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Abstract
Empirical Studies of Android API Usage: Suggesting Related API Calls

and Detecting License Violations

Shams Abubakar Azad

We mine the API method calls used by Android App developers to 1) suggest
related API calls based on the version history of Apps, 2) suggest related API calls
based on StackOverflow posts, and 3) find potential App copyright and license viola-
tions based the similarity of API calls made by them.

Zimmermann et al suggested that “Programmers who changed these functions also
changed” functions that could be mined from previous groupings of functions found
in the version history of a system. Our first contribution is to expand this approach
to a community of Apps. Android developers use a set of API calls when creating
Apps. These API methods are used in similar ways across multiple applications.
Clustering co-changing API methods used by 230 Android Apps, we are able to
predict the changes to API methods that individual App developers will make to
their application with an average precision of 73% and recall of 25%.

Our second contribution can be characterized as “Programmers who discussed
these functions were also interested in these functions.” Informal discussion on Stack-
Overflow provides a rich source of related API methods as developers provide solu-
tions to common problems. Clustering salient API methods in the same highly ranked
posts, we are able to create rules that predict the changes App developers will make
with an average precision of 64% and recall of 15%.

Our last contribution is to find out whether proprietary Apps copy code from
open source Apps, thereby violating the open source license. We have provided a
set of techniques that determines how similar two Apps are based on the API calls
they make. These techniques include android API calls matching, API calls coverage,
App categories, Method/Class clusters and released size of Apps. To validate this
approach we conduct a case study of 150 open source project and 950 proprietary
projects.
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Chapter 1

Introduction

As of July 2013, Android had become the most dominant mobile operating system

in the world and by that time more than 1 million of Android applications had been

developed [67]. Further statistics show that during 2nd quarter of 2012 68% of smart

phones shipped were Android based [34]. Again in one more survey 71% of developers

reported to use this platform as their first choice [16]. These figures completely justify

the exponential growth of Android software development and because of its promising

growth it offers lucrative jobs to Android developers.

Android software developers use Application Programming Interfaces (APIs) to

interact with libraries and frameworks with the aim of reducing the cost of devel-

opment and increasing the quality of the product. There are many obstacles faced

by developers when learning a new API, the most severe ones pertain to learning

resources including documentation and code examples, as well as API structure such

as its design or the name of its API elements [50].
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To help developers learn and re-learn APIs, we have developed approaches that

apply data mining techniques to determine API methods that are commonly used

together. Like Zimmerman et al [73], we use the history of changes to the system

to create association rules for methods that change together. However, instead of

predicting the methods that belong to each individual application, as Zimmerman

did, we predict the changes in the use of API methods that developers make to

Android API method calls.

Android App development is time consuming and challenging. Generally a devel-

oper faces lots of competition from others and tries to launch his App on the market

as soon as possible. To develop their App at much faster rate, proprietary developers

may copy code from online resources. This copying may violate the license of open-

source Apps. Unfortunately, we do not have the source code for proprietary Apps,

so it is difficult to look for copying. We can reverse engineer the binary, however,

many of the method names will be obfuscated. Fortunately, the names of Android

APIs method calls remain unobfuscated so, our next goal is to use this information

to determine if closed Apps are copying code from open source Apps.

This thesis focuses on two works. First, we want to develop a recommendation

model that can recommend relatedness based on Android API call usage for Android

developer which can help them during Android software development. Second, we

want to develop a tool to find the Android Apps’ license violations among different

Android Apps.
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1.1 Outline of Thesis

The thesis is organized in a way that each work gets separate space for the literature,

research questions, methodology and data, and outcomes. This separation can be

justified as both works have distinct goals, different approaches and outcomes. The

last chapter combines and concludes these works.

1.1.1 Using Documentation and Version Control Histories to

Suggest Related API Calls - Chapter 2

Research Questions: Can we predict which API method class will be changed

together in the next version of an App based on the previous changes made to other

Apps in the App Store? Can we predict which API will be changed in the next version

of an App based on the API discussed on StackOverflow? Does the combined model

(AppStore and StackOverflow models) have more predictive power ?

Data: We examine the Git repository of Android Apps and StackOverflow data

to help developer to find the next likely to be changed Android API.

Literature: We will discuss it in chapter 2.

Methodology: Mine the Git repository of 250 Android Apps and 6 years of

Stackoverflow data from 2008 to 2014 to find the association rules based on APIs

changed together in Apps and API discussed together on Stackoverflow.

Outcome: Version history mining of different Apps and discussion post from

Stackoverflow provides useful information to software developer for the development
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process of Apps. Our approach is able to predict the likely to be changed Android

API with a precision of 73% and recall of 27%.

1.1.2 oftware metrics to suggest potential license violations. -

Chapter 3

Research Questions: Which proprietary Android Apps are violating other open-

source Android Apps? What portion of Android APIs from an open-source Apps is

being copied by proprietary Android Apps ?

Data: Examine the Android APIs from proprietary Android Apps and open-

source Android Apps to find the Apps’ license violations among them.

Literature: We will discuss it in chapter 3.

Methodology: Downloaded 150 open-source Apps APK from F-Droid and 950

Apps APK from Google play store. We calculated the similarity between two appli-

cation based on the number of public Android APIs they shared. We removed all the

Android APIs that were present in more than 30% of Android Apps. The more an

App is similar to the other, the more is the chances that it is copying the other one.

Outcome: We found that Apps having high overlap tends to copy more and Apps

that fall in same category (as describe on Google play store) are much similar to each

other. We also performed a manual analysis to determine if copying was indeed

present. For legal reasons, we were not able to send the result to App developers to

understand if they felt copying occurred.
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1.1.3 Conclusion - Chapter 4

The main contribution of the first part of this research work is to create a recom-

mendation model that can help software developer in the development process of a

software by providing him/her important recommendations about the relatedness of

API calls. The second part contributes in creating a tool that can help open-source

App developer to check whether any proprietary Apps is violating license of his open-

source App.

5



Chapter 2

Using Documentation and Version

Control Histories to Suggest Related

API Calls

Software developers use Application Programming Interfaces (APIs) to interact with

libraries and frameworks with the aim of reducing the cost of development and in-

creasing the quality of the product. There are many obstacles faced by developers

when learning a new API, the most severe ones pertain to learning resources including

documentation and code examples, as well as API structure such as its design or the

usage of its API elements [50].

Furthermore, APIs evolve and developers must learn the new sequence of method

calls to achieve a desired behavior. To help developers learn and re-learn APIs method

usage, we have developed approaches that apply data mining techniques to determine
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API method calls that are commonly used together. We extract the related APIs

method calls from both development history, research approach 1 (RA1), and informal

StackOverflow documentation (RA2). To evaluate our approaches, we predict the

changes in API method calls that developers will make to their Apps. In total we

examine 230 randomly-sampled Android Apps, 12k version of those Apps, and 152k

API method calls. With version history, our best approach has an average precision

of 70 percent and a recall of 27 percent. With informal API documentation, our best

approach achieves a precision of 63 percent and a recall of 14 percent.

2.1 Research Approaches

RA 1, Version history: Using the version history of Apps we extract association

rules of associated API method calls. We use the following approaches:

RA 1.1, Individual App Baseline: Like Zimmerman et al [73], we use the

history of changes to the system to create rules for methods that change together.

However, instead of predicting the methods that belong to each individual application,

as Zimmerman did, we predict the changes that developers make to Android API

method calls.

RA 1.2, Community of Apps: Using a single App, we are only able to create

rules from the changes that have occurred in its past. Since the Android API is used

in a similar manner across Apps, we are able to create rules from a community of

applications. In this way, we are able to make suggestions to App developers on how

7



to use API features that they may have never used before.

RA 1.3, Similar Apps: The Android API allows for a wide variety of applica-

tions that serve many different purposes from business to games. Similar to Gorla

et al. [32] idea, we categorize the Android Apps based on their application type.

However Gorla et al used Latent Dirichlet Allocation to categorized the Apps based

on their description, we used application type described on Google play store. Apps

from the same categories are expected to have common API calls. This will help us

generating rules based on common API clusters and might increase the quality of our

predictions.

RA 2, Informal Documentation on StackOverflow: Informal API docu-

mentation describes how to combine API methods to solve problems that developers

commonly face. We generate association rules from the API methods present in high

quality answer posts. These rules are then used to predict the changes to individual

Android Apps. We have three approaches:

RA 2.1 StackOverflow Posts: To extract API methods from StackOverflow

posts, we use Rigby and Robillard’s tool that can acurately identify qualified API

methods (e.g. Intent.addCategory) from natural freeform text and code snippets that

don’t necessarily compile [49]. We cluster all API methods present in highly rated

answer posts.

RA 2.2 StackOverflow Code Snippets: Code snippets most often demon-

strate the usage of an API [71, 70]. Recently, there has been much work on extracting

code snippets to enhance traditional API documentation with up-to-date source code

8



examples [61] as well as their summarization for better presenting code examples.

We evaluate how well code snippets in answer posts predict the actual changes App

developers make.

RA 2.2, Salient Methods on StackOverflow: Rigby and Robillard found code

snippets contain setup code that is repeated across many posts [49]. For example,

the API method android.view.ViewGroup.findViewById necessarily occurs every time

with the method android.view.LayoutInflater.inflate. They found that code that was

contained in free-form text tended to have a higher salience to the problem at hand.

For example, API elements that are central to an example code fragment or have

some discussion defining their function or describing their use. For this approach, we

only consider API methods that are surrounded by natural language.

RA 3, Combining the best approaches: After evaluating the predictive power

of each individual approach, we combine the top rules from the version history of a

community of applications with the best StackOverflow rules. Our goal is to determine

how complementary the set of rules are.

The remainder of this research work is structured as follows. In Section 2.2, we

provide examples of related API elements in the App version history and in Stack-

Overflow posts and code snippets. Section 2.3 describes our suggested approaches

in detail. In Section 2.4, we evaluate how well each of our approaches predicts the

changes that developers make to their Apps. In Section 2.6, we position this work

in the literature. In Section 2.5, we discuss threats to validity. In Section 2.7, we

conclude the research work and discuss the implications of our approaches.

9



2.2 Examples of relationships between API calls

In this section, we provide examples that illustrate relationships between API calls.

Fig. 1(b) represents the output of a git-diff showing an example of a set of

Android API calls that have been changed together in a same commit in the Git

repository of the Android SatNav App for GPS navigation. For example, the API

methods android.content.Intent.hasExtra on line 40, android.util.Log.e on line 51, an-

droid.os.Bundle.getInt on line 57, and android.content.res.Resources.getStringArray

on line 60 have been added together in the same change.

(a) Example of Android API methods discussed together on StackOverflow.

Professional developers also discuss Android API elements that perplex them on

10



forums including StackOverflow. Fig. 1(a) shows an example of Android API meth-

ods, i.e. ProgressDialog.show on line 1 and Toast.makeText on line 2 discussed on

highly-voted StackOverflow posts, i.e. question with 65 votes and answer having 85

votes, for the sake of understanding the differences between ActivityContext and

ApplicationContext.

These examples motivate the use of both source code change history and docu-

mentation to discover relationships between API calls.

(b) Example of Android API methods changed together in the Git version history.

2.2.1 Stage 1: Data Preprocessing

Before attempting to find patterns related to co-evolving API methods in development

history and documentation, we need to ensure that the data is appropriate and that

we have a reasonable size history to mine. In the following, we present the steps

11



Table 1: Characteristics of the Studied Apps.

Apps’ Domains Apps’ Characteristics

#Apps #Versions #Changed Files #API Methods Changes

Arcade & Card 3 49 37 356
Books & Reference 7 498 495 4,048
Business 2 79 40 694
Communication 9 1,623 1,151 19,050
Education 7 426 203 6,060
Entertainment 8 705 457 6,110
Finance 5 640 658 9,558
Health & Fitness 3 73 35 736
Libraries & Demo 2 22 24 959
Lifestyle 3 61 48 421
Media & Video 6 790 694 7,806
Music & Audio 4 404 295 3,629
News & Magazines 2 166 100 2,188
Personalization 12 776 440 10,619
Photography 2 15 22 188
Productivity 14 419 502 6,024
Puzzels 6 95 84 624
Social 5 426 286 5,180
Tools 120 4,144 3,844 56,930
Transportation 6 109 107 984
Travel & Local 3 59 86 848
Total 230 12, 172 10, 180 152, 624

of data collection and data preprocessing that proceed the identification of atomic

changes and clusters of discussed API elements.

The first step involved downloading the Git repositories of 230 free and open-

source Android Apps. The Git repository of each application was downloaded using

a Web crawler that we designed to parse the F-Droid Web-pages and extract informa-

tion about the Git repositories from the F-Droid1 catalogue. This catalogue contains

673 Android Apps in total. It provides information not only about the Git reposito-

ries of each Android application but also other information such as a link to the App
1https://f-droid.org/
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on the Google Play Store.

We used random sampling to select Apps. Unlike previous works that sampled

the most recent version from thousands of Apps, we had to analyze each changed

code element from 12k versions and 151k API elements, which limited the number

of Apps we could study. Table 1 summarizes the main characteristics of the studied

applications, including the App category (App Domain), the number of the randomly-

chosen applications from each category (#Apps), the number of commits (#Versions),

the number of source code files that changed (# Changed Files), as well as the number

of API methods changes (#API Methods Changes) per each category.

