyperplane in the same linear subspace) divide the

new hyperplane into at most R(m−1, n−1) regions. Since each of these regions in the

new hyperplane is a boundary between two regions demarcated by the m hyperplanes,

at most R(m− 1, n− 1) regions of the at most R(m− 1, n) regions demarcated by the

old hyperplanes are split by the new hyperplane into two.

Claim (ii) implies by induction on m that R(m,n) ≤ 2
∑n−1

i=0

(
m−1
i

)
. The Lemma follows

from this inequality combined with (i). �

Corollary 2.2:

The number of n-dimensional threshold functions, N(n), satisfies

N(n) ≤ 2
n∑
i=0

(
2n − 1

i

)
.

Proof:

We apply Lemma 2.2 to the 2n points of {0, 1}n. �

Corollary 2.3:

The number of n-dimensional threshold functions, N(n), satisfies

N(n) ≤ 2n
2

.

Proof:

We follow the proof in [3]. To prove this upper bound, we first show that for m ≥ d,

we have
d∑
i=0

(
m

i

)
<
(em
d

)d
.

18



We have

d∑
i=0

(
m

i

)
<
(m
d

)d d∑
i=0

(
m

i

)(
d

m

)d
≤
(m
d

)d d∑
i=0

(
m

i

)(
d

m

)i
≤
(m
d

)d m∑
i=0

(
m

i

)(
d

m

)i
=
(m
d

)d(
1 +

d

m

)m
<
(em
d

)d
since (1 + x/m)m < ex for x > 0.

Therefore, setting m = 2n − 1 and d = n, we get

2
n∑
i=0

(
2n − 1

i

)
< 2

(
e(2n − 1)

n

)n
.

When n ≥ 4, we have 2
(
e(2n−1)

n

)n
< 2(e/4)42n

2
< 2n

2
, and the cases of n = 1, 2, 3 can

easily be verified. �

This Corollary gives us a sense of how few threshold functions there really are when

we note that there are 22n boolean functions of dimension n.

2.2.3 Self-duality

A special class of boolean functions are referred to in the literature as self-dual. They

have the nice property that antipodes on the hypercube are mapped to complimentary

bits.

Definition 2.7:

The dual of a boolean function f is the function f(x), or simply the function f

(recall Notation 2.1 on page 9). Note that f is well defined since both operations

commute:
(
f
)

=
(
f
)
.

A boolean function f is self-dual if for every x in {0, 1}n we have

f(x) = f(x).
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Example 2.5:

Below are four 3-dimensional boolean functions:

f1 f2 f3 f4

The first boolean function is self-dual, but not threshold. The second and third, f2

and f3, are both self-dual and threshold. The last boolean function is neither self-dual

nor threshold. �

Theorem 2.3:

The n-dimensional threshold function f with weights w1, w2, . . . , wn and threshold value

θ =
∑
wi/2 is self-dual if it is non-degenerate.

Proof:

Suppose f is non-degenerate and (x1, x2, . . . , xn) in {0, 1}n is such that

n∑
i=1

wixi >
n∑
i=1

wi/2.

Then

n∑
i=1

wi(1− xi) = −
n∑
i=1

wixi +
n∑
i=1

wi < −
n∑
i=1

wi/2 +
n∑
i=1

wi =
n∑
i=1

wi/2.
�

The following is from [73], and will be used in Section 3.1.1.

Lemma 2.3:

Let g be an (n − 1)-dimensional boolean function. For i = 1, 2, . . . , n, the function

ui : {0, 1}n → {0, 1} defined by

ui(x1, . . . , xn) = xig(x1, . . . , xi−1, xi+1, . . . xn) ∨ xig(xi, . . . , xi−1, xi+1, . . . , xn) (2.5)

is a self-dual boolean function. Conversely, if ui is a self-dual boolean function, then

there exists an (n−1)-dimensional boolean function g that satisfies (2.5). Furthermore,

ui is a threshold function if and only if g is a threshold function.

Proof:

Fix i and write G = g(x1, . . . , xi−1, xi+1, . . . xn), so that

ui(x1, . . . , xn) = xiG ∨ xiG.
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First, we will verify that ui is self-dual. We have

ui(x1, . . . , xn) = xiG ∨ xiG.

By using De Morgan’s law we get

ui(x1, . . . , xn) = [x1 ∨G]
[
xi ∨G

]
= xiG ∨ xiG ∨GG

= xiG ∨ xiG, ( since GG is redundant)

which shows that ui = ui.

Next, we will show that every self-dual ui can be decomposed as in (2.5). To begin,

every boolean ui can be written as

ui(x1, . . . , xn) = xig(x1, . . . , xi−1, xi+1, . . . xn) ∨ xih(x1, . . . , xi−1, xi+1, . . . xn)

for some boolean functions g and h. Write G = g(x1, . . . , xi−1, xi+1, . . . xn) as in the

preceding paragraph and H = h(x1, . . . , xi−1, xi+1, . . . xn). Since

ui(x1, . . . , xn) = xiG ∨ xiH,

we have

ui(x1, . . . , xn) = xiG ∨ xiH,

and so

ui(x1, . . . , xn) = [xi ∨G]
[
xi ∨H

]
= xiH ∨ xiG ∨GH

= xiH ∨ xiG.

If ui is self-dual, then ui = ui, and so h(x1, . . . , xi−1, xi+1, . . . xn) = g(x1, . . . , xi−1, xi+1, . . . xn)

as desired.

Moving on to the threshold part of the statement in the Theorem, suppose ui is a

non-degenerate n-dimensional self-dual threshold with weights w1, . . . , wn and thresh-

old θ. We will show that the (n − 1)-dimensional threshold function g with weights

−w1,−w2, . . . ,−wi−1,−wi+1, . . . ,−wn and threshold wi − θ satisfies (2.5). We have

g(x1, . . . , xi−1, xi+1, . . . , xn) =

0 if −
∑

j 6=iwjxj > wi − θ

1 if −
∑

j 6=iwjxj < wi − θ.
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Therefore, if xi = 1, then

g(x1, . . . , xi−1, xi+1, . . . , xn) =

0 if
∑n

j=1wjxj < θ

1 if
∑n

j=1wjxj > θ,

which is the same thing as ui(x1, . . . , xi−1, 1, xi+1, . . . , xn).

If xi = 0, we have

ui(x1, . . . , xi−1, 0, xi+1, . . . , xn) = ui(x1, . . . , xi−1, 1, xi+1, . . . , xn) by self-duality of ui

= g(x1, . . . , xi−1, xi+1, . . . , xn) by the xi = 1 case

= g(x1, . . . , xi−1, xi+1, . . . , xn),

as desired.

Finally, if g is a threshold function then ui is threshold as well by Corollary 2.1 on

page 12. �

2.2.4 Artificial neural networks

In 1943, Warren McCulloch and Walter Pitts proposed a simple model of a biological

neuron and defined neural networks in their full generality [55]. Their all-or-none

model, in which a neuron either fires completely or not at all (and no options in

between), can be described as a threshold function in which all weights are set to +1

or some sufficiently large negative value, the latter type corresponding to their notion

of absolute inhibition. Independently of this, in 1949 Donald Hebb’s The Organization

of Behavior [25] put forth his proposal for a theory of learning in the brain; the often-

quoted ‘neurons that fire together, wire together’ has its origins therein:

Let us assume that the persistence or repetition of a reverberatory activity

(or ‘trace’) tends to induce lasting cellular changes that add to its stability.

When an axon of cell A is near enough to excite a cell B and repeatedly

or persistently takes part in firing it, some growth process or metabolic

change takes place in one or both cells such that A’s efficiency, as one of

the cells firing B, is increased.

In 1958, Frank Rosenblatt suggested a solution to the problem of how the McCulloch-

Pitts model of a neuron could learn. In [64], he proposed ridding the neuron of its
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absolute inhibition and allowing weights to take on real numbers, in what he called a

perceptron [64]. This is the model we use in this thesis.

We view neurons as threshold functions as follows. A neuron receives zero-one signals

x1, x2, . . . , xn at its synapses from the axons of other neurons (as well as from its

own axon). Each synapse has an associated weight; positive weights correspond to

excitatory synapses and negative weights correspond to inhibitory synapses. Hard-

coded in the neuron is its threshold value; the neuron fires if
∑
wixi ≥ θ.

θx2

x1

xn−1

wnw1

w2

wn−1

f(x1, . . . , xn)

..

.

Figure 2.3: An artificial neuron, or perceptron, with inputs x1, x2, . . . , xn and output
f(x1, . . . , xn).

Along with this model, Rosenblatt proposed a learning algorithm, which allowed the

perceptron to adapt its weights in order to learn; when presented a set of input-output

pairs, the perceptron changes its weights so that when presented with an input, the

corresponding output would be calculated. The details of this famous perceptron learn-

ing algorithm can be found in Rosenblatt’s original paper [64]. Around the same time,

Hoff and Woodrow devised their Adaline (adaptive linear) learning algorithm [77],

which also uses a threshold function as the model of a neuron.

There was one important caveat to these algorithms, which was pointed out by Minsky

and Papert in 1969. In order to learn from the input-output pairs, those pairs had

to be learnable. As we have seen in example 2.4 on page 15, there are some very

simple things that a threshold function cannot do. Minsky and Papert’s book laid the

foundations for the study of problems that can and cannot be computed by neural

networks.

In 1986, a new wave of enthusiasm for neural networks was initiated with the publica-

tion of [66] by Rumelhart, Hinton, and Williams. They described a back-propagation

algorithm for feed-forward neural networks, and demonstrated how an entire network

could learn its weights when given a set of inputs and corresponding desired outputs.

They proposed using sigmoid functions to model neurons, which had the advantage

of being differentiable. This property was the key ingredient that allowed the back-

propagation algorithm to work efficiently. The back-propagation algorithm for neural
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networks and its offshoots are still widely used in artificial intelligence and pattern

recognition ([57] is a very recent and interesting example).

A feed-forward neural network consists of an input layer, one or more hidden layers,

and an output layer. In this model, we can imagine the ticking of a discrete clock,

with information being passed from one layer to the next at each time step.

Figure 2.4: A feed-forward neural network of depth 3, consisting of 1 input layer (3 neu-
rons), 2 hidden layers, and 1 output layer (2 neurons).

The input layer receives inputs from the external world. The output of the input layer

is passed to the first hidden layer; the output of the first hidden layer is then passed

to the second hidden layer, etc... until the last hidden layer’s output is passed to the

output layer, and the calculation is complete. Thus, the architecture of the network

can be seen as a directed graph with no cycles.

Meanwhile, in 1982, John Hopfield removed the acyclic constraint to form an alter-

native model to the feed-forward network [28]. This model is now referred to as a

recurrent neural network or a Hopfield network, although the latter usually implies

that certain constraints are satisfied; namely, neurons have no self-connections, and the

weight of a connection between two neurons is the same in both directions. Hopfield

showed that a neural network will always settle to a fixed point under these conditions.

This result is viewed as a possible explanation of how autoassociative memory works;

the initial state of the neural network is some external pattern, and the stable fixed

point of the network is the memory associated with that pattern.

Time could affect the network in Hopfield’s model in one of three ways. In parallel

mode, every neuron is updated at every time step; in sequential mode, a single neuron is
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updated at each time step; in other cases, the network updates in some hybrid mode.

Hopfield later studied a continuous-time version as well [29]. Further modifications

were made to this model by Hinton and Sejnowski a few years later, by allowing for

a probabilistic update rule and the use of the sigmoid function, giving rise to the

Boltzman machine [26] (named after the Boltzman distribution).

In the next chapter, we study recurrent neural networks operating in parallel mode,

since they most closely resemble classical pseudorandom number generators that can

be iterated over some state space.
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Chapter 3

Recurrent Neural Networks and

Dynamical Systems

This chapter is divided into two main sections, both of which emphasize the period

size of neural networks. In particular, we wish to find neural networks that have long

periods. In Section 3.1, we will discuss neural networks that have periods that are as

long as possible. In Section 3.2, we describe neural networks that lack this property,

but have long periods nonetheless.

Definition 3.1:

Let

fi : {0, 1}n → {0, 1} (i = 1, 2, . . . , n)

be n threshold functions. The function Φ : {0, 1}n → {0, 1}n defined by

Φ(x) = (f1(x), f2(x), . . . , fn(x))

is an n-dimensional recurrent neural network, or simply a neural network.

An n-dimensional neural network (f1, f2, . . . , fn) may be described by an n×n weight

matrix W and a threshold column vector T of size n. For i and j in {1, 2, . . . , n}, let

wij be the the jth weight of threshold function fi, and let θi be the threshold value of
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fi. This network is given in matrix form as

W =


w11 w12 · · · w1n

w21 w22 · · · w2n

...

wn1 wn2 · · · wnn

 , T =


θ1

θ2
...

θn

 .

Neural networks are dynamical systems; for a neural network Φ and an initial state

x, the trajectory of x under Φ is the sequence x,Φ(x),Φ2(x), . . .. We refer to Φt(x)

as the state of x under Φ at time t. Similarly, we let Φt
i(x) denote bit at coordinate i

of x under Φ at time t, with the convention that the superscript t is read before the

subscript i. Finally, the successor of x under Φ is Φ(x), and we sometimes denote this

by x→ Φ(x).

Example 3.1:

Consider the 3-dimensional neural network with weight matrix and threshold vector

given by

W =

1 1 0

2 −2 0

1 −1 −2

 , θ =

 2

−1

0

 .
This network has the following state transitions:

011

100

000

010

001101

111 110

The state transition structure has two connected components. �

3.1 Maximal period networks

In Chapter 4, our goal will be to describe some neural networks that have random-

looking trajectories. Such networks must have trajectories with a long period, other-

wise lack of randomness may easily be detected via periodic repetitions.
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Definition 3.2:

The period of a neural network Φ with initial state x is the smallest positive integer

p such that there exists a nonnegative integer t0 for which

Φt+p(x) = Φt(x) for t = t0, t0 + 1, t0 + 2, . . . .

Note that different initial states of the same network may have different periods. For

an n-dimensional neural network with an initial state, an upper bound on its period

is 2n, since the underlying state space contains 2n unique states, and state transitions

occur deterministically. Furthermore, if an n-dimensional neural network has a period

of 2n for some initial state, then it has a period of 2n for every initial state.

Definition 3.3:

The period of an n-dimensional neural network is maximal if it is 2n for an initial

state (and therefore every initial state).

We are now ready to ask: do neural networks with maximal period exist? Indeed they

do; in the next three sections we give three different constructions that yield maxi-

mal neural networks. Although the constructions are different, the resulting neural

networks turn out to be isomorphic. The construction in Section 3.1.1 was given in

[4] and later rewritten in [74]. Section 3.1.2 gives a construction by Orlitsky, which

appeared in [67]. Finally, the construction in section 3.1.3 was recently given in [10].

3.1.1 Arimoto’s construction

In this section we will survey a proof of the existence of maximal period networks of

every dimension. This proof comes from Arimoto ([4], in Japanese), and was later

rewritten by Ueda [74].

Theorem 3.1:

Let u be an n-dimensional self-dual threshold function. For i = 1, 2, . . . , n, set fi = xiu.

Then for i = 1, 2, . . . , n we have u = xifi ∨ fi.
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Proof:

Without loss of generality, we prove the theorem for i = 1. By Lemma 2.3 on page 20,

there exists an (n− 1)-dimensional threshold function g such that

u(x1, . . . , xn) = x1g(x2, . . . , xn) ∨ x1g(x2, . . . , xn).

We have

f1 = x1u = x1

[
x1 ∨ g

][
x1 ∨ g

]
= x1g

by De Morgan’s Law. This gives us x1f = x1g since f1 = x1 ∨ g. Therefore,

u = x1g ∨ x1g = x1f1 ∨ x1g = x1f1 ∨ f1. (3.1)

�

Using this, neural networks that consist of self-dual threshold functions can be repre-

sented in a special way:

Definition 3.4:

If Ψ : {0, 1}n → {0, 1}n is a neural network consisting of self-dual threshold func-

tions u1, u2, . . . , un, then the Ueda form of Ψ is [x1u1, x2u2, . . . , xnun].

The functions xiui in the Ueda form of a self-dual neural network may be much simpler

than the underlying self-dual threshold functions ui, making them easier to analyze.

This is its primary advantage for us, since it turns out to be the case in Theorem 3.2

at the end of this section. Other properties of this form can be found in [73]. For

example, x is a fixed point of the neural network with Ueda form [f1, f2, . . . , fn] if and

only if fi(x) = fi(x) = 0 for each i = 1, 2, . . . , n.

