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ABSTRACT

A Functional Verification Methodology for an Improved Coverage of

System-on-Chips

Jomu George Mani Paret

Concordia University, 2015

The increasing popularity of System-on-Chip (SoC) circuits results in many new

design challenges. One major challenge is to ensure the functional correctness of such

complicated circuits. Functional verification is a verification technique used to verify

the functional correctness of SoCs. Coverage Directed Test Generation (CDTG) is

an essential part of functional verification, where the objective is to generate input

stimulus that maximize the coverage of a design. Coverage helps to determine how

well the input stimulus verified the design under verification. CDTG techniques ana-

lyze coverage results and adapt the input stimulus generation process to improve the

coverage. One of the important component of CDTG based tools is the constraint

solver. The time efficiency of the verification process depends on the efficiency of the

solver. But the constraint solvers associated with CDTG tools require large amount

of memory and time to generate input stimuli for SoCs. The solvers cannot generate

solutions which are evenly distributed in search space, in order to attain the required

coverage.

The aim of this thesis is to provide a practical framework that enables the genera-

tion of evenly distributed input stimuli. A basic feature of the search space (data

set) is that it contains k sub populations or clusters. Partitioning the search space

into clusters and generating solutions from the partitions can improve the evenness
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of the solutions generated by the solver. Hence one of our main contribution is a

novel domain partitioning algorithm. The domain partitioning algorithm relies on

solution generated by a consistency search algorithm developed for our purpose. The

number of partitions (required by the domain partitioning algorithm) is determined

by using an algorithm which can find the optimal number of clusters present in a data

set. To demonstrate the effectiveness of our approach, we apply our methodology on

Constraint Satisfaction Problems (CSPs) and some real life applications.
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Chapter 1

Introduction

1.1 Motivation

The number of transistors per square inch on integrated circuits had

doubled every year since the integrated circuit was invented.

Gordon Moore [1965]

Due to the rapid advances in silicon manufacturing technologies, silicon capacity has

been steadily doubling every 18 months as predicted by the Moore’s Law [1] (Fig-

ure 1.1). As a result, a designer is able to implement a complete and complex system

on a single chip. The technology is commonly known as System-on-Chip (SoC).

As semiconductor technology continually improves, SoC designs are becoming more

popular. SoC usually consists of various design components dedicated to specified

application domains. In order to ensure the functional correctness of a SoC, finding

and fixing the design errors at early design phases is important. The process of finding

errors in a design is called verification. Due to the importance of ensuring a design’s

functional correctness, a great deal of effort has been devoted to design verification.
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Figure 1.1: Moore’s Law

However, as design complexity increases, experience shows that many bugs remain

undetected even though considerable resources and time have been devoted to design

verification.

As the statistics in industry surveys show, up to 70% of project resources have

been devoted to functional verification [2]. Hence, the efficiency of functional ver-

ification has a significant impact on the speed with which designs can be put into

production. Only 33% of SoC designs are correct on the first pass, and 75% of all

design flaws are attributable to, logic or functional bugs due to shortcomings in func-

tional verification [3]. The complications of functional verification stem from the sheer

complexity of today’s SoCs. Due to the increasing complexity of SoC design and the

decreasing time-to-market, functional verification has become a major challenge in the

design development cycle. The increase in logic bugs (design errors) is proportional
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(sometimes exponential) to the increase in design complexity. The increase in design

errors makes verification tasks more difficult.

The main task of functional verification is to compare the specification of a

design with its observed behavior and to determine the equivalency between the spec-

ification and the actual design, and any differences are reported as bugs. There are

several methodologies for tackling functional verification problem and they are divided

into simulation methods and formal methods. Formal methods use mathematical ex-

pressions and mathematical reasoning to prove the correctness of the design, while

in simulation methods, the design is represented functionally and logically by the se-

mantic of a language which can be simulated to observe the behavior of the design.

Formal verification focuses on systematic ways to prove or disprove the correctness

of the design using mathematical formal methods. Mathematical expressions and

symbols are used to express the properties of the design. Formal methods then use

mathematical reasoning to prove or disprove the correctness of the properties regard-

less to the input values [4]. There are three main approaches for formal verification:

Model Checking, Equivalence Checking, and Theorem Proving. Model checking and

equivalence checking are exhaustive techniques and cannot be used for large design

due to state-space explosion problem. This problem is partially solved by introducing

Symbolic Model Checking [5]. On the other hand, Theorem Proving can be used to

verify larger designs but it is not very practical due to considerable human efforts and

the expertise needed [6]. Hence the viable method for the verification of large designs

is simulation methods.

Simulation methods can be further divided into several methodologies such as

3



simulation based verification, assertion based verification, and coverage based verifi-

cation [7]. In simulation based verification, a dedicated test bench (input stimulus)

is built to functionally verify the design by providing meaningful scenarios. On the

other hand, assertion based verification is used to catch the place where errors occur,

where assertions are written either in a hardware description language or specialized

assertion language (e.g., Property Specification Language (PSL) or SystemVerilog As-

sertion (SVA)). The concept of coverage based verification requires the definition of

coverage metrics which are used to assess the progress of the verification cycle and to

identify functionalities of the design that have not been verified.

When generating an input stimuli, an empirical evaluation of an existing stim-

uli is required to direct the generation process and to provide a goal for completion.

Coverage is a measure of the completeness of a set of input stimuli, which are applied

to the design. The concept of coverage based verification requires the definition of

coverage metrics that provide quantitative measures of the verification process. A

coverage metric defines a set of goals which must be satisfied during simulation. The

most widely used metrics are: code coverage, toggle coverage, path coverage, Finite

State Machine (FSM) coverage, and functional coverage. Each metric provides spe-

cific aspects about the completeness of the verification process. Even though none of

these metrics are sufficient to prove a design is error free, they are helpful in pointing

out areas of the design that have not been verified.

In all the above simulation methods, a dedicated input stimulus is generated

to verify the design functionality by providing meaningful scenarios. The success of

verification methods depend heavily on the quality of the input stimuli in use. There
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are three ways to generate the input stimuli:

1. Directed Stimuli Generation: In directed stimuli generation, the verification

engineer writes input stimuli that are biased to stress specific aspects of the

design. But most of the directed stimuli are currently manually written, which

is time consuming and error-prone.

2. Random Stimuli Generation: Random stimulus generator is used to explore

unexercised areas of the design. In this method the input stimuli are generated

randomly. In random stimuli generation, unobserved scenarios will be generated

and certain scenarios can be easily verified multiple times with different input

stimuli. But the verification engineers have no control over the generated input

stimuli. Hence certain scenarios which are of interest for the verification engineer

may not be generated.

3. Constraint Random Stimuli Generation: The number of input stimuli

valid for a particular design is limited. All the valid input stimuli are not of

interest since the verification engineers are concentrating on certain scenarios.

In Constraint Random Verification (CRV) method the conditions for valid input

stimuli and conditions for the scenarios are specified. Solving the constraints

will give the required input stimulus. The different constraints used in CRV are:

(a) Constraints based on design specifications given by the design engineer.

(b) Constraints based on expert knowledge of the verification engineer.

(c) Constraints based on verification scenarios chosen by the verification engi-

neer.

With the directed approach, the amount of time required to generate new tests

is relatively constant, so the verified functionality improves roughly linearly over time.
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Figure 1.2: CRV vs Directed Stimuli Generation

With a constraint random verification, there is an up-front cost that must be invested

before the first test can be run. This initial up-front cost is to build a verification

environment in which the relevant portions of the test are parameterized and con-

strained, such that, future tests can be easily derived. By using randomization to

generate the input stimuli required for scenarios that are created, input stimuli which

more likely to hit corner cases are generated and thereby find more design bugs. Such

tests are also much more likely to hit coverage points, accelerating verification closure.

Hence out of the many stimulus generation methods that have been developed,

constraint random stimuli generation is the most commonly used method for the ver-

ification of complex designs. Figure 1.2 shows the gaining importance of CRV in

present day verification [8]. Coverage tools are used side by side with constraint ran-

dom test generator in order to assess the progress of the verification plan during the

verification cycle. Coverage analysis serve two critical purposes in the verification pro-

cess. The first is serve as an indicator of when verification is thorough enough to tape

out. Coverage provides more than a simple yes/no answer; incremental improvement

6



in coverage metrics helps to assess verification progress and thoroughness, leading to

the point at which the verification engineer has the confidence to tape out the design.

Second purpose is to identify holes in the process by pointing to areas of the design

that have not yet been sufficiently verified. This allows for the modification of the

directives (constraints) for the stimulus generators and the targeting of areas of the

design that are not covered [9]. This process of adapting the directives of stimulus

generator according to the coverage reports is called Coverage Directed Test Gener-

ation (CDTG). It is a time consuming and exhausting process, but it is essential for

the completion of the verification cycle.

In order to understand the complexity of CDTG, let us look at one example in-

volving verification of the Floating Point (FP) unit present in microprocessors using

a CDTG tool. This is an industrial problem described in detail in [10][11]. FP unit

is known to exhibit an exceptionally wide array of corner cases, making its verifica-

tion a difficult challenge. Input stimulus generation for FP unit verification involves

targeting corner cases, which can often be solved only through complex constraint

solving. Hence the main task of the constraint solver is to generate a set of input

stimuli that comprises a representative sample of the entire search space, taking into

account the many corner cases. Consider a FP unit with two input operands. This

potentially yields 400 (202) cases that must be covered, assuming 20 major FP in-

struction types (e.g. +/-zero, +/-min denorm,). With four floating point instructions

(addition, subtraction, division and multiplication) there is about 1600 cases to be

covered. The probability that a CDTG tool will generate a sequence that covers a

particular combination is very low [12]. Hence a CDTG tool will take many hours

to generate the input stimuli required to attain the required coverage. So the main
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motivation of this research is to attain the required coverage in less time.

1.2 Thesis Contributions

The verification of SoC design is arguably the biggest challenge for designers. On the

other hand, designers are still constrained in using the traditional time consuming

simulation methods for verification. A new verification methodology for SoC design is

needed. The new methodology has to be able to reduce the amount of time required

for input stimuli generation and to attain required coverage. A basic feature of the

search space (data set) is that it contains k number of sub populations or clusters.

Partitioning the search space into clusters and generating solutions from the partitions

can improve the evenness of the solutions generated by the solver. Hence to achieve

the above goals we proposed a methodology based on domain partitioning. The

contributions of this dissertation are as follows:

1. A survey of the related work. We summarized some of the important

existing work on CRV, automated CDTG and state of the art in the area of

evenly distributed stimuli generation.

2. Methodology based on domain partitioning. We proposed a methodology

based on domain partitioning to improve the evenness of the solutions generated

by the solver.

3. Estimation of number of clusters in a data set. We formulated a method

for the estimation of number of clusters in the input domain of a design.

4. Domain partitioning algorithm. We developed a fast domain partitioning

algorithm which helps to generate more evenly distributed CSP solutions. We
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also defined some metrics which helps to determine the evenness of the solutions

generated.

5. Consistency search algorithm. We presented an optimized consistency search

algorithm suitable for our purpose. Since variable ordering scheme used in con-

sistency search has an impact on the search speed, a suitable variable ordering

scheme was formulated.

6. Implementation. Our frame work called DPCGEN was implemented in C++

and it was successfully applied on CSPs and some real case studies.

1.3 Thesis Organization

This dissertation presents our methodology for generation of evenly distributed input

stimuli and the required algorithms. The dissertation is organized as follows:

Chapter 2: Related Work: A survey of the important existing work on CRV,

automated CDTG and state of the art in the area of evenly distributed stimuli gen-

eration is presented. It is followed by a discussion of domain partitioning techniques

used in software testing.

Chapter 3: Preliminaries: This chapter briefly discusses the necessary back-

ground on CSPs, consistency search and SystemVerilog constraints.

Chapter 4: Proposed Methodology based on Domain Partitioning:

The existing methodology for CDTG is presented in this chapter. It is followed by

the proposed methodology for generating evenly distributed stimuli generation for

faster coverage.

Chapter 5: Consistency Search Algorithm: The proposed consistency

algorithm is presented along with the variable ordering scheme for the algorithm. We

9



also evaluated the performance of the proposed algorithm.

Chapter 6: Estimation of number of clusters in a data set: The nec-

essary steps to determine the number of clusters in a data set is provided in this

chapter.

Chapter 7: Domain Partitioning Algorithm: In this chapter we presented

the proposed domain partitioning algorithm.

Chapter 8: Applications and Implementation: We used the proposed

methodology in the study of real life applications and proved that the proposed

methodology is able to attain higher coverage in less amount of time than the ex-

isting CDTG method.

Chapter 9: Conclusions and Future Work: In this final chapter we pro-

vided a summary of the thesis with a reflection about the achievements made and

several future research directions.
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Chapter 2

Related Work

One direction of research in CDTG is to improve the input stimuli generated by the

CRV tools. Research is going on to develop effective constraint solver for CRV tools.

All high-end hardware manufacturers use CSPs to produce input stimuli. Some man-

ufacturers of less complex designs rely on Electronic Design Automation (EDA) tool

vendors (e.g. Cadence, Mentor Graphics and Synopsys) for their stimulus generation

needs. Those EDA tools, in turn, are based on internally developed constraint solvers.

Others,to solve such as Intel, adapt external of-the-shelf solvers to the stimulus gen-

eration problem.

Some manufacturers such as IBM rely on proprietary constraint solvers devel-

oped in-house to solve this problem. But development of random test generators are

often hindered because of the following difficulties:

1. Complexity: Computer architectures are often complex and has hundreds of

instructions, dozens of resources (e.g. memory) and complex functional units

(e.g. floating point unit).

2. Changeability: Design verification starts when architecture is still evolving.
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Many of the changes are due to the bugs found during previous verification

and the tests have to change accordingly.

3. Dependability: The design architecture and the scenarios for verification are

tightly related.

2.1 Model Based Techniques

In order to tackle the above issues, IBM developed a model based test generation

approach. The motivations to generate a model based tool are:

1. To generate better quality tests: If the quality of tests are high, it will result in

smaller number of tests, low simulation cost and less time for verification.

2. To allow verification engineers to add knowledge to the test generator: This will

help to improve the quality of the test generated by the tool. This will also

allow the reuse of the knowledge to similar designs in future.

3. To reuse a test generator irrespective of the design architecture: Usually the

test generator is custom built for an architecture and is very expensive. Sepa-

rating architectural details helps the use of the same test generator for design

architecture.

In this approach a knowledge base is made based on the experience of the ver-

ification engineers working on different design architectures. The knowledge base

includes the formal description of the design architecture and the testing knowledge.

In order to deal with complexity, changeability and dependability, the knowledge base

is separated from control. The control includes the architecture independent test gen-

eration process.

12



Knowledge  
base 

User 
interface 

Architectural 
model 

Test generator 

Test program Simulator 

Design Engineer 

Verification Engineer 

Verification Engineer 

Figure 2.1: Model Based Techniques

A model based test generator (figure 2.1) comprises of the following components:

1. Architectural Model: The architectural model contains the specification of the

instructions and the data types used in the designs.

2. Simulator: The simulator simulates the architectural model using the generated

test cases.

3. Architecture independent test generator: Great importance is given to the ef-

ficiency of the test generator. Constraint solver which is fast, efficient and not

based on backtracking techniques is used. Some times modifications are applied

to the generator to suit the targeted architecture.

4. Knowledge base: A large number of test programs were analyzed to build the

knowledge base. The descriptions of high level verification goals and detailed

verification tasks were extracted to generate the knowledge base.

5. User interface: The user interface offers control over the test generation process.

The user can define the number of instructions in each test program and initialize

the resources used.
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The different tools developed by IBM using model based approach are:

Model Based Test Generator : In 1991, IBM developed the first model

based constraint random stimulus generator called Model Based Test Generator (MBTG)

[13]. In MBTG, the instructions of the architecture were modeled as trees. An in-

struction tree includes a format and a semantic procedure at the root, operands and

sub-operands as internal nodes and length, address and data expressions as leaves.