The second step consists of mining the Git repositories of each application to access

information about the Apps evolution. We parsed each Git repository and extracted

the following: changed source code files, the type of changes made in each commit

(e.g. addition or removal of an internal or external API element), the developer who

committed the change, the author of the change, and the time of the change. The

data was stored in PostgreSQL databases to facilitate further linking and processing.

2.2.2 Stage 2: Extracting API elements from Development

History

Zimmermann et al. [73], focused on the code elements that made up the system, not

the API calls. We focus exclusively on API method calls.

The process of identifying API elements is more difficult than that of identifying

code elements internal to a system. To identify changing internal elements, one

13



simply looks for changes inside a class to, for example, method declarations. The

fully qualified name is apparent. However, with API method calls, one must resolve

the type bindings to an external library.

There are two major challenges with identifying changes to API method calls.

First, the identification of calls to APIs require advanced parsers that are able to

resolve fully qualified names (FQN). Second, resolving this AST requires that one

either builds each version of an App or extract a partial AST [20]. Therefore, we

need an accurate approach to perform partial programming analysis since a simple

Abstract Syntax Tree (AST) will fail to handle partial programs, resolve syntax am-

biguities, and provide any type information when the declaration of a type is missing.

There has been much excellent research into partial program analysis. For example,

PARSEWeb is an approach that analyzes incomplete code, it performs type infer-

ence and resolves syntactic ambiguities. However, its prototype has not been fully

evaluated and it is not publicly available. In addition, it is limited to two inference

strategies only, i.e. the return type and method bindings [62]. Other parsers were

designed for the same purpose including fuzzy parsers [30] which extract high-level

structures out of incomplete or syntactically incorrect programs, and island gram-

mars [43] which parse code snippets into islands grammer. Also, Gagnon et al. have

proposed a technique to find declared types of local variables when starting from Java

bytecode [17]. Their technique uses widely-adopted static analyzers that are based

on a compiler framework that requires, in advance, the whole source code even when

14



dealing with complete programs and type hierarchy, besides that there are no syntac-

tic ambiguities in bytecode. Other techniques have relied on the use of static analyses

to partially parse programs. Examples of such works include partial data flow and

fragment analyses [15, 21, 52, 53] which require an Intermediate Representation (IR)

generated from the complete code where no type declaration is missing. To overcome

the above-mentioned shortcomings, we selected PPA (Partial Programming Analysis)

developed by Dagenais and Hendren [12] to analyze partial programs at the level of

each commit from the development history.

PPA creates an intermediate representation of the source code and returns the fully

qualified names of each element. In a partial program, the complete type information

may not be available, so a set of heuristics are used to extract fully qualified names.

In some cases ambigiuity will remain, such as when the class and method name are

known, but the package name is unknown. In experiments performed by the authors,

the technique attained a precision of 92% [12].

PPA is not fast enough to process each file for each version, so we created a

pipeline that allowed us to run PPA only on changed files and to extract the fully

qualified name of methods that had changed. We used the following steps. First,

using git-log we identified the files that had changed and the lines that had changed.

Second, for each change, we generated the state of the system before and after each

change using git-checkout. Third, we ran PPA on the before and after state of each

file to identify all code elements. Fourth, using the line numbers that had changed,

we were able to identify all the removed code elements in the ’before’ state and all the

15



added ones in the ’after’ state. If a code element occurred in both before and after,

it was on a changed line, but remained unchanged itself. Finally, the fully qualified

name was stored in the database indexed to its change commit. Although we have

information about classes, APIs are used for their behavior and a change in a fully

qualified method call will also cover the API classes.

2.2.3 Stage 3: Identifying API methods in documentation

A great deal of knowledge about the behaviour of an API is contained in the informal

discussions of developers as they help each other to solve problems. We group the

API methods found in developer posts to predict the groupings of API methods that

developers use in their Apps. These relationships should provide API method group-

ings that solve specific, recurring problems that App developers face and complement

the co-evolving API method groupings found in the version history.

We extract qualified API methods (e.g. Class.method()) from StackOverflow.

StackOverflow is a question and answer forum for professional developers [35]2. De-

velopers ask and answer questions as well as vote on the quality of a post. Each post

is related to a specific topic that involves a set of related API calls.

Extracting API method calls from software artifacts, such as documentation and

requirements, has received significant research attention. For example, information

retrieval techniques, such as Vector Space Models and Latent Semantic Index have

been tried, but have yielded low precision and recall i.e. (less than 65 percent) [5]. In
2http://developer.android.com/
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this investigation, we extract API method calls from each Android tagged StackOver-

flow post using that exist in the free-form text, i.e. StackOverflow posts using Rigby

and Robillard’s [49] Automatic Code Element extractor (ACE). ACE can extract code

elements from documents that contain free-form text as well as code fragments that

may not be compilable and handle large document collections with high precision

and recall (above 0.90) [49]. ACE uses an island parser to identify code elements in

documents. Unlike prior works [2, 36], this approach does not depend on an index

of valid elements parsed from the source code of a particular system[13]. Instead,

it identifies code elements in Java constructs and creates an index of valid elements

based on the elements contained in the collection of documents. More recent works

that do not need an index of valid terms, can only parse code snippets and miss code

elements that are in free-form text [61]. ACE performs the following stages in the

code element identification process:

1. It uses an island parser to identify code-like terms from each document.

2. It creates an index of valid code elements based on step 1.

3. It re-parses each document to identify ambiguous terms that match code ele-

ments in the term index. It resolves each term using the term’s context.

4. It outputs the code elements associated with each document.

Our goal is to provide developers with pertinent rules from documentation about

API method that are related because repeatedly co-occurred in posts. We only in-

clude related API methods from the posts that are having at-least 1 upvote because
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these posts are acknowledged by the community to represent good solutions. We ex-

clude questions posts because questioners do not know where to focus and so provide

as much information as possible in the hope that someone will spot their problem.

Question post does not show the relatedness of code elements so, it would introduce

noise in our data and impact the accuracy of our predictions. We processed the Stack-

Overflow posts tagged with ‘android’ from August 2008 till October 2014. There was

a total of 22 million posts, including questions and lowly ranked answer posts. Of

the 1 million highly voted posts we analyzed 495k that contained at least two API

methods. In total we identified 2 million uses of API methods.

2.2.4 Stage 4: Identifying related API methods

In the previous stages, we described how we extracted API methods from the version

history and from StackOverflow posts. In the former case, we group API methods

based on those that are changed in the same commit. In the latter case, we group

API methods based on those that co-occur in highly-voted answer posts. We can then

generate rules from these groupings based on how frequently API methods co-occur.

Using all groupings from the version history of all Apps will likely create a set of rules

that are too general. As a result, we also group rules by application category.

Grouping APIs’ Changes by Application Category

Recently, researchers have mined applications and clustered them by their description

topics. They used as proxy for their implemented behaviour, the set of Android APIs
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that are used from within an application binary. The key idea was to associate

descriptions and API usage to detect anomalies, i.e. applications whose behaviour

would be unexpected given their descriptions [32]. Inspired from this study, we cluster

applications by their category (i.e. communication, transport, finance, etc.) since

similar applications are more likely to make calls to similar external APIs with the

purpose of implementing similar behaviours. The aim is to show whether unlike

previous works that investigated the source code change history of single projects

[73? ], we will be able to predict changes by mining development history across

multiple similar projects.

We categorized the analyzed Android Apps based on the considered categories

found in the Google Play Store3.

’appid’ is the common identifier used on F-Droid and Google Play Store. Using

this identifier and Marketplace API4, we were able to access the information about

the considered Android Apps’ category. We identified 22 different categories corre-

sponding to the analyzed Android Apps. We grouped the applications together based

on these categories. Each cluster consists of a different number of applications since

they were randomly-chosen from F-Droid (Cf. Table 1). We group historical changes

by community of applications belonging to each category, then we generate recom-

mendations concerning co-changing API methods using the development history of

each cluster of similar applications, and finally we compute precision and recall for

our recommendations.
3https://play.google.com/store?hl=en
4https://code.google.com/p/android-market-api/
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We compare the precision and recall for the single App and community of Apps

approaches.

Grouping Discussed API methods by Developers’ Discussions

Prior to mining relationships between API methods from documentation, we needed

to create clusters of discussed API elements from documentation. We used as a doc-

ument units, highly-voted StackOverflow answers. We clustered the API methods

mentioned in each highly-voted StackOverflow answer while ignoring stack-traces us-

ing appropriate PERL scripts. We considered only Android API methods, i.e. those

belonging to the package Android∗ since the context of our study consists of Android

Apps.

We distinguish three investigations when dealing with API documentation. The

first model leverages the entire content of each highly-voted StackOverflow answer,

i.e. all mentioned API methods including the ones trapped in natural language text

as well as the ones in code snippets. The second model exploits API methods in code

snippets only, while the last approach focuses on salient methods, i.e. those that are

mentioned in natural language text exclusively.

We dealt with a total of 141,629 StackOverflow answers posts in the first investi-

gation while we analyzed 105,236 posts in the case of code snippets. Finally, we had

a total of 36,393 posts containing salient methods (API methods discussed in post).
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2.2.5 Step 5: Association Rule Mining

We mine rules relating API methods from both development histories and documen-

tation. We followed the following procedure.

Grouping API Methods into Transactions

Before describing how our mining approach works, we first introduce the following

notions: transactions and items as well as their definitions depending on the context

in which they are used, i.e. change history or documentation.

When exploiting change history, we distinguish two different high-level changes:

addition or removal of an API method. We focus on these two high-level changes

because we are interested in calls to external APIs. An API method that has been

changed in a particular commit is called an item in our case. A transaction consists of

a set of atomic changes items–each of them represents a API method change–identified

by the same author, same date, and message under Git.

When leveraging change documentation, we define a transaction as the set of API

methods discussed together in the same high-quality voted answer in the StackOver-

flow where each API method represent an item of a transaction. Thus, a transaction

is identified by the a developer, date, and content which correspond to the actual

StackOverflow post in question. The sets of all transactions represent the input for

the mining phase.

We address the following: “I added this API method during my source code change

task; which other methods are typically relevant to my task?”
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An example that illustrates the notion of transactions is as follows:

T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

android.widget.T extV iew.setV isibility

android.app.ListActivity.findV iewById

android.app.Activity.getApplicationContext

android.app.Activity.getWindow

android.app.Acctivity.onCreate

android.widget.Toast.makeText

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where T consists of six atomic changes underwent by the above-mentioned Android

API methods involving additions of the methods android.app.ListActivity.findViewById,

android.app.Activity.getApplicationContext, and android.app.Acctivity.onCreate as well

as deletions of android.widget.TextView.setVisibility, android.app.Activity.getWindow,

and android.widget.Toast.makeTex.

We filter transactions to eliminate those consisting of more than 100 API methods

because as stated in previous works these long transactions do not usually correspond

to meaningful atomic changes, such as feature requests and bug fixes [23]. An example

is when developers perform an initial commit or a license change that need to be

reflected in all files or when they refactor code such as the case of the Eclipse IDE

where developers organize their java files’ import declarations that involve a large

number of files [? ]. Additionally, we exclude transactions consisting of one item

since such transactions cannot help when performing the prediction.

Our applications differ in their development history. For example the Android ap-

plication aGrep belonging to the category Tools has five years of source code history,
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it has been under Git since 2010, whereas the Android application abstract-art from

the category Personalization has only three years of development history. Each of

these applications also involves several developers, reducing the likelihood that partic-

ular programming habits or practices of a specific developer considerably affects the

accuracy of the predictability of the suggested approach. Additionally, the number

of developers contributing to StackOverflow is also large alleviating possible threats

related to transactions built from StackOverflow best answers.

From Transactions to Rules

Association rule mining is a means of discovering relationships between items of trans-

actions in a database. We generate rules and show the extent to which these items are

strongly related to each other based on the computation of probabilities (i.e. support

and confidence).

Given a set of transactions from development history or documentation, the goal

of our approach is to mine rules from these transactions and suggest to developers

pertinent recommendations about co-evolving API elements. An example of rule

mined from development history is as follows:

android.view.MenuItem.getItemId ⇒ android.view.LayoutInflater.inflate

This rule means that whenever the developer changes the Android API method

android.view.MenuItem.getItemId, then she should also change the method

android.view.LayoutInflater.inflate.
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Formally, an association rule r: X ⇒ Y is a pair (X,Y ) of two disjoint itemsets

X and Y where X is called the antecedent (if) and Y the consequent (then). Rules

computed from data, unlike the if-then rules of logic, are probabilistic in nature. They

are interpreted based on the amount of evidence, that is, the number of transactions a

rule is derived from. Therefore, the implication in the rule is based on the knowledge

discovered from learning history or documentation and should be not considered as

an absolute truth.

Association rule mining discovers all rules in the data that satisfy a user-specified

minimum support and minimum confidence. Minimum support represents the min-

imum amount of evidence, that is the number of transactions required to consider

a rule valid and minimum confidence specifies how strong the implication of a rule

must be to be considered valuable:

• Support. The support is defined as the number of transactions from which the

rule has been derived. Assume that the API method call

android.view.MenuItem.getItemId was changed in 30 transactions. Of these 30

transactions, 6 also involved changes of both the android.view.LayoutInflater.inflate.