Example 3.2:

Using the coordinate system

010

001

000 100

consider the 3-dimensional neural network given by the 3 self-dual threshold functions

u1, u2, u3:

This network is given in Ueda form as [f1, f2, f3], where f1, f2, f3 are as follows:
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u1 u2 u3

f1 f2 f3

The fixed points of this network are 110 and 001. Note that fi(110) = fi(001) = 0 for

i = 1, 2, 3. Furthermore, for every other x, there exists an i such that fi(x) = 1 or

fi(x) = 1. �

Lemma 3.1:

Let f be an n-dimensional threshold function. For j = 1, 2, . . . , n, the function xjf is

a threshold function.

Proof:

Let f be threshold with weights w1, w2, . . . , wn and threshold value θ. Fix j and set

r =
∑
i6=j

|wi| − θ + 1;

vi = wi for i 6= j;

vj = wj + r;

η = θ + r.

We use this to define a new threshold function g with weights v1, v2, . . . , vn and thresh-

old η. We will now show that g(x) = xjf(x) for every x in {0, 1}n. First, suppose

that xj = 1. Then ∑
i

vixi =
∑
i6=j

vixi + vj =
∑
i6=j

wixi + wj + r.

Thus, if f(x) = 1 then
∑
vixi ≥ θ+ r = η. If f(x) = 0 then

∑
vixi < θ+ r = η. This

proves the claim for this case.

If xj = 0 then ∑
i

vixi =
∑
i6=j

wixi <
∑
i6=j

|wi|+ 1 = r + θ = η,

so that g(x) = 0. �
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Corollary 3.1:

Let f be an n-dimensional threshold function. For each j = 1, 2, . . . , n the n-dimensional

function xj ∨ f is a threshold function.

Proof:

Note that xj ∨ f = xjf . By Lemma 3.1, we know that xjf is threshold, and by

Lemma 2.1, the complement of a threshold function is also threshold. �

We shall now construct a neural network and proceed to show that it is maximal. For

all n, we will define n boolean functions

fni : {0, 1}n → {0, 1} i = 1, 2, . . . , n,

which we will use to describe an n-dimensional neural network Ψn in Ueda form. To

define fni (x1, x2, . . . , xn), let us first write

cni =

1 if i = 1;

x1x2 . . . xi−1 for i = 2, 3 . . . , n

and

dni =


xn if i = n

xidni+1 for i = 1, 2 . . . , n− 1.

We define the functions fni (x1, x2, . . . , xn) by

fni (x1, x2, . . . , xn) = cni d
n
i for i = 1, . . . , n. (3.2)
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Lemma 3.2:

The functions fni (x1, . . . , xn) defined in (3.2) can be written explicitly as

fnn = x1x2 · · · xn
fnn−1 = x1x2 · · · xn−1xn
fnn−2 = x1x2 · · · xn−2 (xn−1 ∨ xn)

fnn−3 = x1x2 · · · xn−3 (xn−2 ∨ xn−1xn)

fnn−4 = x1x2 · · · xn−4 (xn−3 ∨ xn−2 (xn−1 ∨ xn))

fnn−5 = x1x2 · · · xn−5 (xn−4 ∨ xn−3 (xn−2 ∨ xn−1xn))

...

fn1 =

x1(x2 ∨ x3(x4 ∨ x5(x6 ∨ x7(· · · (xn−2 ∨ xn−1xn))) . . .) if n is even;

x1(x2 ∨ x3(x4 ∨ x5(x6 ∨ x7(· · · ∨ xn−2(xn−1 ∨ xn))) . . .) if n is odd.

Proof:

Let n be a fixed positive integer. We will prove the claim by showing that

dnn = xn

dnn−1 = xn−1xn

dnn−2 = xn−2 (xn−1 ∨ xn)

dnn−3 = xn−3 (xn−2 ∨ xn−1xn)

dnn−4 = xn−4 (xn−3 ∨ xn−2 (xn−1 ∨ xn))

dnn−5 = xn−5 (xn−4 ∨ xn−3 (xn−2 ∨ xn−1xn))

...

dnn−i =

xn−i(xn−i+1 ∨ xn−i+2(xn−i+3 ∨ xn−i+4(· · · (xn−2 ∨ xn−1xn))) . . .) if i is even;

xn−i(xn−i+1 ∨ xn−i+2(xn−i+3 ∨ xn−i+4(· · · ∨ xn−2(xn−1 ∨ xn))) . . .) if i is odd,

and we do this by induction on i. Our base case is when i = n, which is confirmed

by the definition of dnn. Supposing the claim holds for dnn−(i−1), we will show that it

holds for dnn−i as well. By the definitions of dnn−i and dnn−i+1, and the application of De

Morgan’s Law, we have

dnn−i = xn−idnn−(i−1) = xn−i
(
xn−i+1dn−i+1

)
= xn−i (xn−i+1 ∨ dn−i+1) .
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Therefore, by the induction hypothesis,

dnn−i =

xn−i (xn−i+1 ∨ xn−i+1 (xn−i+2 ∨ xn−i+3(· · ·xn))) if i is even

xn−i (xn−i+1 ∨ xn−i+1 (xn−i+2 ∨ xn−i+3(· · ·xn))) if i is odd. �

Note that by Lemma 3.1 and Corollary 3.1, the functions fn1 , f
n
2 , . . . , f

n
n are threshold

functions, so Ψn = [fn1 , f
n
2 , . . . , f

n
n ] is indeed a neural network consisting of self-dual

threshold functions. We are now ready to show that it is maximal.

Theorem 3.2:

For every positive integer n, the neural network Ψn given in Ueda form as Ψn =

[fn1 , f
n
2 , . . . , f

n
n ] is maximal.

Proof:

To begin, we claim that for all i = 1, 2, . . . , n− 1 we have

fni (x1, x2, . . . , xn) =


fn−1i (x1, x2, . . . , xn−1) if x1 = x2 = . . . = xn = 1;

fn−1i (x1, x2, . . . , xn−1) otherwise.

(3.3)

More precisely, when a bit string x does not consist entirely of ones and j is the first

index such that xj = 0, we have

fn−1i (x) = fni (x) =



0

if j ≤ i;

x1 · x2 · · · · · xi (xi+1 ∨ xi+2 · (xi+3 · · · ∨ xj−1) · · · )

if j > i & j − i ≡ 1 (mod 2);

x1 · x2 · · · · · xi (xi+1 ∨ xi+2 · (xi+3 · · · ∨ xj−2 · xj−1) · · · )

if j > i & j − i ≡ 0 (mod 2).

and, with 1n standing for the bit string that consists of n ones, we have

fni (1n) =

0 if n− i ≡ 0 (mod n);

1 if n− i ≡ 1 (mod n),
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fn−1i (1n−1) =

0 if n− 1− i ≡ 0 (mod n− 1);

1 if n− 1− i ≡ 1 (mod n− 1);

These observations constitute the proof of claim (3.3).

We will use induction on n to prove that the neural network Ψn is maximal. As for the

induction basis, the Ueda form of Ψ1 is [f 1
1 ], where f 1

1 (x1) = x1 and the 1-dimensional

self-dual function u such that f1 = x1u is u = x1. Thus, the trajectory of 0 under Ψ1

is 0→ 1→ 0→ . . . as desired.

As for the induction step, suppose that the network Ψn−1 is maximal: the trajectory

of 1n−1 under Ψn−1 is

x1 → x2 → . . .→ x2n−1 → x1 → . . . ,

where x1 = 1n−1 and x1,x2, . . . ,x2n−1
are pairwise distinct. By Theorem 3.1, the

self-dual function unn such that fnn = xnunn satisfies unn = xnfnn ∨ fnn . Therefore,

unn = xn(x1x2 · · · xn) ∨
(
x1x2 · · · xn

)
=

{
xn if x1 = x2 = · · · = xn = 1 (3.4)

xn otherwise. (3.5)

We conclude that Ψn has the following state transitions:

x11 → x20 by (3.3) and (3.4)

x10 → x21 by (3.3), (3.4), and self-duality

xi1 → xi+11 for i = 2, 3, . . . , 2n−1 − 1 by (3.3) and (3.5)

xi0 → xi+10 for i = 2, 3, . . . , 2n−1 − 1 by (3.3) and (3.5)

x2n−1

1 → x11 by (3.3) and (3.5)

x2n−10 → x10 by (3.3), (3.5) and self-duality.

Thus, Ψn yields the following period trajectory:

x11→ x20→ x30→ · · · → x2n−10→ x10→ x21→ x31→ · · · → x2n−1

1→ x11,

(3.6)

which has a period of 2n �

3.1.2 Orlitsky’s construction

In this section we survey another proof of the existence of maximal n-dimensional

neural networks for all n. The original proof comes from an unpublished manuscript
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by Orlitsky; we follow the proof in its published form, found in [67], where the moti-

vation was related to the transient period of a neural network, which is the number

of iterations required before a state is revisited. Recall that Hopfield established cri-

teria under which recurrent neural networks were guaranteed to converge to a fixed

point [28]. In [23], Goles and Martinez showed that even under these criteria, it is

possible that the number of iterations required before reaching a fixed point could

be exponential in the network size. The presentation of Orlitsky’s contruction in [67]

emphasizes that transient periods in the general setting, where no fixed point is guar-

anteed, can also be exponential in the size of the network.

In Section 3.1.4, we will show that the network constructed here is isomorphic to

the one constructed in the previous section, and that of the next section. For this

construction, we switch over to the {−1, 1} symbol set. We will only be considering

neural networks in which

1. all thresholds are set to 0;

2. the underlying threshold functions are non-degenerate.

Let Φ : {−1, 1}n → {−1, 1}n be a neural network, where wi,j is the jth weight of

neuron i. If Φ satisfies 1 and 2 above, then its state transitions are defined by

Φt
i(x) = sgn

(
n∑
j=1

wi,jΦ
t−1
j (x)

)
,

where sgn is the sign function, defined by

sgn(z) =


1 if z > 0;

0 if z = 0;

−1 if z < 0.

Lemma 3.3:

Let Φ : {−1, 1}n → {−1, 1}n be a neural network such that all thresholds are 0. If

there exist x and s > 0 and t such that Φt(x) = −Φt+s(x), then for all k ≥ 0 we have

Φt+k(x) = −Φt+s+k(x).

Proof:

The proof is by induction on k. The case when k = 0 holds by the hypothesis of the

Lemma. Suppose the claim holds for all values up to and including k− 1, and let wi,j
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be the jth weight of the ith threshold function. Then

Φt+k−1(x) = −Φt+s+k−1(x)

implies that for i = 1, . . . , n we have

n∑
j=1

wi,jΦ
t+k−1
j (x) = −

n∑
j=1

wi,jΦ
t+s+k−1
j (x).

Therefore,

Φt+k(x) = sgn

(
n∑
j=1

wi,jΦ
t+k−1
i (x)

)
= − sgn

(
n∑
j=1

wi,jΦ
t+s+k−1
i (x)

)
= −Φt+s+k(x).

�

We will now describe Orlitsky’s neural network. For every positive integer n, we define

an n-dimensional neural network Ωn as follows. For 1 ≤ i, j ≤ n we define the weight

wn,i,j =



− 3
2j−1 1 ≤ i < j ≤ n;

j − 1− 1
2j−1 1 ≤ i = j ≤ n;

(−1)i−j−1 1 ≤ j < i ≤ n;

all thresholds are set to 0.

When n = 1, we have the weight matrix(
−1
)
,

and state transitions

+1→ −1→ +1→ · · · .

When n = 2, the weight matrix is (
−1 −3

2

1 1
2

)
,

and the state transitions are

(+1,+1)→ (−1,+1)→ (−1,−1)→ (+1,−1)→ (+1,+1)→ · · · .
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When n = 3, the weight matrix is−1 −3
2
−3

4

1 1
2
−3

4

−1 1 13
4

 ,

and the state transitions are

(+1,+1,+1)→ (−1,+1,+1)→ (−1,−1,+1)→ (+1,−1,+1)→

(−1,−1,−1)→ (+1,−1,−1)→ (+1,+1,−1)→ (−1,+1,−1)→

(+1,+1,+1)→ · · · .

When n = 4, the weight matrix is
−1 −3

2
−3

4
−3

8

1 1
2
−3

4
−3

8

−1 1 13
4
−3

8

1 −1 1 27
8

 ,

and the state transitions are

(+1,+1,+1,+1)→ (−1,+1,+1,+1)→ (−1,−1,+1,+1)→ (+1,−1,+1,+1)→

(−1,−1,−1,+1)→ (+1,−1,−1,+1)→ (+1,+1,−1,+1)→ (−1,+1,−1,+1)→

(−1,−1,−1,−1)→ (+1,−1,−1,−1)→ (+1,+1,−1,−1)→ (−1,+1,−1,−1)→

(+1,+1,+1,−1)→ (−1,+1,+1,−1)→ (−1,−1,+1,−1)→ (+1,−1,+1,−1)→

(+1,+1,+1,+1)→ · · · .

For the rest of this section, the initial seed for Ωn will be the n-dimensional vector of

ones, x = 1n, and we will write yn(t) = Ωt
n(x), so yn(t) denotes the state of the vector

of all ones under Ωn at time t. We also write yn,i(t) to denote the ith coordinate of

yn(t). Furthermore, we write

Pn,i(t) =
n∑
j=1

wn,i,jyn,j(t),

so that Pn,i(t) denotes the the potential at neuron i at time t, hence yn(t + 1) =

sgn(Pn,i(t)).

We prove the maximality of Ωn by proving the following:

37



Theorem 3.3:

For all positive integers n, the following hold:

yn(0), yn(1), . . . , yn(2n − 1) are pairwise distinct; (3.7)

and,

yn,i(2
n − 1) = (−1)n−i−1 i = 1, . . . , n; (3.8)

Furthermore, for i = 1, . . . , n we have

Pn,i(t) ≤
−1

2n−1
or Pn,i(t) ≥

3

2n−1
t = 1, . . . , 2n − 2 (3.9)

and

Pn,i(2
n − 1) =

1

2n−1
. (3.10)

Proof:

The proof is by induction on n. When n = 1 there is one weight, and it’s value is −1.

This yields the trajectory +1,−1,+1, . . .. Furthermore, we have P 1
1,1 = (−1)(−1) = 1.

We proceed by assuming that (3.7), (3.8), (3.9), and (3.10) hold for all dimensions up

to and including n, and will prove them true for n+ 1. We will do this by proving the

following two claims:

yn+1(t) = yn(t) 1 for 0 ≤ t ≤ 2n − 1; (3.11)

and

yn+1(2
n) = (−1,−1, . . . ,−1). (3.12)

We first prove (3.11) by induction on t. This claim holds for t = 0, since the seed is the

vector of ones. Suppose it holds up to and including t, for t < 2n− 1. For i = 1, . . . , n

we have

Pn+1,i(t) =
n+1∑
j=1

wn+1,i,jyn+1,j(t)

=
n∑
j=1

wn+1,i,jyn+1,j(t) + wn+1,i,n+1yn+1,n+1(t)

=
n∑
j=1

wn,i,jyn+1,j(t) + wn+1,i,n+1yn+1,n+1(t) by how the weights are defined

=
n∑
j=1

wn,i,jyn,j(t) + wn+1,i,n+1yn+1,n+1(t) by the induction hypothesis on t

= Pn,i(t)−
(

3

2n

)
· 1.
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By (3.9), we have Pn,i(t) ≥ 3/2n−1 or Pn,i(t) ≤ −1/2n−1. In the former case, we have

Pn+1,i(t) ≥
3

2n−1
− 3

2n
=

3

2n
; (3.13)

and in the latter

Pn+1,i(t) ≤ −
1

2n−1
− 3

2n
≤ − 5

2n
. (3.14)

In either case, we get

yn+1,i(t+ 1) = yn,i(t+ 1) (i = 1, . . . , n).

Similarly, for the last coordinate we have

Pn+1,n+1(t) =
n+1∑
j=1

wn+1,n+1,jyn+1,j(t)

=
n∑
j=1

(−1)n−jyn,j(t) +

(
n− 1

2n

)
· 1

≥ 2− 1

2n
by (3.7)

≥ 3

2n
. (3.15)

Therefore, yn+1,n+1(t+ 1) = 1, and (3.11) is confirmed.

Next, we prove claim (3.12).

For i = 1, . . . , n, we have

Pn+1,i(2
n − 1) =

n+1∑
j=1

wn+1,i,jyn+1,j(2
n − 1)

=
n∑
j=1

wn+1,i,jyn+1,j(2
n − 1) + wn+1,i,n+1yn+1,n+1(2

n − 1)

=
n∑
j=1

wn,i,jyn,j(2
n − 1)− 3

2n
· 1 by (3.11) and weight definitions

= Pn,i(2
n − 1)− 3

2n
· 1 by (3.11)

=
1

2n−1
− 3

2n
by the induction hypothesis and (3.10)

= − 1

2n
.
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Similarly, for the last neuron, we have

Pn+1,n+1(2
n − 1) =

n+1∑
j=1

wn+1,n+1,jyn+1,j(2
n − 1)

=
n∑
j=1

wn,n+1,jyn,j(2
n − 1) + wn+1,n+1,n+1yn+1,n+1(2

n − 1)

=
n∑
i=1

(−1)n−j(−1)n−j−1 +

(
n− 1

2n

)
= − 1

2n
.

