
 
A Low-Complexity Bayesian Estimation 

Scheme for Speckle Suppression in Images 
 
 
 
 
 

Rafat Rebhi Damseh 
 
 
 
 

A Thesis 
in  

The Department 
of  

Electrical and Computer Engineering 
 
 
 

Presented in Partial Fulfillment of the Requirements 
for the Degree of Master of Applied Science at 

Concordia University 
Montreal, Quebec, Canada 

 
 
 
 
 
 

April 2015 

© Rafat Rebhi Damseh, 2015 

  



CONCORDIA UNIVERSITY 

School of Graduate Studies 

 
This is to certify that the thesis prepared 

 
By: Rafat Damseh   

 
Entitled: A Low-Complexity Bayesian Estimation Scheme for Speckle    
Suppression in Images 

 

and submitted in partial fulfillment of the requirements for the degree of 
 

M.A.Sc. Electrical & Computer Engineering 
 

complies with the regulations of the University and meets the accepted standards 
with respect to originality and quality. 

 
Signed by the final examining committee: 

 
Dr. M. Z. Kabir  Chair 
 

 
Dr. C. Wang  Examiner 
 

 
Dr. C. Y. Su  Examiner 
 

 
Dr. M. O. Ahmad  Supervisor 
 

 
 

Approved by    
 
Chair, Department of Electrical and Computer Engineering 

 
  
 
Dean, Faculty of Engineering and Computer Science 

 
 

Date    
  



ABSTRACT 

A Low-Complexity Bayesian Estimation Scheme for 
Speckle Suppression in Images 

 

 

Rafat Rebhi Damseh 

 

Speckle noise reduction is a crucial pre-processing step for a successful 

interpretation of images corrupted by speckle noise, and thus, it has drawn a great deal of 

attention of researchers in the image processing community. The Bayesian estimation is a 

powerful signal estimation technique and has been widely used for speckle noise removal 

in images. In the Bayesian estimation based despeckling techniques, the choice of suitable 

signal and noise models and the development of a shrinkage function for estimation of the 

signal are the major concerns from the standpoint of the accuracy and computational 

complexity of the estimation.  

In this thesis, a low-complexity wavelet-based Bayesian estimation technique for 

despeckling of images is developed. The main idea of the proposed technique is in 

establishing suitable statistical models for the wavelet coefficients of additively 

decomposed components, namely, the reflectance image and the signal-dependant noise, 

of the multiplicative degradation model of the noisy image and then in using these two 

statistical models to develop a shrinkage function with a low-complexity realization for the 

estimation of the wavelet coefficients of the noise-free image.  
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A study is undertaken to explore the effectiveness of using a two sided exponential 

distribution as a prior statistical model for the discrete wavelet transform (DWT) 

coefficients of the signal-dependant noise. This model, along with the Cauchy distribution, 

which is known to be a good model for the wavelet coefficients of the reflectance image, 

is used to develop a minimum mean square error (MMSE) Bayesian estimator for the DWT 

coefficients of the noise-free image. A low-cost realization of the shrinkage function 

resulting from the MMSE Bayesian estimation is proposed and its efficacy is verified from 

the standpoint of accuracy as well as computational cost.  

The performance of the proposed despeckling scheme is evaluated on both 

synthetic and real SAR images in terms of the commonly used metrics, and the results are 

compared to that of some other state-of-the-art despeckling schemes available in the 

literature. The experimental results demonstrate the validity of the proposed despeckling 

scheme in providing a significant reduction in the speckle noise at a very low 

computational cost and simultaneously in preserving the image details.  
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CHAPTER 1 

1Introduction 

1.1 Introduction 

Digital images contain a vital source of visual information, which is greatly 

affected due to the noise contamination of the images during their acquisition or 

transmission. Synthetic aperture radar (SAR) images are widely used in planetary 

exploration, such as in monitoring agricultural crops, conducting rescue operation and 

mapping of an earth surface. The use of SAR imaging systems is because of their capability 

in capturing images of a vast area of terrain irrespective of the weather or ambient 

illumination conditions. However, SAR imaging is subject to speckle noise contamination 

due to the coherent nature of the scattering phenomenon of electromagnetic waves involved 

in capturing SAR images [1]. Since the presence of speckle noise affects the task of human 

interpretation and scene analysis, removal or minimization of such a noise is a vital pre-

processing step. Consequently, developing effective techniques for image despeckling has 

been a focus of many researchers in the image processing community. 

In the early work for speckle noise removal, various spatial-domain algorithms 

have been developed [2-5]. However, these algorithms are limited in their capability in 

reducing the speckle noise significantly. In order to provide a better speckle noise 
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reduction, more promising techniques in the spatial domain, such as those using the 

improved sigma filter [6], nonlocal filtering [7], and the bilateral filtering [8], have been 

recently proposed. In general, the performances of these algorithms depend on the size of 

the filter window, and hence for a good performance, they consume large computational 

time. 

Wavelet transform (WT) has been used to develop denoising algorithms [9-22] 

that operate in the frequency domain. Such algorithms have been proven to be effective in 

extracting signals from the noisy data due to following characteristics of WT: 

• Excellent time-frequency / space-frequency characteristics 

• Efficient modeling of the image wavelet coefficients using subband decomposition 

• High energy-compaction property 

Wavelet thresholding algorithm using a linear estimation scheme proposed by 

Donoho [9] is a revolutionary work for image denoising using wavelet transform. 

However, the main drawback of this thresholding algorithm is in the difficulty of 

determining a suitable threshold value. To circumvent this problem, a nonlinear estimator, 

which outperforms the linear estimators, has been developed by Simoncelli et al. [12] 

through the establishment of a wavelet shrinkage function based on Bayesian estimation 

formalism. The technique of Bayesian estimation in wavelet domain uses prior probability 

density functions (PDFs) to model the wavelet coefficients of the noisy and noise-free 

components of the observed image. This technique has been successfully applied for 

denoising images corrupted by the speckle noise based on different prior assumptions, such 

as alpha stable, generalized Gaussian, and Cauchy, for the wavelet coefficients [13-22]. 
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1.2 Motivation 

Bayesian based speckle noise minimization techniques in wavelet domain can be 

classified into two categories, namely, homomorphic [13-18] and non-homomorphic [19-

22] schemes, depending on the way the multiplicative degradation model [23] of the 

observed image is transformed into an additive model. In general, the performances of the 

despeckling schemes in these two categories are greatly dependent on, first, the suitability 

of the PDFs used to model the wavelet coefficients, and second, the technique used for the 

realization of the Bayesian shrinkage function. The homomorphic scheme, in which the 

wavelet transform of the log-transformed noisy image is employed in order to obtain an 

additive degradation model, suffer from the drawbacks of the mean of the homogeneous 

areas in the observed image not being reserved and the signal variation being damped, due 

to the non-linear operation of the log-transformation. Also, this scheme is computationally 

more expensive due to the additional logarithmic and exponential operations. The non-

homomorphic scheme, on the other hand, avoids these shortcomings by transforming the 

multiplicative degradation model into an additive one by decomposing it into noise-free 

and noise-dependant components. These two components are occasionally referred to as 

reflectance image and signal-dependant noise, respectively.  

For the development of an efficient Bayesian despeckling scheme, which is based 

on the additive model of the observed signal, the choice of a suitable probability 

distribution to model the wavelet coefficients remains a major concern. The statistical 

model should employ a simple scheme for the estimation of its optimal parameters, which 

provide the best fit of the model to the empirical distribution of the wavelet coefficients. 
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Another concern while investigating a suitable statistical model is the complexity of the 

Bayesian estimation process. Consequently, one needs to pay special attention to the 

realization complexity of the Bayesian shrinkage function that results from employing the 

selected probabilistic model in one of the Bayesian frameworks, such as minimum mean 

square error (MMSE), minimum mean absolute error (MMAE) or maximum a posteriori 

(MAP) estimation of the wavelet coefficients. 

1.3 Scope of the Thesis 

The objective of this research work is to develop a non-homomorphic despeckling 

algorithm for images in a MMSE Bayesian framework. The main idea of the proposed 

despeckling scheme is in establishing suitable statistical models for the wavelet coefficients 

of the additively decomposed noise-free and signal-dependant noise components of the 

multiplicative degradation model of an image and then in using these statistical models to 

develop a shrinkage function with a low-complexity realization for the estimation of the 

wavelet coefficients of the noise-free image.  

In this work, the two sided exponential (TSE) PDF is used as a prior distribution 

for the discrete wavelet transform (DWT) coefficients of the signal-dependant noise. This 

distribution, along with a Cauchy PDF used to model the reflectance component, is then 

employed to develop a MMSE Bayesian estimator for the DWT coefficients of the noise-

free component of the observed image. A low-cost scheme for the realization of the 

shrinkage function resulting from an MMSE Bayesian estimation is proposed and its 

efficacy from the standpoint of accuracy as well as computational cost is studied. 

Experiments using synthetically-speckled and real SAR images are conducted to examine 
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the performance of the proposed wavelet-based Bayesian estimator in suppressing the 

speckle noise. 

1.4 Organization of the Thesis 

This thesis is organized as follows. 

In Chapter 2, a brief overview of the necessary background material is presented 

in order to facilitate the development of the despeckling scheme proposed in this thesis. 

This overview consists of some preliminaries on wavelets and multi-resolution analysis of 

images, modeling of image wavelet coefficients and the theory of Bayesian estimation. 

In Chapter 3, starting from the decomposition of the multiplicative model of an 

image contaminated by speckle noise into two additive components, namely, the signal-

dependant noise and the reflectance image, the suitability of the two-sided exponential PDF 

to model the DWT coefficients of the former and that of the Cauchy PDF to model the to 

model the DWT coefficients of the latter are studied. Also, mechanisms for estimating the 

parameters of the PDFs employed to model the two additive components are provided. The 

formulation of the Bayesian shrinkage function resulting from the MMSE Bayesian 

framework is carried out to estimate the noise-free wavelet coefficients and a low-

complexity scheme for its realization is devised. 

In Chapter 4, experiments are performed to study the performance of the proposed 

despeckling scheme and those of other state-of-the-art despeckling schemes available in 

the literature when the schemes are applied to synthetically-speckled and real SAR images. 

The performances of the various schemes are compared using various objective indices 

such as signal-to-noise ratio (SNR), structural similarity (SSIM), homogeneity and 
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correlation. The various schemes are also compared in terms of the visual quality of the 

despeckled images and the execution time. 

Finally, some concluding remarks highlighting the contribution of the thesis and 

scope of further research are provided in Chapter 5.  
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CHAPTER 2 

2A Brief Review of Background Material  

Since the objective of this research work is to develop a Bayesian wavelet-based 

image despeckling scheme, some preliminaries of wavelets and Bayesian estimation are 

essential to conduct the research project undertaken in this thesis. In this chapter, an 

overview of wavelet theory and multi-resolution analysis is provided followed by a brief 

discussion on the commonly used PDFs for modeling the wavelet coefficients of an image. 

The formalism of Bayesian estimation, along with a brief overview of the cost functions 

used in this estimation, is also given. 

2.1 Wavelets and Multi-resolution Analysis 

The main idea behind the transformation of a digital signal is to be able to use 

some properties of the signal in the transformed domain that are not available in the original 

domain, e.g., time-domain or pixel-domain. One of the desirable features that should be 

obtainable by a transformation is its ability to provide a good sparse representation of the 

signal. The wavelet transform [24-28] offers this very important feature to the transformed 

signal. Wavelet transform is also considered to be a good transformation, since it provides 
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a signal representation that is localized at different decomposition levels (scales) leading 

to an easy detection and analysis of the local features of the signal [28]. 

Since in this thesis the signal modeling and the development of the proposed 

despeckling scheme are DWT based, in this section, an overview of the one-dimensional 

(1D) and two-dimensional (2D) DWTs is provided and the technique of obtaining the DWT 

coefficients using filter-banks [25-26] is discussed. Also, some of the wavelet functions 

used in DWT are presented and their suitability for various digital image processing 

applications is discussed.  