The support for the above rule is then equal to 6. Formally, the support is de-

fined as follows: The support of a rule X ⇒ Y by a set of transactions T is:

support(X ⇒ Y ) = count(X⇒Y )
|T |

where
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– count(X ⇒ Y ) represents the number of transactions where X ∪ Y occurs

together.

– |T | is the total number of transactions in a database.

• Confidence. The confidence reflects the strength of the rule, i.e. the conse-

quence. It is the ratio of the number of transactions that contain all items in the

consequent and antecedent (i.e. support) to the number of transactions including

all items in a given antecedent. In the above example, the consequence of chang-

ing android.view.MenuItem.getItemId and android.view.LayoutInflater.inflate ap-

plies in 6 out of 30 transactions. Hence, the confidence for the above rule is 0.2.

Formally, the confidence is defined as follows:

The confidence of a rule X ⇒ Y by a set of transactions T is:

confidence(X ⇒ Y ) = support(X⇒Y )
support(X)

where

– support(X ⇒ Y ) represents the support of a rule X ⇒ Y by a set of

transactions T.

– T is the total number of transactions in the analyzed database.

Following Zimmermann et al [73], when we had a large number of transactions

that reduced the support values of rules, we used the support count. The support

count is formally defined as follows:
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• Support count. The support count determines the number of transactions

the rule has been derived from. Assume that the method has changed in 20

transactions. Of these 20 transactions, 10 also included changes of the method.

Therefore, the support count for the above rule is 10.

The support count of a rule X ⇒ Y by a set of transactions T is:

support_count(X ⇒ Y ) = frequency(X ∪ Y )

where

– frequency(X ∪ Y ) represents the number of transactions where X ∪ Y

occurs together.

Consequently, the confidence in case of support count of a rule X ⇒ Y by a set

of transactions T is as follows:

confidence(X ⇒ Y ) = support_count(X⇒Y )

support_count(X)

where

– support_count(X ⇒ Y ) represents the support count of a rule X ⇒ Y by

a set of transactions T.

– support_count(X) is the number of transactions containing X.
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We generate rules from two databases: the first database consists of transactions

built by mining development history across multiple similar projects while the sec-

ond database consists of transactions created by mining documentation history. The

association rule mining algorithm used in the mining phase is the classical approach

widely applied in data mining namely, i.e. the Apriori algorithm.

Apriori

The classical approach to compute association rules is the Apriori Algorithm [1]. The

Apriori algorithm takes as input a minimum support and a minimum confidence and

computes the set of all association rules. The support measure helps to reduce the

number of candidate itemsets explored during the frequent itemset generation phase.

The pruning of candidate itemsets using support is guided by the Apriori principle:

if an itemset is frequent, then all of its subsets must also be frequent [1].

The traditional and simple way of applying the Apriori algorithm is to compute all

rules beforehand and then identify the rules corresponding to a given item. However,

computing all possible rules can be time demanding–up to 2-3 days in our experiments

since, our approach tries to optimize the computation time by bringing the following

modifications to the mining algorithm when generating the association rules:

An association rule consist of two part, the left hand side of it is known as an-

tecedent and the right hand side of it is known as consequent.

antecedent → consequent

• Single antecedents. We consider only rules with a single antecedent. Thus,
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our approach computes only rules with a single item in their antecedents. As-

sociation rules with more than one item in their antecedents such as api1, api2

⇒ api3 are therefore not considered.

• Single consequents. We have modified the approach such that it only com-

putes rules with a single item in their consequent. So, for a given item (e.g.

api1); the rules have the form api1 ⇒ api2. As shown in previous works, rules

with single consequents are sufficient when considering the union of all the con-

sequents for a given item [73].

The above-mentioned considerations reduced the computation time of our ap-

proach whose core part is the mining phase which uses a set of PostgreSQL database

queries, Perl and R scripts to 1) generate atomic change sets and, thus, transactions

from the source code change history of (individual, all, or similar) applications, 2)

build clusters of discussed API elements which form the transactions for the doc-

umentation, 3) access the transactions per individual or clusters of (all or similar)

applications (when dealing with development history) and posts (when leveraging

documentation) plus 4) take into account, using R scripts, the developer-specified

minimum support and confidence thresholds to compute rules and report their sup-

port and confidence values.

The average runtime of the approach varies with the amount of analyzed history.

When dealing for example with large version histories (i.e. thousands of transactions)

such as the case for the categories Tools having 3,485 transactions and Communication
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consisting of 1,295 ones, the computation time is about 15 minutes, measured on a

standard workstation Intel Core i5-2400 CPU 3.10 GHZ and 12 GB RAM. The partial

programming analysis phase time is not included here as it was used to generate FQN

for each code element but not for finding rules. However, after initially parsing the

changes, which is very time consuming because there was over 150k changes, the

parsing of each change in real time will not be time consuming and can easily be

appended in the database.

Analyzing the entire StackOverflow and identifying API elements present in it

using the ACE approach took us almost 4 days of computation time which is rea-

sonable given the large amount of discussions (i.e. 22 millions of posts). Predicting

co-evolving API elements using new discussions posted in StackOverflow will require

us to update our database with the new information.

Generating and Filtering Rules

Assume a developer has performed some changes, following Zimmermann et al. [73],

we refer to the set of items that underwent changes as the situation S. An example

of situation is as follows:

S = {android.app.Activity.getRessources}

Given a situation, our approach predicts likely changes in API elements by consid-

ering pattern matching rules. A rule matches an item if it is equal to the antecedent

of the rule. Our approach suggests a list of API elements L for a situation S and a

set of rules R by considering the union of the consequents of all matching rules:
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A = ∪(S⇒x)∈R x

We rank the matching rules by confidence. Thus, for all rules having the same

antecedent, the union of the consequents of all rules is assigned. We choose the con-

fidence as a criterion for ordering rules because by definition the confidence measure

reflects the pertinence and strength of a rule. The number of generated rules varies

with the specified support and confidence thresholds which are input parameters in

our approach. Low thresholds such as 0.001 and 0.1 would overwhelm developers

with suggestions. As a result, we show only the top 10 rules R10 ranked by confidence

instead of the entire set R.

R10 ⊂ R

The notions of situation, matching rules, and top 10 rules used by our approach

applies for both rules generated from development history as well as documentation,

i.e. StackOverflow.

2.3 Rule Examples

In the following, we present an illustrative example of actual rules mined from devel-

opment history and StackOverflow.

Using the development history we find that the API methods

android.content.Context.getResources and android.content.Context.getString occur in

the same change sets. These two APIs have been used by 27 Android Apps and have
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been changed together in 47 transactions. In a set of these 47 transactions, this rule

was triggered by a change in the type:

android.content.Context.getResources ⇒⎧⎪⎪⎨
⎪⎪⎩

android.content.Context.getString

android.content.Context.createDisplayContext

⎫⎪⎪⎬
⎪⎪⎭

[7;10]

This means that whenever the API method android.content.Context.getResources

changes, the android.content.Context.getString should change as well. The minimum

support and confidence used to generate this rule are respectively 0.01 and 0.5.

On the highly voted StackOverflow answer posts, we find that the API meth-

ods the API methods SQLiteDatabase.update and SQLiteDatabase.insert have been

discussed together in 6 transactions. An example of rule mined is as follows:

Environment.getExternalStorageDirectory ⇒⎧⎪⎪⎨
⎪⎪⎩

android.content.Context.getF ilesDir

android.content.Context.openF ileOuput

⎫⎪⎪⎬
⎪⎪⎭

[5;70]

Whenever a developer changes the API method Context.getFilesDir, he or she

should be aware of the method Environment.getExternalStorageDirectory since they

are often discussed together on StackOverflow.
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2.4 Empirical Evaluation

2.4.1 Evaluation Setup and Analysis Method

The validation process required dividing our data into training and test data. The

training data (Tr) was used to predict related API methods that were then used to

suggest API methods co-evolution rules for the test data (Ts) set. Thus, we analyzed

for each set of transactions T from the test set whether its items (items(T )) can be

predicted from the training set.

We arranged all the transactions in accending order of date of commit or accending

order of date of post and dividev them into two parts. The training data set consists

of 80 percent of the transactions, while the test set consists of 20 percent of recent

data for each App. All of the transactions in the training set are older than the test

set. Since some Apps are small, we ensured that each division had at least one full

month of test data.

The procedure followed during our evaluation process can be summarized as fol-

lows:

1. Based on the test set, i.e. Ts, we prepared a number of queries for each trans-

action. A query q = (Q,W ) consists of a query Q ⊂ items(T ) and an ex-

pected outcome W = items(T )−Q. For each App, for each transaction T with

|T | >= 2 and each item m ∈ T from its evaluation period, we consider the

situation Q = m and check whether the approach would predict the expected

outcome W = T −m. We dealt with |T | queries per transaction T , whose items
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each consists of a single antecedent t ∈ T .

2. For each query q = (Q,W ), we consider all transactions Tr that have been

completed before time(T ) as a training set and mine the set of association rules

R from these transactions with respect to Q.

3. The number of generated rules can be huge (depending on the support and

confidence thresholds). From a tool perspective, the developer who will use

this approach does not have to be overwhelmed by endless lists of API methods

change suggestions. For such a purpose, we consider the top 10 single-consequent

rules R10 ⊂ R ordered by confidence.

4. The result Mq(R10) of a query q = (Q,W ) consists of two parts:

• Mq ∩ Wq consists of items that matched the expected result and, therefore,

are considered correct. Wq is the expected outcome for the query q.

• Mq - Wq are unexpected rules which are incorrect.

For the assessment of a result Mq for a query q = (Q,W ), we use three measures

from information retrieval [65]: the precision Pq shows the percentage of API elements

that correspond to the expected outcome. The recall Rq indicates the percentage of

expected API methods changes that were returned. To provide an aggregated, overall

measure of precision and recall, we use the F-Measure Fq, which is the harmonic mean

of precision and recall:

Pq = |Mq∩Wq |
|Mq |
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Rq = |Mq∩Wq |
|Wq |

Fq = 2.Pq .Rq

Pq+Rq

We compute for each query q, the triple (Pq, Rq, Fq) of precision, recall, and F-

measure. To measure the overall performance of the approach for all assessed queries

A generated from transactions of the evaluation period, i.e. those belonging to the

test set (Ts), we summarize the obtained triples of precision, recall, and F-measure

into single triple based on a macroevolution technique from information retrieval.

Macroevolution computes the average values of precision, recall, and F-measure triples

of the queries A:

A∗ = {q|q = (Q,W ) ∈ A,Mq 	= ∅}

If the approach does not return any API methods change suggestions for a query

q (that is, Mq = ∅), we exclude such queries from our analysis to avoid impacting

the accuracy and more specifically the approach’s precision. Thus, unless otherwise

noted, our analysis includes only the queries A∗ where Mq is not empty:

PM = 1
|A∗|

∑
q∈A∗ Pq

RM = 1
|A∗|

∑
q∈A∗ Rq

FM = 1
|A∗|

∑
q∈A∗ Fq

where PM , RM , and FM are respectively the averages of precision, recall, and F-

measure over all queries of each single application. The averages of these values over
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all studied Apps represent the final precision PM ′ , recall RM ′ , and F-measure FM ′ of

each suggested approach.

2.4.2 Comparing Approaches

To compare the predictive power of each approach, we conducted pair-wise compar-

isons of the precision, recall, and F-measure using a non-parametric test for pair-wise

median comparison, specifically the Wilcoxon paired test. We chose a paired test

because our samples are dependent, as we compute, for each individual App, its

corresponding precision, recall, and F-measure by applying the different approaches.

The Wilcoxon test indicates whether the median difference between two approaches

is significantly different from zero i.e. H0 : μd = 0, where μd is the median of the dif-

ferences.

Since we execute the Wilcoxon paired test multiple times to compare the predictive

power of the various approaches, we must correct significant p-values. We use the

Holm correction [24], which is similar to the Bonferroni correction, but less stringent.

It works as follows: (i) the p-values obtained from multiple tests are ranked from

the smallest to the largest, (ii) the first p-value is multiplied by the number of tests

performed (n), and is deemed to be significant if it is less than 0.05, and (iii) the

second p-value is multiplied by n − 1, and so on. In Table 2, we have shown the

result of Wilcoxon paired test that shows our approach is better than the baseline.
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Table 2: Comparison among Approaches: Results of Wilcoxon Paired Test

Precision
Approach 1 Approach 2 Adjusted p-value
Basline (Individual Apps) All Apps <0.001
All Apps Similar Apps <0.001
StackOverflow StackOverflow Code Snippets 0.182
StackOverflow Code Snippets Salient Methods 0.025
Baseline (Individual Apps) Development History and StackOverflow <0.001

Recall
Baseline (Individual Apps) All Apps 0.64
All Apps Similar Apps 0.0139
Stackoverflow StackOverflow Code Snippets 0.9798
StackOverflow Code Snippets Salient Methods <0.001
Baseline (Individual Apps) Development History and StackOverflow 0.059

F-measure
Baseline (Individual Apps) All Apps <0.001
All Apps Similar Apps 0.1174
StackOverflow StackOverflow Code Snippets 0.9714
StackOverflow Code Snippets Salient Methods <0.001
Baseline (Individual Apps) Development History and StackOverflow <0.001

2.4.3 RA 1: Version History

In this section, we use the changes that App developers have made in the past to

predict the changes that will be made in the future. We group API methods that

change together using association mining rules. We have three approaches. First, we

replicate past work by making predictions using single Apps. Second, we combine the

rules generated across the entire community of Apps. Third, we combine rules that

come from similar Apps, such as Apps in a similar domain. In all cases, we divide the

data into a training and test set, grouping co-changing API methods to create rules

in the training set and predicting co-changing API methods in the test set.

