
Model to code generation of UML/SysML activity
diagrams for ARM CortexM MCUs

MohammadHossein AskariHemmat

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master Of Applied Science at

Concordia University

Montréal, Québec, Canada

April 2015

c©MohammadHossein AskariHemmat, 2015

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: MohammadHossein AskariHemmat

Entitled: Model to code generation of UML/SysML activity diagrams for ARM

CortexM MCUs

and submitted in partial fulfilment of the requirements for the degree of

Master of Applied Science (Electrical & Computer Engineering)

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Dr. Zahangir Kabir Chair
Chair’s name

Dr. Samar Abdi Examiner
Examiner’s name

Dr. Mohammad Mannan Examiner
Examiner’s name

Dr. Mounir Boukadoum Co-Supervisor
Co-Supervisor’s name

Dr. Otmane Ait Mohamed Supervisor
Supervisor’s name

Approved by
Chair of the ECE Department

2015
Dean of Engineering

ABSTRACT
Model to code generation of UML/SysML activity diagrams for ARM CortexM MCUs

MohammadHossein AskariHemmat

The complexity in embedded systems has been increased in the last years. To over-

come the system complexity various methodologies have been presented. Both in industry

and academia, Model-Based design has been accepted to be the best solution to solve this

problem.

Model-Based Design is a technique for developing embedded system applications and

cyber-physical systems based on a hierarchy of reusable design blocks. SysML/UML activ-

ity diagrams are widely used for the modelling and analysis of complex systems, and they

have become the de facto standard for software and embedded systems.

Previously in our group, we formalized SysML activity diagrams by developing a calculus

called New Activity Calculus (NuAC). In this work, we redefined NuAC terms to support

RTX (Keil Real-Time Operating System) and present an automated SysML/UML activity

diagram to RTX code generator, using mapping rules expressed in NuAC.

To achieve this goal, we proposed a set of mapping rules that were used in mapping a SysM-

L/UML activity diagram into a suitable code to be executed on ARM CortexM processor

family. To automate the process of code generation, we presented a JAVA application that

uses the proposed rules to automatically generate the RTX code from the input activity di-

agram model.

To demonstrate the capability of the developed tool, we use it to implement a train con-

trol algorithm on an ARM Cortex-M4 device. The implemented model is run on the target

platform and the correct functionality of the system is verified.

iii

To my loving family

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to thank the almighty ALLAH for his blessing to

finish this research.

I would like to express my deepest gratitude to my supervisor, Dr. Otmane Ait Mohamed,

for his excellent guidance, caring, patience, and providing me with an excellent atmosphere

for doing research. This thesis would not have been possible without his guidance and sup-

port. I also want to thank Dr. Mounir Boukadoum, for co-supervising my research work

and for giving his valuable comments on my research.

I would like to thank all my fellow researchers and colleagues in Hardware Verification

Group (HVG) at Concordia University. Without their guidance, support and continual en-

couragements, this thesis would not have been possible.

I would like to take this opportunity to thank Regroupement Stratgique en Microsystmes du

Qubec (ReSMiQ) for their financial supports. Without their financial supports I would not

have been able to continue my research work.

Last but not least, I thank my family for their constant moral support and their prayers.

They are the people who are closest to me and suffered most for my higher study in abroad.

Their support was invaluable in completing this thesis.

v

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF ACRONYMS . xi

1 Introduction 1

1.1 Motivation . 1

1.2 Related Works . 2

1.2.1 MATLAB and Simulink based modeling 2

1.2.2 Modeling based on AutoFocus3 3

1.2.3 Modeling and Analysis of Real Time and Embedded systems 4

1.2.4 A Formal Verification Framework for BlueSpec System Verilog . . 6

1.3 Proposed Methodology . 7

1.4 Thesis Contribution . 8

1.5 Thesis Outline . 9

2 Preliminaries 11

2.1 SysML and UML modeling languages . 11

2.1.1 Unified Modeling Language . 11

2.1.2 System Modeling Language . 13

2.1.3 Activity Diagrams . 15

2.1.4 SysML/UML based Modeling tools 18

IBM Rational Rhapsody . 18

Enterprise Architecture . 19

Topcased . 19

2.2 Keil RTX RTOS . 20

2.2.1 RTX Threads . 22

2.3 Conclusion . 23

vi

3 Mapping Methodology 25

3.1 Implementation and Verification Framework 25

3.2 SysML Activity Diagrams Formalization 26

3.3 JAVA Application Unit . 34

3.4 Summary . 38

4 Application 40

4.1 BART Case Study . 40

4.1.1 BART system overview . 40

4.1.2 Simulation and Verification in AF3 48

4.1.3 Implementation . 52

4.2 Thread Management in JPEG Encoder . 56

4.3 Summary . 61

5 Conclusion and Future work 63

5.1 Conclusion . 63

5.2 Future Work . 64

A BART train controller code 65

Bibliography 70

vii

LIST OF TABLES

2.1 Technical information of CMSIS-RTOS RTX[34] 24

3.1 Formalization of SysML Activity Diagram Artifacts 27

4.1 Dublin to Daly City track properties . 43

4.2 Worst Case Scenario Distance parameters 48

4.3 Worst Case Scenario Distance calculations 49

viii

LIST OF FIGURES

1.1 Verification artifacts and activities in AF3 4

1.2 Architecture of MARTE profile [43] . 5

1.3 Probabilistic Decision in SysML activity diagram 6

1.4 Join two thread in SysML/UML activity diagram 8

1.5 Mapping flowchart . 8

2.1 The taxonomy of UML structure and behavior diagrams [29] 12

2.2 Relation between SysML and UML [32] 14

2.3 The taxonomy of SysML structure [30] 15

2.4 Activity Diagram Syntax . 16

2.5 Probabilistic Decision in SysML activity diagram 18

2.6 Thread State and State Transitions[34] . 23

3.1 SysML to RTX verification and implementation framework 26

3.2 SysMLToRTX.java Java application . 34

3.3 Simplified SysMLToRT X java application Class diagram 35

4.1 The map of the BART transit system . 41

4.2 The Dublin/Pleasa track in BART transit system. 42

4.3 BART system modeled in AF3 . 50

4.4 TrainController module in AF3 . 51

4.5 Overview of verification platform . 52

4.6 Communication Packet Format . 52

4.7 Abstracted Computer Station model . 53

4.8 Simulation of BART train control system 54

4.9 Calculation result from ComputerStation algorithm implemented in the

FRDM board . 54

ix

4.10 Train Position over time . 55

4.11 Train acceleration over time . 56

4.12 Train Velocity over time . 56

4.13 Zigzag ordering of JPEG image components[47] 58

4.14 JPEG Encoder pipeline . 58

4.15 Not scheduled JPEG encoder . 59

4.16 Not scheduled JPEG encoder output log file 60

4.17 A scheduled JPEG encoder algorithm . 61

4.18 A scheduled JPEG encoder algorithm Output log 62

x

LIST OF ACRONYMS

AATC Advance Automatic Train Control

AF3 AutoFOCUS3

BART Bay Area Rapid Transit

BSV Bluespec SystemVerilog

CMSIS Cortex Microcontroller Software Interface Standard

DCT Discrete Cosine Transform

ESL Electronic System Level

INCOSE International Council on Systems Engineering

RTX Real Time eXecutive

UML Unified Modeling Language

MBSE Model Based System Engineers

NuAC New Activity Calculus

OMG Object Management Group

OMT Object Modeling Technique

PRISM PRobabilistIc Symbolic Model checker

RTOS Real-Time Operating System

SysML Systems Modeling Language

WCSD Worst Case Scenario Distance

xi

Chapter 1

Introduction

1.1 Motivation

The complexity in embedded systems has been increased in the last years. New heteroge-

neous systems which combine different domains are more common. Aircrafts, automobiles,

cell phones, medical equipment is an example where domains such as electronics, commu-

nication, software, mechanics, physics, mathematics and medicine are part of the systems

development today. The International Council on Systems Engineering (INCOSE)[1] iden-

tified Model-Based Systems Engineering (MBSE) [2] as the key driver for effective and

efficient system development in the future. Model-Based Design [3] is a technique for

embedded system applications that reduces system complexity by creating a hierarchy of

individual design blocks.

OMG(Object Management Group) Systems Modeling Language (SysML) [4] was

developed in order to support effective communication among the parties involved by means

of a standardized graphical notation. SysML [5] is a standard modeling language used

for system applications. It reuses a subset of UML packages [6]. Mainly, it covers four

aspects of system modeling: structure, behavior, requirement, and parametric diagrams.

SysML is composed of several diagram types (use case, activity, sequence and so on).

Particularly, SysML activity diagrams[9] are graphical representations of work-flows of

1

step-wise activities and actions with support for choice, iteration and concurrency.

In order to execute the SysML model in an embedded hardware platform, the SysML

model needs to be mapped to low level C code. In this thesis, our main goal is to generate

an executable C code from a SysML activity diagram model. Particularly, we are interested

to automatically generate code for ARM CortexM processor family [10] from a SysML

activity diagram model. To achieve this goal, a set of mapping rules are proposed that maps

a SysML activity diagram into a correct code to be executed on ARM CortexM processor

family. In the following, we will present other alternative modeling languages/tools other

than UML/SysML models. Finally, the proposed methodology and thesis contribution will

be explained later in this chapter.

1.2 Related Works

1.2.1 MATLAB and Simulink based modeling

Most of the current available model to code generators, generate codes based on the Simulink

models. For instance in [15], by using actor-oriented modeling language (System- MoC),

the authors introduced a model transformation framework and claimed that they have closed

the gap between classic ESL(Electronic System Level) [16] design flows and Simulink

models. The proposed framework was integrated into an ESL design flow to reduce the de-

velopment efforts. In [17] a framework for modeling, simulation and multi-platform code

generation for sensor network algorithms based on Simulink models were introduced. They

used StateFlow in Simulink to describe the protocol at a high level of abstraction. Later in

their methodology, they used Matlab Embedded Coder to translate the high level models

into the target C code. In addition to these methodologies, Matlab itself has Simulink Coder

[18] and Embedded Coder [19] that can generate code based on the given Simulink model.

