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ABSTRACT 

 

Characterizing the putative G1/S transcription factor complex composition and function in 

Candida albicans 

Vinitha Joice Chidipi 

 

The G1/S transition is a critical control point for cell proliferation, and involves the 

essential transcription complexes SBF and MBF in Saccharomyces cerevisiae, or MBF in 

Schizosaccharomyces pombe. In S. cerevisiae, Swi4p and Mbp1p comprise the DNA binding 

elements for SBF and MBF, respectively, while Swi6p is a common activating component. In the 

fungal pathogen Candida albicans, G1/S regulation is not yet clear. Orthologues of Swi6p, 

Swi4p and Mbp1p exist and previous work suggested that Swi4p and Swi6p form a single G1/S 

transcription factor complex, while the function of Mbp1p remained unclear as its absence did 

not affect growth. Additionally, unknown factors were suggested to contribute to G1/S regulation 

in C. albicans as cells lacking Swi4p and Swi6p, or Swi4p and Mbp1p were still viable, unlike 

the situation in S. cerevisiae. A previous graduate student from the Bachewich lab demonstrated 

through tandem-affinity purification of Swi4p, Swi6p and Mbp1p coupled with Orbitrap LC/MS, 

and co-immunoprecipitation that Swi6p interacted with Swi4p as well as Mbp1p, but an 

interaction between Swi4p and Mbp1p was not clear, questioning the current model that Swi4p 

and Swi6p are the major components of a single MBF-like complex in C. albicans. Additional 

putative interacting proteins were identified but not validated. Further, identification of Swi4p 

targets using genome-wide location analysis revealed cell-cycle related factors but also 

regulators of filamentous growth, including EFG1. In this study, the composition of the putative 
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G1/S transcription factor complex was further investigated using co-immunoprecipitation 

experiments that utilized lower amounts of input protein and variations in epitope tags. The 

results confirm that Swi6p similarly interacts with Swi4p and Mbp1p. However, Swi4p and 

Mbp1p showed a weak interaction that could only be detected with higher amounts of input 

protein and only when Swi4p was immune-precipitated. Thus, separate Swi6p/Swi4p and 

Swi6/Mbp1p complexes may exist in C. albicans, but the function of the Swi6p/Mbp1p complex 

remains unknown. We next carried out co-immunoprecipiation experiments to validate 

additional proteins identified in the previous Swi6p affinity purification screen, including the 

mitotic polo-like kinase Cdc5p. When Cdc5p was immune-precipitated from G1-phase arrested 

cells, Swi6p co-purified, suggesting a novel interaction between these two proteins. Finally, in 

order to validate the functional significance of Swi4p occupation of the EFG1 promoter, EFG1 

expression in the presence and absence of Swi4p was investigated by Northern blotting, and the 

effects of deleting EFG1 on the Swi4p-depleted phenotype were determined. In the absence of 

Swi4p, EFG1 was moderately induced. Furthermore, absence of EFG1 reduced the extent to 

which swi4/swi4 cells became enlarged and formed long filaments. Thus, Swi4p may 

contribute to the regulation of EFG1 and possibly filamentous morphogenesis, as well as the 

G1/S transition, suggesting that it may lie at the interface between cell cycle regulation and 

development in C. albicans.  
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1. Introduction 

1.1 Eukaryotic Cell Cycle 

1.1.1 General Overview    

 

The cell cycle is a series of events that lead to duplication of DNA and creation of two 

new daughter cells. In many organisms, it consists of G1, S, G2, M phases and cytokinesis. Cell 

growth and DNA replication occur in G1 and S phase, respectively. The cell continues to grow in 

G2. In M phase, the duplicated DNA aligns on a spindle and then is segregated to two daughter 

cells. The cells divide during cytokinesis [1].  

Progression through the cell cycle is controlled at many levels, and several checkpoints, 

to ensure that processes in each phase are successfully completed before proceeding into the next 

phase. The cyclin-dependent kinases (Cdks) associated with specific cyclins are major regulators 

of cell cycle transitions. For example, in the model yeast Saccharomyces cerevisiae, the G1 

cyclins Cln1 – Cln3 bind to Cdk Cdc28p to regulate the G1/S transition. However, Cdc28p 

associates with B-type cyclins to regulate the transition from G2 phase into mitosis [2].  

Proper cell cycle progression is crucial for cell viability and proliferation. Defects in 

genes encoding regulatory proteins that control cell cycle events can lead to uncontrolled cell 

division, eventually giving rise to many diseases such as cancer. For example, in humans, 

mutations that lead to overexpression of CDK1 and CDK2 can be a cause for certain types of 

colon adenomas as well as for focal carcinomas in adenomatous tissue [3]. Increased 

amplification of cyclin D gene can lead to breast, esophageal, bladder, lung, and squamous cell 

carcinomas [4].  
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1.1.2 G1/S transition 

 

 G1 is a crucial stage of cell cycle as it determines whether cells commit to mitosis and 

proliferate or exit the cell cycle for differentiation [5, 6]. The G1/S transition is known as the 

Restriction point in higher organisms such as mammals, or Start in lower organisms such as 

fungi. The circuitry controlling this cell cycle stage shows some conservation from yeast to 

humans. An upstream Cdk associated with cyclins is required to activate a downstream G1/S 

transcription factor complex (Fig. 1A). This complex, in turn, regulates a battery of genes 

required for cell cycle entry, including DNA replication [7]. In mammals, Cdk4 associates with 

cyclin D, and this complex activates a family of G1/S transcription factors E2F1-E2F3 [8], by 

phosphorylating and inactivating their inhibitor, Retinoblastoma protein (pRb). Targets of E2F 

include cyclins E and A, for example, which then associate with Cdk2 to further phosphorylate 

pRb forming a positive feedback loop [9]. Activated E2F initiates transcription of additional 

genes involved in DNA synthesis, chromosome replication as well as genes related to cell cycle 

regulation [8], DNA damage repair, apoptosis, differentiation and development [10]. In late S 

phase, cyclin A/Cdk2 complex phosphorylates E2F1 to inhibit its DNA binding capacity, thereby 

leading to its inactivation [11]. 

In fungi, the G1/S transition has only been well characterized in the model yeasts 

Saccharomyces cerevisiae and Schizosaccharomyces pombe. In S. cerevisiae, Start requires that 

cells have obtained a critical cell size and protein synthesis rate [12]. In S. cerevisiae, the Cdk 

Cdc28p associates with the G1 cyclin Cln3p. This complex phosphorylates and inhibits Whi5p, 

an inhibitor of one G1/S transcription complex, which is called SBF [13, 14]. A second G1/S 

transcription complex, called MBF, is activated by inhibition of the co-repressor Nrm1p [15]. 

SBF is composed of a transcriptional activator Swi6p and a DNA binding factor Swi4p, which 
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binds to SCB (CGCGAAA) elements [16] on target promoters of genes. It activates transcription 

of G1 cyclin genes, CLN1 and CLN2, for example, which in turn stimulate the activity of 

Cdc28p. This allows for a positive feedback loop, as well as transcription of B-type cyclin genes, 

CLB5 and CLB6, by inactivating their inhibitor, Sic1p via phosphorylation. The B-type cyclins 

with their associated Cdk activate S-phase targets to initiate DNA synthesis as well as spindle 

maturation and chromosome segregation [13]. MBF consists of Swi6p and a DNA binding factor 

Mbp1p that binds to MCB (CGCGT) elements [16] in genes linked to DNA synthesis and 

metabolism. Unlike SBF, MBF is involved in repressing transcription of genes outside of G1. It 

is later inactivated by Nrm1p, which accumulates in S phase and binds to MBF [16]. On the 

other hand, SBF activity is inhibited by Clb1/2p-Cdk1p complex, which accumulates during the 

G1-S transition to phosphorylate SBF, thereby causing its dissociation from promoter regions of 

target genes [16] (Fig. 1B).  

In the fission yeast model S. pombe, the cyclin Pas1p associates with the Cdk Pef1p to 

activate a single MBF complex that regulates the G1/S transition. This complex consists of the 

activating factor Cdc10p, a homologue of Swi6p, and two DNA binding elements, Res1p and 

Res2p, homologues of Mbp1p, that recognize MCB elements in genes involved in DNA 

synthesis, DNA repair and cell cycle control [17]. Res1p and Res2p bind to DNA through their N 

termini and to Cdc10p through their C termini. In contrast to S. cerevisiae, Res1p and Res2p 

together are not equally important in G1/S transition specifically. Although Res1p/Cdc10p 

complex is crucial in G1 to S progression, Res2p is additionally involved in meiosis where it 

forms a complex with Cdc10p only without the presence of Res1p. Hence, Res2p plays an 

important role in both mitotic as well as meiotic stages of cell cycle [18]. MBF activity is 

inactivated outside of G1 by transcriptional repressors Nrm1p and Yox1p, which accumulate in S 
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phase and bind to MBF. On the other hand, it is kept activated through a stress-induced 

mechanism, in which protein kinase Cds1p phosphorylates Nrm1p, Yox1p, Cdc10p, as well as 

Ste9p, which inhibits Res2p degradation by ubiquitin ligase until later stages of cell cycle [17]. 

 

 

 

 

 

Figure 1. G1/S phase of cell cycle.  

(A) Activation of G1/S transition in human and yeast. (B) The components of G1/S transcription 

factor complex in G1/S transition pathway of S .cerevisiae [19]. 

 

 

(A) 

(B) 
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1.2 Candida albicans 

1.2.1 Opportunistic fungal pathogen in humans 

 

Candida albicans is a commensal fungus that resides in the gastrointestinal tract and 

mucosal membranes of humans [20, 21]. Although harmless under most circumstances, C. 

albicans is an opportunistic pathogen. It can cause mucosal infections or more life-threatening 

systemic infections in immunocompromised individuals [21]. For example, patients with AIDS 

are susceptible to oral and oesophageal candidiasis. Moreover, 75% of women are affected by 

vulvovaginal candidiasis, one of the frequently occurring infections [22]. Candidaemia, a 

bloodstream infection caused by C. albicans, is capable of spreading to internal organs such as 

brain, heart, and kidney [23]. Common drugs to address candidiasis include fungistatic drugs, 

such as fluconazole and other azoles, which inhibit the biosynthesis of fungal cell membrane 

components such as ergosterol. Other drugs are fungicidal, including the echinocandins, which 

cause cell death through the inhibition of β-1,3-glucan synthase, an enzyme required for cell wall 

biosynthesis. However, due to severe side effects and increased resistance to these drugs [24], 

new drug targets and strategies for treating infection are required. To this end, a comprehensive 

understanding of the biology of C. albicans and its virulence traits is crucial. 

1.2.2 Virulence-associated traits: Differentiation 

 

One aspect of the biology of C. albicans that is essential for virulence is its ability to 

differentiate into multiple cell types, including yeast, pseudohyphae, hyphae, and 

chlamydospores [21]. Yeast cells are oval and separate after cytokinesis. Pseudohyphae are 

elongated yeast due to an extended period of polarized growth, but remain attached after cell 

division and thus have constrictions at the sites of septation. Hyphae consist of elongated cells 
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that maintain growth in a polarized manner, and do not contain constrictions at septation sites. 

Chlamydospores have thicker cell walls and are larger compared to yeast cells [20]. Plasticity in 

form allows the fungus to survive and adapt to the different environments of the host. For 

example, yeast cells are more adept to dissemination in the blood stream, while the filamentous 

cells are optimized for penetrating host tissues during infection [25]. Hyphae generate physical 

forces and secrete lytic enzymes such as aspartic proteases, that aide in disintegration of cell 

surface components and contribute to entry into host cells [26].  Mutants locked in one cell form, 

including yeast or hyphae, are significantly less virulent in mouse models of infection, 

underscoring the importance of differentiation in virulence potential. An understanding of the 

factors that regulate differentiation may thus identify effective targets for anti-fungal therapies.  

Differentiation is triggered by various environmental cues. The regulation of 

differentiation is one of the best understood with respect to the yeast-to-hyphae switch. The yeast 

to hyphal transition is induced by several stimuli such as serum, high pH, nutrient limitation, and 

high CO2 concentrations under the condition of high temperature, or under embedded conditions 

[21]. Several signaling pathways are activated by stimuli, including a mitogen-activated protein 

kinase (MAPK) pathway involving the Cph1p transcription factor as well as a cyclic AMP-

dependent pathway involving the Efg1p transcription factor [21] (Fig. 2), for example.  Efg1p is 

acted upon by additional pathways and is required for hyphal development under most hyphal-

inducing conditions [27]. Efg1p in turn acts on expression of various Hyphal Specific Genes 

(HSGs), including HWP1, a cell wall protein involved in adhesion to host tissue [28] for 

example. In addition to Efg1p, Ume6p is another important transcription factor that regulates 

hyphal growth. UME6 is activated in part by Efg1p [29]. A target of Ume6p is HGC1, a hyphal-

specific gene crucial for development of hyphae [30, 31]. Hgc1p forms a complex with Cdc28p 
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to contribute to hyphal growth through various mechanisms [32]. For example, the 

Cdc28p/Hgc1p complex phosphorylates Rga2p, which is a GTPase-activating protein (GAP) of 

the polarity regulator Cdc42p [33], which in turn maintains active Cdc42p at the hyphal tip [33, 

34]. Importantly, Cdc28p/Hgc1p also phosphorylates Efg1p, which causes it to associate with 

and repress genes involved in cell separation [35]. 

Furthermore, Efg1p functions with five other important transcriptional regulators 

including Bcr1p, Tec1p, Ndt80p, Rob1p and Brg1p to regulate biofilm formation, which is 

crucial for virulence [36]. Other additional functions controlled by Efg1p include white cell-

specific transcriptional profile [37, 38], regulation of oxidative/fermentative metabolism [39], 

and heat stress resistance [40].  
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Figure 2.  Different signal transduction pathways involved in yeast to hyphal transition  

[21].  

 



 

9 
 

1.2.3 Virulence associated traits: Cell proliferation 

 

Another aspect of the biology of C. albicans that is important for virulence and survival 

in host organisms is cell proliferation, which is regulated by the cell cycle. In contrast to S. 

cerevisiae and S. pombe, the circuitry controlling the cell cycle in C. albicans is not well defined, 

due in part to the diploid nature of the fungus [41], difficulty in synchronizing cells [42], and an 

emerging theme of differences in function of the few sequence homologues that have been 

characterized in C. albicans [43]. However, one study demonstrated the ability to synchronize 

the opaque yeast form of C. albicans [42], and through this identified genes that are modulated at 

the transcriptional level during G1/S, S/G2, G2/M, and M/G1 transitions. This work revealed 

some similarity to S. cerevisiae, but also identified many novel genes whose expression was 

modulated at G1/S and other cell cycle transitions. However, few have been functionally 

characterized. Of the G1/S modulated genes, there was a significant enrichment of MCB motifs 

in promoter regions, but not SCB, unlike that found with G1/S-modulated genes in S. cerevisiae 

[42]. Hence, a model was proposed whereby a single MBF complex that binds MCB elements 

might control genes at the G1/S transition in C. albicans, more similar to the situation in S. 

pombe.  