The instructions are generated by traversing this tree. The test generator traverses

through the instruction tree and generate the required instructions. The generator

accepts the number of instruction from the user through the user interface.

X-Gen : X-Gen [14] provides a framework and a set of building blocks for

system level input stimuli generation. It uses a system level model which consists of,

component types, their configuration and the interactions between them for stimuli

generation. X-Gen accepts a set of user-defined requests known as ′requestfile′ as

input. For a given request file, it generates a set of different input stimuli, each of

which realizes the request file. Through request files, users can provide a full or partial

description of a required scenario. X-Gen, using its random generator, verification

knowledge and the specified scenario will generate the input stimuli for the specified

scenario.

Genesys : IBM developed Genesys [9] as a follow-on tool of model based test

generator, which can generate infinite number of tests. It is able to minimize the effort

required to use the tool with any architecture, allow changes to architecture and can

have upgrades which can be easily implemented within the tool. Most importantly, it

has the ability to externally and internally improve the knowledge base. The tool con-

sists of mainly three components: a generic architecture independent test generator,

the architecture model and the simulator. The model allows incorporation of testing
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knowledge along with it. Hence it allows the user to control the test generation by

biasing towards specific verification scenarios.

Genesys-Pro : Genesys-Pro [15], IBM’s third-generation test generator relies

on the same underlying model based approach as Genesys but has three significant

advancements. First the test template has the expressiveness of a programming lan-

guage which allows unlimited control over the test generation. Genesys-Pro has high-

level building blocks that can be used to describe the processors. The third major

improvement was on the test generator. The test generator translates the test gener-

ation process into a CSP problem and uses a generic CSP solver for test generation.

This CSP generator became the backbone of later IBM test generators.

FPGen : Mainstream input stimuli generation tools can only provide some

scenarios for verifying FP implementations. Because of lack of internal knowledge

related to the FP domain, they are inadequate for providing a solution for FP verifi-

cation. FPGen [16] primarily targets architectures that comply with the IEEE Stan-

dard 754, but it can also be used for architectures that are made from the standard

FP design. FFGen offers a convenient platform that consists of a language for the

definition of the verification requirements, and powerful solving engines that generate

random, different input stimuli for different verification scenarios.

Piparazzi : The Piparazzi [17] helps to find bugs that cannot be found by

using the architectural level stimuli generators. Piparazzi has mainly two inputs:

model of the micro-architecture and the users specification of a required event. The

model of the micro-architecture is made by using of a set of in-built building blocks.

The building blocks used in the model describe the structure of the micro-architecture

and the flow of instructions through it. Each building block is associated with several

fixed parameters which determine its nature and basic behavior. For example, a cache
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contains parameters for its size, associativity, replacement policy etc. Piparazzi uses

the model built (using the building blocks) and the user specification to construct

the verification scenario as a CSP problem, and then solves the problem in order to

produce the input stimuli.

SoCVer : During the verification of SoCs, it is required to verify the integra-

tion of several previously designed cores in a relatively short time. Also, the system’s

embedded software is not fully written until the late stages in the design development

cycle. Moreover it is impossible for a verification engineer to completely comprehend

all the dependencies between different cores within the DUV, and therefore, many

aspects of the system are ignored or set to static values during the verification pro-

cess. In SoCVer [18], an abstract model of the SoC which contains a description of

the different cores in the system, the operations supported by the system, and the

tasks performed by the cores as part of the system’s operation are given as input.

By incorporating expert knowledge, the tool helps to improve coverage by increasing

the probability of hitting corner cases. The SoCVer can generate the software for the

DUV’s main controller. Hence it does not rely on the existence of embedded software

for the verification of the SoC.

In general, the size of design and complexity makes CRV a difficult problem.

How ever by having test cases which helps to cover the specified verification scenarios,

helps to attain verification closure. In addition, separating the architectural model

from the control helped to have a general frame, which can be used for the verification

of different architectural design. Table 2.1 draws a brief comparison among the above

mentioned tools developed by IBM. Although model based techniques requires a high

level of expertise to model verification knowledge and architectures, MBSGs have the

following advantages:
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Table 2.1: Model Based Techniques
Tool Design

Level
DUV Distinguishing feature

from previous version
Weakness

MBSG Architectural
level

Processor First tool to integrate stimuli
generator with design archi-
tecture

Performance is about 1/5
of earlier cases.

Xgen System level SoC /
Server

Has a set of building blocks
to describe system level ar-
chitecture

The building blocks are de-
signed and built for sys-
tems and SoCs.

Genesys Architectural
level

Processor Introduced Testing Knowl-
edge Base

Modeling language has
limited expressiveness.
It uses a local heuristic
search method.

Genesys-
Pro

Architectural
level

Processor The language that describes
the constraints has the ex-
pressiveness of a program-
ming language. It has build-
ing blocks specifically suited
for describing processors. It
has a powerful input stimu-
lus generation engine. It uses
customized MAC algorithm
for test generation.

It is specifically tuned for
verifying processors.

FPgen Architectural
level

FPU Dedicated tool for FPU It is designed and built for
FPU.

Pipparazzi Micro-
Architectural
level

Processor Has a set of in-built building
blocks to describe the struc-
ture of micro-architecture

The complexity of the CSP
solution puts a limit to
the number of instructions
per test. It also requires
longer test generation time
compared to other archi-
tectural test generators.

SoCVer Architectural
level

SoC Can generate the embedded
software for the DUV con-
troller

Scheduling problem is
solved using CSP solver.
There are other more ef-
ficient techniques to solve
scheduling problem like
greedy algorithm, linear
programming. ..etc.
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1. There is a structured, well defined way to integrate new knowledge about the

verified design into the tool.

2. One of the important components is a generic input stimuli generator which can

include generic knowledge that applies to many designs. This makes the input

stimuli generation of designs which are upgrades of an existing design much

easier.

3. Generated input stimuli are higher in quality. As a result full coverage of com-

plex verification plans is possible, and there are very few or no escape bugs.

2.2 Automated Coverage Driven Test Generation

In Coverage Driven Test Generation (CDTG)(figure 2.2)[19], the verification scenar-

ios modeled as constraints, are given to the constraint solver. The constraint solver

solves the constraints and generates the input stimuli. The input stimuli and the

Design Under Verification (DUV) are then given to the simulator to generate the

simulation traces and coverage report. The coverage report shows whether all the re-

quired scenarios are covered or not. If the required scenarios are not covered, then the

constraints are modified based on the coverage report and are given to the constraint

solver. The process is repeated until the required coverage is attained. Present day,

the coverage reports generated by the tools are manually analyzed. Test directives

required to cover the coverage holes are also generated manually. Incorporating au-

tomated coverage analysis along with the generation of test directives will go a long

way in tackling the verification problem.

In an effort to increase performance and to decrease the manual effort, auto-

mated CDTG has been developed. The research has turned to Artificial Intelligence

18



SPECIFICATION CONSTRAINTS CONSTRAINT 
SOLVER 

SIMULATOR DUV 

SIMULATION TRACES & 
COVERAGE RESULTS 

Figure 2.2: Coverage Driven Test Generation Technique

(AI) techniques to automate CDTG. Machine learning algorithms are used to fully au-

tomate the process of generating constraints based on the coverage report. Methods

used for Automatic Test Pattern Generation (ATPG) (a method used for generat-

ing input stimuli for testing) were altered and used to automate CDTG. The recent

advances demonstrate that, embedding machine learning techniques into a CDTG

framework can effectively automate the stimulus generation process, making it more

effective and less error prone.

For automated CDTG only supervised learning techniques are used. The tech-

niques include Bayesian Networks and Data Mining techniques, Markov Models and

Inductive Logic Programming (ILP). Although Genetic Algorithms and Genetic Pro-

gramming fall under the Evolutionary Computation (EC) techniques, their underlying

method to achieve their goals are similar to supervised learning techniques. These

EC techniques uses Darwinian natural selection theory to find the optimal solution

to a problem inside its predefined solution space. Hence they are also used for the

automation of CDTG. The different AI based automated CDTG techniques are:

XCS : Learning Classifier Systems (LCS) [20] is an AI technique that provides

a set of rule (if ”condition” then ”action”) that forms the solution to presented prob-

lems. The eXtended Classifier System (XCS) is a very popular LCS variant. The first

effort in applying XCS for automated CDTG is presented in the work in [21], where the

authors first detect the problem and feed it into the system. The next step is to find

any classifiers whose condition part is matching the given problem, thus forming the
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Match set [M]. An action set [A] is created based on conditions in [M]. According to

the effectiveness of the proposed action, a reward value is assigned by the verification

environment. These reward values determine the usefulness of each condition toward

solving the problem. The system then either chooses a random action or an expected

action which will fetch the highest reward. Using the rules/conditions, efficient test

programs are generated.

C4.5 : C4.5 is an algorithm used to generate a decision tree. The decision trees

generated by C4.5 can be used for classification. It uses hill climbing search to generate

constraints from the search space of decision trees. In [22], the authors proposed the

use of C4.5 for the extraction of micro architectural data from the simulation traces.

The data is then used for the construction of a decision tree. The required input

stimuli is generated from the decision tree. In [23] the authors used C4.5 to generate

the required constraints for architectural designs. The method is composed of two

steps: construction and cutting. In construction, the training set is analyzed in order

to obtain required constraints, that can maximize the gain criteria defined by the user.

In cutting, the constructed tree is trimmed to increase the generalization capability

of the created constraints.

Bayesian Networks : Bayesian Network (BN) is a graphical representation

of a model based on probability. BN can be used to find the relationship between the

constraints used and coverage obtained. A pre-constructed Directed Acyclic Graph

(DAG) is trained to get result. The DAG’s edges are trained according to the sample

data given. The data set of previously gathered test programs and coverage is used

to train a given BN. Once the training is finished, the remaining coverage areas to be

targeted and the constraints required to target the uncovered areas is obtained.

The use of Bayesian Networks (BN) for automated CDTG has been initiated and
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continued by a research team in IBM [2][24]. They used BN to find the relationship

between the test generator constraints and the coverage achieved during simulation. In

[25] the same authors propose two adaptation methods to enhance the accuracy of the

constraints (test directives) proposed by the BN. Among the two, on-line adaptation

method was more effective. The adaptation algorithms resulted in an improvement

in the quality of the constraints generated by the BN. In some cases it resulted in a

speedup of the coverage process by a factor of 2.

In the above methods, the DAG has to be constructed and it requires initial

engineering effort and expertise. In [26], the authors enhanced the methodology by

automatically constructing DAG. But the results obtained were not good compared

to earlier methods.

Genetic Algorithm : Genetic Algorithm (GA) tries to find solution for a

given problem by searching the solution space. Each individual in the search space

represents a solution. It uses selection and fitness parameters to guide the research

for individuals. The most relevant individuals are selected based on the fitness func-

tion. The selected individuals then undergo mutation and cross over to create new

individuals. The process is repeated until the required criteria is satisfied.

In [27] authors proposed a self adapting GA which was able to give input stimuli

in less time and full coverage for small codes. Since the algorithm is self adapting,

no expert knowledge is required to set the fitness parameters. In [28] the authors

investigated the effect of the number of evolutionary epochs and population size in

test generation. The proposed techniques used GA to obtain the constraints required

for a user defined coverage metric called Buffer Utilization.

In [29] the authors use GA along with statement and path coverage in order

to generate the required constraints. In addition to the above coverage metrics, the
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authors utilize another type of coverage termed error coverage (coverage of gate-level

types of faults in RTL or behavioral level models in higher levels). Finally in [30], a

GA approach which represents solutions as bit-strings was proposed.

Genetic Programming : Genetic Programming (GP) is an approach that

automatically generates input stimulus according to an instruction library by using

an evolutionary computation algorithm. Each solution is evolved into a DAG. The

nodes represent input instructions with associated parameters. The evolution of new

test is based on the changes made on the node branches of the graph. The genetic

operators utilized are crossover (2-point crossover) and mutation. In crossover, two

nodes in each of the parent’s graphs are selected and swapped between them. Then

the parent’s graph is mutated by addition, deletion or alteration.

The GP approach in [31] proposed a method using only one genetic operator

(mutation) but used three special types of mutation. The genetic program were

evaluated using a statement coverage model. In [32] and [33] the team presented

the same system but the fitness function was altered to include a term that favoured

shorter programs. Another change is that they included a crossover operator apart

from the standard three mutation operators previously used.

Similarly, a method for evolving test programs by optimizing a multi objective

fitness function was proposed in [34]. The main advantage of this approach was the

reduced time needed to simulate/evaluate the stimuli evolved.

Markov Model Approach : The use of Markov Models (MM) for automated

CDTG was proposed in [35]. Similar to BN, the DUV is represented as a Markov

Model where each node represents a transaction sequence of a specific scenario. The

methodology adjusts the weights (probabilities) of links between nodes of the MM

graph according to the coverage report. At the end, we will get a new MM which
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helps to get input stimuli that can achieve higher coverage.

Inductive Logic Programming : Inductive Logic Programming (ILP) is a

declarative inductive learning method which requires a training set and some relational

background knowledge. ILP aims to discover a single or multiple hypothesis which

can cover every element in the training set. In [36] authors proposed the use of

an ILP learning algorithm to close the loop between coverage analysis and stimulus

generation. Assuming there are enough instances to learn from, at the end of the

learning process, the system returns a set of rules, containing at least one rule for

each coverage task presented to the system.

Data Mining : Data mining is the technique used to identify patterns or

predict the future, based on a set of records. In [25] the authors showed that the data

mining algorithms, clustering and instance based learning, can be used for automation

of CDTG. In this, the constraints are clustered on their similarity and used to attain

maximum coverage. The advantage of DM is that it does not require any domain

knowledge.

All the above mentioned techniques use the data that is available from the previ-

ous simulations. They automatically analyze the data and try to find the constraints

that are require to direct the next round of simulations towards the required cover-

age. Future works are required to make automated CDTGs more user friendly, to

reduce the required engineering effort and to become more consistent in completing

coverage closure. Table 2.3 gives a brief comparison among the above mentioned

techniques. The table provides the requirements, input and coverage model used by

different techniques. An industrial attractive CDTG tool should have the following

features:

1. An automated CDTG technique should not be technically demanding for a
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Table 2.2: Coverage Driven Test Generation Techniques-1
Ref DUV Coverage

Type
Requirement Input Weakness

[21] Firepath
DSP proces-
sor

Cross Test generation pro-
cess require distinct
XCS rules per each
seed of test generator.

Directives/constraints
for test generation.

Length of test should
be of fixed size. In
XCS, fitness is based
on the accuracy with
which a rule predicts
rewards.

[22] POWER7
processor

Functional Test template Small variation in
data can lead to
different decision
trees. Does not work
very well on a small
training set.

[23] STREAM- Functional Training set
PROC

[37] NorthStar
(PowerPC)

Functional Expertise for DAG
construction

Simulation Data It is very complex
and difficult to make
BN and to examine
the solutions of BN.

[25] Storage Con-
trol Element
of z proces-
sor

Functional Test template

[26] Instruction
Fetch Unit
(IFU) of z10
processor

Functional Mutual information
as a criterion that
could be estimated
from a sample set

Directives and cover-
age model

[27] Cache Ac-
cess Ar-
bitration
Mechanism

Functional User defined com-
mands/constraints

GAs are very slow
and do not give the
optimum solution
but the ’fittest’
solution. Choosing
and implementing
fitness function is
very difficult.

[28] PowerPC
processor

Functional Structure of inputs to
the architecture and
fitness function

Constraints imposed
by the Architecture

[29] ITC99
benchmark
designs

Path
(Code)

Fitness function Designs in System C

[30] Godson1
processor

Functional Constraint specifica-
tion

[35] 5-stage DLX
pipeline

Bug Probabilistic infor-
mation on generating
sequences of input

Template files Data available are
sometimes insuffi-
cient to estimate
reliable probability
or transfer rates,
especially for rare
transitions.
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Table 2.3: Coverage Driven Test Generation Techniques-2
[32] DLX/pII

pipelined
Statement An Instruction Li-

brary
RTL level design Does not give the

optimum solution
but the ’fittest’
solution only or
some times give non
reliable solution.