RA 1.1: Individual App Baseline

Our baseline leverages source code changes of individual Apps to predict changes in

API methods for each app.
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Table 3: Predictability Results using Development History Mined for Individual Apps:
PM ′ = Precision , RM ′ = Recall, FM ′ = F-measure.

Development History Results
Metrics 1Q Median Mean 3Q Max

PM ′ 17.79 28.75 35.60 48.39 100

RM ′ 8.65 18.06 22.06 29.66 100

FM ′ 12.97 19.81 21.27 28.68 57.77

The training set of our baseline consists of a total of 9,266 transactions and 51,908

items while the evaluation test deals with 2,520 transactions and 12,521 items in total.

We had, on average, 27 transactions per App for the training part while we dealt with

8 transactions, on average, from the test set. Each transaction consists of, an average,

of 6 items.

Since we had to deal with the development history for 230 different individual

Apps, we had to perform several experiments with different minimum support and

confidence thresholds for each App. To facilitate comparison across all applications,

we decided on a common value for all Apps as in previous works [73]. We chose

thresholds that are not too low and not too high to ensure a trade-off between the

number of rules and their relevance. Table 3 reports the descriptive statistics of the

precision, recall, and F-measure obtained with a support count threshold equal to 5

and a confidence threshold equal to 60 percent.

The findings from Table 3 indicate that our single App version history baseline

approach is able to predict API method changes with an average precision of 36
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percent, recall of 22 percent, and F-measure of 21 percent. While relatively low, these

results are consistent with Zimmermann et al. [73] who reported an average precision

and recall of 29% and 44%, respectively. With the small size of Apps, we might

expect substantially lower results than Zimmermann et al. who used large systems

like Eclipse and JBoss. We suspect that one reason we achieved better precision (7

points higher) and lower recall (22 points lower) is because we are predicting API

method calls and not internal method changes. The possible set of rules is smaller

with API methods, so our predictions may be accurate despite a short version history.

RA 1.2: Community of Apps

Our baseline produced a reasonable precision and recall despite a short version history.

Since API methods are used in similar patterns across multiple Apps, we use the

version history of all Apps to create rules to predict the changes that will be made

to individual Apps.

We dealt with a training period of six years going from 2007 to 2013, we had in

total 9,738 transactions and 120,401 items. Our evaluation period consists of one

year, it goes from 2013 to 2014 and consists of 2,435 transactions and 30,223 items to

be evaluated from the test set. Similarly to our first investigation, we experimentally

determined the minimum support and confidence thresholds suitable for our train-

ing set by means of several experiments starting from low support and confidence

thresholds up to high ones, then we chose the final parameters that enable us to

find a compromise between the number of generated rules and their pertinence. The
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Table 4: Predictability Results using Source Code Changes Mined across All Apps: PM ′

= Precision , RM ′ = Recall, FM ′ = F-measure.

Development History Results
Metrics 1Q Median Mean 3Q Max

PM ′ 64.27 73.64 75.14 87.84 100

RM ′ 9.74 17.36 22.32 29.07 100

FM ′ 17.39 28.74 30.57 41.16 93.72

configuration chosen consists of a support count of 12 and a confidence of 70 percent.

Table 4 summarizes the results of investigating the source code change history

across all Apps. Results indicate that we can predict changes in individual Apps with

an average precision of 75 percent and an average recall of 22 percent. Compared to

our baseline, we increase our precision by 40 points, and recall remain almost same.

The difference in terms of precision is statistically significant with a p-value <0.001

while there is no statistically significant difference in terms of recall. Consequently,

the difference in terms of F-measure is statically significant with a p-value<0.001.

Given the task of suggesting possibly relevant API methods to developers, we

suggest a related method that the developer actually used 75 percent of the time.

The high precision clearly illustrates that developers use API methods in very regular

and consistent patterns.

The low recall, indicates that there are many different ways to combine API

methods, and while we accurately suggest related API methods, we miss many of the

possible combinations. Since we are only suggesting the top 10 related API methods,
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Table 5: Development History of Analyzed Projects (Txn = Transaction).

Apps’ Domains Data from Source Code

Category #Files Changed #Txns #Items

Arcade 37 39 115
Books & Reference 495 396 1,310
Business 40 62 254
Communication 1,151 1,295 6,719
Education 203 337 1,247
Entertainment 457 560 1,882
Finance 658 566 3,590
Health & Fitness 35 57 317
Libraries & Demo 24 17 164
Lifestyle 48 47 231
Media & Video 694 653 2,635
Music & Audio 295 338 1,379
News & Magazines 100 160 1,107
Personalization 440 616 3,389
Photography 22 11 92
Productivity 502 329 2,513
Puzzle 84 71 201
Social 286 338 1,773
Tools 3,844 3,485 21,948
Transportation 107 144 585
Travel & Local 86 97 402

we often miss methods that developer actually end up using. We suspect that the

main problem relates to the diversity of Apps in our sample. For example, a Weather

App might use the GPS location in a very different way from a Traffic App.

RA 1.3: Similar Apps

Our goal is to improve recall, while keeping precision high. We cluster Apps by

categories to get rid of unrelated API changes in our rules. In Table 5, we show the

22 App clusters, from business to Acarde to Travel & Local.
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Table 6: Evaluation Periods (Txn = Transaction) for Development History.

Apps’ Domains Data from Source Code

Category Evaluation Period #Txns #Items

Arcade 2012-11-26 to 2013-01-09 10 20
Books & Reference 2013-06-07 to 2014-07-01 101 263
Business 2014-03-10 to 2014-07-03 16 69
Communication 2013-12-02 to 2014-06-25 327 1,289
Education 2012-03-07 to 2014-04-16 88 291
Entertainment 2014-01-06 to 2014-07-03 145 794
Finance 2013-12-29 to 2014-07-02 144 946
Health & Fitness 2011-02-24 to 2014-03-30 16 53
Libraries & Demo 2014-04-11 to 2014-05-11 5 10
Lifestyle 2012-11-17 to 2013-12-11 14 39
Media & Video 2013-08-31 to 2014-06-30 167 761
Music & Audio 2013-10-21 to 2014-05-19 88 419
News & Magazines 2013-12-27 to 2014-05-22 41 178
Personalization 2012-07-07 to 2013-04-14 159 657
Photography 2012-08-02 to 2012-08-18 4 34
Productivity 2013-10-12 to 2014-06-25 90 361
Puzzle 2012-02-27 to 2014-04-22 19 128
Social 2013-12-27 to 2014-06-27 88 328
Tools 2013-10-23 to 2014-07-04 929 5,572
Transportation 2013-09-13 to 2014-01-28 41 177
Travel & Local 2013-10-22 to 2014-04-26 26 125

Our training set consists of a total of 9,266 transactions and 51,908 items; on an

average there are 458 transactions and 2469 items per category. See Table 5 for more

details.Since each category consists of several Apps, the date shown in the first column

(Column Apps in Git since) is the date since which the source code of the oldest App

from each category has been made under Git. In addition, it indicates the number

of source code files changed, the number of transactions, as well as the number of

items per each category of Apps. The evaluation period consists of 2,520 transactions
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Table 7: Predictability Results using Source Code Changes Mined Across Multiple Apps:
PM ′ = Precision , RM ′ = Recall, FM ′ = F-measure.

Development History Results
Metrics 1Q Median Mean 3Q Max

PM ′ 56.80 70.52 70.02 87.27 100

RM ′ 9.07 19.83 27.43 38.58 100

FM ′ 15.50 30.25 33.79 49.43 98.93

and 12,521 items in total; it included the analysis of on average 120 transactions and

596 items per category from the test set. For space reasons, we report in Table 6,

the evaluation periods corresponding to each category (Column Evaluation Period)

instead of single Apps.

Since we had a development history of 22 different categories, we had to perform

several experiments with different minimum support and confidence thresholds for

each specific category to select the appropriate minimum support and confidence

thresholds whose values are in our case 10 and 50 percents respectively. Table 7

summarizes the findings obtained using the notion of similar Apps and which can be

interpreted as follows.

Leveraging source code changes across similar Apps we find that we can predict

changes in individual Apps with an average precision of 70 percent and an average

recall of 27 percent. Compared to our baseline, we increase our precision by 35 and we

also improve our recall by 6 points. The difference in terms of precision is statistically

significant with a p-value< 0.001 while there is no statistically significant result in
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terms of recall as well as F-measure.

The high increase in precision clearly shows that developers make use of the same

API methods to implement similar behaviors for similar Apps. The slight increase

in recall, even though not statistically significant, is likely due to the increase in

the amount of investigated history. In effect, while the baseline leverages develop-

ment history of single Apps, the similar Apps-based approach exploits a larger search

space consisting of the source code change history mined across all Apps similar to a

particular App in question.

It is important to mention that since we randomly sampled our Apps, clusters

of similar Apps may be different in terms of their size and thus the amount of their

development history. Illustrative examples are Apps from the categories Tools and

Productivity which vary in their size. In fact, Apps from the category Tools lever-

age source code change history from a cluster of 120 Apps consisting of 56,930 API

methods’ changes while Apps from the category Productivity predict changes in API

methods using source code changes mined across 14 Apps having a total of 6,024 APIs

methods’ changes. In general, we observed from our experiments that when lever-

aging large clusters of similar Apps, our Similar Apps-based approach yield better

prediction results since its benefit from a larger amount of exploited learning history.

This finding is inline with the statement by Zimmermann et al. [73]: the more there

is to learn from history, the more and better change suggestions can be made.
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2.4.4 RA 2: Informal API Documentation

Informal API documentation contains rich information about APIs used by Apps

[71, 61, 49]. On popular forums such as StackOverflow, 22 millions of posts mention

API elements. Therefore, we leverage Android StackOverflow to discover related API

methods.

RA 2.1: StackOverflow Posts

We propose as a first approach to leverage the entire content of highly-voted answers

from StackOverflow. Our training set consist of all clusters of API methods mentioned

together in highly-voted StackOverflow answers posts. Specifically, we had a total of

113,303 transactions and 406,622 items from our training set while our test set consists

of a total of 2,520 transactions and 12,521 items. We have experimentally tried

different support and confidence thresholds prior to choosing final values. In general

low support values help finding more rules but which are not necessary pertinent.

Thus, we have chosen values that are not that much low or high to avoid impacting

the precision of the approach. Our final setting consists of a support count of 8 and a

confidence of 70 percent. Table 8 reports the results obtained with our StackOverflow-

based approach and which can interpreted as follows.

Using API documentation we find that we can predict changes in individual Apps

with an average precision of 66 percent and an average recall of 12 percent. Compared

to our baseline, we increase our precision by 31 points, but decrease our recall by 10

points.
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Table 8: Results of Change Predictability using Informal API Documentation (StackOver-
flow) : PM ′ = Precision , RM ′ = Recall, FM ′ = F-measure.

StackOverflow Results

Metrics 1Q Median Mean 3Q Max

PM ′ 39.90 57.09 65.57 96.18 100

RM ′ 3.64 6.73 12.65 13.22 58.11

FM ′ 6.86 11.79 16.01 18.66 94.30

The high increase in precision is expected since we are investigating only highly-

voted StackOverflow answers posts which, as shown by previous works [33], reflect

changes in Android APIs. The very small decrease in recall can be justified by the

fact that not all the changes made to source code and in particular API methods are

reflected in informal developers’ discussions. Furthermore, the patterns concluded

from informal API documentation are more oriented usage and thus it is not counter-

intuitive to have few cases were it would be impossible to predict changes for API

methods using StackOverflow.

Overall, we conclude that informal API documentation, in particular StackOver-

flow, can be used to complement approaches based on development history when

discovering related API methods.
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RA 2.2: StackOverflow Code Snippets

Code snippets are an important source for answering questions about software li-

braries and applications, they are, usually, used to illustrate the usage of API ele-

ments, or to remind developers of known idiom [71, 61]. Recently, researchers have

shown that 65 percent of accepted answers on StackOverflow contain code examples

[60], while unanswered questions often lack code [3]. To show whether code snippets

help discover relationships between API calls, we suggest an approach that leverages

code snippets present in highly-voted StackOverflow answers posts.

Our training set consists of all clusters of API methods present in code snippets

trapped in StackOverflow answers posts. We had, in total, 84,189 transactions and

361,884 items while our test set remains the same, i.e. it consists of the 2,520 trans-

actions and 2,521 items evaluated by all other approaches. After preforming several

experiments using our training set, we selected as our final setting a minimum support

count of 10 and a minimum confidence of 70 percent.

