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Abstract 

Cooperative Multi Agent Search and Coverage in Uncertain Environments 

Mostafa Mirzaei, Ph.D.  

Concordia University, 2015 

In this dissertation, the cooperative multi agent search and coverage problem in uncertain 

environments is investigated. Each agent individually plans its desired trajectory. The agents 

exchange their positions and their sensors’ measurement with their neighboring agents through a 

communication channel in order to maintain the cooperation objective.  

Different aspects of multi agent search and coverage problem are investigated. Several models for 

uncertain environments are proposed and the updating rules for the probability maps are provided. 

Each of this models is appropriate for a specific type of problems. The cooperative search mission 

is first converted to a decentralized multi agent optimal path planning problem, using rolling 

horizon dynamic programing approach which is a mid-level controller. To make cooperation 

between agents possible, two approximation methods are proposed to modify the objective 

function of agents and to take into the account the decision of other agents. The simulation results 

show the proposed methods can considerably increase the performance of mission without 

significantly increasing the computation burden. This approach is then extended for the case with 

known communication delay between mobile agents. The simulation results show the proposed 

methods can compensate for the effect of known communication delay between mobile agents. A 

Voronoi-based search strategy for a team of mobile agents with limited range sensors is also 

proposed which combines both mid-level and low-level controllers. The strategy includes the 

short-term objective of maximizing the uncertainty reduction in the next step, the long-term 

objective of distributing the agents in the environment with minimum overlap in their sensory 
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domain, and the collision avoidance constraint. The simulation results show the proposed control 

law can reduce the value of uncertainty in the environment below any desired threshold.  

For the search and coverage problem, we first introduce a framework that includes two types of 

agents; search agents and coverage agents. The problem is formulated such that the information 

about the position of the targets is updated by the search agents. The coverage agents use this 

information to concentrate around the more important areas in the environment. The proposed 

cooperative search method, along with a well-known Centroidal Voronoi Configuration method 

for coverage, is used to solve the problem. The effectiveness of the proposed algorithm is 

demonstrated by simulation and experiment. We then introduce the “limited turn rate Voronoi 

diagram” and formulate the search and coverage problem as a multi-objective optimization 

problem with different constraints which is able to consider practical issues like minimum fuel 

consumption, refueling, obstacle avoidance, and collision avoidance. In this approach, there is only 

one type of agents which performs both search and coverage tasks. The “multi agent search and 

coverage problem” is formulated such that the “multi agent search problem” and “multi agent 

coverage problem” are special cases of this problem. The simulation results show the effectiveness 

of the proposed method. 
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CHAPTER 1 

 

                                 Introduction 

The problem of cooperative multi agent decision making and control is to deploy a group of 

agents over an environment to carry out sensing, surveillance, data collection, or distributed 

servicing tasks. This topic covers a wide range of applications including search and rescue 

missions, air traffic control, automated highway systems, satellite networks, security systems, and 

many others. In each case, using a team of cooperative agents can be more efficient and reliable 

than using a single agent. With technological advances and developments of relatively inexpensive 

communication, computation, and sensing devices, this topic has received considerable attention 

over the last two decades [1-6].  

The principles of search theory were introduced during World War II for the search of 

submarines [7-9] and furthered by the scientific community over the last decades [10-14]. The main 

objective of search theory is the distribution of search effort over an environment consisting of 

cells to maximize the probability of finding the object of interest. Typically, it is assumed that 

some prior knowledge about the distribution of the targets in environment is available. In the recent 

years, search missions with a team of mobile agents has received considerable attention in the 

search theory. Some studies in the literature have addressed the multi agent search problem in an 

uncertain environment, and a few approaches have been proposed accordingly. A probabilistic 

search formulation is used to describe the uncertainty in the environment and the problem is 
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usually converted to a multi agent path planning problem to find the optimal path of search agents. 

[15-19].  

Cooperative coverage control studies the problem of covering a given domain using multiple 

agents. The objective of environment coverage is to distribute the agents across the environment 

while aggregating in more important areas. A distribution density function is usually defined that 

reflects a measure of relative importance of different regions in the terrain. The precise definition 

of the distribution density function depends on the desired application. Several solutions have been 

proposed to solve this problem which are usually based on Voronoi partitions and the Lloyd 

algorithm. However, in most of these studies it is assumed that the distribution density function in 

the environment is known a priori by all agents.  

Multi agent search and coverage framework can provide a solution for the coverage problems 

in the uncertain environment where search agents are used to find the unknown distribution density 

function. By using a network of autonomous agents, the cooperative multi agent search and 

coverage framework can be used in many real-world applications involving distributed sensing 

and distributed actuation such as environmental monitoring and clean-up, forest fire detection and 

fighting or search and rescue [20-23].  

Cooperative control is performed at three main levels: high-level, mid-level and low-level 

which are shown in Figure 1-1.  The high-level design includes mission management, task 

assignment, timing/ scheduling, reconnaissance, and search algorithms. Some issues such as path 

planning, safety issues, collision avoidance, obstacle avoidance, formation keeping and trajectory 

following are designed in the mid-level. The low-level (or vehicle level) design discusses inner 

loop control, measurement noise and model uncertainty [24]. High-level decision making can be 

performed online or offline. In the case of online high-level decision making, it is necessary for 
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the central controller to communicate with each mid-level controller, either on a regular basis or 

on an event-based basis. When the high-level decisions are made offline, the mid-level controllers 

receive the required information from the high-level controller before starting their mission, and 

therefore there is no need for communication between the high-level controller and the mid-level 

controllers during the mission. The mid-level controllers should communicate with each other and 

with their corresponding low-level controller on a regular basis. In the search theory, the main 

focus is on the mid-level control. It is assumed that once the waypoints are defined by the mid-

level controllers, there are appropriate low-level controllers available to guide the agents from one 

waypoint to the next one.  
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Figure 1-1. Hierarchy of Decentralized Cooperative Control 
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1.1 Literature Review  

In this section, we first review the literature on cooperative control and decision making. The 

literature on probabilistic search and Bayesian update is reviewed in the next section. Then, 

different methods of path planning are reviewed. Finally, the recent developments in the field of 

coverage control are reviewed.  

1.1.1 Cooperative Control and Decision making 

Three different approaches were proposed for decision making and control of multi agent 

systems. The control of cooperative vehicles is traditionally performed in a centralized manner 

where the system as a whole is modeled and controlled by a single entity. For example, in [25] a 

centralized cooperative control strategy is presented for holonomic navigation in a planar world 

using an artificial potential function where a single controller constructs the collision free 

trajectories for all vehicles. The second approach is hierarchical which utilizes the distributed 

computational capacity of multiple platforms, and relies on a single facility to fuse information or 

resolve global constraints [26-30]. For example, in [30] a distributed hierarchical hybrid system is 

proposed for probabilistic pursuit-evasion games which emphasizes the autonomy of each agent 

while allowing for coordinated team efforts. Pursuit policy computation, map building and inter-

agent communication are handled by central controller while individual agents are responsible for 

navigation, sensing, and control. Centralized decision making for a fleet of vehicle is not usually 

practical due to communication limits, robustness issues, and scalability. Using a hierarchical or 

distributed approach can mitigate many of these problems. In the hierarchical approach, the system 

consists of sub-teams using local communication networks to share information. Communication 

among the sub-teams is limited, although it is assumed to be available if necessary to exchange 

resources. The tasks can be selected by the sub-teams or by a coarse scheduling algorithm runs at 
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a higher level. Although hierarchical decision making and path planning reduces the dependency 

on a central planning system and increases the robustness of the overall mission to failure, its 

performance still depends on the central planner at the top hierarchy level. Thus, performance 

degradation is expected when the central planner fails.  

The third approach is distributed or decentralized, which does not require any centralized 

facility, but instead relies on communication, consensus and negotiation [31-34]. In decentralized 

decision making, each agent decides on its own next action. However, it is essential that these 

control decisions be well coordinated among all the agents in order to maintain good overall 

performance. The objective of achieving tight coordination typically requires that the agents 

exchange large quantities of information about the environment, their current states, and their 

future intentions.  The quantity of required information exchange depends on the level of 

coordination between agents. If it is possible to convert the multi agent decision making problem 

to a set of decoupled single agent decision making problems, the agents only need to share their 

information about the environment and their current states and then each agent simply solves its 

own decision making problem.  However, usually multi agent decision making problems cannot 

be converted to sets of decoupled single agent decision making problems. In that case, one 

approach is that each vehicle determines its own mission by simultaneously choosing the path for 

all vehicles in the fleet. For instance, in [35], two decentralized recursive heuristics for multi agent 

Bayesian search problems are proposed, where each agent uses a centralized stochastic Dynamic 

Programming algorithm to find the set of all optimal actions of all agents in the team. When there 

are more than one optimal action, a uniform randomization operation is used by each agent to 

randomly choose its next action among all possible optimal. The other approach consists of a 

negotiation mechanism among vehicles to make proper decisions. For example, in [19], an agent 
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based negotiation scheme for multiple vehicles search is proposed where vehicles use negotiation 

as the decision making mechanism for obtaining their search paths. The negotiation schemes 

provide suboptimal solutions, but it is fast and scalable to large number of agents. To enable 

cooperation while complying with limited communication bandwidth, a decision system can be 

designed that does not require negotiation, but instead relies on the estimation of the next actions 

of other vehicles. In [34], a template is created around all vehicles which produces a grid of regions. 

The probability of existence of a vehicle in each cell in the near future is estimated based on the 

position of the cell in the surrounding template of the vehicle. Each vehicle then uses the estimated 

position of other vehicles in the future to modify its own objective function by decreasing the 

reward of searching a cell that may be searched by other vehicles. In [36], the possible paths of 

other vehicles are treated as soft obstacles. Each vehicle chooses its optimal path independently. 

To solve the optimization problem, an approximate dynamic programming method is developed 

where the cooperation among vehicles is achieved by using rivaling force approach. In [18], a 

cooperative search method is proposed where each vehicle uses feed-forward neural networks 

trained by a reinforcement learning to predict the states of other vehicles in its neighborhood and 

to utilize these predictions in its path planning process. The uncertainty map is updated using the 

Dempster-Shafer evidential method.  

Impact of limited communications on a cooperative search algorithm for multiple unmanned 

aerial vehicles is studied in [37]. The results indicate that communication ranges has a significant 

impact on the group’s ability to search an area. Achieving complete coordination among vehicles 

requires that all vehicles have complete information about the environment and current states of 

all vehicles contributing to the mission.  This translates into a need to share a relatively large 

amount of information among vehicles. Limited bandwidth of communication channels and 
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potentially long distances between transmitter and receiver impose a delay in communication. This 

reduces the level of cooperation and might jeopardize the mission. If the vehicle can estimate the 

current states based on the delayed ones, then it can use estimated states to make decisions and 

compensate for the effects of communication delay, to some extent.  

1.1.2 Probabilistic Search and Bayesian Update 

Probabilistic Search theory studies the problem of searching for an object when the amount 

of searching effort is limited and only probabilities of possible position of the objects are known, 

where the problem is to find the optimal distribution of this total effort to maximize the probability 

of detection [38]. Most often, the search problem is mathematically formulated in discrete space 

(e.g. cells) and discrete effort (e.g. time space). Typical probabilistic search theory formulation 

describes the uncertainty in the environment by assigning probabilities of target existence to each 

cell of the environment which constructs the Probability Map of the environment [39,40]. The 

initial probability map is constructed based on the a priori information about the position of the 

targets. It is usually assumed that at each time step the probability of existence of the targets in 

each cell is a fixed value. However, in [41], this probability is described by a Beta distribution 

rather than a point estimate. Although Beta distribution is a very general distribution and 

theoretically it can be used to model almost any prior information about the presence of a target in 

the cell, finding appropriate parameters for the distribution function to model the prior information 

is generally very complicated. In fact, in most cases, it results in a simple uniform distribution. 

The sensor is generally assumed to be imperfect which means it is subject to false detection and 

missed detection errors. The probability distribution of the imperfect sensor is usually given by a 

Bernoulli distribution which is an appropriate model for a diverse array of sensor types, ranging 

from simple (e.g. bumper switch of robots) to sophisticated ( e.g. visual object recognition) and is 
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applicable in variety of contexts. Therefore, the sensor measurement is subject to false-positive 

and false-negative errors. These errors are typically intrinsic to the specific sensing method that is 

utilized for detection and can be determined either empirically or by analytic approximation. Each 

observation made by the sensor provides new information about the environment which can be 

used to update the probability map. A Bayesian map building approach is usually used to update 

the probability map [42-46]. Much of the early research assumed no false-positive detection error 

[47, 48]. When the existence of different targets is highly correlated, the entire joint PDF of the 

targets is maintained [49]. However, this approach is intractable for large number of targets since 

the computational cost and memory usage exponentially increase with the number of targets [50]. 

In [52], the number of targets is known. Therefore, the probability of existence of the targets in 

different cells is highly correlated. To reduce the amount of computation, the relative probability 

values are defined such that only the value of the cell that is searched is changed. The footprint of 

sensor is usually equal to one cell which means at each time step, the sensor only observes one 

cell. The cell size depends on different factors including size of the targets, size of the environment, 

and computational capability of the mobile agents, while the sensor footprint is a property of the 

sensor and depends on different factors including the physical structure and the detection 

mechanism of the sensor. Therefore, in practice, the sensor footprint may contain several cells.  In 

[51], the sensor has multiple cell footprint and the detection probabilities of the sensor depends on 

the range between the sensor and the observed point. 

1.1.3 Multi Agent Path Planning 

Path planning is responsible for moving the vehicles from one point to another [52]. The 

objective and approach of path planning differ depending on the application domain: surveillance 

[53, 54], search and rescue [55, 56], disaster monitoring [57], etc. Different methods are used to 
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design the paths based on the operating environment, physical limitation, and communication 

requirements. Application of multiple autonomous vehicles further increases the complexity of the 

path planning. There are a multitude of solution approaches available in the research literature and 

each approach has its own advantages and disadvantages.  

In [58], a hierarchical path planning approach is pursued. A non-directional graph is used as 

the road map to represent the environment. The path for each vehicle is constructed using Voronoi 

diagram approach and the Dijkstra search algorithm to obtain minimum cost polygon path. This 

path is then modified by incorporating maneuverability constraints. In [59], a similar two step 

approach is used while considering the positional uncertainty of threat region. Instead of using the 

Voronoi diagram, the graph is based directly on the probability map. The probabilistic roadmap 

method is introduced in [60] which samples the given space for probable solution in the form of a 

network of graphs and connects the starting point to the goal point by adding successive trajectories 

to a pre-computed route. In [61], the rapidly exploring random trees approach is used where a tree 

of trajectory segments is extended from the start point to the goal point. Every successive trajectory 

is selected randomly by connecting to a closest point in the existing tree. In [62], the path planning 

is achieved by the rapidly exploring random trees and further enhanced by using Dijkstra search 

algorithm. The potential field method is used in [63] where the environment is presented as an 

artificial potential field. The destination is assigned an attractive potential, while the obstacles are 

assigned repulsive potential. The idea is that a vehicle moving in the field will be attracted towards 

the destination, while being repelled by the obstacles. In order to avoid getting trapped in a local 

maximum, authors in [64] use an adaptive potential field method with multiple auxiliary attraction 

points. The configuration of the optimum potential field is automatically determined by a genetic 

algorithm.  
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Many complete coverage path planning methods have been developed for the mobile robot 

coverage path planning problem, where one or more mobile robots are required to explicitly pass 

over all points in an unexplored region with obstacles to accomplish some tasks, such as floor 

cleaning, lawn mowing, and harvesting, [65-68]. The exhaustive search is a good strategy when 

the environment is uniform and static, and the agents have unlimited time and perfect target 

identification sensors. Optimal control is the most natural way to solve problems involving 

objective functions and constraints. However, the dimension and complexity of optimal control 

problems cause a heavy burden on computational time in the solution. Also, the nature of the 

problem may require either suboptimal or feasible solutions rather than the optimal one. 

Optimization techniques such as Dynamic Programming, Mixed Integer Linear Programming and 

Genetic Programming have been applied to path planning of vehicles. These techniques produce 

paths by optimizing certain cost function. The cost functions differ based on the applications, such 

as minimum time of arrival, optimizing fuel consumption, visiting more important areas, and 

coordinated motion. They are mostly search algorithm. The use of Mixed Integer Linear 

Programming for path planning applications can be found in [69-71]. Evolutionary algorithms are 

used in [72-74]. A k-shortest path algorithm based path generation methods is studied in [75]. The 

game theoretic approach is used in [76, 77]. In [78], health management is integrated with the 

cooperative path planning where the objective is to maximize the expected survival of the team of 

agents. Dynamic programming and heuristic technique are used to solve the problem. The 

foundation of Dynamic Programming is Bellman's equation [79] (also known as the Hamilton-

Jacobi equations in control theory) which is most typically written in [80]. The gain for any time 

step is found by iterating enough times until the terminal gain is reached. However, as the 

dimension of the problem grows so does the computation time. To make the problem tractable, 
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and solvable in real-time, a limited look-ahead policy can be utilized [81, 82]. However, this 

solution is optimal with respect to the sub-problem, not in terms of the main problem. There is, 

therefore, a trade-off between optimality and computational complexity. In approximate Dynamic 

Programming, the objective function at the end of rolling horizon is approximate using different 

methods such as multilevel aggregation [83-86], basis functions [87], and neural networks [88]. 

Most of works in the field of multi vehicle search only consider the mid-level control. They 

convert the multi agent search problem into a multi agent path planning problem with some 

constraints. It is implicitly assumed that there is an appropriate low-level controller which is able 

to move the vehicles over their designated paths. However, there are a few studies that combine 

the low-level control of vehicles with path planning algorithm. In [89], a centralized gradient-type 

kinetic control strategy is proposed that guarantees each point in the domain is sampled by some 

agents in the network by any desired amount of effective coverage. The proposed control strategy 

is then modified for the case of partial communication between agents. A collision avoidance 

component is also added to the controller to guarantee that the agents do not collide. However, the 

proposed control strategy is centralized and not necessarily optimal. An individual state of 

awareness is defined for each vehicle in [90] which describes how aware the vehicles are of the 

events occurring over the entire domain. A decentralized control law is developed which 

guarantees a satisfactory state of awareness under dynamic communication structure and/or faulty 

sensors. A combined deployment and search strategy using Voronoi partitioning is proposed in 

[91]. The mobile agents deploy themselves to maximize reduction of uncertainty about the 

environment at each step, using a centralized Voronoi partitioning approach. The objective is to 

maximize single step search effectiveness and the results are only locally optimal. The range of 

sensors is assumed to be infinite and the collision avoidance issue is not addressed in this work. 
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1.1.4 Coverage Control 

Cooperative Coverage control studies the problem of covering a given domain using multiple 

agents. In [92], the problem of fixed sensor network is investigated. The solution is based on 

Voronoi partitions and the Lloyd algorithm [93]. The algorithm can be calculated off-line and the 

optimal sensor location is the centroid of its Voronoi cell. Decentralized control laws based on 

both continuous and discrete-time versions of the classic Lloyd algorithms are designed in [94] 

such that the mobile sensor network covers an area partitioned into Voronoi region, in the sense 

that the system continually drives the agents toward the centroids of their Voronoi cells. The same 

problem is considered in [95] with a more realistic model for the sensors where their sensing ranges 

are restricted to a bounded region. In [96], Voronoi diagram is used to discover the existence of 

coverage holes, and different sensor deployment strategies are proposed to increase coverage. The 

idea of generalized Voronoi partition is used in [97] for the problem of area-constrained coverage. 

The area of the region assigned to each agent is assumed to be a pre-specified amount, and a Jacobi 

iterative algorithm is then used to assign the weights for generalized Voronoi partition that satisfies 

the area constraints. In [98] the generalized Voronoi partition is also used to adapt coverage to 

variable sensor performance and vehicle loss. The sensor health variable is added to the cost 

function and an iterative algorithm is proposed to adjust weights to satisfy cost constraints rather 

than area constraints. In [99], a deployment strategy is proposed for network of mobile agents such 

that the maximum traveling time the agents take to reach a place within the surveillance region is 

minimized. 

Moreover, some research works consider more realistic environment. In [100], the non-

convex environment is transformed to a proper convex region using a proper diffeomorphism 

where conventional Voronoi coverage can be applied. In [101], a discrete partitioning and 
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coverage control algorithm for a non-convex environment is presented. This method requires only 

unreliable short-range communication between pairs of robots. The problem of Voronoi coverage 

of non-convex regions when non-convexities can block visibility is investigated in [102]. The 

visible Voronoi diagram is defined and non-smooth optimization method is used to solve the 

problem. A space-partitioning algorithm is provided in [103] to address the problem of 

heterogeneous mobile sensors deployment to track a target in the field. In [104], a set of mobile 

sensors collaborates with a group of stationary sensors in order to detect an event. A path planning 

algorithm based on receding horizon optimization is presented to move the mobile sensors toward 

the areas that are least covered by the stationary sensors. The common assumption in the previous 

studies in the area of Voronoi-based coverage control is that the distribution of sensory information 

in the environment is known a priori by all agents. However, the problem of the online learning 

of the distribution density function is addressed in [105], and the density function is also estimated 

using neural networks in [106]. In [107], local interpolations are used to represent spatial fields as 

they are measured by a mobile sensor network which are able to take point measurements. A 

nonparametric estimate of the field is provided by two interpolation methods, which are refined 

via a Kalman filter-like recursion. In [108], an entropy-based metric is used to construct a map that 

determines the reachable regions of the environment. While the mobile robots explore the 

environment, they also use a centroid geodesic Voronoi tessellation to distribute themselves in 

such a way that the proper coverage is maintained, in the sense that mobile robots are distributed 

in the environment with more concentration around more important areas. 

1.2 Motivations, Objectives and Contributions 

This dissertation investigates distributed architectures for the multi agent search and coverage 

problem. Motivations, objectives and contributions of each chapter are as follows 



14 

 

 Chapter 2  

Many studies about multi agent search consider perfect sensors which by one 

measurement can conclusively determine existence or non-existence of the target [109, 110]. 

Although this assumption simplifies the problem, it is not very practical. Much of the early 

research that consider imperfect sensors and use the Bayesian map building approach to 

update the probability map assumed no false-positive detection error. There are a few studies 

that use Bayesian map building approach to update the probability map and considered both 

false-positive and false-negative detection errors. Although some of these studies addressed 

issues like known number of targets in the environment, multi target scenarios, and sensors 

with multi cell footprints, they only consider special cases. To the best of author’s knowledge 

there is no work that studies all of these issues including known number of targets in the 

environment, multi target scenarios, and sensors with multi cell footprints in a unified 

framework. 

In chapter 2, we consider different conditions for the search problem in uncertain 

environments; different environment (with unknown number of targets or with known number 

of targets), different types of targets (distinguishable or indistinguishable), and different types 

of sensors (single-cell footprint or multiple-cell footprint). Any combination of these 

conditions makes a possible scenario for the search problem in uncertain environments and 

need a different probabilistic model. We develop probabilistic models for all possible 

scenarios and provide their probability map updating rules such that the models with single 

type of target are special cases of the models with multiple types of targets and the models 

with single-cell footprint are special cases of the models with multiple-cell footprint. 

Furthermore, for the models with known number of targets, we show that at each time step 
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the entire probability map should be updated which can be time consuming. In this case, the 

idea of relative probability is utilized which can significantly decrease the computational 

burden.  

 Chapter 3 

As we mentioned earlier, multi agent search problem in uncertain environment is an 

optimization problem in its nature. However, it is not possible to convert this optimization 

problem into multiple optimization problems for each agent. Therefore, most of studies in this 

area use centralized or hierarchical approach to solve the optimization problem. In some 

studies, each agent individually solves the global optimization problem which needs agent 

with high computational capability. There are a few works that use decentralized approach 

where each agent estimates the next action of other agents and uses that information in its 

decision making process. However, they need relatively high computation (when the 

estimation is online) or memory (when estimation is off line). It is important to notice that the 

mobile agents usually have limited computational capability. Therefore, reducing the required 

computation is a crucial task. Moreover, the mobile agents need to solve an optimization 

problem with dynamic programming. Thus, any extra available computation resource can be 

used to increase the look-ahead horizon of the dynamic programming method which can 

increase the performance of mission. 

In chapter 3, a decentralized approach is used for the search mission where each mobile 

agent chooses its optimal action individually. To make cooperation between agents possible, 

two approximation methods are proposed to modify the objective function of agents and to 

take into the account the action of other agents. The first approach is a geometric estimation 

method which assume the position of an agents in the near future is on a moving arc with the 
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center of its current position. The second approach is a probabilistic estimation method which 

uses a Bayesian rule to find the position of agent in the near future. This approach requires 

more computation and more memory than the first one, but it can provide better performance. 

The simulation results show that the proposed methods can considerably reduce the 

computation burden with very little effect on the performance of the mission. This approach 

is then extended for the case with known commutation delay between mobile agents. The 

simulation results show that the proposed method can effectively compensate for the effect of 

communication delay. 

 Chapter 4 

The common assumption in the most previous studies in the area of Voronoi-based 

coverage control is that the distribution of sensory information in the environment is known 

a priori by all agents. There are a few works that address the coverage control in unknown 

environment. However, in all these studies, it is assumed that the unknown density function 

can be measured by each agent at its position. But, in many real applications, the density 

function is not directly measurable at each point. To solve this problem, in chapter 4, a new 

distribution density model is introduced which is a function of position of some unknown 

targets in the environment. The problem is formulated such that the information about the 

positions of the targets is updated by some search agents. The cooperative search method 

developed in chapter 3, along with a well-known Centroidal Voronoi Configuration method 

for the coverage control, is used to solve the problem. 

 Chapter 5 

Gathering information about the environment and finding the targets are the main 

objectives of cooperative search problem. Covering the area around the detected targets is the 
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objective of cooperative coverage problem. There are also several other issues such as 

minimum fuel consumption, refuelling, obstacle avoidance, and collision avoidance which 

are important in multi agent tasks. In chapter 5, the “limited turn rate Voronoi diagram” is 

introduced and the search and coverage problem is formulated as a multi-objective 

optimization problem with different constraints. Despite the method used in the previous 

section, there is only one type of agents which perform both search and coverage tasks. The 

“multi agent search and coverage problem” is formulated such that the “multi agent search 

problem” and “multi agent coverage problem” are special cases of this problem. 

 Chapter 6 

In chapter 6, a Voronoi-based search strategy for a team of mobile agents with limited 

range sensors is presented which combines mid-level and low-level controllers. Our work has 

several advantages over the similar works in the literature. It considers sensors with limited 

range. The collision avoidance between agents is guaranteed. The control law is designed to 

balance between the myopic objective of maximizing uncertainty reduction in the next step 

and the long term objective of distributing the agent in the environment with minimum 

overlap in their sensory domain. The dynamic model of agents is also a double integral which 

can express the equation of motion of a broad class of vehicles. 

In addition, several numeric simulations are provided in chapters 3, 4, 5, and 6 to show the   

effectiveness of proposed methods.  Some experimental results are also presented in chapter 4. 
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CHAPTER 2 

 

 Probabilistic Models for Uncertain Environments 

In this chapter, different probabilistic models for uncertain environments are presented. The 

environment is discretized in cells which are described by a probability of target existence. There 

is a probability map, which contains the probability of existence of all targets in each cell. It is 

assumed that there is at most one target in each cell. The probability map is initialized by the a 

priori knowledge about the environment. If there is no prior information about the status of cell 

(whether or not there is a target in the cell), its initial probability would be 0.5. Using Shannon 

entropy, this initial probability corresponds to maximum uncertainty about the status of that cell 

[117]. During a search mission, a mobile sensor can detect targets in its footprint. After each 

measurement, the probability map must be updated based on whether or not a target is detected by 

the sensor. The main objective of this chapter is to develop practical probabilistic models for the 

uncertain environments and provide the updating rules for their probability maps.  

The probability distribution of the sensor is given by a Bernoulli distribution which is an 

appropriate model for a diverse array of sensor types, ranging from simple (e.g. bumper switch of 

robots) to sophisticated (e.g. visual object recognition). It is a simplified but common sensor model 

which is applicable in variety of contexts. It abstracts away any complexity in the sensor detection 

process and results in a binary decision [41]. The sensor measurement is subject to false-positive 

and false-negative errors. These errors are typically intrinsic to the specific sensing method that is 

utilized for detection and can be determined either empirically or by analytic approximation.   
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We consider search problems with different conditions; unknown number of targets in the 

environment or known number of targets in the environment, single type of targets or multiple 

types of targets, and sensors with single-cell footprint or sensors with multiple-cell footprint. Any 

combination of these conditions can construct a possible scenario for the probabilistic search in 

uncertain environments. In total, ten different scenarios are investigated and the updating rules for 

the probability maps are provided. Figure 2-1 shows different scenarios which are investigated in 

this chapter. Each of these scenarios is appropriate for a specific type of problems. 

 

 
Figure 2-1. Different scenarios which are investigated in this chapter. Green: The updating rule for the probability 

map is provided. Red: The sensor provides little information about the environment; therefore, the probability map 

updating rule has not been discussed in this study.  
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2.1 Environments with Unknown Number of Targets  

In this section, we study scenarios where the number of targets in the search domain is not 

known a priori.  

2.1.1 Single Type of Target 

In all scenarios in this section, there is an unknown number of similar targets in the 

environment.  

2.1.1.1 Sensor with Single-Cell Footprint 

In the first scenario, there is an unknown number of similar targets in the environment and 

the sensor has a single-cell footprint which can detect a target that resides in its current cell. Event 

𝐸𝑞 is the event that a target is in the cell 𝑞 and 𝐷𝑞 is the event that a target is detected in the cell 𝑞. 

 The probabilities of true positive and false positive measurement of sensors are assumed to 

be  𝛾 = 𝑃(𝐷𝑞|𝐸𝑞) and 𝜀 = 𝑃(𝐷𝑞|𝐸̅𝑞) respectively, where 𝛾 is the probability of detecting a target 

and 𝜀 is the probability of reporting a target existence while it does not really exist. These two 

parameters are specification of sensors and assumed to be known a priori. When an agent enters a 

cell, its sensor can measure the cell which has two possible outputs; there is a target in the 

environment (𝐼 = 1) or there in not (𝐼 = 0).  

When the sensor has not detected a target, the probability of existence of the target in the cell 

can be updated as follows, using the Bayes’ Rule 

𝑃(𝐸𝑞|𝐷̅𝑞) =
𝑃(𝐸𝑞)𝑃(𝐷̅𝑞|𝐸𝑞)

𝑃(𝐷̅𝑞)
=
𝑃(𝐸𝑞)𝛾̅

𝑃(𝐷̅𝑞)
 

where an overbar on the events represents the complement of the events. 
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Using a similar procedure, when a sensor has detected a target, the posterior probability of 

existence of the target in the cell can be computed as follows 

𝑃(𝐸𝑞|𝐷𝑞) =
𝑃(𝐸𝑞)𝑃(𝐷𝑞|𝐸𝑞)

𝑃(𝐷𝑞)
=
𝑃(𝐸𝑞)𝛾

𝑃(𝐷𝑞)
 

Therefore, we can update the probability of existence of the target in that cell, based on the output 

of the sensor as follows 

𝑝𝑞
∗ =

𝑝𝑞 . 𝛾̅

𝑃(𝐷̅𝑞)
(1 − 𝐼) +  

𝑝𝑞 . 𝛾

𝑃(𝐷𝑞)
𝐼 

where 𝑝𝑞 and 𝑝𝑞
∗  are the probabilities of existence of a target in the cell 𝑞 before and after the visit 

respectively. Using law of total probability, 𝑃(𝐷𝑞) can be found as follows 

𝑃(𝐷𝑞) = 𝑃(𝐷𝑞|𝐸𝑞)𝑃(𝐸𝑞) + 𝑃(𝐸̅𝑞)𝑃(𝐷𝑞|𝐸̅𝑞) = 𝛾 pq + 𝜀(1 − 𝑝𝑞) 

and 

𝑃(𝐷̅𝑞) = 1 − 𝑃(𝐷𝑞) = 𝛾̅ 𝑝𝑞 + 𝜀(̅1 − 𝑝𝑞) 

Therefore, the mobile sensor modifies the probability map by updating the probability of its 

current cell, 𝑞, using the following Probability Map Updating Rule 

𝑝q
∗ = 

𝑝q.γ̅

γ̅ 𝑝q+ε̅(1−𝑝q)
(1 − I) +

𝑝q.γ

γ pq+ε(1−𝑝q)
 I                            (2-1) 

 

2.1.1.2 Sensor with Multiple-Cell Footprint 

In this section, there is an unknown number of similar targets in the environment and the 

footprint of sensor consists of multiple cells. It is worth to mention that, in a search mission, even 

when the actual footprint of sensor is one cell, if the probability map is updated after several time 

steps, the updating rule for the multiple-cell footprint may need to be utilized.  
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2.1.1.2.1 Multi-Sensor Model 

In the second scenario, there is an unknown number of similar targets in the environment. The 

footprint of sensor consists of multiple cells and the sensor can detect the target in each cell 

separately.  In this scenario, updating rule (2-1) should still be used for each cell individually. In 

fact, one can replace such sensor with an array of several sensors with single-cell footprint and use 

(2-1) to update the probability of existence of the target in all cells in the sensor footprint.  

Many types of sensors have some kind of quality deterioration or signal attenuation based on 

distance [111].  In these cases, a more realistic model can be used where the values of 𝛾  and 𝜀 are 

assumed to depend on the distance between the sensor and the cell.  If we define 𝑟 = ‖𝐪 − 𝐩‖, 

where 𝐩 is the location of sensor and 𝐪 is the location of cell being observed and parameter 𝑟𝛾 as 

the range of sensor, function 𝛾(𝑟) must have the following properties 

 A peak value at the location of sensor, i.e. 𝛾(𝐩) > 𝛾(𝐪), ∀𝐩 ≠ 𝐪 

 A decreasing function of 𝑟, i.e. 𝛾(𝐪𝟏) > 𝛾(𝐪𝟐), if ‖𝐪𝟏 − 𝐩‖ < ‖𝐪𝟐 − 𝐩‖ 

 Equal to 0.5 for all cells outside of sensor range, 𝛾(𝐪) =0.5, if ‖𝐪 − 𝐩‖ > 𝑟𝛾 

This model indicates that the sensor’s detection probability is maximum at its position and 

decreases with the distance. The probability is equal to 0.5 outside of sensing range which implies 

that it is equally likely for sensor to truly detect a target or miss it outside the sensing range. The 

true negative measurement, i.e. 1 − 𝜀(𝑟), must have similar properties. Therefore, the function 

𝜀(𝑟) has the following properties 

 A bottom value at the location of sensor, i.e. 𝜀(𝐩) < 𝜀(𝐪), ∀𝐩 ≠ 𝐪 

 An increasing function of 𝑟, i.e. 𝜀(𝐪𝟏) < 𝜀(𝐪𝟐), if ‖𝐪𝟏 − 𝐩‖ < ‖𝐪𝟐 − 𝐩‖ 

 Equal to 0.5 for all cells outside of sensor range, 𝜀(𝐪) =0.5, if ‖𝐪 − 𝐩‖ > 𝑟𝜀 
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where 𝑟𝜀 is the range of sensor.  

Therefore, if we define Ω as the collection of cells inside the sensor footprint, the mobile 

sensor modifies the probability map by updating the probability of all cells inside Ω, i.e. ∀𝑞 ∈ Ω,   

using the following Probability Map Updating Rule: 

𝑝q
∗ = 

𝑝q.γ̅(r)

γ̅(r) 𝑝q+ε̅(r)(1−𝑝q)
(1 − Iq) +

𝑝q.γ(r)

γ(r) 𝑝q+ε(r)(1−𝑝q)
 Iq            (2-2) 

where Iq is the output of sensor corresponding to the cell q. 

A practical model for 𝛾 that we will use in the following chapters is a second-order polynomial 

function of 𝑟 as follows 

𝛾(𝐪) = {

𝛾0−0.5

𝑟𝛾2
(𝑟𝛾

2 − 𝑟2) + 0.5              𝑟 ≤ 𝑟𝛾     

              0.5                               𝑟 > 𝑟𝛾
                  (2-3) 

where 𝛾0 (0.5 ≤ 𝛾0 ≤ 1) is the peak value of 𝛾 at the observation point. Similarly, the model of 

false positive measurement 𝜀 is as follows 

𝜀(𝐪) = {

𝜀0−0.5

𝑟𝜀
2
(𝑟𝜀

2 − 𝑟2) + 0.5              𝑟 ≤ 𝑟𝜀      

              0.5                               𝑟 > 𝑟𝜀
                  (2-4) 

where 𝜀0(0 ≤ 𝜀0 ≤ 0.5) is the bottom value of 𝜀 at the observation point and 𝑟𝜀 is the range of 

sensor. This is an appropriate model for electromagnetic or acoustic sensors [112]. 

Remark: It is a natural assumption that the sensor ranges for true positive and true negative 

measurements of the sensor are equal, i.e.  𝑟𝛾 = 𝑟𝜀. 

It should be noted that the sensor measurement does not change the probability of existence 

of the target outside its range, i.e. the cells with distance more than  𝑟𝛾 = 𝑟𝜀 from the sensor. 
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Therefore, after each measurement, the probability map update is only performed for cells inside 

the sensor range. 