[31] i8051 Statement An instruction
library

[33] i8051 Fault Expertise in con-
struction of DAG

An instruction
library

[34] i8051 Path-
delay
fault

Functionally coherent
fault group

ISA and design con-
straints

[36] 5-stage DLX
pipeline

Functional Background rules ILP cannot have
noise in the training
data and can cause
over fitting.

[38] NorthStar Functional Simulation param-
eters and covered
tasks per simulation

No domain knowl-
edge is required

Input stimuli is de-
pendent on the train-
ing set given as input

machine learning literate.

2. The results provided by the tool must be easily to interpret and should give an

insight towards the DUV structure and exposed bugs.

3. It can be used on any DUV regardless of its abstraction level, size and underlying

functionality, while supporting the most prominent coverage models.

4. It should be able to analyse the different coverage metric used and should be

able to find the coverage holes.

2.3 Sampling Based Techniques

In CRV the constraints are given to the constraint solver to generate the input stimuli.

In order to ensure that the majority of the verification effort is spend on the simulation

of DUV, it is required that the stimuli generation process should be computationally
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inexpensive and consume only a small fraction of the resources.

The distribution of the generated input stimuli in the search space has a direct

effect on the time spend to meet the required coverage. A highly skewed distribution

can dramatically increase the number of feedback loops that are required to attain

the required coverage.

Hence the key requirements of constraint solvers associated with CRV are input

stimuli generation speed and even distribution of generated stimuli. But solutions

generated by CSPs are not uniformly distributed in the search space. By combining

different sampling based techniques with the constraint solver, the speed of solution

generation and evenness of the solution distribution can be increased. The sampling

based techniques has the following advantages:

1. The input generation process is just constraint solving and is very fast.

2. The sampling techniques treat variable independently, hence it can ensure even-

ness of the generated input stimuli.

3. It is immune to the complexity of the constraints involved.

Figure 2.3 give the basic framework of a sampling based technique. In sampling

techniques, there is a preprocessing stage in which the input variable domains are

converted to a tree structure. Various sampling techniques are then applied to find

cluster (tree branches) within the search space. Then solutions are generated from

these clusters or tree branches using stochastic search techniques or SAT solving

techniques.

Range Splitting heuristic and Solution Density Estimation Technique:

Range Splitting heuristic and Solution Density Estimation technique (RSSDE) [39]

can be used to partition the search space in order to have even distribution of input
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Figure 2.3: Sampling Based Techniques

stimuli. This technique uses statistical analysis for the estimation of solution den-

sity. The range-splitting heuristic prunes subspaces which has very low probability

to contain a solution. By removing subspace with low solution density, the solution

densities in other subspaces are substantially enhanced.

Acceptance and Rejection Technique : The Acceptance and Rejection

(A&R) technique [40] ensures uniform or user-specified distribution but the input

stimuli generation speed would be slow when constraints cannot be easily solved.

Formal solution generators [41] like SAT solvers can solve general constraints very

fast but will sacrifice the evenness of distribution. Another approach to increase

success ratio for A&R technique, such as RACE [42], is to apply interval propagation

to reduce ranges of variables before sampling. Interval propagation based sampling

is a technique in which an interval of possible values is maintained for each variable.

Each variable is successively assigned a randomly chosen value from its interval, and

the intervals of the remaining variables are subsequently refined.

Davis Putnam Logemann Loveland Based Sampling Technique : Davis

Putnam Logemann Loveland (DPLL) [43] based sampling utilizes CNF (Conjunctive

Normal Form) based DPLL style SAT solvers [44] to generate stimuli from constraints.

The advantage is that it has good scalability for a large set of constraints. A random

pre-assignment of variables is used to attempt a good distribution for the generated
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samples. Starting from this random variable assignment, a DPLL style search is then

applied. If there is a conflict, then the solver goes into backtracking mode. In the end

it will give a small set of values which are solutions for the SAT problem.

Monte Carlo Markov Chain Technique : In [45], the authors presented a

constraint solver that utilizes concepts of Markov chain and Monte Carlo for solving

the constraints. In this technique, during each iteration, it proposes a random change

to the current assignment and accepts it with a probability that depends on the

relative weights of the current and proposed assignments. This technique assumes

that, as the number of samples becomes very large, the distribution converges to the

desired distribution. The sampler may move across the entire range of a variable in

a single step, so it can travel through the sample space faster than other algorithms

which uses only local moves.

The dual challenge of generating evenly distributed solution at a faster rate is

very demanding. At the same time the search for solutions is NP-hard. The above

two problems put very serious limitation to state-of-the-art CRV tools. But only

a little research is focused on this problem despite its high relevance in constraint

random verification. Some tools generate random values efficiently, but have non

even distribution. This results in increased time to achieve coverage. Sampling based

techniques tries to address the above issue.

Table 2.4 gives a brief comparison among the above mentioned techniques. The

table presents the underlying preprocessing technique used, the solver used and the

improvement in performance. The advantage of sampling based techniques is its

simplicity and relatively high performance. The techniques requires a large number

of iterations for domain clustering or partitioning. Such runtime overheads cannot

be neglected when generating solutions from a very large search space. The RSSDE
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Table 2.4: Sampling Techniques
Method Preprocessing Solver Performance Compared

against
Disadvantages

A&R Range re-
duction by
interval propa-
gation

SAT
solver

Speedup of 1.5 BDD based
constraint
solver

Interval propagation
procedure requires a
large number of itera-
tions for complete range
reduction on compli-
cated constraints.

DPLL Random pre-
assignment of
variables

SAT
solver

Speedup of 10 Stimulus gen-
erator with
self-tuning

For SAT solver the solu-
tion distribution can be
highly non-uniform.

RSSDE Range-
Splitting

SAT
solver

Speedup of 10
and upto 70%
uniqueness in
the solution
generated

Constraint
Random Veri-
fication

The eliminated sub
search space with low
solution density may
contain solutions which
can trigger corner cases.

MCMC Construction
of Markov
chain

Monte
Carlo
Search

Speedup of 1.5
and upto 81%
uniqueness in
the solution
generated

Boolean DPLL It is hard and ineffi-
cient to determine the
probabilities required to
move from current state
to the next state, for
non-continuous solution
space.

technique reduces the time required for domain partitioning significantly, but sacrifices

accuracy since it eliminates domain partitions with low solution density. It would be

beneficial to do more research in this area, to improve the accuracy of the technique.

2.4 Graph Based Techniques

As a result of technological advancement, embedded systems continue to face higher

performance requirements. Pipelined processors are used to meet these performance

requirements. Verification of such programmable processors is a very complex and

expensive task. Simulation based verification is the most widely used technique for

microprocessor verification. Large amount of time is spend on simulation in traditional
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Figure 2.4: Sampling Based Techniques

design flow. Some heuristics and design abstractions are used to generate the require

input stimuli. A microprocessor embedded inside a SOC is harder to verify since it is

harder to control and observe the behavior of the processor. Also the generated input

stimuli may not yield a good coverage.

Graph based techniques was introduced as a promising verification technique

for pipelined processors. Figure 2.4 presents the block diagram of the graph based

technique. In this technique, first a graph is generated from the specification of the

design. Then the graph is analyzed by the test generation algorithm based on the input

test cases. The constraints or conditions extracted from the graph by the algorithm

is then given to a constraint solver. The solver will generate the required test cases.

Hence behavior which are hard to control and observe can be targeted by using graph

based techniques.

Control Flow Graph Based Technique : In [46], the authors use Control

Flow Graph Based Technique for input stimuli generation. In this technique, the

design is simulated for a fixed number of cycles. The branches covered during the

simulation is then recorded. The corresponding symbolic trace is extracted from the

Control Flow Graph (CFG). They contain executed guard (conditional expression of

branch) that evaluates to true or false. This is done with the help of an RTL symbolic
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execution engine. The extracted symbolic expressions are placed onto a constraint

stack. Then a guard in the symbolic expression is mutated. If the mutated guard

has any dependent branches that is not yet covered, then it is passed to an SMT

solver. The solver will generate a satisfiable assignment which is a valid input vector.

The analysis of RTL is done using the CFG structure of the Hardware Description

Language (HDL) source code. This means that the RTL description is analyzed by

considering it as a software program, using program analysis techniques.

Pipeline Graph Based Technique : In a Pipeline Graph Based Technique,

as mentioned in [47], a pipeline graph model of the processor is generated from the

Architecture Description Language (ADL) specification. By using this technique, size

of the graph generated is reduced when compared to other techniques. Each node in

the graph corresponds to a functional unit or storage component in the processor. An

edge in the graph represents instruction or data transfer between the nodes. Then

the test program generator will traverse through the graph and generate test cases

based on the coverage metric. The test program generation algorithm breaks one

processor level property into multiple module level properties and applies them for

stimuli generation.

Binary Decision Diagram Technique : In order to increase the evenness

of distribution and the speed of solution generation, the weighted Binary Decision

Diagram (BDD) technique [48][49] converts the constraints into a single BDD struc-

ture. The probability information is assigned on the BDD edges. The idea is to

build a BDD from the input constraints and to weight the branches of the vertices in

such a way that a simple linear walk procedure from the root to the terminal vertex

generates stimuli with a desired distribution. This biased top-down traversal on the

diagram, guarantees the evenness of bit level signal distributions and fast production
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Table 2.5: Graph Based Techniques
Method Graph Type DUV Performance Input format

CFG CFG ITC99 bench-
mark

90% Functional
coverage

Design in RTL format

Pipeline
graph

Pipeline
graph

DLX processor Required number
of test cases were
reduced (about
60%)

Specification in Architecture
Description Language

BDD BDD 12 commercial de-
signs (a crossbar
switch, bus inter-
faces, ALU..)

Speedup of about
2.5 because of
reduced size of
BDDs

Design in RTL format

of random input stimuli. Hence this technique use smaller size of BDD representation

of the constraints. Simulation generation time is reduced due to the smaller BDD

size.

In graph based techniques, a graph is generated according to the coverage model

used. This graph is then used to generate the constraints required for input stimuli

generation. The main advantages of this techniques are:

1. Reduced test generation time.

2. The techniques concentrate only on required path instead of all paths pertaining

to each process in the design.

3. The required graph size is significantly reduced by an order of magnitude.

4. It is easier to cover interesting corner cases.

A brief comparison between the different graph based techniques is presented in

Table 2.5.
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2.5 Domain Partitioning in Software Testing

Quite often the techniques used for verification by hardware industry crosses path

with methods used for testing by software industry. So let us have a quick peek at

what is happening in software testing. With the expansion of software system size

and complexity, there is an ever-increasing demand for innovative testing schemes

for software quality and reliability. To test a program, it is necessary to select test

data from the program input domain. As it is usually too large to be exhaustively

exercised, the usual way for testing is to select a relatively small subset to represent.

Therefore, a key issue in software testing is how to select test data from program

input domain to detect as many faults as possible with a minimum cost.

There are a large number of test data selection strategies based on partitioning

input domain, referred to as partition testing [50][51][52]. In partition testing the

input domain is divided into some sub-domains, and one or more representatives from

each sub-domain are selected to test the program. Path testing and domain testing

are two typical strategies of partition testing.

In the path analysis approach [53][52], partitioning is done based on paths. To

understand what is meant by path in this context, consider an example of a very

simple program: If x < 10 then Event A occurs Else Event B occurs. Depending on

what the value of the variable x is, the program would either go to the path that leads

to the execution of EventA or would go to the path that leads to the execution of

EventB. In the path analysis approach to doing partition testing, the input domain

corresponding to a program would be the set of all paths that the program can take.

In domain testing [54][53], the first main task is to partition the input domain

into partitions or equivalence classes based on some criterion. All members of one

partition or subset of the input domain are expected to result in the execution of the
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same path of the program.

A key issue in any partition testing approach is how partitions should be iden-

tified and how values should be selected from them. They provide no guidelines

for selecting test data. Informal guidelines for creating a partition are discussed in

[55][56]. In practice, it is common for the division of the input domain to be into non-

disjoint subsets. In order to select values for test cases there are several techniques

such as classification trees [50], Simulated Annealing (SA) [57], Automatic Efficient

Test Generator (AETG) [58], Genetic Algorithm (GA) [59][60], Ant Crawl Algorithm

(ACA) [60], Tabu Search (TS) algorithm [61], In-Parameter-Order (IPO) [62] and

Constrained Array Test System (CATS) algorithm [63]. We can see that some of the

methods used for selecting data are also used to automate CDTG.
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Chapter 3

Preliminaries

3.1 Constraint Satisfaction Problem

Although CSPs were being studied in the seventies, it is only in last two decades that

this technique gained huge momentum. Since then it has been successfully applied

in various application domains like planning, scheduling, DNA sequencing, resource

allocation, query optimization in database ...etc[64]. A constraint represents a rela-

tionship that must hold among the participating variables in any solution of the given

problem. A CSP consists of a finite set of variables each of which must be assigned

a value (or values) from its given finite domain of possible values, and a finite set of

constraints that restrict the set of values that these variables may assume simultane-

ously. A solution to the CSP consists of an assignment of a value (or values) to each

of its variables such that constraints of the problem are satisfied. In some problems,

the goal is to find all such assignments.

More formally a constraint satisfaction problem is defined as a triple N =

〈X,D,C〉 where

X is a set of n variables X = {x1,. . ., xn}
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D is a finite set of domains for the n variables = {D(x1),. . ., D(xn)}

C is a set of constraints between variables={C1,. . .,Ck}

where n and k are non zero positive integers.

A constraint can either be unary, binary, tertiary, or n-ary (affecting n variables)

depending on the number of variables it restricts. Constraints affecting more than

two variables can be easily converted to an equivalent set of binary constraints using

several new auxiliary variables (called binarization of constraints). A CSP containing

only unary and binary constraints is called a binary CSP.

CSPs are problems we face in our everyday life. One of the most common

example for CSP is N Queens problem. The N Queens problem is a CSP of placing

N chess queens on an NxN chessboard so that no two queens threaten each other.

Two queens threaten each other if and only if they are on the same row, column or

diagonal. We can encode the N Queens problem with N=4, as a CSP as follows:

• Make each of the N rows a variable: X = {var[1], var[2], var[3], var[4]}. The

value of each variable will represent the column in which the queen in rowi

(1 ≤ i ≤ 4) is placed.

• Domains: D = {D1, D2, D3, D4}. Each of these 4 variables can take one of the

4 columns as its value. The domains of the 4 variables are: D1 = D2 = D3 =

D4 = {1,2,3,4}.

• Set of constraints: C ={C1, C2}. C is the set of constraints that must be

satisfied by the CSP.

C1 : var[i]6= var[j] where i,j = 1,2,3,4 and i 6= j.

C2 : |i-j| 6= |var[i]-var[j]| where || is absolute value.
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3.2 Consistency-based Search

To find a solution of a CSP, most constraint satisfaction algorithms use systematic

searches by trying combinations of values for variables and checking if they are con-

sistent with the constraints of the CSP. When a variable is assigned a value from its

domain, the domains of the connecting variables (via constraints) may get reduced

to a currently consistent set. For example, if there is a constraint X 6= Y, and a

value for X is chosen during search; that value can be immediately removed from Y’s

domain, which otherwise may lead to the failure of the inequality constraint between

X and Y. This is called domain reduction. Moreover, domain reduction achieved via

one constraint can further affect domains of other variables in other constraints owing

to their relationships with the variables whose domains are being currently reduced.

This is called constraint propagation. Arc Consistency (AC) [64] algorithms utilize

constraint propagation and domain reduction to ensure that all binary constraints

(binary constraints are called arcs of search tree) are satisfiable with each of the val-

ues in the current domains of variables at both ends of the arc (variables in the binary

constraint).