This proves (3.12).

We now use (3.11) and (3.12) to complete the induction step on n and the proof of

the Theorem. By the induction hypothesis and (3.11), we get that

yn+1(0), yn+1(1), . . . , yn+1(2
n − 1)

are pairwise distinct and that the last coordinate of each state is +1. By (3.12), we

have yn+1(2
n) = (−1,−1, . . . ,−1) = −yn+1(0). This allows us to apply Lemma 3.3,

which yields

yn+1(t) = −yn+1(t− 2n) t = 2n, . . . , 2n+1 − 1.

Therefore, yn+1(2n), yn+1(2n+ 1), . . . , yn+1(2
n+1− 1) are pairwise distinct and the last

coordinate of each state is −1. This establishes (3.7); the first 2n states are pairwise

distinct. For the last state, (3.11) and the induction hypothesis yield

yn+1,i(2
n − 1) = yn,i(2

n − 1) = (−1)n−i−1 i = 1, . . . , n

and

yn+1,n+1(2
n − 1) = 1 = (−1)n−(n+1)−1.

Therefore, Lemma 3.3 implies

yn+1,i(2
n+1 − 1) = −yn+1,i(2

n − 1) = (−1)(n+1)−i−1 i = 1, . . . , n+ 1,

and (3.8) is established.

From (3.12) and Lemma 3.3, we conclude that (3.9) holds.

Finally, (3.10) holds when t = 1, . . . , 2n− 2 by inequalities (3.13), (3.15), (3.15); when

t = 2n, . . . , 2n+1 − 1 by those same inequalities and Lemma 3.3; and when t = 2n − 1

by (3.12). �
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Corollary 3.2:

The neural network Ωn is maximal for all n.

Proof:

This follows immediately from (3.7) and (3.8) of the Theorem. �

3.1.3 Alternative construction

We shall now present a third, new proof of the existence of maximal neural networks

given in [10]. This construction will yield a maximal neural network similar to that

of Orlitsky’s, but using the {0, 1} symbol set. Another difference is in the proof

technique; Orlitsky began by defining a weight matrix and then showed that the

resulting trajectory had a special structure. The proof below defines a trajectory with

a similar special structure and then proceeds to show that weights and thresholds exist

that realize it.

For every positive integer n, we define a mapping Φn : {0, 1}n → {0, 1}n by

Φn(x1, x2, . . . , xn) = (y1, y2, . . . , yn)

where, with m the largest subscript such that (x1, x2, . . . , xm) is an alternating vector,

(0, 1, 0, 1, . . .) or (1, 0, 1, 0, . . .),

yi =

xm when 1 ≤ i ≤ m,

xi when m < i ≤ n.
(3.16)

For instance,

Φ4(0, 0, 0, 0) = (1, 0, 0, 0), Φ4(0, 0, 0, 1) = (1, 0, 0, 1),

Φ4(0, 0, 1, 0) = (1, 0, 1, 0), Φ4(0, 0, 1, 1) = (1, 0, 1, 1),

Φ4(0, 1, 0, 0) = (1, 1, 1, 0), Φ4(0, 1, 0, 1) = (0, 0, 0, 0),

Φ4(0, 1, 1, 0) = (0, 0, 1, 0), Φ4(0, 1, 1, 1) = (0, 0, 1, 1),

Φ4(1, 0, 0, 0) = (1, 1, 0, 0), Φ4(1, 0, 0, 1) = (1, 1, 0, 1),

Φ4(1, 0, 1, 0) = (1, 1, 1, 1), Φ4(1, 0, 1, 1) = (0, 0, 0, 1),

Φ4(1, 1, 0, 0) = (0, 1, 0, 0), Φ4(1, 1, 0, 1) = (0, 1, 0, 1),

Φ4(1, 1, 1, 0) = (0, 1, 1, 0), Φ4(1, 1, 1, 1) = (0, 1, 1, 1).

Note that the definition of Φn implies that Φn is self-dual and that

Φ1(0) = 1 (3.17)
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and that, when n ≥ 2,

Φn(x1, x2, . . . , xn−1, 0) =


(1, 1, . . . , 1, 1) if (x1, x2, . . . , xn) is

the alternating vector (. . . , 1, 0, 1, 0),

(Φn−1(x1, x2, . . . , xn−1), 0) otherwise.

(3.18)

Lemma 3.4:

For every positive integer n there are threshold functions

fn,i : {0, 1}n → {0, 1} (i = 1, 2, . . . , n)

such that

Φn(x) = (fn,1(x), fn,2(x), . . . , fn,n(x)) for all x in {0, 1}n. (3.19)

Proof:

For every positive integer n and for all i = 1, 2, . . . , n, we will construct weights wn,i, j

(j = 1, 2, . . . , n) and threshold values θn,i. Then we will define

fn,i(x1, . . . , xn) =

1 if
∑n

j=1wn,i, jxj ≥ θn,i

0 otherwise

and prove that (3.19) is satisfied.

Our construction of wn,i, j and θn,i is recursive. To begin, we set

w1,1,1 = −1, θ1,1 = 0;

for all integers n greater than 1, we set

wn,n, j =


1 if j 6≡ n mod 2,

−1 if j ≡ n mod 2 and j < n,

n− 2 if j = n,

θn,n = bn/2c,

wn,n−1, j =


wn−1,n−1, j if j ≤ n− 2,

wn−1,n−1, j + 1 if j = n− 1,

−1 if j = n,

θn,n−1 = θn−1,n−1,
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and, when i = 1, 2, . . . , n− 2,

wn,i, j =


wn−1,i, j + wn−2,i, j if j ≤ n− 2,

wn−1,i, j if j = n− 1,

−1 if j = n,

θn,i = θn−1,i + θn−2,i − 1.

Since the sequence Φ1,Φ2,Φ3, . . . is completely determined by its self-duality and prop-

erties (3.17), (3.18), proving that (3.19) is satisfied reduces to proving that

(i) fn,i(x) = fn,i(x) for all i = 1, . . . n and all x in {0, 1}n,

observing that f1,1(0) = 1, and proving that

(ii) if x in {0, 1}n is the alternating vector (. . . , 1, 0, 1, 0),

then fn,i(x) = 1 for all i = 1, . . . n,

(iii) if (x1, . . . , xn−1, 0) in {0, 1}n is not the alternating vector (. . . , 1, 0, 1, 0),

then fn,n(x1, . . . , xn−1, 0) = 0,

(iv) if (x1, . . . , xn−1, 0) in {0, 1}n is not the alternating vector (. . . , 1, 0, 1, 0),

then fn,i(x1, . . . , xn−1, 0) = fn−1,i(x1, . . . , xn−1) for all i = 1, . . . n− 1.

Straightforward, if a little tedious, induction on n shows that∑
j 6≡n mod 2

wn,i, j = θn,i for all i = 1, . . . n, (3.20)∑
j≡n mod 2

wn,i, j = θn,i − 1 for all i = 1, . . . n. (3.21)

Summing up each pair of these equations, we conclude that

∑n
j=1wn,i, j = 2θn,i − 1 for all i = 1, . . . n,

which is easily seen to imply (i); equations (3.20) alone imply directly (ii); proposition

(iii) follows from the definitions of wn,n, j and θn,n.

In proving (iv), we will treat i = n− 1 separately from i ≤ n− 2.

To prove that fn,n−1(x1, x2, . . . , xn−1, 0) = fn−1,n−1(x1, x2 . . . , xn−1) for all (x1, . . . , xn−1)

in {0, 1}n−1 other than the alternating vector (. . . , 0, 1, 0, 1), recall that

∑n−1
j=1 wn,n−1, jxj =

∑n−1
j=1 wn−1,n−1, jxj + xn−1 and θn,n−1 = θn−1,n−1, .
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It follows that

fn,n−1(x1, . . . , xn−1, 0) 6= fn−1,n−1(x1, . . . , xn−1)

if and only if xn−1 = 1 and

n−1∑
j=1

wn−1,n−1, jxj + 1 = θn−1,n−1.

Since wn−1,n−1, n−1 = n− 3 and θn−1,n−1 = b(n− 1)/2c, this means

n−2∑
j=1

wn−1,n−1, jxj = −d(n− 3)/2e;

since

wn−1,n−1, j =

1 if j 6≡ n− 1 mod 2,

−1 if j ≡ n− 1 mod 2 and j < n− 1,

this means further that (x1, . . . , xn−1) is the alternating vector (. . . , 0, 1, 0, 1).

To prove that we have fn,i(x1, . . . , xn−1, 0) = fn−1,i(x1, . . . , xn−1) for all i = 1, . . . , n−2

and for all (x1, . . . , xn−1) in {0, 1}n−1 other than the alternating vector (. . . , 0, 1, 0, 1),

we shall use induction on n. In the induction step, we distinguish between two cases.

Case 1: (x1, . . . , xn−1) is the alternating vector (. . . , 1, 0, 1, 0).

In this case, we do not use the induction hypothesis. Equations (3.21) show that

∑n−1
j=1wn,i, jxj + wn,i, n = θn,i − 1 for all i = 1, . . . n;

since wn,i, n = −1 for all i = 1, . . . n− 1, it follows that

∑n−1
j=1wn,i, jxj = θn,i for all i = 1, . . . n− 1,

and so fn,i(x1, . . . , xn−1, 0) = 1 for all i = 1, . . . , n − 1. By (ii) with n − 1 in place of

n, we have fn−1,i(x1, . . . , xn−1) = 1 for all i = 1, . . . , n− 1.

Case 2: (x1, . . . , xn−1) is not the alternating vector (. . . , 1, 0, 1, 0).

In this case, consider an arbitrary (x1, . . . , xn−1, 0) in {0, 1}n other than the alternating

vector (. . . , 1, 0, 1, 0). The induction hypothesis guarantees (alone if xn−1 = 0 and

combined with (i) if xn−1 = 1) that fn−1,i(x1, . . . , xn−1) = fn−2,i(x1, . . . , xn−2) for all

i = 1, . . . n− 2.
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If i ≤ n− 2 and fn−1,i(x1, . . . , xn−1) = 1, then fn−2,i(x1, . . . , xn−2) = 1, and so

∑n−1
j=1 wn,i, jxj =

∑n−1
j=1 wn−1,i, jxj +

∑n−2
j=1 wn−2,i, jxj ≥ θn−1,i + θn−2,i > θn,i,

which implies fn,i(x1, . . . , xn−1, 0) = 1.

If i ≤ n− 2 and fn−1,i(x1, . . . , xn−1) = 0, then fn−2,i(x1, . . . , xn−2) = 0, and so

∑n−1
j=1 wn,i, jxj =

∑n−1
j=1 wn−1,i, jxj +

∑n−2
j=1 wn−2,i, jxj ≤ (θn−1,i− 1) + (θn−2,i− 1) < θn,i,

which implies fn,i(x1, . . . , xn−1, 0) = 0. �

The first 4 networks are shown below:

n = 1 :

n = 2 :

f2,1 f2,2

01

00 10

n = 3 :

f3,1 f3,2 f3,3

010

001

000 100
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n = 4 :

f4,1 f4,2

f4,3 f4,4

0100

0010

0000 1000

0101

0011

0001 1001

Theorem 3.4:

The neural network Φn is maximal.

Proof:

Straightforward induction on n, using self-duality and properties (3.17) and (3.18),

proves a finer statement: The 2n vectors Φt
n(0, 0, . . . , 0) with t = 0, 1, . . . , 2n − 1

are pairwise distinct and Φt
n(0, 0, . . . , 0) with t = 2n − 1 is the alternating vector

(. . . , 0, 1, 0, 1). �

Implicit in our proof of Theorem 3.4 is a simple way of transforming each trajectory

(0, 0, . . . , 0)→ Φn(0, 0, . . . , 0)→ · · · → ΦN−1
n (0, 0, . . . , 0) (3.22)

with N = 2n into the trajectory

(0, 0, . . . , 0)→ Φn+1(0, 0, . . . , 0)→ · · · → Φ2N−1
n+1 (0, 0, . . . , 0) : (3.23)

First append 0 as the last bit to each point of the trajectory (3.22) and let T denote the

resulting sequence of 2n vectors (x1, . . . , xn, 0) in {0, 1}n+1; then flip every bit (0↔ 1)

of every vector in T and let T denote the resulting sequence of 2n vectors (x1, . . . , xn, 1)

in {0, 1}n+1; the trajectory (3.23) is the concatenation TT . For instance, if n = 3,

then (3.22) is

(0, 0, 0)→ (1, 0, 0)→ (1, 1, 0)→ (0, 1, 0)→

(1, 1, 1)→ (0, 1, 1)→ (0, 0, 1)→ (1, 0, 1),
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T is

(0, 0, 0, 0)→ (1, 0, 0, 0)→ (1, 1, 0, 0)→ (0, 1, 0, 0)→

(1, 1, 1, 0)→ (0, 1, 1, 0)→ (0, 0, 1, 0)→ (1, 0, 1, 0),

T is

(1, 1, 1, 1)→ (0, 1, 1, 1)→ (0, 0, 1, 1)→ (1, 0, 1, 1)→

(0, 0, 0, 1)→ (1, 0, 0, 1)→ (1, 1, 0, 1)→ (0, 1, 0, 1),

and (3.23) is

(0, 0, 0, 0)→ (1, 0, 0, 0)→ (1, 1, 0, 0)→ (0, 1, 0, 0)→

(1, 1, 1, 0)→ (0, 1, 1, 0)→ (0, 0, 1, 0)→ (1, 0, 1, 0)→

(1, 1, 1, 1)→ (0, 1, 1, 1)→ (0, 0, 1, 1)→ (1, 0, 1, 1)→

(0, 0, 0, 1)→ (1, 0, 0, 1)→ (1, 1, 0, 1)→ (0, 1, 0, 1).

Thus, if the n-dimensional network yields

y1 → y2 → · · · → y2n−1

,

then the (n+ 1)-dimensional network yields

y10→ y20→ · · · → y2n−1

0→ y11→ y21→ · · · → y2n−11. (3.24)

It may be interesting to note that Φn can be specified in yet another way. Every one-to-

one mapping r : {0, 1}n → {0, 1, . . . 2n− 1} generates a mapping Φ : {0, 1}n → {0, 1}n

through the formula

Φ(x) = r−1(r(x) + 1 mod 2n).

We have, for s = r−1(0) and for all t = 0, 1, . . . 2n − 1,

x = Φt(s)⇔ t = r(x)

(this can be checked by straightforward induction on t); it follows that Φ has period

2n. Our Φn is generated by the mapping rn : {0, 1}n → {0, 1, . . . 2n − 1} defined by

rn(x1, x2, . . . xn) =
∑n

j=1 cj2
j−1 with

cj =

|xj − xj+1| when 1 ≤ j < n,

xn when j = n.
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For instance,

r4(0, 0, 0, 0) = 0, r4(0, 0, 0, 1) = 12, r4(0, 0, 1, 0) = 6, r4(0, 0, 1, 1) = 10,

r4(0, 1, 0, 0) = 3, r4(0, 1, 0, 1) = 15, r4(0, 1, 1, 0) = 5, r4(0, 1, 1, 1) = 9,

r4(1, 0, 0, 0) = 1, r4(1, 0, 0, 1) = 13, r4(1, 0, 1, 0) = 7, r4(1, 0, 1, 1) = 11,

r4(1, 1, 0, 0) = 2, r4(1, 1, 0, 1) = 14, r4(1, 1, 1, 0) = 4, r4(1, 1, 1, 1) = 8

This mapping rn is one-to-one for every n: from the integer rn(x1, x2, . . . xn), we can

recover its binary encoding (c1, c2, . . . cn), from which we can recover first xn, then

xn−1, and so on until x1.

To see that rn(Φn(x)) = rn(x) + 1 mod 2n, observe that (i) if x is the alternating

vector (. . . , 0, 1, 0, 1), then rn(x) = 2n − 1 and (ii) for all other vectors (x1, x2, . . . , xn)

in {0, 1}n, the largest subscript m such that (x1, x2, . . . , xm) is an alternating vector

equals the smallest subscript m such that cm = 0, in which case rn(x1, x2, . . . xn)+1 =∑n
j=1 dj2

j−1 with

dj =


0 when 1 ≤ j < m,

1 when j = m,

cj when m < j ≤ n

and, with (y1, . . . yn) defined by (3.16), we have rn(y1, . . . yn) =
∑n

j=1 dj2
j−1.

Finally, we point out that even though the construction of weights and thresholds

given here is recursive, the initial definition of the mapping Φn given in (3.16) provides

a simple iterative method for calculating the successor of a state.