2.1.1.2.2 Single-Sensor Model 

In the third scenario, there is an unknown number of similar targets in the environment. The 

footprint of sensor consists of multiple cells and the sensor can only report the existence or non-

existence of the target in its entire footprint. In this scenario, the target detection corresponds to 

detection of at least one target in the entire sensor footprint. We can still replace this sensor with 

several virtual sensors with single-cell footprint. However, in this case, if we define 𝐼 𝑞𝑖  as the 

output of the virtual sensor corresponding to the cell 𝑞𝑖 , the output of the mobile sensor is 𝐼 =

⋁ 𝐼𝑖 𝑞𝑖 ∈Ω
, where Ω is the collection of cells inside the sensor footprint. Event 𝐸𝑞𝑖 is the event that 

a target is in the cell 𝑞𝑖 ∈ Ω, event 𝐷𝑞𝑖 is the event that the virtual sensor corresponding to the 

cell 𝑞𝑖 detects the target in that cell, and 𝑁Ω is the number of cells inside the footprint of sensor. 

Then, event 𝐷Ω is the event that a target is detected by the mobile sensor and is equal to 𝐷Ω =

⋃ 𝐷𝑞𝑖 𝑞𝑖 ∈Ω
. The 2𝑁Ω parameters 𝛾𝑖 = 𝑃(𝐷𝑞𝑖|𝐸𝑞𝑖) and 𝜀𝑖 = 𝑃(𝐷𝑞𝑖|𝐸̅𝑞𝑖) are specification of sensor 

and must be known a priori. In general, 𝛾𝑖 and 𝜀𝑖 can be functions of the distance between the 

location of the sensor and the position of the cell 𝑞𝑖. 

When the sensor detects a target, by using the Bayes’ Rule, the probability of existence of the 

target in any cell 𝑞𝑖 inside the sensor footprint can be updated as follows  

𝑃(𝐸 𝑞𝑖 |𝐷Ω) = 
𝑃(𝐷Ω |𝐸 𝑞𝑖 ).𝑃(𝐸 𝑞𝑖 ) 

𝑃(𝐷Ω)
                                   (2-5) 
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where  

𝑃(𝐷Ω|𝐸 𝑞𝑖 ) =  𝑃 (⋃ 𝐷 𝑞𝑗 ∀𝑗 |𝐸 𝑞𝑖 )  

   =                                                    +∑ 𝑃 (𝐷 𝑞𝑗1 |𝐸 𝑞𝑖 )∀𝑗1     

                                                          −∑ 𝑃 (𝐷 𝑞𝑗1 ∩ 𝐷 𝑞𝑗2 
|𝐸 𝑞𝑖 )∀𝑗1,𝑗2   

                                                    + ∑ 𝑃 (𝐷 𝑞𝑗1 ∩ 𝐷 𝑞𝑗2 ∩ 𝐷 𝑞𝑗3 |𝐸 𝑞𝑖 )∀𝑗1,𝑗2,𝑗3   

                                                           − ⋯ 

                                                           +(−1)𝑁Ω  𝑃 (⋂ 𝐷 𝑞𝑗 ∀𝑗 |𝐸 𝑞𝑖 )  

    =        + 𝑃(𝐷 𝑞𝑖 |𝐸 𝑞𝑖 ) + ∑ 𝑃 (𝐷 𝑞𝑗1 |𝐸 𝑞𝑖 )∀𝑗1≠𝑖  

               −∑ 𝑃 (𝐷 𝑞𝑗1 ∩ 𝐷 𝑞𝑖 |𝐸 𝑞𝑖 )∀𝑗1 − (
1

2!
)∑ 𝑃 (𝐷 𝑞𝑗1 ∩ 𝐷 𝑞𝑗2 |𝐸 𝑞𝑖 )∀𝑗1,𝑗2

≠𝑖

  

               +(
1

2!
)∑ 𝑃 (𝐷 𝑞𝑗1 ∩ 𝐷 𝑞𝑗2 ∩ 𝐷 𝑞𝑖 |𝐸 𝑞𝑖 )∀𝑗1,𝑗2

≠𝑖

+ (
1

3!
)∑ 𝑃 (𝐷 𝑞𝑗1 ∩ 𝐷 𝑞𝑗2 ∩ 𝐷 𝑞𝑗3 |𝐸 𝑞𝑖 )∀𝑗1,𝑗2,𝑗3

≠𝑖

  

                 − ⋯ 

                 +(−1)𝑁Ω 𝑃 (⋂ 𝐷 𝑞𝑗 ∀𝑗 |𝐸 𝑞𝑖 )  

   =         +𝑃(𝐷 𝑞𝑖 |𝐸 𝑞𝑖 ) + ∑ 𝑃 (𝐷 𝑞𝑗1 )∀𝑗1≠𝑖  

              −∑ (𝑃(𝐷 𝑞𝑖 |𝐸 𝑞𝑖 )𝑃 (𝐷 𝑞𝑗1 ))∀𝑗1 − (
1

2!
)∑ (𝑃 (𝐷 𝑞𝑗1 )𝑃 (𝐷 𝑞𝑗2 ))∀𝑗1,𝑗2

≠𝑖

  

              +(
1

2!
)∑ (𝑃(𝐷 𝑞𝑖 |𝐸 𝑞𝑖 )𝑃(𝐷 𝑞𝑗1 )𝑃(𝐷 𝑞𝑗2 ))∀𝑗1,𝑗2

≠𝑖

+ (
1

3!
)∑ (𝑃(𝐷 𝑞𝑗1 )𝑃(𝐷 𝑞𝑗2 )𝑃(𝐷 𝑞𝑗3 ))∀𝑗1,𝑗2,𝑗3

≠𝑖

  

               − ⋯ 

               +(−1)𝑁Ω 𝑃(𝐷 𝑞𝑖 |𝐸 𝑞𝑖 )∏ 𝑃 (𝐷 𝑞𝑗1 )∀𝑗1≠𝑖   
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   =              +𝛾𝑖 + (1 − 𝛾𝑖)∑ (𝛾𝑗1 . p𝑗1 + 𝜀𝑗1 . p̅𝑗1)∀𝑗1≠𝑖   

                    −(
1

2!
)(1 − 𝛾𝑖)∑ (𝛾𝑗1 . p𝑗1 + 𝜀𝑗1 . p̅𝑗1). (𝛾𝑗2 . p𝑗2 + 𝜀𝑗2 . p̅𝑗2)∀𝑗1,𝑗2

≠𝑖

  

                    +(
1

3!
)(1 − 𝛾𝑖)∑ (𝛾𝑗1 . p𝑗1 + 𝜀𝑗1 . p̅𝑗1). (𝛾𝑗2 . p𝑗2 + 𝜀𝑗2 . p̅𝑗2)(𝛾𝑗3 . p𝑗3 + 𝜀𝑗3 . p̅𝑗3)∀𝑗1,𝑗2,𝑗3

≠𝑖

  

                    − ⋯ 

    +(−1)𝑁Ω(1 − 𝛾𝑖)∏ (𝛾𝑗. p𝑗1 + 𝜀𝑖. p̅𝑗1)∀𝑗1≠𝑖                                                               (2-6) 

and 

𝑃(𝐷Ω) = 𝑃 (⋃ 𝐷 𝑞𝑗 ∀𝑗 )  

   =                                           +∑ 𝑃 (𝐷 𝑞𝑗1 )∀𝑗1     

                                                  −∑ 𝑃 (𝐷 𝑞𝑗1 ∩ 𝐷 𝑞𝑗2 )∀𝑗1,𝑗2   

                                             + ∑ 𝑃 (𝐷 𝑞𝑗1 ∩ 𝐷 𝑞𝑗2 ∩ 𝐷 𝑞𝑗3 )∀𝑗1,𝑗2,𝑗3   

                                                   − ⋯ 

                                                   +(−1)𝑁Ω  𝑃 (⋂ 𝐷 𝑞𝑗 ∀𝑗 )  

    =                                                +∑ 𝑃 (𝐷 𝑞𝑗1 )∀𝑗1  

                                                       −(
1

2!
)∑ 𝑃 (𝐷 𝑞𝑗1 ∩ 𝐷 𝑞𝑗2 )∀𝑗1,𝑗2   

                                                       +(
1

3!
)∑ 𝑃 (𝐷 𝑞𝑗1 ∩ 𝐷 𝑞𝑗2 ∩ 𝐷 𝑞𝑗3 )∀𝑗1,𝑗2,𝑗3   

                                                        − ⋯ 

                                                         +(−1)𝑁Ω 𝑃 (⋂ 𝐷 𝑞𝑗 ∀𝑗 )  
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   =                                               +∑ 𝑃 (𝐷 𝑞𝑗1 )∀𝑗1  

                                                     −(
1

2!
)∑ (𝑃 (𝐷 𝑞𝑗1 ) 𝑃 (𝐷 𝑞𝑗2 ))∀𝑗1,𝑗2   

                                                     +(
1

3!
)∑ (𝑃 (𝐷 𝑞𝑗1 )𝑃 (𝐷 𝑞𝑗2 )𝑃 (𝐷 𝑞𝑗3 ))∀𝑗1,𝑗2,𝑗3   

                                                     − ⋯ 

                                                     +(−1)𝑁Ω  ∏ 𝑃 (𝐷 𝑞𝑗1 )∀𝑗1   

   =                     +∑ (𝛾𝑗 . 𝑝j + 𝜀𝑖. 𝑝̅j)∀𝑗   

                            −(
1

2!
)∑ (𝛾𝑗1 . 𝑝𝑗1 + 𝜀𝑗1 . 𝑝̅𝑗1). (𝛾𝑗2 . 𝑝𝑗2 + 𝜀𝑗2 . 𝑝̅𝑗2)∀𝑗1,𝑗2   

                         +(
1

3!
)∑ (𝛾𝑗1 . 𝑝𝑗1 + 𝜀𝑗1 . 𝑝̅𝑗1). (𝛾𝑗2 . 𝑝𝑗2 + 𝜀𝑗2 . 𝑝̅𝑗2)(𝛾𝑗3 . 𝑝𝑗3 + 𝜀𝑗3 . 𝑝̅𝑗3)∀𝑗1,𝑗2,𝑗3   

                            − ⋯ 

   +(−1)𝑁Ω+1∏ (𝛾𝑗. 𝑝j + 𝜀𝑖. 𝑝̅j)∀𝑗≠𝑖                                                                               (2-7) 

and 𝑝i =  𝑝 𝑞𝑖 =  𝑃(𝐸 𝑞𝑖 ). In deriving (2-6) and (2-7) we used the fact that, if 𝑖 ≠ 𝑗, the events 

𝐸 𝑞𝑖 and 𝐷𝑗  are independent and the events 𝐷𝑖 and 𝐷𝑗  are also independent, and 𝑃 (𝐷 𝑞𝑗 ) =

𝑃 (𝐷𝑗|𝐸 𝑞𝑗 ) 𝑃 (𝐸 𝑞𝑗 ) + 𝑃 (𝐷𝑗|𝐸̅ 𝑞𝑗 ) 𝑃 (𝐸̅ 𝑞𝑗 )=𝛾𝑗 . 𝑝𝑗 + 𝜀𝑗 . 𝑝̅𝑗. 

Similarly, when the sensor does not detect a target, the probability of existence of the target 

in any cell 𝑞𝑖 inside the sensor footprint can be updated as follows  

𝑃(𝐸 𝑞𝑖 |𝐷̅Ω) = 
𝑃(𝐷̅Ω |𝐸 𝑞𝑖 ).𝑃(𝐸 𝑞𝑖 ) 

𝑃(𝐷̅Ω)
                                (2-8) 
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where 

𝑃(𝐷̅Ω|𝐸 𝑞𝑖 ) = +𝛾̅𝑖 + (1 − 𝛾̅𝑖)∑ (𝛾̅𝑗. 𝑝j + 𝜀𝑖̅. 𝑝̅j)∀𝑗≠𝑖   

                          −(
1

2!
)(1 − 𝛾̅𝑖)∑ (𝛾̅𝑗1 . 𝑝𝑗1 + 𝜀𝑗̅1 . 𝑝̅𝑗1). (𝛾̅𝑗2 . 𝑝𝑗2 + 𝜀𝑗̅2 . 𝑝̅𝑗2)∀𝑗1,𝑗2

≠𝑖

  

                          +(
1

3!
)(1 − 𝛾̅𝑖)∑ (𝛾̅𝑗1 . 𝑝𝑗1 + 𝜀𝑗̅1 . 𝑝̅𝑗1). (𝛾̅𝑗2 . 𝑝𝑗2 + 𝜀𝑗̅2 . 𝑝̅𝑗2)(𝛾̅𝑗3 . 𝑝𝑗3 + 𝜀𝑗̅3 . 𝑝̅𝑗3)∀𝑗1,𝑗2,𝑗3

≠𝑖

  

                          − ⋯ 

        +(−1)𝑁Ω(1 − 𝛾̅𝑖)∏ (𝛾̅𝑗 . 𝑝j + 𝜀𝑖̅. 𝑝̅j)∀𝑗≠𝑖                                                              (2-9) 

and 

𝑃(𝐷Ω) = +∑ (𝛾̅𝑗 . 𝑝j + 𝜀𝑖̅. 𝑝̅j)∀𝑗   

                  −(
1

2!
)∑ (𝛾̅𝑗1 . 𝑝𝑗1 + 𝜀𝑗̅1 . 𝑝̅𝑗1). (𝛾̅𝑗2 . 𝑝𝑗2 + 𝜀𝑗̅2 . 𝑝̅𝑗2)∀𝑗1,𝑗2   

                  +(
1

3!
)∑ (𝛾̅𝑗1 . 𝑝𝑗1 + 𝜀𝑗̅1 . 𝑝̅𝑗1). (𝛾̅𝑗2 . 𝑝𝑗2 + 𝜀𝑗̅2 . 𝑝̅𝑗2)(𝛾̅𝑗3 . 𝑝𝑗3 + 𝜀𝑗̅3 . 𝑝̅𝑗3)∀𝑗1,𝑗2,𝑗3   

                  − ⋯ 

       +(−1)𝑁Ω+1∏ (𝛾̅𝑗. 𝑝j + 𝜀𝑖̅. 𝑝̅j)∀𝑗≠𝑖                                                                                       (2-10) 

Therefore, the mobile sensor modifies the probability map by updating the probabilities of all 

cells in its footprint, i.e. ∀𝑞𝑖 ∈ Ω, using the following Probability Map Updating Rule 

𝑝i
∗ = 𝑃(𝐸 𝑞𝑖 |𝐷̅Ω)(1 − I) +   𝑃(𝐸 𝑞𝑖 |𝐷Ω)I                                        (2-11) 

where 𝑃(𝐸 𝑞𝑖 |𝐷̅Ω) and 𝑃(𝐸 𝑞𝑖 |𝐷Ω) are provided by (2-5) and (2-8), respectively.  

Remark 1: Equation (2-1) is a special case of (2-11), when 𝑁Ω = 1. 

Remark 2: In many cases, parameters 𝛾𝑖 = 𝑃(𝐷𝑞𝑖|𝐸𝑞𝑖) and 𝜀𝑖 = 𝑃(𝐷𝑞𝑖|𝐸̅𝑞𝑖) are not known 

for every cell 𝑞𝑖 inside the sensor footprint. In fact, often the only available information about the 

sensor is the probability of detecting the target given that a target is in the sensor footprint, i.e.  𝛾 =
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𝑃(𝐷Ω|𝐸Ω), and the probability of detecting a target while there is no target in the sensor footprint, 

i.e. 𝜀 = 𝑃(𝐷Ω|𝐸̅Ω). In this case, in (2-6), (2-7), (2-9), and (2-10), 𝛾𝑖 must be replaced by 𝛾 and 𝜀𝑖 

must be replaced by 𝜀 for all 𝑖. 

Remark 3: When the size of cells is small with respect to the size of sensor footprint, 𝑁Ω is a 

large number. Therefore, updating the probability map by using (2-11) needs too many 

calculations. However, in this case, the sensor does not provide much information about the cell 

in its footprint and it should be replaced with a sensor with finer resolution. 

2.1.2 Multiple Types of Targets 

In all scenarios in this section, there is an unknown number of different distinguishable targets 

in the environment. The sensors are able to detect different types of targets. In other words, they 

can detect an object and classify it as one of the possible targets. The probability map now contains 

the probability of existence of different types of targets in all cells.  

2.1.2.1 Sensor with Single-Cell Footprint 

In the fourth scenario, there is an unknown number of different distinguishable targets in the 

environment and the footprint of sensors is a single cell. Therefore, the sensor can detect and 

classify an object which resides in its current cell. The agents are equipped with imperfect sensors 

with categorical distribution which is the generalization of the Bernoulli distribution for the case 

with more than two possible outcomes.  We define 𝐸𝑞
𝑖  as the event that the target 𝑖 is in the cell 𝑞 

and 𝐷𝑞
𝑖  as the event the target 𝑖 is detected in the cell 𝑞. 

Parameter 𝜂𝑗
𝑖  is defined as the probability of detecting target 𝑖 given the actual target is  𝑗, 

where 𝑖, 𝑗 ∈ [0,𝑚] and 𝑚 is the number of possible targets, i.e. 𝜂𝑗
𝑖 = 𝑃(𝐷𝑞

𝑖 |𝐸𝑞
𝑗
). Index zero 

corresponds to the situation that there is no target. Therefore, 𝜂𝑗
0 is the probability of detecting no 
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target given target 𝑗 exists in the cell, and 𝜂0
𝑗
 is the probability of detecting target 𝑗 while there is 

no target in the cell. It is expected that the probability of true positive measurement of all targets 

is greater than 0.5, i.e. 𝜂𝑗
𝑗
>0.5 for ∀𝑗 ∈ [0,𝑚]. It is also expected that  ∑ 𝜂𝑗

𝑖𝑚
𝑖=0 = 1  for  ∀𝑗 ∈

[0,𝑚]. The probability transition matrix 𝐏[Pi,j = 𝜂𝑗
𝑖 ] is obtained from technical specifications on 

the sensors, and is considered to be known a priori.  

We define 𝑝𝑞
𝑖  as the probability of existence of the target 𝑖 in the cell 𝑞. Since it is only 

possible to have at most one target in each cell,  𝑝𝑞 = ∑ 𝑝𝑞
𝑖𝑚

𝑖=1  is always less than or equal to one. 

Random variable 𝑇 is defined to be equal to the output of the sensor, i.e. 𝑇 = 𝑖 means that the 

sensor has detected target 𝑖 in the cell. Again 𝑇 = 0 means no target has been detected in the cell.  

When 𝑇 = 𝑖, the probability 𝑝𝑞
𝑗
 can be updated as follows 

𝑝𝑞
∗𝑗
= 𝑃(𝐸𝑞

𝑗
|𝐷𝑞

𝑖 ) = 
𝑝𝑞
𝑗
 .𝜂𝑗
𝑖  

𝑃(𝐷𝑞
𝑖 )

 

where the superscript ∗ indicates the updated value. Using the law of total probability,  

𝑃(𝐷𝑞
𝑖 ) = ∑ (𝑃(𝐷𝑞

𝑖 |𝐸𝑞
𝑘). 𝑃(𝐸𝑞

𝑘))𝑚
𝑘=0 = ∑ (𝜂𝑘

𝑖 . 𝑝𝑞
𝑘)𝑚

𝑘=0   

where 𝑝𝑞
0 = 1 − 𝑝𝑞 is the probability that no target exists in the cell. Therefore, when the target is 

measured as 𝑖, the posterior probability of existence of the target 𝑗 in the cell can be updated by 

using the following equation 

𝑝𝑞
∗𝑗
= 

𝑝𝑞
𝑗
 .𝜂𝑗
𝑖  

∑ 𝜂𝑘
𝑖 .𝑝𝑞

𝑘𝑛
𝑘=0

 

In general, the probability map can be updated using the following Probability Map Updating 

Rule 
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𝑝𝑞
∗𝑗
= ∑  (

𝑝𝑞
𝑗
 .𝜂𝑗
𝑖  

∑ 𝜂𝑘
𝑖 .𝑝𝑞

𝑘𝑚
𝑘=0

𝑚
𝑖=0  . 𝛿𝑖𝑇)                                  (2-12) 

where 𝛿𝑖𝑇 is the Kronecker delta which is equal to one when 𝑇 = 𝑖, and is equal to zero otherwise. 

Remark 1: The updating rule (2-1) is a special case of (2-12) where 𝜂1
1 = 𝛾 and 𝜂0

1 = 𝜀. 

The probability of detecting the target 𝑖 given the actual target is  𝑗, i.e. 𝜂𝑗
𝑖 = 𝑃(𝐷𝑞

𝑖 |𝐸𝑞
𝑗
) can 

be decomposed into two parts; the probability of classifying the target as 𝑖 given the target 𝑗 has 

been detected, i.e. 𝜇𝑗
𝑖 = 𝑃(𝐷𝑞

𝑖 |𝐸𝑞
𝑗
∩ 𝐷𝑞), and the probability of detecting an object given the target 

𝑗 exists, i.e. 𝛾𝑗 = 𝑃(𝐷𝑞|𝐸𝑞
𝑗
). Then 

𝜂𝑗
𝑖 =  𝜇𝑗

𝑖 . 𝛾𝑗                                                            (2-13) 

If the probability of detecting all targets is equal, we define 𝛾 = 𝑃(𝐷𝑞|𝐸𝑞
𝑗
), ∀𝑗 ∈ [1,𝑚], and 𝜀 =

𝑃(𝐷𝑞|𝐸𝑞
0). Therefore, the updating equation (2-12) can be written as 

𝑝𝑞
∗𝑗
=  ∑  (

 𝛾.𝜂̅𝑗
𝑖 .𝑝𝑞

𝑗
  

𝛾.∑ (𝜇𝑘
𝑖 .𝑝𝑞

𝑘)+𝜀𝜇0
𝑖 .𝑝𝑞

0𝑚
𝑘=1

𝑚
𝑖=0  . 𝛿𝑖𝑇),   ∀𝑗 ≠ 0                   (2-14) 

and 

𝑝𝑞
∗0 =  ∑  (

 𝜀.𝜂̅𝑗
𝑖 .𝑝𝑞

𝑗
  

𝛾.∑ (𝜇𝑘
𝑖 .𝑝𝑞

𝑘)+𝜀𝜇0
𝑖 .𝑝𝑞

0𝑚
𝑘=1

𝑚
𝑖=0  . 𝛿𝑖𝑇)                         (2-15) 

Remark 2: When the classification error is equal for all targets, it is equally probable to falsely 

detect any target other than the one that really exists in the cell, which means  𝜇𝑗
𝑖  is the same 

for ∀𝑖 ∈ [0,𝑚], 𝑖 ≠ 𝑗. 

2.1.2.2 Sensor with Multiple-Cell Footprint 

In this section, there is an unknown number of different distinguishable targets in the 

environment and the footprint of sensor consists of multiple cells.  
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2.1.2.2.1 Multi-Sensor Model 

In the fifth scenario, there is an unknown number of different distinguishable targets in the 

environment. The footprint of sensor consists of multiple cells and the sensor can detect the targets 

in each cell separately. In this scenario, updating rule (2-12) should still be used for each cell 

individually. In fact, one can replace such sensor with several sensors with one cell footprint and 

use (2-12) to update probability of existence of the target in all cells in the sensor footprint.  

A more general model is the one that the value of 𝜂𝑗
𝑖  is assumed to depend on the distance 

between the sensor and the cell. We define 𝑟 = ‖𝐪 − 𝐩‖ as the distance between the location of 

sensor, 𝐩, and the location of the cell being observed, 𝐪, and parameter 𝑟𝜂 as the range of sensors. 

Then the functions 𝜂𝑖
𝑖(𝑟) must have the following properties 

 A peak value at the location of sensor, i.e. 𝜂𝑖
𝑖(𝐩)  ≥ 𝜂𝑖

𝑖 (𝐪), ∀𝐩 ≠ 𝐪 

 A non-increasing function of 𝑟, i.e. 𝜂𝑖
𝑖(𝐪𝟏) ≥ 𝜂𝑖

𝑖(𝐪𝟐), if ‖𝐪𝟏 − 𝐩‖ ≤ ‖𝐪𝟐 − 𝐩‖ 

This model indicates that the capability of the sensor in detecting and classifying a target is 

maximum at its position and does not increase with the distance.  

Similarly, a model of false Classification, i.e. 𝜂𝑖
𝑗
, ∀𝑗 ≠ 𝑖, must have the following properties 

 A bottom value at the location of sensor, i.e.  𝜂𝑖
𝑗(𝐩) ≤  𝜂𝑖

𝑗(𝐪), ∀𝐩 ≠ 𝐪 

 Anon-decreasing function of 𝑟, i.e.  𝜂𝑖
𝑗(𝐪𝟏) ≤  𝜂𝑖

𝑗(𝐪𝟐), if ‖𝐪𝟏 − 𝐩‖ ≤ ‖𝐪𝟐 − 𝐩‖ 

Additionally, for all cells outside the sensor footprint, i.e.‖𝐪 − 𝐩‖ > 𝑟𝜂, the following 

property must hold 

 𝜂𝑖
𝑗(𝐪) = 𝜂𝑖

𝑘(𝐪) for ∀𝑖, 𝑗, 𝑘 ∈ [0,𝑚]  
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which indicates that it is equally probable for the sensor to report existence of any target in a cell 

outside its footprint, regardless of the actual target. Therefore, 𝜂𝑖
𝑗(𝑟) =

1

𝑚+1
, ∀𝑖, 𝑗 ∈ [0,𝑚], for 

𝑟 > 𝑟𝜂. 

Therefore, if we define Ω as the collection of cells inside the sensor footprint, the mobile 

sensor modifies the probability map by updating the probability of all cells inside Ω, i.e. ∀𝑞 ∈ Ω,   

using the following Probability Map Updating Rule 

𝑝𝑞
∗𝑗
= ∑  (

𝑝𝑞
𝑗
 .𝜂𝑗
𝑖(𝑟) 

∑ 𝜂𝑘
𝑖 (𝑟).𝑝𝑞

𝑘𝑚
𝑘=0

𝑚
𝑖=0  . 𝛿𝑖Tq)                                (2-16) 

where Tq is the output of sensor corresponding to the cell q. 

Remark: The updating rule (2-2) is a special case of (2-16) where 𝑚 = 1, 𝜂1
1(𝑟) = 𝛾(𝑟) 

and 𝜂0
1(𝑟) = 𝜀(𝑟). 

It should be noticed that the sensor measurement does not change the probability of existence 

of the targets outside its footprint. Therefore, after each measurement, probability map updating is 

only performed for cells inside the sensor footprint. 

2.1.2.2.2 Single-Sensor Model 

The other possible case is when the sensor can only report the existence or non-existence of 

an object in its entire footprint and classify it as one of known possible targets. In this case, the 

sensor provides very little information about the probability of existence of the targets in each cell 

inside its footprint which is not useful from practical point of view. Therefore, we will not discuss 

this model in this study. 
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2.2 Environments with Known Number of Targets  

In all scenarios that discussed in section 2.1, the actual number of targets in the search domain 

was unknown a priori. In this section, we study the search problem in uncertain environments 

where the number of targets in the entire domain is known a priori. In fact, it is known that there 

may be one target of each type in the environment but the exact location of the targets is unknown. 

Therefore, in this case, if a target is detected in a cell, it not only changes the probability of 

existence of the target in that cell (increases the value), but also changes the probability of 

existence of the target in the other cells (decreases the value). 

2.2.1 Single Type of Target 

In this case, it is known that there is at most one target in the environment but the exact 

location of the target is unknown. The probability map contains the probability of existence of the 

target in each cell. The probability map is initialized by the a priori knowledge about the 

environment. If it is known that the target can only exist in some parts of the environment (the 

uncertainty region), the initial probability map is constructed such that 𝑝𝑞 = 0 for all cells 𝑞 

outside that particular area. The probability 𝑝𝑞 for a cell 𝑞 inside the uncertainty region is also 

assigned based on the a priori information. If there is no such information, the probability should 

be uniformly distributed between all cells which means it is equally probable for the target to be 

in any cell in the environment. In construction of initial probability map, it is important to make 

sure that the total probability of existence of the target in the environment is less than or equal to 

one, i.e. ∑ 𝑝𝑞∀𝑞∈𝑄 = 1, where equality holds if we certainly know that there is a target in the 

environment, but we do not know its exact location. 
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2.2.1.1 Sensor with Single-Cell Footprint 

In the sixth scenario, it is known that there is at most one target in the environment and the 

sensor has a single-cell footprint which can detect a target that resides in its current cell. Event 𝐸𝑞 

is the event that the target is in the cell 𝑞 and event 𝐷𝑞  is the event that the target is detected in the 

cell 𝑞. The probabilities of true positive and false positive measurement of sensors are assumed to 

be  𝛾 = 𝑃(𝐷𝑞|𝐸𝑞) and 𝜀 = 𝑃(𝐷𝑞|𝐸̅𝑞) respectively, where 𝛾 is the probability of detecting the target 

and 𝜀 is the probability of reporting existence of the target while it does not really exist. These two 

parameters are specification of sensors and assumed to be known a priori. When a mobile sensor 

enters a cell, it measures the cell which has two possible outputs; the target is in the cell (𝐼 = 1) 

or the target is not in the cell (𝐼 = 0). When the sensor has not detected a target, the probability of 

existence of the target in the cell can be updated as follows, using the Bayes’ Rule 

𝑃(𝐸𝑞|𝐷̅𝑞) =
𝑃(𝐸𝑞)𝑃(𝐷̅𝑞|𝐸𝑞)

𝑃(𝐷̅𝑞)
=

𝑃(𝐸𝑞)𝛾̅

𝑃(𝐷̅𝑞)
 

Similarly, when a sensor has detected a target, the posterior probability of existence of the 

target in the cell can be computed as follows 

𝑃(𝐸𝑞|𝐷𝑞) =
𝑃(𝐸𝑞)𝑃(𝐷𝑞|𝐸𝑞)

𝑃(𝐷𝑞)
=

𝑃(𝐸𝑞)𝛾

𝑃(𝐷𝑞)
 

Using the law of total probability, 𝑃(𝐷𝑞) and 𝑃(𝐷̅𝑞) can be found as follows 

𝑃(𝐷𝑞) = 𝑃(𝐷𝑞|𝐸𝑞)𝑃(𝐸𝑞) + 𝑃(𝐷𝑞|𝐸̅𝑞)𝑃(𝐸̅𝑞) = 𝛾 pq + 𝜀(1 − 𝑝𝑞)  

and 

𝑃(𝐷̅𝑞) = 1 − 𝑃(𝐷𝑞) = 𝛾̅ 𝑝𝑞 + 𝜀(̅1 − 𝑝𝑞)  
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Therefore, we can update the probability of existence of the target in that cell, based on the 

output of the sensor as follows 

𝑝q
∗  =

𝑝𝑞.γ̅

γ̅ 𝑝𝑞+ε̅(1−𝑝𝑞)
(1 − I) +

𝑝𝑞.γ

γ 𝑝𝑞+ε(1−𝑝𝑞)
 I                        (2-17) 

where 𝑝𝑞 and 𝑝𝑞
∗  are the probability of existence of a target in the cell 𝑞 before and after the visit 

respectively. Since 𝛾 ≥0.5 and 𝜀 ≤0.5, it is easy to verify that 𝑝𝑞
∗ ≥ 𝑝𝑞 when the target is detected 

in the cell 𝑞, i.e. 𝐼 = 1, and  𝑝𝑞
∗ ≤ 𝑝𝑞 when the target is not detected in the cell 𝑞, i.e. 𝐼 = 0. 

When a mobile sensor visits a cell, not only the probability of existence of the target in that 

cell changes, but also the probability of existence of the target in the other cells changes. If the 

target has not been detected by the sensor in the cell 𝑞, the posterior probability of existence of the 

target in the cell 𝑞′ ≠ 𝑞 is as follows 

𝑝𝑞′
∗

 = 𝑃(𝐸𝑞′|𝐷̅𝑞) =
𝑃(𝐸

𝑞′
)𝑃(𝐷̅𝑞|𝐸𝑞′)

𝑃(𝐷̅𝑞)
=

𝑃(𝐸
𝑞′
)𝜀̅

𝑃(𝐷̅𝑞)
                           (2-18) 

where in deriving the above equation, we used the fact that existence of the target in the cell 𝑞′ 

means there in no target in the cell 𝑞, thus 𝑃(𝐷̅𝑞|𝐸𝑞′) = 𝑃(𝐷̅𝑞|𝐸̅𝑞) = 𝜀.̅ Similarly, when the target 

has been detected by the sensor in the cell 𝑞, the posterior probability of existence of the target in 

the cell 𝑞′ ≠ 𝑞 is as follows 

𝑝𝑞′
∗

 = 𝑃(𝐸𝑞′|𝐷𝑞) =
𝑃(𝐸

𝑞′
)𝑃(𝐷𝑞|𝐸𝑞′)

𝑃(𝐷𝑞)
=

𝑃(𝐸
𝑞′
)𝜀

𝑃(𝐷𝑞)
                           (2-19) 

where in deriving the above equation, we also used the fact that existence of the target in the cell 

𝑞′ means there in no target in the cell 𝑞, thus 𝑃(𝐷𝑞|𝐸𝑞′) = 𝑃(𝐷𝑞|𝐸̅𝑞) = 𝜀. 

Therefore, the mobile sensor modifies the probability map by updating the probability of all 

cells in the environment, i.e. ∀𝑞′ ∈ Q,   using the following Probability Map Updating Rule 
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𝑝𝑞′
∗

 = 
𝑝
𝑞′
.(γ̅𝛿

𝑞𝑞′
+𝜀̅(1−𝛿

𝑞𝑞′
))

γ̅ 𝑝𝑞+ε̅(1−𝑝𝑞)
(1 − I) +  

𝑝
𝑞′
.(γ𝛿

𝑞𝑞′
+𝜀(1−𝛿

𝑞𝑞′
))

γ 𝑝𝑞+ε(1−𝑝𝑞)
I           (2-20) 

where 𝑞 is the cell which has been searched by the mobile sensor. It should be noted that the total 

probability of existence of the target in the environment can always be found using 𝑝 = ∑ 𝑝𝑞∀𝑞∈𝑄 . 

In Figure 2-2, the probability maps for the first scenario and the sixth scenario are compared 

at different time steps. The only difference between two scenarios is the a priori information about 

the number of targets in the environment. In the first scenario, the number of targets in the 

environment is unknown a priori while in the sixth scenario it is known that there is at most one 

target in the entire environment. The left panels show the first scenario and the right panels shows 

the sixth scenario. Initial probability maps are the same for both scenarios (panel a and panel d). It 

is assumed that the uncertainty region of the target is a square area and the probability of existence 

of the target in other parts of the environment is zero. In the left panels, when the target is not 

detected in a cell, the probability of existence of the target in that cell decreases (panel b). When 

the target is detected in a cell, the probability of existence of the target in that cell increases (panel 

c). In both cases, the probability of existence of the target in other cells remain unchanged. In the 

right panels, when the target is not detected in a cell, the probability of existence of the target in 

that cell decreases and the probability of existence of the target in other cells increases (panel e).  

When the target is detected in a cell, the probability of existence of the target in that cell increases 

and the probability of existence of the target in other cells decreases (panel f). 
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(a) 

 

 
(d) 

 
(b) 

 

(e) 

(c) 

 
(f) 

Figure 2-2. The probability maps at different time steps. 

                                                                  Left panels: the first scenario 

Right panels: the sixth scenario 
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Although by using (2-20), one can update probability map after each measurement, it can be 

very time consuming to do so, especially when the number of cells in the environment is large. 

We use the concept of relative probability to resolve this issue. We define 𝑟𝑞 as the relative 

probability of existence of the target in the cell 𝑞. The probability of existence of the target in the 

cell 𝑞 at each time can be found by the following equation  

𝑝𝑞 =
𝑟𝑞

∑ 𝑟
𝑞′∀𝑞′∈𝑄 

                                            (2-21) 

At the beginning, the relative probability of existence of the target in each cell is initialized by 𝑟𝑞 =

𝑝𝑞. 

By defining Δ = ∑ 𝑟𝑞′∀𝑞′∈𝑄  , instead of storing and updating the probability map, the relative 

probability map and Δ are updated and stored. When a cell is visited by a mobile sensor, only the 

relative probability of existence of the targets in that cell is changed. By definition  

𝑟𝑞

𝑟𝑞′
=
𝑝𝑞

𝑝𝑞′
 

If 𝑞 is the cell which has been searched by the mobile sensor, the posterior relative probability of 

existence of the target in the cell 𝑞 is as follows 

              𝑟𝑞
∗ =

𝑝𝑞
∗

𝑝𝑞′
∗ . 𝑟𝑞′

∗ =

γ̅

γ̅ 𝑝𝑞 + ε̅(1 − 𝑝𝑞)
(1 − I) +  

γ

γ 𝑝𝑞 + ε(1 − 𝑝𝑞)
I

ε̅

γ̅ 𝑝𝑞 + ε̅(1 − 𝑝𝑞)
(1 − I) +  

ε

γ 𝑝𝑞 + ε(1 − 𝑝𝑞)
I
.
𝑝𝑞

𝑝𝑞′
 . 𝑟𝑞′

∗  

                                                      = (
γ̅

ε̅
(1 − I) +

γ

ε
I) .