2.1.1 1D and 2D DWTs 

Let 𝑣𝑣(𝑖𝑖), 𝑖𝑖 = 1,2, … ,ℳ, represent a 1D signal of size ℳ. The DWT of the signal 

is given by  

 𝑣𝑣(𝑖𝑖) =
1
√ℳ

��𝑥𝑥𝒥𝒥𝐴𝐴(𝓅𝓅)𝜙𝜙𝒥𝒥𝐴𝐴(𝑖𝑖,𝓅𝓅) + ��𝑥𝑥𝑙𝑙𝐷𝐷(𝓅𝓅)𝜓𝜓𝑙𝑙𝐷𝐷(𝑖𝑖,𝓅𝓅)
ℳ

𝓅𝓅=1

𝒥𝒥

𝑙𝑙=1

ℳ

𝓅𝓅=1

� (2.1) 

where 𝑥𝑥𝒥𝒥𝐴𝐴 denotes the approximation coefficients in the highest decomposition level 𝒥𝒥, 𝑥𝑥𝑙𝑙𝐷𝐷 

denotes the detail coefficients in the decomposition level 𝑙𝑙 (𝑙𝑙 = 1, 2, 3, … ,𝒥𝒥), 𝜙𝜙𝒥𝒥𝐴𝐴(𝑖𝑖,𝓅𝓅) =

2
𝐽𝐽
2𝜙𝜙(2𝒥𝒥𝑖𝑖 − 𝓅𝓅) and  𝜓𝜓𝑙𝑙𝐷𝐷(𝑖𝑖,𝓅𝓅) = 2

𝑙𝑙
2𝜓𝜓(2𝑙𝑙𝑖𝑖 − 𝓅𝓅), 𝜙𝜙 and 𝜓𝜓 being, respectively, the scaling 

and wavelet functions. The approximation and detail coefficients can be obtained as 

 𝑥𝑥𝒥𝒥𝐴𝐴(𝓅𝓅) =
1
√ℳ

�𝑣𝑣(𝑖𝑖)𝜙𝜙𝒥𝒥𝐴𝐴(𝑖𝑖,𝓅𝓅)
ℳ

𝑖𝑖=1

 (2.2) 

and  
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 𝑥𝑥𝑙𝑙𝐷𝐷(𝓅𝓅) =
1
√ℳ

�𝑣𝑣(𝑖𝑖)𝜓𝜓𝑙𝑙𝐷𝐷(𝑖𝑖,𝓅𝓅)
ℳ

𝑖𝑖=1

 (2.3) 

The scaling function 𝜙𝜙 and the wavelet function 𝜓𝜓 are chosen in such a way that the signal 

can be reconstructed from the DWT coefficients without any error. Since the DWT is based 

on a multi-resolution analysis, it is required that 𝜙𝜙 and 𝜓𝜓 satisfy the following two scale 

dilation equations: 

 𝜙𝜙(𝑖𝑖) = √2 � ℎ𝜙𝜙(𝑢𝑢)
∞

𝑢𝑢=−∞

𝜙𝜙(2𝑖𝑖 − 𝑢𝑢) (2.4) 

 𝜓𝜓(𝑖𝑖) = √2 � ℎ𝜓𝜓(𝑢𝑢)
∞

𝑢𝑢=−∞

𝜙𝜙(2𝑖𝑖 − 𝑢𝑢) (2.5) 

where ℎ𝜙𝜙(𝑢𝑢) and ℎ𝜓𝜓(𝑢𝑢), respectively, are the scaling and wavelet vectors for the forward 

DWT. Using these relations, the DWT coefficients at (𝑙𝑙 + 1)th decomposition level can be 

efficiently estimated from the knowledge of that at the adjacent 𝑙𝑙th level as [24] 

 𝑥𝑥𝑙𝑙+1𝐴𝐴 (𝓅𝓅) = ℎ𝜙𝜙(−𝑢𝑢) ∗ 𝑥𝑥𝑙𝑙𝐴𝐴(𝑢𝑢)�
𝑢𝑢=2𝓅𝓅,𝓅𝓅≥0 (2.6) 

 𝑥𝑥𝑙𝑙+1𝐷𝐷 (𝓅𝓅) = ℎ𝜓𝜓(−𝑢𝑢) ∗ 𝑥𝑥𝑙𝑙𝐴𝐴(𝑢𝑢)�
𝑢𝑢=2𝓅𝓅,𝓅𝓅≥0 (2.7) 

where ∗ denotes the convolution operator. Thus, the approximation and detail coefficients 

at the decomposition level (𝑙𝑙 + 1) can be obtained by filtering the approximation 

coefficients at the decomposition level 𝑙𝑙 using ℎ𝜙𝜙(−𝑢𝑢) and ℎ𝜓𝜓(−𝑢𝑢), respectively, and then 

by down-sampling the filtered coefficients by 2. Similarly, the inverse transform relation 

of the DWT coefficients between the adjacent decomposition levels is given by [24]  

 𝒙𝒙𝒍𝒍𝑨𝑨(𝓹𝓹) = 𝒉𝒉�𝝓𝝓(𝒖𝒖) ∗ 𝒙𝒙𝒍𝒍+𝟏𝟏𝑨𝑨 (𝒖𝒖)�
𝒖𝒖=𝓹𝓹𝟐𝟐 ,   𝓹𝓹≥𝟎𝟎  +   𝒉𝒉�𝝍𝝍(𝒖𝒖) ∗ 𝒙𝒙𝒍𝒍+𝟏𝟏𝑫𝑫 (𝒖𝒖)�

𝒖𝒖=𝓹𝓹𝟐𝟐 ,   𝓹𝓹≥𝟎𝟎 (2.8) 
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where ℎ�𝜙𝜙(𝑢𝑢) and ℎ�𝜓𝜓(𝑢𝑢), respectively, are the scaling and wavelet vectors for the inverse 

DWT. From the above equation, it is noted that the approximation coefficients at the 

decomposition level 𝑙𝑙 can be obtained by filtering the approximate and detail coefficients 

at the decomposition level (𝑙𝑙 + 1), up-sampled by 2, using ℎ�𝜙𝜙(𝑢𝑢) and ℎ�𝜓𝜓(𝑢𝑢), respectively, 

and adding the results.  

In the theory of  filter banks [25-26], ℎ𝜙𝜙(𝑢𝑢) and ℎ𝜓𝜓(𝑢𝑢) are often referred to as 

analysis filters, while ℎ�𝜙𝜙(𝑢𝑢) and ℎ�𝜓𝜓(𝑢𝑢) as synthesis filters. If a bank of analysis and 

synthesis filters exist, such that the input signal to the filter bank is identical to output signal 

from the filter bank, except for a possible delay or overall scaling factor, then the analysis 

and synthesis filters of the bank are said to be a perfect reconstruction (PR) pair [26]. By 

implementing a PR pair of analysis and synthesis filters, one can simply obtain the forward 

and inverse DWT without computing the wavelet functions. A simple block diagram of the 

forward and inverse 1D DWT using the analysis and synthesis filters between two adjacent 

decomposition levels is shown in Figure 2.1. We note from this figure that there is no data 

redundancy in the DWT coefficients due to the down sampling. 

  

10 
 
 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Block diagram of the 1D DWT using analysis and synthesis filters. (a) Forward 
transform. (b) Inverse transform. 
 

To obtain the 2D DWT, we let 𝑣𝑣(𝑖𝑖, 𝑗𝑗), 𝑖𝑖 = 1, 2, … ,ℳ ,  𝑗𝑗 = 1, 2, … ,𝒩𝒩, represent 

a 2D signal. The DWT of this signal is given by [28] 

 𝑣𝑣(𝑖𝑖, 𝑗𝑗) =
1

√𝑀𝑀𝑀𝑀

⎣
⎢
⎢
⎢
⎢
⎡ ��𝑥𝑥𝒥𝒥𝐴𝐴(𝓅𝓅,𝓆𝓆) Φ𝒥𝒥

𝐴𝐴(𝑖𝑖, 𝑗𝑗,𝓅𝓅,𝓆𝓆)
𝒩𝒩

𝓆𝓆=1

ℳ

𝓅𝓅=1

+

� � ��𝑥𝑥𝑙𝑙ℛ(𝓅𝓅,𝓆𝓆) Ψ𝑙𝑙ℛ(𝑖𝑖, 𝑗𝑗,𝓅𝓅,𝓆𝓆)
𝒩𝒩

𝓆𝓆=1

ℳ

𝓅𝓅=1ℛ∈𝔥𝔥,𝔳𝔳,𝔡𝔡

𝒥𝒥

𝑙𝑙=1 ⎦
⎥
⎥
⎥
⎥
⎤

 (2.9) 

where 𝑥𝑥𝑙𝑙ℛ(ℛ ∈ 𝔥𝔥, 𝔳𝔳, 𝔡𝔡) is the detail coefficients in the decomoposition level 𝑙𝑙 (𝑙𝑙 =

1, 2, 3, … ,𝒥𝒥) of orientation ℛ, and Φ and Ψ , respectively, denote the 2D scaling and 

(b) 

ℎ�𝜓𝜓 

ℎ�𝜙𝜙 

𝑥𝑥𝑙𝑙+1𝐷𝐷  

𝑥𝑥𝑙𝑙+1𝐴𝐴  

𝑥𝑥𝑙𝑙𝐴𝐴 

𝟐𝟐 

𝟐𝟐 

𝑥𝑥𝑙𝑙+1𝐴𝐴  𝟐𝟐 

𝟐𝟐 
𝑥𝑥𝑙𝑙𝐴𝐴 

𝑥𝑥𝑙𝑙+1𝐷𝐷  ℎ𝜓𝜓 

ℎ𝜙𝜙 

(a) 

+ 

11 
 
 



wavelet functions. By using separable scaling and wavelet functions, the 2D scaling and 

wavelet functions can be represented in terms of 1D scaling and wavelet functions as  

 

Φ𝐽𝐽
𝐴𝐴(𝑖𝑖, 𝑗𝑗,𝓅𝓅,𝓆𝓆) = 2𝒥𝒥/2 𝜙𝜙(2𝒥𝒥𝑖𝑖 − 𝓅𝓅) 𝜙𝜙(2𝒥𝒥𝑗𝑗 − 𝓆𝓆) (2.10a) 

Ψ𝑙𝑙
𝔥𝔥(𝑖𝑖, 𝑗𝑗,𝓅𝓅,𝓆𝓆) = 2𝑙𝑙/2 𝜙𝜙(2𝑙𝑙𝑖𝑖 − 𝓅𝓅) 𝜓𝜓(2𝑙𝑙𝑗𝑗 − 𝓆𝓆) (2.10b) 

Ψ𝑙𝑙𝔳𝔳(𝑖𝑖, 𝑗𝑗,𝓅𝓅,𝓆𝓆) = 2𝑙𝑙/2 𝜓𝜓(2𝑙𝑙𝑖𝑖 − 𝓅𝓅) 𝜙𝜙(2𝑙𝑙𝑗𝑗 − 𝓆𝓆) (2.10c) 

Ψ𝑙𝑙𝔡𝔡(𝑖𝑖, 𝑗𝑗,𝓅𝓅,𝓆𝓆) = 2𝑙𝑙/2 𝜓𝜓(2𝑙𝑙𝑖𝑖 − 𝓅𝓅) 𝜓𝜓(2𝑙𝑙𝑗𝑗 − 𝓆𝓆) (2.10d) 

The approximate and detail coefficients of the 2D DWT are obtained using the following 

two equations: 

 𝑥𝑥𝒥𝒥𝐴𝐴(𝓅𝓅,𝓆𝓆) =
1

√ℳ𝒩𝒩
��𝑣𝑣(𝑖𝑖, 𝑗𝑗) Φ𝒥𝒥

𝐴𝐴(𝑖𝑖, 𝑗𝑗,𝓅𝓅,𝓆𝓆)
𝒩𝒩

𝑗𝑗=1

ℳ

𝑖𝑖=1

 (2.11) 

 𝑥𝑥𝑙𝑙ℛ(𝓅𝓅,𝓆𝓆) =
1

√ℳ𝒩𝒩
��𝑣𝑣(𝑖𝑖, 𝑗𝑗) Ψ𝑙𝑙ℛ(𝑖𝑖, 𝑗𝑗,𝓅𝓅,𝓆𝓆)

𝒩𝒩

𝑗𝑗=1

ℳ

𝑖𝑖=1

 (2.12) 

From these relations, it is noted that the DWT coefficients are clustered into subbands of 

different decomposition levels and orientations. The subbands HL, LH and HH  at the 𝑙𝑙th 

decomposition level contain the detail coefficients of the horizontal, vertical, and diagonal 

orientations, viz., 𝑥𝑥𝑙𝑙
𝔥𝔥, 𝑥𝑥𝑙𝑙𝔳𝔳 and 𝑥𝑥𝑙𝑙𝔡𝔡, respectively. The subband LL at level 𝒥𝒥, contains the 

approximation coefficients that are the low-pass-filtered version of the original signal. This 

means that at each subsequent decomposition level (𝑙𝑙 + 1), the subband LL at the 𝑙𝑙th level 

is further decomposed again into four subbands, namely, LL, HL, LH and HH, at the (𝑙𝑙 +

1)th level. Figure 2.2 shows the subband representation of a 3-level 2D DWT. It is noted 

that the use of the separable functions given by (2.10) in (2.11) and (2.12) converts the 

operation of the 2D DWT into that of two 1D DWTs. 
12 

 
 



 

Figure 2.2: Subband representation of a 3-level 2D DWT. 
 

Now, similar to the technique used in the case of the 1D DWT, an efficient 

implementation of forward and inverse 2D DWT can be obtained by using a bank of 

analysis and synthesis filters. Block diagram of the forward and inverse 2D DWT is shown 

in Figure 2.3. It is noted from this figure that both the forward and inverse transforms use 

a two-stage filtering operation, one through the columns of a 2D array and the other through 

the rows of a 2D array. A filer bank can be designed to be orthogonal or biorthogonal. An 

orthogonal filter bank has the coefficients of its analysis filters being time reversal of that 

of its synthesis filters. However, for a biorthogonal filter bank, the coefficients of the 

analysis filters do not have to be time reversal of that of the synthesis filters, and thus brings  
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Figure 2.3: Block diagram of the 2D DWT using synthesis and analysis filters. (a) Forward 
2D DWT using analysis filters. (b) Inverse 2D DWT using synthesis filters. 
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more freedom to the design of the filters. For both the orthogonal and biorthogonal filter 

banks, PR imposes the condition that its analysis and synthesis filters satisfy the following 

two relations [29]: 

 ℱℎ𝜙𝜙�−(𝑤𝑤 + 𝜋𝜋)� ℱℎ�𝜙𝜙(𝑤𝑤) + ℱℎ𝜓𝜓(−(𝑤𝑤 + 𝜋𝜋)) ℱℎ�𝜓𝜓(𝑤𝑤) = 0 (2.13) 

 ℱℎ𝜙𝜙(−𝑤𝑤) ℱℎ�𝜙𝜙(𝑤𝑤) + ℱℎ𝜓𝜓(−𝑤𝑤) ℱℎ�𝜓𝜓(𝑤𝑤) = 2 (2.14) 

where ℱℎ𝜙𝜙, ℱℎ�𝜙𝜙, ℱℎ𝜓𝜓 and  ℱℎ�𝜓𝜓 are the Fourier transforms of ℎ𝜙𝜙, ℎ�𝜙𝜙, ℎ𝜓𝜓 and  ℎ�𝜓𝜓, 

respectively. 