The AC can also be taken to higher levels of consistency. Such algorithms are

called K consistency algorithms. They ensure that for a consistent assignment of any

K − 1 variables, any Kth variable can be assigned at least one value from its domain

that is consistent with the constraints of the CSP [64]. Although higher levels of

consistency provide stronger constraint propagation, executing them at every node

of the search tree requires significant runtime. In general, arc-consistency algorithms

represent the best trade-off between the run-time efficiency and constraint propagation

achieved.
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Several AC algorithms have been developed to increase the efficiency of con-

straint satisfaction. In AC, for each constraint (Ci) in the CSP, for each variable (vi)

in the constraint Ci, for each domain value of the variable vi, the algorithm will try

to find a list of variable values, which satisfies the constraint.

The arc consistency algorithms are divided into two categories: coarse-grained

algorithms and fine-grained algorithms. Coarse grained algorithms are algorithms in

which removal of a value from the domain of a variable X will be propagated to only

other variables which are related to the variable X. The first consistency algorithms

AC-1 [65] and AC-3 [65] belong to this category. These two consistency algorithms

are succeeded by AC2000 [66], AC2001-OP [67], AC3-OP [68] and AC3d [69]. Fine

grained consistency algorithms are algorithms in which the removal of a value from

the domain of a variable will be propagated to other variables in the problem. Fine

grained algorithm is faster than coarse grained algorithms. Algorithms AC-4 [70],

AC4-OP [71], AC-5 [72] and AC-6 [73] belong to this category. So in both cases, the

removal of a value is propagated to the other variables. The difference between both

is that the former is based on arc revision while the latter is based on maintaining

supports. AC-7 [74] is an algorithm developed based on AC-6. It uses the knowledge

about the constraint properties to reduce the cost of consistency check. Overall AC-3

is better than all the other algorithms and the most used one.

Consistency techniques [75][74] reduce the search space by removing, variable

values that cannot be part of any solution. For each constraint (Ci) in the CSP, for

each variable (vi) in the constraint Ci, for each domain value of the variable vi, the

algorithm will try to find a tuple (A tuple is an ordered list which contains values for

all the variables in the constraint) which satisfies the constraint. If there is a tuple

which satisfies the constraint, then the tuple, constraint variable and the domain value
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are stored in a list. The algorithm repeats the process for all the domain value of the

variable. At the end of the consistency-based search the domain values which are

inconsistent will be removed from the domain of the variable.

To illustrate the idea discussed above, let us consider the following CSP network

N: set of variablesX = {a, b, c, d, e, f, g, h}, domain of the variablesD{a, b, c, d, e, f, g, h} =

{1, 2, 3, 4, 5} and the constraints C1 : a + b + c = 6, C2 : b + d + e = 8 and

C3 : e + f + g + h = 10. After consistency-based search, the tuples stored in the

list are as shown in Table 7.1. Constraint 1 shows the tuples which satisfies the con-

straint C1. Similarly constraint 2 and constraint 3 presents the tuples which satisfies

the constraint C2 and C3 respectively.

For variables a, b and c, the domain value 5 is inconsistent. Hence after consistency-

based search it is removed from the variable domain. The domain of variables after

consistency-based search is as follows: D{a, b, c} = {1, 2, 3, 4} and D{d, e, f, g, h} =

{1, 2, 3, 4, 5}.

3.3 SystemVerilog Constraints

Coding for functional verification becomes more and more crucial as the complexity of

the hardware to be verified grows. While verification complexity grows exponentially,

it is believed that SystemVerilog serves the coding needs reasonably well. The lan-

guage’s features and expressive capabilities make it usable for functional verification.

SystemVerilog hold out the promise of a single unified language to span almost the

entire SoC design flow, from module level design and gate level simulation, all the

way up to system level verification.

SystemVerilog provides a complete verification environment, employing Directed

and Constraint Random Generation, Assertion Based Verification and Coverage Driven
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Table 3.1: List of Tuples after Consistency-based Search
Constraint a b c d e f g h

1 1 4
2 1 3
3 1 2

1 4 1 1
1 2 3
1 3 2
1 4 1

1 2 5
2 1 5
3 1 4
4 1 3

2 1 3 4
1 4 3
1 5 2
2 5 1

1 1 3 5
2 1 2 5
3 1 1 5
4 1 1 4
5 1 1 3
1 2 2 5
1 3 1 5

3 1 4 1 4
1 5 1 3
1 1 4 4
1 1 5 3
1 1 5 1
1 2 5 2
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Verification. SystemVerilog has been adopted by hundreds of semiconductor design

companies and is supported by more than 75 EDA, IP, and training solutions providers

worldwide [76].

SystemVerilog allows object-oriented programming for random stimulus gener-

ation, subjected to specified constraints. The randomization can be with uniform

distribution, weighted distribution, weighted range, weighted case.

SystemVerilog allows two kinds of constraints: domain(membership) constraints

and model constraints. The domain constraints are used to specify the domain values

of the random variables. Model constraints are used to model the required verification

scenarios. Modeling constraint are composed of foreach constraints (for constraining

elements of array), inline constraints, conditional constraints and implication con-

straints.

The following shows the SystemVerilog constraint model from the N Queen’s

problem with N = 4:

rand int var[4];

constraint svc1{foreach (var[i]) var[i] inside {1,2,3,4};}

constraint svc2{foreach (var[i])foreach (var[j]) j>i->var[i]!=var[j];}

constraint svc3{foreach (var[i])foreach (var[j]) j>i->var[i]-var[j]!=(i-j);}

constraint svc4{foreach (var[i])foreach (var[j]) j>i->var[i]-var[j]!=-(i-j);}

The first constraint svc1 is the domain constraint. It sets the domain values of

the variable to be 1,2,3 and 4. The next three constraints model the two conditions

(C1 and C2) that must be satisfied for the N Queen’s problem.
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Chapter 4

Proposed Methodology

A main drawback in simulation based verification is that an assurance of correctness

of the design requires exhaustive simulation, which makes it possible only for small

designs. CDTG gives effective method to achieve coverage goals faster and most

importantly it helps in finding corner case problem. Because CDTG can automatically

generate a large number of test cases with constraints specified by the verification

engineers, it can hit corner cases that neither the design nor verification engineers

would have ever anticipated. A traditional flow of CDTG is shown in Figure 4.1.

4.1 Existing CDTG Methodology

High quality requirements are one of the most important prerequisite for a successful

system development. The requirements specified by a customer or a user of the

system need to be fulfilled, in order to ensure the acceptance of the developed product.

Several techniques can be used to specify the requirements in the system requirement

document. The system requirements document describes the requirements from a

users point of view. The user requirements are usually specified by using natural
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Figure 4.1: Existing CDTG Methodology

language, formal specification languages, data flow diagrams and use cases.

During the past ten years, the use case has been establishing itself for the spec-

ification of requirements and high-level designs for various types designs. Since use

cases are often used at a very abstract level, close to user requirements, tests derived

from use case models have much potential for verifying implementations at the system

level, or for verifying more detailed design models. Use cases focus on the description

of functional requirements.

Then the use cases are checked for any ambiguities, inconsistencies and omis-

sions. This is done in order to avoid changes at later stages (if the use case is changed

then verification scenarios have to be changed). Then from the use case diagrams

all possible paths (requirements) are generated. The paths represent all possible user

actions and system reactions (the different system requirements). Priorities are set to
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paths and verification scenarios are generated based on priorities. The priorities are

set based on

• Frequency of use

• Errors found in past in similar situation

• Complexity of path

Each of the verification scenario is then modeled into a CSP problem. The

constraints for the CSP and the domain of input variables are given to the constraint

solver. The constraint solver generates the input stimuli for the DUV. Cover points are

defined on the generated input stimuli. The simulation trace and the coverage results

obtained from the simulator are analyzed. Targets that have been missed are found

out. Using the simulation traces obtained so far, the constraint generator generates

constraints that will help to cover the missed targets. This process is iterated until

desired coverage is achieved.

4.2 Proposed Methodology

The goal of this research is to provide an efficient functional input stimuli generation

methodology for generating evenly distributed input stimuli, thereby reducing overall

verification efforts. Since generating and simulating all possible input sequences is not

possible, we need a method to generate effective input stimuli to achieve high confi-

dence of the design correctness. In addition, stimuli generation techniques should be

able to generate input stimuli in short time and with less usage of resources (mem-

ory). Therefore a preprocessing stage is added to the existing CDTG technique. Fig-

ure 4.2 shows the overall flow of the proposed coverage driven input stimuli generation

methodology.
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The design specification gives the different requirements that must be satisfied

by the design. The different requirements are converted to verification scenarios. Each

of the verification scenario is modeled into a CSP problem. In a CSP, the solutions

are clustered together in the search space [77]. Hence partitioning the search space

into clusters and generating solutions from the partitions can improve the evenness

of the solutions generated by the solver. So the CSP and the domain of the input

variables are given to the domain clustering block. The domain of the input variables

is used to determine the required number of partitions. Consistency-based search is

done on the domain of input variables. It then generate partition tuples (A partition

tuple is a tuple which contains values for all the variables in the CSP) based on

the tuples returned by consistency search block. The consistency search block uses

the consistency algorithm to generate tuples. Then the partition tuples are used
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to partition/cluster the variable domain. The partitioned variable domain and the

CSP constraints are given to the constraint solver and the input stimuli are generated.

These input stimuli are used as inputs for the verification of the DUV. The simulation

report is then generated by the simulator.
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Chapter 5

Consistency Algorithm

5.1 Introduction

As mentioned in preliminaries, consistency search techniques are used to generate

solutions for CSPs. GAC-scheme [75] is a consistency algorithm developed for n-arity

constraints (n variables are there in the constraint). It is the extension of AC-7 for n-

arity constraints. Conjunctive Consistency [75] enforces GAC-scheme on conjunctions

of constraints. We chose GAC-scheme on Conjunction of Constraints (GACCC) for

our purpose because:

1. We need to eliminate as much invalid domain values as possible. This can be

done by performing consistency-based search on conjunction of constraints.

2. GAC-scheme does not require any specific data structure. Other consistency

based algorithm use specific data structure to keep track of consistency during

their search.

3. The constraints used in CDTG can have more than two variables and GAC-

scheme can handle constraint of n-arity.
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4. The constraints used in CDTG are not of a fixed type and GAC-scheme can be

used with any type of constraints. Some other search algorithms can only deal

with a specific class of constraints. For example AC algorithms can deal with

binary and unary constraints only.

5.2 Notations

Tuple: A tuple τ on an ordered set of variables is an ordered list which contains

values for all the variables. X(τ) represents the set of variables in the tuple τ .

Valid Tuple: The value of variable x in a tuple τ is denoted by τ [x]. A tuple

τ on Ci is valid iff ∀x ∈X(Ci), τ [x] ∈D(x) and τ satisfies the constraint Ci.

Support: If a ∈D(xi) and τ is a valid tuple on Cj, then τ is called a support

for (xi, a) on Cj.

Arc Consistency: A value a ∈D(xj) is consistent with Ci iff xj ∈X(Ci) and ∃τ

such that τ is a support for (xj, a) on Ci. Ci is arc consistent iff ∀xj ∈X(Ci),D(xj)6=

Ø and ∀a ∈D(xj), a is consistent with Ci.

Generalized Arc Consistency of a network: A CSP is generalized arc

consistent iff ∀Ci ∈C is arc consistent.

Conjunctive Consistency: If X(Sj)=X(C1)∪. . .∪X(Ck) where X(Ci)= set of

variables in Ci, then Sj is conjunctively consistent iff ∀a ∈D(xk), xk ∈X(Sj) and there

exists a tuple τ such that a=τ [xk] and τ is a support ∀xk.

Conjunctive Consistency of a network: Let P=〈 X, D, S〉 be a constraint

network. P is conjunctive consistent network iff ∀Sj ∈S is conjunctive consistent.
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5.3 GACCC

In GACCC [75], a variable in, a conjunction of constraint is selected and the selected

variable will be assigned a value from its domain. The algorithm will generate tuples in

lexicographical order (the selected variable value will not change) and check whether

the tuple satisfies the constraint. The algorithm continues to generate tuple until all

possible tuples are generated or a tuple which satisfies the constraint is generated. If

there is no tuple which satisfies the constraint for the selected variable value, then that

variable value is inconsistent and removed from the variable domain. The process will

be repeated for all the domain values of the selected variable, then for all the variables

in the constraint and for all the constraints in the constraint network.

To illustrate the idea discussed above, let us consider the following CSP: set

of variables X = {m,n, o, p, q}, domain of the variables D(m)={1, 2}, D(n)={2, 3},

D(o)={1, 2}, D(p)={1, 3}, D(q)={2, 3} and the constraints C1 : m+n+o+p = 7 and

C2 : m+ o+ q = 9. The consistency-based search (for conjunction of constraints) for

m = 1 has to go through 16 tuples (because each of the remaining variables (n, o, p, q)

has two variables in the domain) to find out that value is not consistent (which is the

worst case).

5.4 Intuitive Idea of GACCC-op

In consistency check, if any one constraint is not satisfied, then the tuple generated is

inconsistent with the conjunction set. We can reduce the number of tuples generated

during consistency-based search by using this property. Initially for a given variable,

we consider the constraint with lowest number of variables and contain the specified

variable. We generate tuples for the above constraint and search for consistency. If
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the tuple generated for the smallest constraint is not consistent then all the tuples

generated for the conjunction of constraints are also not consistent. If the tuple

generated for the smallest constraint is consistent, then only we need to generate the

tuples for the conjunction of constraints (tuple generated for conjunction of constraints

should contain the tuple which is consistent with the smallest constraint). Since the

number of variables in the smallest constraint is less when compared to tuple for

conjunction of constraints, consistency can be checked in less number of iterations.

In the above CSP, C2 is the smallest constraint in the set, which has 3 variables

and the variable m. Consistency check is first performed on this constraint. In

4 (because each of the remaining variables (o, q) has two variables in the domain)

iterations we can find that m = 1 is inconsistent with the constraint C2. Hence

m = 1 is inconsistent for the conjunction of constraints. The tuples for a variable in

conjunction of constraints is generated only if the smallest constraint containing the

variable is satisfied by the tuple. Consider another set of constraints C3 : m + n +

o+ p = 8 and C4 : m+ o+ q = 6. By GACCC we have to generate 8 tuples to find a

consistent tuple (which is the worst case). By using the new algorithm we need only

5 (4 iterations for C3 and 1 for conjunction of C3 and C4) iterations to find the tuple

which satisfies the constraints. So by using the proposed algorithm, consistency check

can be completed in less number of iteration when compared to GACCC.

So the difference between GACCC and GACCC-op are as follows:

1. In GACCC the support list is made by using some existing variable order scheme.

The known heuristic is to use the most constrained variable in GAC. In GACCC-

op we propose a new variable ordering scheme in which the consistency-based

search starts with the variable, which is present in the constraint with the lowest

arity and has the largest number of domain values.
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2. In GACCC during consistency-based search of a domain value of a variable,

the tuples generated will contain all the variable in the conjunction set. In

GACCC-op the consistency-based search for a variable x will begin with tuples

which contain only variables from the smallest constraint(Cs)(Cs should contain

the variable x). If there is a tuple which satisfies the constraint Cs, only then

GACCC-op generate tuples with the entire variable in the conjunction set.

5.5 GACCC-op

Let us start the discussion of the proposed GACCC-op algorithm with the main

program (Algorithm 5.1). First the data structures (lastSc, supportlist, deletionlist

and Sclast) must be created and initialized. Sclast, supportlist, deletionlist and lastSc

are initialized in such a way that:

1. Sclast contains the last tuple returned by the function SeekValidSupportSet

as a support for variable value.

2. supportlist contains all tuples that are support for variable value.

3. deletionlist contains all variable values that are inconsistent.

4. lastSc is the last tuple returned by the function SeekValidSupport as a sup-

port for variable value.