𝑝𝑞

𝑝𝑞′
. 𝑟
𝑞′
∗𝑗 

However, the relative probability of the other cells does not change after the visit, i.e. 𝑟𝑞′
∗ = 𝑟𝑞′ . 

Therefore 

𝑟𝑞
∗    = (

γ̅

ε̅
(1 − I) +

γ

ε
I) .

𝑝𝑞

𝑝𝑞′
. 𝑟𝑞′ = (

γ̅

ε̅
(1 − I) +

γ

ε
I) . 𝑟𝑞            (2-22) 
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We must also update Δ by adding the new value of relative probability of  𝑞 and subtracting 

its old value as follows 

 Δ∗ = Δ − 𝑟𝑞 + 𝑟𝑞
∗                                                (2-23) 

Therefore, after a mobile sensor visits the cell 𝑞, we only need to update the relative 

probability of the cell 𝑞 and the total relative probability of existence of the target, using (2-22) 

and (2-23), respectively. 

If the number of cells in the environment is equal to 𝑁𝑞, updating the probability map requires 

updating  𝑁𝑞values, while updating the relative probability map and the total relative probability 

of existence of the target only requires updating 2 values. 

2.2.1.2 Sensor with Multiple-Cell Footprint 

In the previous section, we assumed that the footprint of sensor is only a single cell. In this 

section, we extend the results for the case that the footprint of sensor consists of multiple cells.  

2.2.1.2.1 Multi-Sensor Model 

In the seventh scenario, it is known that there is at most one target in the environment and the 

sensor has multiple-cell footprint which can detect the target in each cell separately. In this case, 

we can replace the sensor with an array of several virtual sensors with one cell footprint and use 

(2-20) to update the probability map or (2-22) and (2-23) to update the relative probability map 

and the total relative probability, respectively. It should be noted that each of these virtual sensors 

needs to update the entire probability map. Indeed, using these virtual sensors, there is multiple 

sensory information about all cells in the domain. In this situation, a sensor fusion algorithm may 

be used to combine the information derived from these different virtual sensors to achieve a better 
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result which is beyond the scope of this study [113]. The simplest solution to this problem is that 

the probability update is performed for all virtual sensors, in a pre-specified order.  

A more realistic model for 𝛾 and 𝜀 can be used where they are functions of the distance 

between the sensor and the cell being observed, i.e. 𝑟 = ‖𝐪 − 𝐩‖. Parameters 𝛾(𝑟) and 𝜀(𝑟) must 

satisfy the properties described in section 2.1.1.2.1. 

We define Ω as the collection of cells inside the sensor footprint and 𝑁Ω as the number of 

cells in Ω. Therefore, for any cell inside the sensor footprint, i.e. ∀𝑞 ∈ Ω, the mobile sensor 

modifies the probability map by updating the probability of all cells in the environment, i.e. ∀𝑞′ ∈

𝑄, using the following Probability Map Updating Rule 

𝑝𝑞
∗ =

𝑝
𝑞′
.(γ̅(r)𝛿

𝑞𝑞′
+𝜀̅(𝑟)(1−𝛿

𝑞𝑞′
))

γ̅(r) 𝑝𝑞+ε̅(r)(1−𝑝𝑞)
(1 − I𝑞)+

𝑝
𝑞′
.(γ(𝑟)𝛿

𝑞𝑞′
+𝜀(𝑟)(1−𝛿

𝑞𝑞′
))

γ(r) 𝑝𝑞+ε(r)(1−𝑝𝑞)
 I𝑞        (2-24) 

where I𝑞 is the output of sensor corresponding to the cell 𝑞. This equation is the same as (2-20) 

where γ and ε are function of distance between the sensor and the cell. 

If we define 𝑟𝑞 as the relative probability of existence of the target in the cell 𝑞 and Δ as the 

total relative probability, instead of storing and updating the probability map, we can store and 

update the relative probability map and the value of the total relative probability. In this case, for 

any cell inside the sensor footprint, i.e. ∀𝑞 ∈ Ω, the mobile sensor modifies the relative probability 

map by updating the relative probability of the cell 𝑞, using the following rule 

𝑟𝑞
∗  = (

γ̅(r)

ε̅(r)
(1 − Iq) +

γ(r)

ε(r)
Iq). 𝑟𝑞                                         (2-25) 

and also modifies the total relative probability, using  

Δ∗ = Δ − 𝑟𝑞 + 𝑟𝑞
∗                                                          (2-26) 
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Equation (2-25) is the same as (2-22) where γ and ε are function of distance between the sensor 

and the cell.  

If the number of the cells in the environment is equal to 𝑁𝑞, updating the probability map 

requires updating  𝑁𝑞 × 𝑁
Ω values, while updating the relative probability map and the total 

relative probability only requires updating 2𝑁Ω values. 

2.2.1.2.2 Single-Sensor Model 

In the eighth scenario, it is known that there is at most one target in the environment. The 

footprint of sensor consists of multiple cells and the sensor can only report the existence or non-

existence of the target in its entire footprint. We define Ω as the collection of cells inside the sensor 

footprint and 𝑁Ω as the number of cells in Ω. Event 𝐸𝑞𝑖 is the event that a target is in the cell 𝑞𝑖 ∈

Ω and event 𝐷Ω is the event that a target is detected by the mobile sensor. Parameters 𝛾𝑖 =

𝑃(𝐷Ω|𝐸𝑞𝑖) and 𝜀 = 𝑃(𝐷Ω|𝐸̅Ω) are specification of sensor and must be known a priori where 𝐸Ω =

⋃ 𝐸𝑞𝑖∀ 𝑞𝑖 ∈Ω
 is the event that there is a target in the sensor footprint.  In general, 𝛾𝑖 can be a function 

of the distance between the location of the sensor and the position of the cell 𝑞𝑖. 

When the sensor has not detected a target, the probability of existence of the target in the cell 

 𝑞𝑖 ∈ Ω can be updated as follows 

                             𝑃(𝐸𝑞𝑖|𝐷̅Ω) =  
𝑃(𝐸𝑞𝑖)𝑃(𝐷̅Ω|𝐸𝑞𝑖)

𝑃(𝐷̅Ω)
 

        =
𝑃(𝐸𝑞𝑖)𝑃(𝐷̅Ω|𝐸𝑞𝑖)

∑ (𝑃 (𝐷̅Ω|𝐸𝑞𝑗) . 𝑃 (𝐸𝑞𝑗)) ∀𝑞𝑗 ∈Ω
+ 𝑃(𝐷̅Ω|𝐸̅Ω). 𝑃(𝐸̅Ω) 

                           

       =
𝑝𝑞𝑖 . 𝛾̅𝑖

∑ (𝛾̅𝑖. 𝑝𝑞𝑗) ∀𝑞𝑗 ∈Ω
+ 𝜀.̅ (1 − ∑ (𝑝𝑞𝑗) ∀𝑞𝑗 ∈Ω

) 
 

          



43 

 

Similarly, when a sensor has detected a target, the posterior probability of existence of the 

target in the cell  𝑞𝑖 ∈ Ω can be computed as follows 

                         𝑃(𝐸𝑞𝑖|𝐷Ω) =
𝑃(𝐸𝑞𝑖). 𝑃(𝐷Ω|𝐸𝑞𝑖)

𝑃(𝐷Ω)
 

                                              =
𝑃(𝐸𝑞𝑖). 𝑃(𝐷Ω|𝐸𝑞𝑖)

∑ (𝑃 (𝐷Ω|𝐸𝑞𝑗) . 𝑃 (𝐸𝑞𝑗)) ∀𝑞𝑗 ∈Ω
+ 𝑃(𝐷Ω|𝐸̅Ω). 𝑃(𝐸̅Ω) 

                      

      =
𝑝𝑞𝑖.𝛾𝑖

∑ (𝛾𝑖. 𝑝𝑞𝑗) ∀𝑞𝑗 ∈Ω
+ 𝜀. (1 − ∑ (𝑝𝑞𝑗) ∀𝑞𝑗 ∈Ω

) 
 

     

When a mobile sensor visits a cell, the probability of existence of the target in the other cells 

is also changed. If the target has not been detected by the sensor in its footprint, the posterior 

probability of existence of the target in the cell 𝑞′ ∉ Ω is as follows 

                                𝑃(𝐸𝑞′|𝐷̅Ω) =
𝑃(𝐸𝑞′). 𝑃(𝐷̅Ω|𝐸𝑞′)

𝑃(𝐷̅Ω)
 

                               =
𝑃(𝐸𝑞′). 𝑃(𝐷̅Ω|𝐸̅Ω)

∑ (𝑃 (𝐷̅Ω|𝐸𝑞𝑗) . 𝑃 (𝐸𝑞𝑗)) ∀𝑞𝑗 ∈Ω
+ 𝑃(𝐷̅Ω|𝐸̅Ω). 𝑃(𝐸̅Ω) 

 

             =
𝑝𝑞′ . 𝜀 ̅

∑ (𝛾̅𝑖. 𝑝𝑞𝑗) ∀𝑞𝑗 ∈Ω
+ 𝜀.̅ (1 − ∑ (𝑝𝑞𝑗) ∀𝑞𝑗 ∈Ω

) 
 

where in deriving the above equation, we used the fact that existence of the target in the cell 𝑞′ 

means there in no target in the sensor footprint, thus 𝑃(𝐷̅Ω|𝐸𝑞′) = 𝑃(𝐷̅Ω|𝐸̅Ω) = 𝜀.̅ Similarly, when 

the target has been detected by the sensor in its footprint, the posterior probability of existence of 

the target in the cell 𝑞′ ∉ Ω is as follows 

                               𝑃(𝐸𝑞′|𝐷Ω) =
𝑃(𝐸𝑞′). 𝑃(𝐷Ω|𝐸𝑞′)

𝑃(𝐷Ω)
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                            =
𝑃(𝐸𝑞′). 𝑃(𝐷Ω|𝐸̅Ω)

∑ (𝑃 (𝐷Ω|𝐸𝑞𝑗) . 𝑃 (𝐸𝑞𝑗)) ∀𝑞𝑗 ∈Ω
+ 𝑃(𝐷Ω|𝐸̅Ω). 𝑃(𝐸̅Ω) 

 

          =
𝑝𝑞′ . 𝜀

∑ (𝛾𝑖. 𝑝𝑞𝑗) ∀𝑞𝑗 ∈Ω
+ 𝜀. (1 − ∑ (𝑝𝑞𝑗) ∀𝑞𝑗 ∈Ω

) 
 

         

where in deriving the above equation, we also used the fact that existence of the target in the cell 

𝑞′ means there in no target in the sensor footprint, thus 𝑃(𝐷Ω|𝐸𝑞′) = 𝑃(𝐷Ω|𝐸̅Ω) = 𝜀. 

Therefore, the mobile sensor modifies the probability map by updating the probability of all 

cells in the environment, i.e. ∀𝑞′ ∈ Q, using the following Probability Map Updating Rule 

𝑝𝑞′
∗ = 

{
 
 

 
 

𝑝𝑞′ . 𝛾̅𝑖. (𝐼 − 1)

∑ (𝛾̅𝑖. 𝑝𝑞𝑗) ∀𝑞𝑗 ∈Ω + 𝜀.̅ (1 − ∑ (𝑝𝑞𝑗) ∀𝑞𝑗 ∈Ω ) 
+

𝑝𝑞′ . 𝛾𝑖. 𝐼

∑ (𝛾𝑖. 𝑝𝑞𝑗) ∀𝑞𝑗 ∈Ω + 𝜀. (1 − ∑ (𝑝𝑞𝑗) ∀𝑞𝑗 ∈Ω ) 
,   ∀𝑞′ ∈ Ω

p𝑞′ . 𝜀.̅ (𝐼 − 1)

∑ (𝛾̅𝑖. 𝑝𝑞𝑗) ∀𝑞𝑗 ∈Ω + 𝜀.̅ (1 − ∑ (𝑝𝑞𝑗) ∀𝑞𝑗 ∈Ω ) 
+

p𝑞′ . 𝜀. 𝐼

∑ (𝛾𝑖 . 𝑝𝑞𝑗) ∀𝑞𝑗 ∈Ω + 𝜀. (1 − ∑ (𝑝𝑞𝑗) ∀𝑞𝑗 ∈Ω ) 
,   ∀𝑞′ ∉ Ω

 

   (2-27)             

If we define 𝑟𝑞 as the relative probability of existence of the target in the cell 𝑞 and Δ as the 

total relative probability, Instead of storing and updating the probability map, we can store and 

update the relative probability map and the total relative probability. If 𝑞𝑖 ∈ Ω and 𝑞′ ∉ Ω, the 

posterior relative probability of existence of the target in the cell  𝑞𝑖  is as follows 

 𝑟 𝑞𝑖 
∗ =

𝑝 𝑞𝑖 
∗

𝑝𝑞′
∗ . 𝑟𝑞′

∗  

       =

𝛾̅𝑖. (𝐼 − 1)

∑ (𝛾̅𝑖. p𝑞𝑗) ∀𝑞𝑗 ∈Ω + 𝜀.̅ (1 − ∑ (p𝑞𝑗) ∀𝑞𝑗 ∈Ω ) 
+

𝛾𝑖 . 𝐼

∑ (𝛾𝑖 . p𝑞𝑗) ∀𝑞𝑗 ∈Ω + 𝜀. (1 − ∑ (p𝑞𝑗) ∀𝑞𝑗 ∈Ω ) 

𝜀.̅ (𝐼 − 1)

∑ (𝛾̅𝑖. p𝑞𝑗) ∀𝑞𝑗 ∈Ω + 𝜀.̅ (1 − ∑ (p𝑞𝑗) ∀𝑞𝑗 ∈Ω ) 
+

𝜀. 𝐼

∑ (𝛾𝑖 . p𝑞𝑗) ∀𝑞𝑗 ∈Ω + 𝜀. (1 − ∑ (p𝑞𝑗) ∀𝑞𝑗 ∈Ω ) 

.
𝑝𝑞
𝑝𝑞′

. 𝑟𝑞′
∗  

The relative probability of the cells outside the sensor footprint does not change after the visit, 

i.e. 𝑟𝑞′
∗ = 𝑟𝑞′. Therefore 
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 𝑟 𝑞𝑖 
∗  

=

𝛾̅𝑖. (𝐼 − 1)

∑ (𝛾̅𝑖. 𝑝𝑞𝑗) ∀𝑞𝑗 ∈Ω + 𝜀.̅ (1 − ∑ (𝑝𝑞𝑗) ∀𝑞𝑗 ∈Ω ) 
+

𝛾𝑖. 𝐼

∑ (𝛾𝑖. 𝑝𝑞𝑗) ∀𝑞𝑗 ∈Ω + 𝜀. (1 − ∑ (𝑝𝑞𝑗) ∀𝑞𝑗 ∈Ω ) 

𝜀.̅ (𝐼 − 1)

∑ (𝛾̅𝑖. 𝑝𝑞𝑗) ∀𝑞𝑗 ∈Ω + 𝜀.̅ (1 − ∑ (𝑝𝑞𝑗) ∀𝑞𝑗 ∈Ω ) 
+

𝜀. 𝐼

∑ (𝛾𝑖. 𝑝𝑞𝑗) ∀𝑞𝑗 ∈Ω + 𝜀. (1 − ∑ (𝑝𝑞𝑗) ∀𝑞𝑗 ∈Ω ) 

.
𝑝𝑞
𝑝𝑞′

. 𝑟𝑞′ 

  = (
𝛾𝑖̅

ε̅
(1 − I) +

𝛾𝑖

ε
I) . 𝑟𝑞                                                                                          (2-28) 

We must also update Δ by adding the new value of relative probability of all cells inside the 

sensor footprint and subtracting the old values as follows 

 Δ∗ = Δ − ∑ (𝑟𝑞𝑗) ∀𝑞𝑗 ∈Ω
+ ∑ (𝑟𝑞𝑗

∗ ) ∀𝑞𝑗 ∈Ω
                                 (2-29) 

Therefore, after each visit of the mobile sensor, we only need to update the relative probability 

of cells inside the sensor footprint and the total relative probability of existence of the target, using  

(2-28) and (2-29), respectively. 

Remark 1: In many cases, parameter 𝛾𝑖 = 𝑃(𝐷Ω|𝐸𝑞𝑖) is not known for every cell 𝑞𝑖 inside 

the sensor footprint. In fact, often the only available information about the sensor is the probability 

of detecting a target given that the target is in the sensor footprint, i.e. 𝛾 = 𝑃(𝐷Ω|𝐸Ω). In this case, 

in (2-27), (2-28) and (2-29), 𝛾𝑖 must be replaced by 𝛾 for any 𝑖. 

Remark 2: In this section (2.2.1), we discussed the case where there is at most one target in 

the whole environment. All results are readily extendable to the case with multiple targets and 

disjoint uncertainty regions. In this case, the mobile sensor uses the probability updating rule only 

for the cells inside the uncertainty region of each target.  
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2.2.2 Multiple Types of Targets 

In this section, we are interested in extending the results from the previous section for the case 

with different distinguishable targets. In this case, there is at most one target of each type in the 

entire environment. The sensors are able to detect different types of targets. The probability map 

contains the probability of existence of each target in each cell. The probability 𝑝𝑞
𝑗
 is the probability 

of existence of the target  𝑗 in the cell 𝑞, and the total probability of existence of the target in the 

whole environment is 𝑝𝑗 = ∑ 𝑝𝑞
𝑗

∀𝑞∈𝑄 . At the beginning, the probability map is constructed based 

on the a priori knowledge about the position of the targets. If it is known that the target 𝑗 can only 

exist in some part of environment (its uncertainty region), the initial probability map is constructed 

such that 𝑝𝑞
𝑗
= 0 for all cells 𝑞 outside of that particular area. The initial probability 𝑝𝑞

𝑗
 for a cell 

𝑞 inside the uncertainty region of 𝑗 is also assigned based on the a priori information. If there is 

no such information, the initial probability should be uniformly distributed between all cells. In 

construction of initial probability map, it is important to make sure that the total probability of 

existence of any target in the environment and the total probability of existence of all targets in 

any cell are less than or equal to one, i.e. ∑ 𝑝𝑞
𝑗

∀𝑞∈𝑄 ≤ 1, ∀𝑗 ∈ [1,𝑚] and ∑ 𝑝𝑞
𝑗𝑚

𝑗=1 ≤ 1, ∀𝑞 ∈ 𝑄. The 

probability 𝑝𝑗 = 1 means that the target 𝑗 definitely exists in the environment, however, its exact 

position is unknown. 

2.2.2.1 Sensor with Single-Cell Footprint 

In the ninth scenario, there are different distinguishable targets but it is known that there is at 

most one target of each type in the entire environment. The sensor has a single-cell footprint which 

can detect a target that resides in its current cell. The agents are equipped with imperfect sensors 
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with categorical distribution. We define 𝐸𝑞
𝑖  as the event that the target 𝑖 is in the cell 𝑞 and 𝐷𝑞

𝑖  as 

the event that the target 𝑖 is detected in the cell 𝑞. 

Parameter 𝜂𝑗
𝑖  is defined as the probability of detecting target 𝑖 given the actual target is  𝑗, 

where 𝑖, 𝑗 ∈ [0,𝑚] and 𝑚 is the number of possible targets, i.e. 𝜂𝑗
𝑖 = 𝑃(𝐷𝑞

𝑖 |𝐸𝑞
𝑗
). Index zero 

corresponds to the situation that there is no target. Therefore, 𝜂𝑗
0 is the probability of detecting no 

target given target 𝑗 exists in the cell, and 𝜂0
𝑗
 is the probability of detecting target 𝑗 while there is 

no target in the cell. It is expected that the probability of true positive measurement of all targets 

is greater than 0.5, i.e. 𝜂𝑗
𝑗
>0.5 for ∀𝑗 ∈ [0,𝑚]. It is also expected that  ∑ 𝜂𝑗

𝑖𝑚
𝑖=0 = 1  for  ∀𝑗 ∈

[0,𝑚]. The probability transition matrix 𝐏[Pi,j = 𝜂𝑗
𝑖 ] is obtained from technical specifications on 

the sensors, and is considered to be known a priori. 

Random variable 𝑇 is defined to be equal to the output of the sensor, i.e. 𝑇 = 𝑖 means that the 

sensor has detected target 𝑖 in the cell. Again 𝑇 = 0 means no target has been detected in the cell. 

If a mobile sensor visits a cell and detects the target 𝑖 in that cell, i.e. 𝑇 = 𝑖, the probability of 

existence of target 𝑗 in that cell can be updated as follows 

𝑝𝑞
∗𝑗
= 𝑃(𝐸𝑞

𝑗
|𝐷𝑞

𝑖 ) =
𝑝𝑞
𝑗
 . 𝜂𝑗

𝑖  

𝑃(𝐷𝑞
𝑖 )

 

Using the law of total probability  

𝑃(𝐷𝑞
𝑖 ) = ∑ 𝜂𝑘

𝑖 . 𝑝𝑞
𝑘𝑚

𝑘=0                                          (2-30) 

where 𝑝𝑞
0 = 1 − 𝑝𝑞 = 1 − ∑ 𝑝𝑞

𝑘𝑚
𝑘=1  is the probability that no target exists in the cell. Therefore, 

when the cell 𝑞  is searched by a sensor, the posterior probability of existence of target 𝑗 in that 

cell can be updated by using the following equation 
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𝑝𝑞
∗𝑗

 = ∑  (
𝑝𝑞
𝑗
 .𝜂𝑗
𝑖  

∑ 𝜂𝑘
𝑖 .𝑝𝑞

𝑘𝑚
𝑘=0

𝑚
𝑖=0  . 𝛿𝑖𝑇)                                       (2-31) 

When the probability of false detection of a target in a cell is independent of the real target in 

that cell, i.e. 𝜂𝑗
𝑖 = 𝜀𝑖 , ∀𝑗 ≠ 𝑖, (2-39) can be further simplified as follows 

𝑃(𝐷𝑞
𝑖 )   = ∑ (𝜀𝑖 . 𝑝𝑞

𝑘)𝑚
𝑘=0
𝑘≠𝑖

+ 𝛾𝑖 . 𝑝𝑞
𝑖 = 𝜀𝑖 . (1 − 𝑝𝑞

𝑖 ) + 𝛾𝑖 . 𝑝𝑞
𝑖              (2-32) 

where 𝛾𝑖= 𝜂𝑖
𝑖. Therefore, (2-40) can be written as follows  

𝑝𝑞
∗𝑗 =  ∑  (

𝑝𝑞
𝑗
.𝛾𝑗.𝛿𝑖𝑗+𝑝𝑞

𝑗
.𝜀𝑗.(1−𝛿𝑖𝑗)

𝜀𝑖.(1−𝑝𝑞
𝑖 )+𝛾𝑖.𝑝𝑞

𝑖
𝑚
𝑖=0  . 𝛿𝑖𝑇)                            (2-33) 

Since we expect 𝛾𝑖 ≥ 0.5 and 𝜀𝑖 ≤ 0.5, it is easy to verify that 𝑝𝑞
∗𝑗
≥ 𝑝𝑞

𝑗
 when the 𝑗th target is 

detected in the cell 𝑞, i.e. 𝛿𝑗𝑇 = 1, and  𝑝𝑞
∗𝑗
≤ 𝑝𝑞

𝑗
 when the 𝑗th target is not detected in the cell 𝑞, 

i.e. 𝛿𝑗𝑇 = 0. 

When a mobile sensor visits a cell, not only the probability of existence of the targets in that 

cell changes, but the probability of existence of the targets in the other cells also changes. Given 

the target 𝑖  has been detected by the sensor in the cell 𝑞, the posterior probability of existence of 

the target 𝑗 in the cell 𝑞′ ≠ 𝑞 is as follows 

𝑝
𝑞′
∗𝑗
= 𝑃(𝐸

𝑞′
𝑗
|𝐷𝑞

𝑖 ) = 

𝑝
𝑞′
𝑗
 .𝑃(𝐷𝑞

𝑖 |𝐸
𝑞′
𝑗
) 

𝑃(𝐷𝑞
𝑖 )

                                     (2-34) 

By using the fact that existence of the target 𝑗 in the cell 𝑞′ means that the target cannot exist in 

the cell 𝑞 

                      𝑃 (𝐷𝑞
𝑖 |𝐸

𝑞′
𝑗
) = 𝑃(𝐷𝑞

𝑖 |𝐸̅𝑞
𝑗
) = 𝑃(𝐷𝑞

𝑖 | ⋃ 𝐸𝑞
𝑘

∀𝑘≠𝑗 ) 

=
𝑃 (𝐷𝑞

𝑖 ∩ (⋃ 𝐸𝑞
𝑘

∀𝑘≠𝑗 ))

𝑃(⋃ 𝐸𝑞
𝑘

∀𝑘≠𝑗 )
=
𝑃(⋃ (𝐷𝑞

𝑖 ∩ 𝐸𝑞
𝑘)∀𝑘≠𝑗 )

𝑃(⋃ 𝐸𝑞
𝑘

∀𝑘≠𝑗 )
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    =
∑ 𝑃(𝐷𝑞

𝑖 ∩ 𝐸𝑞
𝑘)∀𝑘≠𝑗

∑ 𝑃(𝐸𝑞
𝑘)∀𝑘≠𝑗

=
∑ (𝑃(𝐷𝑞

𝑖 |𝐸𝑞
𝑘)𝑃(𝐸𝑞

𝑘))∀𝑘≠𝑗

1 − 𝑃(𝐸𝑞
𝑗
)

 

  =  
∑ (𝜂𝑘

𝑖 .𝑝𝑞
𝑘)∀𝑘≠𝑗

1−𝑝𝑞
𝑗                                                                            (2-35) 

and 

𝑃(𝐷𝑞
𝑖 ) = ∑ (𝑃 (𝐷𝑞

𝑖 |𝐸
𝑞

𝑘
)𝑃(𝐸𝑞

𝑘)) = ∑ (𝜂
𝑘
𝑖 . 𝑝

𝑞
𝑘)∀𝑘                          ∀𝑘  (2-36) 

Therefore, the mobile sensor can modify the probability map by updating the probability of 

existence of all targets, i.e. ∀𝑗 ∈ [1,𝑚], in all cells in the environment, i.e. ∀𝑞′ ∈ 𝑄, using the 

following Probability Map Updating Rule 

𝑃
𝑞′
∗𝑗
= (∑ (

𝑝
𝑞′
𝑗
 . 𝜂𝑗

𝑖

∑ 𝜂𝑘
𝑖 . 𝑝𝑞

𝑘𝑚
𝑘=0

𝑚

𝑖=0

. 𝛿𝑖𝑇)) . 𝛿𝑞𝑞′ + (∑ (
𝑝
𝑞′
𝑗
 . (∑ (𝜂𝑘

𝑖 . 𝑝𝑞
𝑘)∀𝑘≠𝑗 )

(1 − 𝑝𝑞
𝑗
). (∑ 𝜂𝑘

𝑖 . 𝑝𝑞
𝑘𝑚

𝑘=0 )

𝑚

𝑖=0

. 𝛿𝑖𝑇)) . (1 − 𝛿𝑞𝑞′) 

(2-37)    

where 𝑞 is the cell which has been searched by the mobile sensor. It should be noted that the total 

probability of existence of any target in the environment can always be found using 𝑃𝑗 =

∑ 𝑃
𝑞′
𝑗

∀𝑞∈𝑄 . 

Remark 1: Equation (2-20) is a special case of (2-46), where 𝑚 = 1, 𝜂1
1 = γ, and 𝜂0

1 = ε. 

Although by using (2-46), one can update the probability map after each measurement, it can 

be a very time consuming, especially when the number of cells in the environment is large. We 

use the concept of relative probability to resolve this issue. We define 𝑟𝑞
𝑗
 as the relative probability 

of existence of 𝑗th target the cell 𝑞. The probability of existence of target 𝑗 in the cell 𝑞 at each time 

can be found by the following equation  
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𝑝𝑞
𝑗
=

𝑟𝑞
𝑗

∑ 𝑟
𝑞′
𝑗

∀𝑞′∈𝑄

                                                        (2-38) 

The initial relative probability of existence of each target in each cell is initialized by 𝑟𝑞
𝑗
= 𝑝𝑞

𝑗
. 

By defining Δ𝑗 = ∑ 𝑟
𝑞′
𝑗

∀𝑞′∈𝑄  as the total relative probability of 𝑗th target, instead of storing 

and updating the probability map, the relative probability map and Δ𝑗  are stored and updated. 

When a cell is visited by a mobile sensor, only the relative probability of existence of the targets 

in that cell is changed. By definition 

𝑟𝑞
𝑗

𝑟
𝑞′
𝑗
=
𝑝𝑞
𝑗

𝑝
𝑞′
𝑗

 

If 𝑞 is the cell which has been searched by the mobile sensor, the posterior relative probability of 

existence of target 𝑗 in the cell 𝑞 is as follows 

𝑟𝑞
∗𝑗
=
𝑝𝑞
∗𝑗

𝑝
𝑞′
∗𝑗
. 𝑟
𝑞′
∗𝑗
=

∑  (
 𝜂𝑗
𝑖  

∑ 𝜂𝑘
𝑖 . 𝑝𝑞

𝑘𝑚
𝑘=0

. 𝛿𝑖𝑇)
𝑚
𝑖=0

∑  (
(∑ (𝜂𝑘

𝑖 . 𝑝𝑞
𝑘)∀𝑘≠𝑗 )

(1 − 𝑝𝑞
𝑗
). (∑ 𝜂𝑘

𝑖 . 𝑝𝑞
𝑘𝑚

𝑘=0 )
. 𝛿𝑖𝑇)

𝑚
𝑖=0  

.
𝑝𝑞
𝑗

𝑝
𝑞′
𝑗
. 𝑟
𝑞′
∗𝑗

 

However, the relative probability of the other cells does not change after the visit, i.e. 𝑟
𝑞′
∗𝑗
= 𝑟

𝑞′
𝑗

. 

Therefore 

                              𝑟𝑞
∗𝑗
=

∑  (
 𝜂𝑗
𝑖  

∑ 𝜂𝑘
𝑖 . 𝑝𝑞

𝑘𝑚
𝑘=0

. 𝛿𝑖𝑇)
𝑚
𝑖=0

∑  (
(∑ (𝜂𝑘

𝑖 . 𝑝𝑞
𝑘)∀𝑘≠𝑗 )

(1 − 𝑝𝑞
𝑗
). (∑ 𝜂𝑘

𝑖 . 𝑝𝑞
𝑘𝑚

𝑘=0 )
. 𝛿𝑖𝑇)

𝑚
𝑖=0  

.
𝑝𝑞
𝑗

𝑝
𝑞′
𝑗
. 𝑟
𝑞′
𝑗

 

                                      =

∑  (
 𝜂𝑗
𝑖  

∑ 𝜂𝑘
𝑖 . 𝑝𝑞

𝑘𝑚
𝑘=0

. 𝛿𝑖𝑇)
𝑚
𝑖=0

∑  (
(∑ (𝜂𝑘

𝑖 . 𝑝𝑞
𝑘)∀𝑘≠𝑗 )

(1 − 𝑝𝑞
𝑗
). (∑ 𝜂𝑘

𝑖 . 𝑝𝑞
𝑘𝑚

𝑘=0 )
. 𝛿𝑖𝑇)

𝑚
𝑖=0  

. 𝑟𝑞
𝑗
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                                     =
(1 − 𝑝𝑞

𝑗
). 𝜂𝑗

𝑖

∑  ((∑ (𝜂𝑘
𝑖 . 𝑝𝑞

𝑘)∀𝑘≠𝑗 ). 𝛿𝑖𝑇)
𝑚
𝑖=0  

. 𝑟𝑞
𝑗
 

                                     =
(1 − 𝑝𝑞

𝑗
). 𝜂𝑗

𝑖

∑  ((𝜂0
𝑖 (1 − ∑ 𝑝𝑞

𝑘𝑚
𝑘=1 ) + ∑ (𝜂𝑘

𝑖 . 𝑝𝑞
𝑘)𝑚

𝑘=1,𝑘≠𝑗 ). 𝛿𝑖𝑇)
𝑚
𝑖=0  

. 𝑟𝑞
𝑗
 

   =
(1 − 𝑝𝑞

𝑗
). 𝜂𝑗

𝑖

∑  ((𝜂0
𝑖 + ∑ ((𝜂𝑘

𝑖 − 𝜂0
𝑖 ). 𝑝𝑞

𝑘)𝑚
𝑘=1 − 𝜂𝑗

𝑖 . 𝑝𝑞
𝑗
) . 𝛿𝑖𝑇)

𝑚
𝑖=0  

. 𝑟𝑞
𝑗
 

     =

(1 −
𝑟𝑞
𝑗

Δ𝑗
) . 𝜂𝑗

𝑖

∑  ((𝜂0
𝑖 + ∑ ((𝜂𝑘

𝑖 − 𝜂0
𝑖 )
𝑟𝑞
𝑘

Δ𝑘
)𝑚

𝑘=1 − 𝜂𝑗
𝑖
𝑟𝑞
𝑗

Δ𝑗
) . 𝛿𝑖𝑇)

𝑚
𝑖=0  

. 𝑟𝑞
𝑗
 

=

(1 −
𝑟𝑞
𝑗

Δ𝑗
) . 𝜂𝑗

𝑖 . 𝑟𝑞
𝑗

∑  ((𝜂0
𝑖 + ∑ (

(𝜂𝑘
𝑖 − 𝜂0

𝑖 ). 𝑟𝑞
𝑘

Δ𝑘
)𝑚

𝑘=1 −
𝜂𝑗
𝑖 . 𝑟𝑞

𝑗

Δ𝑗
) . 𝛿𝑖𝑇)

𝑚
𝑖=0  

 

                                                       (2-39) 

which is only a function of the relative probability of existence of the targets in the cell 𝑞 and the 

total relative probability of existence of the targets in the environment. We must also update Δ𝑗 by 

adding the updated value of relative probability of  𝑞 and subtracting its previous value as follows 

 Δ∗𝑗 = Δ𝑗 − 𝑟𝑞
𝑗
+ 𝑟𝑞

∗𝑗
                                              (2-40) 

Therefore, after a mobile sensor visits the cell 𝑞, we only need to update the relative 

probability of all targets in the cell 𝑞, i.e. 𝑟𝑞
𝑗
, ∀𝑗 ∈ [1,𝑚], and the total relative probability of 

existence of all targets, i.e. Δ𝑗, ∀𝑗 ∈ [1,𝑚], using (2-39) and  (2-40), respectively. 

Remark 2: Equation (2-22) is a special case of  (2-39), where 𝑚 = 1, 𝜂1
1 = γ, and 𝜂0

1 = ε. 
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If the number of cells in the environment is equal to 𝑁𝑞, updating the probability map requires 

updating  𝑁𝑞 ×𝑚 values, while updating the relative probability map and the total relative 

probability of existence of all targets only requires updating 𝑚 + 1 values. 

2.2.2.2 Sensor with Multiple-Cell Footprint 

In the previous section, we assumed that the footprint of sensor is only a single cell. In this 

section, we extend the results for the case that the footprint of sensor consists of multiple cells.  

2.2.2.2.1 Multi-Sensor Model 

In the tenth scenario, there are different distinguishable targets but it is known that there is at 

most one target of each type in the entire environment. The sensor has multiple-cell footprint which 

can detect the target in each cell separately. In this case, the footprint of sensor is more than one 

cell and the sensor can detect the target in each cell inside its footprint separately. In fact, we can 

replace this sensor with an array of several sensors with one cell footprint. Each sensor, then, can 

use (2-37) to update the probability map or (2-39) and (2-40) to update the relative probability map 

and the total relative probability of all targets, respectively. It should be noted that each of these 

virtual sensors needs to update the entire probability map. Indeed, using these virtual sensors, there 

is multiple sensory information about all cells in the domain. In this situation, a sensor fusion 

algorithm may be used to combine the information derived from these different virtual sensors to 

achieve a better result which is beyond the scope of this study. The simplest solution to this 

problem is that the probability update is performed for all virtual sensors, in a pre-specified order. 

A more general model is the one that the value of 𝜂𝑗
𝑖  is assumed to depend on the distance 

between the sensor and the cell being observed, i.e. 𝑟 = ‖𝐪 − 𝐩‖. Parameters 𝜂𝑗
𝑖(𝑟) must satisfy 

the properties described in section 2.1.2.2.1. 
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We define Ω as the collection of cells inside the sensor footprint and 𝑁Ω as the number of 

cells in Ω. Therefore, for any cell inside the sensor footprint, i.e. ∀𝑞 ∈ Ω, the mobile sensor 

modifies the probability map by updating the probability of existence of all targets, i.e. ∀𝑗 ∈

[1,𝑚], in all cells in the environment, i.e. ∀𝑞′ ∈ 𝑄, using the following Probability Map Updating 

Rule 

𝑃
𝑞′
∗𝑗
= (∑ (

𝑝
𝑞′
𝑗
 . 𝜂𝑗

𝑖

∑ 𝜂𝑘
𝑖 . 𝑝𝑞

𝑘𝑚
𝑘=0

𝑚

𝑖=0

. 𝛿𝑖𝑇)) . 𝛿𝑞𝑞′ + (∑ (
𝑝
𝑞′
𝑗
 . (∑ (𝜂𝑘

𝑖 . 𝑝𝑞
𝑘)∀𝑘≠𝑗 )

(1 − 𝑝𝑞
𝑗
). (∑ 𝜂𝑘

𝑖 . 𝑝𝑞
𝑘𝑚

𝑘=0 )

𝑚

𝑖=0

. 𝛿𝑖𝑇)) . (1 − 𝛿𝑞𝑞′)     

(2-41) 

where 𝑞 is the cell which has been searched by the mobile sensor. 