Table 9 reports the findings of our code snippets-based approach which we can

interpret as follows.

Using code snippets we find that we can predict changes in individual Apps with

an average precision of 62 percent and an average recall of 14 percent. Compared

to our baseline, we increase our precision by 28 points, but decrease our recall by 8

points.

Not surprisingly, there is a high increase in precision which is likely due to the

pertinence of the relationship between API elements present in code snippets, which
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Table 9: Results of Change Predictability using Code Snippets on StackOverflow: PM ′ =
Precision , RM ′ = Recall, FM ′ = F-measure.

StackOverflow Results

Metrics 1Q Median Mean 3Q Max

PM ′ 37.96 65.94 62.98 89.27 100

RM ′ 3.25 6.32 14.06 11.77 100

FM ′ 5.94 10.96 16.87 16.27 100

are most often used to illustrate and describe a well-focused problem at hand. In fact,

recent research has shown that when a programmer searches for information related to

an API, of the various kinds of documentation he/she finds on the Web, code examples

are one of the most effective [37], important [51], and frequently sought-after [46]. The

importance of code examples has recently lead to new emerging research directions

which focus on extracting code examples found in documentation [61] as well as their

summarization [71, 70].

The slight decrease obtained in recall can be justified by the fact that we miss

some API methods mentioned in the natural descriptive text of StackOverflow posts,

and which are most often cental to code snippets [49].

Overall, we conclude that code examples can help predicting relationships between

API methods when performing software change tasks.
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Table 10: Results of Change Predictability using Salient Methods on StackOverflow: PM ′

= Precision , RM ′ = Recall, FM ′ = F-measure.

StackOverflow Results

Metrics 1Q Median Mean 3Q Max

PM ′ 36.78 64.18 61.56 87.15 100

RM ′ 4.196 7.49 17.00 16.79 100

FM ′ 7.75 12.71 19.55 23.35 94.33

RA 2.2: Salient Methods on StackOverflow

Methods present in text of posts are known as salient methods. For a method to

be salient, it must be central to a code example or have some discussion defining its

purpose or describing its usage [49]. Since Android has the highest number of salient

free-form text code elements [49], we investigate whether salient methods in Android

StackOverflow help discovering relationships between API methods.

Our training set consists of all clusters of API methods present in natural lan-

guage text of StackOverflow answers posts exclusively. It consists of a total of 29,114

transactions and 47,021 items. The test set is the one previously used by other devel-

oped alternatives, it involves 2,520 transactions and 2,521 items. We experimentally

determined our minimum support and confidence thresholds; our setting consists of

a minimum support count of 5 and a minimum confidence of 70 percent. Table 10

reports the findings obtained with the salient methods based-approach which we can

interpret as follows.
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Leveraging salient methods in API documentation we find that we can predict

changes in individual Apps with an average precision of 62 percent and an average

recall of 17 percent. Compared to our baseline, we increase our precision by 27 points,

but decrease our recall by 5 points.

The high increase in precision is expected since salient API methods are relevant

for problems described in StackOverflow posts [49]. In effect, unlike contextual API

elements that are necessary details when solving a problem, salient methods are cen-

tral to code examples. Additionally, focusing on highly-voted answers posts makes

our prediction even more accurate.

The slight difference obtained in terms of recall is likely due to the fact that some

contextual API methods from code snippets – that may be relevant to a problem/task

at hand – have not been exploited since only API methods mentioned in natural

language descriptions of StackOverflow are leveraged.

We conclude that salient methods can help discovering relationships between API

methods.

2.4.5 RA 3: Combing the Best Approaches

To reveal the extent to which combining development history and documentation can

enhance the prediction of related API methods, we suggest a model based on the inte-

gration of best predictive models from source code change history and documentation,

i.e. similar Apps and salient methods-based Approaches.

Table 11 summaries the findings obtained with this approach and which can be

49



Table 11: Results of Change Predictability using Source Code Change History and Informal
API Documentation: PM ′ = Precision , RM ′ = Recall, FM ′ = F-measure.

StackOverflow Results

Metrics 1Q Median Mean 3Q Max

PM ′ 43.65 67.38 73.17 94.56 100

RM ′ 7.13 18.20 27.08 29.65 100

FM ′ 8.90 19.24 31.65 47.18 84.56

interpreted as follows.

Combining development history and informal API documentation we find that we

can predict changes in individual Apps with an average precision of 73 percent and

an average recall of 27 percent. Compared to our baseline, we increase our precision

by 38 points and recall by 5 points.

The improvement brought on precision is expected since we are combining rules

from best change history and API documentation predictive models. It clearly con-

firms that API documentation, specifically the StackOverflow discussions reflect An-

droid API methods changes, which corroborates the findings by recent research works

[33].

The slight increase in recall, even though not significant from a statistical point

of view, reveals that API documentation can be leveraged to complement approaches

that exploit source code change history when predicting relationships between API

calls.
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Overall, we conclude that combining development history and informal API doc-

umentation can help increase the predictive power of models aiming at discovering

relationships between API calls.

2.5 Threats to validity

We have analyzed a large set of open-source Apps, i.e. 230 Android Apps belong-

ing to twenty-two different category. Our study involves a total number of 64,429

transactions and 51,908 items from source code while it analyzes 36,440 transactions

and 50,185 items from API documentation in total. Although the studied applica-

tions belong to different domains, we cannot claim that their version histories and

corresponding API documentation would be representative for all kinds of software

projects.

Transactions created from version histories do not specify the order of the individ-

ual atomic changes because these changes are committed simultaneously under Git

which does not record such information. Similarly, transactions built by clustering

API methods discussed in StackOverflow posts do not keep track of the notion of

order of API methods since a transaction in such a case is identified by the date and

time of the document unit (i.e. post) mentioning a set of specific API methods. Hence,

our evaluation does not take into account the actual order of changed/discussed API

methods.

Right now we have mined the API changes rules using all transactions regardless
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of their relevance/quality. One could investigate rules generated from recent devel-

opment history as they may reflect more the current state of a software application.

In our study, this threat is mitigated by the fact that, in general, Android Apps are

recent (long history is of maximum 6-7 years).

We have examined the predictive power of our approach based not only on the use

of development history but also informal API documentation. We chose StackOver-

flow because, often, it contains discussions triggered by professional developers about

API elements that perplex them. However, other sources of information can be lever-

aged as well. Examples of such sources include bug reports repositories, developers’

emails, code reviews, chats, etc.

We identified API elements discussed in StackOverflow posts using an accurate

approach, ACE [49]. Yet, we cannot guarantee that similar results will be obtained

with different resources and–or using other approaches for linking API elements with

documentation.

We have partially analyzed the source code corresponding to the Git commits of

each single application to extract API elements. Partially analyzing source code of

version histories is not an easy problem. It has been shown that it is an undecidable

problem [12]. Therefore, it may be that the PPA approach used in this work has

failed to identify some API calls for example. However, we are confident, given its

extensive evaluation on a large sample of open-source projects that it only produces

2.7 percent of erroneous types when analyzing a single class without its dependencies

while it is able to correctly recover on average 91.2 percent [12].
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We evaluated the predictive power of our suggested approach using predictive

models based on the notion of training and test datasets to generate related API

methods. Another way of evaluating our investigation and its impact could be by

means of user studies with professional developers who can use our tool within their

Integrated Development Environment when navigating through the source code to

understand the relationships between API methods calls that are part of their software

change tasks.

2.6 Related Work

We first focus on relevant contributions to the prediction of source code changes by

mining version histories (Section 2.6.1). We then present state-of-the-art approaches

that mined documentation to discover API usage patterns (Section 2.6.2).

2.6.1 Mining Version Histories to Predict Source Code Changes

Zimmermann et al. suggested an approach called ROSE that uses association rule

mining on CVS data to recommend source code that is potentially relevant to a given

fragment of source code [73]. Similarly to Zimmermann et al., we apply data min-

ing techniques, specifically, the widely used association mining algorithm,i.e. Apriori.

However, our approach expands on ROSE by predicting changes developers make to

API method calls instead of predicting changes associations between files or meth-

ods. In addition, Zimmermann et al. exploit version history of single projects while
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we suggest the use of development history across a community of (all or similar)

applications to predict changes in API methods. Furthermore, we leverage informal

API documentation (i.e. StackOverflow) to predict dependencies between APIs meth-

ods. Finally, we propose an enhanced predictive model using both both development

history and StackOverflow to predict changes in APIs methods.

Independently from Zimmermann et al., Annie Ying developed an approach that

also uses association rule mining, namely frequent pattern mining, on CVS version

archives to predict file change patterns [? ]. She showed the usefulness of her approach

on the Eclipse and Mozilla open-source projects by evaluating the predictability and

interestingness of the recommendations produced for actual modification tasks on

these systems. In contrast to our approach, Ying’s tool exploits source code changes

of single projects only. In addition, it is limited to changes between files, not changes

made at the level of finer-grained entities or API methods calls such as the case in

this work.

Bruce et al. [8] developed a system for IDEs that can learn from existing code

repository and made relevance suggestion to developers about changes. Bruce et al.

[9] also proposed a concept of IDE that can help developers based on information

retrieve from other developers work.

Xing and Stroulia [68] have attempted to detect class-co-evolution by mining ver-

sions of UML diagrams. This method relies on the UMLDiff algorithm that, given a

sequence of UML class models of a system, surfaces the design-level changes over its
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life span. Their findings are promising in terms of facilitating the overall understand-

ing of system evolution and the planning of future maintenance activities. However,

their approach has not yet been empirically evaluated on a large scale.

Hassan and Holt predicted change propagation for fine-grained entities by inves-

tigating a set of heuristics that leverage historical change and static dependencies.

Their research addresses the following question: How does a change in one source

code entity propagate to other entities? They empirically validated their results us-

ing data obtained by analyzing the development history for five large open-source

software systems [22]. Differently from this work, our approach relies on the use of

mining association rules.

Sayyad-Shirabad et al. used inductive learning to determine concepts of per-

tinence between logically coupled files [57, 58, 56]. They presented the notion of

Relevance Relation to represent relations among entities in a software system and

showed how classification learning can be used to model relevance relations.

Michail applied data mining on the source code of programming libraries to detect

reuse patterns in form of association [39] or generalized association rules [40]. The

entities (items) of these rules consist of method invocation, inheritance, instantiation,

or overriding. These prior works do not bring any empirical evidence on the quality

of the discovered patterns. Differently from this work, our approach mine source code

changes across a community of applications instead of leveraging change history of

individual projects.

Kagdi et al. have suggested a set of heuristics for grouping change-sets found in
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source code repositories. Their approach provides a sequence of changed-files along

with a partial temporal ordering information. The technique has been evaluated on

a subset of KDE source-code repository [26]. In contrast with our approach which

focuses on analyzing the co-evolution of API elements, this work mainly investigates

association files rules. Rysselberghe et al. mined frequently applied changes in

a version control system and suggested a two-dimensions visualization technique to

help recognize change-relevant information [55].

Gall et al. have developed an approach that exploits information in a release

history such as the version number of programs, modules and subsystems, as well as

change reports to discover logical dependencies and change patterns among modules

[18].

Mockus et al. [42] have introduced a quantitative method to assess the extent of

the coordination problem among sites by identifying tightly coupled work items that

are recorded in software change management systems or chunks, that span several

sites. This work defines a process for determining chunks that are candidates to be

moved to different developments sites.

Shirabad et al. [59] suggested the application of inductive methods to data ex-

tracted from both the source code and software maintenance records. Their approach

indicates which files, in a legacy system, are relevant to each other in the context of

software maintenance.

Uddin et al. [64] have developed a technique that analyzes the evolution of an

API’s integration in client programs. Their technique identifies temporal API usage
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patterns, i.e. a sequence of usage pattern that are implemented in distinct devel-

opment phases to detect significant changes in API usage. The initial development

of such a technique can help learn more about an API usage and inform both API

developers and consumers.

Recently, researchers [66] have studied how the fault- and change-proneness of

APIs used by Android Apps relates to applications’ lack of success, estimated from

user ratings. The findings obtained by means of a large empirical evaluation have

shown that APIs used by successful Apps are significantly less fault- and change-

prone than APIs used by unsuccessful Apps including when changes affected method

signatures and especially public methods. Instead, changes to the set of exceptions

thrown by methods did not significantly relate with the App success. In contrast

to this work in which the authors have mined the APIs entire change history from

the APIs Git repositories to analyze the relationship between heavy changes/bugs

introduced in APIs and the success of Android app, we mine APIs methods calls

changes at the level of each commit from the Git repositories of the studied Apps. In

addition, we use partial programming analysis to address the challenging problem of

identifying APIs methods calls in partial programs corresponding to commits made

by developers to source code of Android Apps. Finally, our purpose is not to discover

the factors that impact the success of Android Apps but to suggest APIs methods

relevant to a software developer task.
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2.6.2 Leveraging Documentation to Study API Usage Pat-

terns

Zhong et al have developed an API usage mining framework and its supporting tool

called MAPO (Mining API usage Pattern from Open source repository) to auto-

matically mine API usage patterns from open-source repositories and recommend the

mined patterns and their associated code snippets upon a programmer’s requests [72].