However MATLAB and Simulink models are widely used in industry and academia, there

are essential differences when they are compared to SysML and UML models.

First, MATLAB and Simulink do not have a standardized graphical notation whereas

2

SysML and UML have a standardized general purpose graphical notation for modeling

different views of the system definition.

The second issue is that MATLAB and Simulink do not support inheritance-concepts

for classification of components in order to enable their reuse whereas SysML and UML

diagrams are highly compatible with object oriented programming concepts.

The last but not least major problem with MATLAB is that it is a commercial tool and

the semantics of the models are proprietary to MATHWORKS. This make it very difficult

to propose new modeling methodologies based on the MATLAB models.

1.2.2 Modeling based on AutoFocus3

Simulink based models are not the only alternatives to UML/SysML based modeling. Intro-

ducing new modeling language is another approach in Model-Based Systems Engineering.

For instance, AutoFocus3(AF3) [20] is a model based development tool for distributed,

embedded software systems. AutoFocus3 [20](AF3) is a model based development tool for

distributed, embedded software systems. AF3 integrates all the required tools to design an

embedded system from an input model. It is integrated with a NuSMV model checker [23]

to perform the verification and the validation of the model before code generation. AF3 in-

tegrates modeling, testing and verification of an embedded system [38] in an Eclipse-based

tool. It allows the user to define the model using three approaches namely State and Mode

automata, Code Specification and Tabular Specification. AF3 provides model checking,

boundary check analysis, reachability analysis and non-determinism checking of the sys-

tem. It uses NuSMV as the model checking verification back end and supports most of the

common temporal logic patterns. Verification artifacts and activities in AF3 are illustrated

in Figure 1.1 [39].

AF3 is able to generate C-code based on the verified model. The correctness of the

generated C code from an AF3 model has been proven in [40]. Three types of signals are

supported in AF3: boolean; integer and double. AF3 has other features which can be found

in [20]. However, AF3 suffers from two potential problems regarding the code generation

3

Figure 1.1: Verification artifacts and activities in AF3

process. The first problem is the lack of support for generating proper code to handle

parallel processes. AF3 generates a separated C code for each individual block but there is

no scheduler or an operating system to handle the parallel processes.

The second issue in modeling using AF3 is that the process of generating code, no

specific platform is targeted. In order to run the code on an embedded hardware platform,

the user needs to writer a wrapper around the generated code.

1.2.3 Modeling and Analysis of Real Time and Embedded systems

Modeling and Analysis of Real Time and Embedded systems also known as MARTE is the

OMG standard for modeling real-time and embedded applications based on UML2 standard

[42]. MARTE is a UML profile for real-time and embedded applications which provides

support for specification, design, and verification. The goal of introducing this new profile

is to replace the existing UML Profile for Schedulability, Performance and Time. MARTE

4

consists in defining foundations for model-based description of real time and embedded

systems [42].

The MARTE profile defines semantics for time and resource modeling. These se-

mantics allow automatic transformations of models to lower abstraction level models such

as UML for System On Chip (SoC) for hardware / software simulation or into C++ for im-

plementation purposes [43]. MARTE does not offer any model verification solution, some

analysis or the verification tools can be coupled with the modeling tool if the semantics of

the models correspond to the semantics of the analysis or verification tool. Model trans-

formation techniques can then be used to enable this coupling. Figure 1.2 illustrates the

architecture of MARTE profile.

MARTE domain model

MARTE Design Model

Design Models:
- RTE model of computation and

communication
- Software resource modeling
- Hardware resource modeling

MARTE Analysis Model

Analysis:
- Generic quantitative analysis
- Schedulability analysis
- Performance analysis

MARTE Foundations

Foundations:
- CoreElements
- NFPs
- Time
- Generic resource modeling
- Generic component modeling
- Allocatio

Figure 1.2: Architecture of MARTE profile [43]

The profile is structured around two concerns, one to model the features of real-time

and embedded systems and the other one to annotate application models so as to support

analysis of system properties. These are shown by the MARTE design model package in

Figure 1.2, and the MARTE analysis model package, respectively. These two major parts

share common concerns with describing time and the use of concurrent resources, which

5

are contained in the shared package called MARTE foundations.

1.2.4 A Formal Verification Framework for BlueSpec System Verilog

In this work, a verification and implementation framework for mapping SysML activity di-

agrams to BlueSpec System Verilog(BSV) [21] is presented [25]. Bluespec SystemVerilog

(BSV) is a declarative hardware modeling language based on a subset of SystemVerilog. It

is used mainly in hardware designs specially in designing processors, memory subsystems,

interconnects. It extends SystemVerilog by atomic rules and interfaces for state transitions,

which can express concurrency easier. In this work, authors presented an efficient formal

verification framework to improve the requirement checking of systems modeled by using

SysML activity diagrams and synthesized as a BSV models. To verify these diagrams, they

relied on PRISM [22] model checker. The mapping rules from SysML activity diagrams to

PRSIM models were presented in [24]. They also proposed an efficient encoding algorithm

to generate the correct BSV code proper to the verified SysML activity diagrams.

The most important limitation of this work that needs to be addressed is the lack of

support for non-deterministic models. This problem shows itself more when the verified

model needs to be implemented in a hardware platform. For instance, non-deterministic

paths in SysML can be created by adding a probability on the outgoing edges of a deci-

sion node. Figure 1.3 illustrates such case described in SysML/UML activity diagram. In

hardware these behaviors cannot be mapped to any resources. More ever, non-deterministic

models are mostly used in verification and simulation phase.

{p}

{1-p}

A

B

C

Figure 1.3: Probabilistic Decision in SysML activity diagram

6

1.3 Proposed Methodology

In this thesis, we are proposing a mapping tool which maps SysML/UML activity diagrams

to an executable code for ARM CortexM based platforms. To achieve this goal, we have

redefined the New Activity Calculus (NuAC) proposed in [24] and [25]. Specially, those

rules which represent a non-determinism behavior (such as probability on a decision node)

are redefined. Using the redefined NuAC terms, SysML/UML activity diagram artifacts are

then formalized in a way that can express the Keil RTX [11] real-time operating system

features. The ability to use our tool over different ARM CortexM platforms was one of

the main challenges to overcome. The issue was addressed by using the ARM CMSIS Keil

RTX real-time operating system. Since Keil RTX supports all ARM Cortex-M devices, the

generated code can be executed on any platform that uses them.

Then, based on the SySML/UML activity diagram artifact formalization, a set of

mapping rules are defined to map the SysML/UML activity diagram model to an exe-

cutable code for ARM CortexM based platforms. The mapping rules were defined such

that they could express the fundamental aspects of Keil RTX. In the process of mapping

SysML/UML activity diagrams to RTX, we noticed that not all of the SysML/UML activ-

ity diagram artifacts have an equivalent function in RTX. For instance join two thread in

SysML/UML activity diagram can be easily expressed by using the join node. Figure 1.4

illustrates expressing such behavior in SysML/UML activity diagram. However, in RTX

such behavior is not defined as primitive function. To support such behavior, we had to de-

fine some new functions in RTX. In Chapter 3 we have provided the proper mapping rules

for such cases.

To automate the process of generating RTX code from a SysML/UML activity di-

agram, a Java application has been developed. The mapping rules are used in the Java

application to map each SysML/UML activity diagram artifact to it’s corresponding RTX

code. Chapter 3 also provides a pseudo code for this java application. Figure1.5 illustrates

the overall mapping flowchart proposed in this thesis. This mapping tool is a part of a

verification/Implementation framework which will be presented later in this thesis.

7

Synchronize thread1
and thread2

thread1 thread2

thread3

Figure 1.4: Join two thread in SysML/UML activity diagram

SysML Activity
Diagrams

SysMLToRTX.java
Java application

RTX Mapping
Rules

Target
Platform

Applying

Download

RTX
compatible

NuAC terms

Extracting

RTX Code

Output

Specification

Modelling

Input

Figure 1.5: Mapping flowchart

1.4 Thesis Contribution

The contributions of this thesis can be summarized as follows:

8

• First, we extend the New Activity Calculus proposed in [24] and [25]. It was proposed

for describing nondeterministic models in SysML, therefore no implementation code

could be generated from those models. As discussed earlier, some of the original

NuAC terms were redefined so that we would be able to generate the proper ARM

CortexM executable codes.

• After redefining the New Activity Calculus, based on the redefined calculus, a set of

mapping rules were defined. Mapping rules were defined in a way that can express

the Keil RTX real-time operating system features. In the first stage, basic operating

system features, like spawning threads and defining priority for threads, were added

to the mapping rules. Later, more advanced features were added to the rules. For

instance inter process communication was added to support sending and receiving

events. Thread synchronization was also added to mapping rules by defining join

function.

• Based on the mapping rules, a Java application was written to parse the SysML/UML

activity diagrams. After parsing the model, the mapping rules were applied on the

parsed model. The result is a C code ready to be compiled in Keil µVision[14] and

then downloaded to any ARM CortexM platform.

1.5 Thesis Outline

The remainder of this thesis is organized as follows:

• In chapter 2, we present the preliminaries. The basic features of Keil RTX operating

system and SysML/UML activity will be discussed by providing examples.

• In chapter 3, the mapping methodology will be presented. First the SysML/UML

activity diagrams will be formalized and the New Activity Calculus will be redefined.

Then, by using the redefined calculus, the mapping rules will be defined. Following

in this chapter, the java application will be presented as a simple pseudo code.

9

• In chapter 4, two real world applications are presented and implemented following

our mapping in an ARM CortexM4 platform. The first application is Bay Area Rapid

Transit train controller system. The train controller algorithm will be presented in

SysML activity diagram. Then, by utilizing our developed mapping tool, the exe-

cutable code will be generated. After compiling the generated code in Keil µVision,

the target platform will be uploaded with the train control system executable code.

The result of running the code on the target platform will be presented later in the

chapter.

For the second experimental application, a JPEG encoder algorithm will be broken

down into 5 different threads. Then a SysML model will be presented to handle the

synchronization of these threads. Finally, by using the developed tool, the SysML

model will be mapped to the Keil RTX codes.