If we define 𝑟𝑞
𝑗
 as the relative probability of existence of  𝑗th target in the cell 𝑞 and Δ𝑗  as the 

total relative probability of 𝑗th target, instead of storing and updating the probability map, we can 

store and update the relative probability map and the total relative probability of all targets. In this 

case, for any cell inside the sensor footprint, i.e. ∀𝑞 ∈ Ω, the mobile sensor modifies the relative 

probability map by updating the relative probability of existence of all targets, i.e. ∀𝑗 ∈ [1,𝑚], in 

the cells 𝑞, using the following rule 

𝑟𝑞
∗𝑗
= 

(1−
𝑟𝑞
𝑗

Δ
𝑗).𝜂𝑗

𝑖 .𝑟𝑞
𝑗

∑  ((𝜂0
𝑖+∑ (

(𝜂𝑘
𝑖 −𝜂0

𝑖 ).𝑟𝑞
𝑘

Δ
𝑘 )𝑚

𝑘=1 −
𝜂𝑗
𝑖 .𝑟𝑞
𝑗

Δ
𝑗 ).𝛿𝑖𝑇)

𝑚
𝑖=0  

                   (2-42) 

and also modifies the total relative probability of all targets, using  

Δ∗𝑗 = Δ𝑗 − 𝑟𝑞
𝑗
+ 𝑟𝑞

∗𝑗
                                            (2-43) 
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If the number of cells in the environment is equal to 𝑁𝑞, updating the probability map requires 

updating  𝑁𝑞 ×𝑚 × 𝑁Ω values, while updating the relative probability map and the total relative 

probability only requires updating (𝑚 + 1) × 𝑁Ω values. 

2.2.2.2.2 Single-Sensor Model 

The other possible case is when the sensor can only report the existence or non-existence of 

an object in its entire footprint and classify it as one of known possible targets. In this case, the 

sensor provides very little information about the probability of existence of the targets in each cell 

inside its footprint which is not useful from practical point of view. Therefore, we will not discuss 

this model in this study. 

2.3 Conclusion 

In this chapter, we considered ten different scenarios for the probabilistic search in uncertain 

environments and developed the probability updating rule for all scenarios. It is worth to mention 

that the scenarios with a single target are special cases of the scenarios with multiple targets. 

Similarly, the scenarios with a single-cell footprint sensor are special cases of the scenarios with 

multiple-cell footprint sensors.  

Remarks:  

The size of the cell is an important parameter. It should be chosen based on the size of the 

environment, the size of the target, the size of the mobile agents, and computational and storage 

capability of the mobile sensor. Although there are some hard constraint on the size of cell, it is 

generally up to the engineer's experience and knowledge to choose the appropriate cell size. For 

example, size of the cell should be fine enough to include only one target, but making it too fine 
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with respect to the size of environment only increases the computational and storage requirement 

of the mobile agent [114]. 

In his chapter, we discussed a single agent search problem. However, the result are easily 

extendable for multi agents search problems. When multiple mobile sensors are involved in the 

search mission, they are required to maintain an identical probability map. Therefore, the mobile 

sensors must be able to communicate with each other. After each measurement, all mobile sensors 

transmit their outputs to the others. Then, each mobile sensor updates its probability map based on 

its own measurement and measurements of the other mobile sensors. 

The probabilities of true positive and false positive measurements of the sensor and the size 

of footprint of the sensor can be functions of the time which may be used to model the sensor 

performance degradation over the time.  
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CHAPTER 3 

 

 Cooperative Search using Dynamic Programming 

This chapter studies cooperative multi agent search problem using Dynamic Programming 

approach. First, general model of mobile agents is presented and Dynamic Programming 

formulation of problem is developed. Different objectives of the search problem are investigated 

and appropriate cognitive models for each objective are presented. Probabilistic models that 

discussed in the previous chapter are shown to be one of these cognitive models. A decentralized 

approach is used for the search mission where each mobile agent chooses its optimal action 

individually. To make cooperation between agents possible, two approximation methods are 

proposed to modify the objective function of agents and take into the account the action of other 

agents. This approach is then extended for the case with known communication delay between 

mobile agents. Each section is followed by a simulation part to evaluate the effectiveness of the 

presented approach.  

3.1 General Model of Mobile Sensors 

An appropriate model must incorporate the influence of the current control action on future 

states. In general, the model of mobile agents is of the form  

𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘, 𝑤𝑘)+𝑏𝑘                                              (3-1) 

where 𝑥𝑘 is the system state at the discrete time step 𝑘, 𝑢𝑘 is the control input, 𝑤𝑘 is a random 

variable that captures the stochastic elements in the system dynamics, and 𝑏𝑘 is an external 

disturbance. The state of the system consists of the search status and the agent status. The 
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probability of existence of the targets and the level of the uncertainty in their location constitute 

the search status.  The agent status is comprised of position and heading (orientation) of all agents. 

The agents can communicate with each other so they can form a comprehensive view of the state. 

However, it is possible that delayed communication makes the observed state of the system 

different from the actual one. In this case, the observed state can be described as follows 

𝑥̂𝑘 = 𝑥𝑘 + 𝑑𝑘                                                           (3-2) 

where 𝑑𝑘 is uncertainty in the measurement. It should be noted that this uncertainty is different 

from the measurement noise which is due to imperfections of sensors and can be captured by 𝑤𝑘. 

The control input, 𝑢𝑘 comes from a set of possible assignments 𝑈 such as: turn left, turn right, or 

go straight. Stochastic elements which are captured by 𝑤𝑘 come from different sources, including 

unknown locations of the targets, unknown actions of other agents, and imperfect sensor 

information. 

3.2 Dynamic Programming Formulation 

  The mobile sensors must choose a control signal such that it results in the best possible paths, 

in the sense that the team of mobile sensors identifies maximum number of targets or gather 

maximum information about the environment. In other words, each agent attempts to optimize the 

possibility of finding targets over the decision process planning horizon. This leads naturally to 

the idea of applying Dynamic Programming techniques [115]. Define 𝐽𝑘(𝒙𝑘) as the “gain” at 

decision time step 𝑘 which can represents the expected number of the targets identified by the 

agents as they travel from time step 𝑘 to the end of the mission.  Bellman’s equations for this 

problem can be expressed as [115] 

𝐽𝑘(𝒙𝑘) = max
𝑢𝑘∈U

(𝐸𝑤𝑘[𝑔(𝒙𝑘, 𝑢𝑘 , 𝑤𝑘) + 𝐽𝑘+1(𝑓(𝒙𝑘, 𝑢𝑘, 𝑤𝑘) + 𝑏𝑘)])              (3-3) 
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where the term 𝑔(𝒙𝑘, 𝑢𝑘, 𝑤𝑘) is the single step gain. The optimal decisions can be found by taking 

the arguments of the maximization of the Dynamic Programming recursion. 

3.2.1 Single-Step Gain 

The first step to calculate the gain function is finding the expected value of single step gain 

or the gain that a vehicle will receive at one time step (specifically at time step k). This value can 

be written as 

𝑔(𝒙𝑘, 𝑢𝑘 , 𝑤𝑘) = 𝜆
𝑘𝛿𝑘𝜎𝑘 + 𝑐𝑘                                                      (3-4) 

where 𝜎𝑘 is the search gain for the vehicle at time step 𝑘 which can be the expected value of the 

number of targets detected during the mission from time step 𝑘 to time step 𝑘 + 1, 𝛿𝑘 is the 

probability that the mobile sensor is operational at time 𝑘, 𝜆(0 ≤ 𝜆 < 1) is the time discount 

factor, and 𝑐𝑘 is the uncertainty in the cost. The search gain 𝜎𝑘 can be calculated by adding up the 

probabilities of existence of the targets (or the value of uncertainty) in all cells that the agent covers 

during its mission from time step 𝑘 to time step 𝑘 + 1 . Parameter
k

 is normally a decreasing 

function of time which means the probability that the agent is operational decreases as time goes 

on. With the time discount less than one, it is typically desirable to find the targets as soon as 

possible. 

3.2.2 Future Gain 

Assume that the mission duration is 𝑁 time steps. Hence, an agent will make 𝑁 decisions over 

the course of the mission. Thus the terminal gain of the search mission is 𝐽𝑁(𝒙𝑁). The gain for any 

time step k is found by iterating enough times until the terminal gain is reached. This gives [115] 

    𝐽𝑘(𝒙𝑘) =  max
𝑢𝑘∈U

(𝐸𝑤𝑘[𝑔(𝒙𝑘, 𝑢𝑘 , 𝑤𝑘) +  max
𝑢𝑘+1∈U

(𝐸𝑤𝑘+1[𝑔(𝒙𝑘+1, 𝑢𝑘+1, 𝑤𝑘+1) +⋯ 
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         + max
𝑢𝑁−1∈U

( 𝐸𝑤𝑁−1[𝑔(𝒙𝑁−1, 𝑢𝑁−1, 𝑤𝑁−1)+𝐽𝑁(𝑓(𝒙𝑁−1, 𝑢𝑁−1, 𝑤𝑁−1)+𝑏𝑁−1)])… ])      (3-5) 

However, as the dimension of the problem grows so does the computation time. The 

dimension of the problem is given by the possible states to be examined over the planning horizon 

of the entire mission. To make the problem tractable, and solvable in real-time, a rolling horizon 

limited look-ahead policy can be been utilized [115]. The price to pay for such approximation is a 

loss in performance (near optimality). This rolling horizon approximation defines a horizon of time 

steps 𝑇, and then replaces the value of final gain  𝐽𝑁 with 𝐽𝑘+𝑇. This gives [115] 

                  𝐽𝑘(𝒙𝑘) ≅  max
𝑢𝑘∈U

(𝐸𝑤𝑘[𝑔(𝒙𝑘, 𝑢𝑘, 𝑤𝑘) +  max
𝑢𝑘+1∈U

(𝐸𝑤𝑘+1[𝑔(𝒙𝑘+1, 𝑢𝑘+1, 𝑤𝑘+1) + ⋯ 

                       + max
𝑢𝑘+𝑇−1∈U

( 𝐸𝑤𝑘+𝑇−1[𝑔(𝑥𝑘+𝑇−1, 𝑢𝑘+𝑇−1, 𝑤𝑘+𝑇−1) 

                        +𝐽𝑘+𝑇(𝑓(𝒙𝑘+𝑇−1, 𝑢𝑘+𝑇−1, 𝑤𝑘+𝑇−1)+𝑏𝑘+𝑇−1)])… ])                                         (3-6) 

This produces a much smaller problem space, so it has the benefit of always producing a tractable 

result. However, this solution is optimal with respect to the sub-problem, not in terms of the main 

problem. There is, therefore, a trade-off between optimality and computational complexity. 

3.3 Search Objectives 

Cooperative search problem may have two different objectives; gathering more information 

about the environment or locating more targets based on a priori information about the possible 

position of the targets. Of course, the objective of a search mission can be a combination of these 

two objectives. In this case, a mobile sensor updates its information about the environment while 

searching for the targets. Therefore, in a search problem, the first step is to define the model of the 

environment and the updating rule of this model based on the mobile sensor measurement. We 

will present different environment models and updating rules in this chapter. Each of these models 
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is appropriate for some problem structure and search objective. In this framework, each agent uses 

a “cognitive map” as its environment representation. Cognitive maps are Cartesian grids 

containing cells, where each cell is assigned a certain value representing the probability or the 

agents' belief in the corresponding region being occupied by a target or threat. An initial map of 

the environment, which is uncertain and incomplete, is created based on the a priori knowledge 

about the environment. 

Each sensor measurement obtained during the search is a source of evidence about the state 

of that location. We consider a case of imperfect sensors in this study, that is, each sensor scan 

does not by itself provide 100% certainty about the state of the corresponding location. In the next 

sections, different objectives of search mission and their corresponding model of the environment 

are presented and the updating rule of each model is discussed.  

3.3.1 Uncertainty Reduction  

The objective of mission in this case is gathering more information about the environment 

and reducing the uncertainty about it. The environment is a bounded 𝐿𝑥 × 𝐿𝑦  grid area, where each 

position is a cell. Each cell 𝐪 = (𝑥, 𝑦) has an associated uncertainty value, 𝜁(𝐪, 𝑡) ∈ [0,1], 

representing the agents' uncertainty about the target distribution in that cell. If 𝜁(𝐪, 𝑡) = 1, then 

cell 𝐪 is a completely unknown location for the vehicles at time t. As the cell is searched repeatedly, 

𝜁(𝐪, 𝑡) approaches 0. A cell 𝐪 is said to be fully searched, if 𝜁(𝐪, 𝑡) ≤ 𝜁0, where 𝜁0 is a threshold 

corresponding to a decision that the cell does not need to be searched any more. We can see that 

the uncertainty value associated with each cell could actually represent the undetected information 

in that location. The search gain 𝜎𝑘 can be calculated by adding up the value of uncertainty in all 

cells that the agent covers during its mission from time step 𝑘 to time step 𝑘 + 1, i.e. 𝜎𝑘 =
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∑ 𝜁(𝐪, 𝑘)∀𝐪∈Ω𝑘 , where Ω𝑘 is the collection of cells that the mobile sensor covers during its mission 

from time step 𝑘 to time step 𝑘 + 1. 

Each agent uses a cognitive map to store its knowledge about the uncertainties in the 

environment and continuously updates it using new sensor readings from its own or from other 

agents by communication. This kind of cognitive map is defined as an uncertainty map and is 

denoted as  𝜁𝑖(𝑡). Each cell in the uncertainty map is initialized with a value belonging to [𝜁0, 1] 

to reflect the agent's a priori knowledge about that location. Parameter 𝜁0 (0≤ 𝜁0 <1) is the 

threshold value that represents no uncertainty.  A cell with 𝜁𝑖(𝐪, 0) = 1 is a completely unknown 

location to the agent 𝑖 and needs to be searched. A cell with  𝜁𝑖(𝐪, 0) = 𝜁0 is a location with no 

interest for search (for example, a location in a lake would be initialized as 𝜁0 if the targets are all 

land-based). In general, due to the information loss caused by communication failures and delays, 

the uncertainty map carried by different agents might be different. If we assume that the 

communication among the group of vehicles is reliable and the sensor information from any 

vehicle is available to the whole group immediately, the whole group of vehicles actually share 

the same uncertainty map, which is denoted as Ζ(𝑡). 

3.3.1.1 Dempster's Rule of Combination 

Here, we define an uncertainty reduction rate, denoted as 𝜇𝑖 ∈ (0,1), to model the 

uncertainties and inaccuracies about the 𝑖th mobile sensor. Mathematically, 𝜇𝑖  quantifies the belief 

of a sensor scan from agent 𝑖 committed to reducing the uncertainty in that cell. Since the agents 

are identical in this study, we use 𝜇 to denote the uncertainty reduction rate for all the agents. Based 

on the defined sensor model and using Dempster's rule of combination [116], a visit by any agent 

to cell 𝐪 = (𝑥, 𝑦)  at time 𝑡 will reduce the uncertainty value associated with that cell at a rate 𝜇, 

represented as 
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𝜁(𝐪, 𝑡 + 1) = 𝜇𝜁(𝐪, 𝑡)                                                    (3-7) 

It is easy to generalize that if m agents visit the cell at the same time, the cell's uncertainty value is 

updated as 

𝜁(𝐪, 𝑡 + 1) = 𝜇𝑚𝜁(𝐪, 𝑡)                                                   (3-8) 

According to equation (3-7) and (3-8), it can be seen that the first scan of a cell results in the 

maximum reduction in uncertainty and further scans result in reduced benefit. For example, 

if 𝜇 =0.5, the uncertainty value of a cell (𝑥, 𝑦) with 𝜁(𝑥, 𝑦, 0) = 1, changes as 1, 0.5, 0.25, 0.125, 

and 0.0625, if it is sequentially visited four times by possibly different vehicles. Therefore, this 

update rule is a simple way to track the number of useful “looks” each cell has had and captures 

the nature of diminishing returns with each look. This property is similar to that of the detection 

function used in search theory [10] and [11], where the detection function represents the 

probability that a search in a given cell for a specified duration of time will detect the target 

provided that the target is present in that cell. Furthermore, each incremental time spent in 

searching a cell produces a decreasing return on the probability of detection. 

3.3.1.2 Entropy-based Rule 

Each cell 𝐪 = (𝑥, 𝑦) has an associated target probability, 𝑃(𝐪, 𝑡) ∈ [0,1], representing the 

agents' belief about the probability that a target presents in the cell 𝐪 at time 𝑡 as discussed in the 

previous chapter. The uncertainty associated with cell 𝐪 can be defined as the Shannon entropy 

[117] of the target probability 𝑃(𝐪, 𝑡) 

𝜁(𝐪, 𝑡) = 𝐻(𝜁(𝐪, 𝑡)) = − 𝑃(𝐪, 𝑡) log2 𝑃(𝐪, 𝑡) − (1 − 𝑃(𝐪, 𝑡)) log2(1 − 𝑃(𝐪, 𝑡))     (3-9) 

In this way, the uncertainty value associated with each cell can be used to quantify how much 

information the vehicles have about that location at a certain time t. When a cell 𝐪 has 𝑃(𝐪, 𝑡)=0.5, 

it has 1 bit of uncertainty, which indicates that the agents are completely ignorant of whether a 
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target is present in that cell, because the probability of a target present is equal to the probability 

of no target present. When a cell 𝐪 has 𝑃(𝐪, 𝑡)=1 or 𝑃(𝐪, 𝑡)=0, it has an uncertainty of 0. In this 

case, the agents are completely sure about the target present or not. Thus, the uncertainty value is 

a measure of lack of knowledge about the existence of the target in the cell: the closer it is to zero, 

the greater our knowledge.  

Note that the purpose of utilizing an uncertainty map is the same as the description given in 

the previous section, but the definition of the uncertainty is different from the definition used in 

that section. The entropy-based uncertainty definition used in this section is a stronger basis for 

quantifying the vehicles' knowledge about the target information, but it cannot track the number 

of visits per cell as the Dempster-Shafer based uncertainty definition used in the previous section. 

In order to update the uncertainty map, the target probability, 𝑃(𝐪, 𝑡) must be updated. 

Updating rule for 𝑃(𝐪, 𝑡) depends on the environment, the type of the targets and the type of the 

sensor which has been discussed in chapter 2. 

3.3.2 Locating the Targets 

The objective of the mission in this case is to locate the maximum number of targets in the 

environment in the given search time. To direct the agents to achieve their objectives, we use a 

probability map which represents the agent’s knowledge about the target distribution. The 

incremental map-building method introduced in chapter 2 is used to incorporate new sensor 

readings based on a Bayesian model that accounts for sensor errors. Therefore, in this case, the 

cognitive map is a probability map. 

The search gain  𝜎𝑘 can be calculated by adding up the probabilities of existence of the targets 

in all cells that the agent covers during its mission from time step 𝑘 to time step 𝑘 + 1, i.e. 𝜎𝑘 =
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∑ ∑ 𝑃(𝐸𝐪
𝑖 )∀𝐪∈Ω𝑘∀𝑖 , where Ω𝑘 is the collection of cells that the mobile sensor covers during its 

mission from time step 𝑘 to time step 𝑘 + 1, and 𝑃(𝐸𝐪
𝑖 ) is the probability of existence of target 𝑖 

in the cell 𝐪. 

Since objective of the mission is to locate the maximum number of targets in the environment, 

the agents are looking for the cells with high probability of existence of the targets. However, when 

a target is located in a cell, it is desirable to remove it from the list of the targets in the cell to let 

the mobile sensors look for the other targets. We usually define a threshold for the probability and 

when the probability of existence of a target in a cell is above that value, the target is considered 

to be in that cell and, therefore, it is removed from the list of the targets in the cell. This threshold 

is chosen based on different factors including the sensor accuracy, the target importance, time 

constraints, and available search effort. It is worth to mention that by using a Bayesian updating 

rule, the probability never becomes one. In fact, if a sensors detects a target in a cell for several 

times, the probability of existence of the target in the cell gets very close to one, but never equals 

one. Therefore, choosing a threshold value is necessary.   

3.4 Cooperative Decision Making 

We are interested in the capability of mobile sensors working in a distributed unsupervised 

mode, i.e., the agents themselves determine where to search based on their knowledge of the 

environment and do not rely on external guidance. While agents can certainly search the 

environment without cooperation, the search can be made much more efficient by using 

cooperation to minimize duplicated effort where some agents may follow the same search path 

and waste search effort. Therefore, the key problem for multi agent cooperative search is to choose 



65 

 

different search paths for each individual agent such that they can simultaneously explore different 

areas of their environment. 

In this chapter, the mission objective is to search the terrain to locate as many targets as 

possible. To achieve this goal, we propose a decentralized method where each agent makes a 

decision about its next action individually. Each agent is viewed as a self-interested decision 

maker. The proposed approach consists of optimizing a global objective function through 

autonomous agents that are capable of making individually rational decisions to optimize their 

own objective functions. In non-cooperative decision making, it is possible that two or more agents 

decide to search the same area. Although the decision of each agent may be individually optimal, 

but the overall gain will be less than if the agents search completely different areas addressing a 

team goal. In order to enable cooperation, a mechanism must be used to consider the effect of 

decision of other vehicles on the decision of planning vehicle. One approach is that each agent 

determines its own action by simultaneously choosing the path for all agents in the fleet, using a 

centralized planning algorithm [35]. It is typically assumed that each agent then executes its own 

plan. This approach is impractical due to computational complexity, especially when the limited 

processing ability of the moving agents is considered. The other approach is to use a negotiation 

mechanism [19]. The result might be sub-optimal but the computational burden is considerably 

less than the previous method. However, a negotiation mechanism is not applicable in the cases of 

limited communication bandwidth and delays.  

It is desired to obtain localized objective function for each agent that aligns with the global 

objective function. In our approach, each agent uses a method to estimate the probability of 

different actions of other agents. These probabilities are utilized to modify the objective function 

of the planning agent to comply with the global objectives. Therefore, when the agents want to 
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make decisions on their next actions, they must simply optimize their own objective functions. 

However, if all agents optimize their own objective function, this also optimizes the global 

objective. To enable efficient cooperation, the planning for each agent should consider the 

influence of the decision of other teaming agents on its own decision. We mentioned that the 

overall gain of the mission will be reduced, if two or more agents search the same area of the 

environment. In the extreme case that all agents follow the same path, the performance of a multi 

agent search is the same as the performance of a single agent search. So we intend to modify the 

objective function of agents to prevent them from searching the same area.  

It has been shown that when an agent searches an area and does not find a target in it, the 

probability of existence of that target in that area is reduced. Therefore, the gain (𝜎) of searching 

that area in the future will be decreased. This can prevent agents from searching the areas which 

have been already searched by other agents. If all agents know the future position of other agents, 

a similar method can be used to prevent them from searching the same areas in the future. The 

bandwidth of communication channel is not large enough to let agents negotiate about their 

actions, so they do not know the precise position of other agents in the future. However, they may 

be able to estimate the path of the others in the near future. Assume that each agent knows the 

probability of presence of other agents in each cell over the future look-ahead horizon. Then the 

modified search gain of the agents for the uncertainty reduction objective and the target locating 

objective is defined as  

𝜎̂𝑘 = ∑ 𝜌𝑘(𝐪). 𝜁(𝐪, 𝑘)∀𝐪∈Ω𝑘                                                     (3-10) 

and 

𝜎̂𝑘 = ∑ ∑ 𝜌𝑘(𝐪)𝑃(𝐸𝐪
𝑖 )∀𝐪∈Ω𝑘∀𝑖                                                   (3-11) 
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respectively, where 𝜌𝑘(𝐪) is always between zero and one. This discount factor is a decreasing 

function of the probability that other agents also decide to search the same area in the near future. 

Now, we can modify the single step gain of agents in (3-4) by replacing 𝜎𝑘with 𝜎̂𝑘, as follows 

𝑔(𝐱𝑘, 𝑢𝑘 , 𝑤𝑘) = 𝜆
𝑘𝛿𝑘𝜎̂𝑘 + 𝑐𝑘                                             (3-12) 

The larger the value of  𝑔 in an area, the more the probability that the planning agent decides to go 

to that area. Targets and agents act like opposite electrical charges. Targets attract agents while 

agents repel each other. Therefore, agents try to go to areas with the most probability of existence 

of unfound targets and the least probability of presence of other agents. It causes each agent to 

search the area that the other agents have not searched in the past and will not search in the future.  

Exact evaluation of the probability of presence of other agents requires each agent to expand 

the planning tree of every other agent as shown in Figure 3.1-a. This probability then can be used 

to define the function 𝜌 such that the single step gain decreases when the probability of presence 

of other agents increases. Although this method reduces the computational complexity of 

cooperative decision making compared to a centralized approach, it is still impractical when the 

number of vehicles or the search horizon increases. We propose two methods to estimate the 

planning tree of other agents. It is obvious that the performance of search mission is directly related 

to accuracy of these estimations. 

3.4.1 Geometric Approach 

In this section, we propose a geometric method to estimate the probability of different actions 

of other agents. The proposed function which approximately equals to the probability of presence 

of an agent in the near future is then used to find an appropriate discount factor 𝜌.  
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(a)                                              (b) 

              Figure 3-1. The future position of a vehicle for three steps look-ahead 

 

3.4.1.1 Geometric Estimation Method 

At each decision time step 𝑘, we define Λ𝜏
𝑖  as the set of all cells that the agent 𝑖 may visit 

during the mission from the time step 𝑘 + 𝜏 − 1 to the time step 𝑘 + 𝜏. When a cell 𝐪 is in both 

Λ𝜏
𝑖  and Λ

𝜏′
𝑗

 where 𝜏′ ≤ 𝜏 ≤  𝑇 and 𝑇 is the maximum look-ahead, the cell 𝐪 will be probably 

searched by the agent 𝑗 before the time step 𝑘 + 𝜏. Therefore, an appropriate 𝜌𝑘+𝜏
𝑖 (𝐪) must 

decrease the gain of searching the cell 𝐪 during the 𝜏th look-ahead of the agent 𝑖. In order to find 

the discount factor, we need to know Λ𝜏
𝑖  and 𝑃(E

𝐪
  𝑗,𝜏) which is the probability of presence of the 

agent 𝑖 in the cell 𝐪 from time step 𝑘 + 𝜏 − 1 to the time step 𝑘 + 𝜏 for ∀𝑖 and 𝜏 ≤ 𝑇.  

If the turning rate of the agent is relatively low, at the 𝜏 steps ahead, the agent is somewhere 

on an arc with the radius of 𝑟𝜏, the angle of Θ𝜏, and the center of the current position of the agent. 

Therefore, Λ𝜏
𝑖  is the collection of cells which are enclosed by the arc with the radius of 𝑟𝜏−1, and 

the angle of Θ𝜏−1, and the arc with the radius of  𝑟𝜏 and the angle of Θ𝜏, and the center of the current 

position of the agent. The position of an agent between time step 2 and time step 3 is shown in the 

Figure 3-2. 

 

 

𝐩𝑖 

𝑟𝑖,𝐪 

 

𝛉𝑖,𝐪 
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The value of  𝑟𝜏 is approximately equal to 𝜏𝑣 where 𝑣 is the average velocity of the agent. The 

simplest approximation for Θ𝜏 is 2𝜑 for all 𝜏 in the look-ahead horizon of the agent, where 𝜑 is 

the turning angle of the agents. This is a good approximation when the look-ahead horizon of the 

agent is small. A better approximation is one degree approximation  

 Θ𝜏 = 2𝜑(1 + 𝛼𝜏𝑣)                                                        (3-13) 

where 𝛼 is a scaling parameter. 

We saw that the position of an agent in the near future is on a moving arc with the center of 

its current position. If we assume that the probability of presence of the agent on this arc is 

uniformly distributed, one can conclude that 

𝑃(E
𝐪
  𝑖,𝜏) ∝ {

1

‖𝐪−𝐩𝑖‖.2𝜑(1+𝛼‖𝐪−𝐩𝑖‖)
     𝐪 ∈ Λ𝜏

𝑖               

0                      𝑒𝑙𝑠𝑒
                    (3-14) 

where ‖𝐪 − 𝐩𝑖‖ and 2𝜑(1 + 𝛼‖𝐪 − 𝐩𝑖‖) are the length and the angle of the moving arc when it 

crosses the cell 𝐪, respectively. Therefore, the probability of presence of the agent 𝑖 in the cell 𝐪  

during the 𝜏th look-ahead is as follows 

𝑃(E
𝐪
  𝑖,𝜏) = {

𝛽𝜏

‖𝐪−𝐩𝑖‖.2𝜑(1+𝛼‖𝐪−𝐩𝑖‖)
     𝐪 ∈ Λ𝜏

𝑖               

0                      𝑒𝑙𝑠𝑒
                   (3-15) 

2𝑣 

3𝑣 

Θ2𝑣 

Θ3𝑣 

Figure 3-2. The position of the agent between time step 2 and time step 3 
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where 𝛽𝜏 is a scaling parameter that should be chosen in an appropriate way to ensure that the 

probability is always less than one. Since the length of the moving arc during the 𝜏th look-ahead 

is 𝑟𝜏. Θ𝜏 = 2𝜑(1 + 𝛼𝜏𝑣), the scaling factor 𝛽𝜏 must be less than or equal to this value, i.e. 𝛽𝜏 ≤

2𝜑(1 + 𝛼𝜏𝑣). However, (3-15) is a discrete probability distribution and its support is the 

collection of cells in the environment. Thus, a less conservative condition for the value of 𝛽𝜏 is 

 𝛽𝜏 ≤ 2𝜑(1 + 𝛼𝜏𝑣)/number of cells in the moving arc. In the extreme condition when the moving 

arc is a straight line (an arc with the length of infinity),  𝛽𝜏 equals dimension of the cell. 

Therefore, 𝛽𝜏 must always be less or equal to the dimension of the cell. In deriving (3-15), we 

assumed that it is equally probable for the agent to be in any point on the moving arc. Figure 3-1-

a shows that this assumption is not completely true. In fact, there are some places with more 

probability of presence of the agent than the other places which means the probability not only 

depends on the length of 𝐪 − 𝐩𝑖, but also depends on the angle between 𝐪 − 𝐩𝑖 and the current 

heading of the agent 𝑖 to some extent. It is possible to use higher order approximation to consider 

this effect, at the cost of more computational complexity. However, the results shown in the 

simulation section demonstrate that how this relatively simple approximation can improve the 

performance of the mission. 

Now, for each cell 𝐪 in the sensor footprint of agent 𝑖 at 𝜏 steps ahead, the discount value can 

be defined as follows 

𝜌𝑘+𝜏
𝑖 (𝐪) = max (0,1 − 𝐾∑ ∑ 𝑃(E

𝐪
 𝑗,𝑡))  𝜏

𝑡=1∀𝑗≠𝑖                                  (3-16) 

where K is a scaling parameter. It is clear that this discount factor is always between zero and one 

and is a non-increasing function of the probability that the cell will be visited by the other agents 

during the next 𝜏 steps. Since 𝑃(E
𝐪
 𝑗,𝜏) is non-zero only for 𝐪 ∈ Λ𝜏

𝑗
 



71 

 

∑ 𝑃(E
𝐪
 𝑗,𝑡)𝜏

𝑡=1 = {
𝛽𝜏

‖𝐪−𝐩𝑗‖.2𝜑(1+𝛼‖𝐪−𝐩𝑗‖)
     𝐪 ∈ ⋃ Λ𝑡

𝑗𝜏
𝑡=1              

0                                   𝑒𝑙𝑠𝑒
                (3-17) 

which makes the calculation of (3-16) very simple. In fact, in the worst case scenario when all 

agents may try to search the cell 𝐪 during the next 𝜏 steps, we only need to calculate 𝑛 − 1 

equations 
𝛽𝜏

‖𝐪−𝐩𝑗‖.2𝜑(1+𝛼‖𝐪−𝐩𝑗‖)
 for all agents 𝑗 other than 𝑖, where 𝑛 is the number of agent in the 

mission.  

In the procedure of calculating the single step gain, first, the agent must recognize that whether 

in that step it is in the approximate future sector of the other agents, and if so, calculate the discount 

factor  𝜌𝑘+𝜏
𝑖 (𝐪). Then, it can use this value to find the single step gain.  

3.4.1.2 Simulation 

In this section, we present some simulations to show the effect of cooperation on the 

performance of a multi agent search problem. It is desired to illustrate the capability of the 

proposed method to allow cooperation between agents which leads to a mission with higher 

performance. All simulations have been done in Matlab® R2010a environment on a PC with 2.4 

GHz CPU. The dynamic programming algorithm is implemented as a recursive function in 

Matlab®. 

The environment used in this simulation is a 80×80 square grid. There exists three targets 

known to be in 15×15 cells square areas (uncertainty regions) as shown in Figure 3-3 and 3-4, but 

their exact positions are unknown for the agents. The a priori probability of existence of these 

targets is uniformly distributed in their uncertainty region while their real positions are marked by 

the * marker. It is also considered that a virtual target exists in the environment and its uncertainty 

region is the entire terrain. Considering this target enforces the agents to search unexplored area 

of the environment. There are three agents in the environment that their starting positions are 
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shown by ► marker and their paths during the mission are shown by the solid, dotted, and dashed 

lines. 

Each agent is equipped with a sensor that can detect the targets in its 2×2 cell footprint. The 

probabilities of true positive and false positive measurement of sensors are 𝛾 =0.9 and 𝜀 =0.05, 

respectively. If a sensor detects a target, the probability of existence of that target will increase. 

When the probability of existence of a target becomes greater than a specific threshold (0.9), then 

that target is considered as “found” target and it will be removed from the search list of the agents 

for the rest of the mission. The mission is terminated when all real targets marked as “found” or 

the maximum allowed mission duration is reached which is assumed to be 25 time steps. The 

probability updating rule is as presented by (2-24). 

At each decision time step, the agents must decide to go straight, turn left 45 degrees or turn 

right 45 degrees. The agents can also ascend or descend to prevent the collision with others. 

However, this is usually not necessary because of the intrinsic collision avoidance capability of 

the discount factor 𝜌. We assume that once the agent has made a decision about its next action, 

that action can be performed immediately and then the agent continues its mission in a straight 

path until the next decision time step. The speed of agents assumed to be constant and is equal to 

three units per time step. In order to execute the simulation in a reasonable amount of time, we set 

the look-ahead horizon to four time steps.  Therefore, at each time step, each agent chooses its 

optimal decision by using (3-6) where T=4 and the single step gain 𝑔(𝒙𝑘, 𝑢𝑘, 𝑤𝑘) is calculated 

using (3-4). In calculating 𝑔(𝒙𝑘, 𝑢𝑘, 𝑤𝑘), the values of 𝜆 and 𝛿𝑘 are assumed to be equal 1 for all 

time steps. The search gain  𝜎𝑘 is calculated by adding up the probabilities of existence of the 

targets in all cells that the agent covers during its mission from time step 𝑘 to time step 𝑘 + 1, 

i.e. 𝜎𝑘 = ∑ 𝜁(𝐪, 𝑘)∀𝐪∈Ω𝑘 . The modified search gain  𝜎̂𝑘 is calculated by adding up the probabilities 
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of existence of the targets in all cells that the agent covers during its mission from time step 𝑘 to 

time step 𝑘 + 1 times the discount factor, as shown by (3-11).  The value of the discount factor is 

calculated by using (3-16) where scaling parameter K=0.25 and probability 𝑃(E
𝐪
 𝑗,𝑡))  is calculated 

by using (3-15). In calculating 𝑃(E
𝐪
 𝑗,𝑡)), the value of  𝛽𝜏 equals 0.5 for all 𝜏. 

  

Figure 3-3. The agents do not cooperate in decision       

making. 

     Figure 3-4. The agents cooperate in decision   

     making. 

 

Figure 3-5. Comparison of the average number of found targets by cooperative and non-cooperative approaches 

for 75 random simulations. 
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In the scenario that is shown in Figure 3-3, the single step gain of  𝜎𝑘 prevents it from 

searching the areas that have been searched by the other agents in the past. But, because the agents 

do not try to take account of the future actions of the other agents, it is possible that all or some of 

agents decide to search the same area simultaneously, as seen in Figure 3-3.   

In Figure 3-4, we use (3-11) to compute the single step gain of Dynamic Programming 

algorithm. Using the modified search gain to calculate the single step gain causes that each agent 

searches different parts of the terrain which increases the chance of finding different targets. As 

we can see in Figure 3-4, all targets have been found before the maximum duration time of mission 

reaches. 

The average number of found targets during the course of different missions is shown in 

Figure 3-5.  The simulations were repeated 75 times. In each simulation, the position of the targets 

and the uncertainty regions are randomly chosen while the starting position of the agents is fixed. 

The performance of the search mission with cooperation mechanism and without cooperation 

mechanism are compared in this figure. The results illustrate that using this cooperation 

mechanism can increase the total number of found targets and improve the performance of the 

mission. At the end of mission, the average number of found targets is increased about 25% by 

using the proposed cooperation mechanism. 