3.1.4 Maximal neural network isomorphisms

The three maximal neural networks described in the previous sections were all found in-

dependently of each other, and have not been studied together in a single work. In this

section, we show that these three maximal neural are all isomorphic. We begin by defin-

ing isomorphism for maximal neural networks by considering mappings that permute

coordinates and flip bits. A permutation is a one-to-one function π : {1, 2, . . . , n} →
{1, 2, . . . , n}, but we will abuse this notation by also allowing π : {0, 1}n → {0, 1}n to

permute bit strings by writing π(x1, x2, . . . , xn) =
(
xπ(1), xπ(2), . . . , xπ(n)

)
.

Definition 3.5:

Two maximal n-dimensional neural networks Φ : {0, 1}n → {0, 1}n and Ψ :

{0, 1}n → {0, 1}n are isomorphic if there exist
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1. a time shift value s;

2. a permutation π : {0, 1}n → {0, 1}n;

3. a bit flipping index set S ⊆ {1, 2, . . . , n} and a function fS : {0, 1}n → {0, 1}n

of the form

bit i of fS(x1, . . . , xn) is

xi if i ∈ S;

xi if i /∈ S,

such that for all non-negative integers t and some initial seed x we have

Φt(x) = fS(π(Ψt+s(x))).

Theorem 3.5:

For every positive integer n, the maximal neural networks Φn and Ψn (described in

Sections 3.1.1 and 3.1.3, respectively) are isomorphic.

Proof:

We produce an isomorphism using the identity permutation, a time shift of 1, and bit

flipping set

Sn =


{1, 3, 5, 7, . . . , n− 1} if n is odd;

{2, 4, 6, . . . , n} if n is even.

We proceed by induction on n, using an initial seed of 0n for each n. Let Φt
n,i be the

ith bit of 0n under Φn at time t, and let Ψt
n,i be the ith bit of 0n under Ψn at time

t. Note that the seed 0n is implied in this notation. We will prove that for all t and

i = 1, 2, . . . , n we have

Φt
n,i =


Ψt+1
n,i if n− i is odd;

Ψt+1
n,i if n− i is even.

Suppose n is even.

If 0 ≤ t < 2n−1 then we consider two cases according to the parity of i:

If i is odd then

Φt
n,i = Φt

n−1,i = Ψt+1
n−1,i = Ψt+1

n,i .
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The first and third equalities hold by how the trajectories (3.6) and (3.24) (on pages

34 and 47, respectively) are structured; the middle equality holds by the induction

hypothesis.

Similarly, if i is even and i 6= n then

Φt
n,i = Φt

n−1,i = Ψt+1
n−1,i = Ψt+1

n,i .

If 2n−1 ≤ t ≤ 2n then our two cases are:

If i is odd then

Φt
n,i = Φt−2n−1

n,i = Φt−2n−1

n−1,i = Ψt−2n−1+1
n−1,i = Ψt−2n−1+1

n,i = Ψt+1
n,i .

If i is even and i 6= n then

Φt
n,i = Φt−2n−1

n,i = Φt−2n−1

n−1,i = Ψt−2n−1+1
n−1,i = Ψt−2n−1+1

n,i = Ψt+1
n,i .

Once again, the middle equalities hold by induction, the rest hold by the structures of

the trajectories (3.6) and (3.24).

Finally, trajectories (3.6) and (3.24) show that if i = n then

Φt
n,n = Ψt+1

n,n .

This completes the proof when n is even. The case when n is odd is essentially the

same. �

Although we have only defined isomorphism of maximal neural networks over the {0, 1}
symbol set, it is easy to see that Ωn, defined in Section 3.1.2, and Φn are isomorphic.

We can see this by replacing 1 with −1, and 0 with 1 in the trajectory given in (3.24);

we get the same trajectory given by 3.11 and 3.12. Thus, the maximal neural networks

Ψn, Ωn, and Φn are all isomorphic.

In light of this result, it is natural to ask if all n-dimensional maximal neural networks

are isomorphic. We will show that this is not the case. In order to do so, we will first

show how Hamming distances can be used for certifying non-isomorphism between

pairs of maximal neural networks.

Definition 3.6:

Let Φ be a neural network and let ht(Φ, x) denote the Hamming distance between
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Φt(x) and Φt−1(x), for t = 1, 2, . . .. The Hamming sequence of a neural network Φ

with seed x is

h1(Φ,x), h2(Φ,x), . . . .

Lemma 3.5:

Let Φ and Ψ be isomorphic maximal neural networks. Then there exists a time shift

value δ such that the Hamming sequences

h1(Φ,x), h2(Φ,x), h3(Φ,x), . . . (3.25)

and

hδ(Ψ,x), hδ+1(Ψ,x), hδ+2(Ψ,x), . . . (3.26)

are identical.

Proof:

Let Φ and Ψ be isomorphic maximal neural networks, with isomorphism given by s, π,

S, as in Definition 3.5. For all t, the Hamming distance between fS(π(Ψt+s(x))) and

fS(π(Ψt+s−1(x))) is equal to the Hamming distance between Ψt+s(x) and Ψt+s−1(x).

Therefore, setting δ = s we get that (3.25) and (3.26) are the same. �

Example 3.3:

The neural network with weight matrix

−1 1 −1

1 1 −1

1 1 1


and threshold vector 0

1

2


is maximal; it yields

000→ 100→ 010→ 110→ 111→ 011→ 101→ 001→ 000→ · · · .
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Another 3-dimensional maximal neural network has weight matrix−1 −1 1

1 −1 1

−1 1 1


and threshold vector 0

1

1

 ;

it yields

000→ 100→ 010→ 001→ 111→ 011→ 101→ 110→ 000→ · · · .

The Hamming sequence of the first trajectory is 1, 2, 1, 1, 1, 2, 1, 1, . . . and that of the

second is 1, 2, 2, 2, 1, 2, 2, 2, . . .. Thus, these networks are not isomorphic by Lemma 3.5.�

3.1.5 Properties of maximal period networks

Now that we have affirmed the existence of maximal period neural networks, in this

section we give some properties that all such networks must exhibit. In particular, the

threshold functions in the maximal neural networks that we have constructed were all

self-dual. The following shows that this is a necessary condition for a neural network

to be maximal.

Lemma 3.6:

Let Φ = (f1, f2, . . . , fn) be a neural network with maximal period. Then the threshold

functions f1, f2, . . . , fn are self-dual.

Proof:

Fix j in {1, 2, . . . , n}. Suppose that threshold function fj has weights w1, w2, . . . , wn

and threshold θ, and suppose (x∗1, . . . , x
∗
n) is a point in {0, 1}n such that

fj(x
∗
1, x
∗
2, . . . , x

∗
n) = fj(x∗1, x

∗
2, . . . , x

∗
n) = 1.

Then we have
n∑
i=1

wi ≥ 2θ.

Therefore, for every (x1, x2, . . . , xn) in {0, 1}n we have

fj(x1, x2, . . . , xn) = 1
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or

fj(x1, x2, . . . , xn) = 1,

or both. Thus, we have at least 2n−1 + 1 points in {0, 1}n for which fj fires, but in

order to traverse the entire space {0, 1}n, each threshold function fj must have 2n−1

inputs for which it is 0 and 2n−1 inputs for which it is 1.

Now suppose that

fj(x
∗
1, x
∗
2, . . . , x

∗
n) = fj(x∗1, x

∗
2, . . . , x

∗
n) = 0.

Then
n∑
i=1

wi < 2θ.

Therefore, for every (x1, x2, . . . , xn) in {0, 1}n we must have either

fj(x1, x2, . . . , xn) = 0

or

fj(x1, x2, . . . , xn) = 0.

We now have 2n−1 + 1 non-firing vertices, which is impossible for a maximal period

sequence. �

Corollary 3.3:

Let Φ = (f1, f2, . . . , fn) be a neural network with maximal period and let y(t) be the

state of the network after t steps, so that y(t) = Φt(0, 0, . . . , 0). Then for every non-

negative integer t we have

y(t)→ y(t+ 1).

Proof:

Fix i in {1, 2, . . . , n}. Let yi(t) denote the ith bit of y(t). Then

yi(t+ 1) = fi (y1(t), y2(t), . . . , yn(t)) ,

and thus by Lemma 3.6 we have

yi(t+ 1) = fi

(
y1(t), y2(t), . . . , yn(t)

)
so that

yi(t+ 1) = fi

(
y1(t), y2(t), . . . , yn(t)

)
.

This means the same thing as

yi(t)→ yi(t+ 1)
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and the proof is complete since

y(t) = (y1(t), y2(t), . . . , yn(t)). �

Corollary 3.4:

Let Φ = (f1, f2, . . . , fn) be a neural network with maximal period and let y(t) be the

state of the network after t steps. Then for every non-negative integer t we have

y(t+ 2n−1) = y(t).

Proof:

The proof is by induction on t. When t = 0 we argue as follows. Consider the segment

y(2n−1)→ y(2n−1 + 1)→ · · · → y(2n − 3)→ y(2n − 2)→ y(2n − 1)→ y(0).

By Corollary 3.3 we know that the following segment is also part of the trajectory:

y(2n−1)→ y(2n−1 + 1)→ · · · → y(2n − 3)→ y(2n − 2)→ y(2n − 1)→ y(0).

Both of these segments contain 2n−1 + 1 distinct elements since we are assuming that

the network is maximal. Therefore, by the pigeonhole principle there exist an i and j

in {0, 1, . . . , 2n−1} such that

y(2n−1 + i) = y(2n−1 + j). (3.27)

We cannot have i = j since an element cannot equal its complement. Furthermore,

we may assume i < j by taking complements of equation (3.27) if necessary. Equa-

tion (3.27) also yields

y(2n−1 + j)→ y(2n−1 + i+ 1),

and by Corollary 3.3 we get

y(2n−1 + j)→ y(2n−1 + i+ 1).

We now have a cycle:

y(2n−1 + j)→ y(2n−1 + i+ 1)→ y(2n−1 + i+ 2)→ · · · → y(2n−1 + j)

y(2n−1 + j)→ y(2n−1 + i+ 1)→ y(2n−1 + i+ 2)→ · · · → y(2n−1 + j).

Since the period is maximal we must have j = 2n−1 and i = 0. By equation (3.27) we
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get

y(2n−1) = y(2n−1 + 2n−1) = y(2n) = y(0).

This completes the proof for the base case. Suppose the claim holds up to and including

time t− 1. By the induction hypothesis we have

y(2n−1 + t− 1) = y(t− 1).

By definition,

y(2n−1 + t− 1)→ y(2n−1 + t).

By Corollary 3.3 we have

y(t− 1)→ y(t).

Therefore,

y(2n−1 + t) = y(t). �

Corollaries 3.3 and 3.4 show that the trajectories of maximal neural networks contain

a lot of structure. This does not bode well for our goal of finding random-like neural

network trajectories. In the next section we will see one more ‘bad’ property of maximal

neural networks: there is always some relatively high correlation between some bits.

3.1.6 Cross-correlation

We will end this section on maximal neural networks by observing that the cross-

correlation between some neurons in a maximal neural network is high. The idea of

using cross-correlation as a device for showing that maximal neural networks are bad

pseudorandom generators was proposed by Yori Zwols, and much of the work in this

section was in collaboration with him. To make our proofs more concise, we switch to

using {−1, 1} as our symbol set. The main results of this section are Theorem 3.6 and

Theorem 3.7.

Let f : {−1, 1}n → {−1, 1} be a boolean function and consider the edges of the n-

dimensional hypercube. These edges are classified into n parallel classes: an edge

belongs to the j-th parallel class if its two endpoints differ in the j-th coordinate, and

we call such an edge a j-edge. We call the edges of the hypercube f -increasing or

f -decreasing or f -constant: an edge with endpoints u−, u+ such that

u− = (a1, . . . , aj−1,−1, aj+1, . . . an)

u+ = (a1, . . . , aj−1,+1, aj+1, . . . an)

is called f -increasing if f(u−) < f(u+), it is called f -decreasing if f(u−) > f(u+),
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and it is called f -constant if f(u−) = f(u+). When a single function f is under

consideration, we will drop the f− prefix and simply refer to the edges as increasing ,

decreasing , or constant .

Lemma 3.7:

Let f be an n-dimensional threshold function with weights w1, w2, . . . , wn. Then for

j = 1, 2 . . . , n we have

wj = 0 =⇒ all edges in the j-th parallel class are constant; (3.28)

wj > 0 =⇒ all edges in the j-th parallel class are non-decreasing; (3.29)

wj < 0 =⇒ all edges in the j-th parallel class are non-increasing. (3.30)

Proof:

Let g(x) =
∑n

i=1wixi and let u = (u−, u+) be a j-edge. Then g(u+) = g(u−) + 2wj,

which proves claim (3.28). If wj > 0 then g(u+) > g(u−), which implies f(u+) ≥ f(u−).

This proves claim (3.29). If wj < 0 then g(u−) < g(u+), which implies f(u−) ≤ f(u+).

This proves claim (3.30). �

For our next Lemma, we use the following notation:

Definition 3.7:

For a fixed n and 1 ≤ k ≤ n, we define rk : {−1, 1}n → {−1, 1}n as rk(x) =

(x1, x2, . . . , xk−1, xk, xk+1, . . . , xn).

Lemma 3.8:

Let f be an n-dimensional threshold function with weights w1, w2, . . . , wn and threshold

θ. If |wj| ≤ |wk| and (u−, u+) is a non-constant j-edge, then

f
(
rk(u

−)
)

= f
(
rk(u

+)
)
.

Proof:

Without loss of generality, we may assume that the j-th parallel class is increasing, and

that (u−, u+) is an increasing j-edge. As in the previous proof, let g(x) =
∑n

i=1wixi.

For i = 1, 2, . . . , n and i 6= j, let xi = ui. We have two cases to consider.

If sgn(wk) = sgn(xk) then

g(rk(u
+)) = wj − wkxk +

∑
i6=j,k

wixi = 2wj − 2wkxk +
∑
i6=j,k

wkxk

= 2wj − 2wkxk + g(u−) < 2(wj − wkxk) + θ < θ.
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Therefore, −1 = f(rk(u
+)) = f(rk(u

−)) since (u−, u+) is increasing in the j-th parallel

class.

If sgn(wk) 6= sgn(xk) then

g(rk(u
−)) = −wj − wkxk +

∑
i6=j,k

wixi = −2(wj + wkxk) + g(u+) ≥ θ.

Therefore, 1 = f(rk(u
−)) = f(rk(u

+)) since (u−, u+) is increasing in the j-th parallel

class. �

Turning to the case of self-dual threshold functions, we observe that we may assume

a zero threshold:

Lemma 3.9:

Let f be an n-dimensional self-dual threshold function with weights w1, w2, . . . , wn and

threshold θ, and let g be the n-dimensional threshold function with weights w1, w2, . . . , wn

and threshold 0. Then g(x) = f(x) for all x in {−1, 1}n.

Proof:

Since f is self-dual, we have
∑n

i=1wixi 6= θ for all x in {−1, 1}n. Furthermore,

n∑
i=1

wixi > θ =⇒ −
n∑
i=1

wixi < θ by self-duality

=⇒
n∑
i=1

wixi > −θ

=⇒ 2
n∑
i=1

wixi > 0

=⇒
n∑
i=1

wixi > 0.

Similarly,

n∑
i=1

wixi < θ =⇒ −
n∑
i=1

wixi > θ by self-duality

=⇒
n∑
i=1

wixi < −θ

=⇒ 2
n∑
i=1

wixi < 0

=⇒
n∑
i=1

wixi < 0. �
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A common notion in the analysis of boolean functions [61] is that of influence:

Definition 3.8:

For a boolean function f : {−1, 1}n → {−1, 1}, the influence of the ith coordinate,

Ii(f), is defined as the number of points x in {−1, 1}n such that f(x) 6= f(ri(x)).

An asymptotic version of the following Lemma has been proved using discrete Fourier

analysis in [24]. Here we prove the result from first principles.

Lemma 3.10:

If f is an n-dimensional self-dual threshold function, then there exists a coordinate i

such that

Ii(f) ≥
(
n− 1

bn−1
2
c

)
.

Proof:

Without loss of generality, suppose maxi{|wi|} = |wn| and wn > 0. By Lemma 3.8,

every non-constant j-edge yields a non-constant k-edge. Therefore, for all j and k

in {1, 2, . . . , n}, if |wj| ≤ |wk| then Ij(f) ≤ Ik(f). Thus, the coordinate with largest

influence is coordinate n. Furthermore, In(f) is equal to the number of x in {−1, 1}n−1

such that
n−1∑
i=1

wixi + wn > 0

and
n−1∑
i=1

wixi − wn < 0,

which is the number of x in {−1, 1}n−1 such that

−wn <
n−1∑
i=1

wixi < wn.