• Chapter 5 provides the conclusion and future directions to our work.

10

Chapter 2

Preliminaries

This chapter introduces the fundamental background and the main concepts within the

scope of this thesis. Section 2.1 provides an overview of SysML and UML language. This

includes the main concepts and notations of UML/SysML design models . We particularly

focus on activity diagrams syntax and semantics. Section 2.2 briefly presents the Keil RTX

real time operating system. The features of RTX will be described briefly. Finally this

chapter will be concluded in section 2.3.

2.1 SysML and UML modeling languages

2.1.1 Unified Modeling Language

UML stands for Unified Modeling Language and it had originally been built in order to

serve modeling software systems. It is a result of the merging of three major notations:

Grady Booch’s methodology for describing a set of objects and their relationships [26],

James Rumbaugh’s Object-Modeling Technique (OMT) [27], and Ivar Jacobson’s approach

that includes ”use case” methodology[28]. It’s maintenance and revisions are assumed by

OMG[4] since 1997. It is a general-purpose visual modeling language that can be used

for modeling standard software products, but also provides system architects, software en-

gineers, and software developers with tools for analysis, design, and implementation of

11

software-based systems as well as for modeling business processes and alike. Furthermore,

the strength of UML resides in its wide acceptance by many industrial companies and the

fact that it is non-proprietary, extensible, and supported by many tools and textbooks makes

it a great modeling language for both academia and industry. UML is defined by using a

meta-model, which is an abstraction of the UML model itself highlighting the properties of

the language as well as the rules, constraints, and processes used to form the model. It of-

fers a number of high-level modeling concepts allowing compact and abstract description of

some systems properties. This abstractness capability offered by UML allows disregarding

implementation details, which helps focusing on the essential business aspects of a solu-

tion. Furthermore, UML supports extension mechanisms (known as profiling mechanisms)

such as constraints, stereotypes, and tagged values, which permit adapting it to a specific

domain. A UML profile is a collection of extensions to the UML notations added for the

purpose of tailoring the language to specific areas. Technically speaking, a UML model

consists of elements such as packages, classes, and associations. The corresponding UML

diagrams are graphical representations of parts of the UML model. UML diagrams contain

graphical elements (nodes connected by paths) that represent elements in the UML model.

UML Diagrams

Activity
Diagram

Behavioral
Design

Structural
Design

Interaction
Diagram

Use Case
Diagram

State Machine
Diagram

Class
Diagram

Object
Diagram

Component
Diagram

Deployment
Diagram

Package
Diagram

Composite
Structure
Diagram

Communication
Diagram

Timing
Diagram

Sequence
Diagram

Interaction
Overview
Diagram

Figure 2.1: The taxonomy of UML structure and behavior diagrams [29]

12

In UML 2.0 there are 13 types of diagrams. The structural diagrams category in-

cludes class, component, composite structure, deployment, object, and package diagrams.

These diagrams show the static features of a model such as classes, associations, objects,

links, and collaborations. These features provide the skeleton in which the dynamic ele-

ments of the model are executed. On the other hand, behavioral diagrams contain activity,

use case, and state machine diagrams as well as a sub-class named interaction diagrams in-

cluding communication, interaction overview, sequence, and timing diagrams. They show

the behavioral features and the functionality of a system as well as the interactions between

objects and resources modeled in the structural diagrams. There exists a strong relationship

between the diagrams themselves and between the behavioral and the structural models.

This relationship constitutes the basis for consistency of UML models. The classification

of UML 2.x diagrams is shown in Figure 2.1, reported from [4]. It highlights the diagram

taxonomy differences with respect to the UML version. For example, new diagrams are

proposed in UML 2.x such as composite structure, interaction overview, and timing dia-

grams. Others are updated compared to their UML1.x version like activity and sequence

diagrams.

2.1.2 System Modeling Language

SysML [5] is a modeling language dedicated for systems engineering. It has it’s roots in

UML 2. Indeed, it is a UML profile that reuses some UML packages and extend others

with system engineering specific features, in order to better fit the needed practices and

methodologies. The mechanisms used in order to define these extensions are UML stereo-

types, UML diagram extensions, and model libraries. The relationship between the two

modeling languages UML and SysML is illustrated in Figure 2.2. The wide expressiveness

of UML, its robustness and potential to be extended, as well as its large popularity have

made it the best candidate to be customized for system engineering [31]. In the process

of customization, various UML elements that are not required in systems engineering have

been excluded such as components that are more dedicated to model software. Currently,

13

SysML is gaining increased popularity and many companies from various fields such as

defense, automotive, aerospace, medical devices, and telecom industries, are already using

SysML, or are planning to switch to it very soon [31].

As SysML reuse subset of UML, it seems to be a good approach to describe its

architecture with respect to UML as shown by Venn diagram in Figure 2.2, where UML

and SysML are represented by two intersecting circles. Three areas of concern can be

easily extracted from Figure 2.2, UML reused by SysML region, SysML extensions to

UML region and UML not required by SysML.

SysMLUML2 UML reused
by SysML

SysML's
extensions to

UML

UML not
required by

SysML

Figure 2.2: Relation between SysML and UML [32]

SysML is comprised of nine standard views/diagrams whereas UML consist of thir-

teen views/diagrams. Actually SysML retain some diagrams without modification while a

number of diagrams are adopted with modifications. Furthermore SysML also introduce

several new diagrams which are not present in UML. These diagrams are actually con-

sidered as extensions made by SysML. SysML diagrams are generally divided into three

categories as shown by 2.3:

1. Diagrams that are used same as UML 2.0.

2. Diagrams used with slight modification from UML 2.0.

3. New types of diagrams.

14

SysML Diagrams

Activity
Diagram

Behavioral Design Structural Design

Use Case
Diagram

State Machine
Diagram

Requirement
Diagrams

Sequence
Diagram

Block Definition
Diagram

Internal Block
Diagram

Package
Diagram

Parametric
Diagram

Same as UML

New Diagram Type

Modified from UML

Figure 2.3: The taxonomy of SysML structure [30]

SysML extends UML by adding new diagrams such as requirement and parametric

diagrams and integrating new specification capabilities such as embedding allocation rela-

tionships into design in order to represent various types of allocation, including allocation

of functions to components, logical to physical components and software to hardware. Fur-

thermore, it has fundamentally modified some other UML diagrams such as class diagrams

since they were no more suitable to system engineering. Instead, block definition and inter-

nal block diagrams have been introduced in order to replace class and composite structure

diagrams respectively.

2.1.3 Activity Diagrams

Initially, UML 1.x defines activity modeling using activity graphs that are endowed with a

State chart-based semantics. Later, this concept has been modified with the release of UML

2.0, where activity graphs have been replaced with activity diagrams. More precisely, UML

2.0 activity diagrams are endowed with new semantics, which is independent of State charts

semantics and supposedly based on Petri net semantics [4]. Generally, activity diagrams are

used in modeling control flow and data-flow dependencies among the functions/processes

that are defined within a system. They are widely used in computational and business pro-

cesses modeling and use cases detailing. Basically, an activity diagram is composed of a

15

set of actions related in a specific order of invocation (or execution) by control flow paths,

optionally emphasizing the input and the output dependencies using data-flow paths. An

action represents the fundamental unit of a behavior specification and cannot be further de-

composed within the activity. An activity can be composed of a set of actions coordinated

sequentially, concurrently or a combination of these. Furthermore, it may involve synchro-

nization and/or branching. In order to enable these features, control nodes including fork,

join, decision and merge can be used. They support various forms of control routing. Addi-

tionally, it is possible to specify hierarchy among activities using call behavior action nodes,

which may reference another activity definition. The graphical artifacts corresponding to

activity nodes and control flows are illustrated in Figure 2.4.

Figure 2.4: Activity Diagram Syntax

Concurrency and synchronization are modeled using forks and joins, whereas, branch-

ing is modeled using decision and merge nodes. While a decision node specifies a choice

16

between two possible paths based on the evaluation of a guard condition (and/or a proba-

bility distribution), a fork node indicates the beginning of multiple parallel control threads.

Moreover, a merge node specifies a point from where different incoming control paths have

to follow the same path, whereas a join node allows multiple parallel control threads to

synchronize and rejoin.

Activity diagrams behavior could be described in terms of tokens flow. The UML

superstructure [4] specifies basic rules for the execution of the various nodes by explaining

textually how a token can be passed from one node to another. At the beginning, a first token

starts flowing from the initial node and moves from one node to the next one(s) with respect

to the foregoing set of control routing rules defined by the control nodes until reaching

either an final activity or a flow final node. As soon as a given action receives a token, it

starts executing and when it terminates, the token is removed from the corresponding node

and then offered to the node’s output edges. In the case of a fork node, the incoming token

is duplicated as many times as there are outgoing paths. With respect to the join node, the

traversal of the token downstream on the outgoing edge requires that all needed tokens on

the incoming edges are available and merged into one token. More specifically, the join

node requires a particular ”join specification” requirement to be satisfied in order to issue a

token on its single outgoing edge.

By default, this token traversal condition requires to have at least one token on each

of the incoming edges of the join node. Finally, the first token that reaches an activity final

node stops all the other active flows in the activity diagram. However, a token that reaches a

final flow node ends only its corresponding control flow. As for SysML, apart from regular

decision nodes, which describe choices between outgoing paths, it is possible to specify

probabilistic behaviors in activity diagrams. There are two ways to use probabilities: On

edges outgoing from a decision node and on output parameter sets (the set of outgoing edges

holding data output from an action node). According to SysML specification, probability

on a given edge expresses the likelihood that a token traverses this edge. An example of

probabilistic decision node is shown in Figure 2.5.

For verification purposes, this feature(probabilistic behaviors) gives lots of benefits

17

{p}

{1-p}

A

B

C

Figure 2.5: Probabilistic Decision in SysML activity diagram

to the verification team. However probabilistic behaviors are well supported in SysML, in

this thesis we are not going to define any mapping rule to map probabilistic SysML models

to RTX code. This decision makes sense since the implementation code cannot express any

kind of probability. The generated code must act in a deterministic way to be considered

as a correct implementation. In the next section, the Keil RTX real time operating system

(RTOS) features will be presented.