Sequence comparisons and limited genetic studies demonstrated that C. albicans shares 

some similarity in the putative G1/S regulatory circuit with S. cerevisiae. For example, C. 

albicans contains orthologues of Cdc28p, the G1 cyclin, Cln3p and the G1/S transcription 

complex factors Swi6p, Swi4p and Mbp1p. Repression of Cdc28p caused cell elongation as well 

as changes in expression of hyphal-associated genes and transcription factors related to 

morphogenesis [44]. Depletion of the G1 cyclin Cln3p in yeast cells resulted in large, unbudded 

cells with a single nucleus, implying a role in G1 phase [45, 46]. However, in contrast to Cln3p-
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depleted S. cerevisiae cells, which eventually resume budding due to the presence of Bck2p [47], 

which C. albicans lacks, Cln3p-depleted C. albicans cells switched to hyphal and pseudohyphal 

growth, in the absence of environmental cues [45, 46]. This suggested a link between G1 phase 

and hyphal development. C. albicans also contains orthologues of SWI4, SWI6 and MBP1. 

Deletion of SWI4 or SWI6, but not MBP1, resulted in yeast cell enlargement, suggesting a G1 

phase delay, and production of filaments [48]. However, in contrast to the situation in S. 

cerevisiae, absence of both SWI6 and SWI4 or SWI4 and MBP1, resulted in viable cells. This 

suggests that additional factors contribute to the regulation of the G1/S transition. Furthermore, 

cells lacking Swi6p/Swi4p also showed changes in expression in G1/S-associated genes 

including G1 cyclins CCN1 and PCL2, linking their function to G1/S control. Together, these 

results support the model that Swi4p and Swi6p might be key players in a single G1/S 

transcription factor complex, and thus may be the functional equivalent of MBF. A novel gene 

proposed to be the Nrm1p functional homologue was identified, but it does not appear to be 

identical [49]. Other factors required for the G1/S transition in S. cerevisiae, including Whi5p 

and Bck2p, are missing in C. albicans. In summary, C. albicans appears to have a similar 

framework for the G1/S transition network as seen in S. cerevisiae (Fig. 3), but a number of 

differences exist, including the role of Mbp1p and identity of additional contributing factors. 

Further, biochemical data supporting complex composition and a direct demonstration of 

functional targets of the putative G1/S transcription factor complex was lacking.  
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Figure 3. The putative components of G1/S transition pathway in C.albicans compared to 

S.cerevisiae (B.Hussein, MSc thesis, 2011). 

In order to further address these questions, a previous graduate student in the Bachewich 

lab carried out a systematic affinity purification of Swi4p, Swi6p and Mbp1p (Yaolin Chen, MSc 

thesis). Results indicated that Swi6p was the predominant binding factor of Swi4p but also for 

Mbp1p. Interestingly, affinity purification of Swi4p did not reveal enriched peptides 

corresponding to Mbp1p, nor did Swi4p co-purify with affinity-purified Mbp1p. This suggested 

that there may be two separate complexes in C. albicans, which contrasts the current model that 

suggests C. albicans contains a single complex composed of Swi4p and Swi6p. However, 

subsequent co-immunoprecipitation (Co-IP) experiments with strains carrying Mbp1p-TAP and 

Swi4p-HA, or Swi4p-5MYC and Mbp1p-HA revealed an interaction in the former but not the 

latter. Thus, the ability of Swi4p and Mbp1p to interact, and the composition and number of the 

of G1/S transcription complex(es) in C. albicans remain unclear.  
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Further, data from the affinity purification assays revealed additional factors that bind 

Swi4p and Swi6p that were not previously identified in other systems. For example, a novel 

interacting factor of Swi6p was determined to be Cdc5p, a polo-kinase involved in mitotic 

spindle formation and morphogenesis [50]. Furthermore, additional Swi4p interacting factors 

included a group of regulatory subunits associated with 26S proteasome such as Rpn1p, Rpt6p, 

and Pr26p. These proteins do not show a physical interaction with Swi4p in S. cerevisiae. The 

findings have important implications for the potential regulation of Swi4p in C. albicans.  

In order to determine the binding sequence of Swi4p and identity specific targets, Y. 

Chen also performed a genome-wide location analysis with a tiling array (ChIP-chip). Results 

showed enriched Swi4p binding at promoter regions of G1 cyclins such as CCN1 and PCL2 as 

well as G1, S phase cell cycle regulatory factors like YOX1, HSL1 and RAD53. Intriguingly, 

genes associated with filamentous growth were also identified, including important regulators of 

hyphal growth, such as Efg1p. Given that arresting cells in G1 phase can induce hyphal growth, 

and cells depleted of Swi4p or Swi6p form filaments, this promoter occupation may reflect a 

mechanism by which the G1/S machinery could be linked to the hyphal development program. 

In contrast to the enrichment for MCB elements within G1/S-associated genes indicated by the 

transcriptional analysis of cell cycle-associated genes in C. albicans [42], the Swi4p targets were 

not enriched for the MCB motif. Rather, a motif related to SBF and similar to the binding site for 

the transcription factor Ndt80p was identified. However, the analysis was based on a single tiling 

array.   

1.3 Summary 

A proper understanding of the G1/S transition in C. albicans is important in order to gain 

more insight about how cell proliferation is regulated and to further identify the specific 
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mechanisms that link this particular transition stage to hyphal development. Cell proliferation, 

and differentiation are crucial for virulence of C.albicans. Ultimately, potential drug targets 

could be identified in order to control the development of life-threatening infections in humans. 

However, the organization of G1/S transcription factor complex is not entirely clear. Additional 

components that may contribute to the regulation and/or function of this complex remain 

unknown. Furthermore, validation of direct Swi4p targets and the specific binding sites of Swi4p 

is required. 

 

1.4 Objectives 

The objectives of this study include: 1) characterizing the composition of G1/S 

transcription factor complex by determining whether Swi4p and Mbp1p interact and validating 

additional interactors of Swi4p and Swi6p identified in the previous affinity purification system 

study; and 2) validating an important target of Swi4p identified by ChIP-chip, including Efg1p in 

order to understand the specific role of Swi4p and its link to the hyphal development pathway.  
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2. Materials and Methods 
 

2.1 Strains, oligonucleotides and plasmids  

Strains, oligonucleotides and plasmids used in this study are shown in Tables 1, 2, and 3 

respectively.   

Table 1. Candida albicans strains used in this study 

Strain Genotype  Parent/Source 

AH110 SWI4-3HA-HIS1/SWI4, Δswi6::URA3/SWI6-TAP-ARG4 C.Bachewich 

AM201.5 Δswi6::URA3/SWI6-TAP-ARG4 C.Bachewich 

BH114 Δswi4::hisG/SWI4 [48] 

YC396 MBP1-TAP-ARG4/MBP1, Δswi6::HIS1/SWI6-3HA-URA3 YC216 

YC367 Δmbp1::HIS1/MBP1-TAP-URA3 RM100 

YC216 Δswi6::HIS1/ SWI6-HA-URA3 BH101 

YC221 SWI6-TAP-URA3/SWI6, Δcln3::hisG/MET::CLN3-ARG4 BH253 

VC132 MBP1-3HA-HIS1/MBP1, SWI6-TAP-URA3/SWI6, 

Δcln3::hisG/MET::CLN3-ARG4 
YC221 

YC351 MBP1-HA-URA3/mbp1::HIS1  BH137 

YC101 SWI4-HA-HIS1/SWI4  BWP17 

VC108 Δswi4::hisG/SWI4-13MYC-HIS1 BH114 

BH440 BWP17 (pBS-CaHIS1, pBS-CaURA3)  BWP17 

VC150 Δswi4::hisG/SWI4-13MYC-HIS1, MBP1-3HA-ARG4/MBP1 VC108 

VC300 Δswi4::hisG/SWI4-3HA-URA3 BH114 

VC304 MBP1-13MYC-HIS1/MBP1 BWP17 

VC324 MBP1-13MYC-HIS1/MBP1, Δswi4::hisG/SWI4-3HA-URA3 VC300 

VC181 CDC5-3HA-HIS1/CDC5, SWI6-TAP-URA3/SWI6, 

Δcln3::hisG/MET::CLN3-ARG4 
YC221 

AG625 CDC5-13MYC-HIS1/CDC5 C. Bachewich 

VC348 SWI6-3HA-URA3/SWI6, CDC5-13MYC-HIS1/CDC5 AG625 

BH339 Δswi4::hisG/Δswi4::URA3 BWP17 

VC166 Δefg1::ARG4/EFG1, Δswi4::hisG/Δswi4::URA3 BH339 

VC171 Δefg1::ARG4/EFG1 BWP17 

VC199 Δefg1::ARG4/ Δefg1::HIS1, Δswi4::hisG/Δswi4::URA3 VC163 

VC200 Δefg1::ARG4/ Δefg1::HIS1 VC171 

VC380 CDC5/CDC5-3HA-HIS1, Δcln3::hisG/MET::CLN3-ARG4 BH253 

VC426 SWI6/SWI6-3HA-URA3, Δcdc5::hisG/MET::CDC5-ARG4 AG500 

YC161 (∆swi4::URA3/∆swi4::HIS1, pBS-ARG4-SWI4) BH185 
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YC171 ∆swi4::URA3/∆swi4::HIS1, pBS-ARG4 BH185 

YC201 ∆swi6::HIS1/∆swi6::URA3, pBS-ARG4-SWI6 BH120 

YC233 ∆swi6::HIS1/∆swi6::URA3, pBS-ARG4 BH120 

YC323 ∆mbp1::HIS1/∆mbp1::URA3, pBS-ARG4-MBP1 BH261 

YC381 ∆mbp1::HIS1/∆mbp1::URA3, pBS-ARG4 BH261 

BH420 BWP17, pRM100-CaURA3, CaHIS1, pBS-CaARG4 BWP17 

BH150 ∆swi4::hisG/MET3::SWI4-ARG4 BWP17 

 

Table 2. Oligonucleotides used in this study 

Oligo Sequence 5'-3' 

AG1F TTTGAAGCAAGGAAACTTTCAGCATGAAAATGTTCCGGACTGTATG

GAGAAGATAATGGTCATCAAAGAAGCTATCAAGAAAAAAGCATTTA

AAGAAGCTGGTCGACGGATCCCCGGGTT 

AG1R TATTATATCTCTTGTTTTATAATGAATATGGGCTACAGTTCAATTTGC

AGTAGTACTACTAAATAAAAGGATGTTTATTAGCAACGTGAAAGTG

GCATATTCGATGAATTCGAGCTCGTT 

AG2R ATAGTTACGATTAGTGGTGG 

AG4F GGTCGACGGATCCCCGGGTTATACCCATACGATGTTCCTGAC 

AG4R TCG ATG AAT TCG AGC TCG TT 

AG4F-MBP1-HA GGTCGACGGATCCCCGGGGAATACCCATACGATGTTCCT 

AG4R-MBP1-HA AGG CGC AGC GGT CGG GCT GA 

AG29F GCTATATAAATATTGCAAATTAATTTCGTTAAGCTGTGGAATTCCAA

TGGATGAAATTGAAACTTCGATTGATGCTATGGAAGAATCATTGGTC

AAAAAAGGTCGACGGATCCCCGGGGA 

AG29R GAATTGGAAAGTTTGATTAAATTAGCAAAAGAAGCTTATGTGTAGA

CATTTATGTATATTTAGTACATAATATTATAATAATAATACAATTGTT

CATCATAGGCGCAGCGGTCGGGCTGA 

AG30R GTTATTACTGAAGGCGGTGG 

BH14R AATATTTGTGTTGGCCACATTTGAGTCTGA 

CaHIS1F CCTGCAGCTGATATCCCAGT 

CaHIS1R ACTGGGATATCAGCTGCAGG 

CaURA3F GGTAATACCGTGAAGAAACA 

CaARG4F ACTATGGATATGTTGGCTAC 

CaARG4R ACTATGGATATGTTGGCTAC 

EFG1F1 GTGGTGCCCCCATACCTTCC  

EFG1R1 GGAACCTGCACCAGAAGCAC 

SWI4F1 TAAATATAGAAAATTGCTTAGTTTGAGTTGTGGTGTTAAAGTTGAAG

AAATTGACAGTTTAATTGATGGAATTGCCGAATCATTAACTGAAGGT

ATGACGGGTCGACGGATCCCCGGGTT  

SWI4R1 GACCCAAAGCACAATAAGAAAATGAGCATAAGAGAATTCATTAAGTAGCA

GTTATACATTGCCAGTACGATAATTCAAACATAATATTACAATTATTCTAAT

CGATGAATTCGAGCTCGTT  
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SWI4SF1 CTTGAACGTAATCGATTGGTCAATA 

SWI4SR1 CCGATGGTGGAATTACCGGAAGATC 

SWI6F1 TTCTAAGTTTAAGAAAGTTGTCAGCATATGTACAAATGTTGGTGTAA

ACGAAGTTGATGAATTTTTAGACGGGTTGTTGGAAGCAGTGGAAGG

ACAACAGGGTCGACGGATCCCCGGGTT  

SWI6R1 ATTCAGGAATAGCTGCGGCGCTAAACTCCTATCTGGGTTTGGTATAG

AGAGCCATATAAAACAATACACGGGGAATTAGAAGTATACATGTGT

TCGATTATCGATGAATTCGAGCTCGTT  

SWI6SR1 GATCTTCCGGTAATTCCACCATCGG 

VC1F CAACCAATTGCCCTACCCATCTACTCGCGT 

VC1R CGTGACCTGAGCAACTAATGTGGGAGGCAA 

VC2F GGTTCAGTTCACCCTTCACCCCAACAACAT 

VC2R TACTGCTTGCTGCTTGCTGCTTGCTCGTGC 

VC3F TTGCCTCCCACATTAGTTGCTCAGGTCACGTATAGGGCGAATTGGAG

CTC  

VC3R ATGTTGTTGGGGTGAAGGGTGAACTGAACCGACGGTATCGATAAGC

TTGA 

VC4F GCTCAAAAGTCTGGAAAGAA 

VC4RR TCTAGTGACGTCTGTGAGTG 

VC5F GTCAGATCAGCANCAAGCTTCTACACCAAGTGGTGGTGCAGAAACT

AGATCTGTGCACCAATCACCCCAAGTTCAGTCATGGTCGACGGATCC

CCG GGTT 

VC5R TATTACTTTTCTTCTTTGGCAACAGTGCTAGCTGATTGATTAGCTTGA

TGTTGTTGGGGTGAAGGGTGAACTGAACCTTGTCGATGAATTCGAGC

TCGTT 

VC6F AAGCTGTGGAATTCCAATGGATGAAATTGAAACTTCGATTGATGCTA

TGGAAGAATCATTGGTCAAAAAAGGTGGTGGTCGGATCCCCGG GTT 

AAT TAA 

VC6R TAGTGAATTGGAAAGTTTGATTAAATTAGCAAAAGAAGCTTATGTGT

AGACATTTATGTATATTTAGTACGAATTCCGGAATATTTATGA 

GAAAC  

VC8F ATGAATGGATAAGTTTGAGTAGTTCATTAGAAGGGGTTGTTATTTTG

AAAAAGAATCCAGAATATATGGAAATTGATAGTGGTCGACGGATCC

CCGGGTT 

VC8R AACTTTAGTAAATAGTTTTGTCTTACCCTTATAAACAATTAATCAAC

TAACTAACAAACTAACAAACTAACAAACTAAACTCGATGAATTCGA

GCTCGTT 

VC9F AGTTGGTCAAGCAGTTGATG 

VC9R ACCTATTCTGGTGGTCGTAG 

YC15R GGTGGTACATGTACTATTGCTCATAGACTTAG  

YC21F ACGAAAGAGAAGTATCTGGAGATGAATCAA 

YC25F TGGTGTTAAAGTTGAAGAAATTGACAGTTTAATTGATGGAATTGCCG 

AATCATTAACTGAAGGTATG ACG 

YC25R GAGAATTCATTAAGTAGCAGTTATACATTGTTAGTACGATAATTCAA

ACATAATATTACAATTATTCTAA  
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Table 3. Plasmids used in this study 