We saw that the objective of a search mission could be gathering more information (reducing 

the uncertainty) or locating more targets in the environment. The search algorithms for both 

objectives are the same. The only difference is the definition of single step gain 𝜎𝑘. We performed 

another simulation where the objective of the mission is to reduce the uncertainty in the 

environment. The structure of the environment is like the previous simulations which is a 80×80 

square grid that includes three 15×15 cells uncertainty regions. The initial uncertainty map is 
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constructed as follows: for the cells inside an uncertainty region 𝜁(𝐪, 0) =0.1 and for the cells 

outside the uncertainty regions (𝐪, 0) =0.01. Assigning a non-zero uncertainty value to the cells 

outside the uncertainty regions has the same effect as having a virtual robot in previous 

simulations. At each time step, the uncertainty value is updated using (3-7) where 𝜇=0.1. The 

agents choose their optimal decision like the previous simulations. The only difference is that for 

the non-cooperative missions, the search gain 𝜎𝑘 is calculated by adding up the value of the 

uncertainty in all cells that the agent covers during its mission from time step 𝑘 to time step 𝑘 + 1, 

i.e. 𝜎𝑘 = ∑ 𝜁(𝐪, 𝑘)∀𝐪∈Ω𝑘
. Similarly, for the cooperative missions, the modified search gain 𝜎̂𝑘 is 

calculated using (3-10). The simulations were repeated 75 times. In each simulation, the position 

of the uncertainty regions is randomly chosen while the starting position of the agents is fixed. The 

performance of the search mission with cooperation mechanism and without cooperation 

mechanism is compared in Figure 3-6. The results illustrate that using this cooperation mechanism 

can decrease the total uncertainty faster than a non-cooperative approach. 

 

                              Figure 3-6. Comparison of the average uncertainty value by the cooperative and  

                              non-cooperative approaches for 75 random simulations. 
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3.4.2 Probabilistic Approach 

In this section, we propose a probabilistic method to estimate the probability of different 

actions of other vehicles.  

3.4.2.1 Probabilistic Estimation Method 

At each decision time step 𝑘, assume thatE𝐪,𝜙
  𝑖,𝜏

 is the event that agent 𝑖 is in the cell 𝐪 = (𝑥, 𝑦) 

and its heading is equal to 𝜙 at the 𝜏th look-ahead. In order to decrease computational complexity, 

the heading angle is also discretized in to 𝑛 equal sectors and 0 ≤ 𝜙 < 𝑛. When there is no delay 

in communication, all agents know the exact position and heading of the others at each time step. 

This means that 𝑃(E𝐪,𝜙
  𝑖,0) is equal to one for a specified point (𝐩𝑖, 𝜙𝑖) which is the current position 

of agent 𝑖 at decision time step 𝑘 and is equal to zero for the other points. Knowing the probability 

of presence of agent 𝑖 in all cells 𝐪 with any heading 𝜙 at 𝜏 steps ahead, this probability at 𝜏 + 1 

steps ahead can be found as follows 

𝑃(E
𝐪,𝜙
  𝑖,𝜏+1) = ∑ ∑ [𝑃(E

𝐪,𝜙
  𝑖,𝑡+1|E𝐪0,𝜙0

  𝑖,𝑡 )𝑃(E𝐪0,𝜙0

  𝑖,𝜏 )]∀𝜙0∈Φ∀𝐪0∈𝑄                       (3-18) 

where 𝑄 and Φ are the sets of all cells and all possible angles respectively. If we assume maximum 

velocity of agents is less than one cell per step then the above equation can be modified as 

𝑃(E
𝐪,𝜙
  𝑖,𝜏+1) = ∑ ∑ ∑ [𝑃(E

𝑥,𝑦,𝜙
  𝑖,𝑡+1|E𝑥−𝑗,𝑦−𝑘,𝜙0

  𝑖,𝑡 )𝑃(E𝑥−𝑗,𝑦−𝑘,𝜙0

  𝑖,𝜏 )]𝑛−1
𝜙0=0

1
𝑘=−1

1
𝑗=−1        (3-19) 

We then define 

𝜂(𝑗, 𝑘, 𝜙|𝜙0) = 𝑃(E
𝑥,𝑦,𝜙

  𝑖,𝑡+1
|E𝑥−𝑗,𝑦−𝑘,𝜙0

  𝑖,𝑡 ) 

as the probability that agent 𝑖 goes (𝑗, 𝑘) cells ahead and changes its heading from 𝜙0 to 𝜙 during 

one time step of the mission. This probability is dependent on the maximum velocity and the 

maximum turn rate of the agent and assumed to be known a priori for all 𝑗 and 𝑘(−1 ≤ 𝑗, 𝑘 ≤ 1) 

and all 𝜙 and 𝜙0 (0 ≤ 𝜙, 𝜙0 < 𝑛). Then (3-19) can be shown as 
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𝑃(E
𝐪,𝜙
  𝑖,𝜏+1) = ∑ ∑ ∑ [𝜂(𝑗, 𝑘, 𝜙|𝜙0)𝑃(E𝑥−𝑗,𝑦−𝑘,𝜙0

  𝑖,𝜏 )]                𝑛−1
𝜙0=0

1
𝑘=−1

1
𝑗=−1 (3-20) 

The probability of presence of agent 𝑖 at time step 𝜏 + 1 in the cell 𝐪 is equal to 

𝑃(E
𝐪
  𝑖,𝜏+1) = ∑ 𝑃(E

𝐪,𝜙
  𝑖,𝜏+1)                                                𝑛−1

𝜙=0 (3-21) 

which is the total probability of presence of agent 𝑖 at time step 𝜏+1 in that cell with different 

heading angles (orientation). Therefore, the total probability that cell 𝐪 will be visited by the agent 

𝑖 during the next 𝜏 steps of its mission is ∑ 𝑃(E
𝐪
  𝑖,𝑡)𝜏

𝑡=1 . So, the total probability that the cell 𝐪 is 

visited during the next 𝜏 steps by one of the agents other than agent 𝑖 is ∑ ∑ 𝑃(E
𝐪
  𝑗,𝑡) 𝜏

𝑡=1∀𝑗≠𝑖 . Now, 

for each cell 𝐪 in the sensor footprint of agent 𝑖 at 𝜏-steps ahead, the discount value can be defined 

as follows 

𝜌𝑘+𝜏
𝑖 (𝐪) = max (0,1 − 𝐾∑ ∑ 𝑃(E

𝐪
 𝑗,𝑡))  𝜏

𝑡=1∀𝑗≠𝑖                                  (3-22) 

where K is a scaling parameter. It is clear that this discount factor is always between zero and one 

and is a non-increasing function of the probability that the cell will be visited by the other agents 

during the next 𝜏 steps. 

 

3.4.2.2 Simulation 

In this section, we present some simulations to show the effect of using the proposed 

probabilistic estimation method on the performance of a multi agent search problem. All 

simulations have been done in Matlab® R2010a environment on a PC with 2.4 GHz CPU. The 

dynamic programming algorithm is implemented as a recursive function in Matlab®. 

The environment used in this simulation is a 20×20 square grid. There exist four targets 

known to be in a 5×5 square areas as shown in Figure 3-7, but their exact positions are unknown. 

The a priori probability of existence of these targets is uniformly distributed in their uncertainty 

region while their real positions are marked by the * marker. It is also considered that a virtual 
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target exists in the environment and its uncertainty region is the entire terrain. There are three 

UAVs in the environment. Figure 3-8 shows the probability map of a typical mission after nine 

time steps. The positions of UAVs at each step are shown by ► marker and their paths during the 

mission are shown by lines.  

Each agent is equipped with a sensor that can detect the targets in its 2×2 cells footprint. The 

probabilities of true positive and false positive measurement of sensors are 𝛾 = 0.9 and 𝜀 =0.1, 

respectively. When the probability of existence of a target becomes greater than a specific 

threshold which is equal to 0.9 in this simulation, then that target is considered as “found” target 

and it will be removed from the search list of the agents for the rest of the mission. The mission is 

terminated when all real targets marked as “found” or the maximum allowed mission duration is 

reached which is 30 time steps. The probability updating rule is as presented by (2-24). As it can 

be seen in Figure 3-8, some parts of the uncertainty region in the bottom-left quarter of 

environment have been searched with two of UAVs, but the target has not been found yet. 

Therefore, the probability of existence of the target in those cells is decreased while the probability 

for the other cells in that region is increased.  

At each decision time step, UAVs must decide to go straight, turn 22.5 degrees left or turn 

22.5 degrees right. Each UAV flies in a predefined constant level to avoid collision of UAVs. 

However, this is usually not necessary because of the intrinsic collision avoidance capability of 

the discount factor 𝜌. Therefore, we can consider this problem as a two dimensional search 

problem. The speed of UAVs assumed to be constant and is equal to a unit per time step. In order 

to execute the simulation in a reasonable amount of time, we set the look-ahead horizon to 5 time 

steps. Agents follow the same procedure as explained in section to find their optimal decision. The 

only difference is that, now the probability 𝑃(E
𝐪
 𝑗,𝑡) is calculated by using (3-21). Transition 
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Probability, 𝜂(𝑗, 𝑘, 𝜙|𝜙0), is calculated by offline simulations and is known a priori. To 

find 𝜂(𝑗, 𝑘, 𝜙|𝜙0), it is initialized by zero.  An agent is assumed to be at the origin with one of 16 

(=360/2.5) possible headings 𝜙0. The next decision of the agent is chosen randomly. If the agent 

is now at cell (𝑗, 𝑘) with heading 𝜙, 𝜂(𝑗, 𝑘, 𝜙|𝜙0) = 𝜂(𝑗, 𝑘, 𝜙|𝜙0) + 1. For any possible initial 

heading 𝜙0, the procedure is repeated several times (in our simulation 50 times). At the end 

𝜂(𝑗, 𝑘, 𝜙|𝜙0) = 𝜂(𝑗, 𝑘, 𝜙|𝜙0)/number of repetitions.  

Total probability of presence of all UAVs from the current position until 5-step ahead is 

shown in Figure 3-9 for a typical situation. Positions of UAVs at each step are shown by ► marker. 

Simulations have been done 50 times and the average number of found targets is reported. Actual 

positions of the targets are randomly chosen for each repetition of simulation but they are the same 

for all scenarios. All three UAVs start their mission from the south west corner of the terrain. 

 

 
  

 
 

Figure 3-7. The problem environment. The grey rectangles are the uncertainty regions of different 

targets and * denotes the actual position of the targets which is unknown for the search UAVs.  
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Figure 3-8. A typical search mission at the ninth time step. The actual position of the targets 

is shown by * and positions of vehicles at different time steps are shown by ►.  

 
Figure 3-9. The total probability of presence of UAVs from the current position until 5-step 

ahead.  
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In Figure 3-10, the performance of search mission with cooperation mechanism and without 

cooperation mechanism is compared. We can see that both methods have almost the same 

performance at the beginning of the mission, but the performance of cooperative method is 

dominant when the time grows up. At the end of the mission, the average number of found targets 

is increased about 20% by using the proposed cooperation mechanism. When there is no 

cooperation between UAVs, they may try to locate the same targets as shown in Figure 3-11, 

whereas in the cooperative method different UAVs try to search different parts of the terrain as 

shown in Figure 3-12. 

In order to compare the performance of the proposed Geometric and Probabilistic methods 

with the performance of fully cooperative and non-cooperating methods, the same 50 simulation 

have been performed by using the geometric method, fully cooperative and non-cooperating 

methods and the average results are summarized in Table 3-1. In fully cooperated method, each 

agent expands the decision tree of all agents at each decision time step to find its optimal action. 

 

Figure 3-10. The average number of found targets for 50 random simulations. 
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In fact, each agent works like a central controller to find the optimal actions of all agents, but then 

it only performs its individual action. 

All simulation have been done in Matlab® R2012a environment on a PC with 2.4 GHz CPU. 

The dynamic programming algorithm is implemented as a recursive function in Matlab®. It can 

be seen that both Geometric and Probabilistic methods can considerably increase the performance 

of the mission (decrease the average time steps to find all targets) with respect to the non-

cooperative approach while increasing the computation time by less than 10%. The performance 

of fully cooperative approach is better than the performance of all other approaches but it takes 

about three times more computation time than the others. Calculating the discount factor 𝜌 by 

Probabilistic method is about 6 times more time-consuming than the Geometric method. 

Therefore, when the computational capability of agents is relatively low, it may not be possible to 

use the Probabilistic method. 

 

  

Figure 3-11. A typical mission without the cooperation 

mechanism. 

 

 Figure 3-12. A typical mission with the cooperation 

mechanism. 
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TABLE 3-1. COMPARISON BETWEEN DIFFERENT METHODS FOR 50 SIMULATION 

      Average time steps  

     to find all targets  

  Average computation time 

  of the discount factor 

Average computation time 

of each decision 

Geometric  48   8 ms 508 ms 

Probabilistic 

method 

37 45 ms 545 ms 

Fully Cooperative 29 -                1500 ms 

Non-Cooperative 72 - 500 ms 

 

3.5 Communication Delay 

The communication between agents is important when a cooperative task is under 

consideration. It was mentioned that the state of system is comprised of the search status, and the 

agents’ status. In each step, the agents receive the position and updated probability maps of the 

others. So they can update their states. Ideally, if there is no delay in communication, all agents 

observe the same state of the system in each step. But limited bandwidth of communication 

channels and the distance between the transmitter and receiver impose a delay in communication. 

This delay decreases the level of cooperation between agents and might worsen the performance 

of the mission. In the extreme case, when the delay goes to infinity, it means that there is no 

communication among agents. So agents disregard the other ones when they want to make 

decisions about their next actions. The performance of this mission is almost the same as the 

performance of a single agent mission. However, the redundant agent can improve the mission 

performance when the probability of damage is non-zero, i.e. 𝛿 <1. 

If an agent can estimate the actual state of system from the delayed one, then the performance 

of mission will be improved. It is shown that the influence of cooperation between agents is that 

they do not try to search the areas that the other agents have searched in the past or may search in 

the future. Therefore, in the presence of communication delay, if an agent estimates the areas that 

might have been searched by other agents until now, then the objective function of the agent can 
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be modified to prevent it from searching those areas which are most probable to have been searched 

by the other agents before.  

3.5.1 Geometric Approach 

In this section, a geometric method is proposed to estimate and to compensate the effect of 

communication delay between agents. 

3.5.1.1 Geometric Method for Delay Compensation 

In section 3.4.1, we proposed a geometric method to estimate the effect of future actions of 

the other agents on the current decision of the planning agent. Now, we can use the same method 

to estimate the influence of past actions of the other agents on the current decision of the planning 

agent. In this case, each agent only knows the position and the angle of the other agents up to 𝑑 

steps earlier, where 𝑑 is the amount of delay.  

At each decision time step 𝑘, we define Λ𝜏|𝑑
𝑖  as the set of all cells that agent 𝑖 may have been 

visited during the mission from the time step (𝑘 − 𝑑) + 𝜏 − 1 to the time step (𝑘 − 𝑑) + 𝜏, 

knowing its position at decision time step 𝑘 − 𝑑. Using similar assumption as section 2.4.1, the 

probability of presence of agent 𝑖 in the cell 𝐪  during the time step (𝑘 − 𝑑) + 𝜏 is as follows 

𝑃(E
𝐪
  𝑖,𝜏|𝑑) = {

𝛽𝜏

‖𝐪−𝐩𝑖(𝑘−𝑑)‖.2𝜑(1+𝛼‖𝐪−𝐩𝑖𝐩𝑖(𝑘−𝑑)‖)
     𝐪 ∈ Λ𝜏|𝑑

𝑖               

0                                      𝑒𝑙𝑠𝑒
        (3-23) 

where 𝛽𝜏 is a scaling parameter that should be chosen in an appropriate way to ensure that the 

probability is always less than one. The only difference between (3-23) and (3-15) is that 𝐩𝑖(𝑘) is 

replaced by 𝐩𝑖(𝑘 − 𝑑) in (3-23). In fact (3-15) is a special case of (3-23) with 𝑑 = 0. 
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The agent can use (3-23) to estimate the probability of presence of other agents in different 

cells during the last 𝑑 steps. Then, for each cell 𝐪 in the sensor footprint of agent 𝑖, the discount 

factor that compensates for the effect of time delay can be calculated as follows 

𝜌0|𝑑
𝑖 (𝐪) = max (0,1 − 𝐾∑ ∑ 𝑃(E

𝐪
 𝑗,𝑡|𝑑))  𝑑

𝑡=1∀𝑗≠𝑖                                  (3-24) 

where K is a scaling parameter. It should be noted that 𝑃(E
𝐪
 𝑗,𝑡|𝑑) is non-zero only for 𝐪 ∈ Λ𝜏|𝑑

𝑖 , 

therefore, calculation of 𝜌0|𝑑
𝑖  using (3-24) is relatively simple. Agent 𝑖 then uses 𝜌0|𝑑

𝑖  to modify its 

search gain in the next 𝑇 steps, i.e. 𝜎̂𝑘+𝑡, ∀𝑡 ≤ 𝑇.     

The above approach can be generalized for the case of cooperative decision making in the 

presence of communication delay. In this case, the planning agent not only estimates the effect of 

past actions of the other agents on its current decision but also estimates the effect of their future 

actions. Thus, at each decision time step 𝑘, the value of discount factor of agent 𝑖 at 𝜏 steps ahead 

that also compensates for the effect of 𝑑 steps communication delay is as follows 

𝜌𝜏|𝑑
𝑖 (𝐪) = max (0,1 − 𝐾∑ ∑ 𝑃(E

𝐪
 𝑗,𝑡|𝑑))  𝜏+𝑑

𝑡=1∀𝑗≠𝑖                               (3-25) 

where K is a scaling parameter and 𝑃(E
𝐪
 𝑗,𝑡|𝑑) can be calculated by using (3-23).  It should be noted 

that 𝑃(E
𝐪
 𝑗,𝑡|𝑑) is non-zero only for 𝐪 ∈ Λ𝜏|𝑑

𝑖 , therefore, calculation of 𝜌𝜏|𝑑
𝑖  using (3-25) is relatively 

simple. The agent 𝑖 then uses 𝜌𝜏|𝑑
𝑖  to calculate its modified search gain of the 𝜏 steps ahead, i.e. 

𝜎̂𝑘+𝜏. 

It is obvious that the ability of (3-25) to accurately estimate the effect of actions of the other 

agents on the decision of the planning agent decreases when the amount of delay and the look-

ahead horizon increase. 
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3.5.1.2 Simulation 

In this section, we present some simulations to show how the proposed Geometric estimation 

method can compensate for the effect of known communication delay between agents. All 

simulation have been done in Matlab® R2010a environment on a PC with 2.4 GHz CPU. The 

dynamic programming algorithm is implemented as a recursive function in Matlab®. 

 The problem structure and parameters in this section are similar to 3.4.1.2. In Figure 3-13, 2 

time steps communication delay causes that all agents choose almost the same path during the 

mission that means the performance of mission with three agents is like the performance of a single 

agent mission. Figure 3-14 shows how the proposed method is able to mitigate the impact of 

communication delay on the mission performance. The communication delay in this scenario is 

equal to that in Figure 3-13, but the single step gain is modified to alleviate the effect of delay. To 

modify the single step gain, the discount factor is calculated by using (3-24) where 𝑑=2. As 

expected, the result is very similar to Figure 3-3, where there is no communication delay.  It means 

the effect of communication delay has been compensated by using the proposed method.   

 
Figure 3-13. A typical mission with communication delay. The agents do 

not cooperate in decision making. 
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Figure 3-14. A typical mission with communication delay. The compensation 

method has been used to mitigate the effect of communication delay. 

 

 

 

 

 

 

 

 

 

In order to compensate for the impact of communication delay and enable cooperation 

between agents at the same time, we should use (3-25) to calculate discount factor. Figure 3-15 

depicts the results. The result is very similar to Figure 3-4 where the agents make decision 

cooperatively in the absence of delay.  
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Figure 3-15. A typical mission with communication delay. The 

cooperation mechanism has been modified to consider the effect of 

future actions of other vehicles while mitigating the impact of 

communication delay. 
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75 random simulations are performed, with five different amounts of delay. The simulation 

are similar to section 3.4.1.2 but there is communication delay among the agents. In Figure 3-16, 

the performance of the mission (average number of found objects) for different amounts of delay 

is compared. It is expected that the performance of mission declines when the amount of delay 

increases. Figure 3-17 and Figure 3-18 show how the communication delay deteriorates the 

performance of mission and how the compensation mechanism can mitigate it. The results 

demonstrate that this compensation mechanism is able to mitigate the influence of delay and 

improve the performance of mission. Amount of communication delay in Figure 3-17 and 

Figure 3-18 is equal to two and four steps, respectively. These figures show the average value of 

found targets for 75 random simulation. As it is expected, when the amount of delay increases, the 

ability of proposed method to compensate the impact of delay decreases. 

 

 

 

 

 

 

 

 
 

Figure 3-16.  The average number of found targets for 75 random 

simulations with different amounts of delay. 
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Figure 3-17. The average number of found targets for 75 random 

simulations with 2 steps communication delay.  

 
Figure 3-18. The average number of found targets for 75 random 

simulations with 4 steps communication delay. 

3.5.2  Probabilistic Approach 

In this section, a probabilistic method is proposed to estimate and to compensate the effect of 
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3.5.2.1 Probabilistic Method for Delay Compensation 

In section 3.4.2.1, we proposed a probabilistic method to estimate the effect of future actions of 

other agents on the current decision of each agent. Now, we can use the same method to estimate 

the influence of past actions of other agents on the current decision of each agent. Amount of delay 

is assumed to be equal to 𝑑 which means the most recent available information from other vehicles 

is related to 𝑑 steps ago. Therefore, 𝑃(E
𝐪,𝜙
  𝑖,0|𝑑) is equal to one for the point (𝐩𝑖(𝑘 − 𝑑), 𝜙𝑖(𝑘 −

𝑑)) which is the position of agent 𝑖 at decision time step 𝑘 − 𝑑 and is equal to zero for the other 

points. Knowing the probability of presence of an agent in different cells with different angles at 

time step 𝜏, the probability at the time step 𝜏 + 1 can be found using (3-20), then the total 

probability of presence of the agent at time step 𝜏+1 in any given cell can be found using (3-21). 

Therefore, if the most recent information about the agent 𝑖 is from the decision time step 𝑘 −

𝑑, the total probability that the cell 𝐪 has been visited by the agent 𝑖 during the mission from the 

decision time step 𝑘 − 𝑑 to the current decision time step 𝑘 is ∑ 𝑃(E
𝐪
  𝑖,𝑡|𝑑)𝑑

𝑡=1 . So, the total 

probability that the cell 𝐪  has been visited during the last 𝑑 decision time steps by one of the 

agents other than agent 𝑖 is ∑ ∑ 𝑃(E
𝐪
  𝑗,𝑡|𝑑)𝑑

𝑡=1∀𝑗≠𝑖 . Then, for each cell 𝐪 in the sensor footprint of 

agent 𝑖, the discount factor that compensates for the effect of time delay can be calculated as 

follows 

𝜌0|𝑑
𝑖 (𝐪) = max (0,1 − 𝐾∑ ∑ 𝑃(E

𝐪
 𝑗,𝑡|𝑑))  𝑑

𝑡=1∀𝑗≠𝑖                                  (3-26) 

where K is a scaling parameter. The agent 𝑖 then uses 𝜌0|𝑑
𝑖  to modify its search gain in the next 𝑇 

steps, i.e. 𝜎̂𝑘+𝑡, ∀𝑡 ≤ 𝑇. Indeed, knowing the exact position of the other agents at  𝑘 − 𝑑, the agent 𝑖  

tries to estimate the cells that were visited by the other agents from then until 𝑑 steps ahead which 

is the present time. Then, it uses 𝜌0|𝑑
𝑖  to avoid searching those cells. 
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   The above approach can be generalized for the case of cooperative decision making in the 

presence of communication delay. In this case, the agent not only estimates the effect of past 

actions of other agents on its current decision but also estimates the effect of their future actions. 

For this purpose, at each decision time step 𝑘, the value of discount factor for each cell in the 

sensor footprint of agent 𝑖 at 𝜏 steps ahead should be modified as follows 

𝜌𝜏|𝑑
𝑖 (𝐪) = max (0,1 − 𝐾∑ ∑ 𝑃(E

𝐪
 𝑗,𝑡|𝑑))  𝜏+𝑑

𝑡=1∀𝑗≠𝑖                               (3-27) 

where K is a scaling parameter. The agent 𝑖 then uses 𝜌𝜏|𝑑
𝑖  to calculate its modified search gain of 

the 𝜏 steps ahead, i.e. 𝜎̂𝑘+𝜏. 

It is obvious that the ability of (3-27) to accurately estimate the effect of other agents on the 

decision of each agent decreases when the amount of delay and the look-ahead horizon of Dynamic 

Programming algorithm increase. 

3.5.2.2 Simulation 

In this section, we present some simulations to show how the proposed probabilistic 

estimation method can compensate for the effect of known communication delay between agents. 

All simulation have been done in Matlab® R2010a environment on a PC with 2.4 GHz CPU. The 

dynamic programming algorithm is implemented as a recursive function in Matlab®.  

 The problem structure and parameters in this section are similar to 3.4.2.2. 50 random 

simulations are performed for different amounts of delay. Figure 3-19 shows how the 

communication delay deteriorates the performance of mission and how the compensation 

mechanism can mitigate it. In all cases, cooperation mechanism is used to increase the performance 

of mission. Solid line shows the number of found objects without delay (The discount factor is 

calculated by using (3-22)). The number of found objects in the presence of delay without using  
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Figure 3-19. The average number of found targets for 50 random 

simulations with 4 steps communication delay. 

the compensation mechanism (The discount factor is calculated by using (3-22)) and with using 

that mechanism (The discount factor is calculated by using (3-27)) are shown by dotted line and 

dashed line, respectively. The amount of delay is equal to 4 decision steps which is rather long in 

comparison to 5-step maximum look-ahead. The results demonstrate that this compensation 

mechanism is able to mitigate the influence of delay and improve the performance of mission. 

3.6 Conclusion 

In this chapter, a decentralized approach is used for the cooperative search mission where 

each agent individually chooses its optimal action. We argued that when the agent knows the future 

position of other agents, it should avoid those areas. This helps agents to explore different areas of 

the environment and gather more information. The search gain of the agent is modified to reflect 

this 

However, predicting the exact position of other agents is computationally expensive. We 

proposed two methods to estimate the future position of other agents. Simulation results show that 
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both methods can considerably improve the performance of the mission with respect to a non-

cooperative approach without significantly increasing the computation. The proposed probabilistic 

estimation method can provide a better performance than the proposed geometric estimation 

method, but it needs more computation.   

Remarks: 

As we discussed in chapter 1, probabilistic search approach is useful when there are some 

prior information about the position of the targets. Otherwise using an exhaustive search method 

provides the same performance with much less computation. Similarly, when there are multiple 

search agents and there is no prior information about the position of the targets, the cooperation 

mechanism is straightforward. The environment is divided between agents and each agent uses an 

exhaustive search method to find the targets in its own region.  

In a multi agents search mission, number of agents is usually small relative to the size of 

environment. When there are relatively large number of search agents, using a probabilistic search 

approach does not provide significant improvement in the performance. Therefore, in this case, 

the environment can still be divided between agents and each agent can use an exhaustive search 

method to find the targets in its own region. 
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CHAPTER 4 

 

          Cooperative Search and Coverage Using 

Locational Optimization 

In this chapter, the cooperative search and coverage problem is investigated. First, Voronoi 

partitioning and its different extensions are reviewed. Then, the search and coverage problem is 

introduced and formulated. A new distribution density model is introduced which is a function of 

position of some unknown targets in the environment. The cooperative search method that 

discussed in the previous chapter is used to update the distribution density function for the 

coverage task. A well-known Centroidal Voronoi Configuration method for the coverage is used 

to solve the coverage problem.  

The cooperative multi agent search and coverage approach is useful for many applications 

involving distributed sensing and distributed actuation. For example, consider a team of 

Unmanned Aerial Vehicles (UAVs) charged with detecting and extinguishing multiple fires in a 

partially known environment like a forest. The fire detector UAVs with on-board sensors search 

the environment to find the centre of fires. Then, by using this information, the fire fighter UAVs 

aggregate in the perimeter of fires. Similarly, consider a group of water-borne vehicles which are 

in charge of monitoring and cleaning up an oil spill. The monitoring vehicles find the areas where 

the spill is most severe, while cleaning vehicles distribute themselves over the spill and concentrate 

their efforts on those most severe areas, without neglecting the areas where the spill is not as 

severe. In general, any application in which a group of automated mobile agents is required to 
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provide collective sensing and actuation over an environment can be considered as an  example of 

this framework. 

We consider the case in which some service agents deploy to cover an uncertain environment. 

They are expected to spread out over an environment while aggregating in areas of high service 

needs. Furthermore, the service agents are uncertain about the exact areas of service needs 

beforehand. In order to decrease the level of uncertainty, the environment is searched by some 

search agents which are equipped with sensors to detect the exact areas of service needs. As 

mission goes on, the service agents use the updated information of search vehicles to change their 

configuration and cover the environment more efficiently. A brief introduction to Voronoi 

partitioning and locational optimization using Voronoi tessellation for coverage problem is 

presented in the next two sections. 

4.1 Voronoi Partitioning 

The partitioning of a plane with 𝑛 points into convex polygons such that each polygon 

contains exactly one generating point and every point in a given polygon is closer to its generating 

point than to any other is called Voronoi partitioning. A Voronoi diagram is sometimes also known 

as a Dirichlet tessellation [118].  

Given a set of two or more but finite number of distinct points in the Euclidean plane, we 

associate all locations in that space with the closest member(s) of the point set with respect to the 

Euclidean distance. The result is a tessellation of the plane into a set of the regions associated with 

members of the point set. This tessellation is called the planar ordinary Voronoi diagram 

generated by the point set, and the regions constituting the Voronoi diagram are called Ordinary 

Voronoi polygons. 
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Let 𝑃 = {𝐩1, 𝐩2, … , 𝐩𝑛} ⊂ 𝒬 ⊂ ℝ2, where 𝒬 is a convex polytope, 𝑛 > 2 and 𝐩𝑖 ≠ 𝐩𝑗 for 𝑖 ≠

𝑗. We call the region given by 

𝑉𝑖 = {𝐪 ∈ 𝒬|‖𝐪 − 𝐩𝑖‖  ≤ ‖𝐪 − 𝐩𝑗‖, ∀𝑗 ≠ 𝑖, 𝑗 ∈ {1, … , 𝑛}}  

the planar ordinary Voronoi polygon associated with 𝐩𝑖, and the set given by 

𝑉 = {𝑉1, 𝑉2, … , 𝑉𝑛} 

 the planar ordinary Voronoi diagram generated by 𝑃. The point 𝐩𝑖 is called the generator point 

of the 𝑖th Voronoi polygon, and the set 𝑃 = {𝐩1, 𝐩2, … , 𝐩𝑛} is called the generator set of the 

Voronoi diagram [118].  

We notice from the definition of the ordinary Voronoi diagram that an abstract idea for 

defining a Voronoi diagram is that every point in a space is assigned to at least one of the generator 

points according to a certain assignment rule, and that the resulting sets of points associated with 

the generator points are collectively exhaustive and mutually exclusive except for the boundaries. 

To generalize the Voronoi diagram, the Euclidean distance is replaced with a distance metric 

which is defined as a mapping, 𝑑(𝐪, 𝐩𝑖): 𝒬 × 𝒬 → ℝ≥0 satisfying the following four axioms: 

(i) 𝑑(𝐩𝑖, 𝐩𝑖) = 0, (ii) 𝑑(𝐩𝑖, 𝐩𝑗) ≤ 𝑑(𝐩𝑖, 𝐩𝑘) + 𝑑(𝐩𝑘 , 𝐩𝑗), (iii) 𝑑(𝐩𝑖, 𝐩𝑗) = 𝑑(𝐩𝑗 , 𝐩𝑖), 

(iv) 𝑑(𝐩𝑖, 𝐩𝑗) > 0, ∀𝑖 ≠ 𝑗. In the ordinary Voronoi diagram, the distance metric is the Euclidean 

distance. Therefore, the formal definition of generalized Voronoi diagram is 

𝑉𝑖 = {𝐪 ∈ 𝒬| 𝑑(𝐪, 𝐩𝑖) ≤ 𝑑(𝐪, 𝐩𝑗), ∀𝑗 ≠ 𝑖, 𝑗 ∈ {1, … , 𝑛}} 

where 𝑃 = {𝐩1, 𝐩2, … , 𝐩𝑛} ⊂ 𝒬 ⊂ ℝ2 is the set of generator points [118]. 

In the ordinary Voronoi diagram, we implicitly assume that generator points are identical. In 

some practical application, this assumption may not be appropriate. Rather, it is more appropriate 

to assume that generator points have different weights reflecting the variable property of the 
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generator points. In the case of multi agent tasks where the generator points usually correspond to 

the position of agents, it may reflect different capability of different agents. In the case of non-

identical vehicles, we may use a weighted distance function 𝑑𝑤(. ) with a set of weight 

parameters 𝒘 = {𝑤1, 𝑤2, … , 𝑤𝑛}. These weights can be a measure of coverage ability or energy 

(remaining fuel) of agents. Different weighted Voronoi diagrams have been used in literature. The 

most useful weighted Voronoi diagrams in multi agent problems are as follows [118] 

 Multiplicatively weighted Voronoi diagram: 

     𝑑𝑚𝑤(𝐪, 𝐩𝑖) =
1

𝑤𝑖
 ‖𝐪 − 𝐩𝑖‖,                𝑤𝑖 > 0 

 Additively weighted Voronoi diagram: 

                                               𝑑𝑎𝑤(𝐪, 𝐩𝑖) =  ‖𝐪 − 𝐩𝑖‖ − 𝑤𝑖,   

 Compoundly weighted Voronoi diagram: 

                                              𝑑𝑐𝑤(𝐪, 𝐩𝑖) =  
1

𝑤𝑖𝑚
‖𝐪 − 𝐩𝑖‖ − 𝑤𝑖𝑎,   𝑤𝑖𝑎 > 0  

The notion of weighted Voronoi diagrams is not useful when the agents are not 

omnidirectional or when it is not always possible to reach from one point to another point using a 

straight line. However, it may be possible to use a weighted Voronoi distance as a good estimate 

of actual (non-Euclidian) distance. 

Another implicit assumption in ordinary Voronoi diagram and even weighted Voronoi 

diagrams is that a point in the domain belongs to its closest generator point regardless of how far 

the point is. In multi agent problems, it is not an appropriate assumption. In fact, the agents have 

limited capabilities due to limited fuel in service problems or limited sensory range in search 

problems. The limited range Voronoi diagram is defined as follows [118] 
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𝑉𝑖 = {𝐪 ∈ 𝒬 ∩ 𝐵(𝐩𝑖, 𝑟𝑖)| 𝑑(𝐪, 𝐩𝑖) ≤ 𝑑(𝐪, 𝐩𝑗), ∀𝑗 ≠ 𝑖, 𝑗 ∈ {1,… , 𝑛}} 

where 𝐵(𝐩𝑖, 𝑟𝑖)  is a circle with the center of 𝐩𝑖 and the radius of  𝑟𝑖, and  𝑟𝑖 is the range of 𝑖th 

point. Of course, limited range Voronoi diagram is not necessarily a partition and some points in 

the environment may not belong to any Voronoi region. Different Voronoi partitions and the 

algorithms to produce them are discussed in [118] in more detail. 

4.2 Locational Optimization  

The environment is denoted by 𝒬 which is a convex polytope in ℝ2 including its interior. An 

arbitrary point in 𝒬 is denoted as 𝐪, the position of the 𝑖th service agent is denoted as 𝐩𝑖, and the 

set of positions of all service agents is denoted as 𝒫 = {𝐩1, 𝐩2, … , 𝐩𝐧}. The function 𝜑:𝒬 → ℝ+ is 

a distribution density function that defines a weight for each point. This function may reflect 

knowledge of the probability of occurrence of events in different regions, or simply a measure of 

relative importance of different regions in 𝒬. Therefore, the higher the value of 𝜑(𝐪) the more 

attention the group has to pay to 𝐪. A non-increasing and piecewise continuously differentiable 

function 𝑓:ℝ+ → ℝ is defined as a performance function which describes the utility of placing an 

agent at a certain distance from a location in the environment. The smaller the distance, the better 

the performance is. In servicing problem, performance functions can encode the travel time or the 

energy expenditure required to service a specific destination.  

Locational optimization problem is considered as the task of minimizing the following 

locational optimization function [120] 

ℋ(𝐩1, 𝐩2, … , 𝐩𝐧) = −∫ max
𝑖∈{1,2,…,𝑛}

𝑓(‖𝐪 − 𝐩𝑖‖)𝜑(𝐪)𝑑𝐪𝒬
                      (4-1) 

which means for each 𝐪 ∈ 𝑄, consider the best coverage of 𝐪 among those provided by each of the 

agents, then evaluate the performance by the importance 𝜑(𝐪) of 𝐪, and finally sum the resulting 
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quantity over all 𝐪 ∈ 𝑄 to obtain ℋ(𝐩1, 𝐩2, … , 𝐩𝐧) as a measure of the overall coverage provided 

by 𝐩1, 𝐩2, … , 𝐩𝐧. 