2.1.4 SysML/UML based Modeling tools

To the knowledge of the author, there is not a complete tool which can provide all the steps

required in Model Based System Design such as, modeling, verification, deployment and

implementation. In [7], there is a list of the tools which allow creating system models based

on SysML. The following is a list of the most important ones.

IBM Rational Rhapsody

Rhapsody is a commercial tool which lets system and software designers, to create real-

time and embedded system model based on UML/SysML. This tool has the capability to

do the trace between the stakeholder requirements and the elements of the model using its

link with tools. Rhapsody also has an environment to simulate the model behavior which

allows the designer to verify early their designs and also allows validating them with the

stakeholder in an easy way.

18

Enterprise Architecture

Enterprise Architecture is also a commercial tool which was developed by Sparx Systems.

It is focusing on the system modeling in UML and it has the capabilities to use SysML

using a plugin developed by them. Unlike the previous tool, it only gives the elements to

model in SysML, but it does not enable generating specific code to simulate the behavior

of the system or to link the requirements from other tools to the requirements diagram

in SysML. This tool is mostly used in the software development, although in the case of

complex system it is too limited and it only can be used to document a system design.

Topcased

Topcased is an open source toolkit which is dedicated to system modeling for critical em-

bedded systems [8]. This tool aims to help system designers and engineers to integrate

formal-verification tools and generate code and documentation automatically. AdaCore,

Airbus Air France, Anyware Technologies, Atos Origin, CNES, Laboratoire d’analyse et

d’architecture des systmes and some other companies are the partners in the development

of this project. This platform has model editors such as UML, SysML, AADL, SAM which

are used to describe the specification of a system. By transformation, the system model can

be verified by other simulation or analysis tools, which does the bridge between the model

tools and the verification tools. The model can also be mapped to code, e.g. UML to C or

UML to Java. Additionally, there is a tool which made the transformation from the model

to natural language in order to create the supporting documentation to the development of

the system.

In this work, we are going to use Topcased as our UML/SysML editor tool. The main

reason behind our decision is that Topcased is released as an OpenSource tool. Later in

this thesis, the Topcased Java libraries(available at [?]) will be used to parse the activity

diagrams created in Topcased.

19

2.2 Keil RTX RTOS

The Keil RTX [11] is an easy to use Real Time eXecutive (RTX) providing a set of C

functions and macros for building real-time applications. It is a professional-grade imple-

mentation of a real-time operating system written in C. It was originally designed for ARM7

TDMI and ARM9 Microcontrollers and later in version 4.2 the CMSIS-RTOS RTX was re-

leased to support ARM Cortex Microcontroller Software Interface Standard (CMSIS) [13].

The CMSIS-RTOS implementation is based on the Keil RTX Real-Time Operating System

which is specifically designed for Cortex-M processor-based devices. In this work we are

using the latest version of CMSIS-RTOS RTX namely version 4.75.

Keil RTX provides the capability of creating tasks dynamically (i.e. during execution

time) and sets no restrictions on the number of tasks that can be created. It allows to

use unlimited number of tasks each with 254 priority levels. Also unlimited number of

mailboxes, semaphores, mutex, and timers are permitted. It provides a flexible scheduling

which can be used based on the application. The following scheduling is supported by Keil

RTX:

• Pre-emptive: Each task has a different priority and will run until a higher priority task

is ready to run. This is commonly used in interactive systems where a device may be

in standby or in background mode until some user data is provided.

• Round-Robin: Each task will run for a fixed period of CPU run-time (time slice).

Data loggers/system monitors typically employ round-robin scheduling, all sensors

or data-sources are sampled in turn with no prioritization.

• Co-operative: Each task will run until it is told to pass control to another task or

reaches a blocking OS call. Co-operative multi-tasking can be seen in applications

that require a fixed order of execution.

The benefit of using Keil RTX over other industrial RTOS such as FreeRTOS [33]

is its deterministic behavior meaning events and interrupts are handled within a defined

time. Also, the source code for Keil RTX is recently released. This can help developers to

20

port Keil RTX on the new development platforms. The RTX kernel provides the following

options for inter-process communication:

• Event flags: Event flags are the primary instrument for implementing task synchro-

nization. Each task has 16 event flags associated to it. Hence, a task can selectively

wait for 16 different events at the same time. In this case, the task can wait for all

the selected flags (AND-connection), or wait for any one of the selected flags (OR-

connection). Event flags can be set either by tasks or by ARM interrupt functions.

Synchronize an external asynchronous event to an RTX kernel task by making the

ARM interrupt function set a flag that the task is waiting for.

• Semaphores: If more than one task needs to access a common resource, special means

are required in a real time multitasking system. Otherwise, accesses by different tasks

might interfere and lead to inconsistent data, or a peripheral element might function

incorrectly. Semaphores are the primary means of avoiding such access problems.

Semaphores (binary semaphores) are software objects containing a virtual token. The

kernel gives the token to the first task that requests it. No other task can obtain the

token until it is released back into the semaphore. Since only the task that has the

token can access the common resource, it prevents other tasks from accessing and

interfering with the common resource. The RTX kernel puts a task to sleep if the

requested token is not available in the semaphore. The kernel wakes-up the task and

puts it in the ready list as soon as the token is returned to the semaphore. It is possible

to use a time-out to ensure the task does not sleep indefinitely.

• Mutexes: Mutual exclusion locks (mutexes) are an alternative to avoid synchroniza-

tion and memory access problems. Mutexes are software objects that a task can use

to lock the common resource. Only the task that locks the mutex can access the com-

mon resource. The kernel blocks all other tasks that request the mutex until the task

that locked the mutex unlocks it.

• Mailboxes: Tasks can pass messages between each other using mailboxes. This is

21

usually the case when implementing various high level protocols like TCP-IP, UDP,

and ISDN. The message is simply a pointer to the block of memory containing a pro-

tocol message or frame. It is the programmer’s responsibility to dynamically allocate

and free the memory block to prevent memory leaks. The RTX kernel puts the wait-

ing task to sleep if the message is not available. The kernel wakes the task up as soon

as another task sends a message to the mailbox.

2.2.1 RTX Threads

The CMSIS-RTOS RTX uses, by default, the Cortex-M SysTick timer to generate periodic

interrupts for the RTX kernel timer tick. This periodic RTX kernel timer tick interrupt is

used to derive the required time interval. CMSIS-RTOS RTX also provides configuration

options for an alternative timer and tick-less operation [34].

To handle timeout and time delays for threads, the CMSIS-RTOS RTX thread management

is controlled by the RTX kernel timer tick interrupt. The thread context contains all CPU

registers (R0 - R12), the return address (LR), the program counter (PC), and the processor

status register (xPSR). For the Cortex-M4 FPU and Cortex-M7 FPU the floating point status

and registers (S0 - S32, FPSCR) are also part of the thread context. When a thread switch

occurs, first, the thread context of the current running thread is stored on the local stack of

this thread. Then the stack pointer is switched to the next running thread. Finally, the thread

context of this next running thread is restored and this thread starts to run [34].

For Cortex-M4 FPU and Cortex-M7 FPU the thread context requires 200 bytes on the

local stack. For devices with Cortex-M4 FPU and Cortex M7 FPU the default stack space

should be increased to a minimum of 300 bytes [34].

The CMSIS-RTOS RTX employs a priority-based preemptive scheduler which en-

sures that from all the threads that are in the READY state, the thread with the highest

priority gets executed and becomes the RUNNING thread. The CMSIS-RTOS assumes

that threads are scheduled as shown in the Figure 2.6. Threads can share resources that are

outside of the control of the RTX scheduler. This can prevent the highest priority thread

22

Figure 2.6: Thread State and State Transitions[34]

from running when it should. If this happens, a critical deadline could be missed, causing

the system to fail. Priority inversion is the term of a scenario in which the highest-priority

ready task fails to run when it should. Threads typically share resources to communicate

and process data by using the CMSIS-RTOS Mutex Management. At any time, two or more

threads share a resource, such as a memory buffer or a serial port, one of them may have a

higher priority. As it will be presented later in this thesis, the developed mapping tool can

only handle the send and receiving events. This is due to the fact that in SysML activity

diagrams, there are no resources available to be assigned to mutex and mailbox. However,

this issue can be solved by presenting a new SysML profile specifically designed for RTX

which is out of the topic of this work.

Table 2.1 illustrates the technical information of CMSIS-RTOS RTX. For more infor-

mation regarding CMSIS-RTOS RTX, please refer to [34].

2.3 Conclusion

In this section, a general information about system engineering was presented. Specially,

a brief overview of two of the most popular system engineering languages were presented.

23

Table 2.1: Technical information of CMSIS-RTOS RTX[34]

Description Limitations

Defined Tasks Unlimited

Active Threads 250 max

Mailboxes Unlimited

Semaphores Unlimited

Mutexes Unlimited

Signals 16 per thread

Timer Call back Unlimited

Code Size less than 5KB

RAM space for Kernel 300 B+ 128B Main stack

RAM space for Thread StackSize + 52 Bytes

Hardware requirement SysTick timer of other hardware timer

Thread Switch Time less than 2.6 usec @ 72 MHz

From the different types of diagrams in SysML and UML, we picked activity diagrams. The

reason behind choosing activity diagram from the other kinds is that activity diagrams are

perfectly suitable in describing the flow of model. Also, concurrency and synchronization

are well defined in activity diagrams. Later in this section, a brief overview of Keil RTX

real time operating system was presented. The benefits of using Keil RTX over other real

time operating system was provided. In the next section, the proposed mapping tool will be

presented in details.

24

Chapter 3

Mapping Methodology

In this chapter the theory behind the proposed mapping tool will be discussed. We will

begin by introducing our verification/implementation framework. The overall framework

will be explained afterwards. Based on the proposed framework, the thesis contribution

blocks will be explained. For that, we will start by formalizing the SysML/UML activity

diagrams. This is done by utilizing and redefining New Activity Calculus (NuAC) presented

in [24]. By using the redefined NuAC terms, the mapping rules will be presented. After

defining the rules, a java application will be presented. This java application will utilize the

defined mapping rules to map SysML activity diagrams to RTX code.