Plasmid Description Parent/Source 

pBS-CaHIS1 pBluescript CaHIS1 C.Bachewich 

pBS-CaARG4 pBluescript CaARG4 H.Huang 

pFA-HA-CaHIS1 
 

[51] 

pFA-HA-CaURA3 
 

[51] 

pMG2093 
 

[52, 53] 

 

2.2 Medium and Growth Conditions 

Most strains were grown at 30ºC in YPD medium containing 1% yeast extract, 2% 

peptone and 2% glucose. Conditional strains were grown at 30ºC in synthetic complete (SC) 

medium containing 0.67% yeast nitrogen base, 2% glucose and amino acids supplemented with 

or without 2.5 mM methionine and 0.5 mM cysteine for repression or induction of the MET3 

promoter, respectively [54]. All media were supplemented with 100 mg/L of uridine, histidine or 

arginine to allow optimal growth of URA3+, HIS1+ or ARG4+ auxotrophs [55], except under 

conditions of selection. For assays involving protein extraction, strains were incubated overnight 

in YPD medium at 30°C, diluted into fresh medium to an O.D.600nm of 0.1 to 0.2, and incubated 

until the O.D.600nm reached 0.8-1.0. In the case of the MET3p-CLN3 conditional strain, cells were 

incubated overnight at 30°C in SC medium lacking methionine, then diluted into fresh SC 

medium containing 2.5mM methionine and 0.5mM cysteine and incubated for 4 h to block cells 

in G1 phase.  

2.3 Construction of strains   

2.3.1 SWI4  

 

2.3.1.1 SWI4-13MYC 
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In order to tag the 3’ end of SWI4 with 13 copies of the MYC epitope, oligonucleotides 

YC25F and YC25R containing 70 bp homologous to regions immediately upstream and 

downstream of the SWI4 stop codon, respectively, as well as 20 bp homology to plasmid 

pMG2093 [52, 53] were used to amplify 3.9 kb fragment containing the 13MYC-HIS1 cassette. 

The PCR reaction mix was composed of 0.6 µM oligonucleotides, 0.4 mM dNTPs, 50 ng of 

pMG2093 as template, 3.75U of Expand Long Template Polymerase (Roche), and 10X Buffer 3. 

The reaction conditions were the following: 94℃ for 4 min, followed by 25 cycles of 94℃ for 1 

min, 44℃ for 1 min, 68℃ for 3 min, 45 sec, followed by a 7 min extension at 68℃ and storage at 

4℃. The product was purified using a PCR purification kit (OMEGA) and 10 g were 

transformed into strain BH114 (Δswi4::hisG/SWI4), resulting in strain VC108 

(Δswi4::hisG/SWI4-13MYC-HIS1). 

2.3.1.2 SWI4-3HA 

 

In order to tag SWI4 with 3 copies of the hemagglutinin (HA) epitope at the C-terminal, 

oligonucleotides AG4F and AG4R were used to amplify a 1.7 kb HA-URA3 fragment from 

plasmid pFA-HA-CaURA3 [56]. The PCR reaction mix included 0.6 µM oligonucleotides, 0.4 

mM dNTPs, 100 ng of template, 3.75U of Expand Long Template Polymerase, and 10X Buffer 

3. The PCR reaction conditions were: 94℃ for 4 min, followed by 25 cycles of 94℃ for 1 min, 

40℃ for 1 min, 68℃ for 1 min, 44 sec, followed by a 7 min extension at 68℃ and storage at 4℃. 

Next, oligonucleotides SWI4F1 and SWI4R1 were used to amplify a final 1.9 kb fragment from 

the product of the previous PCR reaction, consisting of HA-URA3 surrounded by 100 bp 

sequences homologous to regions flanking either side of the stop codon of SWI4. Reaction 

conditions used were: 94℃ for 4 min, followed by 25 cycles of 94℃ for 1 min, 40℃ for 1 min, 

68℃ for 1 min, 56 sec, followed by a 7 min extension at 68℃ and storage at 4℃. The resulting 
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final product was purified and 7 g were transformed into strain BH114 (Δswi4::hisG/SWI4), 

resulting in strain VC300 (Δswi4::hisG/SWI4-3HA-URA3).  

2.3.2 MBP1 

 

2.3.2.1 MBP1-3HA 

 

Oligonucleotides AG4F-MBP1-HA and AG4R-MBP1-HA were used to amplify a 1.4 

kb HA-HIS1 fragment from plasmid pFA-HA-CaHIS1 [56]. The PCR reaction mix included 0.6 

µM oligonucleotides, 0.4 mM dNTPs, 100 ng of template, 3.75U of Expand Long Template 

Polymerase, and 10X Buffer 3. The reaction conditions included 94℃ for 4 min, followed by 25 

cycles of 94℃ for 1 min, 52℃ for 1 min, 68℃ for 2 min, 45 sec, followed by a 7 min extension 

at 68℃ and storage at 4℃. The resulting fragment was used as a template, with oligonucleotides 

AG29F and AG29R, in order to produce a final 2.6 kb fragment consisting of an HA-HIS1 

cassette and 100 bp sequences homologous to regions flanking either side of the stop codon of 

MBP1. The PCR reaction mix included 0.6 µM oligonucleotides, 0.4 mM dNTPs, 100 ng of 

template, 3.75U of Expand Long Template Polymerase, and 10X Buffer 3. The reaction 

conditions included 94℃ for 4 min, followed by 25 cycles of 94℃ for 1 min, 55℃ for 1 min, 

68℃ for 2 min, 45 sec, followed by a 7 min extension at 68℃ and storage at 4℃. The final 

product was purified, and 6.2 g were transformed into strain YC221 (SWI6-TAP-URA3/SWI6, 

Δcln3::hisG/MET::CLN3-ARG4), resulting in strain VC132 (MBP1-3HA-HIS1/MBP1, SWI6-

TAP-URA3/SWI6, Δcln3::hisG/MET::CLN3-ARG4). 

MBP1 was similarly tagged with 3 copies of HA epitope at the C-terminus in strain 

VC108 (Δswi4::hisG/SWI4-13MYC-HIS1), with the difference of using plasmid pFA-HA-

CaARG4 in the first step PCR reaction with the following conditions: 94℃ for 4 min, followed 
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by 25 cycles of 94℃ for 1 min, 52℃ for 1 min, 68℃ for 3 min, followed by a 7 min extension at 

68℃ and storage at 4℃. The product was used as template in a second PCR reaction as described 

above, with the following conditions: 94℃ for 4 min, followed by 25 cycles of 94℃ for 1 min, 

52℃ for 1 min, 68℃ for 3 min, 15 sec, followed by a 7 min extension at 68℃ and storage at 4℃. 

The product was purified and 5 µg were transformed into strain VC108 (Δswi4::hisG/SWI4-

13MYC-HIS1), resulting in strain VC150 (Δswi4::hisG/SWI4-13MYC-HIS1, MBP1-3HA-

ARG4/MBP1). 

2.3.2.2 MBP1-13MYC 

 

In order to tag the C-terminus of MBP1 with 13 copies of the MYC epitope, 

oligonucleotides VC6F and VC6R containing 70 bp homologous to regions upstream and 

downstream of the MBP1 stop codon, respectively, as well as 20 bp homology to plasmid 

pMG2093 [52, 53] were used to amplify 3.8 kb fragment containing 13MYC-HIS1. The PCR 

reaction mix was composed of 0.6 µM oligonucleotides, 0.4 mM dNTPs, 50 ng of pMG2093 as 

template, 3.75U of Expand Long Template Polymerase, and 10X Buffer 3. The reaction 

conditions were the following: 94℃ for 4 min, followed by 25 cycles of 94℃ for 1 min, 41℃ for 

1 min, 68℃ for 3 min, 50 sec, followed by a 7 min extension at 68℃ and storage at 4℃. The 

product was purified and 6.2 g were transformed into strains VC300 (Δswi4::hisG/SWI4-3HA-

URA3) and BWP17, resulting in strains VC324 (MBP1-13MYC-HIS1/MBP1, Δswi4::hisG/SWI4-

3HA-URA3) and VC304 (MBP1-13MYC-HIS1/MBP1), respectively.  

2.3.3 SWI6 

 

2.3.3.1 SWI6-3HA 
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In order to tag SWI6 at the C-terminus with 3 copies of the HA epitope, a similar two-

step PCR strategy described for tagging SWI4 with HA was utilized, with the exception of using 

oligonucleotides SWI6F1 and SWI6R1 to amplify a final 1.9 kb fragment from the first PCR, 

consisting of HA-URA3 and 100 bp sequences homologous to regions flanking the stop codon of 

SWI6. Reaction conditions for this second PCR reaction included: 94℃ for 4 min, followed by 

25 cycles of 94℃ for 1 min, 40℃ for 1 min, 68℃ for 1 min, 56 sec, followed by a 7 min 

extension at 68℃ and storage at 4℃. The resulting final product was purified and 6.7 g were 

transformed into strain AG625 (CDC5-13MYC-HIS1/CDC5), resulting in strain VC348 (SWI6-

3HA-URA3/SWI6, CDC5-13MYC-HIS1/CDC5).  

2.3.4 CDC5 

 

2.3.4.1 CDC5-3HA 

 

In order to tag CDC5 at the C-terminus with 3 copies of the HA epitope, a similar two-

step PCR strategy described for tagging SWI4 with HA was utilized, with the exception of using 

plasmid pFA-HA-CaHIS1 [56] and oligonucleotides AG4F and AG4R for the first PCR 

amplification. Reaction conditions used were: 94℃ for 4 min, followed by 25 cycles of 94℃ for 

1 min, 40℃ for 1 min, 68℃ for 1 min, 10 sec, followed by a 7 min extension at 68℃ and storage 

at 4℃. The resulting fragment was purified and used as the template with oligonucleotides AG1F 

and AG1R to amplify a final 2.0 kb fragment consisting of an HA-HIS1 cassette and 100 bp 

sequences homologous to regions flanking the stop codon of CDC5. The following reaction 

conditions were used: 94℃ for 4 min, followed by 25 cycles of 94℃ for 1 min, 40℃ for 1 min, 

68℃ for 2 min, followed by a 7 min extension at 68℃ and storage at 4℃. The final product was 

purified and 7.1 g were transformed into strains YC221 (SWI6-TAP-URA3/SWI6, 
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Δcln3::hisG/MET::CLN3-ARG4) and BH253 (Δcln3::hisG/MET::CLN3-ARG4) to obtain strains 

VC181 (CDC5-3HA-HIS1/CDC5, SWI6-TAP-URA3/SWI6, Δcln3::hisG/MET::CLN3-ARG4) and 

VC380 (CDC5-3HA-HIS1, Δcln3::hisG/MET::CLN3-ARG4), respectively. 

2.3.5 RPN1 

 

2.3.5.1 RPN1-3HA 

 

In order to tag the C-terminus of RPN1 with 3 copies of HA in strains VC108 and 

BWP17, the two step PCR strategy described above for tagging strains with HA was utilized. 

Exceptions include use of oligonucleotides VC8F and VC8R to amplify the final 1.9 kb PCR 

product with the following reaction conditions: 94℃ for 4 min, followed by 25 cycles of 94℃ for 

1 min, 40℃ for 1 min, 68℃ for 1 min, 54 sec, followed by a 7 min extension at 68℃ and storage 

at 4℃. The resulting final product was purified and 6.0 g were transformed into strains VC108 

(Δswi4::hisG/SWI4-13MYC-HIS1) and BWP17, resulting in strains VC389 (RPN1-3HA-

URA3/RPN1, Δswi4::hisG/SWI4-13MYC-HIS1) and VC394 (RPN1-3HA-URA3/RPN1). 

2.3.6 EFG1 

 

2.3.6.1 ∆efg1/∆efg1 

 

In order to create a SWI4-conditional strain that lacked EFG1, both alleles were 

replaced with the ARG4 and HIS1 markers, using 2-step PCR fusion constructs. First, a 709 bp 

fragment corresponding to the 5’ flank of EFG1, located 127 bp upstream of the start codon, was 

amplified from gDNA with oligonucleotides VC1F and VC1R. The components of the PCR 

reaction mix include 0.6 µM oligonucleotides, 0.4 mM dNTPs, 100 ng of template, 3.75U of 

Expand Long Template Polymerase (Roche), and 10X Buffer 3. The following reaction 
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conditions were used: 94°C for 3 min, followed by 25 cycles of 94°C for 30 sec, 54°C for 30 sec, 

68°C for 41 sec, followed by a 7 min extension at 68℃ and storage at 4℃. Second, a 616 bp 

fragment corresponding to the 3’ flank of EFG1, located 5 bp after the stop codon, was similarly 

amplified using oligonucleotides VC2F and VC2R. The following reaction conditions were used: 

94°C for 3 min, followed by 25 cycles of 94°C for 30 sec, 53°C for 30 sec, 68°C for 35 sec, 

followed by a 7 min extension at 68℃ and storage at 4℃. To amplify the 2193 bp ARG4 

fragment from plasmid pBS-CaARG4 (H. Huang), oligonucleotides VC3F and VC3R containing 

homology to the plasmid plus additional 30 bp sequences that were the reverse complement of 

oligonucleotides VC1R and VC2F, respectively, were utilized. The components of the PCR 

reaction mix include 0.6 µM oligonucleotides, 0.4 mM dNTPs, 100 ng of pBS-CaARG4 as 

template, 3.75U of Expand Long Template Polymerase, and 10X Buffer 3. The following 

reaction conditions were used: 94°C for 3 min, followed by 25 cycles of 94°C for 30 sec, 61°C 

for 30 sec, 68°C for 2 min, 12 sec, followed by a 7 min extension at 68℃ and storage at 4℃.  