2.1.2 Choosing a Wavelet 

A DWT with desired features is obtained by constructing suitable scaling and 

wavelet functions. As previously seen, DWT is performed by using a bank of analysis and 

synthesis filters. Thus, it is with an appropriate design of these filters, one should be able 

to realize scaling and wavelet functions with the desired features. Often a DWT must 

provide a signal representation with as few non-negligible coefficients as possible. Apart 

from the nature of the signal to be decomposed into wavelet coefficients, the number of 

such coefficients depends on the number of vanishing moments of the wavelet function 𝜓𝜓 

[25] and the size of its support. There are two other properties of 𝜓𝜓, regularity and 

symmetry, that help in providing a DWT with certain characteristics.  

The function 𝜓𝜓(𝓉𝓉), 𝓉𝓉 being a real variable, can be a wavelet function if it 

oscillates, averaging to zero, i.e., ∫  ∞
−∞  𝜓𝜓(𝓉𝓉)𝑑𝑑𝑑𝑑 =  0, and is well localized, i.e., rapidly 

decreases to zero as |𝓉𝓉| increases [28]. The influence of the properties of a wavelet function 

on the DWT characteristics is described below. 

Number of vanishing moments: A wavelet function satisfying the following equation 
15 

 
 



 �  
∞

−∞
𝓉𝓉𝑟𝑟𝜓𝜓(𝓉𝓉)𝑑𝑑𝓉𝓉 =  0, 0 <  𝑟𝑟 ≤  𝑁𝑁𝑣𝑣 − 1 (2.15) 

is said to have 𝑁𝑁𝑣𝑣 vanishing moments. One should construct a 𝜓𝜓 giving the number of 

vanishing moments 𝑁𝑁𝑣𝑣 to be as large as possible in order to produce a large number of 

small DWT coefficients.  

Support size: The construction of a wavelet function with a small support size also reduces 

the number of non-negligible DWT coefficients. A wavelet function with a compact 

support 𝐾𝐾 is realized through designing finite impulse response (FIR) analysis and 

synthesis filters, which are inherently stable. 

Regularity: The regularity of a wavelet function gives an approximate measure of the 

number of continuous derivatives that the function possesses. The regularity, therefore, 

gives a measure of the smoothness of the wavelet function, with higher regularity implying 

a smoother wavelet. The regularity of a wavelet function has a cosmetic influence on the 

error introduced from thresholding or quantizing the DWT coefficients. When 

reconstructing a signal from its thresholded or quantized wavelet coefficients, an error is 

introduced in the reconstructed signal. If 𝜓𝜓(𝓉𝓉) is smooth then this error is also smooth [30].  

Symmetry: A symmetric wavelet function 𝜓𝜓(𝓉𝓉) gives equal weighting about the midpoint 

𝓉𝓉0 of its support. A DWT with symmetric wavelet functions permits a symmetric boundary 

extension of the transformed signal that minimizes the border artifacts [31-32]. Symmetric 

wavelet functions are realized when the analysis and synthesis filters have linear phase 

responses. 

With an orthogonal bank of analysis and synthesis filters, it is difficult to realize 

a wavelet function that has simultaneously a large number of vanishing moments 𝑁𝑁𝑣𝑣 and a 
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small support size 𝐾𝐾, since a reduction in 𝐾𝐾 also decreases 𝑁𝑁𝑣𝑣. The best compromise 

between 𝐾𝐾 and 𝑁𝑁𝑣𝑣 is achieved by the Daubechies wavelets, denoted by db𝑁𝑁𝑣𝑣 [33]. For 

Daubechies wavelets, the relation between 𝐾𝐾 and 𝑁𝑁𝑣𝑣 is given by 𝐾𝐾 = 2𝑁𝑁𝑣𝑣 − 1. This 

relationship is the best compromise in that it gives a smaller support size 𝐾𝐾 than that given 

by other orthogonal wavelets for a given value of 𝑁𝑁𝑣𝑣. Hence, for a given 𝑁𝑁𝑣𝑣, Daubechies 

wavelets provide a more compact support size than that provided by other orthogonal 

wavelets. The shortest member of the Daubechies wavelets, db1, is the Haar wavelet. 

Except for the Haar wavelet, orthogonal wavelets with compact support, including 

Daubechies wavelets, cannot be symmetrical [26]. The least asymmetrical ones, also 

constructed by Daubechies, are the symlet wavelets denoted as sym𝑁𝑁𝑣𝑣 (the relation 𝐾𝐾 =

2𝑁𝑁𝑣𝑣 − 1 still applies to symlet wavelets).  

The objective of realizing wavelet functions with a small support size and a large 

number of vanishing moments is more easily achievable when using biorthogonal filter 

banks [34]. For biorthogonal wavelets, in contrast to orthogonal wavelets, the properties of 

compact support and symmetry are achieved simultaneously. The choice of a wavelet, 

whether orthogonal or biorthogonal, depends on its application. For image compression 

applications, biorthogonal wavelets can improve the compression performance, since it 

permits a symmetrical boundary extension of the transformed coefficients. On the other 

hand, image denoising applications require high de-correlation of the transformed 

coefficients, which is easier to achieve in the case of orthogonal wavelets.  
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2.2 Existing PDFs for Modeling of DWT Coefficients  

Statistical modeling of the DWT coefficients is an important issue in many 

disciplines such digital image processing. The performance of a DWT-based speckle 

suppression technique is greatly influenced by the suitability of a statistical model of the 

image DWT coefficients. The statistical models of DWT coefficients can be divided into 

two categories: nonparametric [35-36] and parametric [13-22]. In a nonparametric model, 

no probability distribution function is assumed, meaning that the desired distribution is 

totally data-driven. Since nonparametric modeling involves complex computation [35], it 

is in general time-consuming and cannot be adopted in many applications. Alternatively, 

the parametric modeling has been used, especially when the distribution of a data has a 

known shape. Parametric modeling essentially boils down to finding the parameter values 

of a chosen PDF that can best match the empirical distribution of the data.  

A common assumption in a parametric modeling of the DWT coefficients is that 

the PDFs of these coefficients are independent and identically distributed. Let 𝑥𝑥(𝓅𝓅,𝓆𝓆) 

represent the wavelet coefficient at the index (𝓅𝓅,𝓆𝓆) of a subband of the 2D DWT and 

𝑝𝑝𝑥𝑥(𝑥𝑥) be the PDF of the random variable 𝑥𝑥. A brief overview of some of the PDFs used 

for modeling the DWT coefficients is presented next. 

2.2.1 Generalized Laplacian (GL) PDF 

The histograms of the DWT coefficients are typically sharply peaked at zero. 

Hence, the zero-mean GL PDF defined as  

 𝑝𝑝𝑥𝑥(𝑥𝑥) =
1

2𝒸𝒸
𝓈𝓈 Γ �1

𝓈𝓈�
𝑒𝑒−�

𝑥𝑥
𝒸𝒸�
2

 (2.16) 
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where 𝒸𝒸 (𝒸𝒸 > 0) is the width parameter, 𝓈𝓈  (1 < 𝓈𝓈 < 2) is the shape parameter and Γ(𝑤𝑤) =

∫ 𝓉𝓉𝑤𝑤−1𝑒𝑒−𝓉𝓉𝑑𝑑𝑑𝑑∞
0  is the Gamma function, has been commonly used to model the DWT 

coefficients [24]. It is to be noted that (2.16) reduces to a Laplacian PDF when 𝓈𝓈 = 1 and 

to a Gaussian PDF when 𝓈𝓈 = 2. Therefore, some researchers have also referred to the 

above model as the generalized Gaussian distribution (GGD). The model parameters 𝓈𝓈 and 

𝒸𝒸 can be calculated from the samples of the DWT coefficients. Specifically, if 𝜎𝜎𝑥𝑥2 is the 

sample variance and  𝔎𝔎𝑥𝑥
  is the kurtosis of the data samples of the DWT coefficients, then 

the following formulas are used to estimate 𝓈𝓈 and 𝒸𝒸: 

 𝜎𝜎𝑥𝑥2 =
𝒸𝒸2Γ �3

𝓈𝓈�

Γ �1
𝓈𝓈�

  ,  𝔎𝔎𝑥𝑥
 =

Γ �1
𝓈𝓈�Γ �

5
𝓈𝓈�

Γ2 �3
𝓈𝓈�

 (2.17) 

2.2.2 Scale Mixture of Gaussian (SMG) PDFs 

By using a scale mixture model, a variety of other models can be derived. In the 

SMG PDF, the random variable 𝒙𝒙 is assumed to be a product of a Gaussian random vector 

𝑿𝑿, whose density is determined by the covariance matrix ∑  𝑿𝑿 , and an independent hidden 

positive scalar random variable √𝑡𝑡 (usually known as the multiplier); this PDF is given as 

[37] 

 𝑝𝑝𝒙𝒙(𝒙𝒙) =
1

�(2𝜋𝜋)𝑁𝑁| 𝑡𝑡 ∑  𝑿𝑿 |
�  𝑒𝑒

�−𝒙𝒙
𝑇𝑇(𝑡𝑡 ∑  𝑿𝑿 )−1𝒙𝒙

2 �
 𝑝𝑝𝑡𝑡(𝑡𝑡)𝑑𝑑𝑑𝑑 (2.18) 

where 𝑁𝑁 is the number of DWT coefficients 𝒙𝒙 of a subband. The most critical part in 

evaluating the SMG PDF is the estimation of the density function for 𝑡𝑡. In general, 𝑝𝑝𝑡𝑡(𝑡𝑡) 

can be approximated as log-normal PDF [38] given by 
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 𝑝𝑝𝑡𝑡(𝑡𝑡) =
1

𝑡𝑡�2𝜋𝜋𝜎𝜎𝐿𝐿2
 𝑒𝑒
�−(log 𝑡𝑡−𝜇𝜇𝐿𝐿)2

2𝜎𝜎𝐿𝐿
2 �

 (2.19) 

where 𝜇𝜇𝐿𝐿 = − log(𝜎𝜎𝑡𝑡2 + 1) /2 and 𝜎𝜎𝐿𝐿2 = log(𝜎𝜎𝑡𝑡2 + 1), 𝜎𝜎𝑡𝑡2 being the variance of the random 

variable 𝑡𝑡. The variance 𝜎𝜎𝑡𝑡2 can be calculated from of the second- and fourth-order 

moments of the data samples of the DWT coefficients as 𝜎𝜎𝑡𝑡2 = 𝔐𝔐4𝑥𝑥/3𝜎𝜎𝑥𝑥2, where 𝔐𝔐4𝑥𝑥 is 

the fourth-order moment. 

2.2.3 Symmetric Normal Inverse Gaussian (SNIG) PDF 

The SNIG PDF is a mixture of the inverse Gaussian and standard Gaussian PDFs 

, and is given by  

 𝑝𝑝𝑥𝑥(𝑥𝑥) = 𝒜𝒜
ℬ1(𝓈𝓈̂√𝒸𝒸̂2 + 𝑥𝑥2)
√𝒸𝒸̂2 + 𝑥𝑥2

 (2.20) 

where 𝓈𝓈̂ (𝓈𝓈̂ > 0 ) is the shape parameter, 𝒸𝒸̂ (𝒸𝒸̂ > 0) is the scale parameter, 𝒜𝒜 = 𝒸𝒸̂𝓈𝓈̂ 𝑒𝑒𝒸𝒸̂𝓈𝓈̂

𝜋𝜋
 and 

ℬ1 is the modified second-kind Bessel function [39] of the first order. The parameters 𝓈𝓈̂ 

and 𝒸𝒸̂ are estimated using the sample variance and Kurtosis given by 

 𝜎𝜎𝑥𝑥2 =
𝒸𝒸̂
𝓈𝓈̂  ,      𝔎𝔎𝑥𝑥

 =
3(1 + 𝓈𝓈̂𝒸𝒸̂)

𝓈𝓈̂2  (2.21) 

The SNIG PDF has been used to model the DWT coefficients of log-transformed images 

that are common in SAR and medical applications [40], [41]. 