3.1 Implementation and Verification Framework

Figure 3.1 illustrates our verification and implementation framework. Our thesis contribu-

tion is also defined in this figure. In this chapter, each block of our thesis contribution will

be explained. Figure 3.1 also show the previous works and our future work. As it was

discussed earlier, our proposed mapping rule is based on a redefined version of the NuAC

described in [24]. Redefining the original NuAC led into the incompatibility of verifying

the SysML/UML activity diagrams using the tool presented in [24]. Proposing a compati-

ble verification tool based on our redefined NuAC term is a future direction of this thesis.

The overall architecture of such tool is illustrated in Figure 3.1. In the following sections,

25

the thesis contribution blocks will be explained.

SysML
Activity

Diagrams

System
Specification

Modeling

System
Requirements

Specifying

System
Properties

PCTL
Temporal

Logic
Properties

Instantiating

PRISM Model
Checker

PRISM
Code

PRISM
Mapping

Rules

Satisfaction
No

Specifying

Model Refining SysMLToRTX.java
Java application

RTX Mapping
Rules

Target Platform

Power
Consumption

Timing
Performance

Checking

Satisfaction

M
odel R

efining

Input
Implementation Verification

System
Properties

CTL
Temporal

Logic
Properties

Instantiating

NuSMV Model
Checker

NuSMV
Code

NuSMV
Mapping

Rules

Applying

Probabilistic
Yes No

Temperature
Criterias

Checking
Checking

Output Output
Output

Ap
pl

yi
ng

Download

No

Input

Output Output

Input

Input

Ap
pl

yi
ng

Thesis Contribution

Future Work

Existing Work

RTX
compatible

NuAC terms

SysML Activity
Diagram

Formalization

Extracting

Defining

Input

RTX Code

Output

Figure 3.1: SysML to RTX verification and implementation framework

3.2 SysML Activity Diagrams Formalization

SysML/UML activity diagrams are graph-based diagrams in which activity nodes are con-

nected by activity edges. A SysML/UML activity diagram includes three types of elements:

activity nodes, activity control nodes and activity edges. In [25], the SysML/UML activity

diagrams were formalized and rules were defined to map them to Bluespec System Verilog

(BSV) descriptions. However, the notation used in [25] was for probabilistic models and no

implementation resources could be assigned to the non-deterministic paths. In this work,

we redefine mapping rules to include Keil RTX features.

In order to generate Keil RTX codes, the following changes were made in formalizing the

SysML/UML activity diagram:

1- Only deterministic models can be mapped to Keil RTX

26

Table 3.1: Formalization of SysML Activity Diagram Artifacts.

Activity Artifacts Formal Notation Description

l : ι � N
Initial node is activated when a diagram is

invoked

l :�
Activity final node will terminate the execution

of the diagram

l :⊗ Flow final will kill the related token

l : a � N Action node defines an atomic action

l : a ↑A � N
Activity final node will terminate the execution

of the diagram

l : a!v � N Send node is used to notify an event

l : a?v � N
Receive node is used to wait for activation of

an event (Blocking wait)

l : M(x1,x2)� N

Merge node specifies the unconditional

continuation of input flows , and x is the set of

input flows x = {x1,x2}.

l : F(N1,N2, p1, p2)

Fork node models the concurrency that begins

multiple parallel control threads with priority

of p1and p2 respectively. UML 2.0 activity

forks model unrestricted parallelism.

l : J(x1,x2)� N
Join node allows the synchronization of

threads, x is the set of input pins x = {x1,x2}.

l : D(A ,g,N1,N2)
Decision node with a call behaviorA and

guarded edges {g, ¬g} .

27

2- Parallel processes generated after a fork should contain one of the thread priority defined

in Keil RTX or by default the Normal priority will be assigned to the outgoing threads.

The NuAC syntax presented in Table 3.1 optimizes the syntax in [35] and [24] by

eliminating the redundant terms. Also, NuAC exploits the commutativity and the associa-

tivity properties for multi-input/output nodes that are described by Property 3.1 and Prop-

erty 3.2 in [24] respectively. These properties allow handling multiplicity by considering

only two inputs/ outputs. Furthermore, NuAC covers more important behaviors such as:

behavior calls, and communication by sending and receiving messages (signals or objects).

Table 3.1 summarizes the new NuAC terms by showing the NuAC notation for SysM-

L/UML activity diagrams. Based on these formal notation the following mapping rules

were defined to map a SysML/UML activity diagrams to Keil RTX:

Listing 3.1: Generating Keil RTX Mapping Function

1 Γ : A →R

2 Γ(A) = ∀n ∈A ,L(n = ι) =>,L(n 6= ι) =⊥,

3 Case(n) o f

4 l : ι � N ⇒

5 in{

6 i f (l =>&lN =⊥)

7 l =⊥;

8 lN =>;

9 else lN = l =⊥;

10 }

11 ∪Γ(N)

12 end

13 l : M(x,y)� N ⇒

14 in{

15 i f (lx =>&lN =⊥)

16 lx =⊥

28

17 lN =>;

18 else i f (ly =>&lN =⊥)

19 ly =⊥

20 lN =>;

21 else ly =⊥&lx =⊥

22 }

23 ∪Γ(N)

24 end

25 l : J(x,y)� N ⇒

26 in{

27 while(lx =>&ly =>&lN =⊥){

28 }

29 lx =⊥

30 ly =⊥

31 lN =>;

32 }

33 ∪Γ(N)

34 end

35 l : F(N1,N2, p1, p2)⇒

36 in{

37 i f (l =>&lN1 =⊥&lN2 =⊥)

38 l =⊥

39 lN1 =>;

40 lN2 =>;

41 edge1 = {l}∩{lN1};

42 edge2 = {l}∩{lN2};

43 Crth(l, lN1,N1,P1);

44 Crth(l, lN1,N2,P2);

45 osT hreadCreate(osT hread(edge1 thread),NULL);

29

46 osT hreadCreate(osT hread(edge2 thread),NULL);

47 else l =⊥;

48 }

49 end

50 l : D(A ,g,N1,N2)⇒

51 in{

52 i f (l =>& g =>&lN1 =⊥)

53 l =⊥

54 lN1 =>;

55 elsei f (l =>& g =⊥&lN2 =⊥)

56 l =⊥

57 lN2 =>;

58 else l =⊥;

59 }

60 ∪Γ(N1)∪Γ(N2)

61 end

62 l : a ↑A � N ⇒

63 in{

64 i f (l =>)

65 l =⊥

66 Cmth(l, lN ,A ,N);

67 L(A) method()

68 l =⊥

69 else l =⊥;

70 }

71 ∪Γ(N)

72 end

73 l :⊗⇒

74 in{

30

75 i f (l =>)

76 l =⊥

77 else l =⊥;

78 }

79 ∪Γ(N)

80 end

81 l : a!v � N ⇒

82 in{

83 osSignalSet(ID(v),v)

84 l =⊥

85 }

86 ∪Γ(N)

87 end

88 l : a?v � N ⇒

89 in{

90 osSignalWait(v,osWaitForever)

91 l =⊥

92 }

93 ∪Γ(N)

94 end

Listing 3.2: Creating thread in context of Keil RTX

1 Crth(l, lN ,N ,P)⇒

2 in{

3 edge = {l}∩{lN };

4 void edge thread(void const ∗arg){

5 Γ(N)

6 }

7 χ = χ ∪{edge thread ID =

31

8 osT hreadDe f (edge thread,P,1,0)}

9 }

10 ∪Γ(N)

11 end

Listing 3.3: Creating Behavioral Function

1 Cmth(l, lN ,N ,Ai)⇒

2 in{

3 void L(Ai) method(IN(Ai),OUT (Ai)){

4 Γ(N)

5 }

6 λ = λ ∪{T (edge) L(Ai) method(I(edge))}

7 }

8 ∪Γ(N)

9 end

The mapping function Γ presented in Listing 3.1 through Listing 3.3 generates the

appropriate Keil RTX (R) code from the input SysML/UML model (A). In this mapping

function, l represents the label of the current node. This label represents a boolean flag

which will be activated based on the activation of the corresponding node. Initially, this

flag is set to false except the initial node which is set to true. Generally, activating the node

will result in activating the corresponding flag. For a node n ∈N we defined function L(n)

which will return the label of it’s related call behavior diagram.

RTX does not have a built-in Join function. In our mapping, we translate a SysM-

L/UML join node to an infinite loop. The program will exit this loop only when both of its

input threads are executed properly. We presented this mapping rule in line 25-34. lx and ly

represent the label for input nodes. As mentioned earlier, initially, all the node’s label are

false except the initial node. Thus the hold will be taken from while (lx =>&ly =>&lN =

⊥) only if both of the input nodes are executed correctly.

32

Creation of parallel threads is accomplished by using a fork node. In RTX, defining a

thread is done by calling osT hreadDe f (name, priority, instances,stacksz). Creating a de-

fined thread is done by calling thread ID = osT hreadCreate(osT hread(name),NULL).

The result of this operation is a handler to the thread which will be stored in thread ID

which can be used for the future references. The name of the thread is generated according

to the fork’s outgoing edges, which are obtained by applying the intersection on the fork’s

label set and its successors’ labels. The result could be either { /0}, meaning there is no

edge which connects the fork to the corresponding node, or the corresponding edge which

connects the fork to it’s successor node. An edge is a set E ⊆ {N1, N2, G , Prioirity},

where:

• N1 and N2 are the source and destination nodes

• G is the edge guard: G ⊆ {true, f alse}

• Priority is defined when the source node is type of Fork node:

Priority⊆ {Idle, Low, BelowNormal, Normal,AboveNormal, High, Realtime}

In our mapping function, we have defined function Crth(l, lN ,N ,P) to create a thread.

Based on the RTX syntax, this function will create a thread with the given priority P and

edge name. All the created threads will be added to χ which is a list of all created threads.