They used frequent subsequence mining with clustering to mine API usage patterns

from code snippets. Oppositely to this work, our approach uses both development

history and documentation to discover relationships between API methods.

Textual similarity of log messages [69] or program code [4] have been exploited

to guide developers during their engineering activities. Further improvements on

such works have been suggested by HIPIKAT [11] that uses other sources (other

than source code) such as mail archives and online documentation. Differently from

our approach, these tools discover dependencies between files or classes rather than

between fine-grained entities such as API methods. Additionally, they emphasize on

high recall instead of high precision as in our investigation.

Buse et al have suggested an automatic technique for mining and synthesizing

human-readable documentation of programs interfaces [10]. Their approach takes

into account a combination of path data flow analysis, clustering, and pattern ab-

straction. It produces results in the form of well-typed code snippets which document

initialization, methods calls, assignments, looping constructs, and exception handling.
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The authors evaluated their approach by means of a user study involving over 150

participants. Their findings show that 82 percent of the generated examples were

judged as good as gold-standard human written documentation and 94 percent were

preferred over the state-of-the-art code search.

Ponzanelli et al. [47] proposed an approach, that given a context in the Eclipse

IDE, suggest relevant discussions from StackOverflow that relate to a code snippet

under analysis. The evaluation of this approach during maintenance and development

tasks shows that it significantly help developers in completing the experimental tasks.

Additionally, the participants agree on the usefulness of its features and usability.

Differently from this work, we mine highly rated answers in Stackoverflow to suggest

API usage patterns. Other researchers such as Bacchelli et al. have developed an

Eclipse plug-in namely, Seahawk, that assist programmers using StackOverflow [47].

Seahawk formulates queries automatically from an active context in the Eclipse IDE,

displays a ranked list of results, and links discussions and source code fragments by

means of language-independent annotations.

A recent research work [33] has investigated how changes occurring to Android

APIs trigger questions and activity in StackOverfow. In this investigation, the au-

thors have used as a proxy of the developer community, the questions posted in SO

and tagged to Android-related labels; and as a proxy of the changes, they analyzed

developers’ commits for the analysis of methods changes. In general, the findings

have shown that developers in the SO community react to changes in Android APIs.

They provide important insights about the use of social media to learn about changes
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in software ecosystems, as well as about the importance of developing recommender

systems that leverage documentation such as StackOverflow to recommend changes

related to API elements, in particular methods, that are part of a software developer

task.

Other researchers [44] have analyzed developers’ collaboration mined from differ-

ent sources of information including mailing lists, issue trackers, and IRC chat log as

well as their co-change activities captured from versioning systems. The results of

this study have shown that social network metrics captured from mailing lists and

issue tracker reflect well the developers’ activity, while this is not the case for chats.

Motivated by the fact that social media and bug reports reflect developers’ change

activity and by the fact that software ecosystems changes triggers developers’ dis-

cussions in StackOverflow, we predict changes in API methods calls using not only

development history but also API documentation, in particular, StackOverflow.

2.7 Conclusion and Learned Lessons

In this study, we mined source code change history and informal API documentation

to help a developer identify high-level relevant changes for both internal and external

API methods. We have empirically validated our hypothesis that the suggested ap-

proaches can provide valuable recommendations by applying them to 230 open-source

different Android Apps. Results of an extensive empirical evaluation have shown that

our techniques, in particular, the similar Apps and salient methods approaches are
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able to accurately provide change suggestions of API methods with a high precision:

60-70 percent. Additionally, combining best predictive models from development his-

tory and StackOverflow has been proven to have almost the same performance as

the similar Apps-based approach. We thus bring empirical evidence on the fact that

leveraging source code change history across multiple similar Apps helps enhance the

API methods change predictions made for individual Apps. In addition, we show that

informal API documentation reflects code change activities by developers which cor-

roborates the findings by recent works [33, 44]. More importantly, such an informal

API documentation helps discovering pertinent dependencies between API methods

with high accuracy when salient methods are leveraged. We believe our approach can

be used to augment existing works on the prediction of changes between fine-grained

source code entities as well as syntactic and dynamic analyses-based techniques.

What lessons we have learned from this investigation, and what are our sugges-

tions? In the following, we present our plans for future work:

• Defect-Prone APIs. APIs evolve quickly. Their change and fault proneness

have been proven to impact the success of the Apps using them [66]. To help

developers identify defect-prone API methods, one could identify changes that

induce bugs by linking transactions to bug databases using appropriate algo-

rithms such as SZZ [27] to determine whether particular API methods tend

to change whenever a bug occurs. Transactions that consist of buggy changes

should be given priority as their entities are defect-prone. Therefore, our ap-

proach can be used not only to to help developers understand and cope with
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the fast evolution of APIs but also to contribute to the enhancement of soft-

ware quality, it can also be applied in the context of refactoring activities where

developers need an awareness about the change and defect-prone API elements

to be tackled first.

• Other Types of Documentation. Other yet unexploited sources of informa-

tion are bug reports, developers’ emails, chats, and code reviews which contains

important information about code elements [49, 5]. We used StackOverflow

since it has large set (22 millions) of posts discussing Android API elements.

Further data sources can be leveraged using appropriate approaches such as

the ACE [49] technique used in this study or Baker specifically designed for

extracting code examples from API documentation.

• Application in Practical Settings. The evaluation of our suggested ap-

proaches was performed using predictive models based on the notion of training

and test datasets. We plan to evaluate our approach in the context of concrete

tasks, e.g. modification tasks or bug-fixing activities where developers have to

understand and discover the evolution of APIs methods pertinent to their tasks.

The user study will involve professional developers in industrial settings who

are interested in evaluating the practical interestingness of our approach. In

this way, we would be able to show its impact for both researchers and practi-

tioners interested in using a tool that helps them understanding the evolution

of internal and external APIs used by software projects. The approach will be
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used in the form, for example, of an Eclipse plug-in. The tool will have a client

server architecture where the server will take into account all the treatments

concerning the grouping of atomic changes and clustering of API methods on

StackOverflow, their conversion into transactions, as well as the mining of API

methods change suggestions. In the client part, a user can enter the name of

an API method that is part of his task and the tool will provide him with the

list of pertinent rules.

• Selecting Task-Pertinent History. The suggested approach searches for

patterns in the learning history which consists of all transactions from both

past and recent history. Patterns inferred from history evolve during time;

some patterns that were relevant become of less importance or not valid later

in a software project. The reason is that older development history reflects

older software projects’ programming habits and strategies that may not be

followed by developers anymore. In the case of APIs, this becomes even more

challenging since they evolve fast. One research question to be addressed could

be as follows:

Would exploiting recent learning history improve the predictability of our ap-

proach and thus the quality of the APIs suggestions provided to developers?

For such a purpose, we will consider only recent transactions (e.g. from last

year) or implement an implicit aging for rules by assigning higher rates to new

transactions than older ones for example.

63



Chapter 3

Software metrics to suggest potential

license violations.

On average 2371 Apps are added everyday on Google play store [29], such statistics

make developers aware of the very high speed of App development and updates. In

this competitive market, developers may look for ways to speed up development to

remain ahead of competitors. In this race for developing their Apps at higher speed,

developers may be tempted to copy code from open-source Apps having GPL license.

This may lead to legal issues. If a software has a GPL license then each user must be

allowed to use, share and modify the original source code. Any change or combination

of this source code with other code must be released to public [19].

The license of an open-source App may be unsuited for a proprietary App and if

some copied code fragment is found in proprietary App then it can put the owner of

proprietary App into legal troubles.
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In our investigation we have used 150 open-source Apps from F-Droid1 and 950

proprietary Apps from Google play store2. Based on the idea of Bertillonage similar

to Davies et al [14] we developed a tool and provided a set of measures that can be

used for finding similarity between proprietary Apps and open-source Apps. However

Davies work was limited to finding the provenience of a software entity present in a

software, we find the violation made by proprietary Apps by considering the license of

open-source Apps. Our similarity measures are based on Android API calls an App

made.

Since the source code of proprietary Apps is not available, we have extracted

Android API calls from the binaries of open-source as well as proprietary source by

using jclassinfo tool that we will discuss in more detail methodology. Our goal is

to use this information to determine if closed source Apps are copying code from

open source Apps. Our similarity measures narrow down the search effort for finding

license violations.

The objectives of this research work are as follows:

1. Create a set of similarity measures based on the API calls an Apps makes

2. Create a “universe” of Android application with their API calls parsed

3. Report the proportion of Apps that have potential violations.

4. Release the tool and allow developers to download APK files to check if viola-

tions had been made against their project.
1https://f-droid.org/
2https://play.google.com/store?hl=en
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3.1 Research Approach

3.1.1 The Concept of Bertillonage

With the invention of photo Camera in mid 19th century, police departments of

various European countries started using it to identify criminals. They simply used

name, age and photographs of criminals to identify them. Soon criminals realized

that by giving false informations such as name and age they can hide their identity

and it became a burden for police department to look large number of photographs to

identify a criminal. To overcome this problem Bertillon proposed a scientific method

based on anthropological technique to reduce the searching task for identifying a

criminal. He suggested that if a criminal record consist of name, age and some

physical measurement such as height, length of right ear, length of left foot etc then

photos can be organized based on those biometrics data and it will reduce the set of

photographs need to examine for a given suspect. In the honour of its inventor this

method termed as Bertillonage and used for two decades as one of the best method

for identification [25, 41].

Android App Bertillonage Metrics: Similar to software Bertillonage metrics

introduced by Davis et al [14], we introduce our own Android App Bertillionage

metrics. These metrics help in reducing the search space to find license violation

among Android Apps. Our metrics are mainly based on the number of Android APIs

shared between different Android Apps. We used different measures to find the best

possible metrics to detect the copying.
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API count based (baseline): Android Apps use Android APIs to implement

functionality. We examine all API call made by Apps and find out how many Android

API method calls are being shared by both the Apps, The larger percent of APIs being

shared the greater the likelihood of copied code.

High overlap Apps: There are many small Android Apps which calls only few

APIs and shows high percentage of its APIs being similar to other Apps. To get rid of

those Apps we considered Apps that shares at least 50 distinct Android API method

calls. The larger the number of APIs sharing among Apps, the more similar an App

might be with other.

Category based: Apps that implement similar functionality (e.g., two restaurant

Apps) are likely to have more in common. We want to understand if there is partial

copying of code between Apps in the same category. The App category is defined on

Google Play store.

Set based: We counted the number of methods per class and class per package

in each App and cluster the similar outcomes in the same category. We use these

categories to find similarities between Apps. Our assumption was that Apps in same

category will have more similarity than Apps in different categories.

Size based: We also used release size information of each App to calculate simi-

larity.
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3.2 Motivational Example

During 2011, at AnDevCon (Android development conference) [38] in San Francisco

a company called OpenLogic that advices companies on the proper use of open source

project ran a test to find out license violation among Apps and they came up with

non trivial number of license violation among different Apps.

They used 635 Apps in their study, 523 of them were from Apple Store and 112

from Google Play Store. Their findings confirms that 71% of Apps using open source

licenses were not compliant. OpenLogic sells a tool called OSS Deep Discovery. This

tool examines source code and binary to identify open source code and its license based

on the dependencies of the software on other libraries and systems. When bundled

together, there can be combinations of licenses that violate legal agreements. In

contrast, to examine software dependencies, we use the calls to the Android libraries

to indicate possible copying of code. They look for linking violation, we look for

evidence of copied code.

3.3 Data and Methodology

We collected two types of Apps, open source from F-Droid 3 and proprietary Apps

from Google Play store 4. From F-Droid we collected 150 Apps out which 141 Apps

were having GPL license and from Google play store we collected 950 Apps from

different categories. We randomly picked 950 Proprietary Apps and downloaded
3https://f-droid.org/
4https://play.google.com/store?hl=en
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their APK using Android Market API 5 and parse them using our own scripts. From

F-Droid we downloaded 150 APK using our own crawler.

3.3.1 Phase 1 - Identifying API calls used by Apps

To identify API elements used by the Apps, we downloaded the Android PacKage

(APK) files for each release of each App. An APK file is a package file format used

for the distribution and installation of application software and middle-ware onto

operating systems such as Google’s Android OS. These files contain information such

as the resources and software code including the complied classes in the DEX (Dalvik

EXecutable) format. Then, we extracted the API elements used by each App from

the downloaded APK files following the three main phases.

• For each App release, we converted the APK file to jars files using the dex2jar6

API;

• For each jar file corresponding to each App release, we use the JClassInfo7 tool

to extract API elements, i.e. packages, classes, and methods used by the Apps;

• For each App release, we pruned the code elements obtained from JClassInfo

and kept only the ones belonging to the Android.* package.

We wrote appropriate scripts to extract API calls and elements using the JclassInfo

tool. Jclassinfo is written in C. It reads Java class files and provides information
5https://code.google.com/p/android-market-api/
6http://code.google.com/p/dex2jar
7http://jclassinfo.sourceforge.net
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about referenced packages, classes/interfaces as well as methods, etc. We extracted

non-Android API elements, however, we were unable to use these in the analysis

because the names of the classes and methods had been obfuscated. The obfuscated

code elements could not be compared between releases to determine which had been

added or removed.