The final construct was created by amplifying a 1:2:1 (50ng:100ng:50ng) amount of the three 

PCR fragments with oligonucleotides VC1F and VC2R. The reaction mix included 0.6 µM 

oligonucleotides, 0.4 mM of dNTPs, 3.75U of Expand Long Template Polymerase, and 1X 

Buffer 3. The following reaction conditions were used: 94°C for 3 min, followed by 10 cycles of 

94°C for 10 sec, 61°C for 30 sec, and 68°C for 3 min 28 sec, followed by 15 cycles of 95°C for 

10 sec, 61°C for 30 sec, 68°C for 3 min 28 sec with a 20 sec auto-segment extension, followed 

by a 7 min extension at 68℃ and storage at 4℃. The final 3400 bp PCR product was purified and  

7.5 g or 5.6 g were transformed into strain BH339 (Δswi4::hisG/Δswi4::URA3) or BWP17, 

resulting in strains VC166 (Δefg1::ARG4/EFG1, Δswi4::hisG/Δswi4::URA3) and VC171 

(Δefg1::ARG4/EFG1), respectively. 
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To delete the second copy of EFG1, a similar strategy was utilized with the exception 

of amplifying a 1404 bp HIS1 cassette fragment from plasmid pBS-CaHIS1, with 

oligonucleotides VC3F and VC3R. The following reaction conditions were used: 94°C for 3 min, 

followed by 25 cycles of 94°C for 30 sec, 61°C for 30 sec, 68°C for 1 min 24 sec, followed by a 

7 min extension at 68℃ and storage at 4℃. The final fusion construct was created by amplifying 

1:2:1 (50ng:100ng:50ng) amount of the three PCR fragments with oligonucleotides VC1F and 

VC2R in a reaction with the following conditions: 94°C for 3 min, followed by 10 cycles of 

94°C for 10 sec, 61°C for 30 sec, and 68°C for 2 min 37 sec, followed by 15 cycles of 95°C for 

10 sec, 61°C for 30 sec, 68°C for 2 min 37 sec with a 20 sec auto-segment extension, followed 

by a 7 min extension at 68℃ and storage at 4℃. The final 2611 bp product was purified and 6.25 

g or 6.35 g were transformed into strains VC166 (Δefg1::ARG4/EFG1, 

Δswi4::hisG/Δswi4::URA3) and VC171 (Δefg1::ARG4/EFG1), resulting in strains VC199 

(Δefg1::ARG4/Δefg1::HIS1, Δswi4::hisG/Δswi4::URA3) and VC200 (Δefg1::ARG4/ 

Δefg1::HIS1), respectively. 

2.4 Transformation 

C. albicans was transformed according to [57], with a few modifications. Briefly, the 

One-Step-Buffer (OSB) consisted of 25 l of 10 mg/ml salmon sperm DNA (ssDNA) 

(Invitrogen), 0.0154g of dithiothreital (DTT), 800 l of 50% PEG 4000 (Sigma) and 200 l of 1 

M lithium acetate. A pellet obtained from centrifuging 300 l of an overnight cell culture at 

13,000 rpm for 3 min was washed with sterile water and re-suspended in 100 l of OSB solution. 

A maximum volume of 10 l of approximately 5-7 g of DNA was added. The mixture was 

vortexed for 1 min, incubated overnight at 30C, heat-shocked at 43℃ for 1 h and plated on 
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selective solid medium. Transformants were subsequently streaked to single colony three times 

before screening. For strains containing CLN3 under control of the MET3 promoter, cells were 

grown overnight in an inducing medium lacking methionine and cysteine (-MC), then transferred 

into rich YPD medium for 2 h prior to collection, to increase the transformation efficiency.  

2.5 Genomic DNA extraction 

For gDNA extraction, the method of [58] was utilized. Briefly, cells were inoculated 

into 5 ml of YPD medium or -MC medium that lacked methionine and cysteine, and incubated 

overnight at 30C. Cell cultures were then centrifuged for 5 min at 3000 rpm, the pellet was 

washed with 700 l sterile distilled water, and re-suspended in 1 ml of sorbitol buffer (1M 

sorbitol, 0.1M EDTA) followed by the addition of 10 l of lyticase ((10U/l); Sigma) and 2 l of 

4.0 M DTT. The mixture was incubated at 37C for 1.5 h, centrifuged for 2 min at 13500 rpm, 

and the supernatant was removed. The pellet was re-suspended in 200 l Tris-EDTA solution (50 

mM Tris, 20 mM EDTA), and SDS was added to 1%. Cells were incubated at 65C for 30 min, 

followed by the addition of 100 l of 5.0 M potassium acetate (KAc). This mixture was 

incubated on ice for 60 min, and centrifuged for 10 min at 13500 rpm. An equal amount of 100% 

isopropanol was added to the supernatant. The samples were mixed for 1 min, centrifuged at 

13500 rpm for 1 min, and the resulting DNA pellet was washed with 70% ethanol. After air-

drying,  the pellet was re-suspended into 100 l of TE buffer (1 mM EDTA, 10 mM Tris-HCl pH 

8.0) with 2 l of RNaseA (10 mg/ml), and  incubated at 37C for 30 min. The concentration of 

the extracted genomic DNA was determined using a fluorometer (Hoefer DQ300) and Hoechst 

Dye (Invitrogen). 
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2.6 Screening transformants 

Transformants were screened for correct integration of DNA constructs using PCR. The 

PCR reaction mix consisted of 0.6 µM of oligonucleotides, 0.4 mM of dNTPs, 100 ng of gDNA 

as template, 3 mM of MgCl2, 1X Taq Buffer with (NH4)2SO4 and 5 U Taq DNA Polymerase 

(Fermentas). Confirmation of strain VC108 (Δswi4::hisG/SWI4-13MYC-HIS1) was done using 

oligonucleotides YC21F located 743 bp upstream and BH14R which locates 766 bp downstream 

of stop codon to amplify a 5000 bp product. For this screening, 3.75U of Expand Long Template 

Polymerase (Roche) and 10X buffer were used due to the large PCR product size. The following 

reaction conditions were used: 94℃ for 3min, 30 cycles of 94℃ for 30 sec, 48℃ for 30 sec, 68℃ 

for 5 min, followed by a 7 min extension at 68℃ and storage at 4℃. To confirm strain VC132, 

oligonucleotides CaHIS1F (located inside the plasmid pFA-HA-CaHIS1), and AG30R (located 

427 bp downstream of stop codon of MBP1) were used to amplify a 1923 bp product. The 

reaction conditions used were as follows: 95℃ for 3min, 30 cycles of 95℃ for 30 sec, 42℃ for 

30 sec, 72℃ for 2 min 32 sec, followed by a 7 min extension at 72℃ and storage at 4℃. Strain 

VC150 was confirmed with oligonucleotides CaARG4F, located inside the plasmid pFA-HA-

CaARG4 and YC15R, located 224 bp downstream of stop codon of MBP1, to amplify a 1264 bp 

product. The following reaction conditions were used: 95℃ for 3 min, 30 cycles of 95℃ for 30 

sec, 36℃ for 30 sec, 72℃ for 1 min 16 sec, followed by a 7 min extension at 72℃ and storage at 

4℃. Confirmation of strain VC300 was done by using oligonucleotides SWI4SF1, which locates 

145 bp upstream of stop codon of SWI4, and SWI4SR1, which locates 252 bp downstream of 

stop codon of SWI4, to amplify a 2046 bp product. The reaction conditions used were as follows: 

94℃ for 3 min, 30 cycles of 94℃ for 30 sec, 44℃ for 30 sec, 68℃ for 2 min 3 sec, followed by a 

7 min extension at 68℃ and storage at 4℃. The strain VC324 was confirmed by using 
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oligonucleotides CaHIS1F, located inside the plasmid pMG2093 and YC15R, located 224 bp 

downstream of stop codon of MBP1, to amplify a 970 bp product. The following reaction 

conditions were used: 95℃ for 3 min, 30 cycles of 95℃ for 30 sec, 36℃ for 30 sec, 72℃ for 58 

sec, followed by a 7 min extension at 72℃ and storage at 4℃. Confirmation of strain VC181 was 

done by using oligonucleotides CaHIS1F (located inside the plasmid pFA-HA-CaHIS1) and 

AG2R, which locates 258 bp downstream of stop codon of CDC5, to amplify a 1773 bp product. 

The following reaction conditions were used: 95℃ for 3 min, 30 cycles of 95℃ for 30 sec, 38℃ 

for 30 sec, 72℃ for 1 min 46 sec, followed by a 7 min extension at 72℃ and storage at 4℃. The 

strain VC348 was confirmed by using oligonucleotides CaURA3F (located inside the plasmid 

pFA-HA-CaURA3) and SWI6SR1, located 307 bp downstream of stop codon of SWI6, to 

amplify an 898 bp product. Confirmation of VC163 and VC171 was done by using 

oligonucleotides VC4F, located 920 bp upstream of start codon of EFG1 and CaARG4R, located 

inside the plasmid pFA-HA-CaARG4, to amplify a 1200 bp product. The reaction conditions 

used were as follows: 95℃ for 3 min, 30 cycles of 95℃ for 30 sec, 38℃ for 30 sec, 72℃ for 2 

min 10 sec, followed by a 7 min extension at 72℃ and storage at 4℃. The strains VC199 and 

VC200 were confirmed using oligonucleotides VC4F, located 920 bp upstream of start codon of 

EFG1 and CaHIS1R, located inside the plasmid pFA-HA-CaHIS1, to amplify a 1348 bp product. 

The following reaction conditions were used: 95℃ for 3 min, 30 cycles of 95℃ for 30 sec, 38℃ 

for 30 sec, 72℃ for 1 min 21 sec, followed by a 7 min extension at 72℃ and storage at 4℃. 

Confirmation of VC389 and VC394 was done using oligonucleotides CaURA3F, located inside 

the plasmid pFA-HA-CaURA3 and VC9R, located 225 bp downstream of stop codon of RPN1, 

to amplify an 892 bp product. Reaction conditions used were as follows: 95℃ for 3 min, 30 
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cycles of 95℃ for 30 sec, 36℃ for 30 sec, 72℃ for 54 sec, followed by a 7 min extension at 72℃ 

and storage at 4℃. 

2.7 Protein extraction and Western blotting 

Protein was extracted according to the method outlined in [59]. Briefly, cells were 

inoculated into 2 ml of YPD or -MC minimal medium, incubated overnight at 30C, diluted to an 

OD600nm of 0.1 into a final volume of 50 ml, and incubated at 30C until an OD600nm of 0.8-1.0 

was reached. Cell pellets were obtained by centrifugation for 5 min at 3000 rpm. The pellets 

were washed with sterile water, lyophilized for 24 h in a freeze dryer (ThermoSavant, Modulyo 

D), and ground to a fine powder using a sterile toothpick. Subsequently, 1 ml of cold HK buffer 

(25 mM TRIS pH7.5, 0.5% NP40, 300 mM NaCl, 5 mM EDTA pH8.0, 15 mM EGTA pH8.0, 60 

mM Beta Gly.PO4, 500 M Na Vanadate, 10 mM Na Fluoride, 1 g/ml Pepsatin A, 10 g/ml 

Leupeptin, 10 g/ml Trypsin ChymoT inhibitor, 10 g/ml Aprotinin, 10 g/ml TPCK, 2 mM 

TAME, 5 mM Benzamidine, 250 g/ml PMSF, 1 mM DTT) per 0.8 g dry weight was added.  

The samples were vortexed 4X 10 sec with a 3 min break on ice in between rounds, and 

centrifuged at 13,500 rpm for 10 min at 4°C to remove cell debris. The supernatant was then 

centrifuged at 13,500 rpm for 30 min (for Western confirmation, but 1 h for Co-IPs) at 4°C and 

stored at -80°C. Protein concentration was determined using the Bradford assay. 

 For Western blotting, 30 g of protein was separated on 7.5% SDS PAGE gels, and 

transferred to a polyvinyl difluoride (PVDF) membrane (BIO-RAD) overnight at 30V and 4C. 

The membrane was air-dried completely, incubated in blocking solution (5% milk in 1X TBST 

with 0.05% Tween-20) for 90 min, washed 3 x with 1X TBST (50 mM Tris, 0.15 M NaCl, 

0.05% Tween-20, pH 7.6) for 10 min each, followed by incubation with primary antibody diluted 
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in 1X TBST for 2 h. Primary antibodies included mouse monoclonal antibody clone 9E10 IgG 

(Roche Diagnostics, 1:1000 dilution) and mouse monoclonal antibody clone 12CA5 (Roche 

Diagnostics, 1:500 dilution). The membrane was washed 3 x with 1X TBST for 10 min each, and 

then incubated with secondary antibody (Goat anti-rabbit IgG-HRP, Santa Cruz Biotechnology, 

1:10000 dilution) for 1 h. After washing 3 x with 1X TBST for 10 min each, signal was detected 

with chemiluminescence using ECL (GE Healthcare). Membranes were stripped in 15 ml of 

stripping solution (0.4% SDS, 1.2 mM Tris pH 6.8, 0.25g DTT) for 30 min at 50C. 

2.8 Co-Immunoprecipitation (Co-IP) 

Cultures were obtained and protein extracted as described above with the exception that 1 

L culture volumes were utilized. For Co-IP, Mono HA 11 Affinity beads (Covance), mouse 

monoclonal anti-Myc on Sepharose beads (Covance) or IgG Sepharose 6 Fast Flow beads (GE 

Healthcare) were utilized. Briefly, volumes of bead slurry were centrifuged at 1500 x g for 2 min 

at 4°C to remove the buffer, and washed 3 x in 500 μl of HK buffer. The beads were then 

suspended in fresh HK buffer and combined with protein. For 40, 20 or 2 mg of protein, 60, 40 

or 10 l of bead slurry were utilized, respectively. The samples were incubated overnight at 4°C 

with rocking, centrifuged at 1500 x g for 2 min at 4°C, and washed 5 x with 1 ml HK buffer.  