If we define a partition of 𝑄 as a collection of 𝑛 polytopes 𝑊 = {𝑊1,𝑊2, … ,𝑊𝑛} with disjoint 

interiors whose union is 𝑄, (4-1) can be written as follows [120] 

ℋ(𝐩1, 𝐩2, … , 𝐩𝐧,𝑊1,𝑊2, … ,𝑊𝑛) = −∑ ∫ 𝑓(‖𝐪 − 𝐩𝑖‖)𝑊𝑖
𝜑(𝐪)𝑑𝐪        𝑛

𝑖=1       (4-2) 

where it is assumed that the 𝑖th service agent is responsible for the servicing over its dominance 

region 𝑊𝑖. Note that the function ℋ(𝒫,𝑊) is to be maximized with respect to both the location 

of service agents 𝒫, and the assignment of the dominance regions 𝑊. The optimization is, 

therefore, to be performed with respect to the position of the agents and the partition of the space. 

This problem is referred to as a facility location problem [119]. 

Let 𝑉 = {𝑉1, 𝑉2, … , 𝑉𝑛} be the Voronoi partition of 𝒬, for which the service agent positions 

are the generator points. The Voronoi region of a given service agent,  𝑉𝑖, is the region of points 

that are closer to that agent than to any other, that is [118] 

𝑉𝑖 = {𝐪 ∈ 𝒬| ‖𝐪 − 𝐩𝑖‖ ≤ ‖𝐪 − 𝐩𝑗‖, ∀𝑗 ≠ 𝑖}, 𝑖 ∈ {1, … , 𝑛} 

where norm 2 is used as the distance function. Two service agents 𝑉𝑖 and 𝑉𝑗 are (Voronoi) 

neighbors if  𝑉𝑖 ∩ 𝑉𝑗 ≠ 0. Since 𝑓 is a non-increasing function, one can easily show that, at fixed 

location of service agents, the optimal partition of 𝒬 is the Voronoi partition that generates by the 

position of the service agents, i.e. 𝐩1, 𝐩2, … , 𝐩𝐧. Therefore, we are interested in minimizing 

ℋ(𝒫, 𝑉) with respect to the position of the agents.  

In particular, we are interested in minimizing [120] 

 ℋ(𝐩1, 𝐩2, … , 𝐩𝐧) = ∑ ∫
1

2
‖𝐪 − 𝐩𝑖‖

2
𝑉𝑖

𝜑(𝐪)𝑑𝐪    𝑛
𝑖=1                          (4-3) 
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as a measure of the performance of system, where 𝑓(‖𝐪 − 𝐩𝑖‖) = −
1

2
‖𝐪 − 𝐩𝑖‖

2. Note that ℋ(𝒫) 

measures the ability of the coverage provided by the network of service agents in 𝒬. Qualitatively, 

a low value of ℋ(𝒫) corresponds to a good configuration for coverage of the environment 𝒬. 

Therefore, it is desired to minimize it. 

Each Voronoi region has mass 𝑀𝑉𝑖
, and centroid  𝐶𝑉𝑖 which are respectively defined as 

𝑀𝑉𝑖
= ∫ 𝜑(𝐪)𝑑𝐪

𝑉𝑖
                                                      (4-4) 

𝐂𝑉𝑖 =
1

𝑀𝑉𝑖

∫ 𝐪𝜑(𝐪)𝑑𝐪
𝑉𝑖

                                                  (4-5) 

Remarkably, one can show that [120] 

𝜕ℋ

𝜕𝐩𝑖
= −∫ (𝐪 − 𝐩𝑖)𝜑(𝐪)𝑑𝐪 = −𝑀𝑉𝑖

(𝐂𝑉𝑖 − 𝐩𝑖)𝑉𝑖
                            (4-6) 

So the partial derivative of ℋ with respect to the position of the 𝑖th service agent only depends on 

its own position and the position of its Voronoi neighbors. Therefore, the computation of the 

derivative of ℋ with respect to the agents' location is decentralized in the sense of Voronoi. It is 

clear that each partial derivative must be zero for a local minimum. 

Clearly, the extremum points of ℋ are those in which every agent is at the centroid of its 

Voronoi region,  𝐩𝑖 = 𝐂𝑉𝑖  , ∀𝑖. The resulting partition of the environment is commonly called a 

Centroidal Voronoi Configuration. More thorough discussions were given in [120]. 

4.3 Problem Statement 

This section addresses the cooperative multi agent search and coverage problem in an 

uncertain environment. Consider the scenario that some search agents are deployed to search and 

detect some targets in the terrain. There are also service agents that their duty is to spread out over 

the environment to provide coverage. The search agents broadcast their information about the 

environment to the service agents. This information allows the service agents to find where in the 
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environment they are mostly needed and to aggregate in those areas. For the search problem, the 

environment is discretized in cells that are described by a probability of target existence. There is 

an uncertainty region corresponding to each target. Each target is assumed to lie somewhere within 

its uncertainty region, but its exact position is unknown. Each search agent stores a probability 

map, which contains the probability of existence of all targets in each cell. During the mission, 

sensors of search agents can detect targets in their footprints. The probability map is updated during 

the mission based on whether or not the target is detected by the sensors. The objective of the 

cooperative search mission is to maximize the amount of information about the environment. 

Therefore, the search mission is the same as the one we discussed in the chapter 3. 

The objective of service agents is to spread out over the area to cover the entire environment. 

However, in most cases, all points in the environment do not have the same level of importance. 

We can consider a density function which reflects a measure of relative importance of different 

points in the environment. The density of each point is a decreasing function of the distance 

between that point and position of the targets. Therefore, points closer to the targets have more 

value and more level of importance in the environment. Since the information about the position 

of the targets improves during the search mission, the density function is changed and get more 

accurate as mission goes on. The number of targets in the environment is known a priori. However, 

their exact position is unknown. Each agent is assigned a unique altitude, therefore, avoiding the 

need to consider collision avoidance, which is outside the scope of this paper. We assume that each 

search agent can communicate with all the other agents in the team. Moreover, all service agents 

can communicate with their neighboring vehicles. 
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4.3.1 Distribution Density Function 

The precise definition of the distribution density function 𝜑(𝐪) depends on the desired 

application. It defines a weight for each point in the environment which is a measure of relative 

importance of that point. In many applications, there are some critical points and the level of 

importance of each point in the terrain is inversely proportional to the distance between the point 

and the critical points. For instance, the critical points can be hotspots in a forest fire or the source 

of gushing in the oil spill. Let 𝜑(𝐪) = ∑ 𝜙(𝐪, 𝐪𝑐
𝑖 )

𝑛𝑐
𝑖=1  where 𝐪𝑐

𝑖  is the 𝑖th critical point and 𝑛𝑐 is the 

number of critical points. Function 𝜙(𝐪, 𝐪𝑐
𝑖 ) is known a priori and has a maximum at the critical 

point 𝐪𝑐
𝑖 . Therefore, knowing the exact location of critical points, we can find the weight of all 

points, i.e. 𝜑(𝐪). 

In many cases, the location of critical points is not known precisely but it is known that they 

are located somewhere inside some uncertainty regions. Knowing the probability distribution of 

each critical point 𝑖 in its uncertainty region, 𝑃(𝐪𝑐
𝑖 ), distribution density function 𝜑(𝐪) can be 

obtained as follows 

𝜑(𝐪) = ∑ ∫ 𝜙(𝐪, 𝐪𝑐
𝑖 )

Λ𝑖

𝑛𝑐
𝑖=1 𝑃(𝐪𝑐

𝑖 )𝑑𝐪𝑐
𝑖                                           (4-7) 

where Λ𝑖 is the uncertainty region of the 𝑖th critical point. Indeed, ∫ 𝜙(𝐪, 𝐪𝑐
𝑖 )

Λ𝑖
𝑃(𝐪𝑐

𝑖 )𝑑𝐪𝑐
𝑖  is the 

expected value of function 𝜙(𝐪, 𝐪𝑐
𝑖 ) with respect to 𝐪𝑐

𝑖 . 

These critical points are in fact the targets of search problem. Since the search is done in a 

discrete environment, the probability of all points inside a cell is assumed to be equal. Therefore,  

(4-7) can be modified as follows 

𝜑(𝐪) = ∑ ∑ 𝑃(𝐸𝑥,𝑦
𝑖 ) ∫ 𝜙(𝐪, 𝐪𝑐

𝑖 )
𝑞𝑐
𝑖∈(𝑥,𝑦)∀(𝑥,𝑦)∈Λ𝑖

𝑛𝑐
𝑖=1 𝑑𝐪𝑐

𝑖                          (4-8) 
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At the beginning of the mission, service agents have a priori information of probability 

distribution of critical points. They use this information to compute distribution density 

function 𝜑(𝐪). Then, they spread out over the environment based on this distribution. During the 

mission, search agents update the probability maps of critical points and transmit this information 

to the service agents. Using these updated probability maps, service agents modify their 

configuration and change their position in the environment. 

4.3.2 Distributed Coverage Controller 

In this section the coverage control for a group of service agents is presented. Each service 

agent is modeled as a double-integrator point mass moving on a two-dimensional (2-D) plane as 

follows 

𝐩̈𝑖 = 𝐮𝑖                                                                (4-9) 

where 𝐮𝑖 is the control input of the 𝑖th service agent. Equation of motion of a broad class of vehicles 

can be expressed by a double-integrator dynamic model. In addition, dynamics of many vehicles 

can be feedback linearized to double integrators. Following assumptions are used for derivation of 

distributed coverage controllers in this paper: 

Assumption 1. Every agent has complete knowledge of its own dynamics. 

Assumption 2. The service agents have the ability to compute their own Voronoi regions in 

a distributed manner. 

Assumption 3. Each service agent can communicate with other service agents in its 

neighboring Voronoi regions, and all search agents as well. 

For the purpose of coordinating multiple service agents to cover a planar environment, the 

position controller based on the Centroidal Voronoi Configuration is designed. Consider that the 
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position of the 𝑖th service agent is denoted by 𝐩𝑖, and 𝐂𝑉𝑖 is the center of Voronoi that corresponds 

to the 𝑖th service agent. We propose the following position control law for the 𝑖th service agent 

𝐮𝑖 = 𝑘1
𝑖𝑀𝑉𝑖

(𝐂𝑉𝑖 − 𝐩𝑖) − 𝑘2
𝑖 𝐩̇𝑖                                            (4-10) 

where 𝑘1
𝑖  and 𝑘2

𝑖  are the positive gains. 

Theorem 4-1. Consider a group of n service agents whose dynamic models are described 

by (4-9). Let the Assumptions1 through 3 hold. Under control law (4-10), it is guaranteed that the 

whole system is asymptotically stable and the planar positions of service vehicles converge to a 

centroidal Voronoi configuration. 

Proof: Consider the Lyapunov function candidate as 

𝜗 = ∑ 𝑘1
𝑖ℋ𝑖

𝑛
𝑖=1 + ∑ 𝐩̇𝑖

𝑇𝐩̇𝑖
𝑛
𝑖=1                                                   (4-11) 

Since 𝑘1
𝑖  is a positive value, and ℋ𝑖 is a strictly positive function, then the candidate Lyapunov 

function 𝜗 is lower-bounded by zero. Taking the time derivative of 𝜗 along the trajectories of 

systems gives 

𝜗̇ = ∑ 𝑘1
𝑖ℋ𝑖
̇𝑛

𝑖=1 + 2∑ 𝐩̇𝑖
𝑇𝐩𝑖̈

𝑛
𝑖=1                                          (4-12) 

By substituting ℋ𝑖
̇ = 𝐩̇𝑖

𝑇 𝜕ℋ

𝜕𝐩𝑖
 into the above equation, one obtains 

𝜗̇ = ∑ [𝐩̇𝑖
𝑇 (𝑘1

𝑖 𝜕ℋ

𝜕𝐩𝑖
+ 2𝐩̈𝑖)]

𝑛
𝑖=1                                          (4-13) 

Now, if we substitute (4-6) into the above equation, we have 

𝜗̇ = ∑ 2[𝐩̇𝑖
𝑇(𝑘1

𝑖𝑀𝐕𝒊(𝐩𝒊 − 𝐂𝐕𝒊) + 𝐩̈𝑖)]
𝑛
𝑖=1                                (4-14) 

Finally, by substituting the model of each service agent (4-9) into (4-13) and using control input 

(4-10), the time derivative of Lyapunov function can be obtained as follows 

𝜗̇ = 2∑ (−𝑘2
𝑖  𝐩̇𝑖

𝑇𝐩̇𝑖)
𝑛
𝑖=1                                              (4-15) 
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which is clearly non-positive. Let 𝑆 be the set of all points in 𝑄 where 𝜗̇ = 0. Due to the convexity 

of the region 𝑄, one can conclude that each of the Voronoi centroids 𝐂𝐕𝒊 lies in the interior of the 

𝑖th Voronoi region and so in the interior of the region 𝑄. So the agents move toward the interior of 

the region 𝑄 and never leave it. Therefore, 𝑄 is a positive invariant set for the trajectories of the 

closed-loop system. Since this set is closed and bounded, one can make use of LaSalle’s invariance 

principle to infer that the planar positions of service vehicles converge to the largest invariant 

subset of the set 𝑆. Suppose a trajectory belongs to the set 𝑆. By considering the model of service 

agents (4-9) and the control law (4-10), we have 

𝐩̇𝑖 = 0   ⇒     𝐩̈𝑖 = 0   ⇒      𝐮𝑖 = 0    ⇒     𝐩𝒊 = 𝐂𝐕𝒊  , ∀𝑖 

Then, we can conclude that 𝐩𝒊 = 𝐂𝐕𝒊 , ∀𝑖 is the largest invariant set corresponding to the set of 

centroidal Voronoi configurations. Therefore, under control law (4-10), the closed-loop system is 

asymptotically stable and the planar positions of service vehicles converge to a set of centroidal 

Voronoi configuration.                                                                                                             

□      

It is worth to mention that although the controller of each service agent only depends on its 

Voronoi centroid, calculation of the center of Voronoi depends on the neighboring Voronoi region. 

So each service agent needs to communicate with other service agents in its neighboring Voronoi 

regions to compute its Voronoi region. The service agent applying the control law (4-10) will move 

towards the centroid of its Voronoi region. Due to the convexity of region, the centroid is always 

inside the Voronoi region. Therefore, the Voronoi approach has implicit collision avoidance. In 

addition, by designing a suitable controller for heights of multiple agents, they can fly at different 

levels. Then, the collision avoidance can be guaranteed in the entire mission even for the large 

dimension agents. 
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4.3.3 Simulation Results 

The proposed distributed search and coverage algorithm has been demonstrated via numerical 

simulations. All simulation have been done in Matlab® R2011a environment on a PC with 2.4 

GHz CPU. The dynamic programming algorithm is implemented as a recursive function in 

Matlab®. Multi-Parametric Toolbox (MPT) [121] is used to find the Voronoi diagrams. The 

dynamics are implemented in discrete time with a sampling time of 0.1 s. 

The environment used in simulation is a 1 km×1 km square. Since the search problem has 

discrete nature, the environment is divided into 10000 cells which make a 100 × 100 square grid. 

Therefore, each cell is a 10 m×10 m square. There exist three targets known to be in 20×20 cells 

square areas (uncertainty region) as shown in Figure 4-1, but their exact positions are unknown. 

The a priori probability of existence of these targets is uniformly distributed in their uncertainty 

region while their real positions are marked by the * marker. It is also considered that a virtual 

target exists in the environment and its uncertainty region is the whole terrain. Considering this 

target enforces search UAVs to search the unexplored area of the environment. 

A group of three fixed-wing search UAVs and ten quadrotor service UAVs are deployed to 

search and to cover the environment. Each search UAV is equipped with a sensor that can detect 

targets in its 4×4 cell footprint. The probabilities of true positive and false positive measurement 

of sensors are 𝛾 =0.9 and 𝜀 =0.1, respectively. All three search UAVs start their mission from the 

south west corner of the terrain, while all service UAVs start their mission from their individual 

bases which are located on the border of the environment as shown in Figure 4-1. For the purpose 

of collision avoidance, the UAVs fly in different levels. 



107 

 

 
Figure 4-1. The problem environment; the grey rectangles are the uncertainty 

regions of different targets and * denotes the actual position of the targets. 

Search UAVs and service UAVs are shown by  ⊳ and o markers respectively. 

The decision time step for the search UAVs is 5 s. At each decision time step, the search 

UAVs must decide to go straight, turn 15 degrees left or turn 15 degrees right. We assume that 

once the search UAV has made a decision about its next action, that action can be performed 

immediately and then the search UAV continues its mission in a straight path until the next 

decision time step. The speed of the search UAVs is constant and equal to two units per time step. 

The search algorithm is similar to the one explained in section 3.4.1.2 and parameters are T=5, 𝜆 =

1, 𝛿𝑘 = 1, K=0.25, and  𝛽𝜏=5. The model of service UAVs are assumed to be a double integrator 

and their control law is denoted in (4-9). For all service UAVs, the gain of controllers are 𝑘1
′ =

𝑘1𝑀𝑉𝑖
=1 and 𝑘2=5.  

In this simulation, the following Gaussian density function is used 

𝜙(𝑞, 𝑞𝑐
𝑖) =

1

𝜎√2𝜋
(𝑒

−
(𝑞−𝑞𝑐

𝑖 )
2

2𝜎2 )                                        (4-15) 

where 𝜎 = 70 𝑚. The initial and final probability maps and their corresponding distribution 

density functions are shown in Figure 4-2. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

                  Figure 4-2. (a) the initial probability map, (b) the final probability map,  

                  (c) the initial distribution density function, and (c) the final distribution density function. 

 

We consider the scenario in which, at the beginning, the service agents spread over the terrain 

based on the imprecise initial distribution density function which is derived from the a priori 

probability maps. The final configuration of planar position and the trajectories of all UAVs are 

shown in Figure 4-3-a. The exact distribution density function is also shown in the figure. This 

distribution is calculated based on the actual position of critical points (targets). The color intensity 
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is proportional to the value of distribution density function at each point. Corresponding 

distribution density function based on the probability maps is depicted in the Figure 4-3-b. It can 

be seen from this figure that the configuration of service UAVs in the environment is optimal 

according to available density function. 

Next, search UAVs start their mission to explore the terrain. During the mission, they update 

the probability maps of the targets and transmit these updated maps to the service agents on a 

regular basis. The position and trajectory of all UAVs and the exact distribution density function 

are shown in Figure 4-3-c, e, and g for three different time steps. The position of service UAVs 

and the corresponding distribution density function based on the most updated probability maps 

are shown in Figure 4-3-d, f, and h. It is worth to mention that as search UAVs explore the 

environment, the probability maps get more precise, and, therefore, the current distribution density 

function gets more similar to the exact one. Especially in Figure 4-3-g and h, the density functions 

are almost the same in both figures. As expected, deployment of search UAVs helps service UAVs 

to improve their performance to cover the most needed areas.  

In the proposed algorithm, it is assumed that there is no limit on communication between 

neighboring service agents. To evaluate the effectiveness of the proposed method in more realistic 

situations where the communication is limited, the above simulation has been repeated with 

different communication ranges. As a measure of the performance of this method, the value of 

coverage function ℋis reported in Table 1 for five different times, using the exact density function. 

It can be perceived that the coverage performance is improved about 25% by using this approach 

in the case of no limit on the communication ranges. As expected, the coverage performance 

degrades when the communication between service vehicles is limited. However, it can be seen 
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that the performance degradation is insignificant and the proposed method still improves the 

coverage performance considerably.  

In order to evaluate the average performance of the proposed approach, different simulations 

have been carried out 25 times and the average number of detected targets and the value of 

coverage function are depicted in Figure 4-4. The uncertainty regions and actual positions of the 

targets are randomly chosen for each repetition of simulation. As expected, the value of coverage 

function decreases and the coverage performance improves when the number of detected targets 

increases [122]. 

 

 

 

 

TABLE 4-1. THE VALUE OF COVERAGE FUNCTION AT DIFFERENT TIMES FOR THE SCENARIOS 

WITH DIFFERENT COMMUNICATION RANGES 

 

 

 

 

 

             Time (s) 

Ranges (m) 

0 120 160 200 240 

No limit 2.4339 0.6771 0.6235 0.5948 0.5443 

200 2.4339 0.6884 0.6294 0.5989 0.5468 

100 2.4339 0.7801 0.6433 0.6127 0.5578 

75 2.4339 1.4026 0.8925 0.7127 0.5872 

Heterogeneous 

in [75, 200] 

2.4339 0.8810 0.6728 0.6321 0.5692 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 4-3. Left: The configuration and the trajectories of all UAVs and the exact distribution density function.  

The color intensity is proportional to the value of density function. Search UAVs and service UAVs are shown  

by ⊳ and ⨀ respectively. Right: The configuration of service UAVs and the corresponding distribution density 

function based on the probability maps. 

(a) and (b) t=100 sec, (c) and (d) t=160 sec, (e) and (f) t=200 sec, (g) and  (h) t= 240 sec 
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Figure 4-4. The average number of detected targets and the value of coverage function for 25 simulations. 

4.3.4 Experimental Results 

To demonstrate the effectiveness of presented theoretical developments, an experiment is 

conducted on a group of unmanned ground vehicles available at the Networked Autonomous 

Vehicles Lab (NAVL) of Concordia University, which are provided by Quanser [123]. In this 

experiment, it is considered that the search mission is still carried out by simulation due to the 

difficulty for flying fixed-wing UAVs in the indoor testing environment and lack of appropriate 

sensors. The service problem is performed using a network of virtual robots and three available 

physical Unmanned Ground Vehicles (UGVs). The considered UGVs are equipped with a QuaRC-

powered single-board Gumstix embedded computer where QuaRC is the Quanser’s Real-time 

Control software [124]. QuaRC allows rapidly developing and deploying controllers designed in 

the MATLAB/Simulink® environment for real-time control of the vehicles. Runtime sensors 

measurement, data logging and parameter tuning are supported between the host computer and the  
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Figure 4-5.The experimental environment with three UGVs. 

target vehicles. Since the experiment is taking place indoor in the absence of GPS signals, the 

system positions are measured by the network of OptiTrack camera systems from NaturalPoint Inc 

[125]. In Figure 4-5, the experimental environment including the unmanned vehicles, host 

computer, and network of OptiTrack cameras is illustrated.  

The UGVs are differential drive Wheeled Mobile Robots (WMRs), as shown in 

Figure 4-5.The experimental environment with three UGVs.. They have a low power Gumstix 

Verdex XL6P 600 MHz on-board computer operated by Linux operating system. The kinematic 

model of the WMR is as follows  

𝑥̇ = 𝑣 cos(𝜃) 

𝑦̇ = 𝑣 sin(𝜃) 

𝜃̇ = 𝜔 

where 𝐩 = (𝑥, 𝑦) represents the coordinates of the center of the axle of the actuated wheels on the 

plane (𝑥, 𝑦) and 𝜃 is the angle that the longitudinal axis of the robot forms with the axis 𝒳. Inputs 

𝑣 and 𝜔 are longitudinal velocity and angular velocity of the robot respectively. This 



114 

 

nonholonomic kinematic model can be transformed into a linear controllable system using 

Dynamic (i.e., time-variant) state feedback [126]. This results in a fully linearized model which 

can be described by a double integral model as follows [126] 

𝑥̈ = 𝑢𝑥 

𝑦̈ = 𝑢𝑦 

where the resulting dynamic compensator is 

𝑣 = ξ 

ω =
𝑢𝑥cos(𝜃) − 𝑢𝑦 sin(𝜃)

ξ
 

ξ̇  = 𝑢𝑥 cos(𝜃) + 𝑢𝑦 sin(𝜃)                                             (4-16) 

Therefore, as Theorem 1 suggests, using the following control law for each UGV guarantees that 

the whole system is asymptotically stable and the planar positions of all service vehicles converge 

to a centroidal Voronoi configuration 

[
𝑢𝑥
𝑢𝑦
] = 𝑘1𝑀𝑉 (𝐂𝑉 − [

𝑥
𝑦]) − 𝑘2 [

𝑥̇
𝑦̇
]                                            (4-17) 

Inputs 𝑣, and ω, therefore, can be calculated using (4-16). It is worth to mention that the model of 

virtual service vehicles is still a double integrator and their control law is given by (4-10). For all 

service vehicles, the gains of the controllers are 𝑘1
′ = 𝑘1𝑀𝑉𝑖

=1 and 𝑘2=5. 

The environment in the experimental setup is similar to the simulation problem. The terrain 

is a 3m×3m square which is divided to 10000 cells to make a 100 × 100  square grid. There still 

exist three targets known to be in their 60cm×60cm uncertainty region but their exact positions 

are initially unknown. The a priori probability of existence of these targets is uniformly distributed 

in their uncertainty region. It is also considered that a virtual target exists in the environment and 

its uncertainty region is the entire terrain. The search mission is performed by a group of three 

virtual vehicles. At each decision time step, search vehicles must decide to go straight ahead, turn 
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15 degrees left, or turn 15 degrees right. The velocity of search vehicle is equal to 20 𝑐𝑚/𝑠. The 

search algorithm and parameters are similar to the case in section 4.3.3. Simulation of the search 

mission for all three vehicles is performed in Matlab® R2012a environment on the host computer 

which has a dual core 3.2 GHz processor. The dynamic programming algorithm is implemented 

as a recursive function in Matlab®. Service vehicles include seven virtual vehicles and three 

physical UGVs. Simulation of virtual vehicles is also performed on the host computer in Matlab® 

R2012a environment. Multi-Parametric Toolbox (MPT) [121] is used to find the Voronoi 

diagrams. The dynamics are implemented in discrete time with a sampling time of 0.1 s. Controller 

of Real UGVs is implemented in Matlab® R2012a environment and uploaded to their on-board 

processors. The Value of 𝐂𝑉 for the real UGVs is approximated by replacing the integral with a 

summation. Since the uncertainty value of all points inside a cell is equal, the approximation error 

is negligible. The position of vehicles is measured using the network of OptiTrack cameras. Host 

computer then sends the positions of all service vehicles (virtual and real) to the UGVs via the 

wireless communication channel. The Gaussian density function 𝜙(𝑞, 𝑞𝑐
𝑖) is similar to the density 

function in simulation (4-15) and the standard deviation is equal to 𝜎 = 20 𝑐𝑚.  

At the beginning, service vehicles spread over the terrain based on the imprecise initial 

distribution density function which is derived from the a priori probability maps. After 30 s, the 

search mission is commenced. The updated probability map is transmitted to the service vehicles 

every 5 s by the host computer. The final configuration of planar position and the trajectories of 

all service vehicles for different time steps, 30 s, 50 s, 65 s, 80 s are shown in Figure 4-6. The 

distribution density function based on the most updated probability maps are also shown in the 

figures. The color intensity is proportional to the value of distribution density function at each 
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point. It can be seen from this figure that the configuration of service vehicles in the environment 

is optimal according to available density function. 

The value of coverage function ℋ, using the exact density function, is shown in Figure 4-7. 

As expected, the value of coverage function decreases dramatically at time steps 45 s, 60 s, and 75 

s when the probability map is considerably improved due to the detection of a new target [127]. 

     
      (a) 

     
        (b) 

 

     
       (c) 

     
       (d) 

Figure 4-6. Experimental results: The configuration and the trajectories of all service vehicles and the    

corresponding distribution density function based on the probability maps. The color intensity is proportional to the 

value of density function. The UGVs are shown by ⨀ marker and their trajectories are shown by solid lines.  

(a) t=30 s, (b) t=50 s, (c) t=65 s, (d) t= 80 s 
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Figure 4-7. The value of coverage function. 

4.4 Conclusion 

In this chapter, the search and coverage problem in uncertain environments is presented using 

multiple vehicles. A group of service vehicles are deployed to serve the points or areas where they 

are most needed in the environment based on the Voronoi partitioning. Since the high service areas 

are not known beforehand, a group of search vehicles are used to explore the environment using 

the search algorithm that proposed in chapter 3. This technique leads to covering an uncertain 

environment more effectively and improving the coverage performance. The proposed approach 

has been successfully verified by both numerical simulations and experimental tests. 
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CHAPTER 5 

 

           Cooperative Search and Coverage using 

Dynamic Programming 

In this chapter, we investigate the search and coverage problem with a single type of agent. A 

team of agents are responsible to explore the environment to gather new information and at the 

same time concentrate around more important parts of the environment to provide service, if it is 

necessary. We first introduce the notion of limited turn-rate Voronoi diagram. The search and 

coverage problem is then formulated as a multi-objective optimization problem with different 

constraints including minimum fuel consumption, refuelling, obstacle avoidance, and collision 

avoidance.  

5.1 Limited Turn-rate Voronoi Diagram 

When the distance metric in making the Voronoi diagram is (weighted) Euclidean distance, 

the domain must be convex. The geodesic Voronoi partition is proposed in [128], which uses the 

geodesic distance to make Voronoi partitions in non-convex environments. Its discrete counterpart 

is introduced in [129] which uses the Dijkstra’s shortest path method to construct the Voronoi 

diagram. However, that method is not useful when the agents have limited turn rate, which means 

they cannot change their heading immediately. To address this issue, we propose the limited turn-

rate Voronoi diagram.  
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To construct the limited turn-rate Voronoi partition, we first define a weighted digraph that 

each node of the graph corresponds to a cell of the environment with a specific discretized heading. 

There is an edge ℰ = 𝐯𝑎𝐯𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ between the node 𝐯𝑎 and its neighbor 𝐯𝑏 if the agent is able to move from 

the position corresponds to 𝐯𝑎 to the position that corresponds to 𝐯𝑏. It is worth to mention that 𝐯𝑎 

and 𝐯𝑏 may both correspond to one cell with different headings. A cost 𝑐(ℰ) is associated with 

every edge ℰ. Definition of the cost depends on the application and is mainly related to the time 

and fuel consumption of transition from the predecessor node to successor node.  

Figure 5-1 shows how this digraph can be constructed. The left panel shows 2 steps of a search 

mission. It is assumed that at each time step, the agent can go straight to the next cell, turn 60 

degrees to the right and go to the next cell, or turn 60 degrees to the left and go to the next cell. 

The starting position of the agent is a which includes both position and heading of the agent. 

Different positions (i.e. location and heading) of the agent at the next time step are shown with 

similar colors. The right panel shows the corresponding digraph. For example, since the agent can 

go from the position a to the position b, there is an edge between their corresponding nodes (i.e. 

𝐯𝑎 and 𝐯𝑏). 

 

                                                                                                     

 

 

 

 

     (a) 

  

 

 

 

 

(b) 

Figure 5-1. a) 2 steps of a search mission and b) its corresponding digraph. 

𝐯𝑎 

𝐯𝑏 

ℰ = 𝐯𝑎𝐯𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

a 

b 
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To find the Voronoi partitions, we use a modified version of Dijkstra’s shortest path for 

digraphs [130] for all agents, which starts from the node that corresponds to the current position 

and heading of the agent and expands for all accessible nodes. The total cost of transition from one 

node to another is the summation of cost of all edges in the shortest path between two nodes. The 

cost of transition from the 𝑖th agent position and heading to any other cell is the minimum cost 

between the corresponding node of the current position and heading of the agent and all 

corresponding nodes of that cell with different headings. In another word, if 𝜃𝑖  is the heading of 

the 𝑖th agent, ℎ𝑞 is the ℎth heading of the cell 𝐪, and 𝐶 ((𝐩𝑖,  𝜃𝑖), (𝐪, ℎ𝑞)) is the cost of the shortest 

path between the node corresponds to the current position and heading of 𝑖th agent and the node 

corresponds to the heading ℎ𝑞 of the cell 𝐪, then 𝑑((𝐩𝑖,  𝜃𝑖), 𝐪) = min
ℎ𝑞

𝐶((𝐩𝑖,  𝜃𝑖), (𝐪, ℎ𝑞)), where 

𝑑((𝐩𝑖,  𝜃𝑖), 𝐪) is the cost of the shortest path between the agent 𝐩𝐢 and the cell 𝐪.   

Therefore, when the shortest paths algorithm is performed for all agents, each cell of the 

environment has the associated costs 𝑑((𝐩𝑖,  𝜃𝑖), 𝐪)  , ∀ 𝑖 = 1,2, … , 𝑛𝑎, where 𝑑((𝐩𝑖,  𝜃𝑖), 𝐪) gives 

the cost of the shortest path between the current position and heading of the 𝑖th agent, (𝐩𝑖,  𝜃𝑖), and 

the cell 𝐪. The number of agents in the environment is 𝑛𝑎. The Voronoi region of a given agent, 𝑉𝑖, 

is the region of the cells closer to that agent than to any other. Thus 

 𝑉𝑖 = {𝐪 ∈ 𝒬|𝑑((𝐩𝑖,  𝜃𝑖), 𝐪) ≤ 𝑑((𝐩𝑗,  𝜃𝑗), 𝐪), ∀𝑗 ≠ 𝑖, 𝑗 ∈ {1,… , 𝑛𝑎}} 

It should be noticed that in the limited turn-rate Voronoi diagram, generators are pairs of position 

and heading, i.e. (𝐩𝑖,  𝜃𝑖) . 

When the environment is large relative to the range of the mobile agents, we may define 

limited range and turn-rate Voronoi diagram. The set 𝐵((𝐩𝑖,  𝜃𝑖), 𝑟𝑖) is defined as the collection 

of nodes in the graph which are reachable from the node corresponds to the current position and 
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heading of 𝑖th agent in a walk of less than  𝑟𝑖 nodes. The limited range and turn-rate Voronoi region 

of the 𝑖th agent then can be defined as 

 𝑉𝑖 = {𝐪 ∈ 𝒬 ∩ 𝐵((𝐩𝑖,  𝜃𝑖), 𝑟𝑖)| 𝑑((𝐩𝑖,  𝜃𝑖), 𝐪) ≤ 𝑑((𝐩𝑗,  𝜃𝑗), 𝐪), ∀𝑗 ≠ 𝑖, 𝑗 ∈ {1,… , 𝑛𝑎} } 

 In Figure 5-2, the limited turn-rate Voronoi diagram of environment with two agents is 

shown. The environment is discretized with hexagonal cells. At each time, each agent is able to 

move straight ahead, turn 60 degrees left or turn 60 degrees right. It can be seen that in both figures, 

the Voronoi diagrams are the same while the limited turn-rate Voronoi diagrams are different due 

to different heading of the agents. 

In Figure 5-3, the limited range and turn-rate Voronoi diagram of the environment as well as its 

limited range Voronoi diagram are shown. The structure of environment and the position and the 

heading of agents in this figure are the same as Figure 5-2. In Figure 5-4, the limited turn-rate 

Voronoi diagram of an environment that includes some obstacles is shown.  

     
 (a) 

     
    (b) 

 

Figure 5-2. Limited turn-rate Voronoi regions are shown with different colors. Heading of agents is shown by ⊳. 

In (a) and (b) position of agents are the same but they have different headings. Voronoi region of both agents is 

also shown. 
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        (a) 

 
       (b) 

Figure 5-3. Limited range and turn-rate Voronoi regions are shown with different colors. Heading of agents is 

shown by ⊳. In (a) and (b) position of agents are the same but they have different headings. Limited rang Voronoi 

region of both agents is also shown. 

 

 

 

 
         (a) 

 
         (b) 

Figure 5-4. Limited turn-rate Voronoi regions in presence of obstacles in the environment are shown with different 

colors. Heading of agents is shown by ⊳. In (b) range of Voronoi is limited.  

 

 

5.2 Problem Statement 

There are a team of agents which are equipped with appropriate sensors to detect some targets 

in an unknown environment. The agents cooperatively explore the environment to find the targets 
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while avoiding the obstacles. The environment is discretized with hexagonal cells. It is assumed 

that at each time step, an agent can move from its current cell to one of its neighbors, based on its 

current heading. All agents also have some proximity sensors that enable them to detect obstacles 

in some or all of their neighboring cells.  

The agents should maintain a probability map of the targets. We define 𝑃(𝐸𝐪
𝑖) as the 

probability of existence of the target 𝑖 in the cell 𝐪 = (𝑥, 𝑦). The probability map consists of the 

probability of existence of all targets in any given cell in the environment. At the beginning of the 

mission, the probability map is initialized based on the a priori information about the position of 

the targets. The sensors are assumed to be non-ideal which means they may miss an existing target 

(false negative) or report a target while it does not actually exist (false positive). During the 

mission, the probability map is updated based on the output of mobile sensors using the updating 

rules provided in (2-12). 

The agents also maintain an occupancy map of the obstacles which represents the probability 

of presence of an obstacle in each cell of environment. This map is initialized based on a priori 

information about the location of obstacles. When there is no initial information. The probabilities 

of presence and non-presence of an obstacle in all cells are equal, therefore, 𝑃(𝐸𝐪
𝑜) = 0.5, ∀𝐪 ∈

𝑄, where 𝑃(𝐸𝐪
𝑜) is the probability that the cell  𝐪 is occupied by an obstacle. During the mission, 

if an agent detects an obstacle in one cell, that cell is considered as an obstacle, i.e. 𝑃(𝐸𝐪
𝑜) = 1 and 

the agents should never move to that cell. 