2.3 Bayesian Estimation 

Bayesian Estimation is used to develop a statistical scheme to estimate noise-free 

signals from their noisy observations [42], e.g., image signals contaminated by speckle 

noise. To estimate the noise-free signal from its noisy observation using Bayesian 
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estimation, the prior knowledge of the distribution of the noise-free signal samples is 

combined with the information contained in the observed signal samples. Bayesian 

estimation is based essentially on minimizing the Bayesian risk function. Let 𝑥𝑥 denotes an 

unknown noise-free signal and 𝑦𝑦 its noisy observation. The Bayesian estimation 𝑥𝑥� of 𝑥𝑥 is 

based on minimizing the Bayesian risk function defined as an average of the cost-of-error 

function 𝐶𝐶(𝑥𝑥, 𝑥𝑥�): 

 ℜ(𝑥𝑥�) = 𝛦𝛦{𝐶𝐶(𝑥𝑥, 𝑥𝑥�)} = � �𝐶𝐶(𝑥𝑥,𝑥𝑥�) 𝑝𝑝𝑥𝑥,𝑦𝑦(𝑥𝑥,𝑦𝑦) 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
 

𝑦𝑦

 

𝑥𝑥
 (2.22) 

where 𝛦𝛦{𝐶𝐶(𝑥𝑥, 𝑥𝑥�)} is the expectation value of the cost-of-error function 𝐶𝐶(𝑥𝑥, 𝑥𝑥�) and 

𝑝𝑝𝑥𝑥, 𝑦𝑦(𝑥𝑥,𝑦𝑦) is the joint probability density function of 𝑥𝑥 and 𝑦𝑦. Since 𝑝𝑝𝑥𝑥, 𝑦𝑦(𝑥𝑥,𝑦𝑦) =

𝑝𝑝𝑦𝑦(𝑦𝑦) 𝑝𝑝𝑥𝑥|𝑦𝑦(𝑥𝑥|𝑦𝑦), the Bayesian risk function can be re-written as 

 ℜ(𝑥𝑥�) = � �  
 

𝑦𝑦
𝐶𝐶(𝑥𝑥,𝑥𝑥�) 𝑝𝑝𝑥𝑥|𝑦𝑦(𝑥𝑥|𝑦𝑦)𝑝𝑝𝑦𝑦(𝑦𝑦) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 

𝑥𝑥
 (2.23) 

For a given observation 𝑦𝑦, The PDF 𝑝𝑝𝑦𝑦(𝑦𝑦) is constant and has no effect on the 

minimization of the Bayesian risk function. Hence, without a loss of generality, the 

Bayesian risk function given by (2.23) can be re-written as a conditional risk function: 

 ℜ(𝑥𝑥�|𝑦𝑦) = �𝐶𝐶(𝑥𝑥, 𝑥𝑥�) 𝑝𝑝𝑥𝑥|𝑦𝑦(𝑥𝑥|𝑦𝑦) 𝑑𝑑𝑑𝑑
 

𝑥𝑥
 (2.24) 

The Bayesian estimates obtained from the minimization of the conditional Bayesian risk 

(2.24) function is given by  

 𝑥𝑥�𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = arg min
𝑥𝑥�

 ℛ(𝑥𝑥�|𝑦𝑦) = arg min
𝑥𝑥�

 �𝐶𝐶(𝑥𝑥, 𝑥𝑥�) 𝑝𝑝𝑥𝑥|𝑦𝑦(𝑥𝑥|𝑦𝑦) 𝑑𝑑𝑑𝑑
 

𝑥𝑥
 (2.25) 

Next, we present a brief overview of two Bayesian estimation schemes, MAP and MMSE. 

Each scheme uses a cost-of-error function that is different from the one used by the other.  
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2.3.1 MAP Estimation  

The Bayesian MAP estimation framework uses a uniform cost-of-error function 

defined as 

 𝐶𝐶(𝑥𝑥, 𝑥𝑥�) = 1− 𝛿𝛿(𝑥𝑥,𝑥𝑥�) (2.26) 

where 𝛿𝛿(𝑥𝑥, 𝑥𝑥�) is the delta function. The substitution of this cost-of-error function in the 

formula of the Bayesian risk function yields 

 ℜ𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥�|𝑦𝑦) = � [1− 𝛿𝛿(𝑥𝑥, 𝑥𝑥�)] 𝑝𝑝𝑥𝑥|𝑦𝑦(𝑥𝑥|𝑦𝑦) 𝑑𝑑𝑑𝑑
 

𝑥𝑥
= 1−  𝑝𝑝𝑥𝑥|𝑦𝑦(𝑥𝑥�|𝑦𝑦) (2.27) 

In (2.27), the MAP estimates 𝑥𝑥�MAP are obtained from a minimisation of the risk function 

or equivalently a maximization of the posterior function  𝑝𝑝𝑥𝑥�|𝑦𝑦(𝑥𝑥|𝑦𝑦). Hence, the MAP 

estimates 𝑥𝑥�MAP can be obtained as  

 𝑥𝑥�𝑀𝑀𝑀𝑀𝑀𝑀 = arg max
𝑥𝑥

 𝑝𝑝𝑥𝑥|𝑦𝑦(𝑥𝑥|𝑦𝑦) = arg max
𝑥𝑥

 𝑝𝑝𝑦𝑦|𝑥𝑥(𝑦𝑦|𝑥𝑥) 𝑝𝑝𝑥𝑥(𝑥𝑥) (2.28) 

2.3.2 MMSE Estimation  

In the Bayesian MMSE estimation, we have 𝐶𝐶(𝑥𝑥, 𝑥𝑥�) = (𝑥𝑥� − 𝑥𝑥)2, and thus, the 

Bayesian risk function is given by  

 ℜ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥�|𝑦𝑦) = � (𝑥𝑥� − 𝑥𝑥)2 𝑝𝑝𝑥𝑥|𝑦𝑦(𝑥𝑥|𝑦𝑦) 𝑑𝑑𝑑𝑑
 

𝑥𝑥
 (2.29) 

The cost-of-error function used in (2.29) is commonly referred to as the quadratic cost 

function and the use of this function can accentuate the effects of large errors. Assuming 

that the quadratic cost function is differentiable and has a well-defined minimum, the 

MMSE estimates can be obtained by setting the gradient of the conditional Bayesian risk 

function to zero. The gradient of the conditional Bayesian risk function is computed as 
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𝜕𝜕ℜ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥�|𝑦𝑦)

𝜕𝜕𝑥𝑥� = 2𝑥𝑥� �𝑝𝑝𝑥𝑥|𝑦𝑦(𝑥𝑥|𝑦𝑦)
 

𝑥𝑥

𝑑𝑑𝑑𝑑 − 2�𝑥𝑥 𝑝𝑝𝑥𝑥|𝑦𝑦(𝑥𝑥|𝑦𝑦)
 

𝑥𝑥

𝑑𝑑𝑑𝑑 (2.30) 

Since the first integral on the right side of (2.30) is equal to one, we have  

 
𝜕𝜕ℜ𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥�|𝑦𝑦)

𝜕𝜕𝑥𝑥� = 2𝑥𝑥� − 2�𝑥𝑥 𝑝𝑝𝑥𝑥|𝑦𝑦(𝑥𝑥|𝑦𝑦)
 

𝑥𝑥

𝑑𝑑𝑑𝑑 (2.31) 

By setting (3.31) to zero, the MMSE estimates can be obtained as  

 𝑥𝑥�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ∫ 𝑥𝑥 𝑝𝑝𝑥𝑥|𝑦𝑦(𝑥𝑥|𝑦𝑦) 𝑑𝑑𝑑𝑑 
𝑥𝑥   (2.32) 

2.4 Summary 

In this chapter, some preliminaries on the 1D and 2D DWTs have been presented 

along with the technique of using the concept of filter banks to obtain these transforms. A 

brief overview of some of the wavelets, along with the type of filter banks used for their 

realization, has also been given. Some of the existing PDFs used for the modeling of the 

wavelet coefficients have been briefly discussed. Finally, a brief discussion on the theory 

of Bayesian estimation and some of the Bayesian estimation schemes has been presented.  

23 
 
 



 

 

CHAPTER 3 

3Non-Homomorphic Bayesian Scheme for Speckle 
Suppression in Images 

3.1 Introduction 

In images corrupted by speckle noise, such as in SAR images, the interpretation 

and analysis of the image content is a difficult task. Hence, speckle noise reduction is a 

critical step in the processing of these images. The wavelet-based Bayesian estimation is a 

powerful denoising technique and has been widely used for speckle noise removal in 

images. As explained in Chapter 1, in developing of an efficient wavelet-based Bayesian 

despeckling scheme, the choice of a suitable probability distribution to model the wavelet 

coefficients and achieving a low-complexity realization of the Bayesian shrinkage function 

are two major concerns. In this chapter, by addressing these concerns, a new wavelet-based 

Bayesian estimation technique for despeckling of images is proposed. The main idea of the 

proposed technique is in establishing suitable statistical models for the wavelet coefficients 

of additively decomposed components, i.e., the reflectance image and the signal-dependant 

noise, of the multiplicative degradation model of a speckled image, and then in using these 

two statistical models to develop a shrinkage function with a low-complexity realization to 

estimate the noise-free wavelet coefficients. The effectiveness of using a two sided 
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exponential PDF as a prior distribution for the DWT coefficients of the signal-dependant 

noise is explored. This distribution modeling the wavelet coefficients of the noisy 

component, along with a Cauchy distribution modeling the wavelet coefficients of the 

reflectance image, is employed to formulate an MMSE Bayesian shrinkage function to 

obtain the estimates of the noise-free wavelet coefficients. A low-cost scheme for the 

realization of the resulting shrinkage function is proposed. 

3.2 Modeling of Wavelet Coefficients 

The multiplicative degradation model of a speckle-corrupted image 𝑔𝑔(𝑖𝑖, 𝑗𝑗) in the 

spatial domain is given by  

 𝑔𝑔(𝑖𝑖, 𝑗𝑗) = 𝑣𝑣(𝑖𝑖, 𝑗𝑗)𝑠𝑠(𝑖𝑖, 𝑗𝑗) (3.1) 

where 𝑣𝑣(𝑖𝑖, 𝑗𝑗) and 𝑠𝑠(𝑖𝑖, 𝑗𝑗) denote the noise-free image and the speckle noise, respectively. 

This model of the noisy observation of 𝑣𝑣(𝑖𝑖, 𝑗𝑗) can be additively decomposed as a noise-

free signal component and a signal-dependant noise: 

 
𝑔𝑔(𝑖𝑖, 𝑗𝑗) = 𝑣𝑣(𝑖𝑖, 𝑗𝑗) + (𝑠𝑠(𝑖𝑖, 𝑗𝑗) − 1)𝑣𝑣(𝑖𝑖, 𝑗𝑗) 

    = 𝑣𝑣(𝑖𝑖, 𝑗𝑗) + 𝓊𝓊(𝑖𝑖, 𝑗𝑗) (3.2) 

where 𝓊𝓊(𝑖𝑖, 𝑗𝑗) = (𝑠𝑠(𝑖𝑖, 𝑗𝑗) − 1)𝑣𝑣(𝑖𝑖, 𝑗𝑗) represents the signal-dependant noise. Taking the 

discrete wavelet transform of (3.2) at level 𝑙𝑙, we have  

 𝑦𝑦[𝑙𝑙,𝓀𝓀](𝓅𝓅,𝓆𝓆) = 𝑥𝑥[𝑙𝑙,𝓀𝓀](𝓅𝓅,𝓆𝓆) + 𝑛𝑛[𝑙𝑙,𝓀𝓀](𝓅𝓅,𝓆𝓆) (3.3) 

where 𝑦𝑦[𝑙𝑙,𝓀𝓀](𝓅𝓅,𝓆𝓆), 𝑥𝑥[𝑙𝑙,𝓀𝓀](𝓅𝓅,𝓆𝓆) and 𝑛𝑛[𝑙𝑙,𝓀𝓀](𝓅𝓅,𝓆𝓆) denote, respectively, the (𝓅𝓅,𝓆𝓆)th wavelet 

coefficient of the observed image, the corresponding noise free image and the 

corresponding additive signal-dependant noise at 𝓀𝓀 = 1, 2, 3 and 4. The values of 𝓀𝓀 

denote the four subbands, LL, LH, HL and HH, respectively. In order to simplify the 

25 
 
 



notation, we will henceforth drop both the superscripts 𝑙𝑙 and 𝓀𝓀 and the index (𝓅𝓅,𝓆𝓆) in this 

work. 

3.2.1 Modeling of the Signal-dependant Noise 

This subsection is intended to provide a prior model of the DWT coefficients of 

the signal-dependant noise 𝑛𝑛. In order to study the characteristics of the distribution of 𝑛𝑛, 

the speckle noise 𝑠𝑠 is synthetically-generated, and then, 𝓊𝓊 is computed as (𝑠𝑠 − 1)𝑣𝑣, where 

𝑣𝑣 is a noise-free test image. The speckle noise 𝑠𝑠 for the intensity format of an M-look SAR 

image can be synthetically generated by using the PDF of a unit-mean, 1/M-variance 

Gamma random variable, i.e., 𝑝𝑝S (s) = 𝑀𝑀𝑀𝑀 s (𝑀𝑀−1) 𝑒𝑒−(𝑀𝑀 s) /Γ(𝑀𝑀), where 𝑠𝑠 is the speckle noise 

random variable. The empirical distributions of 𝑛𝑛 for the LH, HL and HH subband 

coefficients of the Lena, Boat and Pirate images for M=32 are depicted in Figure 3.1 It is 

seen from this figure that the DWT coefficients 𝑛𝑛 tend to have a unimodal symmetric 

heavy-tailed statistical distribution. Also, it is obvious that the tail part of the empirical 

distribution of 𝑛𝑛 decays at a low rate. Hence, we propose to use a two-sided exponential 

(TSE) PDF given by 

 𝑝𝑝𝑛𝑛(𝑛𝑛) =
1

2𝛽𝛽  exp �−
|𝑛𝑛|
𝛽𝛽 � (3.4) 

where 𝛽𝛽 is a positive real constant referred to as the scale parameter, to model 𝑛𝑛. The 

underlying reasons for the choice of the TSE PDF are as follows. First, the tail part of the 

empirical distribution resembles that of the TSE PDF well. Second, since this PDF has only 

one parameter, an estimation of this parameter should be relatively less complex. We now 

examine the suitability of the TSE PDF in comparison to that of the zero-mean Gaussian  
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Figure 3.1: Empirical distributions of the DWT coefficients (𝑙𝑙=1) of the signal-dependant 
noise 𝑛𝑛 for various images. 
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or SNIG PDFs in modeling the DWT coefficients of the signal dependant noise of SAR 

images. The latter two PDFs have been commonly used in the literature to model 𝑛𝑛 [19-

21]. The zero-mean Gaussian PDF has only one parameter whereas SNIG PDF has two, 

namely, the shape and width parameters. The Kolmogorov-Smirnov distance, defined by 

 DKS = max𝑛𝑛�Pemp(𝑛𝑛)− P(𝑛𝑛)� (3.5) 

where Pemp(𝑛𝑛) and P(𝑛𝑛), respectively, represent the empirical and theoretical cumulative 

density functions (CDF), is used as a metric to quantify the modeling performance. 