Conjunct the constraints based on the heuristics explained in section 5.6. Then

for each set of conjuncted constraints, for each variable present in the constraints, all

the domain values of the variable are put in supportlist. The domain values of the

variables in a conjunction set are added to supportlist using the following heuristics:

1. Find the lowest arity constraint(Cl) in the conjunction set.
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Algorithm 5.1: GACCC-op Algorithm

1: Conjunct the constraints based on the conjunction heuristics
2: for each constraint set (S) do
3: for each variable in set (y) do
4: for each domain value of variable (b) do
5: Add to support stream(S,y,b)
6: end for
7: end for
8: end for
9: while support stream 6= nil do

10: σ = SeekInferableSupport(S,y,b)
11: if σ = nil then
12: c = smallest constraint containing variable y
13: while found soln ‖ checked all tuples do
14: σ∗ = lastSc(C,y,b)
15: if σ∗ = nil then
16: LOOP2: σ∗ = SeekValidSupport (C,y,b,σ∗)
17: if σ∗ = nil then
18: DeletionStream (y,b)
19: else
20: if variables in all the constraints are same then
21: Add to Sclast(S,y,b)
22: else
23: Add to lastSc(C,y,b)
24: go to LOOP1
25: end if
26: end if
27: else
28: if Sclast(S,y,b)6= nil then
29: σ ∗ ∗ = Sclast(S,y,b)
30: go to LOOP1
31: else
32: σ ∗ ∗ = nil
33: end if
34: end if
35: LOOP1: λ* = SeekValidSupportSet(S,y,b,σ ∗ ∗)
36: if λ*6= nil then
37: Add to Sclast(S,y,b)
38: else
39: go to LOOP2
40: end if
41: end while
42: end if
43: end while
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2. Find a variable (xl) where the variable and Cl is not added to the list, the

variable is in Cl and has the highest number of domain values.

3. Add all the domain values of the selected variable (xl), variable and the con-

straint to the list.

4. Repeat step 2 until all the variables in the constraint Cl are considered.

5. If there is any variable or constraint set to be added to the list from the con-

junction set, then find the next highest arity constraint and repeat steps 2-4.

This supportlist is used to find the support (support is a tuple which satis-

fies the constraint) for each variable value in the constraint set. For each value in

supportlist the algorithm will try to find a valid support by using the function Seek-

InferableSupport. Function SeekInferableSupport checks whether an already

checked tuple is a support for (y,b). If there is no valid support to be inferred then

we will search for a valid support.

Algorithm 5.2: SeekInferableSupport

1: SeekInferableSupport (in S:constraint; in y:variable; in b:value):tuple
2: while support stream 6= nil do
3: if Sclast(var(S,y),τ [y]) = b then
4: zigma = Sclast(S,y,b)
5: else
6: zigma = nil
7: end if
8: return zigma
9: end while

For every value ’b’, for a variable ’y’ in X(C), lastSc(C,y,b) is the last tuple

returned by SeekValidSupport as a support for (y,b) if SeekValidSupport(C,y,b)

has already been called or empty otherwise. The above two functions help to avoid
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checking several times whether the same tuple is a support for the constraint or not.

If the search is new we look for support from the first valid tuple.

If no valid tuple is found then the variable value is not consistent with the

constraint. Hence it is not consistent with constraint set. This variable value will be

deleted from the domain of the variable by the function DeletionStream(y,b).

Algorithm 5.3: SeekValidSupport

1: SeekValidSupport (in C:constraint; in y:variable; in b:value; in τ :tuple):tuple
2: if τ 6= nil then
3: zigma = NextTuple(C,y,b,τ)
4: else
5: zigma = FirstTuple(C,y,b)
6: end if
7: zigma1 = SeekCandidateTuple(C,y,b,τ)
8: solution found = false
9: while (zigma1 6= nil) and (not solution found) do

10: if zigma1 satisfies constraint C then
11: solution found = true
12: else
13: zigma1= NextTuple(C,y,b,zigma1)
14: zigma1 = SeekCandidateTuple(C,y,b,zigma1)
15: end if
16: return zigma1
17: end while

If a tuple is returned by lastSc(C,y,b), we will check for Sclast(S,y,b). Sclast(S,y,b)

is the last tuple returned by SeekValidSupportSet as a support for (S,y,b) if Seek-

ValidSupportSet has already been called or empty otherwise. If a tuple is returned

we start the search for support for conjunction constraint set from that tuple, else we

will start search from the first valid tuple for the conjunction set, with variables in

constraint C has the values of the tuple from lastSc(C,y,b). If the SeekValidSup-

portSet returns empty then we will call function SeekValidSupport and repeat

the process until a valid tuple for the for conjunction constraint set is found or the

lastSc(C,y,b) returns empty. If the lastSc(C,y,b) returns empty then the variable value
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is deleted the function DeletionStream(y,b). The above processes will be repeated

until both the deletionlist and supportlist are empty.

The function SeekInferableSupport(Algorithm 6.1) ensures that the algo-

rithm will never look for a support for a value when a tuple supporting this value has

already been checked. The idea is to exploit the property: ”If (y,b) belongs to a tuple

supporting another value, then this tuple also supports (y,b)”.

Algorithm 5.4: SeekCandidateTuple

1: SeekCandidateTuple (in C:constraint; in y:variable; in b:value; in τ :tuple):tuple
2: k = 1
3: while (τ 6= nil) and (k≤X(C)) do
4: if lastc(var(C,k),τ [k])6= nil then
5: λ = lastSc(var(C,k),τ [k])
6: split = 1
7: while τ [split] = λ[split] do
8: split = split+1
9: end while

10: if τ [split] < λ[split] then
11: if split < k then
12: (τ ,k’)= NextTuple( C,y,b,λ)
13: k = k’+1
14: else
15: (τ ,k’)= NextTuple( C,y,b,λ)
16: k = min(k’-1, k)
17: end if
18: end if
19: end if
20: k = k+1
21: end while
22: return τ

After the function SeekInferableSupport fails to find any previously checked

tuple as a support for (y,b) on the constraint C, the function SeekValidSupport

(Algorithm 5.3) is called to find a new support for (y,b). But the function has to

avoid checking tuples which are already checked. This is taken care by using the

function SeekCandidateTuple. The function NextTuple will generate new tuples
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in a lexicographical order which can be a valid support for the constraint variable

value.

Algorithm 5.5: SeekValidSupportSet

1: SeekCandidateTuple (in S:constraint set; in y:variable; in b:value; in
τ :tuple):tuple

2: if τ 6= nil then
3: zigma = NextTuple(S,y,b,τ ,θ)
4: else
5: zigma = FirstTuple(S,y,b)
6: end if
7: zigma1 = SeekCandidateSet(S,y,b,τ ,θ)
8: solution found = false
9: while (zigma1 6= nil) and (not solution found) do

10: if zigma1 satisfies constraint set S then
11: solution found = true
12: else
13: zigma1= NextTuple(S,y,b,zigma1,θ)
14: zigma1 = SeekCandidateSet(D,y,b,zigma1,θ)
15: end if
16: return zigma1
17: end while

Function SeekCandidateTuple(C,y,b,τ) (Algorithm 5.4) returns the smallest

candidate greater than or equal to τ . For each index from 1 to |X(C)| SeekCandi-

dateTuple verifies whether τ is greater than lastSc (λ). If τ is smaller than λ, the

search moves forward to the smallest valid tuple following τ , else to the valid tuple

following λ. When the search moves to the next valid tuple greater than τ or λ, some

values before the index may have changed. In those cases we repeat the previous

process to make sure that we are not generating a previously checked tuple.

The function SeekValidSupportSet (Algorithm 5.5) is called to find a new

support for (y,b) on the conjunction of constraints. But the function has to avoid

checking tuples which are already checked. This is taken care by using the function

SeekCandidateSet. This function is similar to the function SeekCandidateTuple.
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The function SeekCandidateSet returns the smallest tuple which is a support of

the conjunction of constraints.

Algorithm 5.6: DeletionStream

1: SeekCandidateTuple (in y:variable; in b:value)
2: if Sclast(var(C,y),τ [y])= b then
3: Add to supportlist (S,(var(C,x)),a) where x 6= y and τ [x]=a
4: delete λ from Sclast
5: end if

If there is no support for a variable value, then that variable value is deleted

from the variable domain by the function DeletionStream (Algorithm 5.6). The

function also checks whether any tuple in Sclast contains the variable value. If there

is such a tuple, then all the variable values in the tuple are added to supportlist to

find new support.

5.6 Heuristic for Generating Conjunction Set

The CSPs associated with the verification scenarios have large number of constraints,

large domain for each input variable and many of the constraints have the same

variables. The pruning capability by consistency-based search can be increased, by

combining/conjuncting a large number of constraints together. If a large number

of constraints are conjuncted, the variables in the tuple increases and the number of

tuples that has to be generated also increases. So there should be a limit to the number

of constraints conjuncted together. Similarly the number of variables in the tuple has

to be regulated to prevent the tuple from becoming very large. For conjunction

of constraints to be effective in reducing the domain values, the constraints in the

conjunction set should have a certain number of variables in common. The number

of constraints (k), number of variables in the conjunction set (j ) and the number of
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variables common to all the constraints in the conjunction set (i) depends on the CSP

and the machine capacity. So there should be a heuristic based on the parameters

i, j and k to determine which constraints can be combined together to make the

conjunction set.

The heuristic for grouping constraints into conjunctive sets is as follows:

1. Initially there will be ’n’ conjunctive sets(S), each containing a single constraint

(where n is the total number of constraints in the CSP).

2. If there exists two conjunctive sets S1, S2 such that variables in S1 is equal to

variables in S2, then remove S1 and S2 and add a new set which is conjunction

of all the constraints in S1 and S2.

3. If there exist two conjunctive sets S1, S2 such that (a) S1, S2 share at least

i variables (b) the number of variables in S1 ∪ S2 is less than j (c) the total

number of constraints in S1 and S2 is less than k then remove S1 and S2 and

add a new set which is conjunction of all the constraints in S1 and S2.

4. Repeat 2 and 3 until no more such pairs exist.

Table 5.1: Conjunction of Constraints
Constraints in CSP After step1 After step2 After step3 (i=1,j=5,k=4)
C1 : a ∗ b > 20 S1 : a ∗ b > 20 S5 : S1

∧
S2 : S6 : S5

∧
S3 :

C2 : a > b S2 : a > b a ∗ b > 20
∧
a > b a ∗ b > 20

∧
a > b

∧
a+ c = 25

C3 : a+ c = 25 S3 : a+ c = 25 S3 : a+ c = 25
C4 : c+ d = 19 S4 : c+ d = 19 S4 : c+ d = 19 S4 : c+ d = 19

The Table 5.1 shows how constraints can be conjuncted using the above heuris-

tic. During step 3 the constraints S5 and S3 are conjuncted to form constraint S6.

The constraint S4 cannot be conjuncted with S6 because the total number of con-

straints in the conjunction set should be less than 4 (since k=4).
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5.7 Correctness of the GACCC-op Algorithm

To show the correctness of the algorithm it is necessary to prove that every arc in-

consistent value is removed (completeness) and that no consistent value is removed

by the algorithm (soundness) when the algorithm terminates. Moreover, we need to

prove that the algorithm terminates.

Lemma 5.1. Algorithm will terminate.

Proof. The algorithm consists of a for loop and two while loops. The generation

of elements for the list called support stream(S,y,b) uses a for loop. The number

of domain values, variable and constraints are finite. Hence the elements generated

for the list is finite and the for loop will terminate. The pruning process for the

domain values uses a while loop. During each cycle, one element is removed from

the list. The elements are added to this list only when a value is removed from

some domain. Thus, it is possible to add only a finite number of elements to the list

(some elements can be added repeatedly). Hence the while loop will terminate. The

algorithm uses a while loop to find support for a variable value in a constraint. The

algorithm generates tuples in lexicographic order starting for the smallest one. Since

the number of possible tuples for a constraint is finite, the while loop will terminate

when it finds a valid support tuple or when all the tuples are generated.

Lemma 5.2. SeekCandidateTuple will not miss any valid tuple during the generation

of next tuple.

Proof. Consider that there is a candidate tuple σ′ between σ and the tuple returned

by the function NextTuple. This implies that σ′[1...k] = σ[1...k] else σ′ will the tuple

returned by NextTuple. Hence σ′ should be smaller than λ (lines 10-11). If σ′ is

59



smaller than λ then that tuple is already generated and checked for consistency. So

σ′ cannot be a tuple between σ and the tuple returned by the function NextTuple.

Another possibility is that there can be a candidate tuple σ′ between σ and λ.

Then σ′[1...k] should be equal to λ[1...k] (lines 7-11). This is not possible candidate

since λ is not a valid support tuple.

Lemma 5.3. The algorithm does not remove any consistent value from the domain

of variables.

Proof. A value is removed from the domain of a variable only if the value is not

arc consistent i.e. there is no valid support tuple for the variable value. Thus, the

algorithm does not remove any consistent value from the variables’ domains so the

algorithm is sound.

Lemma 5.4. When the algorithm terminates, then the domain of variables contain

only arc consistent values (or some domain is empty).

Proof. Every value in the domain has to pass the consistency test and inconsistent

values will be deleted. When an inconsistent value is deleted and if the deleted value

is part of a valid support tuple, then all variable values in that tuple are checked

for consistency again. Hence when the algorithm terminates only consistent values

remain in the domain.

5.8 Complexity of the GACCC-op Algorithm

Lemma 5.5. The worst case time complexity of the algorithm is O(en2dn).

Proof. The worst-case time complexity of GACCC-op depends on the arity of the

constraints involved in the constraint network. The greater the number of variables
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involved in a constraint, the higher the cost to propagate it. Let us first limit our

analysis to the cost of enforcing GAC on a single conjunction constraint, Si of arity n

(n = |X(Si)|) and d = size of the domain of the variable. For each variable xi∈ X(Si),

for each value a∈ D(xi) , we look for supports in the search space where xi = a,

which can contain up to dn−1 tuples. If the cost to check whether a tuple satisfies the

constraint is in O(n), then the cost for checking consistency of a value is in O(ndn−1).

Since we have to find support for nd values, the cost of enforcing GAC on Si is in

O(n2dn). If we enforce GAC on the whole constraint network, values can be pruned

by other constraints, and each time a value is pruned from the domain of a variable

involved in Si, we have to call SeekValidSupportSet on Si. So, Si can be revised up

to nd times. Fortunately, additional calls to SeekValidSupportSet do not increase

its complexity since, last(Si, y, b) ensures that the search for support for (xi, a) on Si

will never check twice the same tuple. Therefore, in a network involving e number of

constraints with arity bounded by n, the total time complexity of GACCC-op is in

O(en2dn).

Lemma 5.6. The worst case space complexity of the algorithm is O(en2d).

Proof. Consistency-based search generates at most one valid support tuple for each

variable value. Then there are at most nd tuples in memory for a constraint. One

tuple will contain n elements. Then the set of all tuples which are a valid support

for a constraint can be represented in O(n2d). Therefore, in a network involving e

constraints with arity bounded by n, the total space complexity of GACCC-op is in

O(en2d).
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5.9 Experimental Results

5.9.1 Case Study: CSPs

Table 5.2: Time for consistency-based search for 3-SAT Problem Instances
No: of No: of No of tuples No of tuples %improvement

Variables Constraints with GACCC with GACCC-op in time
10 14 98 76 12.34
12 14 96 70 10.66
14 14 103 82 11.46
18 30 168 120 19.86
20 30 170 131 17.96
20 40 256 216 17.43

We performed our experiments on different CSP models. The first is a model for

the 3-SAT problems [78] with different number of variables. The SAT problems with a

set of clauses are converted into CSPs containing the same set of variables. In our case,

we set i=2, k=2 and j=5 (i, j and k are the values from the heuristic for generating

conjunction set) and generated the conjunction set. Hence the model contained some

conjunction set which has 2 variables shared between member constraints. The results

are shown in Table 5.2. For each problem the experiment is repeated for 20 instances.

We implemented the GAC-scheme on conjunction of constraints and the proposed

algorithm using the C++ language. The result shows that the proposed algorithm

attains consistency faster than the existing algorithm.