For call behavior nodes, the mapping rules has to be recursively applied on the call be-

havior activity. All call behavior nodes will result in creating a new method. This is ac-

complished by calling Cmth(l, lN ,N ,Ai). The input and output variables of call behavior

node are obtained by calling IN(Ai) and OUT (Ai) functions. The generated method will

be added to the list of generated methods namely λ . Finally a call to generated function

(L(A) method()) will execute the method in the context of RTX.

As mentioned earlier, events are also handled by our mapping tool. In RTX, to activate

an event, the osSignalSet(threadid,eventname) function is used. Calling this function, will

release the hold on any waiting event that is sensitive to the event name. In RTX, one can

call osSignalWait(event name,wait time) to wait for event name to be activated. ID(v) is

33

used to obtain the handler for a thread which contain the receive node namely v.

3.3 JAVA Application Unit

In this section, the developed JAVA Application tool will be discussed. To apply the rules

on input model described in SysML/UML activity diagrams format, the model needs to be

read and parsed. For that, we wrote a Java application to first read the model and then parse

it in a way that can be fed to the mapping rules module.

eclipse.uml2 libraryActivity Diagram

Java
Library

.umldi

List of edges and nodes

Splitting activity edges and node

Creating edge and node objects

Parser and splitter

Applying mapping rules

Apply mapping rules according to
the node type

Generated Keil RTX code

Figure 3.2: SysMLToRTX.java Java application

34

Package: Parser

SysMLToRTX

- lisOfEdges: Edge
- lisOfNodes: Node
- listOfThreads: Thread
- listOfEvents: Event
- listOfVariables: Variable
- util: Utility
- listOfActivityNode: ActivityNode
- listOfActivityEdge: ActivityEdge

- void registerResourceFactories()
- eclipse.uml.Package loadModel(String: filePath)
- File ActivityText(Activity: activity)

Node

- ActivityNode orginalActivityNode
- boolean threadBased = false
- boolean methodBased = false
- boolean visited
- Utility util
- ArrayList<Variable> variables
- ArrayList<Thread> threadHirarchy
- boolean inLoop
- ArrayList<Edge> mainEdgeHirarchy

+ Node(ActivityNode activityNode)
- boolean registerMethod(String methodName)
- setters and getter methods

Edge

- ActivityEdge orginalActivityEdge
- ArrayList<Variable> variableList
- boolean visited
- String DeclarationText
- Thread associatedThread = null

+ Edge(ActivityEdge ActivityEdge)
+ setters and getter methods

Thread

- String threadName
- String threadId
- String threadPriority
- Utility util

+ Thread(String name, String priority)
+ String getPriority()
+ setters and getter methods

org.eclipse.uml2.uml

+ Activity
+ ActivityNode
+ ActivityEdge
+ ForkNode
+ JoinNode
...

...

Figure 3.3: Simplified SysMLToRT X java application Class diagram

Figure 3.2 illustrates the SysMLToRTX.java Java application. The input model in

activity diagram format will be fed to the parser and splitter module. The output of this

module is a list of edges and nodes which were used in the input model. In the next module,

the mapping rules will be applied accordingly.

A simplified SysMLToRTX.java Java application class diagram is illustrated in Figure

3.3. The parser package contains all the necessary classes. In Figure 3.3, only the impor-

tant classes are illustrated. Other classes that are included in this package are: Event.java,

Utility.java and Variable.Java. The Edge.Java and Node.Java classes are overriding the

35

eclipse.uml.ActivityNode and eclipse.uml.ActivityEdge classes for mapping the activity di-

agrams to RTX. The main class in this UML class diagram is SysMLToRTX class. The

main function in this class is to first call two functions namely registerResourceFactories()

and loadModel(). These two methods are responsible to parse the input activity diagram

and then create a org.eclipse.uml2.uml.Activity object from it. This object is then passed

to ActivityText(Activityactivity) method. In ActivityText(Activityactivity) method is where

the mapping rules are applied. The output of this method is a file which contains the gener-

ated RTX code. A pseudo code of this method is presented in the following listings:

Listing 3.4: SysMLToRTX pseudo code

1 File ActivityText(Activity activity) :

2 String generatedCode

3 File outPutFile

4 f or ActivityEdge aEdge in activity :

5 Edge edge = new Edge(aEdge)

6 Node node = new Node(aEdge.getSource())

7 listo f Edges.add(Edge(edge))

8 listo f Nodes.add(edge.getSource())

9 i f (node instanceO f ForkNode) :

10 node.SetT hreadBased()

11 listO f T hreads.append(edge)

12 elsei f (node instanceO f DecisionNode) :

13 i f inLoop(node,activity) :

14 node.setInLoop()

15 elsei f (node instanceO f JoinNode) :

16 node.addIncomingT hreads(node.getIncomings())

17 elsei f (node instanceO f CallBehaviorAction) :

18 listO f Methods.add(node)

19 elsei f (node instanceO f SendSignalAction) :

36

20 listO f Events.add(node)

21 elsei f (node instanceO f InitialNode) :

22 node.setAsTop()

23 endi f

24 end f or

25 f or edge in listo f Edges :

26 nodeOb j = edge.getSource()

27 Case(nodeOb j) :

28 instanceO f InitialNode :

29 i f (!nodeOb j.Visited())

30 nodeOb j.visitFlag() = true

31 generatedCode.append(cmd)

32 cmd = applyInitialNodeRules(edge.getSource())

33 ...

34 end

35 generatedCode.append(generatePrototypeForMethods())

36 generatedCode.append(generatePrototypeForT hreads())

37 generatedCode.append(generateMethodDecleration())

38 generatedCode.append(generateT hreadDecleration())

39 generatedCode.append(generateVarDecleration())

40 File.write(generatedCode)

The activity diagram (input model) will be first read by the java application. Then

by using the eclipse.uml2 java library(available at [?]) provided by Topcased, the activity

diagram will be split into eclipse.uml2.edge and eclipse.uml2.node objects. This splitting is

necessary in the next stage. The splitter part is presented in line 4-24. As mentioned earlier,

we defined Edge and Node classes to be able to express the RTX features. The Edge

constructor method accepts an ActivityEdge object. From that it will build an Edge object.

The Edge object can express the flow of the program, spawn of a thread (if the source node

37

is a Fork node) or simply a branch. As expressed in line 9, if the source node is a type of

ForkNode, the outgoing edge would be considered as a thread. All threads are stored in

listO f T hreads Arraylist so that they can be referenced later in the program. If the source

node is type of DecisionNode, the program has to check if the branch is causing a loop in

the program. If that is the case, the source node inLoop flag will change the default value

from false to true. If the source node is a type of JoinNode, the program will find the related

threads of the incoming edges. These threads will be used later in the mapping rules. If the

source node is a type of CallBehaviorAction node, it is required to create a method with

same name of the node. The mapping rules will take care of creating the method, but the

method prototype will be created in this stage. The method prototype will be generated by

calling generatePrototypeForMethods() function. As mentioned earlier, events are also

handled by our mapping tool. If the source node is a type of SendSignalAction node,

the node will be added to the listO f Events list. Finally if the source node is a type of

InitialNode, the node TopActivity flag will be set to true so that the main C function can

be built inside this Activity.

In the process of applying rules, the model edges are read one by one from top to

bottom. The source and target of an edge can be easily obtained by calling edge.getSource()

and edge.getTarget() functions. To keep track of applying rules, the node visitFlag will be

set to true. Finally, the rules for corresponding node will be applied and the generated code

will be appended to the rest of the program.

After the mapping is done, the developed tool will generate a Keil µvision project.

The project ,which contains the mapped code, can be later compiled and the generated ma-

chine code can be easily downloaded to the target platform.

3.4 Summary

In this chapter, a technical review of the developed tool was presented. The theory behind

our mapping tool was explained. The mapping rules were presented in NuAC terms. This

38

was achieved by, first formalizing the SysML activity diagrams. We presented a pseudo

code of the SysMLToRTX.java Java application. The SysMLToRTX.java application is re-

sponsible to, first read the model and then parse the given activity diagram. After that

the parsed activity is passed to the splitter were the activity is broken into an array list of

edges and nodes. Finally by using the output of splitter and the mapping rules, the activity

diagram is mapped to RTX code.

39

Chapter 4

Application

4.1 BART Case Study

This section describes the BART case study, that will be used as a model to be implemented

on an ARM CortexM4 device using our developed tool. The following section pick-up

pieces from the Bay Area Rapid Transit (BART) system to illustrate the possibilities of

using the presented methodology on a real life application.

4.1.1 BART system overview

This section contains an informal description of a portion of the Advance Automatic Train

Control (AATC) system being developed for the Bay Area Rapid Transit (BART) sys-

tem. BART provides commuter rail service for part of California’s San Francisco bay area.

Specifically, this section contains those aspects of BART that are necessary to control the

speed and acceleration for the trains in the system. Other aspects in BART control such as

communication error recovery, routing, right-of-way signaling are out of the scope of this

section. The overall objective of this case study is to construct a system within the infras-

tructure given, that can control the speed and acceleration of trains in the system subject to

the various constraints that are described in the specification.

BART provides a heavy commuter rail service; on a typical work day, it serves around

40

250,000 passengers. During commute hours, over 50 trains can be in service. The system is

controlled automatically and the on-board drivers have a limited role to play during normal

operation, which includes signaling the system when the platforms are clear so that a train

can depart a station. With a few minor exceptions, the BART system consists of double

track: one track going one direction and one track going the other. The trains go from a

starting point to an ending point (i.e., the track is not a loop). The trains that are moving

on the tracks have to obey the speed and acceleration grade limit. Figure 4.1 illustrates the

map of the BART transit system. The BART transit system is consist of 5 different track.

In this casestudy, we are considering only Dublin/Pleasa track. This track is illustrated in

Figure 4.2.

Figure 4.1: The map of the BART transit system

In our case study we chose the Dublin to Daly City track. This track is consist of

5 segments. Each segment contains speed and acceleration grade limit. Also, this track

41

contains 18 gates. Each gate can be in open or close state. Table 4.1 illustrates Dublin

to Daly City properties. The distances are calculated from the beginning of the track so

for instance FTVL(33273.5m) means that FTVL gate is located 33273.5 meters from the

beginning of the track. The data provided in Table 4.1 are obtained from BART’s Geo-

spatial data base [36] in Keyhole Markup Language (KML) format. Figure 4.2 illustrates

the Dublin to Daly City track in Google map. The segments are represented in different

colors and the gates are represented by .