Another way to count this is to set vi = wi/wn for i = 1, . . . , n− 1, and to count the

number of x in {−1, 1}n−1 such that

−1 <
n−1∑
i=1

vixi < 1,

where |vi| ≤ 1. An unpublished result by Sárközy and Szemerédi [5] says that the

number of such x is at least
(
n−1
bn−1

2
c

)
. �
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Definition 3.9:

Let x(1),x(2), . . . ,x(p),x(1), . . . be a sequence of n-dimensional bit vectors with

period p. We define the cross-correlation (with time lag 1) between xi and xj to be

C(xi, xj) = 1
p

∑p
t=1 xj(t)xi(t+ 1).

Lemma 3.11:

Let f1, . . . , fn be an n-dimensioanl maximal neural network producing the trajectory

x(1),x(2), . . . ,x(2n),x(1), . . .. For every pair of integers i and j in {1, . . . , n} we have

C(xi, xj) =
±Ij(fi)

2n
.

Proof:

By definition,

C(xi, xj) =
1

2n

2n∑
t=1

xj(t)xi(t+ 1).

Since the network cycles through all 2n states, the right hand side can be written as

1

2n

∑
x∈{−1,1}n

xjfi(x).

Instead of summing over all x in {−1, 1}n, we can sum over all j-edges u, so that

C(xi, xj) =
1

2n

∑
u

[
−fi(u−) + fi(u

+)
]
.

The quantity −fi(u−) + fi(u
+) is non-zero if and only if u is a j-edge that is not f -

constant; it is 2 if the j-th parallel class is f -increasing, and −2 if it is f -decreasing.�

Theorem 3.6:

The output x(1),x(2), . . . of a maximal neural network always contains two coordinates

i and j such that

|C(xi, xj)| ≥
(
n− 1

bn−1
2
c

)
/2n. (3.31)

Proof:

This follows from Lemma 3.10 and Lemma 3.11. �
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In order to get a sense of the implications of this result, we consider the ‘truly’ random

case:

Theorem 3.7:

Let X = (X1, . . . , X2n) and Y = (Y1, . . . , Y2n), where each Xi and Yi are independent

random variables taking on −1 and +1, each with probability 1/2. Then

P

∣∣∣C(X, Y )
∣∣∣ ≥

(
n− 1

bn−1
2
c

)
2n

 ≤ 1

22n−n2−n .

Proof:

We wish to evaluate (1/2n)|
∑2n

i=1XiYi|. We do this by writing Zi = XiYi. Now Zi is

also random variable taking on −1 and +1, each with probability 1/2, and |
∑2n

i=1 Zi|
can be seen as the distance from the origin after 2n steps of a random walk starting at

0. Letting m = 2n−1, the expected value of this distance can be computed as follows:

E

∣∣∣∣∣
2m∑
i=1

Zi

∣∣∣∣∣ = 2m

(
2m
0

)
22m

+ (2m− 2)

(
2m
1

)
22m

+ · · ·+ 0

(
2m
m

)
22m

+ · · ·+ (2m− 2)

(
2m

2m−1

)
22m

+ 2m

(
2m
2m

)
22m

=
2

22m

2m∑
k=0

|m− k|
(

2m

k

)
=

2

22m
2

m∑
k=0

(m− k)

(
2m

k

)

=
2

22m

(
2m

m∑
k=0

(
2m

k

)
− 2

m∑
k=0

k

(
2m

k

))

=
2

22m

(
m

(
22m +

(
2m

m

))
− 2 m 22m−1

)
=

2

22m
m

(
2m

m

)
=

2n

22n

(
2n

2n−1

)
.

Therefore,

E|C(X, Y )| = 1

2n
E

∣∣∣∣∣
2m∑
i=1

Zi

∣∣∣∣∣ =

(
2n

2n−1

)
22n

≤ 2n!

22n
≤ (2n)n

22n
=

2n
2

22n
.
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Therefore, by Markov’s inequality we get

P

∣∣∣C(X, Y )
∣∣∣ ≥

(
n− 1

bn−1
2
c

)
2n

 ≤ 2nE|C(X, Y )|(
n− 1

bn−1
2
c

) ≤ 2nE|C(X, Y )| ≤ 1

22n−n2−n . �

Even with this loose upper bound, we see that the probability of getting such a large

cross-correlation is extremely rare in a random case.

3.2 Long period networks

The properties given in Sections 3.1.5 and 3.1.6 show that neural networks with max-

imal period may contain too much structure to be “random-like”. For this reason, we

will now describe some neural networks that have very long, but not maximal, periods.

3.2.1 Shift register networks

In this section we will borrow from the theory of shift register sequences, and prove

a new result stating that they can be implemented on a neural network. Shift regis-

ter sequences are sometimes referred to as linear feedback shift register sequences or

Tausworthe sequences [71]. Suffice it here to give a brief outline of the theory. In

Appendix B the theory is presented in greater detail.

The idea of implementing shift registers sequences via a neural network was inspired

by Pierre L’Ecuyer. In a private communication, he suggested that neural networks

may be capable of implementing F2-generators [40], a class of generators that does

indeed include the shift register generators described next.

Definition 3.10:

Let n be a positive integer and let a1, a2, . . . , an−1 be in {0, 1}. A sequence

x0, x1, x2, . . . satisfying

xt+n = an−1xt+n−1 + an−2xt+n−2 + · · ·+ a1xt−1 + xt (mod 2) (3.32)

is an n-th order linear recurrence sequence (mod 2). The values x0, x1, . . . , xn−1

are the seeds of the sequence.
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Example 3.4:

The linear recurrence xt+3 = xt+2 + xt (mod 2) with seed x0 = x1 = x2 = 1 yields the

sequence 111010011101001110100 . . ., which has period 7. �

For every n-th order linear recurrence sequence obeying

xt+n = an−1xt+n−1 + an−2xt+n−2 + · · ·+ a1xt−1 + xt (mod 2),

we associate an n× n matrix of bits defined by

A =



0 1 0 · · · 0 0 0

0 0 1 0 · · · 0 0

0 0 0 1 0 · · · 0
...

0 0 0 · · · 0 1 0

0 0 0 0 · · · 0 1

1 a1 a2 · · · an−3 an−2 an−1


.

We shall refer to A as the recurrence matrix of the associated linear recurrence se-

quence. Note that the state vectors x0,x1,x2, . . . defined by

xt =


xt

xt+1

. . .

xt+n−1

 ,

obey

xt+1 = Axt,

for t = 0, 1, . . ..

Example 3.5:

The recurrence matrix of the linear recurrence xt+3 = xt+2 + xt (mod 2) from Exam-

ple 3.4 is

A =

0 1 0

0 0 1

1 0 1

 .
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Starting with state vector x0 = 111, the state vector trajectory is

1 1 1

1 1 0

1 0 1

0 1 0

1 0 0

0 0 1

0 1 1

1 1 1

1 1 0

1 0 1

0 1 0

1 0 0

0 0 1

0 1 1
... . �

The previous example can be used to illustrate where the term shift register sequence

comes from. Imagine an n-bit register filled with the initial seed x0, x1, . . . , xn−1. To

get the next state, the contents of the register are shifted left; the previous first bit is

lost; the new last bit is the xor of the bits defined by the recurrence relation (the first

and last bit in the example above).

The characteristic polynomial of a square matrix M is defined by χM(z) = det(zI−M).

For a recurrence matrix

A =



0 1 0 · · · 0 0 0

0 0 1 0 · · · 0 0

0 0 0 1 0 · · · 0
...

0 0 0 · · · 0 1 0

0 0 0 0 · · · 0 1

1 a1 a2 · · · an−3 an−2 an−1


,

its characteristic polynomial χA is given by χA(z) = zn−an−1zn−1−an−2zn−2−· · ·−a1−
1. Thus, for an n-th order linear recurrence relation xt+n = an−1xt+n−1 +an−2xt+n−2 +

· · ·+ a1xt−1 + xt (mod 2), we refer to zn − an−1zn−1 − an−2zn−2 − · · · − a1 − 1 as the

characteristic polynomial of the recurrence.
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Since the zero state is always mapped to itself in a shift register sequence, an upper

bound on the period of an n-order linear recurrence is 2n − 1, and indeed this upper

bound is tight. When does a shift register sequence with register size n have period

2n−1? This is answered in Theorem B.1 of Appendix B: if the characteristic polynomial

zn−an−1zn−1−an−2zn−2−· · ·−a1− 1 is primitive over F2, then the n-th order linear

recurrence relation xt+n = an−1xt+n−1 + an−2xt+n−2 + · · · + a1xt−1 + xt (mod 2) has

period 2n − 1 for all seeds except the one consisting of all zeros.

We are almost ready to build neural networks based on shift register sequences. In

doing so, we shall focus on primitive trinomials with the form zn + zm + 1, where

1 < m < n. Focusing on primitive polynomials that are trinomials when implementing

pseudorandom number generators is often done for speed; the lack of extra non-zero

coefficients allows for more efficient implementations (see [40] and [39], for example).

However, we are not concerned with efficiency here. The advantage of trinomials

for us is that they will yield neural networks with fewer neurons and connections,

thus making them easier to describe; the disadvantage is that they have some known

statistical defects ([52], [54], [40]). Tables of primitive trinomials have been computed

in [81].

Before moving on to the main theorem, we will warm up with some observations.

The main hurdle in implementing a linear recurrence modulo 2 is computing the xor

function. As we saw in example 2.4 on page 15, this function is not threshold. However,

since x1 ⊕ x2 = (x1 ∨ x2)(x1x2), a neural network can compute x1 ⊕ x2 in two steps:

1

1 2

x1 x2

1

11

1

1 −1

x1 ⊕ x2

Figure 3.1: A neural network that computes x1 ⊕ x2 after two time steps.

The trick to avoiding the two step time delay is to take advantage of the simple shifting

structure of the linear recurrence we are generating. We do this by sampling the bits

two steps earlier than we really need them for the ⊕ function. We will see this more

precisely in the proof of Theorem 3.8.

Let us now describe how to construct a neural network for the primitive trinomial
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zn + zm + 1. We shall construct an (n + 2)-dimensional neural network Ψ consisting

of neurons f1, f2, . . . , fn, fn+1, fn+2.

The first n neurons will mimic the underlying shift register, and the last two will

function as auxiliary neurons, which will be used to calculate the xor for the special

nth bit. Only the last two neurons will depend on the parameter m.

We construct our network in four different sections; we first construct neurons f1, f2, . . . , fn−1,

then the construction of fn, fn+1, and fn+2 are handled separately.

We define the neurons f1, f2, . . . , fn−1 by

wi,j =

1 for i = 1, . . . , n− 1, and j = i+ 1;

0 for i = 1, . . . , n− 1, and j 6= i+ 1

and

θi = 1 for i = 1, . . . , n− 1.

Neuron fn is defined by

wn,j =

1 if j = n+ 2;

0 otherwise ;

and

θn = 1.

Neuron fn+1 is defined by

wn+1,j =

1 if j = 3 or j = m+ 2;

0 otherwise ;

and

θn+1 = 2.

Finally, neuron fn+2 is defined by

wn+2,j =


1 if j = 2 or j = m+ 1;

−2 if j = n+ 1;

0 otherwise ;
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and

θn+2 = 2.

To summarize, the weight matrix of the neural network is



1 2 3 4 . . . m+ 1 m+ 2 m+ 3 · · · n n+ 1 n+ 2

1 0 1 0 0 0 0 0 0

2 0 0 1 0 0 0 0 0

3 0 0 0 1 0 0 0 0
...

. . .

m+ 1 0 0 0 0 1

m+ 2 0 0 0 0 1
...

. . .

n− 1 0 0 0 0 0 1 0 0

n 0 0 0 0 0 0 0 0 0 1

n+ 1 0 0 1 0 0 1 0 0 0 0

n+ 2 0 1 0 0 1 0 0 0 −2 0



,

and the (n+ 2)-dimensional threshold vector is

1

1
...

1

1

2

1


.

For a seed x in {0, 1}n+2, we have

Ψt
i(x) = Ψt−1

i+1(x) for i = 1, 2, . . . , n− 1; (3.33)

Ψt
n(x) = Ψt−1

n+2(x); (3.34)

Ψt
n+1(x) =

1 if Ψt−1
3 (x) + Ψt−1

m+2(x) ≥ 2;

0 otherwise,
(3.35)
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and

Ψt
n+2(x) =

1 if Ψt−1
2 (x) + Ψt−1

m+1(x)− 2Ψt−1
n+1(x) ≥ 1;

0 otherwise.
(3.36)

The stage is now set and we can prove that Ψ behaves as a shift register sequence

when the auxiliary neurons are initialized in a particular manner.

Theorem 3.8:

Let zn + zm + 1 be a primitive trinomial and let Ψ be the (n + 2)-dimensional neural

network described above. Then there are at least 2n − 1 seeds that have period 2n − 1

under Ψ.

Proof:

The trinomial zn + zm + 1 is the characteristic polynomial of the n-th order linear

recurrence

xt+n = xt+m + xt (mod 2). (3.37)

Let x0 = (x1, x2, . . . , xn) be a non-zero n-dimensional seed for the linear recurrence (3.37),

and let the state vectors of the recurrence be x0,x1,x2, . . .. We augment the seed x0

to an (n+ 2)-dimensional seed s = (s1, s2, . . . , sn+2) for our neural network by setting

si =


xi for i = 1, 2, . . . , n;

x2xm+1 if i = n+ 1;

x1 ⊕ xm if i = n+ 2.

(3.38)

By induction on t, we will show that the following hold:

Φt
i(s) = xti 1 ≤ i ≤ n; (3.39)

Φt
n+1(s) = xt2x

t
m+1; (3.40)

Φt
n+2(s) = xt1 ⊕ xtm. (3.41)

When t = 0, this claim follows from how the seed s was defined in (3.38). Suppose

this claim holds with t − 1 in place of t. We will first show that (3.39) holds. When

1 ≤ i ≤ n− 1, we have Φt
i(s) = Φt−1

i+1(s) by (3.33), and Φt−1
i+1(s) = xt−1i+1 by the induction

hypothesis. By the linear recurrence (3.37), we have xt−1i+1 = xti. For the nth bit, we have

Φt
n(s) = Φt−1

n+2(s) by (3.34). By the induction hypothesis and linear recurrence (3.37),

we get Φt−1
n+2(s) = xt−11 ⊕ xt−1m = xtn.
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To see that (3.40) holds, we have

Φt
n+1(s) = Φt−1

3 (s)Φt−1
m+2(s) (by (3.35))

= xt−13 xt−1m+2 (by the induction hypothesis)

= xt2x
t
m+1. (by linear recurrence (3.37))

Finally, (3.41) holds because

Φt
n+2(s) =

(
Φt−1

2 (s) ∨ Φt−1
m+1(s)

)(
Φt−1
n+1

)
(by (3.36))

=
(
xt−12 ∨ xt−1m+1

)(
xt−12 xt−1m+1

)
(by the induction hypothesis)

=
(
xt1 ∨ xtm

)(
xt1x

t
m

)
(by linear recurrence (3.37))

= xt1 ⊕ xtm. �

Example 3.6:

The primitive trinomial x4 + x+ 1 is the characteristic polynomial of the linear recur-

rence

xt+4 = xt+1 + xt (mod 2).
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The seed x0 = 1111 yields the following sequence:

1 1 1 1

1 1 1 0

1 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 1

0 0 1 1

0 1 1 0

1 1 0 1

1 0 1 0

0 1 0 1

1 0 1 1

0 1 1 1

1 1 1 1

... ,

which has period 24 − 1. The corresponding 6-dimensional neural network has weight

matrix 

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 1 1 0 0

0 1 1 0 −2 0


and threshold vector 

1

1

1

1

1

2

1


.
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The network looks like:

1 1 1 1

2

1

1 1 1

1 1

1 1

−2

1

Figure 3.2: The neural network associated with x4 + x+ 1.

Beginning with the seed 1111, we augment it to a 6-bit seed as follows: the fifth bit is

the logical and of the second and third bit; the sixth bit is the xor of first and second

bit. Thus, the augmented seed is 111110, and the neural network produces

1 1 1 1 1 0

1 1 1 0 1 0

1 1 0 0 0 0

1 0 0 0 0 1

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 1

1 0 0 1 0 1

0 0 1 1 0 0

0 1 1 0 1 1

1 1 0 1 0 0

1 0 1 0 0 1

0 1 0 1 0 1

1 0 1 1 0 1

0 1 1 1 1 1

1 1 1 1 1 0

... ,

which also has period 24 − 1. �
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3.2.2 Random permutations of maximal period networks

The maximal neural networks of Section 3.1.3 can be altered as follows to produce

neural networks with some long, but not necessarily maximal, trajectories. Consider

the n-dimensional maximal neural network described in Section 3.1.3 with weight

matrix Wn and threshold vector θn. Let Pn be an n×n permutation matrix (an n×n
matrix with entries in {0, 1} where every row and every column has precisely one 1

entry). This yields a new neural network with weight matrix PnWn and threshold

vector Pnθn. We are essentially permuting the order of the n threshold functions

of the original maximal neural network. It turns out that these permutations yield

trajectories that are often still very long, as the following experiment demonstrates.