5.3 Objectives of the Mission 

In this section we investigate different objectives of the search and coverage mission. 
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5.3.1 Environment Exploration 

The main objective of the mission is exploring the whole environment to decrease the 

uncertainty about the position of the targets in the environment. Each cell 𝐪 = (𝑥, 𝑦) is associated 

with an uncertainty value, 𝜁(𝐪, 𝑡) ∈ ℝ+. The collection of uncertainty values of all cells in the 

environment constructs the uncertainty map of the environment. Each cell in the environment is 

initialized with 𝜁(𝐪, 0) based on a priori knowledge available about that cell. If all cells are equally 

uncertain, then they all are initialized with 𝜁(𝐪, 0) = 𝜁0 ≥ 0. As the time goes on, 𝜁(𝐪, 𝑡) increases 

by a factor of 𝜂 (𝜂 ≥ 1) to show that the current information about the cell is no longer up-to-date.  

Each sensor scan about the environment obtained during the search is a source of evidence 

about the state of that location. We consider a case of imperfect sensors in this study, that is, each 

sensor scan does not by itself provide 100% certainty about the state of the corresponding location. 

Here, we define an uncertainty reduction rate, denoted as 𝜇𝑖 ∈ (0,1), to model the uncertainties 

and inaccuracies about the 𝑖th mobile sensor. Mathematically, 𝜇𝑖  quantifies the belief of a sensor 

scan from agent 𝑖 committed to reducing the uncertainty in that cell. Since the agents are identical 

in this study, we use 𝜇 to denote the uncertainty reduction rate for all the agents. When an agent 

visits a cell, its uncertainty value decreases by the factor of 𝜇 indicating that the cell is recently 

visited and the knowledge of the team about that cell is up-to-date. Using Dempster's rule of 

combination [116], we define the uncertainty updating rule as follows 

𝜁(𝐪, 𝑡 + 1) = {
      𝜇 𝜁(𝐪, 𝑡)          ∃𝑖, 𝐩𝑖(𝑡) = 𝐪 

𝜂 𝜁(𝐪, 𝑡)          otherwise
                               (5-1) 

where 𝐩𝑖 is the position of the 𝑖th agent. The value of 𝜇 is inversely proportional to the accuracy of 

sensors. When a cell is searched by an accurate sensor, the uncertainty about that cell decreases 

considerably which can be translated into a low value for the factor 𝜇. It is easy to see that the first 
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scan of a cell results in the maximum reduction in uncertainty and further scans result in reduced 

benefit. Therefore, this update rule is a simple way to track the number of useful “looks” each cell 

has had and captures the nature of diminishing returns with each look. Value of 𝜂 defines how 

dynamic the environment is. The high value of 𝜂 means the environment is very dynamic and the 

status of a cell can be changed very quickly. When 𝜂 = 1, it means the environment is static and 

the status of the cells never changes. Therefore, exploration objective of the mission is to minimize 

the total value of uncertainty in the whole environment in the minimum time. 

5.3.2 Environment Coverage 

Although the main objective of the mission is to explore the environment to gather more 

information about it, one could also be interested in exploiting that information to concentrate the 

agents around the targets. In fact, the objective of environment coverage is to distribute the agents 

across the environment while aggregating in more important areas. The function 𝜑(𝐪) is a 

distribution density function that defines a weight for each cell. This function reflects a measure 

of relative importance of different regions in terrain. Therefore, the higher the value of 𝜑(𝐪) the 

more attention the group has to pay to 𝐪. The precise definition of the distribution density function 

𝜑(𝐪) depends on the desired application. Inspired from many real applications, in this study, it is 

assumed that the level of importance of each cell in the terrain is inversely proportional to the 

distance between the cell and the targets. Let 𝜑(𝐪) = ∑ 𝜙(𝐪,𝐓𝑖)
𝑚
𝑖=1 , where 𝐓𝑖 is the position of 

the 𝑖th target and 𝑚 is the number of targets. Function 𝜙(𝐪,𝐓𝑖) is known a priori and is a decreasing 

function of the distance between cell 𝐪 and the position of the 𝑖th target, 𝐓𝑖, and has a maximum at 

the point 𝐓𝑖.  

The location of the targets in the environment is not known precisely. The only information 

available about the position of the targets is the probability of existence of the targets in different 
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cells in the environment, i.e. 𝑃(𝐸𝐪
𝑖). Therefore, the distribution density function 𝜑(𝐪) can be 

obtained as follows 

𝜑(𝐪) = ∑ ∑ 𝑃(𝐸𝐪
𝑖)𝜙(𝐪, 𝐓𝑖)∀𝐓𝑖∈Q

𝑚
𝑖=1                                           (5-2)               

Indeed, ∑ 𝑃(𝐸𝐪
𝑖)𝜙(𝐪, 𝐓𝑖)∀𝐓𝑖∈Q

  is the expected value of function 𝜙(𝐪, 𝐓𝑖) with respect to 𝐓𝑖. 

Let 𝑉 = {𝑉1, 𝑉2, … , 𝑉𝑛} be the Voronoi partition of 𝒬, for which the position of agents are the 

generator points. The Voronoi region of a given agent, 𝑉𝑖, is the region of points that are closer to 

that agent than to any other, that is 

𝑉𝑖 = {𝐪 ∈ 𝒬| 𝑑(𝐪 − 𝐩𝑖) ≤ 𝑑(𝐪 − 𝐩𝑗), ∀𝑗 ≠ 𝑖, 𝑗 ∈ {1, … , 𝑛}} 

where 𝑑(. ) is a distance function. We define the coverage function 

ℋ(𝒫) = ∑ ∑ 𝑑(𝐪, 𝐩𝐢)∀𝐪∈𝑉𝑖
𝜑(𝐪)𝑛

𝑖=1                                         (5-3) 

as a measure of the performance of coverage, where 𝒫 = {𝐩1, 𝐩2, … , 𝐩𝐧}. In (5-3), it is assumed 

that the 𝑖th agent is responsible for its Voronoi region 𝑉𝑖. This measures the ability of the coverage 

provided by the network of agents. Qualitatively, a low value of ℋ corresponds to a good 

configuration for coverage of the environment. Therefore, the coverage objective of the mission is 

to minimize the value of coverage function. 

5.3.3 Coordination 

In our approach, the agents share their information about the environment, but they make 

individual decisions about what action to take next. It is desired to impede different agents from 

heading to the same destination at the same time so as to reduce the possible overlap. One way to 

address this issue is to treat the paths of other agents as soft obstacles as we did in chapter 3. In 

this section we take another approach. We use limited turn-rate Voronoi region to optimally assign 

different regions of environment to the agents. Then, each agent is only responsible for the cells 

in its Voronoi region. This approach guarantees that two agents never try to search the same cell 
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in the environment at the same time. In fact, each cell may only be searched by the closest agent 

to it. In addition, if the dimension of agents is less than the size of a cell, this approach guarantees 

collision avoidance. 

5.3.4 Communication 

At each time step, agents communicate their current position and sensor measurements. 

Therefore, all agents can maintain identical uncertainty maps, probability maps, and occupancy 

maps. If agents have limited communication ranges, they cannot communicate with the other 

agents who are not in their communication range. One can add a constraint to the optimization 

problem of the 𝑖th agent to force it to stay in communication range of other agents; i.e.          

‖𝐩𝑖 − 𝐩𝑗‖ ≤ 𝑅𝑗 , ∀𝑗 ≠ 𝑖 , where 𝑅𝑗 is the communication range of the 𝑗th agent. When agents are 

able to work as repeaters and to relay the information they received from another agent to other 

agents in their communication range, the constraint can be relaxed as ∃𝑗 ≠ 𝑖 𝑠. 𝑡. ‖𝐩𝑖 − 𝐩𝑗‖ ≤ 𝑅𝑗. 

In case the agents have limited communication range but they do not consider the communication 

range constraint in their optimization problem, they may not be able to maintain the same maps 

which could decrease the total performance of mission. When an agent loses its communication 

with other agents, it continues its mission without considering the actions and measurements of 

other agents. Thus, its actions may not optimize the total objective of multi agent mission and its 

map will not be the same as other agents. If the agent is able to gain its communication with other 

agents again, although it can communicate with other agents and use their information to update 

its maps in the future, these maps will not be the same as other agents due to information lost 

during the communication loss. However, if the communication channel of the agents is large 

enough, they might be able to transfer the information they have gathered during the 
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communication loss, once they gain the communication back and use an appropriate data fusion 

algorithm to make new identical maps which is beyond the scope of this work. 

5.3.5 Obstacle Avoidance 

Another important issue in the mission is to impede the agents from entering possible 

“forbidden zones” or colliding with obstacles. The most common way to address obstacles is 

“rivalling force” or “potential function” methods [131]. In fact, the obstacle avoidance issue is not 

usually considered a part of decision making process. Instead, the low-level controller takes care 

of this issue which may decrease the performance of mission.  In this work, in the process of 

constructing the limited range Voronoi partitions, we exclude the obstacles from the environment. 

Therefore, the obstacles are not in the Voronoi region of the agents which guarantees the obstacle 

avoidance of all agents. As it has already been stated, all agents maintain an occupancy map which 

represents the current information of team about the position of obstacles. The obstacles can be 

detected when an agent is located in their adjacent cell with appropriate headings (in all simulation 

it is assumed that the agents can only detect an obstacle in the cell right in front of them). This 

occupancy map can ultimately reveal the structure of the environment. Although finding the 

structure of the environment may not be one of the primary objectives of the mission, it is a by-

product of obstacle avoidance feature of our approach. 

5.3.6 Fuel Management 

One of the practical challenges in unmanned missions is minimizing the agents’ fuel 

consumption and safe returning of the agents to the base for refuelling. Using the limited turn- rate 

Voronoi partition guarantees that a cell in the environment is not assigned to an agent unless it has 

minimum cost to visit the cell among all available agents. It divides the environment between 

neighbouring agents based on the cost of reaching to each cell. Therefore, each cell in the 
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environment belongs to the Voronoi region of the agent who can reach that cell with the least cost. 

Since the cost of each edge in the graph is assumed to be an increasing function of the amount of 

fuel that agents consume to traverse that edge, this approach can minimize the total fuel 

consumption. 

The refuelling issue is studied in the literature [132]. The main condition is that at each time 

step, the agent at least must have enough fuel to return to its base. In this work, 𝑓𝑖(𝑡) is defined as 

the remaining fuel of the 𝑖th agent which is a decreasing function of time and depends on its 

previous path. To guarantee the safe returning of an agent to the base, it is necessary that cost of 

reaching the base(s) always be less than the remaining fuel, i.e. 𝐶𝑖(𝐁𝑖) = 𝑑((𝐩𝑖,  𝜃𝑖), 𝐁𝑖) ≤

𝑓 𝑖(𝑡), ∀𝑡 ≥ 0, where 𝐁𝑖 is the base of the 𝑖th agent. Finding 𝐶𝑖(𝐁𝑖) for all agents at each time step 

is computationally expensive and it is not feasible in the large environments. To solve this problem, 

we use internal geodesic distance to approximate the cost of returning to the base. The internal 

geodesic distance is the length of shortest path between two points which is entirely contained in 

the environment. This path may consist of sequence of segment {𝐪𝐪1⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝐪1𝐪2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, … , 𝐪𝑟−1𝐪𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝐪𝑟𝐁𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗} 

where 𝐪𝑖 is a reflex vertex which has an internal angle greater than 180o. The algorithm to find the 

internal geodesic distance is presented in [133]. To further simplify the process of finding the cost 

of return-to-the base, the agent can find a path to the base by following the straight line which 

connects it to the base. Whenever this path crosses an obstacle it should continue along the obstacle 

such that it eventually gets closer to the base. As soon as it passes the obstacle, it will follow the 

straight line again. The second method is less optimal than the internal geodesic distance method 

but it needs much less computation. We call this method approximate internal geodesic distance. 

A typical example of the path using both methods is shown in Figure 5-5.  
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Figure 5-5. Internal geodesic distance: green and approximate internal geodesic distance: red 

 

The shortest path is produced based on the current information about the structure of the 

environment. This information may be inaccurate especially at the beginning of the mission. 

Therefore, the calculated cost should be scaled up by an uncertainty factor 𝜇𝑓 ≥ 1 that reflects the 

lack of information about the true structure of the environment. This factor is proportional to the 

complexity of the environment and can be a decreasing function of time to incorporate more 

accurate information about the structure of the environment as time goes on. Finding a reasonable 

uncertainty factor 𝜇𝑓 is a trade-off between efficiency and health of agents. A conservative choice 

for 𝜇𝑓 (a large value) guarantees the safe returning of the agents to the base but it might decrease 

the efficiency by unnecessarily sending the agents for refueling. Choosing a small value for 𝜇𝑓 

(close to 1) might lead to the event that some agents run out of fuel before reaching to the base. 

5.3.7 Multi-objective Mission 

The multi-objective single step cost function of the 𝑖th agent at time step 𝑘 can be defined as 

𝑔(𝐩𝑖, 𝜃𝑖 , 𝑘) = −𝑤𝑒𝑔𝑒(𝐩𝑖, 𝜃𝑖 , 𝑘) + 𝑤𝑐𝑔𝑐(𝐩𝑖, 𝜃𝑖 , 𝑘)                                (5-4) 

where 𝑔𝑒 = 𝜆
𝑘𝜁(𝐩𝑖, 𝑘) is the exploration value,  𝑔𝑐 = 𝜆𝑘 ∑ 𝑑(𝐪, 𝐩𝐢)∀𝐪∈𝑉𝑖

𝜑(𝐪) is the coverage 

value, 𝜆 ( 0 < 𝜆 ≤ 1) is a time discount factor, and 𝑤𝑒 > 0 and 𝑤𝑐 > 0 are weights of each value 
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function. At each time step, each agent can find its optimal action by solving the following 

optimization problem 

   min
𝑢𝑖

𝐽𝑘(𝐩𝑖, 𝜃𝑖 , 𝑢𝑖)                                                        (5-5) 

Such that 

{

𝐩𝑖 ∈ 𝑉𝑖
‖𝐩𝑖 − 𝐩𝑗‖ ≤ 𝑅𝑗 , ∀𝑗 ≠ 𝑖

𝐶𝑖(𝐁𝑖) ≤ 𝑓 𝑖(𝑘)

                                                      (5-6) 

where 𝑢𝑖: (𝐪𝑖, 𝜃𝑖 , 𝑘) → (𝐪𝑖, 𝜃𝑖 , 𝑘 + 1) is the control input, and 

 𝐽𝑘(𝐩𝑖, 𝜃𝑖 , 𝑢𝑖) =  𝑔(𝐩𝑖 , 𝜃𝑖 , 𝑘) + 𝐽𝑘+1(𝐩𝑖, 𝜃𝑖 , 𝑢𝑖)                              (5-7) 

is the “cost-to-go” from time step 𝑘 to the end of the mission. The second condition can be replaced 

by ‖𝐩𝑖 − 𝐩𝑗‖ ≤ 𝑅𝑗 , ∃𝑗 ≠ 𝑖, if the agents can act as repeaters and relay the received information to 

the other agents in their neighborhood. 

Assume that the mission duration is 𝑁 time steps, i.e. the agent will make 𝑁 decisions over 

the course of the mission. Thus, the terminal cost of the mission is 𝐽𝑁(𝐩𝑖, 𝜃𝑖 , 𝑢𝑖) and is achieved at 

the end of the mission. The complete cost-to-go for any time step 𝑘 is then found by iterating 

enough times until the terminal cost is reached. However, as the dimension of the problems, i.e. 

possible states to examine over the planning horizon of the entire mission, grows, the computation 

time grows exponentially for this approach. In order to make the problem feasible, a rolling horizon 

limited look-ahead policy can be utilized. It makes the problem tractable, but at a cost of 

optimality. This rolling horizon approximation defines a horizon of time steps 𝑇, and then replaces 

the final cost 𝐽𝑁 
with the value of 𝐽𝑘+𝑇. This produces a much smaller problem space, so it has the 

benefit of always producing a tractable result. However, this solution is optimal with respect to the 

sub-problem and may not be optimal in respect to the main problem. There is a trade-off between 

optimality and computational complexity here. 
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When the optimization problem has no feasible solution, it means condition 𝐶𝑖(𝐁𝑖) ≤ 𝑓 𝑖(𝑘) 

does not hold anymore. That is because it is always possible for all agents to only change their 

heading and stay at the same cell that guarantees the conditions 𝐩𝑖 ∈ 𝑉𝑖 and ‖𝐩𝑖 − 𝐩𝑗‖ ≤ 𝑅𝑗 , ∀𝑗 ≠

𝑖. Therefore, when there is no feasible solution for the optimization problem, the agent is no longer 

able to continue its normal mission and it should switch to the refueling mode. In that mode, it 

must skip all other tasks and heads immediately to the refueling base. At each time step, the agent 

who needs to refuel can find its optimal action by solving the following optimization problem 

   min
     𝑢𝑖

 𝐶𝑖(𝐁𝑖)                                                              (5-8) 

Such that 

{
𝐩𝑖 ∈ 𝑉𝑖

‖𝐩𝑖 − 𝐩𝑗‖ ≤ 𝑅𝑗 , ∀𝑗 ≠ 𝑖
                                                      (5-9)                                         

where 𝐶𝑖(𝐁𝑖) is the cost of reaching the base of the 𝑖th agent. When 𝐶𝑖(𝐁𝑖) is calculated by using 

(approximate) internal geodesic distance, the optimal solution to this optimization problem is 

simply the one that follows the “shortest path to the base” defined by that distance. The condition 

𝐩𝑖 ∈ 𝑉𝑖 is needed to guarantee the collision avoidance. However, the definition of “cost of an edge” 

is different for the agents in the refueling mode. To construct the Voronoi partition in this case, 

the agent who needs to refuel, assigns minimum cost (typically zero) to all edges on its way to the 

refueling base, i.e. on the shortest path to the base, and assigns maximum cost (typically very high 

value) to all other edges. The rest of the process is the same as always, and each cell belongs to 

the Voronoi of the agent with minimum cost.  

Communication constraint ‖𝐩𝑖 − 𝐩𝑗‖ ≤ 𝑅𝑗 , ∀𝑗 ≠ 𝑖 may prevent the agent from returning to 

the refueling base on time which leads to the loss of the agent. Therefore, in practice when the 

above optimization problem has no feasible solution which means it is not possible for the agent 
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to maintain its minimum distance from other agents while having enough fuel to return to the base, 

the agents should switch to the following optimization problem  

   min
     𝑢𝑖

 𝐶𝑖(𝐁𝑖)                                                              (5-10) 

Such that 

𝐩𝑖 ∈ 𝑉𝑖                                                                         (5-11)      

Of course, in this case, the agent will lose its communication with others but it may safely return 

to the base. 

5.4 Uncertainty-weighted Voronoi 

We divided the optimization problem into two stages; finding the optimal partitioning of the 

environment and then finding the optimal action of each agent in its region. The limited turn-rate 

Voronoi diagram divides the environment between two adjacent agents based on the cost of 

reaching to each cell. Therefore, each cell in the environment belongs to the Voronoi region of the 

agent who can reach that cell with the least cost which guarantees the coordination between agents 

and the fuel efficiency of the mission. However, this partitioning may not be optimal from 

exploration point of view.  

In Figure 5-6, the lower half of the environment is uncertain while the upper half has no 

uncertainty. The limited turn-rate Voronoi region of the 1st agent is completely located in the upper 

half and the Voronoi region of the 2nd agent is located in the lower half of the environment. All 

cells inside the Voronoi region of the 1st agent are closer to it than to the 2nd agent and, therefore, 

it is more efficient for the 1st agent to search those cells rather than the 2nd agent. However, those 

cells have no uncertainty and there is no point for any agent to search them. On the other hand, all 
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uncertain cells belong to the 2nd agent, therefore, in this extreme situation the performance of the 

mission is like the performance of a mission with a single agent.   

We are interested in partitioning the environment based on the uncertainty value. To take into 

account the value of uncertainty function in constructing the Voronoi partitions, we modify the 

definition of cost function. The cost 𝑐(ℰ) which is associated with the edge ℰ = 𝐯𝑎𝐯𝑏̅̅ ̅̅ ̅̅  now consists 

of two terms; a fixed term 𝑐𝑜(ℰ) which depends on the application and is mainly related to the time 

and fuel consumption of the transition from the predecessor node to the successor node, and a 

variable term 
𝜁(𝐯𝑎,𝑡)+𝜁(𝐯𝑏,𝑡)

2
, where 𝜁(𝐯, 𝑡) is the uncertainty associated with the cell that 

corresponds to the node 𝐯 at the time 𝑡. It is worth to mention that all graph nodes that correspond 

to the one cell of the environment have the same value of uncertainty. Therefore, the cost of an 

edge ℰ = 𝐯𝑎𝐯𝑏̅̅ ̅̅ ̅̅  can be defined as 

𝑐(ℰ) = 𝑤𝑒
𝜁(𝐯𝑎,𝑡)+𝜁(𝐯𝑏,𝑡)

2
+𝑤𝑓𝑐𝑜(ℰ)                                                  (5-12) 
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Figure 5-6. a) Limited range and turn-rate Voronoi diagram.  b) Uncertainty-weighted limited range and  

               turn-rate Voronoi diagram.  The color intensity is proportional to the value of uncertainty. 
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where 𝑤𝑓 > 0 is the weight of full efficiency. When 𝑤𝑒 = 0, the Voronoi diagram divides the cells 

between the agents to minimize the fuel consumption (or time-to-reach). When 𝑤𝑓 = 0, the 

Voronoi diagram uniformly divides the uncertainty between the agents. Using this cost, the 

procedure of finding the Voronoi partition is the same as previous case.  

Figure 5-6-b shows the uncertainty-weighted limited range and turn-rate Voronoi diagram. It 

can be seen that the Voronoi region of the 1st agent also includes some cells with high uncertainty. 

In Figure 5-7, the uncertainty-weighted limited turn-rate Voronoi with  𝑤𝑒 = 0 and  𝑤𝑓 = 0 are 

shown respectively. In can be seen that when 𝑤𝑒 = 0, the environment is equally divided between 

two agents. When 𝑤𝑓 = 0, the total value of uncertainty in both Voronoi regions is almost the same. 
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(b) 

           Figure 5-7. Uncertainty-weighted limited turn-rate Voronoi diagram.  The color intensity is proportional to  

           the value of uncertainty.   a) 𝑤𝑒 = 0       b)  𝑤𝑓 = 0 
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5.5 Simulation Results 

The proposed distributed algorithm has been demonstrated via numerical. All simulation have 

been done in Matlab® R2012a environment on a PC with 2.4 GHz CPU. The dynamic 

programming algorithm is implemented as a recursive function in Matlab®. 

The environment is discretized into hexagonal cells. There are three agents which are 

responsible to search and cover the environment. At each time step, each agent can decide to go 

straight ahead to the adjacent cell, turn left, or turn right. In fact, each agent in a cell has six possible 

headings which can lead to one of its six neighbours. Cost of transition from one cell to its 

neighbour is assumed to be equal to 1, and cost of changing heading (turning right or left) is 

assumed to be 0.5. These values are used by the agents to construct the Voronoi partitions and to 

calculate the remaining fuel. 

There are four indistinguishable targets in the environment that their number and their 

positions are not known by the agents. It is assumed that no prior information about the position 

of the targets is available. Therefore, initial probability map is built such that the probability of 

presence of the target in all cells is set to be 0.5 which reflects the complete uncertainty about the 

environment. All agents also store an uncertainty map. The initial uncertainty of all cells 

considered to be equal to 1. The value of  𝜇 and 𝜂 are assumed to be 0.5 and 1.01 respectively. 

Since there is no information about the possible position of obstacles at the beginning, occupancy 

map is initialized with zero which means there is no obstacle in the environment. When an agent 

visits a cell it can measure if there is a target in the cell. Probabilities of true positive and false 

positive measurement of sensors are set to be 0.9 and 0.1 respectively. Agents can also detect an 

obstacle in the cell right in front of them and use that information to update their occupancy map. 
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For the coverage purpose, we used the following Gaussian density function  

𝜙(𝑞, 𝑝) =
1

𝜎√2𝜋
(𝑒

−
(𝑞−𝑝)2

2𝜎2 ) 

 

where 𝜎 = 4. The distance function 𝑑𝑖𝑠𝑡(𝑞, 𝑝𝑖) in calculation of coverage function ℋ is assumed 

to be Euclidian distance. 

There is a refuelling base located at the starting point of the targets that they should return to 

it to refuel when it is necessary. Approximate geodesic method is used to find the distance between 

agents and the refuelling base. The scale factor 𝜇𝑓 is set to be 1.2 to take into account the lack of 

information about the true structure of the environment which means the agents always have at 

least 20 percent back-up fuel. Since it is considered that each agent needs five time steps to 

refuel,  𝐶𝑖(𝐵𝑎𝑠𝑒) is increased by 5 units. The initial amount of fuel of agents is equal to 150 units. 

In order to execute the simulations in a reasonable amount of time, we set the look-ahead 

horizon of the Dynamic Programming algorithm to 4-time steps and use walks of less than 4 nodes 

to construct the limited range Voronoi diagram.  

The simulation has been performed for environments with three different structures which are 

depicted in Figure 5-8. Obstacles are shown by black cells. The blue cells are the position of 

refuelling bases. Three agents start their mission from their refuelling bases. Simulation has been 

done 50 times for each structure while the targets are randomly placed in the accessible area of the 

environment.  

First, the communication range of agents is assumed to be big enough to ensure the 

uninterrupted communication between agents at all times. Each agents chooses its next action by 

solving optimization problem (5-5) with constraints (5-6) where 𝐽𝑘 is defined in (5-7). The 

exploration gain 𝑤𝑒 =0.9, the coverage gain 𝑤𝑐 =0.1, and the time discount factor 𝜆=1. When this 
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optimization problem has no feasible solution, the agents switches to the refuelling mode by 

solving optimization problem (5-8) with constraints (5-9). The average number of truly detected 

targets and total uncertainty of the environment for these 150 simulations are shown in Figure 5-9 

and Figure 5-10, respectively. To evaluate the efficiency of the refuelling method, the same 150 

simulations have been repeated without considering the refuelling constraint. In fact, the initial 

fuel of agents is set to be very high (1000 units) which ensures that agents never need to refuel 

during the simulation interval. The average number of truly detected targets and total uncertainty 

of the environment in this case are also shown in Figure 5-9 and Figure 5-10, respectively. It can 

be seen that the performance does not considerably reduce when the agents have limited fuel and 

they need to refuel in comparison with the case that agents have enough fuel to explore the 

environment without refuelling. Figure 5-11 shows some snapshots of a typical mission at different 

times. When the probability of existence of a target in a cell is above 0.9, the target is considered 

as found and it is shown by a green cell. 

 

 

   

Figure 5-8. Three different structures that used in simulation studies. Red cells are targets, black cells are obstacles, 

and the blue cells are the starting points.  
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          Figure 5-9. The average number of truly detected targets for 150 

          simulations. 

          Blue dashed line: with refueling; Red solid line: without refueling 

 

 

 

 

 

 

 

 

          Figure 5-10. The average value of uncertainty for 150 simulations. 

          Blue dashed line: with refueling; Red solid line: without refueling 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

          Figure 5-11.  The snapshots of a typical mission at different times; 

          Limited range and turn-rate Voronoi of agents are shown by different shades of blue. 

          Red cells: undetected targets, Green cells: detected targets, Black cells: obstacles, Marker : agents 

          a) t= 0   b) t=30   c) t=60   d) t=90   e) t=120   f) t=150   g) t=180   h) t=210 
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In Figure 5-12, the number of truly detected targets in three cases has been compared; the 

case where there is no limit in communication, the case where the commination range of all 

agents is 20 and they use communication constraint in their decision process, and finally the 

case that the communication range is 20 but the agents do not consider the communication 

constraint in their optimization problem. 50 simulations have been performed for each 

structure and the position of the targets was randomly chosen. In order to make comparison 

more clear, the initial fuel of agent is set to 1000 to prevent the agents from refuelling. It can 

be seen that having limitation in communication decreases the performance of the mission. 

When the communication is limited but the agents do not try to remain in the communication 

range of each other, the performance is very low. In fact, the performance in this case is 

comparable to the performance of single agent missions. 

 

 

            

Figure 5-12. The average number of truly detected targets for 150 simulations; Blue 

Solid line: No communication limit;  

Red dashed line: Communication limit with constraint;  

Green dotted line: Communication limit without constraint 
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5.6 Conclusion 

In this chapter, the problem of search and coverage in uncertain environments is investigated. 

First, the limited turn rate Voronoi diagram is introduced. The search and coverage problem is 

formulated as a multi-objective optimization problem with different constraints including 

minimum fuel consumption, refuelling, obstacle avoidance, and collision avoidance. Despite the 

method used in the previous chapter, there is only one type of agents which perform both search 

and coverage tasks. The problem of “multi agent search” and the problem of “multi agent 

coverage” are special cases of this problem.  
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CHAPTER 6 

              Voronoi-Based Cooperative Search  

In this chapter, we introduce a Voronoi-based search strategy for a team of mobile agents with 

limited range sensors. One of the main differences between the approach in this chapter and what 

we discussed in chapters 3 and 5 is that the new approach combines the mid-level and low-level 

controller. It considers a double integral model for the agents and provides a low-level control law 

for each agent that constantly decreases the amount of uncertainty in the environment. 

6.1 Sensors and Uncertainty  

It is assumed that the model of sensors is Bernoulli-type. The probabilities of true positive 

and false positive measurement of sensors are assumed to be  𝛾 = 𝑃(𝐷|𝐸) and 𝜀 = 𝑃(𝐷|𝐸̅) 

respectively, where 𝛾 is the probability of detecting a target and 𝜀  is the probability of reporting a 

target existence while it does not exist. These two parameters are specifications of sensors and 

assumed to be known a priori. The value of 𝛾 and 𝜀 is assumed to depend on the distance between 

the sensor and the observed point. We assume a second-order polynomial function of 𝑟 = ‖𝐪 − 𝐩‖ 

model for 𝛾, where 𝐩 is the location of sensor and 𝐪 is the point being observed as follows 

𝛾(𝐪) = {

𝛾0−0.5

𝑟𝛾2
(𝑟𝛾

2 − 𝑟2) + 0.5           𝑟 ≤ 𝑟𝛾     

              0.5                           𝑟 > 𝑟𝛾
                               (6-1) 

where 𝛾0 (0.5 ≤ 𝛾0 ≤ 1) is the peak value of 𝛾 at the observation point. Parameter 𝑟𝛾 is the range 



144 

 

of sensor. This model indicates that the sensor’s detection probability is maximum at its position 

and monotonically decreases with the distance. The probability is equal to 0.5 outside of sensing 

range implying that it is equally likely for sensor to truly detect a target or miss it outside the 

sensing range. A similar model is also assumed for true negative measurement, 1 − 𝜀 = 𝑃(𝐷̅|𝐸̅). 

Therefore, the model of false positive measurement 𝜀 is as follows 

𝜀(𝐪) = {

𝜀0−0.5

𝑟𝜀2
(𝑟𝜀

2 − 𝑟2) + 0.5           𝑟 ≤ 𝑟𝜀     

              0.5                           𝑟 > 𝑟𝜀
                              (6-2) 

where 𝜀0(0 ≤ 𝜀0 ≤ 0.5) is the bottom value of 𝜀 at the observation point and 𝑟𝜀 is the range of 

sensor. The probability update rule for a sensor with this model is discussed in section 1.1.2.1. 

For any point in the environment, the probability of true measurement of the point by the 

sensor can be calculated using the total probability law as follows 

                                                        𝑃(𝑇) = 𝑃(𝐷|𝐸)𝑃(𝐸) + 𝑃(𝐷̅|𝐸̅)𝑃(𝐸̅)  

                                                         = 𝛾𝑃(𝐸) + (1 − 𝜀)(1 − 𝑃(𝐸))                                           (6-3) 

If we assume that the capability of sensor in making true positive and true negative measurements 

is the same, i.e. 𝛾 = 1 − 𝜀 and 𝑟𝛾 = 𝑟𝜀, then 𝑃(𝑇) = 𝛾 is the probability of true measurement of 

that point. After each measurement by the sensor, the certainty about the status of each point is 

increased by the factor of the probability of true measurement of sensor at that point, 𝑃(𝑇), and 

decreased by the factor of probability of false measurement of sensor at that point, 𝑃(𝑇̅). 

Therefore, the total certainty about the status of each point is increased by 𝜇 = 𝑃(𝑇) − 𝑃(𝑇̅). One 

can simply show that  

𝜇(𝐪, 𝐩) = {
𝜇0(𝑟𝛾

2 − ‖𝐪 − 𝐩‖2)           ‖𝐪 − 𝐩‖ ≤ 𝑟𝛾     

              0                           ‖𝐪 − 𝐩‖ > 𝑟𝛾
                      (6-4) 

where 𝜇0 = 2
𝛾0−0.5

𝑟𝛾2
. The lack of information about the environment can be modeled as an 

uncertainty density function 𝜙: 𝑄 ⟼ [0,1]. If the uncertainty density of a given point 𝐪 at the time 
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step n is denoted by 𝜙𝑛(𝐪) and the position of the ith agent is denoted by 𝐩𝑖, the uncertainty density 

of the point at the next time step changes as follows 

 𝜙𝑛+1(𝐪) =  𝜙𝑛(𝐪) min
𝑖
(1 −  𝜇(𝐪, 𝐩𝒊))                                    (6-5) 

where it is assumed that at any given point, only the measurement from the agent which can reduce 

the uncertainty by largest value is incorporated. The sensor fusion for multiple mobile sensors is 

beyond the scope of this work. Since the function 𝜇(𝐪, 𝐩𝒊) is a decreasing function of ‖𝐪 − 𝐩𝒊‖ 

and each agent is closer to the points in its Voronoi cell than any other agent, the minimum value 

of  1 − 𝜇(𝐪, 𝐩𝒊) occurs when 𝐪 belongs to 𝐕𝒊, i.e. 𝐪 ∈ 𝐕𝒊. Therefore, the uncertainty density of the 

point 𝐪 can be updated as follows  

 𝜙n+1(𝐪) =  𝜙𝑛(𝐪) (1 − 𝜇(𝐪, 𝐩𝒊)),    𝐪 ∈ 𝐕𝒊                                  (6-6) 

The uncertainty reduction from time step 𝑛 to time step 𝑛 + 1 is as follows 

∆ 𝜙𝑛(𝐪) =  𝜙𝑛+1(𝐪) −  𝜙𝑛(𝐪) =  𝜙𝑛(𝐪) 𝜇(𝐪, 𝐩𝒊), 𝐪 ∈ 𝐕𝒊                       (6-7) 

The objective of mission is to maximize the total uncertainty reduction in each time step. 

Thus, the following performance function must be maximized 

𝐻 = ∫ ∆ 𝜙(𝐪). 𝑑𝐪
𝑄

= ∑ ∫  𝜙(𝐪) 𝜇(𝐪, 𝐩𝒊). 𝑑𝐪𝐕𝒊 
𝑖                               (6-8) 

We define 𝐕′ = {𝐕𝟏
′, 𝐕𝟐

′, … , 𝐕𝐧
′} as the limited-range Voronoi diagram with the range of 𝑟𝛾 as 

follows 

𝐕𝐢
′ = {𝐪 ∈ 𝑄 ∩ 𝐵(𝐩𝒊, 𝑟𝛾)| ‖𝐪 − 𝐩𝒊‖  ≤ ‖𝐪 − 𝐩𝒋‖ , ∀𝑗 ≠ 𝑖 }, 𝑖 ∈ {1, … , 𝑛} 

Where 𝐵(𝐩𝒊, 𝑟𝛾) is a circle with the center of 𝐩𝒊 and the radius of 𝑟𝛾. The limited-range Voronoi 

diagram is not necessarily a partition and some points in the environment may not belong to any 

Voronoi region. 

Since 𝜇(𝐪, 𝐩𝒊)=0 if ‖𝐪 − 𝐩𝒊‖ > 𝑟𝛾, the performance function can be shown as 

𝐻 = ∑ ∫  𝜙(𝐪) 𝜇0(𝑟𝛾
2 − ‖𝐪 − 𝐩𝒊‖

2). 𝑑𝐪
𝐕𝒊
′ 𝑖                                        (6-9) 
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Therefore, the total performance is the sum of performance of all mobile agents, i.e. ℋ = ∑ ℋ𝑖
𝑛
𝑖=1 , 

where the performance of each agent is equal to 

ℋ𝑖(𝐩𝒊) = ℋ̅𝑖 − ℋ̿𝑖                                                         (6-10) 

where 

ℋ̅𝑖 = ∫  𝜙(𝐪) 𝜇0𝑟𝛾
2𝑑𝐪                                                   

𝐕𝒊
′ 

(6-11) 

and 

ℋ̿𝑖 = ∫  𝜙(𝐪) 𝜇0(‖𝐪 − 𝐩𝒊‖
2). 𝑑𝐪

𝐕𝒊
′ 

                                      (6-12) 

Since the value of ℋ̅𝑖 is not a function of the position of mobile agent, the maximum of ℋ𝑖 occurs 

when the value of  ℋ̿𝑖 is minimum. The partial derivative of  ℋ̿𝑖 with respect to the position of 

mobile agent is equal to 

𝜕ℋ̿𝑖 

𝜕𝐩𝒊
= −2𝜇0 ∫  𝜙(𝐪) (𝐪 − 𝐩𝒊). 𝑑𝐪𝐕𝒊

′ 
                                           (6-13) 

It can be shown that 

𝜕ℋ̿𝑖

𝜕𝐩𝒊
= −2𝜇0𝑀𝐕𝒊

′( 𝐂𝐕𝒊′ − 𝐩𝒊)                                           (6-14) 

Where 𝑀𝐕𝒊
′ and 𝐂𝐕𝒊′ are mass and centroid of the limited-range Voronoi diagram of the ith agent 

respectively 

𝑀𝐕𝒊
′ = ∫  𝜙(𝐪) 𝑑𝐪

𝐕𝒊
′ 

                                                        (6-15) 

and 

 𝐂𝐕𝒊′ =
∫  𝜙(𝐪) 𝐪𝑑𝐪
𝐕𝒊
′ 

𝑀
𝐕𝒊
′

                                                          (6-16) 

The extremum points of ℋ are those in which every agent is at the centroid of its limited-range 

Voronoi region, i.e. 𝐩𝒊 =  𝐂𝐕𝒊′  , ∀𝑖. 
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6.2 Control Strategy 

Each mobile agent is modeled as a double-integrator point mass moving on a two-

dimensional (2-D) plane as follows 

𝐩̈𝑖 = 𝐮𝑖                                                                      (6-17) 

Equation of motion of a broad class of vehicles can be expressed by a double-integrator dynamic 

model. In addition, dynamics of many vehicles can be feedback linearized to double integrators. 