Table 3.1 shows the values of DKS when the Gaussian, SNIG and TSE PDFs are used to 

model the HL, LH and HH subbands of the Lena, Boat, and Pirate images at 𝑙𝑙 = 1 and 2. 

The values of the DKS metric in this table are obtained for two different values of 

M, 4 and 32. It should be noted that the lower the value of M, the higher is the level of the 

speckle. It is seen from this table that, in all cases, the Gaussian distribution is not a suitable 

choice to model 𝑛𝑛. It is also seen that the DKS values for TSE and SNIG models are quite 

close. In general, the DKS values of TSE PDF are slightly lower than that of SNIG PDF. 

Figures 3.2, 3.3 and 3.4 depict the modeling performances of the Gaussian, SNIG and TSE 

PDFs by providing the plots of their distributions along with the empirical distributions of 

the HL, LH and HH subbands of the Lena, Boat and Pirate images at 𝑙𝑙 = 1 and M = 32. 

The figures also include a magnified view of the tail end of each of the distributions. It is 

seen from these figures that, in comparison to the Gaussian PDF, SNIG and TSE PDFs 

provide better fits with the empirical distribution with the TSE PDF showing a closer fit in 

the tail parts of the distributions. Thus, in view of this study, which shows that TSE PDF,  

  

28 
 
 



 

 

Table 3.1: Values of the Kolmogorov-Smirnov distance for HL, LH and HH subbands of 
the Lena, Boat and Pirate images for 𝑙𝑙 = 1 and 2 
 

Wavelet Subbands 
Values of the Kolmogorov-Smirnow metrics 

Gaussian SNIG TSE 

 M=4 M=32 M=4 M=32 M=4 M=32 

Lena 

HL1 .0420 .0454 .0279 .0189 .0278 .0082 

LH1 .0431 .0441 .0300 .0189 .0297 .0134 

HH1 .0454 .0426 .0282 .0183 .0297 .0151 

HL2 .0476 .0443 .0305 .0195 .0306 .0154 

LH2 .0472 .0273 .0370 .0174 .0368 .0122 

HH2 .0465 .0323 .0295 .0224 .0289 .0139 

Boat 

HL1 .0364 .0422 .0265 .0210 .0247 .0158 

LH1 .0362 .0458 .0283 .0147 .0261 .0101 

HH1 .0323 .0307 .0252 .0193 .0248 .0136 

HL2 .0401 .0390 .0311 .0165 .0294 .0151 

LH2 .0427 .0443 .0321 .0271 .0318 .0196 

HH2 .0345 .0400 .0251 .0224 .0247 .0171 

Pirate 

HL1 .0472 .0419 .0358 .0191 .0364 .0206 

LH1 .0455 .0330 .0371 .0199 .0378 .0152 

HH1 .0431 .0466 .0373 .0196 .0372 .0147 

HL2 .0390 .0415 .0301 .0145 .0300 .0148 

LH2 .0398 .0476 .0356 .0162 .0352 .0159 

HH2 .0398 .0367 .0351 .0192 .0353 .0157 
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Figure 3.2: Empirical, TSE, SNIG and Gaussian distributions for the HL (𝑙𝑙 =1) subband of 
the DWT coefficients for the (a) Lena, (b) Boat, and (c) Pirate images.  
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Figure 3.3: Empirical, TSE, SNIG and Gaussian distributions for the LH (𝑙𝑙 =1) subband of 
the DWT coefficients for the (a) Lena, (b) Boat, and (c) Pirate images.  
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Figure 3.4: Empirical, TSE, SNIG and Gaussian distributions for the HH (𝑙𝑙 =1) subband of 
the DWT coefficients for the (a) Lena, (b) Boat, and (c) Pirate images.  
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in general, provides a closer fit to the empirical distribution in comparison to that provided 

by the other two distributions coupled with the fact that it employs only one parameter, we 

use this distribution to model the DWT coefficients of the signal-dependant noise 

component of SAR images. 

3.2.2 Modeling of the Reflectance Image 

In this subsection, we provide a prior model for the wavelet coefficients of the 

reflectance component of SAR image, i.e., 𝑥𝑥. The characteristics of the distribution of the 

wavelet coefficients of an image have been studied by Mallat in [24]. It has been shown in 

his paper that, in general, the distribution of the wavelet image coefficients is symmetric 

and sharply-peaked at about zero with the tail being heavier than that of the Gaussian 

distribution. Achim et al. [13] have demonstrated that a sharply-peaked distribution with a 

tail heavier than that of the Gaussian distribution can be accurately modeled by a symmetric 

α-stable PDF. However, the alpha-stable PDF has a closed-form expression for only two 

specific values of its parameter α, namely, α =1 and α =2, resulting in the Cauchy and 

Gaussian PDFs respectively. It is worth mentioning that the employment of the α-stable 

PDF to model the wavelet coefficients without a closed-from expression increases the 

complexity of estimating numerically the noise-free wavelet coefficients. Thus, in view of 

the fact that the Gaussian PDF is not a suitable choice to model the wavelet coefficients of 

an image, in this work, the Cauchy PDF given by  

 𝑝𝑝𝑥𝑥(𝑥𝑥) =  
𝛾𝛾

𝜋𝜋(𝑥𝑥2 + 𝛾𝛾2) (3.6) 
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Figure 3.5: Empirical and Cauchy distributions for the HL (𝑙𝑙 =1) subband of the DWT 
coefficients of the (a) Lena, (b) Stream and Bridge, (c) Boat and (d) Pirate images. 
 
 
where 𝛾𝛾 is the dispersion parameter, is adopted as a prior model for 𝑥𝑥. The modeling 

performance of the Cauchy PDF for the HL subband of the Lena, Stream and Bridge, Boat 

and Pirate images for 𝑙𝑙 = 1 is depicted in Figure 3.5. It is obvious from this figure that the  

Cauchy PDF provides an excellent match to the empirical distribution both in the peak and 

tail parts.  

Using the TSE and Cauchy PDFs to model the DWT coefficients of the signal-

dependant noise and reflectance components, respectively, of an observed SAR image, a 

Bayesian estimation framework is devised to estimate the wavelet coefficients of the 
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speckle-free SAR image 𝑥𝑥. However, before proceeding to this part of our work, we first 

need to estimate the parameters of these distributions. In the next subsection we 

demonstrate the mechanisms used for estimating these parameters. 

3.3 Estimation of 𝜷𝜷 and 𝜸𝜸  

In practical applications, the parameters 𝛽𝛽 and 𝛾𝛾 need to be estimated from the 

observed noisy wavelet coefficients. Usually, the maximum likelihood (ML) method and 

the method of moments (MoM) are employed for the estimation of parameters. However, 

parameter estimation is, in general, a time-consuming process when using the former 

method [14], whereas it leads to a relatively large variance of the parameter estimated when 

using the latter one [22]. In [43], based on Mellin transform, a new method of parameter 

estimation, referred to as the method of second-kind cummulants or the method of log-

cummulants (MoLC), has been proposed. It has been shown that this method is consistent 

and computationally efficient, and leads to a relatively low variance of the estimated 

parameter. We adopt this method to estimate the parameter 𝛽𝛽. However, it should be noted 

that MoLC is applicable only to positive-valued random variables. Therefore, in view of 

this and the fact that the TSE distribution is symmetric about zero and the histogram of the 

wavelet coefficients of the signal-dependant noise is approximately symmetric about 

zero,we estimate 𝛽𝛽 from the exponential distribution having the same parameter as that of 

TSE using the absolute value of the wavelet coefficients of the signal-dependant noise. The 

MoLC uses the traditional framework for the construction of moments and cummulants 

except that it replaces the Fourier transform with the Mellin transform. Thus, the n-th order 

second-kind cummulant of the exponential distribution is obtained as [43] 
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 𝑘𝑘�n =
dn

d𝜀𝜀n 𝜑𝜑
(𝜀𝜀)| 𝜀𝜀=1 (3.7) 

where 𝜑𝜑(𝜀𝜀) is the second second-kind characteristic function of the exponential 

distribution given by 

 𝜑𝜑(𝜀𝜀) = log�� 2 𝑝𝑝𝑛𝑛(𝑛𝑛)
∞

0
𝑛𝑛𝜀𝜀−1d𝑛𝑛� = log��

1
𝛽𝛽  exp �−

𝑛𝑛
𝛽𝛽
�

∞

0
𝑛𝑛𝜀𝜀−1d𝑛𝑛� (3.8) 

In the above equation, 𝑝𝑝𝑛𝑛(𝑛𝑛) represents the TSE distribution of the signal-dependent noise 

wavelet coefficients 𝑛𝑛 in the range [0,∞). The table of integrations in [44] can be used to 

solve the integration in (3.8), yielding 

 𝜑𝜑(𝜀𝜀) = log { 𝛽𝛽𝜀𝜀−1Γ(𝜀𝜀) } (3.9) 

where the symbol Γ represents the Gamma function of the associated argument. By using 

(3.9) in (3.7), the first second-kind cummulant of the exponential distribution can be 

obtained as 

 𝑘𝑘�1 = 𝒟𝒟(1) + log(𝛽𝛽) = −Υ + log(𝛽𝛽) (3.10) 

where 𝒟𝒟(∙) is the Digamma function and Υ is the Euler-Mascheroni constant [39]. Now, in 

order to estimate 𝛽𝛽, we compute the first second-kind cummulant 𝑘𝑘��1 from the absolute 

values of the wavelet coefficients of the observed samples and use it as 𝑘𝑘�1 in the above 

expression. As a result, the estimated 𝛽𝛽� is obtained by using the expression 

 𝛽𝛽� = exp ��
1

𝑁𝑁1𝑁𝑁2
�� log  (𝑦𝑦(𝓅𝓅,𝓆𝓆))

𝑁𝑁2

𝓆𝓆=1

𝑁𝑁1

𝓅𝓅=1

�+ Υ� (3.11) 

where 𝑁𝑁1 and 𝑁𝑁2 define the size 𝑁𝑁1 ×𝑁𝑁2 of the wavelet subband considered.  

Next, our task is to estimate the dispersion parameter 𝛾𝛾 of the Cauchy distribution 

used to model the wavelet coefficients of the noise-free signal. It is to be noted that in order 
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to estimate the parameter 𝛽𝛽 of the signal-dependant noise 𝑢𝑢 using MoLC, we did use the 

noisy observation 𝑔𝑔. However, the same strategy of employing noisy observation cannot 

be used in MoLC in order to estimate the parameter 𝛾𝛾, since 𝑔𝑔 is a noisy observation 

whereas 𝑣𝑣 is noise-free. It means that we cannot use 𝑘𝑘��1 as the first second-kind cummulant 

of the Cauchy distribution. Therefore, we propose to estimate the Cauchy distribution 

parameter 𝛾𝛾 using the method proposed in [15]. In this method, the noisy observation is 

used to estimate the parameter 𝛾𝛾 by minimizing the function  

 � �ϕ�𝑦𝑦(𝑡𝑡) − ϕ𝑦𝑦(𝑡𝑡)�
∞

−∞
exp(−𝑡𝑡2)𝑑𝑑𝑑𝑑 (3.12) 

where ϕ�𝑦𝑦(𝑡𝑡) is the empirical characteristic function corresponding to the wavelet 

coefficients 𝑦𝑦 of the noisy observation, ϕ𝑦𝑦(𝑡𝑡) = ϕ𝑥𝑥(𝑡𝑡) ϕϵ(𝑡𝑡), ϕ𝑥𝑥(𝑡𝑡) = exp (−𝛾𝛾|𝑡𝑡|), and 

ϕϵ(𝑡𝑡) = exp (−(𝜎𝜎ϵ2/2)|𝑡𝑡|2) with the standard deviation 𝜎𝜎ϵ obtained as [9] 

 𝜎𝜎ϵ =  
MAD�𝑦𝑦[1,4](𝓅𝓅,𝓆𝓆)�

0.6745  (3.13) 

In (3.13), MAD denotes the median absolute deviation operation. The integral in (3.12) is 

calculated using the Gauss-Hermite quadrature as [15] 

 �𝜗𝜗𝑑𝑑�ϕ�𝑦𝑦(𝑡𝑡𝑑𝑑) − ϕ𝑦𝑦(𝑡𝑡𝑑𝑑)�
𝑄𝑄

𝑑𝑑=1

 (3.14) 

where 𝑡𝑡𝑑𝑑 's are the roots of the Hermite polynomials of order 𝑄𝑄, and 𝜗𝜗𝑑𝑑 's are the weights 

associated with these roots.  
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3.4 Proposed MMSE Bayesian Shrinkage Function  

In this section, our goal is to formulate a shrinkage function under the framework 

of MMSE Bayesian estimation and to provide a realization for this function in order to 

estimate the noise-free wavelet coefficients of speckled images. This shrinkage function is 

formulated by employing the TSE and the Cauchy distributions as models for the wavelet 

coefficients of the signal-dependant noise and reflectance image, respectively. A 

description of our proposed scheme for despeckling is presented as an algorithm at the end 

of this section. 