In order to show the effect of consistency check on constraint solvers associated

with CDTG, we took three different CSP benchmark problems, Langford Series, Magic

Sequence and Golomb Ruler. The three CSPs are modeled using SystemVerilog. The

SystemVerilog constraints are then used for consistency-based search. The reduced

input variable domain are generated by the consistency-based search. This reduced

domain is then used by the VCS (CDTG tool) to generate the CSP solutions. From
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Table 5.3: Results for Benchmark CSP Problems using VCS
Improvement After
Domain Reduction

Benchmark No: of No: of Time Memory
Problem Variables Domain Values (%) (%)

Langford Series
6 3 10.0 23.5
8 4 21.4 27.7
14 7 25.0 40.8

Golomb Ruler

3 4 8.3 23.2
4 7 7.1 28.2
5 12 9.5 39.1
6 18 13.8 73.1

Magic Sequence
4 4 30.0 50.0
5 5 40.0 71.6
7 7 55.0 73.3
8 8 62.5 81.5

Table 5.3, we can see that the time to solve the three CSPs is reduced after giving

the reduced domain. In the cases of Magic Sequence the time is significantly reduced,

because, after the domain reduction the number of domain values in most of the

variables is reduced to one. Since the domain of input variables are reduced, the

search space which has to be covered by the solver is reduced. This helps the solver to

generate the solutions for CSP in less time and with reduced memory consumption.

5.9.2 Case Study: Xbar Switch

For a real life case study, the example of an Xbar crossbar switch [79] was chosen.

According to the design specification, the Xbar consists of four receive and transmit

ports. The data request can either be in protocol A or B. As shown in Figure. 5.1 port

0 supports protocol A, port 1 supports protocol B and port 2 and port 3 support both

protocol A and B. Therefore, for example, port 0 can only respond to an incoming

data request following protocol A and transfer the incoming data to a port supporting

protocol A (port 2 and port 3 ).
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Figure 5.1: Xbar Switch Design

In the proposed methodology, the requirements that must be satisfied by the

design are extracted from the design specification. In this example, one of the require-

ments to be verified is, whether each of the Xbar transmit port responds correctly to

the data requests arriving at that port. The next step in the methodology is to con-

vert the requirement into verification scenarios. The above requirement is converted

into two verification scenarios, where, in one verification scenario the protocol for data

transfer is A and in the other the protocol is B. When the protocol for data transfer

is protocol A, the incoming (source) port can be port 0 or port 2 or port 3. For

each possible source port, Table 5.4 shows the corresponding possible output (desti-

nation) ports. The stimulus generator has to randomly generate the different possible

combinations of source port and destination port to verify the above requirement.

Table 5.4: Verification Scenarios
Protocol Source Destination

Port Port

Data request Protocol A
0 2,3
2 0,3
3 0,2

Data request Protocol B
1 2,3
2 1,3
3 1,2
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The verification scenarios are then modeled into CSPs. The first verification

scenario can be modeled into a CSP by the following constraints:

constraint c1{foreach (dest[i])dest[i] inside{[0-3];}

constraint c2{foreach (source[i])source[i] inside{[0-3];}

constraint c3{foreach (source[i])protocol==A-> (source[i]!=1);}

constraint c4{foreach (dest[i])protocol==A-> (dest[i]!=source[i] & 1);}

In the verification scenarios mentioned above there are two variables: source

port and destination port. The domain of source port is 0,1,2 and 3, and the domain

of destination port is 0,1,2 and 3. In our model the source port is called source and the

destination port is called dest. The constraint c1 specifies the domain of the variable

source and the constraint c2 specifies the domain of the variable dest. The number

of input stimuli generated by the model will be i. When the protocol used for data

request is protocol A, port 1 cannot be a source port. This constraint is implemented

by the constraint c3. Similarly when the protocol used for data request is protocol A,

port 1 cannot be a destination port and the destination port cannot be same as the

source port. This constraint is implemented by c4.

These constraints are given to the constraint solver which generates the different

possible combinations of source port and destination port. To generate the different

values of the source port and destination port, the solver has to traverse through the

entire search space which contains 16 possible values(4 source port * 4 destination

port). Here we can see that because of the constraints c3 and c4, port 1 cannot be

part of source port or destination port. In the proposed methodology consistency-

based search is performed on the above constraints. The consistency-based search will

also show that port 1 cannot be part of the domain of source port and destination

port. Hence port 1 will be removed from the domain of source port and destination
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port. The modified domain is then given to the constraint solver to generate the

different combinations of source port and destination port. The new search space

contains only 9 possible combination (3 source ports * 3 destination ports). Since the

search space is reduced, the solver can generate solutions faster.

Table 5.5: Results for Xbar Switch using VCS with Domain Reduction
Coverage with Coverage with Coverage with

simulation simulation simulation
time=0.6sec time=1.2sec time=3sec

No:of
ports M1 M2 M1 M2 M1 M2

16 84.71 87.32 86.32 89.41 87.42 90.54
32 74.81 82.22 80.58 87.27 83.78 89.59
48 47.52 71.18 49.75 75.10 52.89 83.09
64 34.05 64.67 34.90 71.55 36.57 77.31
80 27.48 67.98 28.09 70.04 29.21 74.27

In order to show the scalability, the number of ports is increased from 16 to 80.

Input stimulus for both the verification scenarios were generated. The cover points

were defined on the possible source and destination port values. In the case of 16

ports, the ports 1-4 support protocol A, the ports 5-8 support protocol B and the

ports 9-16 support both protocol A and B. The source port can have 12 values and

the destination port can also have 12 values in both the verification scenarios. This

potentially yields 144 (12 ∗ 12) cases that must be covered in each of the verification

scenario. Obviously, not all cases are possible (e.g. the source port and destination

port cannot be the same), so the actual number of cases is, in fact, lower. For both

the verification scenarios together there are 264(132+132) plausible cover points.

The time to manufacture and market is the main bottleneck in verification. So

the verification engineer is given a fixed time to verify the design. In this experiment

we also kept the verification time constant. In Table 5.5 M1 represents the stimulus
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generation without reduced domain and M2 represents stimulus generation with re-

duced domain. The consistency-based search took about 20ms. For the same time

period the CDTG tool was able to attain more coverage when compared to existing

methodology. In some of the cases the coverage is increased by about 40%. So with a

small overhead for consistency-based search, we were able to obtain higher coverage

when compared to existing CDTG methodology.

5.10 Conclusion

We presented a consistency-based search algorithm which helps to generate partial

solution which are required for domain partitioning. The proposed algorithm can be

used with n-arity constraints. The proposed algorithm is much more efficient than the

GACCC algorithm, since it requires less number of tuples to determine consistency.

The results showed that the proposed algorithm helps in getting solution faster and

with reduced memory consumption.
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Chapter 6

Estimation of number of clusters

6.1 Introduction

A basic feature of the search space (data set) is that it contains k number of sub

populations or clusters [77]. One way to attain evenness in input stimuli generation is

to partition or cluster the input domain and generate input stimuli from the clusters.

In k -partition/clustering technique, given a set of n points in Euclidean space and

an integer k, the clustering algorithm will partition the n points into k subsets, each

with a representative known as a centroid. Estimating k is a preliminary step in any

cluster analysis. However many cluster algorithms consider k as an input chosen by

the user. Hence these techniques arises the question, ”What is the best number of

clusters in a dataset?”.

Clustering problems have been studied for the past many years by data man-

agement and data mining researchers. A thorough review of the clustering literature,

can be found in a plethora of surveys [80][81][82][83]. There are several approaches to

find the optimal number of clusters.

In one approach adopted, the data set is plotted as an evaluation graph, where
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the values in the y-axis represents any evaluation metric, such as: distance, similarity,

error, or quality and the x-axis values are number of cluster from 2,...,n (number of

elements in a data set). The knee of this obtained graph provides the best/optimum

number of clusters. There are many methods to find the knee of the graph. Some

of the methods evaluate each point in the evaluation graph, and use the point that

either minimizes or maximizes some function, as the number of clusters. Such methods

include the Gap statistic [84] and prediction strength [85]. These methods generally

require the entire clustering algorithm to be run for each potential value of k (2,...,n).

Hence, this is computationally expensive and requires a large amount of time.

Another way to determine the knee of a curve is the L method [86]. The L

method makes use of an evaluation function to construct an evaluation graph where

the x-axis is the number of clusters and the y-axis is the value of the evaluation

function.

L Method

In Figure. 6.1, starting from the right, the graph continues to the left in a rather

straight line for some time (points marked by dots). In this region, many clusters are

similar to each other and should be merged. Another distinctive area of the graph is

on the far left side where the graph is a straight line for some time (points marked

by triangle). The increase in distance indicates that very dissimilar clusters are being

merged together. The knee region is the area where the above two lines meet each

other. Clusterings in this knee region contain a balance of clusters that are both

highly homogeneous, and also dissimilar to each other. Determining the number of

clusters in this knee region will therefore give the best number of clusters.

In order to determine the location of the transition area or knee of the evaluation

graph, a property that exists in these evaluation graphs is used. The regions to both
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Figure 6.1: Number of Cluster vs Distance

Figure 6.2: Finding the Number of Clusters using the L Method

the right and the left of the knee (see Figure. 6.2) are often approximately linear. If a

line is fitted to the right side and another line is fitted to the left side, then the area

between the two lines will be in the same region as the knee. The value of the x-axis

at the knee can then be used as the number of clusters to return.

To create the two lines that intersect at the knee, the pair of straight lines that

most closely fit the curve is to be determined. Both lines together must cover all of

the data points (or max possible number of data points). Hence if one line is small,

the other must be large to cover the rest of the remaining data points.

The L method algorithms treat every data point as a cluster. This will result

in an evaluation graph as large as the original data set. In such an evaluation graph,

very large values of x (number of clusters) are irrelevant. In the following section we

propose a new methodology for the determination of best number of cluster which

requires less number of statistical evaluation (determination of cost for a cluster).
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Figure 6.3: Knee Value Under-estimated

Figure 6.4: Knee Value Over-estimated

6.2 Proposed Method

We can find the number of clusters in a data set by searching for the number of cluster

at which there is a knee, peak or dip in the evaluation measure, when it is plotted

against the number of clusters. The existing approaches to estimate the optimal

number of clusters generally depend on some clustering operation for each number

of clusters. These approaches are time consuming. We take a different approach

to estimate the number of clusters. We devise an algorithm which can efficiently

determine the best number of clusters.

In order to find the knee of the graph, two lines, one nearly parallel to x-axis

and another parallel to y-axis are required. To determine the equation of the straight

lines at least two point are required. One set of points should be before the knee of

the graph and another set must be after the knee of the graph in order to get the

above mentioned parallel lines. According to [81] if no information is available, for a
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data set containing n elements, the best number of cluster is nearly equal to
√
n/2.

Hence, this could be the value where the knee of the graph exist.

Algorithm 6.1: Number of clusters

1: Number of clusters (in n-number of elements in search space): k-best number of
clusters

2: nmin = 2, nmid =
√
n/2, nmax = 2 ∗

√
n/2

3: find 3 random natural numbers xl1, xl2, xl3 between nmin and nmid
4: let yl1, yl2, yl3 be the cost of clustering using k-means method for xl1, xl2, xl3

respectively
5: linel= line passing through the points (xl1,yl1), (xl2,yl2), (xl3,yl3)
6: find 3 random natural numbers xr1, xr2, xr3 between nmid and nmax
7: let yr1, yr2, yr3 be the cost of clustering using k-means method for xr1, xr2, xr3

respectively
8: liner= line passing through the points (xr1,yr1), (xr2,yr2), (xr3,yr3)
9: nmid = value on x-axis (no: of clusters) where linel and liner intersect each other

10: let Cn1, Cn2, Cn3 be the cost of clustering using k-means method for nmid − 1,
nmid, nmid + 1 respectively

11: Smean= mean of linel and liner slopes
12: S1=slope of line passing through the points (nmid − 1,Cn1) and (nmid,Cn2)
13: S2=slope of line passing through the points (nmid,Cn2) and (nmid + 1,Cn3)
14: while best number of cluster = nil do
15: if (S1 > Smean) & (S2 < Smean) then
16: best number of clusters = nmid
17: else
18: if (S1 < Smean) then
19: nmid = nmid -1
20: end if
21: else
22: if (S2 > Smean) then
23: nmid = nmid +1
24: end if
25: end if
26: end while

If
√
n/2 is not in the knee region, from Figure. 6.3 (knee value under-estimated)

and Figure. 6.4 (knee value over-estimated), it can be seen that the shape of the graph

is a combination of straight line and a semi parabola (dark line). Minimum three point

are required to find the equation of a parabola and two points are required to find the
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equation of the line. Hence three point are used to determine the equation. Three

values are chosen randomly between 2 and
√
n/2 and the equation of the line/semi

parabola passing through the three points is generated.

Another three values are chosen randomly between
√
n/2 and 2 ∗

√
n/2 and

the equation of the line (not necessarily a straight line) passing through the three

points is generated. These two equations represent the required two lines. Then the

point of intersection of these two lines in the first quadrant is determined. Once

the intersection point is found the algorithm generates the cost for the 3 consecutive

number of clusters nmid − 1, nmid, nmid + 1 (Cn1, Cn2, Cn3 respectively). The slope

of the straight line (S1) passing through the points (Cn1, nmid − 1) and (Cn2, nmid)is

determined. Also the slope of the straight line (S2) passing through the points (Cn2,

nmid) and (Cn3, nmid + 1) is determined. Then the mean value of the slopes (Smean)

of the two line is determined.

Next, the algorithm tries to find the location of N (best number of cluster) in

the graph. For any point to be the knee of the graph, the difference between S1 and

S2 should be large (i.e. rate of change in slope should be large). If S1 > Smean and S2

< Smean, this means that the point nmid is in between the two lines which are parallel

to x-axis and y-axis respectively. Hence nmid is the best number of clusters in the data

set. If S1 < Smean, it means that nmid is located towards the right side of the graph.

But the knee of the graph (N) is towards the left. So the nmid value is decremented

to move towards the left of the graph. If S2 > Smean, it means that nmid is located

towards the left side of the graph. But N is towards the right of graph. So the nmid

value is incremented to move towards the right of the graph.

Theorem 6.1. The worst case complexity of the algorithm is O(
√
n/2).
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Proof. The algorithm starts with finding equation of a line between 2 and
√
n/2 and

equation of another line between
√
n/2 and 2*

√
n/2. Then the point of intersection

of the two lines is found out. In worst case the point of intersection can be a point

near 2 or near 2*
√
n/2. Then the algorithm will iterate until it it reaches the knee

of the graph which is when the slope S1 > Smean and S2 < Smean. If the point of

intersection is near 2, then S2 > Smean. The algorithm can iterate only until the point√
n/2 after which S1 < Smean. If the point of intersection is near 2*

√
n/2, then S1 <

Smean. The algorithm can iterate only until the point
√
n/2 after which S2 > Smean.

Hence the worst cases complexity is O(
√
n/2).

6.3 Experimental Results

The goal of this evaluation is to demonstrate the ability of the proposed method to

identify the best number of clusters in a given data set. The algorithm is first used

with a set of data where the evaluation graph has different distinct shapes. Figure. 6.5

shows the shape of the evaluation graphs used for the determination of the best number

of clusters. In some of the graphs, from the shape of the graph clearly shows joining

of the two distinct lines and the best number of clusters. In some others, the graph

is a smooth curve where the number of clusters is not so visible. Table 6.1 shows the

best number of clusters determined by the proposed method and the number of time

the cost function was called. M1 represents the result obtained by L method and M2

the result obtained by proposed method.

For L method, the cost function is called for all possible values of n (number

of clusters). Evaluation of cost is a time consuming process. Also finding the two

lines that is parallel to the axis and passing through majority of the points is also a

time consuming process. But with the proposed method, the number of time the cost
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Figure 6.5: Test Cases

function was called is less when compared to L method. Hence the proposed method

is faster than the L method.

We also used five sets of diverse data to compare the answer provided by L

method to the proposed method. The diverse data sets varied in size, number of

clusters, separation of clusters and density. The five data sets that were used are:

1. A data set with four well separated clusters with 1289 instances and 50 variables

(dimensions).

2. A data set with five well separated clusters with 2000 instances and 200 variables.

3. A data set with four well separated clusters with 1286 instances and 500 vari-

ables.