Protein was then eluted from beads by boiling in same amount as bead volume plus an additional 

10 l of 1X SDS sample buffer (50 mM Tris pH 6.8, 2% SDS, 0.01% Bromophenol blue, 10% 

Glycerol, 100mM DTT) for 10 min. The samples were centrifuged for 2 min at 13500 rpm at 

room temperature. The bead pellets were boiled again in same amount of 1X SDS sample buffer 

as bead volume (1:1) for 10 min. Samples were subsequently loaded onto SDS PAGE gels for 

Western blotting as described.  
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2.9 RNA extraction and Northern blotting 

For RNA extraction, 50 ml of culture at an OD600nm of 0.8-1.0 were collected through 

centrifugation for 5 min at 5000 rpm. The pellet was washed with sterile water and lyophilized in 

a freeze dryer. Freeze-dried cell pellet was ground to fine powder using a sterile toothpick and 

RNA extracted according to [60]. Briefly, 1 ml of TRI reagent (Molecular Research Center, Inc.) 

was added to 100 l of dried pellet. The samples were vortexed 10 x, 10 sec followed by 

incubation for 5 min at room temperature. After addition of 0.2 ml of chloroform, samples were 

shaken vigorously for 15 sec, incubated at room temperature for 5 min, and then centrifuged at 

12000 x g for 15 min at 4°C. The supernatant was transferred to new Eppendorf tubes, to which 

0.5 ml of cold isopropanol was added. The tubes were inverted 3 x, incubated on ice for 5 min, 

then centrifuged at 12000 x g for 8 min at 4°C. The resulting RNA pellet was washed twice with 

1 ml of ice-cold 70% DEPC-treated ethanol, and tubes were left on ice for 5 min for complete 

evaporation. The RNA pellet was re-suspended in 60 l of ice-cold DEPC-treated water by 

incubation at 60°C for 10 min. To re-precipitate the RNA, one-tenth volume of 3M sodium 

acetate and 3X the volume of 100% ethanol were added and samples were stored at -20°C 

overnight. Samples were subsequently centrifuged at 13000 rpm for 10 min at 4°C to remove 

ethanol followed by washing 2 x with 70% DEPC-treated ethanol. The pellet was then air-dried 

and dissolved with 50 μl DEPC water. The concentration of samples was next measured using a 

spectrophotometer.  

 Northern blotting was performed according to [61]. DNA probes were amplified by 

PCR. The reaction mix consisted of 0.6 µM oligonucleotides, 0.4 mM dNTPs, 100 ng of gDNA, 

3.75U of Expand Long Template Polymerase (Roche), and 10X Buffer 3. The EFG1 probe 

utilized oligonucleotides EFG1F1 and EFG1R1 with the following reaction conditions: 94℃ for 
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4 min, followed by 25 cycles of 94℃ for 1 min, 40℃ for 1 min, 68℃ for 1 min, 10 sec, followed 

by a 7 min extension at 68℃ and storage at 4℃.   

 

 

3. Results 
 
 

3.1 Organization of the G1/S transcription factor complex 

3.1.1 Co-immunoprecipitation utilizing low amounts of input protein confirms that Swi6p 

physically interacts with Swi4p and Mbp1p. 

Previous work from the Bachewich lab (Y. Chen, MSc thesis) showed that Swi6p was the 

major interacting factor of Swi4p and Mbp1p via affinity purification and mass spectrometry 

analyses. These physical interactions were subsequently confirmed via Co-IP. However, 40 mg 

of protein was used for these experiments. In order to determine whether the physical 

interactions could be detected with lower amounts of protein, I repeated the Co-IPs with 2 mg of 

protein. For testing an interaction between Swi4p and Swi6p, strains AH110 (SWI4-3HA-HIS1/ 

SWI4, Δswi6::URA3/SWI6-TAP-ARG4), AM201.5 (Δswi6::URA3/SWI6-TAP-ARG4), and 

YC113 (Δswi4::hisG/SWI4-3HA-HIS1) were incubated at 30 C until they reached an O.D. 600nm 

of 0.8, collected and protein was extracted. A total of 2 mg was incubated with anti-HA or IgG-

sepharose beads for Co-IP reactions. When Swi4p-3HA was precipitated with anti-HA beads, 

Swi6p-TAP co-purified (Fig. 4A). Furthermore, Swi4p-3HA was present in the pull down when 

Swi6p-TAP was precipitated with IgG sepharose (Fig. 4B). The detection of either protein in 

reciprocal Co-IPs using lower amounts of input protein supports a physical interaction.  
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In order to determine whether an interaction between Swi6p and Mbp1p could also be 

detected with lower input levels of protein, strains YC396 (MBP1-TAP-ARG4/MBP1, 

Δswi6::HIS1/SWI6-3HA-URA3), YC367 (Δmbp1::HIS1/MBP1-TAP-URA3), and YC216 

(Δswi6::HIS1/SWI6-3HA-URA3) were utilized in Co-IP experiments as described above. When 

Swi6p-3HA was precipitated from 2 mg of protein with anti-HA beads, Mbp1p-TAP co-purified 

(Fig. 5A). In addition, when Mbp1p-TAP was precipitated with IgG sepharose, Swi6p-3HA was 

detected (Fig. 5B). Thus, Swi6p also strongly interacts with Mbp1p.  

Previous work showed that Mbp1p was not among the enriched peptides that co-purified 

with Swi6p when affinity purified from cells blocked in G1 phase (Y. Chen, MSc thesis). In 

order to confirm whether Swi6p and Mbp1p interact during G1 phase, a Co-IP was performed. 

For this, a strain carrying a conditional allele of the G1 cyclin CLN3 and one allele of SWI6 

tagged with TAP (YC221; SWI6-TAP-URA3/SWI6, ∆cln3::hisG/MET::CLN3-ARG4),  was 

transformed with a DNA construct that would tag a single copy of MBP1 at the C-terminus with 

three copies of HA, resulting in strain VC132 (MBP1-3HA-HIS1/MBP1, SWI6-TAP-URA3/SWI6, 

∆cln3::hisG/MET::CLN3-ARG4) (Fig. 6). Strains VC132 and control strain YC221 were 

incubated in inducing (-MC) media overnight, then diluted into repressing (+MC) media and 

incubated at 30C for 4 h. When Mbp1p-3HA was pulled out using anti-HA beads, Swi6p-TAP 

co-purified (Fig. 7), suggesting that the proteins do interact in G1-phase-blocked cells. A reverse 

Co-IP using IgG beads was not done due to strong non-specific cross-reaction problems 

associated with the TAP tag. Thus, Swi6p interacts with Mbp1p in G1 phase cells. 
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3.1.2 Swi4p and Mbp1p do not physically interact in the manner that Swi6p binds Swi4p or 

Mbp1p. 

Since Swi6p binds both Swi4p and Mbp1p, this suggests that C. albicans may either 

contain two separate complexes, as seen in S. cerevisiae or one complex that includes Mbp1p. In 

the case of the latter, it is predicted that Swi4p and Mbp1p should physically interact. However, 

previous attempts to test for this interaction were inconclusive. Although Swi4p-HA co-purified 

with Mbp1p-TAP that was pulled out from 40 mg of protein (Y. Chen thesis), the proteins were 

similar in size, and the reverse Co-IP showed non-specific binding to beads. Further, when a 

strain carrying Swi4p-5MYC and Mbp1p-3HA was utilized, Swi4p-5MYC did not co-purify 

with affinity-purified Mbp1p-3HA. In order to further address this question, a new strain was 

constructed whereby a single copy of SWI4 in strain BH114 (Δswi4::hisG/SWI4) was tagged 

with 13 copies of MYC at the C-terminus in order to enhance the MYC detection, resulting in 

strain VC108 (Δswi4::hisG/SWI4-13MYC-HIS1). Western blotting confirmed that the protein 

was expressed (Fig. 8). Next, MBP1 was tagged with 3 copies of HA in strain VC108, resulting 

in strain VC150 (Δswi4::hisG/SWI4-13MYC-HIS1, MBP1-3HA-ARG4/MBP1) (Fig. 9). Strains 

VC150, VC108 and YC351 (Δmbp1::HIS1/MBP1-3HA-URA3) were subsequently used for Co-

IP experiments. When Mbp1p-3HA was precipitated from 40 mg of protein with anti-HA beads, 

Swi4p-13MYC was not present in the pull down, suggesting that these two proteins do not 

interact (Fig. 10A). In contrast, a reverse Co-IP using anti-MYC beads to precipitate Swi4p-

13MYC was inconclusive, since there was strong non-specific cross-reaction in the control strain 

(Fig. 10B). In order to determine whether the anti-MYC beads would bind other proteins non-

specifically, immunoprecipitation with anti-MYC beads was performed with strain YC101 

(SWI4-3HA-HIS1/SWI4) and a second strain containing MBP1-3HA, YC352 
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(Δmbp1::HIS1/MBP1-3HA-URA3). When immune extracts were incubated with anti-HA 

antibody, Swi4p-3HA was not detected, in contrast to Mbp1p-3HA (Fig. 11). This suggests that 

the anti-MYC beads were unexpectedly interacting with Mbp1p-3HA.  

In order to determine whether the issues of non-specific interaction between the anti-

MYC beads and Mbp1p-3HA were specific to the strain used, a new strain was constructed 

whereby SWI4 was tagged with 3 copies of HA at the C-terminus in strain BH114 

(Δswi4::hisG/SWI4), resulting in strain VC300 (Δswi4::hisG/SWI4-3HA-URA3) (Fig. 12). Next, 

the C-terminus of MBP1 was tagged with 13 copies of MYC in strains BWP17 and VC300, 

resulting in strains VC304 (MBP1-13MYC-HIS1/MBP1) and VC324 (MBP1-13MYC-

HIS1/MBP1, Δswi4::hisG/SWI4-3HA-URA3) (Fig. 13 and Fig. 14). When Swi4p-3HA was 

precipitated with anti-HA beads from 40 mg of protein, Mbp1p-13MYC was present in the pull 

down, suggesting that these two proteins interact (Fig. 15A). In contrast, the reverse Co-IP 

showed that when Mbp1p-13MYC was precipitated with anti-MYC beads, Swi4p-3HA did not 

co-purify (Fig. 15B). Furthermore, there was no non-specific cross-reaction observed between 

anti-MYC beads and Swi4p-3HA control strain. 

In order to determine whether the interaction between Swi4p and Mbp1p could be 

detected with lower amounts of input protein, similar to that observed with Swi6p and Swi4p or 

with Mbp1p, the Co-IP was repeated with 2 mg of protein. When Swi4p-3HA was precipitated 

with anti-HA beads, Mbp1p-13MYC did not co-purify (Fig. 16A). The reverse Co-IP using anti-

MYC beads also showed absence of Swi4p-3HA in the Mbp1p-13MYC precipitate (Fig. 16B).  

However, a strong band was observed in the control lane, indicating that the anti-MYC beads in 

my hands bound non-specifically to Swi4p-3HA in this trial, and that the non-specific cross-
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reaction was not specific to Mbp1p-HA as seen in Figure 6. Thus, only the Co-IPs using anti-HA 

beads were conclusive. 

  Collectively, the data show that Swi4p and Mbp1p can interact but only with high 

amounts of input protein and only when Swi4p is pulled out. The lack of interaction between 

Swi4p and Mbp1p with lower amounts of input proteins indicates that that the interaction is not 

the same as that seen between Swi6p and Swi4p or Swi6p and Mbp1p, raising the possibility of 

there being two separate Swi6p-containing complexes in C. albicans.  

3.1.3 Validation of other proteins that interact with Swi6p: Cdc5p  

 

Previous work involving affinity purification of Swi6p followed by mass spectrometry 

identified additional proteins that may interact with Swi6p (Y. Chen, MSc thesis), including the 

mitotic polo-like kinase Cdc5p [43, 46]. The putative interaction was identified in cells arrested 

in G1 phase, but not in exponential-phase cells. Since this interaction has not been previously 

reported, we attempted to confirm the result via Co-IP. For this, CDC5 was tagged with three 

copies of HA at the C-terminus in strain YC221 (SWI6-TAP-URA3/SWI6, 

∆cln3::hisG/MET::CLN3-ARG4), to obtain strain VC181 (CDC5-3HA-HIS1/CDC5, SWI6-TAP-

URA3/SWI6, Δcln3::hisG/MET::CLN3-ARG4) (Fig. 17). Next, a control strain VC380 (CDC5-

3HA-HIS1/CDC5, Δcln3::hisG/MET::CLN3-ARG4) was constructed by tagging CDC5 with an 

HA tag in strain BH253 (Δcln3::hisG/MET::CLN3-ARG4) (Fig. 18). Strains VC181 and VC380 

were incubated in inducing (-MC) media overnight, diluted into repressing (+MC) media and 

incubated at 30C for 4 h. When Cdc5p-3HA was precipitated using anti-HA beads, Swi6p-TAP 

co-purified, indicating that these two proteins interact in G1 phase-arrested cells (Fig. 19A).  

However, a reverse Co-IP that pulled out Swi6p-TAP was inconclusive as strong non-specific 
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cross-reaction was noted in the control sample (Fig. 19B). In order to determine whether these 

Swi6p and Cdc5p interact in exponential phase cells, Co-IP was repeated under these growth 

conditions, using the same strains. When Cdc5p-3HA was precipitated with anti-HA beads, a 

band that cross-reacted with the anti-TAP antibody was present, but also in the control strain 

(Fig. 20). Thus, the result is inconclusive due to non-specific binding of beads.  

In an attempt to eliminate non-specific cross-reaction and further investigate whether 

Swi6p and Cdc5p interact in exponential-phase cells, new strains with different tags were created 

and the Co-IP was repeated. For this, SWI6 was tagged with three copies of HA at the C-

terminus in a strain that contained CDC5 tagged with 13 copies of MYC (AG629; CDC5-

13MYC-HIS1/CDC5) to obtain strain VC348 (SWI6-3HA-URA3/SWI6, CDC5-13MYC-

HIS1/CDC5). VC348 was confirmed by PCR and Western blot analysis (Fig. 21). When Swi6p-

3HA was pulled out with anti-HA beads, a very faint band corresponding to Cdc5p-13MYC was 

detected (Fig. 22A). Reverse Co-IP using anti-MYC beads to pull out Cdc5p-13MYC revealed 

non-specific cross-reaction in the control strain and was thus inconclusive (Fig. 22B).   