For a fixed dimension n, we generate an n × n permutation matrix Pn by drawing

uniformly from the n! permutation matrices. This gives us a new neural network

with weight matrix PnWn and threshold vector Pnθn. Running this network with a

randomly generated seed, we compute the period of the trajectory. This was done 100

times for each n in {1, 2, . . . , 30}. The results are summarised below:
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3.2.3 Random orthogonal weight matrices

In [15], Elyada and Horn conducted statistical experiments and proposed the following

neural networks for pseudorandom number generation: for a fixed dimension n, let W

be an n × n matrix, where each entry is drawn randomly from the standard normal

distribution. This matrix W is then orthogonalized to W ′ using the Gram–Schmidt
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process. The threshold vector θ is set so that its ith entry is the sum of the elements

of the ith row of W ′, divided by 2. This is done to self-dualize the threshold functions

(see Theorem 2.3 on page 20). We reproduced some of their experiments, along the

same lines of Section 3.2.2. A comparison of the two experiments is shown below:

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Network dimension

lo
g

2
(p

e
ri
o

d
 le

n
g

th
)

Permuted maximal networks vs. random orthogonal networks:
Average period lengths over 100 trials

 

 

permuted maximal network

random orthogonal network

72



Chapter 4

Randomness and

Pseudorandomness

In this chapter we measure the ability of neural networks to behave randomly. The

chapter is divided into two sections; the first is about theoretical pseudorandom number

generation, and the second will describe the results of a battery of statistical tests

applied to some of the neural networks described in the previous chapter.

4.1 Computational indistinguishability

The notion of computational indistinguishability stems from ideas in computational

complexity theory. It was first found in the work of Yao [80] and that of Goldwasser and

Micali [22]. The main idea is that two objects are considered to be similar if no efficient

algorithm can tell them apart. In the context of pseudorandomness, a pseudorandom

number generator is a deterministic function that, with high probability, cannot be

distinguished from a uniform random variable by any efficient algorithm. We follow

the treatment in [18]. Another good reference is [33].

Definition 4.1:

Let I be a countable index set. A probability ensemble indexed by I is a sequence

of random variables indexed by I.

The notion of a computational distinguisher uses an efficient algorithm D, typically

taking pseudorandom candidates as input and having boolean values as output, ac-
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cording to whether or not D accepts the candidate. More precisely,

Definition 4.2:

Two probability ensembles X = X1, X2, . . . and Y = Y1, Y2, . . . are computation-

ally indistinguishable if for every probabilistic polynomial-time algorithm D, every

positive integer k, and all sufficiently large n we have∣∣∣ P(D(Xn, 1
n) = 1

)
− P

(
D(Yn, 1

n) = 1
) ∣∣∣< 1

nk
.

Typically, for all i the random variables Xi and Yi are multi-variate random variables

of dimension i. The 1n input to D is a technical safety precaution to ensure that

we are considering all algorithms D with running time polynomial in n, even in the

atypical case where |Xn| = O(poly(n)) but poly(n) 6= O(|Xn|), where |Xn| denotes the

dimension of the multi-variate random variable Xn.

Probability ensembles that are of particular interest are the uniform ensembles :

Definition 4.3:

Let l : N → N. A uniform ensemble is a probability ensemble U = U1, U2, . . .,

where Ui is a random variable uniformly distributed over the set of bit strings of

length l(i). In the special case where l(i) = i for all i, we refer to U as the standard

uniform ensemble.

Example 4.1:

Suppose X = X1, X2, . . ., where Xi is a random variable producing bit strings of length

i following the distribution

P (Xi = (x1, x2, . . . , xi)) =

0 if x1 = 0

1
2i−1 if x1 = 1.

We can distinguish this ensemble from the standard uniform ensemble U by using the

algorithm D that simply outputs the first bit of its input. Then∣∣∣P(D(Xn, 1
n) = 1

)
− P

(
D(Un, 1

n
)

= 1)
∣∣∣ = |1− 1/2| = 1/2,

so X is not computationally indistinguishable from U . �
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Definition 4.4:

A pseudorandom generator is a deterministic polynomial-time algorithm G satis-

fying the following two conditions:

1. Expansion: There exists a function l : N → N such that l(n) > n for all

n ∈ N, and l(|s|) = |G(s)| for all s ∈ {0, 1}∗;

2. Pseudorandomness: With U1, U2, U3, . . . , being the standard uniform ensem-

ble, the probability ensemble

G(U1), G(U2), G(U3), . . .

is computationally indistinguishable from some uniform ensemble

U ′1, U
′
2, U

′
3, . . . .

With these definitions in place, we are ready to prove one of the main new results of

this thesis: neural networks are not pseudorandom generators.

4.1.1 Distinguishing neural networks

Let Φ : {0, 1}n → {0, 1}n be a neural network and let t be an integer greater than n.

We consider the mapping

Φt : {0, 1}n → {0, 1}t

defined by letting Φt(x) denote the sequence of the first t bits in the concatenation of

x,Φ(x),Φ2(x), . . . .

We will show that such mappings cannot provide pseudorandom generators unless t is

small relative to n:

Theorem 4.1:

There is a polynomial-time deterministic algorithm that, given a positive integer n and

a sequence y of t bits, returns either the message McCulloch- Pitts or the message

random in such a way that

(i) if y = Φt(x) for some neural network Φ : {0, 1}n → {0, 1}n and some x in

{0, 1}n, then the algorithm returns McCulloch-Pitts,
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(ii) if y is chosen uniformly from {0, 1}t and if t ≥ (2 + ε)n2 for some positive

constant ε, then the algorithm returns random with probability at least 1− e−δn,

where δ is a positive constant depending only on ε.

We do not know whether or not Theorem 4.1 can be strengthened by reducing the

lower bound (2 + ε)n2 on the length of y even just to 2n2. Nevertheless, this lower

bound can be reduced all the way to n + 1 if we are allowed to sample not just one,

but multiple sequences Φt(x).

Theorem 4.2:

There is a polynomial-time deterministic algorithm that, given m sequences y1, . . . , ym

of n+ 1 bits, returns either the message McCulloch-Pitts or the message random in

such a way that

(i) if y1 = Φn+1(x
1), . . . , ym = Φn+1(x

m) for some neural network Φ : {0, 1}n →
{0, 1}n and some x1, . . . , xm in {0, 1}n, then the algorithm returns McCulloch-Pitts,

(ii) if m ≥ (2 + ε)n for some positive constant ε and if y1, . . . , ym are chosen inde-

pendently and uniformly from {0, 1}n+1, then the algorithm returns random with

probability at least 1− e−δn, where δ is a positive constant depending only on ε.

We will use the following corollary of Lemma 2.2 on page 16:

Lemma 4.1:

For every positive ε there is a positive γ with the following property: If Y is a subset of

Rn such that |Y | ≥ (2 + ε)n, then a dichotomy chosen uniformly from all dichotomies

of Y is linearly separable with probability at most e−γn.

Proof:

It is enough to derive the conclusion under the additional assumption that ε ≤ 1.

Under this assumption, let m denote |Y | and let p denote the probability that a

dichotomy chosen uniformly from all dichotomies of Y is linearly separable. Since

there are precisely 2m dichotomies of Y and, by Lemma 2.2, at most 2
∑n

i=0

(
m−1
i

)
of

them are linearly separable, we have

p ≤ 2−m+1

n∑
i=0

(
m− 1

i

)
≤ 2−m+1

n∑
i=0

(
m

i

)
.

Since m ≥ (2 + ε)n and ε ≤ 1, we have n ≤ (0.5 − ε/6)m; a special case of the well-

known bound on the tail of the binomial distribution (see, for instance, [27, Theorem
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1]) guarantees that for every positive α smaller than 0.5 there is a positive β such that

∑
i≤(0.5−α)m

(
m

i

)
≤ 2me−βm;

setting α = ε/6, we conclude that p ≤ 2e−βm, which proves the lemma. �

We will also use the following:

Lemma 4.2:

If y1, y2, . . . , ym are chosen independently and uniformly from a set of size N and if

m = O(N1/3), then y1, y2, . . . , ym are pairwise distinct with probability 1−O(N−1/3).

Proof:

Note that y1, y2, . . . , ym are pairwise distinct with probability

N(N − 1) · · · (N −m+ 1)

Nm

and that

N(N − 1) · · · (N −m+ 1)

Nm
≥
(
N −m
N

)m
=
(

1− m

N

)m
≥ 1− m2

N
.

�

Proof of Theorem 4.1. The algorithm goes as follows: Let n be a positive integer and

let y be a sequence of t bits. We write m = b(t− 1)/nc and define

Y + = {(y(i−1)n+1, y(i−1)n+2, . . . , yin) : 1 ≤ i ≤ m, yin+1 = 1},

Y − = {(y(i−1)n+1, y(i−1)n+2, . . . , yin) : 1 ≤ i ≤ m, yin+1 = 0}.

If this dichotomy is linearly separable, then return McCulloch-Pitts; else return

random.

To see that this algorithm runs in polynomial time, observe that testing whether a finite

dichotomy is linearly separable amounts to solving a linear programming problem; the

epoch-making result of Khachiyan [34] guarantees that this can be done in polynomial

time.

To prove (i), let us assume that y = Φt(x) for some neural network Φ : {0, 1}n →
{0, 1}n defined by Φ(x) = (f1(x), f2(x), . . . , fn(x)) and for some x in {0, 1}n. Now

yin+1 = f1(y(i−1)n+1, y(i−1)n+2 . . . , yin)
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for all i = 1, 2, . . . ,m, which means that f1 takes value 1 on all points of Y + and

value 0 on all points of Y −; since f1 is a threshold function, the dichotomy (Y +, Y −)

is linearly separable, and so the algorithm returns McCulloch-Pitts.

To prove (ii), let us assume that y is chosen uniformly from {0, 1}t and that t ≥ (2+ε)n2

for some positive constant ε. Since the probability that the algorithm returns random

increases as t increases, we may replace the assumption that t ≥ (2 + ε)n2 by the

assumption that t = d(2 + ε)n2e. Write Y = Y + ∪ Y −. Since y is chosen uniformly

from {0, 1}t, the points of Y are chosen independently and uniformly from {0, 1}n, and

so Lemma 4.2 with N = 2n guarantees that |Y | = m with probability 1 − O(2−n/3).

When |Y | = m, the assumption that y is chosen uniformly from {0, 1}t implies that

the dichotomy (Y +, Y −) of Y is chosen uniformly from all dichotomies of Y , in which

case Lemma 4.1 guarantees that (Y +, Y −) is linearly separable with probability at

most e−γn. We conclude that the algorithm returns random with probability at least

1−O(2−n/3)− e−γn, which is at least 1− e−δn for some positive δ. �

Proof of Theorem 4.2. The algorithm goes as follows: Let y1, . . . , yt be sequences of

n+ 1 bits. Write yi = (yi1, . . . , y
i
n+1) for all i and define

Y + = {(yi1, yi2, . . . , yin) : 1 ≤ i ≤ m, yin+1 = 1},

Y − = {(yi1, yi2, . . . , yin) : 1 ≤ i ≤ m, yin+1 = 0}.

If this dichotomy is linearly separable, then return McCulloch-Pitts; else return

random.

Analysis of this algorithm is just like the analysis in the proof of Theorem 4.1.

�

4.1.2 Indistinguishability of neural networks with hidden neu-

rons

We will now consider a relaxation of the problem by allowing our neural network to

contain hidden neurons, that is, neurons that are hidden from the distinguisher.

Definition 4.5:

Consider an N -dimensional neural network Φ with neurons ν1, . . . , νN . We par-

tition the network into 2 types of neurons: n visible neurons and N − n hidden

neurons. We adopt the convention that the visible neurons are listed first, so that
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the visible neurons are ν1, . . . , νn. When the network is initialized with a seed x

in {0, 1}N , we denote the visible state of the network at time t by Φt
v(x), where

Φt
v(x) = (Φt

1(x), . . . ,Φt
n(x)).

We will show that a neural network with hidden neurons can produce any trajectory

in its visible part. First, we define boolean networks.

Definition 4.6:

Let

gi : {0, 1}n → {0, 1} (i = 1, 2, . . . , n)

be n boolean functions. The function G : {0, 1}n → {0, 1}n defined by

G(x) = (g1(x), g2(x), . . . , gn(x))

is an n-dimensional boolean network.

Thus, neural networks are simply boolean networks where each underlying boolean

function is threshold. Boolean networks are also dynamical systems that produce

trajectories x, G(x), G2(x), . . . for a seed x. Clearly, any dynamical system on {0, 1}n

can be seen as a boolean network of dimension n. Next, we provide a trivial method

for converting boolean networks into neural networks.

Theorem 4.3:

For every boolean network G : {0, 1}n → {0, 1}n there exists a neural network Φ :

{0, 1}N → {0, 1}N , where N = n + 2n, with the following property: For every x

in {0, 1}n there exists an x′ in {0, 1}N such that, for all nonnegative integers t, the

restriction of Φt(x′) on its first n components equals Gt(x).

Proof:

Let g1, . . . , gn be the boolean functions of the boolean network G. For each i = 1, . . . , n,

we associate a visible neuron νi with gi; we create 2n hidden neurons νy with y ranging

over {0, 1}n.

At each time t+ 1, a visible neuron νi will fire if and only if a hidden neuron νy such

that gi(y) = 1 fired at time t. This can be accomplished by letting all hidden neurons
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νy such that gi(y) = 1 feed into νi, setting the weight on every link into νi at 1, and

setting the threshold value of νi at 1.

At each time t + 1, precisely one of the hidden neurons will fire: this is the hidden

neuron νy such that the visible neurons νi with yi = 1 fired at time t and the visible

neurons νi with yi = 0 did not fire at time t. This can be accomplished by letting

all visible neurons feed into all hidden neurons, setting the weight on the link from

visible neuron νi to hidden neuron νy at 2yi − 1, and setting the threshold value of νy

at
∑

i yi.

Finally, given an x in {0, 1}n, we define an x′ in {0, 1}N as follows: the restriction of

x′ on its first n components equals x, the remainining 2n components of x′ are indexed

by vectors in {0, 1}n, and

x′y =

1 if y = x,

0 otherwise.

Induction on t shows that for all nonnegative integers t, the restriction of Φt(x′) on its

first n components equals Gt(x). �

The consequence of Theorem 4.3 is that neural networks with no restrictions on the

number of hidden neurons can be pseudorandom number generators, if pseudorandom

number generators exist. However, it is known that the existence of pseudorandom

number generators implies P 6= NP [18]. Thus, attempts at proving the existence of

pseudorandom number generators in the form of neural networks with hidden neurons

will not be pursued here. Theorem 4.3 also illustrates the need for a more refined

version of the problem that places bounds on the number of hidden neurons.

4.2 Statistical tests

In this section we will depart from the theoretical notions of Section 4.1, and con-

sider the more practical and commonly used statistical tests for evaluating pseudo-

random number generators. We shall describe some neural networks that produce

pseudorandom-like output, in the sense that they pass many statistical tests. This

does not necessarily contradict the results on theoretical pseudorandom generators of

the previous section. The famous linear congruential generators may shed some light

on this: on the one hand, most runtime libraries of the C programming language use a

linear congruential generator to produce the output of their rand() function. On the

other hand, it has been shown that linear congruential generators are not pseudoran-

dom generators in the theoretical sense ([6], [16], [69], [36]).
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Several test suites exist for testing pseudorandom sequences, including L’Ecuyer and

Simard’s TestU01 ([41], [42]), Marsaglia’s Diehard tests [49], and the NIST (National

Institute of Standards and Technology) test suite [65]. We will use TestU01 since it is

the most stringent, is the most up-to-date, and also contains versions of the Diehard

and NIST test suites. We will use the smallest battery SmallCrush, consisting of

10 tests, since our goal is to find random-looking trajectories; the larger batteries in

TestU01 are more appropriate for generators that need to be secure or have specific

statistical usage.

Our focus will be on neural networks that contain hidden neurons. In particular, does

there exist a neural network with a single visible neuron such that the bit sequence

generated by that neuron passes statistical tests? More precisely, does there exist a

neural network Φ : {0, 1}n → {0, 1}n such that the bit sequence

Φ1(x),Φ2
1(x),Φ3

1(x), . . . (4.1)

passes all the tests in SmallCrush when initialized with a seed x? What is the smallest

n for which we can answer this question in the affirmative? In (4.1) we are singling

out the first bit of each state in the trajectory of x under Φ.

The shift from studying the capabilities of neural networks as pseudorandom generators

in the theoretical sense to the practical implies a shift from looking at neural networks

in general to looking at specific instances of neural networks. Our main candidates

are the maximal neural networks of Section 3.1, permutations of them (as described

in Section 3.2.2), and the shift register networks of Section 3.2.1.

The n-dimensional maximal neural networks of Section 3.1 fail all of the tests in

SmallCrush for 32 < n < 100. There is too much structure in their trajectories and

we should not be surprised that the very stringent tests in SmallCrush detect this.