3.3.2 Phase 2 - Collecting App’s informations

Table 12: License of few open source App used in Study

Open-source License
CurrentWidget: Battery Monitor GPLv3+
CSipSimple GPLv3+
Bankdroid GPLv3+
DroidFish Chess GPLv3+
DieDroid GPLv3+
Tipitaka GPLv3+
DieDroid GPLv3+
Bankdroid GPLv3+
AnagramSolver GPLv3+
AnkiDroid Flashcards GPLv3+
AnyMemo: Flash Card Study GPLv3+
DroidBeard GPLv3+
Bankdroid GPLv3+
ElloShare GPLv3+
Der Bund ePaper Downloader GPLv3+
ePUBator GPLv3+
AnkiDroid Flashcards GPLv3+
DeskCon GPLv3+
Call Meter 3G: THE monitor app GPLv3+
Andor’s Trail GPLv3+
DSub GPLv3+
aLogcat (free) - logcat GPLv3+
Tipitaka GPLv3+
Document Viewer GPLv3+
DroidZebra Reversi GPLv3+
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Table 13: Information about few Studied Apps.

Title_app version Category size(KB)
ProArchery 6.1 Sports 2118
Newspapers from Mexico 1 News & Magazines 1102
My Traffic 1.2.25 Productivity 877
Traffic Master Lite 2.0.7 Casual 818
AS 2.0.005 Sports 3488
Retro Clock Widget 2.1.5 Personalization 1661
Magic Trick 1 Casual 608
SCANNER PRO - QR Code Reader 2.6 Tools 2843
Revolver 2 Entertainment 2422
TouchRetouch Free 3.2.2 Photography 2823
Bad Blood TCG 1.0.15 Card 1017
Training Memory - Game 1.2 Puzzle 789
Cool 3D Gallery 1.007 Media & Video 8488
Zen Table Tennis Lite 2.0.5 Sports 1319
Yoo Ninja! Free 1.13 Arcade 1070
eCalc 1.03 Lifestyle 1059
Bubble Shoot Royal Deluxe 1.2.7 Casual 2833
Funny Warp 3.2 Entertainment 1052
SafetyGPS V3 3.0.2 Social 3954
Talking Tom Cat Free 2.5 Entertainment 2441
B.Med Chat 1.0.5 Finance 1224
Era Architects, Mumbai - India 0.21.13220.34478 Business 2613
Counter desert strike 2.3 Arcade 2226
Kira Kira Jewel(No.9)Free 1.0.0 Personalization 927
Korean in a Month Free 1.12 Education 2941

App id is common identifier for Apps on Google play store and F-Droid. We used

it to get the information such as category of App, release size of App and its license.

We randomly picked 950 App ids from Google play store using our script and used

Android market API to get release size and category of each App for our research.

Similarly we picked 150 random App ids from F-Droid and executed our script to get

the category, release size and license of each open-source downloaded from it. Table

13 shows examples of the information gathered for Apps. Similarly Table 12 shows

license information of various open source Apps.
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3.3.3 Phase 3 - Calculating Similarities between Apps

We only considered the public Android API calls extracted from APKs for our study.

In our study, we removed all the Android API calls that were present in more than

30% of Android Apps. This filters out most of the common APIs needed for general

Android development. We calculated the similarity between two Apps based on the

number of public Android API method calls they shared. For example,

Figure 1: Pictorial representation of similarity

An App A has the following Android API method calls,
{

a,b,c,d,e,f,g,h,i,j
}

Similarly App B has the following Android API method calls,
{

x,y,z,a,b,e,m
}

From Figure 1 we see that both A and B shares the API methods a, b, and e.

So, if we calculate similarity based on the API calls sharing we will get the following.

Suppose QA is the Android API call made by Android App A, QB is the Android

API call made by Android App B.

Similarity of A with B = QA ∩QB/ QA

Similarity of B with A = QA ∩QB/ QB
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How similar A is with B = 3/10.

How similar B is with A = 3/7.

3.3.4 Phase 4 - Android App Bertillonage metrics

To narrow down the search space for finding license violation among our App corpus,

we develop four metrics based on Android API calls sharing, method calls per class,

App categories define on Google play store and released size of App.

High Overlap : While calculating similarities based on phase 3, we also keep

track of the number of APIs being shared between both the Apps. If both the Apps

shares at least 50 distinct Android API calls then we look further to find license

violation. Our assumption was the more an App shares API calls with other, the

greater the chances code has been copied.

Category : We use Android market place API and our script to get the category

of each Android App defined on Google play store. We calculated the similarity

between Apps falling in the same category. Apps who behave in similar fashion and

have similar functionality are likely to share more APIs and there may be high chances

of violating license.

Set Based: Instead of calculating similarities of an App with all the other avail-

able Apps, we decided to calculate similarities of the given App with only those Apps

that have same number of API method calls per class. We assume that if an App

copies some code fragments from other source then it might not change the Android

API calls in it, although there might be some addition or deletion of code, the method
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per class ratio might be close to the original source. We categorize API method calls

per class into categories like 0, 1, 2 ... . If an App makes less than 1 API method

calls per class then we categories it to 0. Similarly if an App make less than 1 API

method calls per class we categorized it to 1 and so on.

Released size: We collected the released size information of each Android App

in KB and to narrow down our search operation to find the similarity between each

App we come up with one more assumption that if an App is very similar to an other

App, then it might be possible that their release size is somehow similar. So, instead

of finding similarity of an App with all the other Apps, we only examine those which

are having similar released size of that given App. We also categorized release size

into different categories with difference of 500 KB.

3.4 API call Copy Example

This section illustrates examples of common APIs found in different Apps. We have

hidden the name of Apps in examples as we cannot reveal them because of legal

issues.

From Table 14, Using High Overlap approach we found that proprietary App

"Y1" shares 506 distinct Android API calls with open-source App "X1". It shows

that "Y1" is 53.04% similar with "X1", and Similarly "X1" is 24.89 % similar to

"Y1".

Table 15 shows different Android APIs which are being shared between "X"
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Table 14: Similarities between Few Apps

opensource google_title code_sharing opensource_similarities google_similarity
X1 Y1 506 0.248893261 0.530398323
X2 Y2 178 0.098396904 0.5129683
X3 Y3 1429 0.78819636 0.953302201
X4 Y4 796 0.46252179 0.623335944
X5 Y5 761 0.442184776 0.532913165
X6 Y6 449 0.309015829 0.470649895
X7 Y7 1249 0.365204678 0.532849829
X8 Y8 1427 0.787093216 0.900315457
X9 Y9 156 0.092089728 0.641975309
X10 Y10 1015 0.304896365 0.524006195
X11 Y11 994 0.306979617 0.553144129
X12 Y12 612 0.338308458 0.584527221
X13 Y13 615 0.302508608 0.618712274
X14 Y14 223 0.188823031 0.256027555
X15 Y15 747 0.524947294 0.584964761

and "Y". These are not common Android APIs, as we have already removed those

Android APIs which are present in 30% of Apps. This shows that there might be

some copy code.

Table 15: Android API calls Sharing between Apps

OS Android_API P_App Android_API
X android.view.accessibility.AccessibilityNodeInfo.setScrollable Y android.view.accessibility.AccessibilityNodeInfo.setScrollable
X android.support.v4.view.PagerTitleStripIcs.setSingleLineAllCaps Y android.support.v4.view.PagerTitleStripIcs.setSingleLineAllCaps
X android.view.View$AccessibilityDelegate.getAccessibilityNodeProvider Y android.view.View$AccessibilityDelegate.getAccessibilityNodeProvider
X android.support.v4.app.FragmentManagerImpl.performPendingDeferredStart Y android.support.v4.app.FragmentManagerImpl.performPendingDeferredStart
X android.support.v4.app.FragmentManagerImpl.dispatchPrepareOptionsMenu Y android.support.v4.app.FragmentManagerImpl.dispatchPrepareOptionsMenu
X android.support.v4.view.ViewCompat.setImportantForAccessibility Y android.support.v4.view.ViewCompat.setImportantForAccessibility
X android.view.SoundEffectConstants.getContantForFocusDirection Y android.view.SoundEffectConstants.getContantForFocusDirection
X android.support.v4.view.AccessibilityDelegateCompat.sendAccessibilityEvent Y android.support.v4.view.AccessibilityDelegateCompat.sendAccessibilityEvent
X android.support.v4.view.ViewCompat$ViewCompatImpl.canScrollHorizontally Y android.support.v4.view.ViewCompat$ViewCompatImpl.canScrollHorizontally
X android.support.v4.view.ViewCompatICS.setAccessibilityDelegate Y android.support.v4.view.ViewCompatICS.setAccessibilityDelegate

3.5 Empirical Evaluation

We used box plots to support our findings. A boxplot gives a pictorial representation

of group data through their quantile. We plotted the box plot of proprietary Apps

with open-source Apps based on number of Android API calls sharing. With the help

of box plot we show that our metrics help us to narrow down the search window for
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finding license violations.

API calls count : We calculated similarities between each open-source App and

proprietary App based on the number of API methods they share. In Figure 2, we

can see that the overlap of Apps is low with a median of 10%. Most Apps do not have

much in common and are not copies of each other, which is what we would expect.

However, there are a number of outliers that do have a lot in common.

Figure 2: Similarity of Proprietary App with Open-source App

High Overlap : The above box plot contains lots of outlier that have many

Apps in common. To examine these outliers, we only consider the Apps that have 50

distinct API method calls in common. As expected the median similarity rises to an
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overlap of 40%. All the below explained metrics are based on only the high overlap

Apps. We calculated the similarity using below metrics only if the Apps shares at

least 50 distinct API method calls.

Figure 3: Similarity of Proprietary App with Open-source App, high Overlap

Similar Category: We examined Apps that implement similar functionality

and expect that they will have more in common. We also conjecture that Apps that

fall in the same category might be copying more code from each other. The plot

below shows that Apps in the same category have a high median similarity of 50%,

which is much higher than the median similarity of 10% when comparing all Apps

with high overlap.
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Figure 4: Similarity of Proprietary App with Open-source App having same category

API calls per Class : We assume that if an App copies some code fragments

from other source then it might not change the Android API calls in it, although there

might be some addition or deletion of code, the API calls per class will be similar to

the original source.

In Figure 5 Application 1 are those proprietary applications which are having

similar number of API calls per class with open-source Apps whereas application 2

are those proprietary applications that are having different number of API calls per

class. From Figure 5 we can easily find that similar the number of API calls per

class between two APPs, more the changes of being copied.
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Figure 5: Similarity of Proprietary App with Open-source App having similar number of
APIs call per class

Released size : App having same functionality and copied from some open-

source App, may have same released size. Based on this fact we plotted the box plot

of similarity between open-source with proprietary App.

The above conjecture is not supported by the box plot in Figure 6. As their

might be lots of Apps whose release size might be equal to the release size of other

Apps which are totally different.
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Figure 6: Similarity of Proprietary App with Open-source App having similar released size

3.6 Manual Inspection

To support our findings from boxplot, we would have liked to contact some Android

open source App developers and interviewed them. Since our research involves re-

verse engineering of proprietary Android Apps we first sought permission from the

University. We contacted Me Bech, Associate legal counsel, Concordia University

regarding this issue and his response is in the following quotation :

“I’ve been thinking about your concern. I think that it may be ok from a patent

law perspective to reverse engineer the apps for the sole purpose of research. That

being said, it may not be allowed from a contract law perspective; if you agree when
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downloading (or in the terms of use) not to reverse engineer the app, that would be a

contractual undertaking separate from patent law. I would be surprised if most apps

did not bar reverse engineering in their terms of use. In other words, it appears to

me that this intended behaviour is risky. It appears to me to be a significant risk (and

beyond the purview of “for research purposes only”) if you reverse engineer and then

make a point of specifically notifying those whose copyright may be infringed of this

fact”

Manual inspection remains the only way to support our findings. So we did our

own manual analysis of 10 applications with the highest similarity scores ( based on

percentage of API calls being shared by proprietary Apps with open source Apps ).

As we can not reveal the name of Apps so, we used term "X" to denote the open source

and term "Y" to denote the proprietary Apps. We installed 10 Apps from Google

play store in our mobile phone and analyzed their functionality and appearance to

find whether Apps are copying the code from others or it is a part of normal Android

development.

As we did not interview the developers, we present a table to measure the extent

of copying. Our table is based on our manual inspection of Android Apps based on

their GUIs and working style. This table contains two columns, the first column

defines the severity of chances of copying and it ranges from high to negligible and

points associated with each severity. The other column categorizes all the instances

of copying into different severity measures.

After installing Apps on mobile, we started looking for the examples from Table
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Table 16: Manual similarity measures

Severity Points Example of Copying
High 5 Same error message, Same text in welcome screen,

Same behavior at cornercases∗8,
Same structure and flow of dialog boxes
Same behavior and text formating of check boxes
Particular hanged case

Moderate 3 Same appearance of App’s icon,
Same directory structure and layout of App,
Same settings preferences, Same layout of buttons,
Same layout of background images,
Accessing same user information

Low 1 Same functionality, Same touch response,
Size of buttons, Same dependency.

Negligible 0 Background color, Text color, Font size of text

16. For each example we found, we took the particular point associated with it and

sum it up. The higher the points, higher are the chances of copying code from open

source. We found out several examples of copying instances between an open source

Apps and proprietary Apps.