Figure 4.2: The Dublin/Pleasa track in BART transit system.

As mentioned earlier, the main objective is to control the speed and acceleration of

the train. Speed and acceleration of a train has to be selected so that:

• The train should never get so close to a train in front that if the train in front stopped

suddenly the following train would hit it.

• The train should not enter a closed gate

• The train should stay below the maximum speed of the track(defined by CivilSpeed)

42

Ta
bl

e
4.

1:
D

ub
lin

to
D

al
y

C
ity

tr
ac

k
pr

op
er

tie
s

Tr
ac

k
N

am
e

Se
gm

en
ts

Se
gm

en
tR

an
ge

G
at

es
C

iv
il

Sp
ee

d
G

ra
de

D
ub

lin
to

D
al

y
C

ity

D
U

B
L

C
A

ST
E

0k
m

-1
6.

0k
m

D
U

B
L

(2
7.

6m
),W

D
U

B
(2

44
7.

7m
)

36
0.

8

C
A

ST
E

B
A

Y
F

S
16

.0
km

-1
9.

7k
m

C
A

ST
(1

61
29

.5
m

)
80

0.
3

O
A

K
Y

B
A

Y
F

S
19

.7
km

-3
8.

1k
m

B
A

Y
F(

21
39

6.
1m

),
SA

N
L

(2
54

28
.4

m
),

C
O

L
S(

30
02

8.
6m

),
FT

V
L

(3
32

73
.5

m
),

L
A

K
E

(3
77

14
.1

m
)

70
3.

49

O
A

K
Y

SE
38

.1
km

-3
8.

7k
m

N
o

ga
te

s
in

th
is

se
gm

en
t

50
1.

00

O
A

K
Y

D
A

LY
38

.7
km

-6
2.

6k
m

W
O

A
K

(4
05

77
.9

m
),

E
M

B
R

(5
00

23
.7

m
),

M
O

N
T

(5
05

77
.6

m
),P

O
W

L
(5

14
41

.5
m

),

C
IV

C
(5

23
06

.3
m

),

16
th

(5
39

32
.1

m
),2

4t
h(

55
35

0.
1m

),

G
L

E
N

(5
80

38
.2

m
),

B
A

L
B

(5
98

55
.1

m
),

D
A

LY
(6

26
90

.6
m

)

36
0.

8

43

In our case study a Station Computer, which is a part of the Advance Automatic Train

Control (AATC) system, controls the trains in their immediate area by giving speed and

acceleration commands to the trains. Station computer runs the control algorithm for each

train and will calculate the speed and acceleration accordingly. We assume the station

computer has a direct access to speed, acceleration and position of the trains. The output of

the algorithm is commanded speed (between 0 and 80Kmph) and acceleration (-2 to -0.45

Kmphps in braking state and 0 to 3 in propulsion) for a given train.

To simplify the model, we have abstracted the communication link between computer

and trains and we assume that the commands from Station Computer are correctly received

by the trains. Also we assume that the interlocking system does not close a gate when it is

too late for an approaching train to stop. Trains are abstracted as a single location in the

track. The operation of a train is modeled as follow:

Listing 4.1: Modeling the operation of a train

1 let delta = 0.5

2 let grade = (−21.9∗ currentSegmentGrade)/100

3 then :

4 let n = nosePosition+ v×delta+ 1
2a×delta2

5 + 1
2 ×grade×delta2

6 i f (v == 0 and vcm == 0) :

7 nosePosition = nosePosition

8 else :

9 nosePosition = n

10 let speed = v+ 1
2a×delta+ 1

2grade×delta

11 i f (v == 0 and vcm == 0) or speed <= 0 :

12 v = 0

13 else :

14 v = speed

15 let noseAtNext = nosePosition+ v×delta

44

16 + 1
2 ×a×delta2

17 + 1
2 ×grade×delta2

18 i f (v == 0 and vcm == 0) :

19 a = 0

20 elsei f ((v > (vcm−2) and acm > 0) or

21 (v > (vcm−2) and acm < 0)) :

22 a = (21.9×grade)/100

23 else :

24 a = acm

Where acm and vcm are the received commanded acceleration and velocity respec-

tively and delta is the time in seconds between each command. The variable grade holds

the acceleration due to grade (line 2). In line 4-9, by means of appropriate physical for-

mulas, the next position of the train is calculated. If v and vcm are both 0 the position

remains unchanged. In line 10-14 the train’s velocity is calculated. Since the train cannot

go backwards, the velocity will be set to zero if v is negative.

The acceleration is calculated in line 15-23. If the speed has achieved the commanded

speed within the range of ±2Kmph the trains attempts to maintain the current speed by

compensating the acceleration due to grade.

While trains are trying to achieve their commanded velocity and acceleration goals,

they have no notion of speed and acceleration limit of the segment. Also, stopping at or

passing by a gate is not determined locally by the train. Thus, it is always the station

computer that guides the trains and prevents potential catastrophes. Listing 4.2 illustrates a

simple control algorithm for the Station Computer:

Listing 4.2: Station Computer Algorithm

1 let t ∈ trainList

2 let delta = 0.5

3 let grade = (−21.9∗ currentSegmentGrade)/100

4 let range = (WCSD(t)×2+230)

45

5 then :

6 nextStopDistance = calcNextStop(t, trainList,gateList)

7 segment,vcmCivilSpeed =CivilSpeed(t,range)

8 i f ((nextStopDistance− t.position)< range) :

9 vcm = 0

10 else :

11 vcm = vcmCivilSpeed

12 d1 = nextStopDistance− t.position

13 i f d1 < 0 :

14 acc = train.a()+0.5

15 else :

16 acc = vcmCivilSpeed2−t.v2

2×d1 −grade

17 i f (acc < 0 and acc >−0.45) :

18 acmCivilSpeed =−0.45

19 else :

20 acmCivilSpeed = acc

21 d2 = nextStopDistance− t.position−WCSD(t)

22 acc = −t.v2

2×d2 −grade

23 i f (nextStopDistance− t.position)> range :

24 acmNextStop = t.a+0.5

25 else :

26 i f (acc < 0 and acc >−0.45)and

27 (d2 > ((t.v×delta)+0.5×grade∗delta2) :

28 acmNextStop = 0

29 elsei f (acc < 0andacc >−0.45)and

30 (d2 <= ((t.v×delta)+0.5×grade∗delta2) :

31 acmNextStop =−0.45

32 else :

33 acmNextStop = acc

46

34 i f acmCivilSpeed < acmNextStop :

35 acm = acmCivilSpeed

36 else :

37 acm = acmNextStop

The above algorithm will generate the appropriate velocity and acceleration for the

given train. In line 4 the range and Worst Case Scenario Distance (WCSD) is calculated.

The worst Case Scenario profile has been thoroughly explained in [37]. Table 4.2 and 4.3

illustrates the Worst case train parameters and Worst case train calculations receptively.

nextStopDistance is calculated based on the current position of the train and it’s front

train (if any) and if a closed gate is within the stopping range. A decision will be made

based on which of the two is closest. These calculation will be made by passing the train,

trainList and gateList objects to the calcNextStop function. The civilSpeed function will

calculate the next segments in range and it will return the lowest civilSpeed of all. Also it

will return the corresponding segment object. In line 9-12, the commanded velocity will be

calculated.

The calculation of acm (commanded acceleration) is done in line 12-37. First the

acmCivilSpeed is calculated. The calculation of acmCivilSpeed is only restricted by civil

speed. The acmCivilSpeed is calculated so that the train reach a speed 2mph below vcmCivilSpeed.

If the train happens to be already on that segment, acmCivilSpeed is set to the current accel-

eration incremented by 0.5Kmph. If the resulting acceleration is between 0 and -0.45(which

is not allowed), it will be rounded off to -0.45. Next, acmNextStop is computed. If the next

stop is out of range it will be set to the current acceleration incremented by 0.5 Kmph.

Otherwise it will be set so that the train stop WCSD feet before the obstacle. Since the

WCSD is shrinking while the train is getting closer to the obstacle, the train will stop at

a reasonable distance to the obstacle. If necessary, the resulting acceleration will rounded

off to be within the allowed acceleration range mentioned before. Finally the commanded

acceleration is set to the minimum of acmCivilSpeed and acmNextStop.

47

Parameters Description

NOSE Estimated train nose location

PUF Uncertainty Factor

PU
Position Uncertainty reported as

one standard deviation

VCM Commanded Speed

AD AATC Delay = 2 seconds

JP Jerk Limit in Propulsion

AP Acceleration in Propulsion

TJP
Jerk Time in Propulsion = 1.5

seconds

A
Acceleration due to Grade =

−21.9mphps∗ grade in %
100

MC Mode Change

NCAR Number of Cars = 10 Cars

NFAIL Number of failed cars = 2 Cars

NFSMC Number of cars in FSMC = 2 Cars

JB
Jerk Limit in Braking = -1.5 mphps

ps

BRK

Design Brake Rate = -1.5 mphps

for exposed track and -2.0 mphps

for covered track

FSMC
Fail Safe Mode Change Time = 8.5

Seconds

Table 4.2: Worst Case Scenario Distance parameters

4.1.2 Simulation and Verification in AF3

Based on the above algorithms, we modeled the system in AF3 to verify the correct func-

tionality of the modeled system. Figure 4.3 illustrates the BART system in AF3. In this48

Variable Definition

D1 NOSE +(PUF×PU)

D2 VCM×AD

JP AP/TJP

D3
VCM ∗TJP +

1
2Ap× (TJP)

2 + 1
6 × JP×

(TJP)
3 + 1

2A× (TJP)
2

V3 VCM +Ap×TJP +
1
2JP× (TJP)

2 +A×TJP

D4 V 3×MC+ 1
2A×MC2

V4 V 3+A×MC

QFSMC (NCAR−NFAIL−NFSMC)/NCAR

TJB BRK/JB

D5
V 4×TJB +

1
6 × JB×QFSMC×TJB +

1
2A×TJB

V5 V 4+ 1
2JB×QFSMC× (TJB)

2 +A×TJB

T6 FSMC−TJP−MC−TJB

BFS BRK ∗QFSMC

D6 V 5×T 6+ 1
2BFS× (T 6)2 + 1

2A× (T 6)2

V6 V 5+BFS×T 6+A×T 6

Q (NCAR−NFAIL)/NCAR

D7 ((V F)2− (V 6)2)/2× (BRK×Q+A)

WCSD
7
∑

i=1
Di

Table 4.3: Worst Case Scenario Distance calculations

example we considered two trains are moving in the same direction in Doublin track. The

Monitor block, illustrates the velocity, acceleration and the position of the trains. Figure

4.4 illustrates the TrainController module modeled in AF3. Each of the modules inside the

TrainContoller modules are defined using the Code Specification [41] feature in AF3. The

49

AF3 project is available at [44].