3.4.1 Formulation of a Shrinkage Function 

Based on the Bayesian decision theory, the values of Bayes estimates 𝑥𝑥� of the 

noise-free wavelet coefficients 𝑥𝑥 of a subband, under the quadratic loss function, are given 

by the shrinkage function [45]: 

 𝑥𝑥�(𝑦𝑦) = �𝑝𝑝𝑥𝑥|𝑦𝑦(𝑥𝑥|𝑦𝑦) 𝑥𝑥 𝑑𝑑𝑑𝑑 (3.15) 

where 𝑝𝑝𝑥𝑥|𝑦𝑦(𝑥𝑥|𝑦𝑦) is the posterior density function conditioned on the observed wavelet 

coefficients 𝑦𝑦 of the subband considered. It is noted from (3.15) that this is simply the mean 

of 𝑥𝑥 conditioned on 𝑦𝑦. This estimation is achieved by carrying out a minimization of the 

mean square error (MSE) between 𝑥𝑥 and 𝑥𝑥�. The posterior density function 𝑝𝑝𝑥𝑥|𝑦𝑦(𝑥𝑥|𝑦𝑦) can 

be obtained using the Bayes' rule as 

 𝑝𝑝𝑥𝑥|𝑦𝑦(𝑥𝑥|𝑦𝑦) =
𝑝𝑝𝑦𝑦|𝑥𝑥(𝑦𝑦|𝑥𝑥) 𝑝𝑝𝑥𝑥(𝑥𝑥)

∫ 𝑝𝑝𝑦𝑦|𝑥𝑥(𝑦𝑦|𝑥𝑥) 𝑝𝑝𝑥𝑥(𝑥𝑥) 𝑑𝑑𝑑𝑑
=

𝑝𝑝𝑛𝑛(𝑦𝑦 − 𝑥𝑥) 𝑝𝑝𝑥𝑥(𝑥𝑥)
∫ 𝑝𝑝𝑛𝑛(𝑦𝑦 − 𝑥𝑥) 𝑝𝑝𝑥𝑥(𝑥𝑥) 𝑑𝑑𝑑𝑑

 (3.16) 

and hence, the shrinkage function 𝑥𝑥�  (𝑦𝑦) given by (3.15) can be re-written as  
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 𝑥𝑥�  (𝑦𝑦) =
∫ 𝑝𝑝𝑛𝑛(𝑦𝑦 − 𝑥𝑥)𝑝𝑝𝑥𝑥(𝑥𝑥) 𝑥𝑥 𝑑𝑑𝑑𝑑
∫ 𝑝𝑝𝑛𝑛(𝑦𝑦 − 𝑥𝑥) 𝑝𝑝𝑥𝑥(𝑥𝑥) 𝑑𝑑𝑑𝑑

 (3.17) 

3.4.2 Realization of the Shrinkage Function 

It is noted that a closed-form expression for 𝑥𝑥�  (𝑦𝑦) given by the above equation 

does not exist. Thus, in order to obtain the Bayesian estimates for the noise-free wavelet 

coefficients, the two integrations associated with (3.17) are numerically performed for each 

wavelet coefficient. Since this procedure requires an excessive computational effort, the 

discrete fast Fourier transform (DFT) has been employed due to its computational 

advantage [46]. The computational complexity of the direct numerical integration depends 

on the number of sample points used to perform the integration whereas that of DFT 

depends on the number of discrete points of 𝑦𝑦 resulting from choosing a certain bin-width. 

For a bin-width ∆𝑦𝑦, the number of discrete points of 𝑦𝑦 is given as 𝑁𝑁𝑦𝑦 = (𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚)/∆𝑦𝑦, 

where 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚  are, respectively, the maximum and minimum values of 𝑦𝑦. It should 

be noted that the computational complexity of the direct numerical integration and that of 

the DFT are reduced by utilizing a fewer number of sample points and a larger bin-width 

∆𝑦𝑦, respectively. However, this is done at the expense of the estimation accuracy. 

Therefore, there is a need to investigate alternative realizations of the shrinkage function 

given by (3.17) for estimating the wavelet coefficients from the standpoint of the accuracy 

and computational complexity of the estimation. In order to achieve this goal, we now 

explore a representation for the shrinkage function given by (3.17) in which the associated 

integrals are replaced by infinite series. Substituting the expressions for 𝑝𝑝𝑛𝑛(∙) and 𝑝𝑝𝑥𝑥(∙) 

given by (3.4) and (3.6), respectively, into (3.17), we have 
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 𝑥𝑥�  (𝑦𝑦) =
∫  𝑒𝑒

−|−𝑥𝑥+𝑦𝑦|
𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2 𝑥𝑥 𝑑𝑑𝑑𝑑∞
−∞

∫ 𝑒𝑒
−|−𝑥𝑥+𝑦𝑦|

𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2 𝑑𝑑𝑑𝑑
∞
−∞

=
A(𝑦𝑦)
B(𝑦𝑦) (3.18) 

where A(𝑦𝑦) and B(𝑦𝑦) are, respectively, the numerator and denominator of the shrinkage 

function 𝑥𝑥�  (𝑦𝑦), and they are given by  

 

A(𝑦𝑦)  = �
 𝑒𝑒
−|−𝑥𝑥+𝑦𝑦|

𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2  𝑥𝑥 𝑑𝑑𝑑𝑑
∞

−∞
  

=  𝑒𝑒
−𝑦𝑦
𝛽𝛽 �

𝑒𝑒
𝑥𝑥
𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2  𝑥𝑥 𝑑𝑑𝑑𝑑
𝑦𝑦

−∞
+ 𝑒𝑒

𝑦𝑦
𝛽𝛽 �

𝑒𝑒
−𝑥𝑥
𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2  𝑥𝑥 𝑑𝑑𝑑𝑑
∞

𝑦𝑦
 (3.19) 

 

B(𝑦𝑦)  = �
 𝑒𝑒
−|−𝑥𝑥+𝑦𝑦|

𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2  𝑑𝑑𝑑𝑑
∞

−∞
  

=  𝑒𝑒
−𝑦𝑦
𝛽𝛽 �

𝑒𝑒
𝑥𝑥
𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2  𝑑𝑑𝑑𝑑
𝑦𝑦

−∞
+ 𝑒𝑒

𝑦𝑦
𝛽𝛽 �

𝑒𝑒
−𝑥𝑥
𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2  𝑑𝑑𝑑𝑑
∞

𝑦𝑦
 (3.20) 

By assuming that 𝑦𝑦 ≤ 0, the expressions for A(𝑦𝑦) and B(𝑦𝑦) as given above can be further 

manipulated to yield 

 

A(𝑦𝑦) = 𝑒𝑒
−𝑦𝑦
𝛽𝛽 ��

𝑒𝑒
𝑥𝑥
𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2  𝑥𝑥 𝑑𝑑𝑑𝑑
0

−∞
−�

𝑒𝑒
𝑥𝑥
𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2  𝑥𝑥 𝑑𝑑𝑑𝑑
0

𝑦𝑦
�  

+  𝑒𝑒
𝑦𝑦
𝛽𝛽 ��

𝑒𝑒
−𝑥𝑥
𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2  𝑥𝑥 𝑑𝑑𝑑𝑑
0

𝑦𝑦
+ �

𝑒𝑒
−𝑥𝑥
𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2  𝑥𝑥 𝑑𝑑𝑑𝑑
∞

0
�  

= 𝑒𝑒
−𝑦𝑦
𝛽𝛽 �−�

𝑒𝑒
−𝑥𝑥
𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2  𝑥𝑥 𝑑𝑑𝑑𝑑
∞

0
+ �

𝑒𝑒
𝑥𝑥
𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2  𝑥𝑥 𝑑𝑑𝑑𝑑
𝑦𝑦

0
�  
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+  𝑒𝑒
𝑦𝑦
𝛽𝛽 �−�

𝑒𝑒
−𝑥𝑥
𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2  𝑥𝑥 𝑑𝑑𝑑𝑑
𝑦𝑦

0
+ �

𝑒𝑒
−𝑥𝑥
𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2  𝑥𝑥 𝑑𝑑𝑑𝑑
∞

0
� (3.21) 

 

B(𝑦𝑦) = 𝑒𝑒
−𝑦𝑦
𝛽𝛽 ��

𝑒𝑒
𝑥𝑥
𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2  𝑑𝑑𝑑𝑑
0

−∞
−�

𝑒𝑒
𝑥𝑥
𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2  𝑑𝑑𝑑𝑑
0

𝑦𝑦
�  

+  𝑒𝑒
𝑦𝑦
𝛽𝛽 ��

𝑒𝑒
−𝑥𝑥
𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2  𝑑𝑑𝑑𝑑
0

𝑦𝑦
+ �

𝑒𝑒
−𝑥𝑥
𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2  𝑑𝑑𝑑𝑑
∞

0
�  

= 𝑒𝑒
−𝑦𝑦
𝛽𝛽 ��

𝑒𝑒
−𝑥𝑥
𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2  𝑑𝑑𝑑𝑑
∞

0
+ �

𝑒𝑒
𝑥𝑥
𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2  𝑑𝑑𝑑𝑑
𝑦𝑦

0
�  

+  𝑒𝑒
𝑦𝑦
𝛽𝛽 �−�

𝑒𝑒
−𝑥𝑥
𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2  𝑑𝑑𝑑𝑑
𝑦𝑦

0
+ �

𝑒𝑒
−𝑥𝑥
𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2  𝑑𝑑𝑑𝑑
∞

0
� (3.22) 

It can be shown that one would obtain exactly the same expression for A(𝑦𝑦) or B(𝑦𝑦) as 

given above even when 𝑦𝑦 > 0. Now, by substituting (3.21) and (3.22) in (3.18), 𝑥𝑥�  (𝑦𝑦) can 

be expressed as 

 𝑥𝑥�  (𝑦𝑦) =
𝑒𝑒
−𝑦𝑦
𝛽𝛽 [𝑓𝑓11(𝑦𝑦)− 𝜂𝜂1] + 𝑒𝑒

𝑦𝑦
𝛽𝛽[−𝑓𝑓12(𝑦𝑦) + 𝜂𝜂1]

𝑒𝑒
−𝑦𝑦
𝛽𝛽 [𝑓𝑓21(𝑦𝑦) + 𝜂𝜂2] + 𝑒𝑒

𝑦𝑦
𝛽𝛽[−𝑓𝑓22(𝑦𝑦) + 𝜂𝜂2]

 (3.23) 

where 

 f11(𝑦𝑦) = f12(−𝑦𝑦) = �
𝑒𝑒
𝑥𝑥
𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2  𝑥𝑥 𝑑𝑑𝑑𝑑
𝑦𝑦

0
, (3.24) 

 f21(𝑦𝑦) = −f22(−𝑦𝑦) = �
𝑒𝑒
𝑥𝑥
𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2  𝑑𝑑𝑑𝑑 ,
𝑦𝑦

0
 (3.25) 
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 𝜂𝜂1 = �
𝑒𝑒
−𝑥𝑥
𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2  𝑥𝑥 𝑑𝑑𝑑𝑑 , and
∞

0
 (3.26) 

 𝜂𝜂2 = �
𝑒𝑒
−𝑥𝑥
𝛽𝛽

𝑥𝑥2 + 𝛾𝛾2  𝑑𝑑𝑑𝑑
∞

0
 (3.27) 

Since 𝛽𝛽 and 𝛾𝛾 are real, using the tool in [47], the above four integrals can be written as 

 

𝑓𝑓11(𝑦𝑦) = sin �
𝛾𝛾
𝛽𝛽� �Im

�𝐸𝐸1 �
−𝑦𝑦 + 𝔧𝔧𝔧𝔧

𝛽𝛽 �� − Si(
𝛾𝛾
𝛽𝛽 )+

𝜋𝜋
2�  

− cos �
𝛾𝛾
𝛽𝛽� �Re �𝐸𝐸1 �

−𝑦𝑦 + 𝔧𝔧𝔧𝔧
𝛽𝛽 �� + Ci(

𝛾𝛾
𝛽𝛽 )� (3.28) 

 𝜂𝜂1 = lim
𝑦𝑦→∞

𝑓𝑓12(𝑦𝑦) = sin �
𝛾𝛾
𝛽𝛽� �−Si(

𝛾𝛾
𝛽𝛽 )+

𝜋𝜋
2� − cos �

𝛾𝛾
𝛽𝛽� �Ci(

𝛾𝛾
𝛽𝛽 )� (3.29) 

 

𝑓𝑓21(𝑦𝑦) = −
1
𝛾𝛾 sin �

𝛾𝛾
𝛽𝛽� �Re �𝐸𝐸1 �

−𝑦𝑦 + 𝔧𝔧𝔧𝔧
𝛽𝛽 ��+ Ci(

𝛾𝛾
𝛽𝛽 )�  

−
1
𝛾𝛾 cos �

𝛾𝛾
𝛽𝛽� �Im

�𝐸𝐸1 �
−𝑦𝑦 + 𝔧𝔧𝔧𝔧

𝛽𝛽 �� − Si(
𝛾𝛾
𝛽𝛽 )+

𝜋𝜋
2� (3.30) 

 𝜂𝜂2 = lim
𝑦𝑦→∞

𝑓𝑓22(𝑦𝑦) =
1
𝛾𝛾 sin �

𝛾𝛾
𝛽𝛽� �Ci(

𝛾𝛾
𝛽𝛽 )� +

1
𝛾𝛾 cos �

𝛾𝛾
𝛽𝛽� �−Si(

𝛾𝛾
𝛽𝛽 )+

𝜋𝜋
2� (3.31) 

where 𝔧𝔧 = √−1, Re{·} and Im{·} are the real and imaginary parts, respectively, of the 

associated complex argument, and E1(·), Si(·) and Ci(·) are, respectively, the exponential, 

sine and cosine integral functions defined as [39] 

 E1(𝔷𝔷) = �
𝑒𝑒−𝑤𝑤

𝑤𝑤  𝑑𝑑𝑑𝑑
∞

𝔷𝔷
= −Υ− ln(𝔷𝔷)−�

(−𝔷𝔷)𝑞𝑞

𝑞𝑞 𝑞𝑞!