Since an interaction between Swi6p and Cdc5p was detected in cells blocked in G1 phase 

via affinity purification followed by mass spectrometry, and in one Co-IP experiment, we further 

explored the interaction by asking whether Swi6p was post-translationally modified by Cdc5p. In 

order to test this hypothesis, SWI6 was tagged with three copies of HA tag in a strain containing 

one copy of CDC5 under the control of MET3 promoter (AG500; Δcdc5::hisG/MET3::CDC5-

ARG4), resulting in strain VC426 (SWI6-3HA-URA/SWI6, Δcdc5::hisG/MET3::CDC5-ARG4).  

VC426 was confirmed via PCR and Western analysis (Fig. 23). Next, strains VC426 and control 

strain YC216 (Δswi6::HIS1/SWI6-3HA-URA3) were diluted to an O.D.600nm of 0.0001 and 

incubated overnight at 30o in inducing (-MC) media. The next day, when cells reached 



 

37 
 

exponential phase (O.D. of 0.8), they were diluted to an O.D.600nm of 0.3 in fresh inducing (-MC) 

or repressing (+MC) media, and collected at 0, 3, or 6 h. Swi6p was then analyzed via Western 

blotting (Fig. 24). However, Swi6p did not show significant changes in migration in the presence 

vs. absence of Cdc5p. The levels of Swi6p appeared to decrease as Cdc5p was depleted, but 

quantification was not done and we cannot rule out differences in loading. Overall, the results 

suggest that Swi6p may physically interact with Cdc5p, but the functional significance of this 

relationship remains unclear.  

Other additional Swi6p-interacting factors identified in previous studies include an 

unknown orf, orf19.5722, which contains a domain with DNA binding activity and has a role in 

regulation of transcription (Table 4). A physical interaction between these two proteins still 

requires confirmation via Co-IP. 

3.1.4 Confirmation of additional interacting factors of Swi4p: components of the 

proteasome  

Although Swi6p was previously identified to be the dominant interacting factor of Swi4p 

(Y. Chen MSc thesis), several other putative interacting proteins with functions related to the 

proteasome were identified, including Pr26p, a sub-unit of the 26S proteasome, and Rpn1p, 

Rpn3p, Rpt6p, which are components of the 19S regulatory subunit (Table 5). The 19S 

proteasome is responsible for removing ubiquitin chains and subsequently transferring target 

proteins into the inner core of 26S proteasome [62]. A physical interaction between Swi4p and 

the proteasome has not been previously reported. These results may have important implications 

for divergent Swi4p regulation in C. albicans. In order to first confirm the interactions, RPN1 

was tagged with a three copies of HA at the C-terminus in a 13-MYC tagged SWI4 strain 

(VC108), resulting in strain VC389 (RPN1-3HA-URA3/RPN1, Δswi4::hisG/SWI4-13MYC-
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HIS1), which was confirmed via PCR and Western blot (Fig. 25). The control strain VC394 

(RPN1-3HA-URA3/RPN1) was also constructed and confirmed via PCR and Western (Fig. 26) to 

use as a control. The strains in hand will now allow for a Co-IP experiment and further 

investigation of a putative role for the proteasome in Swi4p regulation.  

3.2 Validation of putative Swi4p targets: EFG1 

3.2.1 Expression of EFG1 is moderately induced as Swi4p is depleted over time 

In order to determine the mechanisms of action of Swi4p, a previous study (Y. Chen, 

MSc thesis) completed a genome-wide location analysis of Swi4p using a single tiling array. 

Results showed significant enrichment of Swi4p binding at promoter regions of genes associated 

with budding pattern, cell wall biogenesis, and cell cycle transitions. Intriguingly, most of the 

genes were linked to biological processes associated with filamentous growth, and included 

important regulators of hyphal development. One target was EFG1, a transcription factor that is 

required for hyphal growth under most hyphal-inducing conditions [37, 63]. Together with the 

fact that yeast cells depleted of Swi4p grow predominantly in a filamentous fashion, the data 

suggests that Swi4p and the G1/S cell cycle machinery may directly impinge on the hyphal 

development program. In order to gain additional evidence supporting this hypothesis, we 

investigated the functional significance of Swi4p occupation of the EFG1 promoter. First, we 

asked whether EFG1 expression was modulated in the absence of Swi4p. For this, strains YC161 

(∆swi4::URA3/∆swi4::HIS1, pBS-ARG4-SWI4), YC171 (∆swi4::URA3/∆swi4::HIS1, pBS-

ARG4), YC201 (∆swi6::HIS1/∆swi6::URA3, pBS-ARG4-SWI6), YC233 

(∆swi6::HIS1/∆swi6::URA3, pBS-ARG4), YC323 (∆mbp1::HIS1/∆mbp1::URA3, pBS-ARG4-

MBP1), YC381 (∆mbp1::HIS1/∆mbp1::URA3, pBS-ARG4), and BH420 (BWP17, pRM100-

CaURA3, CaHIS1, pBS-CaARG4) were incubated in minimal complete media until they reached 
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an OD600nm of 0.8. Cells were collected, RNA was extracted and EFG1 expression was 

determined using Northern blotting. The levels of EFG1 did not significantly vary between 

strains (Fig. 27A).  

In order to further investigate EFG1 expression, we next determined whether it was 

modulated within a window of Swi4p depletion, since EFG1 in C. albicans decreases rapidly in 

response to serum but resumes expression at later stages [64]. For this, strain BH150 

(∆swi4::hisG/MET3::SWI4-ARG4) and the control strain BH420 (SWI4/SWI4) were incubated in 

inducing (-MC) medium at 30C overnight, diluted into repressing (+MC) or  inducing medium 

and incubated for set times. Cells were collected, RNA was extracted and a Northern blot was 

completed. Under these conditions, EFG1 was moderately induced as Swi4p was depleted 

overtime (Fig. 27B). Time “0” time points had little RNA, as observed for both EFG1 and the 

ACT1 loading control, which reflects the difficulty in extracting RNA from stationary phase 

culture cells. Thus, EFG1 is moderately induced in cells depleted of Swi4p.   

3.2.2 Absence of EFG1 partially suppresses the phenotype of swi4Δ/swi4Δ cells 

 

We further tested the functional significance of Swi4p occupation of the EFG1 promoter 

by asking if Efg1p was required for the filamentous phenotype of Swi4p-depleted cells. For this, 

two alleles of EFG1 were replaced with ARG4 and HIS1 markers in strain BH339 

(swi4::hisG/swi4::URA3), resulting in strain VC247. Strains were confirmed by PCR, which 

show two distinct bands corresponding to two EFG1 alleles replaced by markers (Fig. 28A and 

B). Importantly, the wild-type EFG1 allele was not present (Fig. 28C). Next, strains VC247 and 

VC166 (Δefg1::ARG4/EFG1, Δswi4::hisG/Δswi4::URA3) were investigated for phenotype.  

Heterozygous strain VC166 showed long filaments and enlarged, oval-shaped cells (Fig. 29), as 

shown previously for Swi4p-depleted cells [48]. However, cells of strain VC247 were short, 
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spindle-like, and not enlarged, suggesting partial suppression of the Swi4p-depleted filamentous 

phenotype (Fig. 29). Together, the results demonstrate that EFG1 expression is influenced by 

Swi4p, and the Swi4p-depleted phenotype is dependent in part on Efg1p. This supports the idea 

that EFG1 is a target of Swi4p.  
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Figure 4. Co-immunoprecipitation demonstrates a positive interaction between Swi6p and 

Swi4p. 

Western blot of whole cell extract and immune-precipitates from strains AM201.5 

(∆swi6::URA3/SWI6-TAP-ARG4), AH110 (SWI4-3HA-HIS1/SWI4, Δswi6::URA3/SWI6-TAP-

ARG4) and YC113 (∆swi4:hisG/SWI4-3HA-HIS1) using anti-HA agarose (A) or IgG sepharose 

(B). 20 µl of beads were incubated with 2 mg of protein overnight, washed, and boiled in SDS 

sample buffer to elute interacting proteins. 
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Figure 5. Co-immunoprecipitation demonstrates a positive interaction between Swi6p and 

Mbp1p. 

Western blot of whole cell extract and immune-precipitates from strains YC367 

(∆mbp1::HIS1/MBP1-TAP-URA3), YC396 (∆swi6::HIS1/SWI6-3HA-URA3, MBP1/MBP1-TAP-

URA3) and YC216 (∆swi6::HIS1/SWI6-3HA-URA3) using anti-HA agarose (A) or IgG 

sepharose (B). 20 µl of beads were incubated with 2 mg of protein overnight, washed, and boiled 

in SDS sample buffer to elute interacting proteins. 
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Figure 6. Construction of a strain carrying MBP1-3HA in a SWI6-TAP-URA3/SWI6, 

Δcln3::hisG/MET::CLN3-ARG4 background. 

(A, B) Map and DNA gel of a PCR screen to confirm intergration of a  3HA-HIS1-containing 

construct at the C-terminus of MBP1. Oligonucleotides CaHIS1F and AG30R produced a 1923 

bp band for MBP1-3HA. Positive strains VC132, VC133, VC134, and VC135 (MBP1/MBP1-

3HA-HIS1, SWI6-TAP-URA3/SWI6, Δcln3::hisG/MET::CLN3-ARG4) and negative control strain 

BWP17 are shown in (B). (C) Western blot containing 30 µg of protein from strains VC132, 

VC133, VC134, VC135, YC113 (MBP1-3HA-HIS1/MBP1, SWI6-TAP-URA3/SWI6, 

Δcln3::hisG/MET::CLN3-ARG4), and BWP17 incubated with anti-HA antibody. Mbp1-3HA is 

100 kDa.  
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Figure 7. Co-immunoprecipitation confirming an interaction between Mbp1p and Swi6p in 

G1 phase-blocked cells. 

Western blots of whole cell extracts and immune-precipitates from strains YC221 (SWI6-TAP-

URA3/SWI6, Δcln3::hisG/MET::CLN3-ARG4) and VC132 (MBP1-3HA-HIS1/MBP1, SWI6-

TAP-URA3/SWI6, Δcln3::hisG/MET::CLN3-ARG4) grown in repressing medium (+MC) for 4 h 

to induce a G1-phase block, using anti-HA agarose.  40 mg of protein was incubated with 40 µl 

of beads overnight, washed, and boiled in SDS sample buffer for the elution of interacting 

proteins.  
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Figure 8. Confirmation of a Δswi4::hisG/SWI4-13MYC-HIS1 strain. 

(A, B) Map and gel of a PCR screen to confirm intergration of a 13MYC-HIS1-containing 

construct at the C-terminus of SWI4. Oligonucleotides YC21F and BH14R amplify a 5 kB band 

for SWI4-13MYC and a 1.4 kB band for SWI4/SWI4 (A). Positive strain VC108 

(Δswi4::hisG/SWI4-13MYC-HIS1) and negative control strain BWP17 are shown in (B). (C) 

Western blot containing 30 µg of whole cell protein extracts from strains VC104, VC108, 

VC112 (Δswi4::hisG/SWI4-13MYC-HIS1), AG625 (CDC5-13MYC-HIS1/CDC5), and BWP17 

incubated with anti-MYC antibody.  
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Figure 9. Construction of a strain carrying MBP1-3HA-ARG4 and SWI4-13MYC-HIS1. 

(A, B) Map and gel of a PCR screen to confirm intergration of a 3HA-ARG4-containing construct 

at the C-terminus of MBP1. Oligonucleotides CaARG4F and YC15R amplify a 1264 bp band for 

MBP1-3HA (A). Positive strains VC150 and VC151 (Δswi4::hisG/SWI4-13MYC-HIS1, 

MBP1/MBP1-3HA-ARG4) are shown in (B). (C) Western blot containing 30 µg of whole cell 

protein extracts from strains VC150, VC151, VC159 and VC160 (Δswi4::hisG/SWI4-13MYC-

HIS1, MBP1/MBP1-3HA-ARG4), YC113 (Δswi4::hisG/SWI4-3HA-HIS1), and BWP17 incubated 

with anti-HA antibody. 
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Figure 10. Co-immunoprecipitation demonstrates a negative interaction between Mbp1p 

and Swi4p when Mbp1p is immune-precipitated. 

Western blot of whole cell extract and immune-precipitates from strains VC108 

(Δswi4::hisG/SWI4-13MYC-HIS1), VC150 (Δswi4::hisG/SWI4-MYC-HIS1, MBP1/MBP1-HA-

ARG4) and YC351 (Δmbp1::HIS1/MBP1-3HA-URA3) using anti-HA agorose (A) or anti-MYC 

agarose (B). 40 µl of beads were incubated with 40 mg of protein overnight, washed, and boiled 

in SDS sample buffer to elute interacting proteins. 
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Figure 11. Co-immunoprecipitation shows that non-specific cross reaction of anti-MYC 

beads is specific to Mbp1p tagged with an HA tag. 

Western blot of whole cell extract and immune-precipitates from strains YC352 

(Δmbp1::HIS1/MBP1-3HA-URA3) and YC101 (SWI4-3HA-HIS1/SWI4) using anti-MYC 

agarose. 40 µl of beads were incubated with 40 mg of protein overnight, washed, and boiled in 

SDS sample buffer to elute interacting proteins.  
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Figure 12. Confirmation of a Δswi4::hisG/SWI4-3HA-URA3 strain. 

(A, B) Map and gel of a PCR screen to confirm intergration of a 3HA-URA3-containing construct 

at the C-terminus of SWI4. Oligonucleotides SWI4SF1 and SWI4SR1 amplify a 1264 bp band 

for SWI4-3HA (A). Positive strain VC300 (Δswi4::hisG/SWI4-3HA-URA3) and negative control 

strain BWP17 shown in (B). (C) Western blot containing 30 µg of whole cell protein extracts 

from strains VC300, (Δswi4::hisG/SWI4-3HA-URA3), VC150 (Δswi4::hisG/SWI4-13MYC-HIS1, 

MBP1/MBP1-3HA-ARG4), and BWP17 incubated with anti-HA antibody.  
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Figure 13. Confirmation of a MBP1-13MYC-HIS1/MBP1 strain. 

(A, B) Map and gel of a PCR screen to confirm intergration of a 13MYC-HIS1-containing 

construct at the C-terminus of MBP1. Oligonucleotides CaHIS1F and YC15R amplify a 970 bp 

band for MBP1-13MYC (A). Positive strains VC303, VC304 (MBP1-13MYC-HI1S/MBP1) and 

negative control strain BWP17 shown in (B). (C) Western blot containing 30 µg of whole cell 

protein extracts from strains VC303, VC304, VC308 (MBP1-13MYC-HIS1/MBP1), VC150 

(Δswi4::hisG/SWI4-13MYC-HIS1, MBP1/MBP1-3HA-ARG4), VC108 (Δswi4::hisG/SWI4-

13MYC-HIS1) and BWP17 incubated with anti-MYC antibody.  
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Figure 14. Confirmation of a MBP1-13MYC-HIS1/MBP1, Δswi4::hisG/SWI4-3HA-URA3 

strain. 