4. A data set with ten well separated clusters with 3814 instances and 800 variables.

5. A data set with ten well separated clusters with 2729 instances and 1000 vari-

ables.

Using the tool Weka (which is a data mining tool) [87], we clustered the five di-

verse data sets mentioned above by using K-means algorithm. The cost for clustering
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Table 6.1: Test Cases with Different Evaluation Graph Shapes

Case
# Clusters #times cost function Time in sec

Actual M1 M2 is called M1 M2
A 9 9 9 10 0.16 0.10
B 9 8 9 10 0.16 0.10
C 7 7 7 11 0.16 0.11
D 17 15 17 29 0.50 0.30
E 16 13 17 18 0.35 0.19
F 19 18 19 36 0.75 0.38

Table 6.2: Test Cases with Diverse Data Sets

Case
# Clusters #times cost function Time in sec
M1 M2 is called M1 M2

1 5 5 17 3.90 1.70
2 5 5 16 4.50 1.90
3 4 4 24 5.70 3.20
4 6 9 12 5.10 3.10
5 5 10 15 6.65 3.90

is then determined and this is plotted against the number of clusters. In L method, the

maximum number of cluster is equal to the number of datapoints/instances. Com-

puting the cost of all the possible number of clusters is computationally expensive

and is not required. Hence in this experiment we limited the maximum number of

clusters to 50. Then the best number of cluster is determined using L method and

the proposed method. The results are shown in Table 6.2. M1 represents the result

obtained by L method and M2 the result obtained by proposed method. 8 out of

11 times, the proposed method determined the correct number of clusters. In other

cases the obtained results were very close. In all the above cases the actual number

of clusters weare known since the data sets were synthetic.

The proposed method fine grains the search for the best number of clusters only

when an approximate value for best number of clusters is determined. Hence, the

frequency of calling the cost function is very small when compared to L method. This

can be seen from the number of time the algorithm calls the cost function. Hence the
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Figure 6.6: Coverage vs Number of Clusters

proposed method runs more quickly than then the L method.

In the above experiments, we used data sets where we knew the number of

clusters in the data set. But in real life problems this is not the case. So in order to

see the effect of the proposed method on domain partitioning and coverage obtained,

we considered a search space with two variables but with different number of domain

values. Then we clustered the search space with the number of clusters varying from

1...10. By using the proposed method we generated the optimum number of cluster

for each search space.

Figure. 6.6 shows the coverage obtained for different values for the number of

clusters (the label on the right side shows the number of domain values for the variable

x and y). The straight line shows the optimal number of clusters generated for each

case of varying number of domain values. It is very clear that the proposed method

was able to give a good estimate of the best number of clusters and as a result

the coverage obtained is higher than the coverage obtained by using some random

number of clusters. In some cases the coverage obtained by partitioning is less than

the coverage obtained with no partitioning or when the number of cluster is equal to

one. This is because, in those cases, some of the partitions has no solutions. Hence it
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affected the overall coverage obtained.

6.4 Conclusion

We have detailed our number of clusters determination method. It has been shown

to work reasonably well in determining the number of clusters or segments for a given

data set. In our evaluation, the proposed method was able to determine the number

of clusters for the given data set. The proposed method is much more efficient than

the existing L method, since it requires only a fraction of a second to determine

the number of clusters rather than minutes or even many hours in the case of other

methods.
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Chapter 7

Domain Partitioning Algorithm

7.1 Introduction

In a CSP, the solutions are clustered together in the search space [77]. Hence par-

titioning the search space into clusters and generating solutions from the partitions

can improve the evenness of the solutions generated by the solver. One way to cluster

search space is to generate all possible solutions and find n solutions which are far

apart. These n solutions are the center of the clusters and are used for partition-

ing. Even though this method gives best result, it is computationally expensive. We

propose a method to cluster the search space using the tuples generated by consis-

tency search. The clustering of variable domain into n groups can be divided into the

following three steps:

7.2 Step 1: Selection of n Tuples

First, the constraint with the highest arity is selected. For each variable (v) in the

constraint CH , for each domain value b of the variable v, the algorithm will try to
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find a tuple which satisfies the constraint where the variable v is assigned the value

b. Then n tuples which satisfies the highest arity constraint have to be selected from

the generated tuples. The selected n tuples should be far away (different) from each

other. Selection of n values which are far away from each other is a hard problem to

solve [88]. There are several heuristics developed for the above. We used hamming

distance heuristics, to find tuples which are far away from each other. The pseudo

code for the selection of n tuples in shown in Algorithm 7.1.

Algorithm 7.1: Selection of n Tuples

1: Selection of n tuples (in:n=4, in:Γ[m]): τCHN [n]
2: find CH , τCH and τCHN [n]
3: for i=0 to n-1 do
4: for j=0 to n-1 do
5: if i 6= j then
6: if j > i then
7: HAM[i][j] = hamming distance between τCHN [i] and τCHN [j]
8: else
9: HAM[i][j] = HAM[j][i]

10: end if
11: end if
12: end for
13: HAM[i][n] =

∑n−1
j=0 HAM [i][j]

14: end for
15: HAMT =

∑n
i=0HAM [i][n]

16: while tuple in τCH which is not yet considered 6= nil do
17: τnew = tuple in τCH which is not yet considered
18: τlow = tuple with the lowest HAM[i][n] value
19: HAMnew = sum of hamming distances between τnew and tuples in τCHN

except τlow
20: if HAMnew > HAMT then
21: replace τlow with τnew
22: end if
23: end while

Let us consider the following CSP network N with 3 constraints C1 (a+b+c=5),

C2 (b+d+e=6) and C3 (e+f+g+h=6) over the variables a, b, c, d, e, f, g and h. Each
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of the variable may hold a value between 1 and 3 inclusive, except for variable d. It is

between 1 and 4 inclusive. Constraint C3 is the highest arity constraint and the tuple

generated for the constraint C3 is shown in the Table 7.1. If n is set to 4 we need to

select 4 tuples which satisfies C3 from the list and are far away from each other. The

selected tuples are shown in the Table 7.2.

Table 7.1: Tuple after Consistency check on constraint C3
Constraint e f g h

1 1 1 3
2 1 1 2
3 1 1 1

C3 1 2 1 2
1 3 1 1
1 1 2 2
1 1 3 1

7.3 Step 2: Generation of n Partition Tuples

Partition tuples are tuples which contain all the variables in the CSP. In order to

make partition tuples, the highest arity constraint, which is not yet considered and

has the highest number of variables in common with n tuples (τCHN [n]) generated

earlier, is selected.

Then the n tuples are modified as follows. For each tuple, the domain value

of variables which are present in both the selected constraint Cl2 and τCHN [n] are

Table 7.2: 4 Tuples Selected from the Tuples Generated for C3
Group e f g h

1 2 1 1 2
2 3 1 1 1
3 1 2 1 2
4 1 3 1 1
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determined. This domain value(s), variable(s) and the constraint is given to the

consistency search block. If the consistency search does not return a tuple, then

the next higher lexicographic value is chosen and used for consistency search. If the

consistency search returns a tuple, then that tuple is used to update the domain value

of variables in the constraint Cl2. For example in the above CSP, C2 is the next

highest arity constraint and variable common to C2 and τCHN [n] is e. In the first

tuple (2,1,1,2) variable e is equal to 2. So we do consistency search for the constraint

C2 with e = 2. The tuple (3,1,2) which satisfies the constraint C2 and assignment

e = 2, is returned by the consistency search. This tuple is then used to update the

values of variables b, d and e.

Algorithm 7.2: Generation of n partition tuples

1: Generation of n partition tuples (inτCHN [n], in:list of constraints - CH ,
in:Γ[m]): τCHN [n]

2: while constraints to be considered 6= nil do
3: Cl2 = highest arity constraint which is not yet considered and has the highest

number of variables in common with τCHN [n]
4: for i=1 to n do
5: Update V ar(τCHN [i]) such that V ar(τCHN [i]) = V ar(τCHN [i])

⋃
V ar(Cl2)

6: comvar = V ar(τCHN [i])
⋂
V ar(Cl2)

7: comval = value of variable(s) comvar in tuple τCHN [i]
8: τCl2 = tuple returned by consistency search that satisfies the constraint Cl2

and domain values of comvar is equal to comval
9: if τCl2 = nil then

10: comval = next lexicographic higher value
11: Go to step 8
12: else
13: Update the domain value of variables in τCHN [i] with the domain values

in τCl2
14: end if
15: end for
16: end while

This process is repeated until all the constraints in the CSP are considered. The

pseudo code for the generation of n partition tuples in shown in Algorithm 7.2. After
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Table 7.3: 4 Partition Tuples
Group a b c d e f g h

1 1 3 1 1 2 1 1 2
2 1 2 2 1 3 1 1 1
3 1 1 3 4 1 2 1 2
4 1 1 3 4 1 3 1 1

this process, the n partition tuples generated for the above CSP are as shown in the

Table 7.3.

7.4 Step 3: Partitioning of Variable Domain

In this step, initially the partition tuples generated (in step 2) are arranged in lexi-

cographic order. Then for each tuple, the domain values will be compared with their

neighboring tuples, starting from the left most variable in the tuples. The leftmost

variable which has a different value when compared with neighboring tuples is the

partition point. If more than one tuple has the same variable value at partition point,

then for those tuples we continue comparing towards the right until the variable has

different values in neighboring tuples. This will be the partition point for those tuples.

In Table 7.3 the first leftmost variable which is different in the partition tuple is b. So

this is the first point of domain partition. There are two partition tuple which has the

same value for variable b. Hence for those two partition tuples we continue comparing

the domain values. For the above two tuples variable f has different values. Hence

the domain of variable f is divided into two groups. Figure 7.1 shows the partition

points.

For all other variables which are not part of the partition point, the domain

values will be the values specified in the CSP. Table 8.1 gives the domain values of all

the variables of the 4 groups used for solution generation. This partitioned domain
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Figure 7.1: Partitioning of Variable Domain

Table 7.4: Variable Domain for n Clusters
Group a b c d e f g h

1 1-3 1 1-3 1-4 1-3 1-2 1-3 1-3
2 1-3 1 1-3 1-4 1-3 3 1-3 1-3
3 1-3 2 1-3 1-4 1-3 1-3 1-3 1-3
4 1-3 3 1-3 1-4 1-3 1-3 1-3 1-3

values along with the CSP constraints are then given to the constraint solver.

7.5 Proofs

Theorem 7.1. In algorithm 7.2, if a variable value is different in τCHN [i] and τCl2

then the highest domain value is assigned in τCHN [i].

Proof. Consider a variable vm, which is assigned values di and dj in the tuple returned

by consistency search for constraint ci and cj resply. Also assume di < dj. In the

partition tuple variable vm is assigned the value dj. This is because, during consistency

search, tuples are generated in lexicographic order starting from the lowest value. So

if for constraint cj the variable vm is assigned the value dj that means the value di was

found to be inconsistent. Hence v1 = di cannot satisfy the constraint cj. If a variable

value is inconsistent with a constraint, then it cannot be part of the solution for the

CSP. The objective of the algorithm is to find clusters of solutions in the search space
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and partitions the search space based on the clusters. Hence for the partition tuple

variable vm is assigned the value dj.

Theorem 7.2. The partitioning of the tuples is equivalent to partitioning of the so-

lutions of the CSP.

Proof. If the arity of the largest arity constraint is nearly equal to the number of

variables in the CSP, then the tuples generated by consistency search are approxi-

mately equal to the solutions of the CSP and this will help to generate partitions

which contains solutions (partitions with no solutions is not useful). So partitioning

of the tuples is equivalent to partitioning of the solutions of the CSP. Another pos-

sibility is that the arity of the highest arity constraint is smaller than the number of

variables in the CSP. Then the algorithm updates the other variable values. While

updating, if a variable is having different values for different tuples, then the resultant

partition tuples are different from each other. This results in good partition of the

domain values. While updating, a variable can have same value for different tuples.

The algorithm is using partial solutions to update variable values. Hence in actual

solution those variable values may remain the same. Then those variables don’t have

much impact on the evenness of the solution. We can consider those variables as

constant. The resultant tuples, ignoring the variables with constant values, will be

different from each other and leads to good partitioning.

Theorem 7.3. For a set of m euclidian points (S), if T is the solution returned by

the proposed algorithm (T contains n points selected from the m euclidian points) and

Top be the optimal solution, then Cost(T ) ≤ 2 ∗ Cost(Top) where Cost is the average

distance between points.

Proof. Let a is the maximum distance between a point x (xεS) and T . Then cost of

T ≈ a. Let x0 be the point in S which replaces a point in T in the optimized solution.
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Figure 7.2: Search Space with Generated Solutions

Then T
⋃
x0 consists of n + 1 points which are all distance ≤ a apart. Two of the

points must be having the same closest representative in Top since the cardinality of

Top is n. In order to have both the point in the same cluster, the representative point

must be at a distance ≤ a/2. As a result the Cost(Top) is increased by a factor of

a/2. Similarly, considering all other points in Top, the cost of Top is ≥ a/2.

7.6 Distribution Evaluation

Due to the unknown characteristics of solution space, it is difficult to prove evenness

of the generated solutions. But, statistical analysis can give persuasive profiles about

the evenness of the generated solutions. Therefore, we used three different statistical

analysis to evaluate the distribution of solutions generated.

7.6.1 Evaluation Metric: Differentsoln

As mentioned earlier, our intention is to generate a large number of different solutions

distributed evenly in search space. But using existing CRV tools, constraint random

generation does not guarantee even distribution of solutions. Some solution may be

repeatedly generated. We define a metric called differentsoln to determine the quality

of the solutions generated. Differentsoln is defined as the number of different solutions
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generated by the solver. High value for differentsoln implies that the evenness of

solution generation is higher.

7.6.2 Distance of Nearest Neighbor

The k-nearest neighbor algorithm is amongst the simplest of all machine learning

algorithms. If pj is a point near to the point pi, the shortest Euclidean distance

between them is denoted as dmin(pi). If the standard deviation of dmin(pi) is smaller

for a given data set, then those data set are evenly distributed. Standard deviation

σDNP is defined by

σDNP =

√∑Np
i=1(dmin(pi)−dmin)2

Np
where

dmin= the average of all shortest distances

Np=number of points (solutions)

If the ratio between σDNP and dmin is smaller for a given data set, it implies

that the distribution is more even. The above ratio is defined as a parameter called

δDNP where δDNP = σDNP
dmin

7.6.3 K-Means Clustering

K-means is one of the simplest unsupervised learning algorithms. Given a set of n-

dimensional data points, k-means clustering analysis, partition them into k clusters

with the nearest mean. k-means defines a cost function to measure whether the data

set is well clustered or not. Higher the value of cost function, more even will be the

distribution. The cost function δKM is defined as

δKM =

√∑k
j=1

∑
xεcj
||x−zj ||2

Np

where cj denotes the jth cluster and zj represents the centroid of the jth cluster.

K-Means and Distance of Nearest Neighbor analysis consider the correlation
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Table 7.5: Differentsoln Evaluation on Random Cases

#vars #cons
Differentsoln
M1 M3

31 9 5351 17232
34 24 4987 19497
36 16 6323 12943
38 13 7208 22268
40 20 6766 21919

and distribution of data points while the discrete Fourier transform and Shannon’s

entropy only care the frequency of data points. Therefore, these measures give more

persuasive distribution analysis [89].

7.7 Experimental Results

We used Weka[87], for K-Means Clustering and Distance of Nearest Neighbor analy-

sis. We used our framework with a state-of-the-art commercial tool, Synopsys VCS

2009.06. VCS 2009.06 is run on the SUN SPARC Enterprise M3000 server. It has a

SPARC64 VII quad-core with 2.75 GHz and a memory of 8GB. The CSPs used has

both arithmetic and logical constraints. The outputs of the CSPs were analyzed by

the metrics defined in section 7.6.