∞

𝑞𝑞=1

, |Arg{𝔷𝔷}| ≤ 𝜋𝜋 (3.32) 

 Si(𝔷𝔷) = �
sin(𝑤𝑤)
𝑤𝑤  𝑑𝑑𝑑𝑑

𝔷𝔷

1
= �

(−1)𝑞𝑞−1𝔷𝔷2𝑞𝑞−1

(2𝑞𝑞 − 1) (2𝑞𝑞 − 1)!

∞

𝑞𝑞=1

 (3.33) 
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 Ci(𝔷𝔷) = Υ + ln(𝔷𝔷) + �
cos(𝑤𝑤) − 1

𝑤𝑤  𝑑𝑑𝑑𝑑
𝔷𝔷

0
= Υ + ln(𝔷𝔷) + �

(−1)𝑞𝑞𝔷𝔷2𝑞𝑞

(2𝑞𝑞) (2𝑞𝑞)!

∞

𝑞𝑞=1

 (3.34) 

𝔷𝔷 being a complex number. 

The computational complexity of estimating the wavelet coefficients in a subband 

using the shrinkage function given by (3.23) is Ο(2�𝐶𝐶𝑓𝑓11 + 𝐶𝐶𝑓𝑓21�𝑁𝑁1𝑁𝑁2), where 𝐶𝐶𝑓𝑓11 and 

𝐶𝐶𝑓𝑓21are the computational complexities of 𝑓𝑓11(·) and 𝑓𝑓21(·), respectively. Since the 

computational complexities 𝐶𝐶𝑓𝑓11 and 𝐶𝐶𝑓𝑓21 depend entirely on the complexity of calculating 

E1(·), Si(·) and Ci(·), using a fewer number of terms of the infinite series given by (3.32), 

(3.33) and (3.34) reduces the computational effort needed in estimating the wavelet 

coefficients using the shrinkage function given by (3.23). 

In order to study both the estimation accuracy of the wavelet coefficients and the 

computational efforts associated with the estimation using the direct numerical integration, 

DFT and the shrinkage function given by (3.23), we implement the three procedures using 

MATLAB codes on a 2.9-GHz 8-GB machine. For this experiment, we implement these 

three procedures to estimate the noise-free DWT coefficients at 𝑙𝑙 =1 for each of the HL, 

LH and HH subbands of the Lena, Boat and Pirate images that are synthetically-

contaminated by two different strengths of the speckle noise, namely, for 𝑀𝑀 = 32 and 𝑀𝑀 = 

14. We now study the time complexity of the three realizations of the shrinkage function 

in providing the same level of the estimation accuracy by them. For this purpose, we 

implement each of the three realizations of the shrinkage function independently and 

observe the time complexity in achieving a steady-state in the first three decimal places of 

the value of an estimated wavelet coefficient. We measure the execution times of the three  
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Table 3.2: Average execution times, in milliseconds, of three different procedures for 
estimating a wavelet coefficient with a precision of three decimal digits 
 

Estimation procedure Direct numerical integration DFT Equation (3.23) 

Execution time in milliseconds 57.395 4.748 0.785 

 

realizations, by using the minimum number of grid points along the 𝑥𝑥-axis in the direct 

numerical integration realization, the minimum number of sample points of 𝑦𝑦 in the DFT 

realization and the minimum number of terms in the infinite series in the proposed 

realization, that lead to the steady-state values of the estimated wavelet coefficient of the 

three realizations. Table 3.2 gives the execution time of each of the three realizations. The 

execution time given in this table is the time of computing a single DWT coefficient 

averaged over all the DWT coefficients in the HL, LH and HH subbands of the three 

images. It is observed from this table that the proposed realization of the shrinkage function 

given by (3.23) requires a substantially reduced computational effort in comparison to that 

required by using either the direct numerical integration realization or the DFT realization. 

Figures 3.6, 3.7 and 3.8 show the plots of the shrinkage function obtained by the three 

realizations, for the HL, LH and HH subbands, respectively, of the Lena, boat and pirate 

images for 𝑀𝑀 = 32 and 𝑀𝑀 = 14. It is seen from these figures that the plots of the three 

realizations overlap one another over the entire spectrum of the values of the noisy 

coefficients indicating that the three realizations achieve the same estimation accuracy.  

In view of this study, which shows that the shrinkage function realized by using 

(3.23) requires lower computational time than that required by using the direct numerical 

integration or DFT, the proposed realization of the shrinkage function is adopted for  
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Figure 3.6: Estimated HL-subband wavelet coefficients obtained from the shrinkage 
function realized by the direct numerical integration, DFT and proposed technique. 
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Figure 3.7: Estimated LH-subband wavelet coefficients obtained from the shrinkage 
function realized by the direct numerical integration, DFT and proposed technique. 
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Figure 3.8: Estimated HH-subband wavelet coefficients obtained from the shrinkage 
function realized by the direct numerical integration, DFT and proposed technique. 
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obtaining the Bayesian estimates of the wavelet coefficients in our algorithm for 

despeckling of images. 

3.4.3 Steps of the Proposed Algorithm 

The proposed scheme for despeckling can be summarized as follows. 

1) Carry out the DWT on the observed image at decomposition levels 𝑙𝑙 =

 1, 2, 3,⋯  log2(𝒩𝒩), where 𝒩𝒩 defines the size 𝒩𝒩 ×𝒩𝒩 of the image. 

2) Estimate the parameters 𝛽𝛽 and 𝛾𝛾 corresponding to each detail subband, namely, HL, 

LH and HH, for each level of decomposition by using (3.11) and (3.12), respectively. 

3) Obtain the estimated noise-free wavelet coefficients for each detail subband using the 

MMSE Bayesian shrinkage function realized by (3.23). 

4) Perform the inverse DWT of the coefficients obtained in step 3. 

3.5 Summary  

In this chapter, our objective has been to develop a Bayesian shrinkage function 

with a low-complexity realization to estimate the noise-free wavelet coefficients of a 

speckled image. In order to meet this objective, suitable statistical models for the wavelet 

coefficients of the components of a speckled image, namely, the reflectance image and the 

signal-dependant noise, have been investigated. A study has been undertaken to investigate 

the suitability of a TSE distribution to model the wavelet coefficients of the signal-

dependent noise. It has been demonstrated that the TSE distribution is capable of accurately 

modeling the wavelet coefficients of this component of a speckled image. A Cauchy PDF 

has been selected to be the prior distribution of the wavelet coefficients of the reflectance 

image, since this PDF is proven to be a good model for these coefficients. The TSE and 

Cauchy distributions have been employed to formulate a MMSE Bayesian shrinkage 
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function to obtain the estimates of the noise-free wavelet coefficients. A low-complexity, 

yet accurate, realization of this shrinkage function has been then devised, and its efficacy 

from the standpoint of accuracy as well as computational cost has been verified. Finally, 

the steps of the proposed algorithm for despeckling has been given. 
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CHAPTER 4 

4Experimental Results 

4.1 Introduction 

In the previous chapter, a wavelet-based Bayesian shrinkage function was 

developed to estimate the noise-free wavelet coefficients of a speckled image, and this 

shrinkage function was used in our proposed despeckling scheme. In this chapter, extensive 

experimentations are conducted to study the performance of the proposed despeckling 

scheme. In the implementation of the proposed scheme, the Daubechies’ Symlet wavelet 

with 𝑁𝑁𝑣𝑣 = 8 is used and the value of 𝑄𝑄 in (3.16) is chosen to be 20. The performance of 

the new scheme is compared with those of some of other despeckling schemes available in 

the literature, namely, the schemes of using soft thresholding (S-Threshold) [9], Bayes-

shrink soft thresholding (B-Shrink) [48], Lee filter (Lee-F) [2], the spatially-adaptive 

wavelet-based shrinkage function (SA-WBMMAE) [15] and adaptive nonlocal filtering 

(SARBM3D) [49]. The first three of these schemes are extremely fast whereas the other 

two schemes are known to provide very competitive performances. The codes for these 

various schemes are readily available either online or upon a request to the authors of the 

papers [50-52]. Experiments using all the despeckling schemes are performed on both 

synthetically speckled images and real SAR images. It is to be noted that the parameters in 

50 
 
 



all the algorithms used for comparison are those suggested by their authors for their best 

performances. 

4.2 Synthetically-degraded Images  

In this section, our goal is to study the performances of the various despeckling 

schemes when applied to synthetically speckled images. Two images commonly used in 

the literature, namely Lena and Stream and Bridge, are subjected to synthetically generated 

speckle noise at different levels, as described in Chapter 3. These images comprise 

512×512 pixels. The metric signal-to-noise ratio (SNR) [12] is used to measure the 

performances of the various despeckling schemes. This metric provides an indication of 

the ability of a scheme in reducing the level of noise. However, it is shown in [12] that 

SNR is not sufficiently consistent with human perception of an image, since it does not 

fully reflect the visual quality of the image. Therefore, in our performance evaluation of 

the despeckling schemes, we also consider some other metrics that are representatives of 

some other aspects of human visual perception of an image.  

One such metric is the measure of structural similarity (SSIM) [53] that compares 

the local patterns of the pixel intensities between the original and processed images 

normalized for their luminance and contrast. If 𝑋𝑋 and 𝑋𝑋� represent, respectively, the original 

and processed images with 𝜇𝜇𝑋𝑋  and 𝜇𝜇𝑋𝑋� , as pixel means, and 𝜎𝜎𝑋𝑋2 and 𝜎𝜎𝑋𝑋�
2 as pixel variances of 

the respective images, then SSIM is defined as [53] 

 SSIM�𝑋𝑋,𝑋𝑋�� =
(2𝜇𝜇𝑋𝑋𝜇𝜇𝑋𝑋� + 𝐶𝐶1)(2Σ𝑋𝑋𝑋𝑋� + 𝐶𝐶2)

�𝜇𝜇𝑋𝑋2 + 𝜇𝜇𝑋𝑋�
2 + 𝐶𝐶1��𝜎𝜎𝑋𝑋2 + 𝜎𝜎𝑋𝑋�

2 + 𝐶𝐶2�
 (4.1) 
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where Σ𝑋𝑋𝑋𝑋�  is the covariance of 𝑋𝑋 and 𝑋𝑋�, 𝐶𝐶1 = (0.01ℒ)2 and 𝐶𝐶2 = (0.02ℒ)2, ℒ being the 

dynamic range of the pixel values. In our experiments, we have ℒ = 28-1. 

The homogeneity ℋ and correlation 𝒞𝒞 of the pixel values of an image can be used 

to describe its texture [41]. These two features are defined using the normalized co-

occurrence matrix 𝒫𝒫 as [41] 

 ℋ =
∑  ∑  𝒫𝒫(𝒾𝒾, 𝒿𝒿)ℒ+1

𝒿𝒿=1
ℒ+1
𝒾𝒾=1

1 + |𝒾𝒾 − 𝒿𝒿|  (4.2) 

 𝒞𝒞 =
∑ ∑  (𝒾𝒾𝒾𝒾) 𝒫𝒫(𝒾𝒾, 𝒿𝒿) − 𝜇𝜇𝓋𝓋𝜇𝜇𝓌𝓌ℒ+1

𝒿𝒿=1
ℒ+1
𝒾𝒾=1

𝜎𝜎𝓋𝓋𝜎𝜎𝓌𝓌
 (4.3) 

where 𝒫𝒫(𝒾𝒾, 𝒿𝒿) is the value of (𝒾𝒾, 𝒿𝒿)th entry in the normalized co-occurrence matrix and 𝜇𝜇𝓋𝓋 , 

𝜎𝜎𝓋𝓋  and 𝜇𝜇𝓌𝓌 ,𝜎𝜎𝓌𝓌 are the means and standard deviations of the elements of the column vectors 

𝒫𝒫𝓋𝓋  and 𝒫𝒫𝓌𝓌  defined as  

 𝒫𝒫𝓋𝓋(𝑖𝑖) = �  𝒫𝒫(𝒾𝒾, 𝒿𝒿)
ℒ+1

𝒿𝒿=1
 (4.4) 

 𝒫𝒫𝓌𝓌(𝑗𝑗) = �  𝒫𝒫(𝒾𝒾, 𝒿𝒿)
ℒ+1

𝒾𝒾=1
 (4.5) 

The difference in the homogeneity, ∆ℋ, and the difference in the correlation, ∆𝒞𝒞, between 

the original and the processed images can be used as metrics of quantifying the ability of a 

despeckling scheme in preserving the texture of the original image in the processed one. 

These metrics are used as a measure of texture preservation in our performance evaluation 

of the despeckling schemes. 

It is to be noted that all the metrics mentioned above emphasize on measuring the 

performances of the various despeckling schemes from the perspectives of speckle-

removal and preservation of the original features of the image without taking into account 
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the associated computational cost. Thus, in order to obtain a reasonable comparison 

between the various despeckling schemes, the computer execution times of running the 

various despeckling algorithms are also taken into consideration. 