(A, B) Map and gel of a PCR screen to confirm intergration of a 13MYC-HIS1-containing 

construct at the C-terminus of MBP1. Oligonucleotides CaHIS1F and YC15R amplify a 970 bp 

band for MBP1-13MYC (A). Positive strains VC324, VC325, VC326 (MBP1-13MYC-

HIS1/MBP1, Δswi4::hisG/SWI4-3HA-URA3) and negative control strain BWP17 shown in (B). 

(C) Western blot containing 30 µg of whole cell protein extracts from strains VC324, VC325, 

VC326 (MBP1-13MYC-HIS1/MBP1, Δswi4::hisG/SWI4-3HA-URA3), VC150 

(Δswi4::hisG/SWI4-13MYC-HIS1, MBP1/MBP1-3HA-ARG4), and BWP17 incubated with anti-

MYC antibody. 
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Figure 15. Co-immunoprecipitation demonstrates a possible interaction between Swi4p and 

Mbp1p when Swi4p is immune-precipitated, but not when Mbp1p is pulled down. 

Western blot of whole cell extract and immune-precipitates from strains VC304 (MBP1-13MYC-

HIS1/MBP1), VC324 (MBP1-13MYC-HIS1/MBP1, Δswi4::hisG/SWI4-3HA-URA3), and VC300 

(Δswi4::hisG/SWI4-3HA-URA3) using anti-HA agaorose (A) or anti-MYC agarose (B). A signal 

is observed in the control strain (A) but is less intense than that observed in the experimental 

strain. 40 µl of beads were incubated with 40 mg of protein overnight, washed, and boiled in 

SDS sample buffer to elute interacting proteins.  
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Figure 16. Co-immunoprecipitation demonstrates that Swi4p and Mbp1p do not interact 

when the amount of input protein is reduced. 

Western blot of whole cell extract and immune-precipitates from strains VC304 (MBP1-13MYC-

HIS1/MBP1), VC324 (MBP1-13MYC-HIS1/MBP1, Δswi4::hisG/SWI4-3HA-URA3), and VC300 

(Δswi4::hisG/SWI4-3HA-URA3) using anti-HA agarose (A) or anti-MYC agarose (B). 20 µl of 

beads were incubated with 2 mg of protein overnight, washed, and boiled in SDS sample buffer 

to elute interacting proteins.  
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Figure 17. Construction of a strain carrying CDC5-3HA in a SWI6-TAP-URA3/SWI6, 

Δcln3::hisG/MET::CLN3-ARG4 background. 

(A, B) Map and DNA gel of a PCR screen to confirm intergration of a  3HA-HIS1-containing 

construct at the C-terminus of CDC5. Oligonucleotides CaHIS1F and AG2R produced a 1035 bp 

band for CDC5-3HA. Positive strains VC181, VC183 (CDC5-3HA-HIS1/CDC5, SWI6-TAP-

URA3/SWI6, Δcln3::hisG/MET::CLN3-ARG4) and negative control strain BWP17 shown in (B). 

(C) Western blot containing 30 µg of whole cell protein extracts from strains VC181, VC183, 

VC188, (CDC5-3HA-HIS1/CDC5, SWI6-TAP-URA3/SWI6, Δcln3::hisG/MET::CLN3-ARG4), 

YC113 (Δswi4::hisG/SWI4-3HA-HIS1), and BWP17 incubated with anti-HA antibody.  
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Figure 18. Confirmation of tagging CDC5 with HA in BH253 (Δcln3::hisG/MET::CLN3-

ARG4). 

(A, B) Map and DNA gel of a PCR screen to confirm intergration of a  3HA-HIS1-containing 

construct at the C-terminus of CDC5. Oligonucleotides CaHIS1F and AG2R produced a 1035 bp 

band for CDC5-3HA. Positive strains VC380 (CDC5-3HA-HIS1/CDC5, 

Δcln3::hisG/MET::CLN3-ARG4) and negative control strain BWP17 shown in (B). (C) Western 

blot containing 30 µg of whole cell protein extracts from strains VC378, VC380 (CDC5-3HA-

HIS1/CDC5, Δcln3::hisG/MET::CLN3-ARG4), VC150 (Δswi4::hisG/SWI4-13MYC-HIS1, 

MBP1-3HA-ARG4/MBP1), and BWP17 incubated with anti-HA antibody.  
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Figure 19. Co-immunoprecipitation demonstrating an interaction between Cdc5p and 

Swi6p in G1 phase-blocked cells when Cdc5p-HA is immune-precipitated. 

Western blot of whole cell extract and immune-precipitates from strains YC221 (SWI6-TAP-

URA3/SWI6, Δcln3::hisG/MET::CLN3-ARG4), VC181 (CDC5-3HA-HIS1/CDC5, SWI6-TAP-

URA3/SWI6, Δcln3::hisG/MET::CLN3-ARG4), and VC380 (CDC5-3HA-HIS1/CDC5, 

Δcln3::hisG/MET::CLN3-ARG4) grown in repressing medium (+MC) for 4 h to induce a G1-

phase block, using anti-HA agaorose (A) or anti-TAP agarose (B). Proteins were not incubated 

with anti-TAP antibody in part B due to non-specific cross reaction already seen in control lane 

when pulled out with IgG beads. 40 µl of beads were incubated with 40 mg of protein for 4 

hours, washed, and boiled in SDS sample buffer to elute interacting proteins.  
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Figure 20. Co-immunoprecipitation does not support an interaction between Cdc5p and 

Swi6p in exponential growing cells as opposed to G1 phase blocked cells, due to strong non-

specific cross reaction. 

Western blot of whole cell extract and immune-precipitates from strains YC221 (SWI6-TAP-

URA3/SWI6, Δcln3::hisG/MET::CLN3-ARG4) and VC181 (CDC5-3HA-HIS1/CDC5, SWI6-

TAP-URA3/SWI6, Δcln3::hisG/MET::CLN3-ARG4) using anti-HA agaorose. 40 µl of beads were 

incubated with 40 mg of protein overnight, washed, and boiled in SDS sample buffer to elute 

interacting proteins.  
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Figure 21. Confirmation of a SWI6-3HA-URA3/SWI6, CDC5-13MYC-HIS1/CDC5 strain. 

(A, B) Map and DNA gel of a PCR screen to confirm intergration of a 3HA-URA3-containing 

construct at the C-terminus of SWI6. Oligonucleotides CaURA3F and SWI6SR1 produced an 

898 bp band for SWI6-3HA. Positive strain VC348 (SWI6-3HA-URA3/SWI6, CDC5-13MYC-

HIS1/CDC5) and negative control strain BWP17 shown in (B). (C) Western blot containing 30 

µg of whole cell protein extracts from strains VC348, VC351, VC352 (SWI6-3HA-URA3/SWI6, 

CDC5-13MYC-HIS1/CDC5), VC150 (Δswi4::hisG/SWI4-13MYC-HIS1, MBP1-3HA-

ARG4/MBP1), and BWP17 incubated with anti-HA antibody.  
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Figure 22. Co-immunoprecipitation demonstrates a possible interaction between Cdc5p 

and Swi6p when Swi6p-HA is immune-precipitated from exponential-growing cells, but not 

when Cdc5p-MYC is pulled down. 

Western blots of whole cell extracts and immune-precipitates from strains AG625 (CDC5-

13MYC-HIS1/CDC5), VC348 (SWI6-3HA-URA3/SWI6, CDC5-13MYC-HIS1/CDC5), and 

YC211 (Δswi6::HIS1/SWI6-3HA-URA3), using anti-HA agarose (A) or anti-MYC beads (B). 

Proteins were not incubated with anti-TAP antibody in part B due to non-specific cross reaction 

already seen in control lane when pulled out with IgG beads. 40 mg of protein was incubated 

with 40 µl of beads overnight, washed, and were boiled in SDS sample buffer for the elution of 

interacting proteins.  
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Figure 23. Confirmation of a SWI6-3HA-URA/SWI6, Δcdc5::hisG/MET3::CDC5-ARG4 

strain. 

(A, B) Map and DNA gel of a PCR screen to confirm intergration of a  3HA-URA3-containing 

construct at the C-terminus of SWI6. Oligonucleotides CaURA3F and SWI6SR1 produced an 

898 bp band for SWI6-3HA. Positive strains VC426, VC427 (SWI6-3HA-URA3/SWI6, 

Δcdc5::hisG/MET::CDC5-ARG4), YC216 (Δswi6::hisG/SWI6-3HA-URA3) and negative control 

strain BWP17 shown in (B). (C) Western blot containing 30 µg of whole cell protein extracts 

from strains VC426, VC427 (SWI6-3HA-URA3/SWI6, Δcdc5::hisG/MET::CDC5-ARG4), VC181 

(CDC5-3HA-HIS1/CDC5, SWI6-TAP-URA3/SWI6, Δcln3::hisG/MET::CLN3-ARG4), and 

BWP17 incubated with anti-HA antibody.  
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Figure 24. Swi6p is not modulated over time upon depletion of Cdc5p. 

Western blot of strains VC426 (SWI6-3HA-URA3/SWI6, Δcdc5::hisG/MET::CDC5-ARG4) and 

YC216 (Δswi6::HIS1/SWI6-3HA-URA3) that were incubated in +MC repressing or –MC 

inducing medium for the indicated times.  Blots were incubated with anti-HA antibody to 

visualize Swi6p-HA.  
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Figure 25. Confirmation of a RPN1-3HA-URA3/RPN1, Δswi4::hisG/SWI4-13MYC-HIS1 

strain. 

(A, B) Map and DNA gel of a PCR screen to confirm intergration of a  3HA-URA3-containing 

construct at the C-terminus of RPN1. Oligonucleotides CaURA3F and VC9R produced an 892 

bp band for RPN1-3HA. Positive strains VC389, VC390 (RPN1-3HA-URA3/RPN1, 

Δswi4::hisG/SWI4-13MYC-HIS1), and negative control strain BWP17 shown in (B). (C) 

Western blot containing 30 µg of whole cell protein extracts from strains VC389, VC390, 

VC391 (RPN1-3HA-URA3/RPN1, Δswi4::hisG/SWI4-13MYC-HIS1), VC348 (SWI6-3HA-

URA3/SWI6, CDC5-13MYC-HIS1/CDC5), and BWP17 incubated with anti-HA antibody.  
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Figure 26. Confirmation of a RPN1-3HA-URA3/RPN1 strain. 

(A, B) Map and DNA gel of a PCR screen to confirm intergration of a  3HA-URA3-containing 

construct at the C-terminus of RPN1. Oligonucleotides CaURA3F and VC9R produced an 892 

bp band for RPN1-3HA. Positive strain VC394 (RPN1-3HA-URA3/RPN1), and negative control 

strain BWP17 shown in (B). (C) Western blot containing 30 µg of whole cell protein extracts 

from strains VC394 (RPN1-3HA-URA3/RPN1), VC389 (RPN1-3HA-URA3/RPN1, 

Δswi4::hisG/SWI4-13MYC-HIS1), VC348 (SWI6-3HA-URA3/SWI6, CDC5-13MYC-

HIS1/CDC5), and BWP17 incubated with anti-HA antibody. 
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Figure 27. Northern blot showing EFG1 expression in the presence or absence of SWI4, 

SWI6, or MBP1. 

RNA was extracted from swi4 Δ/Δ, swi6 Δ/Δ, and mbp1 Δ/Δ mutant strains and their respective 

complement strains in addition to control strain, to analyze EFG1 expression patterns. 

Expression of EFG1 is slightly decreased in swi6 Δ/Δ mutant cells compared to SWI6 containing 

cells. Expression of EFG1 is slightly decreased in swi4 Δ/Δ mutant cells (part A). Next, RNA 

extracted from cells under SWI4 repressing conditions was analyzed for EFG1 expression 

patterns at different time points in the presence and absence of SWI4. EFG1 is moderately 

induced as Swi4p is depleted over time (part B). 

(A) 

(B) 
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Figure 28. Construction of strain lacking EFG1 in a swi4 Δ/Δ mutant background. PCR 

screens confirming swi4/efg1 double mutant strains. 

(A, B) Map and PCR screening gel of the deletion of first allele of EFG1, showing a 1199 bp 

band for Δefgl::ARG4 (A) and second EFG1 allele, showing a 1356 bp band for Δefgl::HIS1 (B). 

(C) Map and PCR screening results for confirming the deletion of both EFG1 alleles, showing 

3276 bp band for EFG1/EFG1, 3639 bp band for Δefgl::ARG4, and 2839 bp band for 

Δefgl::HIS1.  
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swi4/swi4, efg1/efg1  

 

swi4/swi4, EFG1/efg1  

 
(B) (A) 

 

               

Figure 29. Influence of the absence of Efg1p on the swi4/swi4 phenotype. 

Strains VC166 (Δefg1::ARG4/EFG1, Δswi4::hisG/Δswi4::URA3) and VC247 (Δefg1::ARG4/ 

Δefg1::HIS1, Δswi4::hisG/Δswi4::URA3) were incubated in YPD media for 8 h, and fixed.  
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Table 4. Selected Swi6p-enriched targets1 

Protein ID 
Number of 

peptides ORF Name 
Present in 

control Protein Description 

CAL0005042 4 CDC5/orf19.6010 N Verified ORF; Polo-like kinase; 

member of conserved Mcm1 regulon; 

depletion causes defects in spindle 

elongation and Cdc35-dependent 

filamentation; virulence-group-

correlated expression; likely essential 

(UAU1 method); Spider biofilm 

repressed 

CAL0001395 7 orf19.5722 N Uncharacterized ORF; Has domain(s) 

with predicted DNA binding activity 

and role in regulation of transcription; 

DNA-dependent 
1Complete list of Swi6p-enriched targets can be accessed from paper ‘Characterization of putative G1/S 

transcription complex factors Swi6p, Swi4p and Mbp1p in the fungal pathogen Candida albicans’ by Chen, Y 

(2013). 