In Table 7.5, we list five cases shown in [39]. Columns 1 and 2 indicate the

number of variables and constraints respectively. The domain of each variable contains

1024 values (0 to 1023). The number of different solutions generated is shown in

columns 3 and 4. M1 represents the result obtained using the CRV tool VCS for input

stimuli generation and M3 represents the result obtained using domain clustering as

a preprocessing step with VCS. 106 solutions were generated. We can see that the

number of different solutions generated by the proposed methodology is nearly 6 times

than the random generation method.
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Table 7.6: Evenness Evaluation on Random Cases

#vars #cons
σDNP δDNP δKM(k=100) δKM(k=1000)

M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3
31 9 95.8 97.7 94.8 0.07 0.07 0.06 1396 1382 1407 1162 1187 1200
34 24 100.0 99.3 97.5 0.08 0.07 0.06 1372 1400 1422 1167 1191 1209
36 16 103.7 101.1 100.6 0.07 0.07 0.08 1446 1456 1460 1237 1249 1255
38 13 105.0 104.5 100.7 0.07 0.07 0.06 1565 1484 1499 1360 1378 1419
40 20 97.2 104.8 96.5 0.07 0.07 0.06 1446 1487 1519 1208 1277 1332

To ensure the evenness of generated solutions, we used K-Means Clustering and

Distance of Nearest Neighbor analysis. Table 7.6presents the results obtained. We

used the same CSPs, which were used for different solution evaluation. M2 represents

the result obtained using the technique RSSDE [39]. The columns 9-11 are the results

obtained when the number of centroids (k) is set to 100. Similarly columns 12-14 are

the results obtained when the number of centroids is set to 1000.

Ideally, if solutions are evenly distributed in search space, all the shortest dis-

tances with the corresponding nearest point should be identical. The difference be-

tween the distances should be very small. Hence lower the value of σDNP , better

the distribution. δDNP is the ratio between σDNP and dmin. If the solutions are far

apart from each other, then the value of dmin should be larger. Hence, when the value

δDNP is smaller, the distribution of solutions is more even. In the case of K-Means

Clustering, higher the cost, better the solution distribution.

From Table 7.6 we can see that the values of σDNP and δDNP are smaller and

the value of δKM is higher for the proposed method when compared to the other two

techniques. Our technique helps to generate more evenly distributed solution with

VCS.
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7.8 Conclusion

The distribution of generated input stimuli by CRV tools can be improved by domain

partitioning. We presented a domain partitioning algorithm based on consistency

search for input stimulus generation. Experiments showed that the proposed domain

partitioning algorithm helped to improve the distribution of input stimuli generated

by a CRV tool called VCS.
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Chapter 8

Implementation and Evaluation

We implemented a tool called DPCGEN that incorporate the algorithms for consis-

tency search, determination of number of clusters and domain partitioning. In this

chapter, we present an overview of the tool along with the results obtained by applying

the tool to a variety of challenging CSPs.

8.1 Implementation

We implemented our algorithms to explore the search space of a given design in C++.

The tool will take SystemVerilog constraints and the domain of the input variables as

input and generates the reduced domain as output. For our purpose we considered

a subset of SystemVerilog constraints which can be given as input to the tool. Our

tool can handle unary constraint, binary constraints and some high order constraints.

The high order constraints considered includes arithmetic, logical and implication

constraints.

The DPCGEN consists of 3 main modules - consistency search, determination

of best number of clusters and a domain partitioning module. Figure 8.1 presents an
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Figure 8.1: Implementation of Proposed Methodology

overview of the DPCGEN.

The DPCGEN takes as input a text file which contains the SystemVerilog codes

to specify the CSP. The text file contains declaration of the random variables, con-

straints which specifies the domain of random variables and constraints for modeling

the CSP. Figure 8.2 shows a sample input file for the tool. The input file contains

declaration of variables (lines 1-8), domain constraints (lines 9-13) and the modeling

constraints (lines 14-17).

The output generated by the DPCGEN is a set of text files which contains

the declaration of the random variables, constraints which specifies the partitioned

domain of random variables and constraints for modeling the CSP. Figure 8.2 shows a

sample set of output files generated by the DPCGEN. Each of the output file contains

declaration of variables (lines 1-8), domain constraints (lines 9-13), the modeling

constraints (lines 14-17) and the domain of the variables involved in partitioning (line
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rand bit [2:0] v0; 
rand bit [2:0] v1; 
rand bit [2:0] v2; 
rand bit [2:0] v3; 
rand bit [2:0] v4; 
rand bit [2:0] v5; 
rand bit [2:0] v6; 
rand bit [2:0] v7; 
 
constraint d1{v0 inside {[0:5]};} 
constraint d2{v1 inside {[0:5]};} 
constraint d3{v2 inside {[0:5]};} 
constraint d4{v3 inside {[0:5]};} 
constraint d5{v5 inside {[0:5]};} 
 
constraint c1{v0+v1=v2;} 
constraint c2{v0>v1;} 
constraint c3{v3+v4>v5;} 
constraint c4{v5+v6>v7+v1;} 

rand bit [2:0] v0; 
rand bit [2:0] v1; 
rand bit [2:0] v2; 
rand bit [2:0] v3; 
rand bit [2:0] v4; 
rand bit [2:0] v5; 
rand bit [2:0] v6; 
rand bit [2:0] v7; 
 
constraint d1{v0 inside {[0:5]};} 
constraint d2{v1 inside {[0:5]};} 
constraint d3{v2 inside {[0:5]};} 
constraint d4{v3 inside {[0:5]};} 
constraint d5{v5 inside {[0:5]};} 
 
constraint c1{v0+v1=v2;} 
constraint c2{v0>v1;} 
constraint c3{v3+v4>v5;} 
constraint c4{v5+v6>v7+v1;} 
 
constraint g0{v6 inside {0,1};} 

rand bit [2:0] v0; 
                :          
constraint c4{v5+v6>v7+v1;} 
 
constraint g1{v6 inside {2,3,4,5};} 

rand bit [2:0] v0; 
                :          
constraint c4{v5+v6>v7+v1;} 
 
constraint g2{v6 inside {6};} 

rand bit [2:0] v0; 
                :          
constraint c4{v5+v6>v7+v1;} 
 
constraint g3{v6 inside {7};} 

DPCGEN 

Pa
rti

tio
n 1

 
Pa

rti
tio

n 2
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n 3
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Figure 8.2: Sample Input/Output

18). In the output files, the declaration of variables and modeling constraints remain

the same as in input file. Only the domain constraints are modified in the output

files.

8.2 Experiments and Results

Using the above implementation, we experimented on several small examples and a

design. Following are the CSPs we used:

8.2.1 Random CSPs

In order to show the effect of the consistency search and domain clustering on coverage

we used some random CSPs. The random CSPs contain 20 to 40 variables with 14
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to 29 general constraints. The domain of each variable was from 0 to 11. For each

case, we generated 104 patterns using VCS, with and without domain clustering. The

optimum number of partitions in the search space of the highest arity constraint

is determined (as mentioned earlier partitioning of the highest arity constraint is

equivalent to partitioning of the CSP) and used for domain partitioning. In Table 8.1

the columns 4 and 5 gives the number of arithmetic operators in the CSP. The columns

6 to 9 gives the number of comparators in the CSP. Similarly column 10 gives the

number of logical operator (not) in the CSP. M1 represents the results obtained by

constraint random test generation and M2 represents the results obtained by using

the proposed domain clustering technique. We generated 104 solutions for the same

problem. The results show that, the proposed methodology was able to attain more

coverage with the generated CSP solutions.

Table 8.1: Random CSPs
Case No: of Arithmetic Comparator Logic Coverage(%)

Variables Constraints + * < > = != not M1 M2
1 21 14 2 8 3 8 1 3 3 72 77
2 24 23 5 6 8 8 5 3 1 63 69
3 25 24 5 7 11 10 3 1 1 67 75
4 26 17 3 7 8 6 1 4 1 68 73
5 31 27 6 14 9 15 1 5 3 70 75
6 33 24 4 7 5 7 5 7 4 71 78
7 34 22 1 12 10 7 2 5 5 66 75
8 35 23 6 11 6 10 0 4 2 65 71
9 38 29 3 8 10 11 2 6 6 62 70

8.2.2 Case Study: CORTEX M0

In the ARM processor line, the Cortex family, consist of cores ranging from low cost

micro controller solutions to high end processors capable of supporting large, complex
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operating systems. The Cortex-M0 processor is the lowest member of the Cortex-

M family. ARM Cortex-M0 processor is the smallest ARM processor available. It

has exceptionally small silicon area and low power consumption. The ultra low gate

count also enables it to be deployed in analog and mixed signal devices. Scenarios

for verification

The Cortex-M0 processor is based on the ARMv6-M architecture. It has only 56

instructions. We chose the following 5 requirement of ARMv6-M core for our purpose:

1. Most 16-bit instructions can only access eight of the general purpose registers,

R0-R7 known as the low registers.

2. A small number of 16-bit instructions can access the high registers, R8-R15.

3. Conditionally executed means that the instruction only has its normal effect on

the programmer’s model operation and memory if the N, Z, C and V flags in

the APSR satisfy a condition specified in the instruction. If the flags do not

satisfy this condition, the instruction acts as a NOP.

4. Most of these instructions set the condition code flags, according to the result

of the operation. If an instruction does not set a flag, the existing value of that

flag, from a previous instruction, is preserved.

5. Shift and rotate instructions move each bit of a bitstring left or right by a

specified number of bits.

The requirements are converted into various verification scenarios. The verification

scenarios are then modeled using SystemVerilog constraints. These constraints are

the used to generate the input stimuli required for verification.

Experimental Setup
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Figure 8.3: Experimental Setup for Cortex-M0
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Figure 8.4: Generation of Memory Image

The experimental setup, shown in Figure 8.3, has a Cortex-M0 DesignStart

processor connected to a memory image loaded with the basic program. The processor

is also connected to a clock and reset generator. It is also connected to a console output

which provides a means to output information from the processor. The Cortex-M0

DesignStart processor uses a system bus interface compatible with the AMBA3 AHB-

Lite specification. All signals are sampled and driven at the positive clock edges of

the AHB-Lite HCLK signal. The memory image for the processor is provided by the

ram.bin file. The Figure 8.4 shows how the memory image file ram.bin is generated.

The verification scenarios which are modeled using systemverilog constraints

are given to the constraint solver of the CDTG tool. The constraint solver solves the

constraints and generates a sequence of ARM codes. The ARM codes are then given

to a Keil Microcontroller Development Kit, to generate memory image file required for
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the Cortex-M0 processor. The Keil Microcontroller Development Kit fully supports

the Cortex-M0 processor. The generated memory image file is then used during

simulation.

The Table 8.2 gives one of the ARM instruction sequence used to verify the first

requirement. Initially some random values are stored in some of the low registers.

Table 8.2: Sample Instruction Sequence
# Instruction Remark
1 MOVS R0 ,135
2 MOVS R1 ,5 Assigning some random value to some
3 MOVS R7 ,24 randomly selected low registers
4 MOVS R3 ,50
5 MOVS R2 ,85
6 CPY R4, R7
7 ORR R7, R3 Some data processing instructions
8 SUB R7, R2, R4 using the above low registers
9 ADD R1, R6, R1
10 ADD R4, R5, R3

Then those low registers were used by the instructions which can access the low

registers. Then we verified whether the instructions could correctly access the low

registers. In order to determine the coverage we used cross coverage between the

instructions and the different registers. For example if we have an instruction of the

format Ins Rd, Rm, Rn, where Ins is the instruction with domain values 1-5, Rd,

Rm and Rn are low registers, then the cross coverage checks whether all possible

combinations(5x8x8x8) are generated or not.

We run the experiment with and without domain clustering. The Table 8.3

shows the coverage obtained. M1 represents the results obtained by constraint random

test generation and M2 represents the results obtained by using the proposed domain

clustering technique. From the experimental results we can see that using domain

clustering we were able to attain higher coverage in almost the same time. In some
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cases the improvement in coverage is about 15%. This is because by dividing the

search space into sub search space and generating solutions from the sub search space,

increases the probability to generate solutions which are different from each other.

The results show that by using the proposed methodology, the evenness of solution

distribution can be increased.

Table 8.3: Coverage
Scenarios No of instruction Time (msec) Coverage (%)

sequence generated M1 M2 M1 M2
1 60 210 190 24.2 32.6
2 61 240 200 34.6 40.2
3 65 230 200 23.5 35.6
4 60 240 210 78.3 83.7
5 62 220 200 67.5 78.9
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

Efficient functional verification is a critical issue in modern SoC methodology because

verification complexity increases at an exponential rate. Simulation based verifica-

tion is widely used in modern SoC design flow because formal verification methods

have difficulty in verifying complex processors due to the state explosion problem and

expertise required. CRV has become the dominant approach in state-of-the-art veri-

fication because of its scalability, predictability, and ability to handle complex input

constraints. For high productivity, the constraint solver that generates random stim-

uli for simulation must solve the constraints quickly and produce values that are well

distributed over the input space.

To address these issues, this dissertation presented an input stimuli generation

approach using domain partitioning of the input domain. The framework we provided

consists of a consistency search algorithm, an algorithm to determine the best number

of clusters in a data set and a domain partitioning algorithm.
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We presented a consistency search algorithm which can conjunct together con-

straints and can handle n-arity constraints. The proposed algorithm is faster than

the existing GACCC algorithm and requires less number of tuples to determine con-

sistency.

We developed a method to determine the best number of cluster for a given

data set. The proposed method was able to generate the number of clusters with less

number of cost determination function calls than the existing L method.

We then introduced a domain partitioning algorithm which can be used along

with the proposed consistency search algorithm. The proposed partitioning algorithm

partitioned the domain of the input variables into non overlapping clusters and forces

the solvers to generate the required input stimuli from the clusters. The generated

input stimuli were evenly distributed in the search space when compared to stimuli

generated by existing CRV tools.

Finally, we illustrated the usefulness of our framework by using some CSPs and

a microprocessor design. Experimental results demonstrated significant reduction in

stimuli generation time as well as memory requirement. It also shows that the evenness

of the solutions generated is higher than the existing CRV techniques. Another benefit

of this approach is that it can be incorporated with existing CRV tools.

9.2 Future Work

Some future research directions are outlined below.

• The constraints can be divided into hard constraints and soft constraints. Hard

constraints are constraints that must be satisfied by the constraint solver and

soft constraints help to give directionality to search. If we can incorporate
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quality constraints or soft constraints in domain partitioning it will help to

attain required coverage faster.

• In our implementation we considered only arithmetic and logic constraints. But

constraints in CRV are not only expressed as simple arithmetic or logic relation

but may contain complex relations such as CRC (cyclic redundancy check) of a

packet. We should improve the implementation by including complex relations

constraints.

• In functional verification, many scenarios involve temporal relations.In our im-

plementation we didn’t consider temporal relations. Developing a method to

represent time (or temporal relation) over variables in the constraint space will

help to include temporal relations in verification scenarios.

• The rapid advancement of the Graphics Processing Unit (GPU), over the last

few years has opened up a new world of possibilities for high speed computation.

We need to look into the development of an easily accessible parallel algorithm

model which can accommodate nearly any GPU architecture.

• Finally, we believe this thesis is an important milestone towards building a com-

plete environment for automatic coverage enhancing methodology. Therefore,

it is important to develop a method to automatically generate the required

constraint for stimuli generation from the specification to fully automate the

verification cycle.
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[71] M. Arangú and M. Salido, “A fine-grained arc-consistency algorithm for non-

normalized constraint satisfaction problems,” International Journal Applied

Mathematics Computer Science, pp. 733–744, 2011.

[72] P. Van-Hentenryck, Y. Deville, and C. Teng, “A generic arc consistency algorithm

and its specializations,” tech. rep., 1991.

[73] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony

of cooperating agents,” IEEE Transactions onSystems, Man, and Cybernetics,

Part B: Cybernetics, vol. 26, pp. 29–41, Feb 1996.

[74] C. Bessière, E. C. Freuder, and J. C. Regin, “Using inference to reduce arc

consistency computation,” in Proceedings of international joint conference on

Artificial intelligence, pp. 592–598, 1995.
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