The shift register networks perform better than this, and we turn our attention to

them next.

Shift register networks

Let Φ : {0, 1}n+2 → {0, 1}n+2 be a shift register network with primitive trinomial

zn + zm + 1. Then the sequence (4.1) is simply the bit sequence

x0, x1, x2, . . . ,
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produced by the linear recurrence

xt+n = xt+m + xt (mod 2).

Over all primitive trinomials of degree less than 100 (there are 179), none of the

corresponding networks passed all of the tests in SmallCrush. The best results were

produced by 14 of these networks, which passed 7 out of the 10 tests; the Gap test,

the WeightDistrib test, and the RandomWalk1 tests were failed. These networks,

described by the parameters n and m, are:

n m

71 18

71 51

71 53

73 42

84 13

84 71

87 13

87 74

89 38

89 51

94 21

94 73

95 84

98 87

Table 4.1: The 14 shift register networks, defined by zn + zm + 1, that pass 7 of the 10
tests in SmallCrush.

4.2.1 Modifying output via xor

One way to improve on the number of tests that are passed is to output the xor of

some subset of neurons of a particular network. This has been done in [15], where

random orthogonal neural networks produced one bit per time step by outputting the

xor of the first 5 neurons of the network. This idea will also allow us to combine the

outputs of many neural networks into one in the next section. Although Knuth [35]

cautions against this sort of technique:

“One of the common fallacies encountered in connection with random num-

ber generation is the idea that we can take a good generator and modify

it a little, in order to get an even-more-random sequence”,
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there are many instances where it works. For example, there are many variations

on shift register sequences that yield slightly better results and are often used; Mat-

sumoto and Nishimura’s famous Mersenne Twister [53], Marsaglia’s xorshift [50], and

Panneton’s WELL RNG’s [62], to name a few.

Theorem 4.4:

For every neural network Φ : {0, 1}n → {0, 1}n and for every subset S of {1, 2 . . . , n}
of size m there exists a neural network Ω : {0, 1}n+m+1 → {0, 1}n+m+1 such that for

all nonnegative integers t, for all x in {0, 1}n, and for all x′ in {0, 1}n+m+1 whose

restriction on the first n components equals x, we have

Ωt+2
n+m+1(x

′) =
∑
i∈S

Φt
i(x) (mod 2).

Proof:

The first n neurons of Ω are simply copies of the original neurons ν1, ν2, . . . , νn, as in Φ.

We assign them weights of 0 for all incoming connections from νn+1, νn+2, . . . , νn+m+1;

the augmenting neurons have no bearing on the original ones.

We introduce m + 1 new neurons νn+1, νn+2, . . . , νn+m+1. Without loss of generality,

we may assume that S = {1, 2, . . . ,m}. For i = 1, . . . ,m, neuron νn+i receives the

output of neurons ν1, ν2, . . . , νm, and only these neurons. Thus, each of the m neurons

νn+1, νn+2, . . . , νn+m receives the same m inputs. We assign a weight of 1 for each of

these inputs. The threshold value of νn+i is i, for i = 1, 2, . . . ,m. Thus, neuron νn+i

takes the value 1 if and only if at least i of its inputs are 1. This allows us to detect

the parity of the number of neurons in {ν1, ν2, . . . , νm} that are firing as follows. We

add one more neuron, νn+m+1. This neuron receives m inputs, one from each νn+i with

1 ≤ i ≤ m. The weight on the input from νn+i is 1 if i is odd, and −1 if i is even. The

threshold of νn+m+1 is 1. The value of νn+m+1 at time t+ 2 is therefore the xor of the

values of the neurons νn+1, νn+2, . . . , νn+m at time t. �
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1

νn+m+1

ν1 ⊕ ν2 ⊕ · · · ⊕ νm

· · ·2

νn+2

1

νn+1

m− 1

νn+m−1

m

νn+m

1

−1 1

−1

ν1 ν2 νm−1 νm

νm+1 νm+2

· · ·
νn

· · ·

original n-dimensional neural network Φ

Figure 4.1: The augmented neural network Ω, producing the xor output of neurons
ν1, ν2, . . . , νm after two time steps. Unlabelled connections have a weight of
1. Here we assume m is even. The weights and thresholds of neurons in Φ are
omitted.

Our method of computing the xor is essentially the parity gadget used in [15]. Note

that this computation is simpler than that used in the proof of Theorem 3.8, since the

xor result does not need to be fed back into the network.

For an n-dimensional neural network Φ, we will use Φ⊕m to denote the augmented

(n+m+ 1)-dimensional neural network described in Theorem 4.4.

Modified permuted maximal neural networks using xor

Let Φn be the n-dimensional maximal neural network described in Section 3.1.3, with

weight matrix Wn and threshold vector Θn. Let π : {1, 2, . . . , n} → {1, 2, . . . , n} be a

permutation with corresponding permutation matrix P . We use π(Φn) as a shorthand

for the neural network with weight matrix PWn and threshold vector PΘn. Fixing

m such that 1 ≤ m ≤ n, we consider the (n + m + 1)-dimensional neural network

(π(Φn))⊕m, in which we output the xor of the first m neurons of the permuted network

π(Φn).
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The following was done 10 times for each dimension n and tap size m such that

30 < n+m+1 ≤ 40: a random permutation π and a random seed were generated; the

neural network (π(Φn))⊕m was then tested by SmallCrush. Of the 550 neural networks

tested, 35 passed all of the tests. The smallest such network was of dimension 37,

having m = 5 and permutation π defined by

i π(i)

1 30

2 25

3 13

4 9

5 3

6 10

7 11

8 22

9 26

10 17

11 20

12 28

13 18

14 1

15 21

16 23

17 7

18 2

19 12

20 24

21 14

22 15

23 6

24 5

25 19

26 8

27 27

28 4

29 31

30 29

31 16

The weight matrix of this neural network is given explicitly on the following page.
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The threshold vector is given by 

1

1

2

3

4

5

15

144

20906

85972

1

70845

43785

551

97

4271

1297

40

3017

−1346268
802

341

150051

1

33826

232

15505

9583

242787

196419

1865

139105

61

317812

15

27

6910



.

In this representation the first neuron is the visible one, all other neurons are hidden.

Random orthogonal weight matrices

As we saw in Section 3.2.3 on page 71, Elyada and Horn have used neural networks

to generate random numbers as follows: a random n × n matrix is computed and

then orthogonalized. This is used as the weight matrix of a neural network. The

thresholds are then set in a way that makes each of the threshold functions self-dual

(see Theorem 2.3). The output at time t + 2 is then the xor of the first 5 bits of the

state of the network at time t, This results in a network of size n+6 (see Theorem 4.4).

Elyada and Horn tested their method using the NIST test suite [65]. The results

in [15] state that these networks passed all but 2 of the 189 tests in [65]. However,

network sizes were not specified.

We tested this method using SmallCrush. The following was done 10 times for each n
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such that 32 ≤ n ≤ 64: a random n × n orthogonal weight matrix and self-dualizing

threshold vector was generated. This network was tested by SmallCrush with a ran-

domly generated seed. The smallest network to pass all the tests was of dimension 66

(consisting of a 60-dimensional orthogonal weight matrix and 6 extra neurons for the

xor).

4.2.2 Combining networks via xor

Another method of modifying the output of some of our base networks is to combine

two or more of them into one big network. When combining k networks, we will do

this by taking the xor of k neurons, one from each of the initial networks. In the case

where the underlying networks are all shift register networks, the combined network

is equivalent to what are referred to as combined generators in [40] and [39].

Suppose that we have k neural networks, each of which has precisely one visible neuron

producing the bit sequence

xi0, x
i
1, x

i
2, . . . , (4.2)

for i = 1, 2, . . . , k. We combine these k sequences into one by setting

xt = x1t ⊕ x2t ⊕ x3t ⊕ · · · ⊕ xkt for t = 0, 1, 2, . . . . (4.3)

Thus, we take the xor of the k sequences (4.2). We will now show that this scheme

can be implemented in a neural network.

Theorem 4.5:

For i = 1, 2, . . . , k, let Φi : {0, 1}ni → {0, 1}ni be a neural network. Setting N =∑k
i=1 ni + k+ 1, there exists an augmented neural network Ω : {0, 1}N → {0, 1}N such

that for all nonnegative integers t, for all xi in {0, 1}ni with (i = 1, 2, . . . , k), and

for all x in {0, 1}N whose restriction on the first N − k − 1 components equals the

concatenation of x1,x2, . . . ,xk we have

Ωt+2
N (x) =

k∑
i=1

Φt
i,1(xi) (mod 2).

Proof:

The proof is similar to that of Theorem 4.4. For i = 1, 2, . . . , k, let νi1, ν
i
2, . . . , ν

i
ni

be the neurons of Φi. We begin constructing our augmented neural network Ω. We

keep all thresholds and weights as before, with no new connections between neurons

coming from different networks; we are simply copying each of the k neural networks

and running them in parallel.
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We combine these neurons using the parity gadget. For i = 1, 2, . . . , k, neuron νN−i

receives the output of neurons ν11 , ν
2
1 , . . . , ν

k
1 , and only these neurons. Each of the k

neurons νN−k, νN−k+1, . . . , νN−1 receives the same k inputs. We assign a weight of 1

for each of these inputs. The threshold value of νN−k+i−1 is i, for i = 1, 2, . . . , k. Thus,

neuron νN−k+i−1 takes the value 1 if and only if at least i of its inputs are 1. This

allows us to detect the parity of the number of neurons in {ν11 , ν21 , . . . , νk1} that are

firing as follows. We add one more neuron, νN . This neuron receives k inputs, one

from each νN−i, for i = 1, 2, . . . , k. The weight on the input from νN−k+i−1 is 1 if i is

odd, and −1 if i is even. The threshold of νN is 1. The value of νN at time t + 2 is

therefore the xor of the values of the neurons ν11 , ν
2
1 , . . . , ν

k
1 at time t. �

1

ν11 ⊕ ν21 ⊕ · · · ⊕ νk1

· · ·21 k − 1 k

1 −1 1 −1

Φ1 Φ2 Φk−1 Φk

ν11
...

ν1n1

ν21
...

ν2n2

νk−11

...

νk−1nk−1

νk1
...

νknk

· · ·

Figure 4.2: Combination of the networks Φ1,Φ2, . . . ,Φk. Unlabelled connections have a
weight of 1. Here we assume k is even.

Combined shift register networks

Let P1(z), P2(z), . . . , Pk(z) be primitive trinomials, where Pi(z) = zni + zmi + 1 and

ni > mi > 0 for i = 1, 2, . . . , k. Then for i = 1, 2, . . . , k, the primitive trinomial Pi(z)
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yields a linear recurrence

xit+ni
= xit+mi

+ xit (mod 2),

which in turns yields the bit sequence

xi0, x
i
1, x

i
2, . . . , (4.4)

where (xi0, x
i
1, . . . , x

i
ni−1) is the initial seed. In this setting, it has been shown that the

combined sequence (4.3) is also the shift register sequence defined by the (reducible)

polynomial P (z) = P1(z) · · ·Pk(z), and will have period equal to (2n1 − 1)(2n2 −
1) · · · (2nk − 1), if the polynomials Pi(z) are relatively prime [72], [75], [38].

Combining two shift register networks

We consider primitive trinomials with degree less than 30. There are 55 of these, and

thus 1485 pairs to consider. None of these pairs passed all of the tests in SmallCrush,

but 143 pairs passed all but one test; the MatrixRank test. Shift register sequences

and some of their variants are known to fail this test [51], [48]. The smallest network

that passed all but the MatrixRank test consisted of 52 neurons, and in fact there were

4 of these, listed below.

n1 m1 n2 m2

20 3 25 22

20 17 25 7

20 17 25 18

22 1 23 18

Table 4.2: The 4 combined shift register networks {zn1 + zm1 + 1, zn2 + zm2 + 1} consisting
of 52 neurons that pass all but the MatrixRank test in SmallCrush.

Combining three shift register networks

The smallest networks that passed all tests consisted of 75 neurons. There were 37 of

these:
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n1 m1 n2 m2 n3 m3

11 2 25 3 29 2

11 2 25 7 29 27

11 2 25 18 29 2

11 2 25 18 29 27

11 9 25 3 29 2

11 9 25 3 29 27

11 9 25 18 29 27

11 9 25 22 29 2

17 3 23 5 25 18

17 3 23 9 25 7

17 3 23 9 25 18

17 3 23 9 25 22

17 3 23 14 25 7

17 3 23 18 25 3

17 3 23 18 25 18

17 5 23 9 25 3

17 5 23 18 25 7

17 6 23 9 25 3

17 6 23 9 25 22

17 6 23 18 25 18

17 11 23 9 25 3

17 11 23 9 25 7

17 11 23 9 25 22

17 11 23 18 25 22

17 12 23 5 25 22

17 12 23 9 25 7

17 12 23 9 25 22

17 12 23 14 25 22

17 12 23 18 25 7

17 12 23 18 25 18

17 14 23 5 25 3

17 14 23 5 25 18

17 14 23 9 25 18

17 14 23 14 25 7

17 14 23 14 25 22

17 14 23 18 25 3

17 14 23 18 25 7

Table 4.3: The 37 combined shift register networks {zn1+zm1+1, zn2+zm2+1, zn3+zm3+1}
consisting of 75 neurons that pass all tests in SmallCrush.
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Combining a shift register network and a permuted maximal network

We can also combine a shift register network ψ and a permuted maximal network Φ

by outputting the xor of a neuron in ψ and a neuron in Φ. The following search was

repeated 10 times: for all n-dimensional shift register networks ψ and m-dimensional

maximal networks Φ such that 30 ≤ n+m ≤ 40, a random m-dimensional permutation

π and random seed was generated. The resulting network was tested in SmallCrush.

The smallest network to pass all tests had dimension 40, consisting of the shift register

network with primitive trinomial z15+z11+1, the maximal neural network of dimension

20, and the permutation π defined by

i π(i)

1 5

2 18

3 16

4 20

5 19

6 4

7 15

8 14

9 11

10 17

11 7

12 8

13 9

14 1

15 12

16 3

17 10

18 2

19 6

20 13

Table 4.4: The permutation for the 20-dimensional maximal neural network.

4.2.3 Many visible neurons

So far, we have focused on neural networks where all neurons are hidden except one.

The successive states of this neuron are used to generate a bit sequence that, in some

cases, looks random. A reasonable question now is: can we use the neural networks

with one visible random neuron to create a new neural network with many visible

neurons that behave randomly? One way to go about this is to take one of the neural
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networks with a single random neuron described above, make N copies of the network,

initialize each copy with a random seed, and run each of the N networks in parallel.

Thus we take N networks, each with 1 visible neuron, and combine them into a network

with N visible neurons. If the original visible neuron in each of the respective neural

networks behaved randomly, then we would intuitively expect that the successive N -bit

strings generated at each time step would appear random as well. To test this idea, the

37-dimensional permuted maximal neural network given on page 86 was rigged in this

manner: 32 copies were made, each with 1 visible neuron, to generate a 32-bit string

at each time step, thus resulting in a neural network with 1184 neurons. These 32-bit

strings were tested by SmallCrush. All tests were passed, as one might expect. Finally,

this experiment illustrates the time vs. space trade off: previously, if we wanted our

network to produce 32 random bits, we would run our network 32 time steps, getting

1 bit at each step. The network described in this section gives us 32 bits at once, at

the cost of needing more neurons in our network.

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

Output of the visible neurons

Figure 4.3: Output of the 32 visible neurons in the 1184-dimensional network for 400 time
steps. The 32-bit strings are interpereted as integers, and then normalized to
[0, 1].

4.2.4 Summary of experimental tests

The smallest network found to pass all of the tests in SmallCrush was a permuted

maximal neural network consisting of 37 neurons; 31 neurons for the original maximal

network, and 6 neurons to compute the xor of the first 5 neurons in the permuted

network. This network is given on page 86. Another successful network was a combined

one consisting of 40 neurons; 17 neurons for the shift register network with primitive

polynomial z15+z11+1, and 20 neurons for the permuted maximal neural network with
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permutation given in Table 4.4. The remaining 3 neurons were needed to compute the

xor of the visible neurons.

94



Chapter 5

Conclusion

This work originated from the desire to conduct interdisciplinary research in order

to bridge the gap between mathematical models of the brain and the observations

commonly found by neurologists. In this sense, a more appropriate title may have

been “Can neural networks fool a neurologist?” In particular, our initial goal was to

find a recurrent neural network whose output looks like an EEG recording showing the

evolution of a seizure: beginning with a random-looking output, progressing to a more

patterned signal, followed by full-on synchronization (the seizure), and then a reversion

back to the random-looking output. In an attempt to model this progression, it became

clear that the simulation of the normal resting state of the brain was a difficult enough

challenge in itself, and that is what we have focused on here.