We propose the following position control law for the ith agent 

𝐮𝑖 = −𝑘1
𝑖𝑀𝐕𝒊

′(𝐩𝒊 −  𝐂𝐕𝒊′) − 𝑘2
𝑖 𝐩̇𝑖                                               (6-18) 

where 𝑘1
𝑖  and 𝑘2

𝑖  are the positive gains.  

Theorem 6-1: Consider a group of n agents whose dynamic models are described in (6-17). 

Under control law (6-18), it is guaranteed that the whole system is asymptotically stable and the 

planar positions of agents converge to the centroid of their limited-range Voronoi region.    

Proof:  Consider the Lyapunov function candidate as 

𝜗 =
1

𝜇0
∑ 𝑘1

𝑖 ℋ̿𝑖
𝑛
𝑖=1 + ∑ 𝐩̇𝑖

𝑇𝐩̇𝑖
𝑛
𝑖=1                                                  (6-19) 

where 𝑘1
𝑖  is the positive controller gain. Since 𝑘1

𝑖  is a positive value, 0 < 𝜇0, and ℋ̿𝑖 is also a 

strictly positive function, then the candidate Lyapunov function 𝜗 is lower-bounded by zero. 

Taking the time derivative of 𝜗 along the trajectories of systems gives 

𝜗̇ =
1

𝜇0
∑ 𝑘1

𝑖 ℋ̿𝑖
̇𝑛

𝑖=1 + 2∑ 𝐩̇𝑖
𝑇𝐩𝑖̈

𝑛
𝑖=1                                           (6-20) 

By substituting (6-14) into the above equation, one obtains  

𝜗̇ = ∑ 2[𝐩̇𝑖
𝑇(𝑘1

𝑖𝑀𝐕𝒊
′(𝐂𝐕𝒊′ − 𝐩𝒊) + 𝐩̈𝑖)]

𝑛
𝑖=1                                  (6-21) 

Finally, by substituting the model of each mobile agent (6-17) into (6-21) , and using control input 

(6-18), the time derivative of Lyapunov function can be optioned as follows 
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𝜗̇ = 2∑ (−𝑘2
𝑖  𝐩̇𝑖

𝑇𝐩̇𝑖)
𝑛
𝑖=1                                                  (6-22) 

which is clearly non-positive. Let 𝑆 be the set of all points in 𝑄 where  𝜗̇ = 0. Due to the convexity 

of the region 𝑄, one can conclude that each of the limited-range Voronoi centroids 𝐂𝐕𝒊′ lies in the 

interior of the ith limited-range Voronoi region and so in the interior of the region 𝑄. So the mobile 

agents move toward the interior of the region 𝑄 and never leave it. Therefore, 𝑄 is a positive 

invariant set for the trajectories of the closed-loop system. Since this set is closed and bounded, 

one can make use of LaSalle's invariance principle to infer that the planar positions of all agents 

converge to the largest invariant subset of the 𝑆. Suppose a trajectory belongs to the set 𝑆. By 

considering the agents’ model (6-17) and the control law (6-18), we have 

𝐩̇𝑖 = 𝟎   ⇒     𝐩̈𝑖 = 𝟎   ⇒      𝐮𝑖 = 𝟎    ⇒     𝐩𝒊 = 𝐂𝐕𝒊′ , ∀𝑖  

Then we can conclude that 𝐩𝒊 = 𝐂𝐕𝒊′ , ∀𝑖, is the largest invariant set. Therefore, under control law 

(6-18), the closed-loop system is asymptotically stable and the planar positions of agents converge 

to the centroid of their limited-range Voronoi region.    

□ 

We define 𝜙∗ as the maximum accepted uncertainty about each point in the environment. It 

is assumed that when the uncertainty is less than 𝜙∗ it is possible to decide about the status of the 

point with high level of accuracy. Therefore, when the uncertainty of all points becomes less than 

this threshold, the mission is complete. The amount of error about the status of each point can be 

defined as 

 𝑒(𝐪) = max(0, 𝜙(𝒒) − 𝜙∗)                                                  (6-23) 

Since each agent is responsible for searching the areas in its Voronoi region, the total error 

associated with a mobile agents is 

𝑒𝑖 = ∫ 𝑒(𝐪)𝑑𝐪
𝐕𝒊 

                                                       (6-24) 
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This total error comprises two parts; error from within limited-range Voronoi and error from 

outside of limited-range Voronoi as follows 

𝑒𝑖 = 𝑒𝑖
′ + 𝑒𝑖

′′                                                       (6-25) 

where 

𝑒𝑖
′ = ∫ 𝑒(𝐪)𝑑𝐪                                                            

𝐕𝒊
′  

(6-26) 

and 

𝑒𝑖
′′ = ∫ 𝑒(𝐪)𝑑𝐪

𝐕𝒊
′′=𝐕𝒊−𝐕𝒊

′  
                                              (6-27) 

 

Under the control law (6-18), a mobile agent is in continuous motion until it converges to the 

centroid of its limited-range Voronoi region, i.e. 𝐩̇𝑖 = 𝟎 and 𝐂𝐕𝒊′ = 𝐩𝑖 . Next lemma shows that the 

error inside the limited-range Voronoi region (𝑒𝑖
′) becomes zero in a limited time. 

Lemma 6-1: The uncertainty of all points inside the limited-range Voronoi region of a sensor 

goes below any desired threshold level in finite time. 

Proof: Uncertainty of a point inside the limited-range Voronoi at nth time step is  

 𝜙𝑛(𝐪) =  𝜙𝑛−1(𝐪) (1 − 𝜇(𝐪, 𝐩𝒊))  

                                                                       =  𝜙0(𝐪) (1 − 𝜇(𝐪, 𝐩𝒊)) 
𝑛   

where  𝜙0(𝐪) is the initial uncertainty. Since (1 − 𝜇(𝐪, 𝐩𝒊)) < 1, there is 0 ≤ 𝑛∗ that for any 𝑛∗ ≤

𝑛,  

(1 − 𝜇(𝐪, 𝐩𝒊)) 
𝑛 ≤

𝜙∗

 𝜙0(𝐪)
  

 □ 

When a mobile agent converges to the centroid of its limited-range Voronoi, i.e. 𝐩̇𝑖 = 𝟎 

and 𝐂𝐕𝒊′ = 𝐩𝑖, above lemma implies that 𝑒𝑖
′ eventually goes to zero. However, 𝑒𝑖 is not necessary 
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zero, since 𝑒𝑖
′′can be non-zero. Whenever the mobile agent is at the centroid of its limited-range 

Voronoi and the error from within limited-range Voronoi is zero, but the total error is non-zero, 

i.e. 𝑒𝑖
′ = 0 and 𝑒𝑖 ≠ 0, another control law must be utilized to perturb the system from its local 

minimum. Once the system is away from the local minimum, the controller is switched back to the 

nominal control. 

A simple control law to perturb the system from the local minimum is a law that forces the 

mobile agent to move toward the point with the highest value of uncertainty in the Voronoi region. 

We define   

𝐪𝒊
∗ = arg max

𝐪∈𝐕𝒊
′′
 𝜙(𝐪)                                                   (6-28) 

It should be noted that when  𝑒𝑖
′ = 0 and 𝑒𝑖 ≠ 0, the point with the highest value of uncertainty in 

the Voronoi region, 𝐪𝒊
∗, always belongs to 𝐕𝒊

′′. We assume that 𝐪𝒊
∗ is unique or there is an 

algorithm to choose a unique 𝐪𝒊
∗ when (6-28) has multiple solutions. 

Then the control law that drives the agent to the  𝐪𝒊
∗ is as follows 

𝐮𝑖
′ = −𝑘3

𝑖 (𝐩𝑖 − 𝐪𝒊
∗) − 𝑘4

𝑖 𝐩̇𝑖                                               (6-29) 

where 𝑘3
𝑖  and 𝑘4

𝑖  are positive controller gains. 

Theorem 6-2: Consider an agent whose dynamic model is described in (6-17). The control 

law (6-29) will drive the agent towards its associated 𝐪𝒊
∗.  

Proof:  By using the following Lyapunov function  

𝜗 = 𝑘3
𝑖 (𝐪𝒊

∗ − 𝐩𝑖)
𝑇(𝐪𝒊

∗ − 𝐩𝑖) + 𝐩̇𝑖
𝑇𝐩̇𝑖                                       (6-30) 

and using LaSalle's invariance principle, one can conclude that the closed loop system is 

asymptotically stable and the position of the agent converge to its associated 𝐪𝒊
∗. 

□ 
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We define the switching condition C as follows 

 Condition C: 𝐮𝑖 = 𝟎,  𝑒𝑖
′ = 0 and 𝑒𝑖 ≠ 0 

Therefore, when condition C holds, the control law switches to the control law (6-29) that drives 

the mobile agent to the point with the highest uncertainty in its Voronoi-region. When an agent 

converges to the centroid of its limited-range Voronoi it does not switch its control law 

immediately. In fact, it uses the nominal control law, which is zero at that moment, to stay at the 

centroid of the limited-range Voronoi until the total uncertainty inside the limited-range Voronoi 

region goes below the threshold, i.e. 𝑒𝑖
′ = 0. It is worth to mention that the condition C does not 

occur very often because after each time step both uncertainty distribution in the environment and 

the position of mobile agents change which changes the limited-range Voronois and their 

centroids. The following theorem summarizes what we discussed so far. 

Theorem 6-3: Consider a group of n agents whose dynamic models are described in (6-17). 

Under the uncertainty model (6-4), the control law 

𝐮𝑖
∗ = {

𝐮𝑖        if 𝐶 does not hold     

𝐮𝑖
′               if 𝐶  holds          

                                         (6-31) 

can drive the total error to zero, where 𝐮𝑖 and 𝐮𝑖
′ can be calculated by using  (6-18) and (6-29) 

respectively. 

6.3 Collision Avoidance 

As we mentioned earlier, it is assumed that at any given point, only the measurement from 

the agent which can reduce the uncertainty by largest value is incorporated. Thus, in order to use 

the maximum capability of all mobile agents, it is beneficial if the sensing area of mobile agents 

do not interfere with each other’s. Therefore, the mobile agents are expected to maintain the 
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distance greater than 2𝑟𝛾 from each other, if it is possible. In addition, in order to avoid collision 

between agents, there is a minimum distance between mobile agents that must always be respected. 

If 𝑟𝑜 is defined as the radius of the disc centered at the agent’s location and circumscribes the 

mobile agent, the minimum acceptable distance between two agents is 2𝑟𝑜. We consider the 

following function 

𝑈𝑖𝑗 = min(0,
‖𝐩𝒊−𝐩𝒋‖−2𝑟𝛾

‖𝐩𝒊−𝐩𝒋‖−2𝑟𝑜
)                                                      (6-32) 

It is assumed that in general 𝑟𝛾 > 𝑟𝑜 > 0. The value of this function is decreasing and negative 

when 2𝑟𝑜 < ‖𝐩
𝒊
− 𝐩

𝒋
‖ < 2𝑟𝛾 and is zero otherwise. 

The following control law 

𝐮𝑖 = 𝑘5
𝑖 ∑

𝜕𝑈𝑖𝑗

𝜕𝐩𝒊

𝑛
𝑗=1,≠𝑖 − 𝑘6

𝑖 𝐩̇𝑖                                                 (6-33) 

ensures that as long as all agents start from initial conditions that 2𝑟𝑜 < ‖𝐩𝒊(0) − 𝐩𝒋(𝟎)‖, the 

mobile agents never collide and their final position is such that the sensing area of mobile sensors 

do no interfere. Parameters 𝑘5
𝑖  and 𝑘6

𝑖  are positive controller gains. 

Assumption 1: The initial position of mobile agents satisfies the collision avoidance 

condition, i.e. 2𝑟𝑜 < ‖𝐩𝒊(0) − 𝐩𝒋(𝟎)‖. 

Theorem 6-4: Consider a group of n agents whose dynamic models are described in (6-17). 

If the assumption 1 is true, the control law (6-33) guarantees collision avoidance and ensures that 

the planner position of system converge to a configuration that the sensing area of mobile agents 

do not interfere.   

Proof:  By using the following Lyapunov function  

             𝜗 = −∑ ∑ 𝑘5
𝑖𝑈𝑖𝑗

𝑛
𝑗=1,≠𝑖

𝑛
𝑖=1 + ∑ 𝐩̇𝑖

𝑇𝐩̇𝑖
𝑛
𝑖=1          
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Taking the time derivative of 𝜗 along the trajectories of systems gives 

𝜗̇ = −∑ ∑ 𝑘5
𝑖 𝐩̇𝑖

𝑇 𝜕𝑈𝑖𝑗

𝜕𝐩𝒊

𝑛
𝑗=1,≠𝑖

𝑛
𝑖=1 + ∑ ∑ 𝑘5

𝑖 𝐩̇𝑗
𝑇 𝜕𝑈𝑖𝑗

𝜕𝐩𝒋

𝑛
𝑗=1,≠𝑖

𝑛
𝑖=1 + 2∑ 𝐩̇𝑖

𝑇𝐩𝑖̈
𝑛
𝑖=1   

    = −∑ ∑ 𝑘5
𝑖 𝐩̇𝑖

𝑇 𝜕𝑈𝑖𝑗

𝜕𝐩𝒊

𝑛
𝑗=1,≠𝑖

𝑛
𝑖=1 + ∑ ∑ 𝑘5

𝑖 𝐩̇𝑗
𝑇 𝜕𝑈𝑗𝑖

𝜕𝐩𝒋

𝑛
𝑗=1,≠𝑖

𝑛
𝑖=1 + 2∑ 𝐩̇𝑖

𝑇𝐩𝑖̈
𝑛
𝑖=1   

                             = −∑ ∑ 𝑘5
𝑖 𝐩̇𝑖

𝑇 𝜕𝑈𝑖𝑗

𝜕𝐩𝒊

𝑛
𝑗=1,≠𝑖

𝑛
𝑖=1 + ∑ ∑ 𝑘5

𝑖 𝐩̇𝑖
𝑇 𝜕𝑈𝑖𝑗

𝜕𝐩𝒊

𝑛
𝑗=1,≠𝑖

𝑛
𝑖=1 + 2∑ 𝐩̇𝑖

𝑇𝐩𝑖̈
𝑛
𝑖=1   

where we used 𝑈𝑖𝑗 = 𝑈𝑗𝑖 and 
𝜕𝑈𝑗𝑖

𝜕𝐩𝒋
=

𝜕𝑈𝑖𝑗

𝜕𝐩𝒊
 in deriving the above equation. Finally, by substituting 

the model of each mobile agent (6-17) into above equation, and using control input (6-33), the 

time derivative of Lyapunov function can be obtained as follows: 

𝜗̇ = −2∑ (𝑘6
𝑖  𝐩̇𝑖

𝑇𝐩̇𝑖)
𝑛
𝑖=1   

which is clearly non-positive with equality holding if and only if 𝐩̇𝑖 = 𝟎. By considering the 

agent’s model (6-17) and the control law (6-33), we have 

𝐩̇𝑖 = 𝟎   ⇒     𝐩̈𝑖 = 𝟎   ⇒      𝐮𝑖 = 𝟎    ⇒     ∑
𝜕𝑈𝑖𝑗

𝜕𝐩𝒊

𝑛
𝑗=1,≠𝑖 = 0 , ∀𝑖  

The latter condition is satisfied if and only if  
𝜕𝑈𝑖𝑗

𝜕𝐩𝒊
= 0, ∀𝑖, which means the relative distance of 

any two agents cannot be between 𝑟𝑜 and 𝑟𝛾. On the other hand, since the initial relative distance 

was greater than 2𝑟𝑜, if two agents are going to collide, i.e. ‖𝐩𝒊 − 𝐩𝒋‖ → 2𝑟𝑜
+ it implies 𝜗 → ∞ 

which is not possible because that initial value of  𝜗 is finite and non-increasing. Therefore, this 

guarantees the collision avoidance.  

□ 

It is worth to mention that if the sensing radius of the agents is large in relation to the 

dimension of environment, the above control law may force some of mobile agents outside of the 

domain. In practice this is not an issue, since usually a small group of agents are responsible to 

search a relatively large environment. 
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By using the control law (6-18), the agents incorporate a greedy strategy to locally optimize 

the mission objective. They assume that the current partitioning of the domain is optimal and try 

to choose the best actions that maximize the objective function. On the other hand, using the 

control law (6-33) locally optimizes the partitioning of the domain and guarantees collision 

avoidance. The control law can be a combination of both (6-18) and (6-33) as follows 

𝐮̅𝑖 = −𝑘𝑐
𝑖𝑀𝐕𝒊

′(𝐩𝒊 −  𝐂𝐕𝒊′) − 𝑘𝑝
𝑖 𝐩̇𝑖 + 𝑘𝑢

𝑖 ∑
𝜕𝑈𝑖𝑗

𝜕𝐩𝒊

𝑛
𝑗=1,≠𝑖                           (6-34) 

where 𝑘𝑐
𝑖 , 𝑘𝑝

𝑖 , and 𝑘𝑢
𝑖  are positive gains. It is straightforward to show that by using this control law 

the mobile agents converge to the position that 𝐩𝒊 =  𝐂𝐕𝒊′ +
𝑘𝑢
𝑖

𝑘𝑐
𝑖𝑀

𝐕𝒊
′
∑

𝜕𝑈𝑖𝑗

𝜕𝐩𝒊

𝑛
𝑗=1,≠𝑖  . The gains 𝑘𝑐

𝑖  and 

𝑘𝑢
𝑖  can be chosen to balance between different objectives.  

Based on Lemma 6-1, after the mobile agent converges to any point inside its limited-range 

Voronoi, the error from within limited-range Voronoi goes to zero in limited time. However, as 

we saw earlier, it is possible that the error from within limited-range Voronoi is zero, but the total 

error is non-zero, i.e. 𝑒𝑖
′ = 0 and 𝑒𝑖 ≠ 0. In that case another control law must be utilized to 

perturb the system from its local minimum. Once the system is away from the local minimum, the 

controller is switched back to the nominal control. 

A weighted combination of the control laws (6-29) and (6-33) can be utilized in this case to 

force the mobile agent to move toward the point with highest uncertainty in the Voronoi region 

while avoiding the collision with other agents 

𝐮̅𝑖
′ = −𝑘

𝑐 ′
𝑖 (𝐩𝑖 −  𝐪𝒊

∗) − 𝑘
𝑝′
𝑖 𝐩̇𝑖 + 𝑘𝑢′

𝑖 ∑
𝜕𝑈𝑖𝑗

𝜕𝐩𝒊

𝑛
𝑗=1,≠𝑖                            (6-35) 

where 𝑘𝑐′
𝑖 , 𝑘𝑝′

𝑖 , and 𝑘𝑢′
𝑖  are positive gains. Similarly, this control law moves the mobile agents 

toward the position that 𝐩𝑖 =  𝐪𝒊
∗ +

𝑘
𝑢′
𝑖

 𝑘
𝑐′
𝑖 ∑

𝜕𝑈𝑖𝑗

𝜕𝐩𝒊
 𝑛

𝑗=1,≠𝑖 . Although the above control law guarantees 
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the collision avoidance, it cannot guarantee that the total error inside the Voronoi region goes to 

zero. In fact, in a symmetric situation like Figure 6-1 where multiple agents try to reach to almost 

the same point, the repulsive force of the others prevent them from doing that. In that case, a part 

of the Voronoi region may left uncovered.  

One way to mitigate this problem is to replace 𝑟𝛾 with a smaller value 𝑟𝛾′ (𝑟𝑜 < 𝑟𝛾′ < 𝑟𝛾) in 

constructing 𝑈𝑖𝑗 for the (6-35) control law. This way, the agents can get closer to each other which 

decreases the chance of having unexplored area. However, this means that the sensing area of 

mobile agents may interfere in any time which is not efficient. More importantly, from practical 

point of view this may lead to a situation that two agents get dangerously close to each other such 

that the control input required to prevent collision is too high and the agent are not able to produce 

such a large input. 

 

 

(a) 

 

      (b) 

Figure 6-1. A symmetric situation with 4 agents. Red solid circles are safety regions of agents and blue dashed 

circles are sensory domains of agents. The point with the highest value of uncertainty in the Voronoi region of all 

agents, i.e. 𝐪𝒊
∗, is located near the node at the intersection of all Voronois. In (a) the sensory domain of the agents 

is large enough to cover the whole area around the intersection, while in (b) some part of the domain remains 

uncovered.  
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The other way to solve this problem is to using a conflict resolution algorithm that prioritizes 

the agents and resolves these sort of conflicts. This may need more communication between 

agents.  

We define the following switching conditions 

 Condition 𝐶̅: 𝐮̅𝑖 = 𝟎,  𝑒𝑖
′ = 0 and 𝑒𝑖 ≠ 0 

 Condition 𝐶̅′: 𝐮̅𝑖
′ = 𝟎,  𝑒𝑖

′ = 0 and 𝑒𝑖 ≠ 0 

A simple example of such conflict resolution algorithm is the one that when condition 𝐶̅′ 

holds, the agent with higher priority chooses its 𝐪𝒊
∗ using (6-28), while the other agents keep 

choosing less optimal value for their corresponding  𝐪𝒊
∗ in descending order of optimality until the 

condition 𝐶̅′ is violated. 

One may use another conflict resolution algorithm to deal with such situation without need of 

extra communication between agents. In this algorithm all agents have the same priority. When 

the condition 𝐶̅′ holds for any agent, that agent randomly chooses a point inside 𝐕𝒊
′′

 as 𝐪𝒊
∗. This 

randomness can eventually break the symmetry and violate the condition 𝐶̅′ for all agents. This 

algorithm is clearly less optimal than the former algorithm, but it needs less computation and less 

communication between agents.  

Therefore, the control law 

𝐮̅𝑖
∗ = {

𝐮̅𝑖        if 𝐂 does not hold     

𝐮̅𝑖
′               if 𝐂  holds          

                                         (6-36) 

guarantees the collision avoidance, but it cannot necessarily guarantee that the total error of the 

entire domain goes to zero in highly symmetric domains. However, using a conflict resolution 

algorithm when the condition 𝐂′ holds, can break the symmetry and reduce the uncertainty to any 

desired threshold. It should be noted that when 𝐂′ holds, the control input is still equal to 𝐮̅𝑖
′, but 
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the value of 𝐪𝒊
∗ is chosen based on the conflict resolution algorithm. As we will see in the 

simulation and result section, in practice, the total performance of the proposed control strategy is 

very high and close to the performance of the cases without collision avoidance requirement (mass 

point agents).  

 The control strategy is summarized below: 

 If 𝐂 ̅does not hold:                             𝐮̅𝑖
∗=𝐮̅𝑖=−𝑘𝑐

𝑖𝑀𝐕𝒊
′(𝐩𝒊 −  𝐂𝐕𝒊′) − 𝑘𝑝

𝑖 𝐩̇𝑖 + 𝑘𝑢
𝑖 ∑

𝜕𝑈𝑖𝑗

𝜕𝐩𝒊

𝑛
𝑗=1,≠𝑖                  

 If 𝐂 ̅holds but 𝐂′does not hold:   𝐮̅𝑖
∗=𝐮̅𝑖

′ = −𝑘
𝑐 ′
𝑖 (𝐩𝑖 −  𝐪𝒊

∗) − 𝑘
𝑝′
𝑖 𝐩̇𝑖 + 𝑘𝑢′

𝑖 ∑
𝜕𝑈𝑖𝑗

𝜕𝐩𝒊

𝑛
𝑗=1,≠𝑖  

                                          where 𝐪𝒊
∗ is calculated using 𝐪𝒊

∗ = arg max
𝐪∈𝐕𝒊

′′
 𝜙(𝐪) (6-28) 

 If 𝐂 ̅ and 𝐂′ hold:                        𝐮̅𝑖
∗=𝐮̅𝑖

′ = −𝑘
𝑐 ′
𝑖 (𝐩𝑖 −  𝐪𝒊

∗) − 𝑘
𝑝′
𝑖 𝐩̇𝑖 + 𝑘𝑢′

𝑖 ∑
𝜕𝑈𝑖𝑗

𝜕𝐩𝒊

𝑛
𝑗=1,≠𝑖  

                                           where 𝐪𝒊
∗ is chosen using conflict resolution algorithm (randomly) 

6.4 Simulation Results 

In this section, we provide different simulation results to show the performance of the 

proposed search method. All simulation have been done in Matlab® R2012a environment on a PC 

with 2.4 GHz CPU. The dynamics are implemented in discrete time with a sampling time of 0.1 s. 

A discrete Voronoi partitioning is used where a cell belongs to a Voronoi region if its center is 

closer to the generating point of that region than to any other generating point. The Value of 𝐂𝑉 is 

approximated by replacing the integral with a summation. Since the uncertainty value of all points 

inside a cell is equal, the approximation error is negligible. 

The environment is a 10 m × 10 m square that discretized into 10000 cells. The radius of 

safety region and sensory domain of the agents is 𝑟𝑜 =50 cm and 𝑟𝛾 =100 cm, respectively. The 
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peak value of 𝛾 at the observation point is 𝛾0 =0.9. In all simulations, the sampling rate of the 

sensors is 10 𝐻𝑧. In other words, each sensor scans the environment every 100 ms. The maximum 

accepted uncertainty about each point in the environment is 𝜙∗ = 0.1. The value of control gains 

are 𝑘𝑐
𝑖 = 𝑘

𝑐 ′
𝑖 =0.5, 𝑘𝑝

𝑖 = 𝑘
𝑝′
𝑖 =2.5, and 𝑘𝑢

𝑖 = 𝑘
𝑢′
𝑖 =0.5  for all agents.  

In the first scenario, it is assumed that there is no a priori information about the environment. 

Therefore, at the beginning, the uncertainty density  𝜙(𝐪) is uniformly distributed all over the 

environment. To make comparison between different simulations possible, the total value of 

uncertainty in the domain is set to 10000 at the beginning of all simulations. Thus, for this scenario 

the uncertainty density is initialized with 𝜙(𝐪) = 1 for all cells 𝐪. There are three agents in the 

environment that start their mission from a randomly chosen position inside the environment. 

However, the initial position of the agents satisfies the collision avoidance criteria at the beginning 

of the search mission. 

The path and position of agents at different times are shown in Figure 6-2. The color intensity 

is proportional to the value of uncertainty. It can be seen that the agents can eventually explore the 

entire domain and reduce the value of uncertainty below any desired threshold. To evaluate the 

average performance of the proposed search method, we performed a Monte Carlo simulation for 

50 times and the results are reported. The simulations are also repeated for the case with five 

agents.  Figure 6-3 shows the average value of error for the mission with three and five agents.  

As one may expect, when the number of agent increases, the performance of mission increases 

too, which means the total error decreases more rapidly. The average value of control input and 

velocity of all agents are shown in Figure 6-4 to 6-7. From the practical point of view, these values 

are reasonable for a wide range of commercial wheeled mobile robots and quad rotor helicopters. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 6-2. The path and the position of agents at different times in an environment with uniformly distributed 

uncertainty. The color intensity is proportional to the value of uncertainty. Red markers denote the initial position 

of the agents and green markers denote the current positions.  

a) t=0 s,   b)   t=30 s,    c)    t=60 s,    d)   t=90 s,    e)   t=120 s,   f)   t=150 s 
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     Figure 6-3. The average error for 50 random simulations.       

     Red dashed: mission with 3 agents.  

     Blue solid: mission with 5 agents.  

 

 

  

   Figure 6-4. The average value of control input for  

   50 random simulations with 3 agents. 

  Figure 6-5. The average value of control input for  

  50 random simulations with 5 agents. 

  

   Figure 6-6. The average value of velocity for  

   50 random simulations with 3 agents. 

   Figure 6-7. The average value of velocity for  

   50 random simulations with 5 agents. 
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In the first scenario, since the initial uncertainty is uniformly distributed over the entire 

domain, the advantage of the proposed control algorithm cannot be seen clearly. In the second 

scenario, the initial uncertainty distribution is not uniform. It is assumed that there are three random 

uncertainty centers in the environment 𝑞𝑐
𝑗
 and the uncertainty is normally distributed around 

them.The total uncertainty of each cell is the summation of the uncertainty from all three different 

sources 

𝜙(𝐪) = ∑
1

𝜎√2𝜋
(𝑒

−
(𝑞−𝑞𝑐

𝑗
)
2

2𝜎2 )3
𝑗=1   

where 𝜎 = 1.5 𝑚.  

There are three agents that start their mission from the bottom-left corner of the environment 

while respecting the safety region of each other. The path and position of agents at different times 

are shown in Figure 6-8. It can be seen that using the control law (6-36) causes the agent to 

concentrate their efforts around the area with higher value of uncertainty. We performed Monte 

Carlo simulation for 50 times and the results are reported. The simulations are also repeated for 

the case with five agents.  Figure 6-9 shows the average value of error for the mission with three 

and five agents. As we expect, when the number of agent increases, the performance of mission 

increases too. The average value of control input and velocity of all agents are shown in 

Figure 6-10 to 6-13. It can be seen that these values are reasonable from the practical point of view 

for a wide range of applications. In fact, in all simulation in this chapter, we set the maximum 

value of control input at 0.5 𝑚/𝑠2, i.e. ‖ 𝐮̅𝑖
∗‖ ≤0.5. However, in all simulations, the control input 

produced by (6-36) rarely went over that limit.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 6-8. The path and the position of agents at different times in an environment with non-uniformly distributed 

uncertainty. The color intensity is proportional to the value of uncertainty. Red markers denote the initial position 

of the agents and green markers denote the current positions.  

a) t=0 s,   b)   t=20 s,    c)    t=40 s,    d)   t=60 s,    e)   t=80 s,   f)   t=100 s 
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Figure 6-9. The average error for 50 random simulations. 

Red dashed: mission with 3 agents.  

Blue solid: mission with 5 agents. 

 

 

  

Figure 6-10. The average value of control input for 50 

random simulations with 3 agents. 

Figure 6-11. The average value of control input for 50 

random simulations with 5 agents. 

 

  

Figure 6-12. The average value of velocity for 50 

random simulations with 3 agents. 

Figure 6-13. The average value of velocity for 50 

random simulations with 5 agents. 
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When there is a limit on the control input, it may not be able to ensure collision avoidance. In 

order to decrease the chance of collision in such situations, we need to increase the value of 𝑘𝑢
𝑖  

(or 𝑘
𝑢′
𝑖 ) with respect to 𝑘𝑐

𝑖  (or 𝑘
𝑐 ′
𝑖 ). This can reduce the performance of mission by pushing the 

equilibrium point further away from the optimal point  𝐂𝐕𝒊′(or 𝐪𝒊
∗) to the new point  𝐂𝐕𝒊′ +

𝑘𝑢
𝑖

𝑘𝑐
𝑖𝑀

𝐕𝒊
′
∑

𝜕𝑈𝑖𝑗

𝜕𝐩𝒊

𝑛
𝑗=1,≠𝑖     (or 𝐪𝒊

∗ +
𝑘
𝑢′
𝑖

 𝑘
𝑐′
𝑖 ∑

𝜕𝑈𝑖𝑗

𝜕𝐩𝒊
 𝑛

𝑗=1,≠𝑖 ). In addition, we may also need to increase the value 

of 𝑘𝑝
𝑖  (or 𝑘

𝑝′
𝑖 ) with respect to 𝑘𝑐

𝑖  (or 𝑘
𝑐 ′
𝑖 ) to limit the velocity of agents which can slow down the 

convergence of system. 

It should be noted that although having more agents in the mission naturally increases the 

performance of mission, when the control input is limited, having too many agents in a small 

environment also increases the chance of collision. To prevent collision, we need to tune the gains 

which has negative effects on the performance. Therefore, when there are a few agents in a 

relatively large domain, adding a new agent considerably increases the overall performance, but 

when the number of agent with respect to dimension of the environment is high, adding a new 

agent is less desirable since it may have very little effect on the overall performance of the mission.  

6.5 Conclusion 

The problem of multi agent search in uncertain environments is investigated. The lack of 

information about the environment is modeled with an uncertainty density. A team of mobile 

sensors with limited sensory domain searches the environment until the value of uncertainty of all 

points in the environment goes below a pre-set value. It is shown that the optimal decision of each 

mobile sensor at each time step is to move towards the centroid of its limited range Voronoi region. 

A distributed control strategy is proposed that guarantees the asymptotic convergence of each 

mobile sensor to the centroid of its limited range Voronoi region. A collision avoidance component 
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is then added to the controller which guarantees the collision avoidance, but it cannot necessarily 

guarantee that the total error of the entire domain goes to zero in highly symmetric domains. 

However, using a conflict resolution algorithm can break the symmetry and reduce the uncertainty 

to any desired threshold. Simulations results illustrates the effectiveness of the proposed approach 
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CHAPTER 7 

                   Conclusions and Future Work 

This chapter summarizes the dissertation contributions and presents future directions for the 

research.  

7.1 Conclusions 

The main objective of this dissertation is to investigate distributed architectures for 

cooperative multi agent search and coverage problem. The main thesis contributions are as 

follows: 

 Different models for uncertain environments are presented in chapter 2. The 

probability map updating rule is developed for different types of sensors (single-cell 

footprint or multiple-cells footprint) and different types of targets (distinguishable or 

indistinguishable). Environments with unknown number of targets and environments 

with known number of targets are both investigated. The idea of relative probability 

is extended for the latter case to decrease the computational burden. 

 In chapter 3, a decentralized approach is used for the search mission where each 

mobile agent chooses its optimal action individually. To make cooperation between 

agents possible, two approximation methods are proposed to modify the objective 

function of agents and take into the account the action of other agents. This approach 

is then extended for the case with known communication delay between mobile 

agents.  
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 Search and coverage problem is introduced and formulated in chapter 4. Inspired by 

real applications, a new distribution density model is introduced which is a function 

of position of some unknown targets in the environment. The problem is formulated 

such that the information about the positions of the targets is updated by some search 

vehicles agents. The cooperative search method developed in chapter 2 and a 

Centroidal Voronoi Configuration method for coverage are used to solve the problem. 

 In chapter 5, the limited turn rate Voronoi diagram is introduced and the search and 

coverage problem is formulated as a multi-objective optimization problem with 

different constraints including minimum fuel consumption, refuelling, obstacle 

avoidance, and collision avoidance. Despite the method used in the previous chapter, 

there is only one type of agents which perform both search and coverage tasks.  

 In chapter 6, a Voronoi-based search strategy for a team of mobile agents with limited 

range sensors is presented which combines mid-level and low-level controllers. The 

collision avoidance between agents is guaranteed. The control law is designed to 

balance between the myopic objective of maximizing uncertainty reduction in the next 

step and the long term objective of distributing the agent in the environment with 

minimum overlap in their sensory domain. The dynamic model of agents is also a 

double integral which can express the equation of motion of a broad class of vehicles. 

7.2 Future Work 

The following problems are suggested for future research: 

 A more general model for the uncertain environments can be investigated where the 

probability of existence of a target in the environment and the distribution of that 

probability are known a priori. 
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 A 3D model for the sensors can be developed which captures the effect of altitude of 

sensor on its performance.  

 When the search agents are far from the region of interest, using the rolling horizon 

limited look-ahead strategy is not efficient. In that situation, two different approaches 

can be considered: using an approximate Dynamic Programming method to evaluate 

the value function at the end of look-ahead horizon; or using a switching mechanism 

that changes the decision making method to a reactive one to guides the agents to 

vicinity of the targets. 

 We assumed that all agents always maintain the same cognitive map of the 

environment. Different factors such as communication delay, limited communication 

range, or agent failure may cause the agents to have different cognitive maps. Effect 

of having different cognitive maps and methods of combining these different maps to 

make a global map should be investigated. 

 High level decision making issues like task assignment can also be considered.  

o In the problem of search and coverage in chapter 4, all agents can be identical 

but with different equipment. The task assignment unit must decide about the 

distribution of tasks (and therefore equipment) between available agents.  

o In chapter 3, 4, and 6, the task assignment unit can change the number of active 

agents, based on the new information from the agents or perhaps other sources. 

It can also decide about when to remove or replace a faulty agent based on the 

different criteria such as the importance of the task, severity of damage, chance 

of crash, and the price of agent. 
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