 

Table 5. Selected Swi4p-enriched targets1 

1Complete list of Swi4p-enriched targets can be accessed from paper ‘Characterization of putative G1/S 

transcription complex factors Swi6p, Swi4p and Mbp1p in the fungal pathogen Candida albicans’ by Chen, Y 

(2013).                                           

 
  

Protein ID Number of 

peptides 
ORF Name 

Present in 

control 
Protein Description 

CAL0006334 10 RPN1/orf19.4956 N Uncharacterized ORF; Putative 19S 

regulatory particle of the 26S 

proteasome; regulated by Gcn2p and 

Gcn4p 

CAL0001433 6 RPN3/orf19.3054 N Uncharacterized ORF; Putative non-

ATPase regulatory subunit of the 26S 

proteasome lid; amphotericin B 

repressed; oxidative stress-induced via 

Cap1p 

CAL0006022 10 RPT6/orf19.3593 N Uncharacterized ORF; Putative 

ATPase of the 19S regulatory particle 

of the 26S proteasome; transcript 

regulated by Mig1; regulated by Gcn2 

and Gcn4 

CAL0001552 9 PR26/orf19.5793 N Uncharacterized ORF; Protein with 

similarity to proteasomal 26S 

regulatory subunit of S. cerevisiae, H. 

sapiens, Methanobacterium 

thermoautotrophicum 

(Archaebacterium) 
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4. Discussion 

 
A comprehensive understanding of the regulation of the G1/S transition in C.albicans has 

important implications for identifying factors that are important for cell proliferation and 

morphogenesis, both of which are important for virulence. Based on genetic and DNA 

expression data, previous reports suggested that C. albicans contained a single MBF-like G1/S 

transcription complex consisting of the major components Swi4p and Swi6p [42, 48, 49], 

although biochemical data supporting this interaction was lacking. However, additional factors 

were proposed to contribute to G1/S control in C. albicans, based on the fact that C. albicans 

cells lacking Swi6p and Swi4p or Swi4p and Mbp1p, were still viable [48]. Subsequent work 

from Y. Chen in the Bachewich lab demonstrated that Swi4p and Swi6p physically interact to 

form a complex, in support of the model based on affinity purification and co-

immunoprecipitation experiments. However, the latter used a high amount of input protein.   

Mbp1p also interacted with Swi6p, and experiments to test for an interaction between Swi4p and 

Mbp1p were inconclusive, questioning the composition and number of complexes governing the 

G1/S transition. Further, systematic affinity purification of Swi6p, Swi4p and Mbp1p revealed 

additional putative interacting proteins. However, these interactions were not validated using 

other approaches.  Finally, ChIP-chip analysis identified putative Swi4p targets involved in G1/S 

control, as predicted, but also in hyphal development, including the core hyphal regulator Efg1p.  

However, the functional significance of this occupation was not further explored.   

In addressing these outstanding issues, we obtained results that confirm that Swi6p 

interacts with Swi4p but also Mbp1p. However, only a weak interaction between Swi4p and 

Mbp1p could be detected when Swi4p, but not Mbp1p, was pulled down, suggesting that C. 

albicans contains a Swi6p/Swi4p complex as well as a Swi6p/Mbp1p complex. Since the latter 
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does not appear to be important in G1/S control in yeast under standard growth conditions [65], 

its function thus remains unclear. The results also confirm an interaction between Swi6p and the 

mitotic polo kinase Cdc5p, which has not been reported in other systems. Finally, we also 

provide evidence that supports a functional link between Swi4p and the promoter of the core 

hyphal regulator Efg1p.  

4.1 C. albicans Swi6p binds Swi4p and Mbp1p but in separate complexes  

Although C. albicans contains homologues of Swi6p, Swi4p and Mbp1p, a single 

complex consisting of Swi6p and Swi4p was proposed to function in G1/S regulation, as absence 

of Mbp1p did not strongly affect yeast growth, unlike absence of Swi4p or Swi6p [48, 49], and 

promoters of G1/S-associated genes were enriched for an MBF motif [42]. However, our finding 

that Swi6p binds Swi4p and Mbp1p, even with reduced amounts of input protein in co-

immunoprecipitation experiments, suggests that separate Swi4p/Swi6p and Swi6p/Mbp1p 

complexes exist in C. albicans. If all three proteins existed in a single complex, we predict that 

affinity purification of Swi4p or Mbp1p should reveal co-precipitation of the Mbp1p or Swi4p, 

respectively. However, affinity purification of these factors followed by mass spectrometry did 

not reveal binding. When tested further with co-immunoprecipitation, binding was detected only 

when Swi4p was pulled down with high amounts of input protein (40mg). This demonstrates 

that, if an interaction exists, it is not of the same strength as that observed between Swi6p and 

Swi4p or Swi6p and Mbp1p. We cannot rule out that this is due to an indirect interaction 

between Swi4p and Mbp1p through Swi6p, and that the three proteins may be present in a single 

complex. However, the fact that Mbp1p has little effect on yeast growth yet is a dominant 

interacting factor of Swi6p implies that a separate Swi6p/Mbp1p complex is present in C. 

albicans. The function of this, however, remains obscure. Possibilities include functions under 



 

70 
 

different growth conditions or in different cell types. Consistent with this, Res2p from the MBF 

complex in S. pombe has a more dominant function during meiosis compared to mitotic growth 

[18]. Intriguingly, the filamentous fungus Aspergillus nidulans has single sequence homologues 

of SWI6 and MBP1, yet absence of both has little effect on vegetative growth [66]. Thus, there is 

precedence for divergence in G1/S regulation in fungi. Future experiments are aimed at 

determining the function of Mbp1p through ChIP-chip, gel-shift assays, and determining 

phenotype of the mbp1/mbp1 strain, expression of MBP1 and Mbp1p, and post-translational 

modifications of Mbp1p, under diverse growth conditions and in different cell types including 

the opaque cell form.  

4.2 Swi6p interacts with polo-like kinase Cdc5p: a novel interaction 

A putative interaction between Swi6p and the polo-like kinase Cdc5p was suggested by 

previous experiments involving affinity purification followed by mass spectrometry. We have 

now confirmed the interaction using co-immunoprecipitation. We were not able to detect a 

strong interaction in exponential phase vs. G1-blocked cells, agreeing with previous affinity 

purification/mass spectrometry data and raising the possibility that this interaction is specific or 

enhanced in G1 phase. This interaction has not been reported in other systems and is thus novel.  

However, the functional significance remains unclear. Cdc5p belongs to the polo-like kinase 

family of serine/threonine kinases that are conserved from yeast to man [67]. While the major 

conserved functions lie in mitosis and cytokinesis, multi-cellular organisms contain additional 

homologues that function during G1 and S phase. Cdc5p in S. cerevisiae functions in regulating 

mitotic progression through the APC/C [68], FEAR network [69] and MEN pathway [70], as 

well as in septation via RhoA [71]. Cdc5p is cell-cycle regulated and expression of protein levels 

peak at the G2/M transition [72]. However, the protein is present in low levels and can be 
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detected at the spindle pole body as early as G1 phase [73, 74]. Further, Cdc5p has a role in 

spindle pole body maturation [75].  In C. albicans, Cdc5p localizes to the spindle pole body and 

chromatin, even in unbudded, G1-phase cells [50], and Cdc5p is required for metaphase 

progression and spindle elongation [50]. However, it has not been extensively characterized at 

the biochemical level in a cell-cycle-dependent manner. Transcription profiles of Cdc5p-depleted 

cells indicated a global repression of histones, suggesting an S phase arrest, but FACS 

demonstrated that cells contained a 4n content of DNA [50]. However, CDC5 is upregulated at 

G2/M [42], prior to the time in the cell cycle when Swi6p is required. Thus, in one model to 

explain our results, Cdc5p may influence Swi6p function in early G1 phase through 

phoshorylation. In order to test this, we analyzed Swi6p mobility during a time course of Cdc5p 

repression. No significant difference was observed, but a decrease in Swi6p abundance was 

noted. This was not quantified, so we cannot rule out differences in loading. However, if real, the 

result suggests that Cdc5p may influence the stability of Swi6p. Little is currently known about 

the regulation of Swi6p in C. albicans, but more insights on the relevance of an interaction 

between Swi6p and Cdc5p may be gleaned by repeating the experiments with a more refined 

time course, synchronized cells, and under different growth conditions. In S. cerevisiae, Swi6p is 

shuttled between nucleus and cytoplasm as a means of regulation. To determine whether Cdc5p 

might influence Swi6p translocation in C. albicans, localization in living cells under conditions 

of Cdc5p depletion could be employed. Another model could involve indirect interactions 

through a common intermediate. Cdc5p and other Plks have been located at gene promoters 

through interactions with transcription factors [76], including Plo1p from S. pombe, which is 

required for regulating expression of genes at the M/G1 transition [77].   
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Another Swi6p interacting factor identified through previous affinity purification and 

mass spectrometry analysis included a hypothetical protein, orf19.5722p that has a DNA-binding 

domain. The orthologue in S. cerevisiae is NSI1, which is an RNA polymerase I termination 

factor and involved in ribosomal RNA transcription [78]. Since orf19.5722p has putative DNA-

binding ability and may bind Swi6p, it is possible that it contributes to the G1/S transition. 

Oligonucleotides were designed to tag this protein for co-immunoprecipitation experiments to 

confirm an interaction with Swi6p, but this work was not yet completed.  

4.3 Swi4p putative interactions with components of the proteasome: implications for 

regulation 

In S. cerevisiae, SWI4 expression is periodic and peaks during G1 phase, while Swi4p is 

present throughout the cell cycle and remains in the nucleus [79]. Its regulation has not been 

linked to cell-cycle-dependent, targeted degradation. In contrast, previous work from our lab 

demonstrated through affinity purification and mass spectrometry that Swi4p in C. albicans may 

bind several components of the 26S proteasome and the 19S regulatory subunit, including Pr26p, 

Rpn1p, Rpn3p, and Rpt6p. The 26S proteasome is comprised of many subunits that consist of a 

proteolytic core complex (the 20S proteasome) and 19S regulatory complexes. They remove 

ubiquitin chains and transfer the target proteins into the proteolytic core for degradation [62].  

SWI4 in S. cerevisiae shows genetic interactions with some RPN subunits [80-85] but no 

physical interactions have been reported. This has interesting implications for differential 

regulation of Swi4p and thus the G1/S transition in C. albicans. SWI4 levels peak at the G1/S 

transition [42], but little is known about specific forms of regulation. Future work will involve 

determining Swi4p levels during normal cell cycle progression in synchronized cells to 

determine if the protein is modulated at the level of stability, and confirming putative 
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interactions between Swi4p and proteasome subunits using co-immunoprecipitation. With 

respect to the latter, I completed construction of strains and investigations will be carried out by 

a subsequent graduate student.  

4.4 Swi4p targets EFG1: possible link between G1/S transition and filamentous 

development. 

Another major finding from Y. Chen was the observation that Swi4p located at the 

promoter of EFG1, a core regulator of the hyphal development program [37, 63]. The notion that 

EFG1 may be a target of Swi4p was significant since filamentous growth was associated with 

swi4∆/∆ cells [48].  In an attempt to determine whether this location was functional, I determined 

the effect of deleting EFG1 on the Swi4p-depleted phenotype, and measured EFG1 levels in 

strains lacking Swi4p. First, I demonstrated that swi4∆/∆ cells were reduced in size and showed 

less filamentation in the absence vs. presence of Efg1p, suggesting that Efg1p contributed in part 

to the phenotype. In comparison, Efg1p is required for hyphal growth under most hyphal-

inducing conditions [21], and is a direct target of Protein Kinase A (PKA) [86, 87]. I then 

demonstrated that EFG1 was moderately induced in response to absence of Swi4p, but this 

appeared to be a transient response since the change in expression was only noted during a 

period immediately following Swi4p depletion in the SWI4 conditional strain, and not in the 

swi4∆/∆ strain. This result suggests that Swi4p may have some repressive effect on EFG1 

expression under normal yeast growth conditions. Efg1p is a complex regulator as it is required 

for many processes in C. albicans, including the white phase yeast cell type [37, 38], biofilm 

formation [36], hyphal growth [21], adhesion and cell wall gene regulation [88], for example, 

and has both activating [39] and repressing activity [63]. EFG1 is expressed in yeast cells, but 

repressed quickly after yeast are exposed to hyphal-inducing conditions such as serum or Lee’s 
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medium, although expression levels eventually recover [63, 89]. This is due to the fact that 

Efg1p shows negative autoregulation [89]. Thus, with respect to hyphae development, Efg1p is 

required within a window immediately after hyphal induction to help down-regulate the 

repressor NRG1, negatively autoregulate itself, and control other genes [64]. Efg1p is suggested 

to have a negative effect on maintenance of hyphal growth, consistent with its down-regulation 

after hyphal induction [63, 64, 89]. Notably, overexpression of Efg1p can drive filamentous 

growth in the form of pseudohyphae [63].  

With respect to our results, it is thus possible that under yeast growth conditions, Swi4p 

alone or in combination with other proteins has a repressive effect on EFG1 that maintains 

expression at a specific level. Absence of Swi4p results in moderate induction of EFG1, and this 

may contribute to the phenotype, which includes filamentous growth. Given that cells depleted 

of Swi4p grew in a filamentous form and expressed some hyphal-specific genes [48], this result 

could provide a mechanism that links Swi4p function to development. However, it is important 

to note that the swi4∆/∆ cells are pleiotropic and not all filaments are true hyphae. Further, cells 

in the yeast form were significantly enlarged, which we suggested was due to a delay in G1 

phase [48]. Combined with the fact that Efg1p has multiple functions [21], we thus can’t rule out 

the possibility that Swi4p occupation of the EFG1 promoter is important for other processes.  

Intriguingly, the swi4∆/∆ cells lacking Efg1p were also reduced in size, suggesting some 

suppression of the G1/S delay. Efg1p was previously shown to be capable of binding MCB sites 

in one hybrid and gel-retardation assays, but not in in vivo ChIP-chip studies [64, 90]. Thus, Efg1 

is a target of Swi4p, but the functional significance of this occupation requires further 

investigation. Future experiments will include analysis of the EFG1 promoter for the region 

binding Swi4p, cloning that region to a reporter to visualize EFG1 expression in the presence 
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and absence of Swi4p in vivo under different growth conditions and in various cell types, and 

time-course-based ChIP experiments to investigate the dynamics of Swi4p occupation of the 

EFG1 promoter.  

In summary, this work has provided more insights on the G1/S transcription factor 

complex in C. albicans, including composition and function. Importantly, it has also identified a 

possible mechanism by which Swi4p is linked to Efg1p, a critical regulator of many processes 

important for virulence in C. albicans. The results also raise interesting questions on the function 

of the Swi6p/Mbp1p complex, the regulation of Swi4p, and the role of novel interactors of 

Swi6p, which will be the focus of future investigations aimed at understanding the regulation of 

cell proliferation and development in this important fungal pathogen of humans.  
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