The results of SNR, SIMM, ∆ℋ and ∆𝒞𝒞 obtained for the Lena and Stream and 

Bridge images are shown in Tables 4.1 and 4.2, respectively, for three different strengths 

of the speckle noise, namely, for 𝑀𝑀 = 4, 32 and 64. These two tables demonstrate that, in 

terms of the SNR measure, the proposed scheme outperforms the S-Threshold, B-Shrink 

and Lee-F schemes with the difference in SNR values ranging from 0.87 dB to 5.63 dB 

whereas it is outperformed by SA-WBMMEA and SARBM3D schemes with 0.11 dB to 

1.81 dB difference. However, it is to be noted that the proposed scheme yields a noticeable 

difference in the SNR values from those provided by SA-WBMMEA and SARBM3D 

schemes only for very high levels of speckle noise but not so when the strength of the 

speckle noise is low or medium. On the other hand, the proposed scheme yields a 

significantly higher SNR values compared with that provided by the remaining schemes 

irrespective of the levels of the speckle noise. With regard to the SSIM values for the 

various schemes, it is seen from the two tables that the performance of the proposed scheme 

is competitive to that of the SA-WBMMEA and SARBM3D schemes, but it is much 

superior to that of the other three schemes. In terms of the measures of ∆ℋ and ∆𝒞𝒞, it is 

clearly evident from their values given in the two tables that the proposed scheme provides 

almost invariably the best performance indicating its superiority in preserving the original 

image textures in the despeckled image. 
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In order to relate the performances of the various despeckling schemes with the 

corresponding execution times, we compute the execution time needed to despeckle a noisy 

image using each despeckling scheme on a 2.9-GHz 8-GB machine. The execution times 

needed to despeckle the noisy Lena and Stream and Bridge images, each of sizes 256×256 

and 512×512, using the various despeckling schemes are given in Table 4.3. It is observed 

from the execution times of the various algorithms given in this table that the time 

complexity of the proposed scheme is competitive to that of the S-Threshold and Lee-F 

schemes, at least one-third of that of the B-Shrink scheme and several orders of magnitude 

lower than that of SA-WBMMEA and SARBM3D schemes.  

From the comparison of the various despeckling schemes carried out in this 

subsection, it can be concluded that the proposed scheme provides the best trade-off 

between the performance and the time complexity. 

Figures 4.1 and 4.2 show the original and noisy (𝑀𝑀 = 32) versions of the Lena 

and Stream and Bridge images as well as the corresponding images despeckled by using 

the various despeckling schemes. It is seen from the images in these figures that the S-

Threshold, B-Shrink and Lee-F schemes provide despeckled images that suffer from the 

presence of visually noticeable speckle noise. On the other hand, the SA-WBMMEA and 

SARBM3D schemes severely over-smooth the noisy images thus providing despeckled 

images in which some of the texture details are lost. However, the proposed despeckling 

scheme results in images with not only a reasonable reduction in the speckle noise but also 

a good preservation of the textures of the original images. The evidence of the superiority 

of the proposed scheme in obtaining the best visual quality of the processed image among 
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Table 4.3: Execution times (in seconds) of various despeckling schemes for the Lena and 
Stream and Bridge images 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

(1) First best, (2) Second best, (3) Third best.  

Despeckling 

scheme 

Execution times (in seconds) 

Image size 

256×256 512×512 

Lena 

S-Threshold 0.26(3) 0.34(3) 

B-Shrink 0.85 1.03 

Lee-F 0.18(1) 0.27(2) 

SAWBMMEA 36.81 147.47 

SARBM3D 97.97 311.8 

Proposed 0.19(2) 0.26(1) 

Stream and Bridge 

S-Threshold 0.20(3) 0.27(3) 

B-Shrink 0.52 .91 

Lee-F 0.17(2) 0.23(1) 

SAWBMMEA 34.81 142.47 

SARBM3D 81.47 289.8 

Proposed 0.16(1) 0.24(2) 
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Figure 4.1: Magnified versions of the Lena image. (a) Original. (b) Noisy, 𝑀𝑀 = 32. 
Despeckled images using the (c) S-Threshold, (d) B-Shrink, (e) Lee-F, (f) SA-WBMMAE, 
(g) SARBM3D, and (h) Proposed schemes.  
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Figure 4.2: Magnified versions of the Stream and Bridge image. (a) Original. (b) Noisy, 
𝑀𝑀 = 32. Despeckled images using the (c) S-Threshold, (b) B-Shrink, (e) Lee-F, (f) SA-
WBMMAE, (g) SARBM3D, and (h) Proposed schemes.  

59 
 
 



the various despeckling schemes is especially noticeable in some of the regions of the 

processed images shown in Figures 4.1 and 4.2. For example, it is seen that the creases in 

the hat of the Lena image and parts of the bridge in the Stream and Bridge image are 

apparently overwhelmed by the speckle noise still remaining in the images despeckled by 

the S-Threshold, B-Shrink and Lee-F schemes. On the other hand, these parts of the images 

are over-smoothed thus are not as clear or have disappeared in the images despeckled by 

the SA-WBMMEA and SARBM3D schemes. However, these parts are noticeably more 

clear in the images despeckled by the proposed scheme.  

4.3 Real SAR Images 

In this section, the proposed despeckling scheme is applied to real SAR images 

and the results are compared with that of the other schemes. Since for SAR images, noise-

free images cannot be made available, in the experiments of this section, we use the Mean 

and the equivalent number of looks (ENL) values of the ratio image to measure the 

performance of the various despeckling schemes [54]. The ratio image is the ratio of the 

observed noisy image and the despeckled image. The Mean value is the arithmetic mean 

(average) of the pixel intensities of the ratio image, whereas the ENL value is the ratio of 

the square of the mean and the variance of the intensities of this image. If an ideal 

despeckling scheme could be  applied to a SAR image with an 𝑀𝑀-look, the Mean and the 

ENL values as defined above should be equal to unity and 𝑀𝑀, respectively. 

Two Terrasar-X SAR images [55], Chile Copper Mine and Panama Canal, 

captured by the satellite imagery of Airbus Defence and Space [56] are used in our  
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Figure 4.3: Real SAR images. (a) Chile Copper Mine. (b) Panama Canal. 
 
 
experiments with a 4-look format and they are shown in Figure 4.3. The Mean and the ENL 

values obtained after applying the various despeckling schemes to the two SAR images are 

given in Table 4.4. It is noted from this table that the Mean and the ENL values obtained 

by applying the proposed scheme are the closest to those one would expect by applying an 

ideal despeckling scheme. For a visual comparison of the performances of the various 

despeckling schemes, versions of the Panama Canal image, despeckled by using these 

schemes, are illustrated in Figure 4.4. It is seen from the images of this figure that the S-

Threshold, B-Shrink and Lee-F schemes yield images that lack from an adequate removal 

of the speckle noise, and in the case of the S-Threshold scheme, the image also undergoes 

an extreme blurriness. On the other hand, the SA-WBMMEA and SARBM3D schemes 

over-suppress the speckle noise at the expense of a drastic loss of some of the details of the 

SAR image. This loss of details is especially evident from the urban region indicated 
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Table 4.4: The Mean and the ENL values resulting from applying the various despeckling 
schemes 
 

Despeckling 

scheme 
Mean ENL 

Chile Copper Mine 

S-Threshold 1.1696 2.1721 

B-Shrink 0.9712(3) 3.5355(3) 

Lee-F 0.9816(2) 3.7379(2) 

SAWBMMEA 0.8924 4.5491 

SARBM3D 0.8519 4.6379 

Proposed 0.9877(1) 3.7576(1) 

Panama Canal 

S-Threshold 1.0204(3) 2.1655 

B-Shrink 0.9719 3.0773 

Lee-F 0.9822(2) 3.7818(2) 

SAWBMMEA 0.9075 4.3687(3) 

SARBM3D 0.8594 4.4239 

Proposed 0.9831(1) 3.8864(1) 

 (1) First best, (2) Second best, (3) Third best. 
 

 

by a closed boundary in the images. However, the image despeckled by the proposed 

scheme exhibits a good speckle suppression accompanied by a superior preservation of the 

image details.   
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4.4 Summary  

In this chapter, extensive simulations have been carried out to compare the 

performance of the proposed despeckling scheme with that of several existing techniques 

using synthetically-speckled and Terrasar-X SAR images. In the case of the synthetically-

speckled images, two metrics, namely, SNR and SSIM, have been used to evaluate the 

performances of the various despeckling schemes in suppressing the speckle noise. To 

quantify the ability of these schemes in preserving the details original images, the 

difference in homogeneity, ∆ℋ, and the difference in correlation, ∆𝒞𝒞, between a noise-free 

image and a processed image have been used. Computer execution time has been used as 

a measure of the computational complexity of the schemes. For evaluating the 

performances of the various schemes in despeckling real SAR images, the Mean and ENL 

values have been used. In addition to the quantitative evaluations mentioned above, a visual 

evaluation of the performances of the various despeckling schemes, for both cases of the 

synthetically-speckled and real SAR images, has also been carried out.  

The proposed scheme has been applied first to synthetically-speckled images. The 

new scheme has been compared with three popular despeckling techniques. The 

experiments have shown that the proposed scheme provides a performance that is superior 

to that of these techniques in terms of both the SNR and SSIM values, and has a very 

competitive or, in some instances, even a lower computational cost. Furthermore, from the 

values of ∆ℋ and ∆𝒞𝒞 obtained in the experiments, it has been seen that the proposed 

scheme is more effective in preserving the details of the original images. The proposed 

scheme has been also compared with two powerful state-of-the-art techniques recently 
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proposed. The experiments have shown that, although the proposed scheme provides SNR 

and SSIM values that are lower than that provided by these two techniques, it provides 

better values in terms of homogeneity and correlation differences. In terms of the 

complexity, the execution time of the proposed scheme is at least an order of magnitude 

lower than that of these techniques. 

The various despeckling schemes have also been applied to real Terrasar-X SAR 

images. The results have shown that the proposed scheme provides the best Mean and ENL 

values among all the despeckling techniques considered, thus indicating its ability in 

providing a good speckle suppression for SAR images along with a superior preservation 

of the details contained therein. 
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CHAPTER 5 

5Conclusion 

5.1 Concluding Remarks 

The presence of speckle noise in images affects the tasks of human interpretation 

and scene analysis, and thus, removal or minimization of such a noise is a vital pre-

processing step. Developing effective techniques for image despeckling has been a focus 

of many researchers in the image processing community. Early-developed techniques have 

been of a low-complexity at the expense of not achieving a satisfactory despeckling 

performance. Some recent techniques have proven to be quite effective in suppressing the 

speckle noise but with some loss of image details in the despeckled images. These 

techniques, however, often require an enormous computational time. The objective of this 

study has been to develop an image despeckling scheme of a low-complexity that 

simultaneously provides a sufficient despeckling performance without over-smoothing the 

image details. 

In order to meet the stated objective, a wavelet-based despeckling scheme has 

been developed in a framework of Bayesian estimation. The proposed scheme is based on 

decomposing the multiplicative degradation model of the noisy image as a sum of noise-
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free and noise-dependant components. In the first part of this work, a study has been 

undertaken to investigate the suitability of a distribution to model the wavelet coefficients 

of the noise-dependent component. It has been demonstrated that the two-sided exponential 

distribution is capable of accurately modeling the wavelet coefficients of this component 

of the image. This distribution modeling the wavelet coefficients of the noisy component 

along with the Cauchy distribution, which is known to be suitable to model the wavelet 

coefficients of the noise-free component of an image, has been employed to formulate a 

MMSE Bayesian shrinkage function to obtain the estimates of the noise-free wavelet 

coefficients. A low-complexity, and yet accurate, realization of this shrinkage function has 

been proposed.  

Experiments have been conducted on both synthetically-speckled and Terrasar-X 

SAR images in order to demonstrate the performance of the proposed despeckling scheme. 

It has been shown that the proposed scheme provides not only a significant reduction in 

the speckle noise at a very low computational cost but also preserves the image details. The 

proposed scheme provides a substantially-improved despeckling performance over that of 

some of the popular despeckling techniques proposed earlier at a very competitive 

computational cost. On the other hand, in contrast to some powerful state-of-the-art 

techniques, the proposed scheme provides a reduction in the speckle noise without over-

smoothing the image to the extent of losing its details and does so at a computational cost 

that is orders of magnitude lower. 

5.2 Scope for Further Work 

One can further extend the research work undertaken in this thesis. In the Bayesian 

despeckling scheme developed in this thesis, the estimates of the noise-free DWT 
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coefficients are obtained without taking into account the dependencies among the DWT 

coefficients. Providing a spatial adaptation to account for these dependencies may improve 

the despeckling performance. Hence, an interesting scope for further investigation would 

be to incorporate the spatial adaptation in the despeckling scheme developed in this thesis. 

However, an obvious challenge in solving this problem would be to develop the spatially-

adaptive scheme without significantly increasing the computational cost. 

Another interesting area of investigation would be to explore new statistical 

models for the DWT coefficients of the signal-dependant noise of the observed signal with 

a view to achieve a closed-form expression of the MMSE Bayesian shrinkage function. 

Having a closed-form expression of the Bayesian shrinkage function can further reduce the 

computation effort of estimating the noise-free DWT coefficients. However, the challenge 

in proposing a new distribution to model the wavelet coefficients in order to achieve a 

close-form shrinkage function would be in ensuring the new model to accurately match the 

empirical distribution of the wavelet coefficients. 
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