The goal of simulating an EEG recording ultimately led to the study of randomness

and pseudorandomness, and some conclusions about the capabilities of neural networks

as pure mathematical objects. On the one hand, we showed that a neural network

cannot be a pseudorandom number generator, in the sense that its trajectory can be

distinguished from a truly random source in polynomial time. On the other hand, we

have given explicit constructions of some neural networks that can pass all of the tests

in the SmallCrush battery of tests, and this was an unexpected success. That being

said, we do not claim that any of the neural networks described here can compete with

the state of the art pseudorandom number generators.

The results that we have provided lead to many unanswered follow-up questions. We

saw that the maximal period networks described in Chapter 3 are not exhaustive, yet

there is no known generalized construction for any others. What is the structure of the

other maximal neural networks? Our experimental results were based on networks in

which a significant number of neurons were hidden; what is the smallest neural network

with no hidden neurons that can pass a reasonable testing suite? Finally, we have

restricted ourselves to neural networks using threshold functions as model neurons, in
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which no external input is allowed, and all neurons fire in sync. What happens when

we relax these conditions or use a model that is more biologically credible?
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Appendix A

Linear Algebra

Theorem A.1 (Gordan’s Theorem):

For any m× n matrix A precisely one of the following statements is true:

∃ x ∈ Rn such that Ax > 0; (A.1)

or

∃ y ∈ Rm such that ATy = 0 where y > 0 and y 6= 0. (A.2)

Proof:

We will use the Duality Theorem from Linear Programming (see [1]) to prove this.

Let e = (1, 1, . . . , 1) in Rm. Consider the linear programming problem with variables

y1, y2, . . . , ym given by

max eTy

s.t. ATy = 0;

y ≤ e;

y ≥ 0.

The corresponding dual problem has variables x1, x2, . . . , xn and z1, z2, . . . , zm and is

given by

min eTz

s.t. Ax + z ≥ e;

z ≥ 0.

The dual problem has a feasible solution (x = 0, z = e, for example) and its objective

function is bounded below by 0. Therefore, it has an optimal solution z∗ such that
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eTz∗ ≥ 0. If (A.1) does not hold, then z∗i > 0 for some i, and we have eTz∗ > 0.

By the Duality Theorem, the primal problem has an optimal solution y∗ such that

eTy∗ = eTz∗ > 0. We conclude that (A.2) holds.

Conversely, suppose (A.1) holds. Then there exists an x∗ such that Ax∗ ≥ e. There-

fore, the dual has an optimal solution and its value is 0. By duality, the primal problem

has an optimal solution y∗ such that y∗ = 0. Thus, if y is any feasible solution to

the primal, then it must be such that eTy ≤ eTy∗ = 0, so that y = 0. This show

that (A.1) does not hold. �
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[1] V. Chvátal, Linear programming, W. H. Freeman, September 1983.

106



Appendix B

Shift Register Sequences

In this section we characterize shift register sequences with maximal period length.

A classic text on this topic is that of Golomb’s [2], but the theory dates back much

further (see chapter 17 of [1]). The bulk of this section can be found in [3], but is

reproduced here in our specific setting: we restrict ourselves to the field F2. Thus, all

operations in this section are taken modulo 2.

Definition B.1:

Let x0, x1, x2, . . . be a sequence. If there exists integers p and t0 such that

xt+p = xt for all t ≥ t0, (B.1)

then the sequence is ultimately periodic and p is a period of the sequence. The

smallest number among all possible periods is the least period of the sequence.

The least positive integer t0 for which (B.1) with p the least period holds is the

preperiod of the sequence. An ultimately periodic sequence is called periodic if its

preperiod is 0.

Lemma B.1:

Every period of an ultimately periodic sequence is divisible by the least period.

Proof:

Let x0, x2, x2, . . . be an ultimately periodic sequence with least period p and let r be

an arbitrary period of the sequence. Then there exist t0 and t1 such that

xt+r = xt for t ≥ t0;
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xt+p = xt for t ≥ t0.

Suppose p - r. Then there exist integers b and c such that r = bp+ c, where b ≥ 1 and

0 < c < p. Then for t ≥ max(t0, t1) we have

xt = xt+r = xt+bp+c = xt+(b−1)p+c = xt+(b−2)p+c = · · · = xt+c.

This implies that c is a period of the sequence, but c < p contradicts the fact that p

is the least period of the sequence. �

Definition B.2:

Let k be a positive integer and let a1, a2, . . . , ak−1 be in {0, 1}. A sequence

x0, x1, x2, . . . satisfying

xt+k = ak−1xt+k−1 + ak−2xt+k−2 + · · ·+ a1xt−1 + xt (mod 2) (B.2)

is a k-th order linear recurrence sequence. The values x0, x1, . . . , xk−1 are the seeds

of the sequence.

Definition B.3:

For a k-th order linear recurrence sequence x0, x1, x2, . . ., the vector

xt = (xt, xt+1, . . . , xt+k−1)

is the state vector at time t.

Lemma B.2:

Every k-th order linear recurrence sequence is ultimately periodic with least period at

most 2k − 1.

Proof:

Consider the state vectors x0,x1,x2, . . . of the associated sequence. If xt is the zero

vector for some t, then the proof is finished, since the sequence eventually consists of

only zeros and thus has period 1. Thus, we may assume that no state vector is the

zero vector. Consider the 2k state vectors x0,x1, . . . ,x2k−1. Since there are 2k − 1

distinct bit vectors of length k that are not the zero vector, there exists i and j such
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that 0 ≤ i < j ≤ 2k − 1 and xi = xj. The recurrence (B.2) then yields xt+j−i = xt for

t ≥ i. Noting that j− i ≤ 2k− 1, we conclude that the sequence is ultimately periodic

with least period at most 2k − 1. �

Corollary B.1:

Every k-th order linear recurrence sequence is periodic.

Proof:

Let x0, x1, x2, . . . be a k-th order linear recurrence sequence. By Lemma B.2, the

sequence is ultimately periodic. Let p be the least period of the sequence, and let t0

be the preperiod of the sequence. Then we have xt+p = xt for t ≥ t0. Suppose t0 ≥ 1

and set t = t0 + p− 1. Then by (B.2), we have

xt0−1+p = xt0−1+p+k − ak−1xt0−1+p+k−1 − ak−2xt0−1+p+k−2 − · · · − a1xt0−1+p+1

= xt0−1+k − ak−1xt0−1+k−1 − ak−2xt0−1+k−2 − · · · − a1xt0−1+1

Similarly, by (B.2) we have

xt0−1 = xt0−1+k − ak−1xt0−1+k−1 − ak−2xt0−1+k−2 − · · · − a1xt0−1+1,

so that xt0−1+p = xt0−1, which contradicts the definition of the preperiod. �

With every k-th order linear recurrence sequence obeying

xt+k = ak−1xt+k−1 + ak−2xt+k−2 + · · ·+ a1xt−1 + xt (mod 2),

we associate a k × k matrix of bits defined by

A =



0 1 0 · · · 0 0 0

0 0 1 0 · · · 0 0

0 0 0 1 0 · · · 0
...

0 0 0 · · · 0 1 0

0 0 0 0 · · · 0 1

1 a1 a2 · · · ak−3 ak−2 ak−1


.

We shall refer to A as the recurrence matrix of the associated linear recurrence se-

quence. Note that the state vectors x0,x1,x2, . . . obey

xt+1 = Axt.
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Lemma B.3:

Consider a k-th order linear recurrence relation and seeds x0 = x1 = x2 = · · · =

xk−1 = 0 and xk = 1. The k state vectors x0,x1, . . . ,xk−1 form a basis for the vector

space of k-dimensional bit strings.

Proof:

It is enough to show that the k vectors x0,x1, . . . ,xk−1 are linearly independent. Sup-

pose that c0x0 + c1x1 + · · ·+ ck−1xk−1 = 0 for bits c0, c1, . . . , ck−1. We will show that

ck−1−i = 0 for i = 0, 1, . . . , k−1 by induction on i. When i = 0, we must have ck−1 = 0

since xk−1 is the only state vector with a 1 in its first coordinate. Now assume that

ck−1 = ck−2 = · · · = ck−1−(i−1) = 0. Then we must also have ck−1−i = 0 since xk−1−i is

the only state vector in {x0,x1, . . . ,xk−1−i} with a 1 in coordinate i+ 1. �

Lemma B.4:

Let A be the recurrence matrix of a k-th order linear recurrence, and consider the

seeds x0 = x1 = x2 = · · · = xk−1 = 0 and xk = 1. For this particular linear recurrence

sequence we have

xi = xj ⇐⇒ Ai = Aj.

Proof:

If Ai = Aj then xi = Aix0 = Ajx0 = xj.

Conversely, suppose xi = xj. Then for t ≥ 0 we have xi+t = xj+t. Therefore, we have

Aixt = AiAtx0 = Atxi = Atxj = AjAtx0 = Ajxt. for t ≥ 0. (B.3)

Now suppose Ai 6= Aj. Then there is a non-zero vector v such that Aiv 6= Ajv. By

Lemma B.3, we can find constants c0, c1, . . . , ck−1 such that v = c0x0 + c1x1 + · · · +
ck−1xk−1. Therefore,

Ai(c0x0 + c1x1 + · · ·+ ck−1xk−1) 6= Aj(c0x0 + c1x1 + · · ·+ ck−1xk−1),

which implies

c0
(
Aix0 − Ajx0

)
+ c1

(
Aix1 − Ajx1

)
+ · · ·+ ck−1

(
Aixk−1 − Ajxk−1

)
6= 0.

But this constradicts (B.3). �

The set of nonsingular k× k matrices with entries in {0, 1} forms a finite group under

matrix multiplication, denoted GL(k,F2). Let A be a member of GL(k,F2). Since

GL(k,F2) is finite, so is the subgroup {A,A2, A3, . . .}. Thus, there is a finite number
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m such that Am is the identity matrix; the smallest positive m for which this holds is

the order of A, and denoted by ord(A).

Lemma B.5:

The least period of a linear recurrence sequence divides the order of its associated

recurrence matrix, ord(A).

Proof:

Note that det(A) = 1, so that A is nonsingular and indeed a member of GL(k,F2).

Let m = ord(A). Then xt+m = At+mx0 = Atx0 = xt, so that m is a period of the

sequence. Therefore, the least period of the sequence divides ord(A) by Lemma B.1.�

Lemma B.6:

Let A be the recurrence matrix of a k-th order linear recurrence relation. When ini-

tialized with the seeds x0 = x1 = x2 = · · · = xk−1 = 0 and xk = 1, the least period of

the resulting sequence is equal to ord(A).

Proof:

Let p be the least period of the sequence. By Lemma B.5, we know that p | ord(A).

Furthermore, xp = x0, so by Lemma B.4 we have Ap = A0. Therefore, p = ord(A). �

Let M be a square matrix over a field F. We recall the following definitions:

the characteristic polynomial of M , denoted by χM , is the polynomial over F defined

by χM(z) = det(zI−M);

the minimal polynomial of M , denoted by µM , is the monic polynomial over F of least

degree such that µM(M) = 0.

Lemma B.7:

Let A be the recurrence matrix of a k-th order linear recurrence relation. We have

χA = µA.

Proof:

By definition, we have χA(z) = zk−ak−1zk−1−ak−2zk−2−· · ·−a1−1. By the Cayley-

Hamilton Theorem, we know that χA(A) = 0, so that χA is a candidate for the minimal

polynomial of A. We must show that no polynomial of lesser degree has A as a root. To

this end, suppose that m < k and that p(z) = zm+bm−1z
m−1+bm−2z

m−2+· · ·+b1z+b0

satisfies p(A) = 0. For i = 1, 2, . . . , k, let ei be the i-th standard basis vector; ei

has coordinate i equal to 1, all other coordinates are 0. Note that Aei = ei+1 for

i = 1, 2, . . . ,m. Therefore,

0 = p(A)e1 = Ame1 + bm−1A
m−1e1 + · · ·+ b1Ae1 + b0e1

= em+1 + bm−1em + · · ·+ b1e2 + b0e1.
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This implies that e1, e2, . . . , em are linearly dependent, which is a contradiction. �

Results from the theory of polynomials over finite fields assures us that the following

is well-defined (see the first chapter of [3], for instance).

Definition B.4:

If f is a non-zero polynomial such that f(0) 6= 0 then the order of f is the least

positive integer e such that f(z) | ze − 1 over F[z], and is denoted by ord(f).

Lemma B.8:

Let A be the recurrence matrix of a k-th order linear recurrence relation. Then we

have ord(χA) = ord(A).

Proof:

We will show that for every positive integer e, we have Ae = I if and only if χA(z) |
ze − 1.

First, suppose Ae = I. Then Ae−I = 0, but also χA(A) = 0. Therefore, χA(z) | ze−1

since χA is the minimal polynomial of A by Lemma B.7.

Conversely, suppose χA(z) | ze − 1. Then ze − 1 = χA(z)g(z) for some polynomial g.

Thus, Ae − I = χA(A)g(A) = 0, so that Ae = I. �

Corollary B.2:

Let x0, x1, x2, . . . be a k-th order linear recurrence sequence with recurrence matrix A

and least period p. Then p | ord (χA). Furthermore, if x0 = x1 = x2 = · · · = xk−1 = 0

and xk = 1, then p = ord (χA).

Proof:

The first claim follows from Lemma B.5 and Lemma B.8. The second claim follows

from Lemma B.6 and Lemma B.8. �

Lemma B.9:

Let x0, x1, x2, . . . be a k-th order linear recurrence sequence with a period p and recur-

rence matrix A. Then

χA(z)s(z) = (1− zp)h(z) (B.4)

holds with

s(z) = x0z
p−1 + x1z

p−2 + · · · xp−2z + xp−1 (B.5)
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and

h(z) =
k−1∑
j=0

k−1−j∑
i=0

ai+j+1xiz
j, (B.6)

where we set ak = a0 = −1.

Proof:

Let ct be the coefficient of zt on the left-hand side of B.4 and let dt denote the coefficient

of zt on the right-hand side of B.4. Recall that χA(z) = −
∑k

i=0 aiz
i. Thus,

ct = −
∑
0≤i≤k

0≤j≤p−1
i+j=t

aixp−1−j for 0 ≤ t ≤ k + p− 1. (B.7)

By the definition of k-th order linear recurrence relations, we have

k∑
i=

aixn+i = 0 for n ≥ 0. (B.8)

We will use equations( B.7) and (B.8) and the periodicity of the sequence to complete

the proof in four cases:

If k ≤ t ≤ p− 1, then

ct = −
k∑
i=0

aixp−1−t+i = 0 = dt.

If t ≤ p− 1 and t < k then

ct = −
t∑
i=0

aixp−1−t+i =
t∑

i=t+1

aixp−1−t+i =
t∑

i=t+1

aix−1−t+i =
k−1−t∑
i=0

ai+t+1xi = dt.

If t ≥ p and t ≥ k then

ct = −
k∑

i=t−p+1

aixr−1−t+i = −
k−1−t+r∑
i=0

ai+t−p+1xi = dt.

If p ≤ t < k then

ct = −
t∑

i=t−p+1

aixp−1−t+i = −
p−1∑
i=0

ai+t−p+1xi = −
k−1−t+p∑

i=p

ai+t−p+1xi −
k−1−t+p∑

i=0

ai+t−p+1xi

= −
k−1−t∑
i=0

ai+t+1xi+p −
k−1−t+p∑

i=0

ai+t−p+1xi = dt

since xi+p = xi. �
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Lemma B.10:

Consider a k-th order linear recurrence sequence with recurrence matrix A. If χA(z)

is irreducible then then the least period of the sequence is equal to ord (χA).

Proof:

On the one hand, p | ord (χA) by the first part of Corollary B.2. On the other hand,

by Lemma B.9, we have χA(z)s(z) = (1− zp)h(z), so that

χA(z) | (zp − 1)h(z).

Since s is non-zero, so is h. Furthermore, the degree of h is less than the degree

of χA. Therefore χA(z) | zp − 1 by the irreducibility of χA(z). This implies that

p ≥ ord (χA). �

To wrap things up, we will need the notion of a primitive polynomials. There are

many characterisations of primitive polynomials, we will use the following:

Definition B.5:

A polynomial f of degree k is primitive if it is monic, f(0) 6= 0 and ord(f) = 2k−1.

It is well known and that primitive polynomials are irreducible. (see Chapter 2 of [3]).

Theorem B.1:

Let x0, x1, x2, . . . be a k-th order linear recurrence sequence with non-zero seed and

recurrence matrix A. If χA(z) is primitive then the sequence has least period as large

as possible, that is the least period is equal to 2k − 1.

Proof:

Since χA(z) is primitive, ord (χA) = 2k − 1. Furthermore, χA(z) is irreducible, so the

least period of the sequence is equal to ord (χA) by Lemma B.10. The maximality of

the sequence length comes from Lemma B.2. �
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