We installed Y1 and X1 on our phone. App Y1 is used to organize file content

whereas X1 is a banking App. The first thing that can be noticed is the appearance

of icons in both the App. The second noticeable thing is the way pop up windows

appear in both of them and the way check-box work and appears. The total points

for the above said pair adds up-to 11.

Similarly we downloaded X2 an open-source App and Y2 a proprietary App. Both

the Apps belongs to the same category on Google play store. The layout of both the

Apps are very similar, accessing the same user information i.e phone number, photo
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gallery, same font size of texts, same behavior at corner cases, same appearance of

App’s icon. If we sum up the points associated with each example, it comes out to

be 13.

Table 17: Result of manual inspection

Open source Proprietary Total Points Example of Copying
X1 Y1 11 Same appearance of App’s icon,

Same directory structure and layout of App,
Having same color for check-boxes

X2 Y2 13 Layout of both the Apps are very much similar,
Accessing same user information,
Same behavior at corner cases,
Same font size of texts,
Same appearance of App’s icon

X3 Y3 8 Same appearance of App’s icon, Background Color
Same structure and flow of dialog boxes

X4 Y4 17 Same behavior and text formating of check boxes,
Particular hanged case, Same dependency
Same layout of background images,
Accessing same user information,

X5 Y5 4 Same text colors,
Almost same delay in touch response,
Same directory structure of App.

X6 Y6 0 Same background color,
Same functionality (No points added
as both belongs to same Category)

X7 Y7 9 Same structure and flow of dialog boxes,
Same settings preferences, Size of buttons.

X8 Y8 6 Same appearance and size of App’s icon
Same directory structure and layout of App

X9 Y9 10 Same layout of buttons,
Accessing same user information,
Same layout of background images,
Same delay in touch response

X10 Y10 2 Size of buttons, Same functionality.

We present a table containing 10 pairs of Apps and represent total points associ-

ated with that pairs based on manual similarity measures. These points can be used

to conclude whether an App is copying other or not.
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As these App pairs already share lots of API calls and show high percentage of

similarity score based on API calls sharing so, we did manual inspection on them to

support our findings. The result from Table 17 shows pairs having higher points

reflecting some sign of copying. Pairs such as (X1, Y1), (X2, Y2), (X4,Y4) and

(X9,Y9) shows high points on manual inspection as well as our similarity metrics

reflect the same, so it is highly probable that proprietary App is copying the open

source.

3.7 Threats to Validity

This section discuss the main threats to our research. We analyzed a large set of

Android Apps that consists of 950 Proprietary Apps and 150 open-source Apps.

Although the set is larger and belongs to different category of Android Application

but we cannot guarantee that it will represent all kind of Android Apps.

We downloaded APK of Apps and applied reverse engineering on it to get the

APIs. Lots of optimization takes place while converting .class file to APK such as -

multiple classes are included in a single DEX file, same constant used in multiple class

files are included only once in DEX output to conserve space. These DEX files are

again modified when installed into the mobile device, such as addition of new libraries,

swapping of byte order in certain data etc. All this process adds new elements and

modifies the original source code so APIs calls extracted from APKs may be slightly

different from the API calls made by original source code of that App.
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We used dex2jar and jclassinfo for reverse engineering which performs very well

when we compared with the actual API calls made by original source code but still

cannot confirm that extracted APIs will remain the same if different tools and ap-

proach will be used.

To support our findings, we did manual inspections that may differ from person to

person as everyone have different perspective to look at the same things. So, different

people can report different findings for the same App while inspecting Apps, even we

might have missed some of the important cases that can be a clear case of code copy

example.

3.8 Discussion

There are clearly some Apps that are very similar in the calls they make to the

Android API calls. This conclusion remains when we remove the most common API

methods across the community of Apps. The main difficulty is in differentiating

copying from the similarity that would naturally exist between Apps that implement

similar functions.

One promising technique that we investigated includes clustering API calls based

on the App’s class that contains them. For example, if code was copied, then in both

systems the API calls should come from the same class within the Apps, even if the

class name has been changed. However, if the Apps were simply similar, then one

would expect a different set of classes making the same calls. The other techniques
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such as grouping Apps based on categories, high overlap also helped us in reducing

the search effort for finding copying.

We conducted manual inspection of 10 Apps. Although the majority of pairs

shows some sign of similarity on manual inspection but there were few pairs of Apps

that were showing high percentage of similarity based on Android APIs sharing but

shows no sign of code copying on manual inspection. This exhibits that there might

be some Android APIs that remains there even after removing most common APIs

during our study. So, we need to have some other measures as well to explore code

copying and ultimately finding license violations.

One of the most important and promising technique can be interviewing Android

developers. This can lead to better result and better understanding of similarity

metrics proposed by us.

3.9 Related Work

Clone detection remains one of the most hot topic in software engineering research and

lots of researchers have studied about the source of copied code present in a software

[54, 6, 31, 7]. These previous works was mainly concentrated around finding the origin

and evaluation of clones. Later on, such research shifted to clone maintenance and

genealogy [28, 63].

All these research provided a basic foundation for our research i.e., to find the
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proprietary Apps that are copying code from open-source and violating its GPL li-

cense. Similar to Davies et al [14] we also find out the provenance across multiple

applications from their binary but our work is based on API calls made by the App

whereas their work was based on matching code elements from their binaries. Again

their work was limited to Java-based software systems that are easy to decompile

from binary to class files but we worked on the APKs of Android Apps that are

really challenging and time consuming to decompile. Our main concern was to find

the license violation among Android Apps whereas their main concern was to find

provenance and its source.

In the past, Di Penta et al. [45] inferred the license of a class file present in

jar archive using Google code search. They used Google code search to get the

information about the origin of included class files and there license. They extracted

the licenses of included classes to inform the developers which classes they can combine

or use with their system. Our approach was different from them as we extracted class

file from bytecode and applied reverse engineering to get the Android method calls

from it. We used these calls to identify how similar two applications are.

Similar to Davis et al. [14], we proposed our own software metrics to find similarity

between two Android Apps.
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3.10 Conclusion and Future Work

Keeping in mind that there are 1.3 millions Android Apps available on Google play

store [48], determining the license violation of open-source Apps by proprietary Apps

become a very much expensive and challenging job. In this research we studied the

Android API calls of different Apps and found out similarity between them. Given

the two APks of two distinct Android Apps, our approach can found the similarity

between them.

We introduced new similarity measures, to reduce the search effort to find the vio-

lation and empirically validated our hypothesis that these measures can be helpful in

finding the license violations among Apps. We demonstrated the effectiveness of this

approach by simple box-plots of different similarity measures and manual inspection

of few Android Apps. We found that even manual inspection were supporting our

results and showing high sign of copying among those Apps which were already being

pointed out by our approach.

The similarity measures provided by us is only a beginning and it can be expanded

more to accurately determine the copied App with reduced effort. In future, we

may send the list of potential violations to the OSS App developers, and interview

them to see if they found the information useful. We also want to create a site that

allow developers to submit in their APK and see if it was similar to other Apps,

unfortunately, we would not be able to tell them which ones because of legal issues.

The horizon of similarity measures needs to accommodate different parameters so

88



that it can also be applied on large software systems.

3.11 Tool

Based on our research work we developed a tool for Ubuntu that can be used for

calculating similarity between two or more Android Apps.

Our tool uses the same approach discussed by us in methodology section. We

have provided the detail about its installation and dependency in Appendix A.
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Chapter 4

Conclusion

The Android App market is growing at a tremendous pace that can be understood by

looking at the number of Android Apps present on Google Play store. There are more

than 1.3 million Android Apps present on Google play store. This vast data opens

doors for lots of un-addressed research questions. We utilized this data to address

some research question on the development and copyright violation of Apps.

Our research work can be divided into two major parts. In the first part we

developed a model that can be used to predict next likely to be added or removed

API calls in an App by mining its version history and on-line informal documentation.

The second part was to developed a method which we later turned into a tool that

can be used to reduce the search efforts to find out which proprietary App is copying

code from open-source Apps and ultimately violating its license.
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4.1 Guiding App developer about APIs changes

We believe our approach can be used to augment existing works on the prediction of

changes between fine-grained source code entities as well as syntactic and dynamic

analysis. Of course, the more there is to learn from (development and documentation)

history especially recent one, the more and better predictions can be made:

• Leveraging source code changes across multiple similar applications helps pre-

dict changes in internal and external API methods with a high precision in 72

percent of cases. This confirms the following statement: the more there is to

learn from history, the more and better change suggestions can be made.

• Documentation can also be used to understand the co-evolution of API ele-

ments. StackOverflow was able to accurately show co-evolving API methods

in about 65 percent of cases. Additionally, documentation increases the recall

and thus documentation can complement development history towards a better

prediction of co-evolving API elements and in particular methods that are parts

of a software developer task.

• The predictive power of our approach increases when exploiting recent source

code change or documentation history. Therefore, approaches and tool that

aim to guide developers when performing code change tasks should focus on

investigating recent (change or development) learning history rather than old

one.
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The evaluation of our approach was done using predictive models created on train-

ing sets and evaluated on test sets. We plan to evaluate our approach in the context

of concrete tasks, e.g. modification tasks or bug-fixing activities where developers

have to understand and discover the evolution of APIs elements pertinent to their

tasks. The user study will involve professional developers in industrial settings who

are interested in evaluating the interestingness of our approach. In this way, we would

be able to show its impact for both researchers and practitioners interested in using a

tool that helps them understanding the evolution of internal and external APIs used

by software projects.

4.2 Software metrics to suggest potential license vi-

olations

Our main contribution in this research was to develop a tool that can find the similar

Android API calls made by different Android applications. On the basis of Android

APIs calls, we developed some software metrics that can reduce the effort of finding

similarity between different Apps.

We proposed four kinds of software metrics based on API sharing and we empiri-

cally as well as manually evaluated them and found them efficient. We can conclude

the following findings from our research:

• Apps that are in the same categories(Based on Google play store) are having
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more Android APIs in common then the Apps from different categories. Keep-

ing in mind we have already removed the most common APIs, this makes us

suspicious about these Apps.

• Apps that make similar number of Android APIs calls per class shows lots of

common Android APIs being shared by those Apps. This technique can also

work where simple code matching technique fails i.e. in the case where the

developer changes the names of copied classes.

• Manual inspection shows that there are few proprietary Apps that might be

copying code from open-source Apps.

Although our tool can be used for reducing the search effort, it is only the be-

ginning. This tool can be very useful for open-source developers to save their Apps

from being exploited by others. In the future, other parameters can also be included

in this tool to make it more reliable and accurate. We want developers to download

and use it as well as give us feedback so that we can improve it more in the future.
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Appendix A

SimilarityFinder User Manual

This tool can calculate similarity between two or more android Apps provide their

APKs are given. It requires dependencies such as postgreSQL, Jclassinfo and dex2jar.

A.1 Installing Dependencies

You need to have administrative privilege to install these dependency:

1. Install jclassinfo

(a) $ sudo apt-get install jclassinfo

2. Install PostgresSql

(a) $ sudo apt-get install postgresql postgresql-contrib

(b) create a user and database [Details for creating user and database is pro-

vided in next section]
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3. Download Jex2jar

(a) https://code.google.com/p/dex2jar/downloads/list

A.1.1 Creating Database and database user in PostgresSql

To do any operation in postgresSql, you need to create a "role", which provides

authentication to database. To create a "role" and database follow the following

steps:

1. After installing PostgresSql, type the command in terminal to create "role":

(a) $ sudo -i -u postgres

(b) $ createuser

i. It will ask you following details:

ii. $ Enter name of role to add: ’NAMEOFUSER’

iii. $ Shall the new role be a superuser? (y/n) y

iv. $ \ q

v. $ exit

2. To create database, follow the following command:

(a) $ su − ’NAMEOFUSER’

(b) $ createdb ’NAME OF DATABASE’

109



A.2 Installation

Download the tool package and use Ubuntu software center to install.

1. Double click on downloaded tool package

2. It will open in Ubuntu software center and there you can see install button.

3. Click the install button.

4. You might get warning please ignore it.

If you do not want to use Ubuntu software center, then extract the ∗.deb file and

you can find an executable "toolsimilarity" in that which can be used for finding

similarity.

A.3 Usage

Once you installed it or extracted the executable file, you can use terminal to run

the tool. You need to provide two configuration file while running this tool. The

first configuration file should contain the name of database and downloaded path of

dex2jar. The other file should contain the location of APKs need to be studied. you

can use configuration file from text but need to edit it with required information.

To run the tool :

1. If you have installed it on your machine

(a) $ toolsimilarity sam.conf sam.txt
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2. If you want to use executable

(a) $ ·\toolsimilarity sam.conf sam.txt

A.4 Output

This tool will produce two table in the database provided by user. The first table

"similar_api" contains all the Android APIs common to both the APPs and the other

table "Similarities" contains the information about percentage of API similarity.

A.4.1 Disclaimer

We accepts no liability for the output of this tool. Any output result presented by this

tool is solely for research purpose. We do not guarantee that it works 100 percent.

WARNING: We accepts no liability for any damage caused by this tool.
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