For simulation and verification, the initial train positions play a key role in avoiding

obstacles. In Simulation, the initial positions are calculated in a way that does not violate

the safety regulations. For instance, we chose them to be much greater than the WCSD

to any heading obstacle. As for verification, the properties are verified only if the initial

position is more than the WCSD to the heading obstacle.

Figure 4.3: BART system modeled in AF3

AF3 uses NuSMV as an external tool to verify the properties of the model. The

following are some of the properties that were verified:

∀ i ∈ [1,2,3...,18]

P1: AG((T 1init pos−T 2init pos)>WCSD&(T 1init pos−gate.begini)>WCSD))→

AF(T 1v < T 1.SegmentCivilSpeed)

50

Figure 4.4: TrainController module in AF3

P2: AG((T 1init pos−T 2init pos)>WCSD&(T 1init pos−gate.begini)>WCSD))→

AF((T 1pos−T 2pos)< 0)

P3: AG((T 1init pos−T 2init pos)>WCSD&(T 1init pos−gate.begini)>WCSD)&(T 1a <

0)&(gate.state == 0))→ AF((T 1pos−gate.begini)< 0)

The first property (P1) shows that if the initial position(Tinit pos) is selected appro-

priately(as discussed earlier), eventually, the train speed will never exceed the segment

CivilSpeed.

The second property (P2) shows that by selecting a proper initial position, the distance

between two train will be never less than the WCSD.

The third property(P3) shows that if a train is in braking state (a < 0) and it is ap-

proaching a closed gate (gate.state== 0), by selecting a proper initial position the distance

between a train and any gate will be never less than 0(avoiding collision with a gate).

51

4.1.3 Implementation

In this section, with the mean of the proposed tool, the train control algorithm of AATC’s

station computer will be implemented in an ARM CortexM4 platform. The main goal is to

implement the train control system in a way that satisfy the safety properties which were

defined earlier.

ProcessSerial Port

python script

RX

TX

BART.py pyGmap.py
Library

Display on googleMap

Computer Side

Figure 4.5: Overview of verification platform

To achieve this goal, we built a verification platform that verifies the correctness of the

output commands. For that, we made a golden system that contain all the required parts in

AATC including station computer,trains, segments and tracks. An overview of verification

platform is illustrated in Figure 4.5. The BART system including station computer,trains,

segments and tracks are modeled as a python script. The BART.py is responsible to commu-

nicate with FRDM-K64F Freescale freedom platform [45] over serial port. The commands

from the board are sent back to PC as a packet. The packet format is illustrated in Figure

4.6 where <CR > is the carriage return character.

ID Acceleration Position<CR> <CR> <CR>Velocity<CR>

Figure 4.6: Communication Packet Format

As a response to this packet, BART.py will sent back the current position of the trains

and will update the trains data(acm and vcm) accordingly. To implement the ComputerStation

52

Figure 4.7: Abstracted Computer Station model

algorithm in the FRDM board, we modeled the system in Topcased using activity diagrams.

Figure 4.7 illustrates an abstracted model of the implemented system. Listing A.1 illustrates

the generated RTX code from the input model. Listing A.1 shows that after a successful

system initialization, the RTOS will spawn two threads, one with a Normal priority and one

with a High priority. The reason for different priority is that we want to give the priority

ComputerStationAlgorithm Behavior action to be executed so it can then notify the send

waitForNewCommand event and which will then lead to the execution of sending new com-

mand to PC. After each round, the system will wait for a response from PC to either quit or

continue running the algorithm(by sending the train position). If the received command is

Finish it means that there is no need to execute the algorithm any more so the FinalNode

method will be called.

53

Figure 4.8: Simulation of BART train control system

Figure 4.9: Calculation result from ComputerStation algorithm implemented in the FRDM

board

As an example, we set the initial position of the train at 50 meters from the beginning

of the track. The next stop was the WDUB gate located at 2447.7 meters from the beginning

of the track. Figure 4.8 illustrates the location of the train on Google map. As mentioned,

the train starts at 50 meters away from the beginning of the track aiming to have a full stop

at WestDublin(WDUB) located at [37.699, -121.928]. The picture was captured while the

54

train was in the middle of it’s way. Figure 4.8 illustrates the received data from the FRDM-

K64F board which is running the algorithm. As it can be seen, in the first step of the

simulation, the commanded velocity(vcm) is 36Kmph and commanded acceleration (acm)

is 3Kmphps. On the other hand, the train is trying to reach the commanded velocity. The

output log shows the current segment (Seg), traveled distance (T D) from the beginning of

simulation, the traveled distance from the last simulation step (deltaX), the segment grade

(Grade) and the train state which can be either in Propulsion, Normal, Brake and Stop.

After running the simulation long enough, the train stopped at the desired Station.

Figure 4.10, 4.11 and 4.12 illustrates the position , acceleration and velocity of the train.

Figure 4.10: Train Position over time

As it is shown, the train obey all the safety rules defined earlier. The goal was a

full stop with the range of WCSD at the WDUB gate located at 2447.7 meters from the

beginning of the track. Figure 4.10 illustrates that the train has successfully stopped before

reaching the gate. Figure 4.11 shows that the train has always obeyed the train acceleration

limit. Also, Figure 4.12 shows that the control system successfully controlled the velocity

of the train as it is not reaching the maximum allowable velocity(in this case 36Kmph).

55

Figure 4.11: Train acceleration over time

Figure 4.12: Train Velocity over time

4.2 Thread Management in JPEG Encoder

To challenge our developed tool even more, we used it to implement a JPEG encoder on

the FRDM-K64 platform. In this case study, designing the whole system was not the main

goal. Yet scheduling the different modules within a JPEG encoder was the main challenge.

This example will demonstrate that by using our tool, how effective yet easy can it be to

manage the thread execution in RTX.

56

A simple JPEG encoder module contains five different modules as follow:

• ImageReader: This module is responsible to read the bitmap file taken from the

camera and packetize it so it can be fed to the other modules.

• Discrete cosine transform(DCT): DCT [46] module in JPEG encoder is responsible

to discard the low and high frequencies in the picture. There, the two-dimensional

DCT-II of N × N blocks are computed and the results are quantized and entropy

coded. In this case, N is typically 8 and the DCT-II formula is applied to each row

and column of the block. The result is an 8 × 8 transform coefficient array in which

the (0,0) element (top-left) is the DC (zero-frequency) component and entries with in-

creasing vertical and horizontal index values represent higher vertical and horizontal

spatial frequencies [46].

• Quantizer: Due to the fact that the human eye is not so good at distinguishing the

exact strength of a high frequency brightness variation, the amount of information

in the high frequency components can be reduced. This is done by simply dividing

each component in the frequency domain by a constant for that component, and then

rounding to the nearest integer. If the DCT computation is performed with sufficiently

high precision, the loss of the data would be negligible. As a result of this, it is

typically the case that many of the higher frequency components are rounded to zero,

and many of the rest become small positive or negative numbers, which take many

fewer bits to represent [48].

• ZigZag: This module is responsible to rearrange the components of the image in

a ZigZag order(Figure 4.13). This is achieved by employing run-length encoding

(RLE) algorithm [49] that groups similar frequencies together so that it can be used

by the next module(Huffman coder)

• Huffman Coding: Finally the output of the previous modules are fed into Huffman

Coding module. This coding is considered as a loss-less coding meaning no part of

the information will be lost in process of coding. A Huffman code is A Method for

57

Figure 4.13: Zigzag ordering of JPEG image components[47]

the constructing a minimum-redundancy code. The method’s output can be viewed

as a variable-length code table for encoding a source symbol (such as a character in

a file). Huffman’s algorithm derives this table based on the estimated probability or

frequency of occurrence (weight) for each possible value of the source symbol

ProcessRead ZigZagQuantDCT Huff8*8
Block

8*8
Block

8*8
Block

8*8
Block

JPEG Encoder Pipeline

BytePixel

Figure 4.14: JPEG Encoder pipeline

As mentioned earlier, the goal of this case-study is not to implement the above mod-

ules. The goal is to use a high level model,such as activity diagram, to construct a high level

representation of a JPEG encoder and then by employing our tool, create the implementa-

tion code from that. For this case study, we are assuming that a C code for each individual

block is provided and only the scheduling is needed to be done.

Figure4.14 illustrates the data pipeline in a simple JPEG Encoder. Our goal is simply

to implement this pipeline in an ARM CortexM4 device.

58

Figure 4.15: Not scheduled JPEG encoder

Figure 4.15 illustrates a high level model of a JPEG encoder. At the beginning, the

image will be read from the flash memory. Then five threads will be spawned namely:

ControlFlow14, ControlFlow15, ControlFlow16, ControlFlow17 and ControlFlow18.

The priority for these threads are set as NORMAL. Making all these threads to have same

priority is not the best way of implementing this algorithm. Later in this section, a better

solution will be presented. In the reader function, the input bitmap picture is broken into

180 individual blocks. So the JPEG Encoder algorithm needs to be applied on every block.

To represent this functionality, the blocks are surrounded by Decision and Merge nodes.

This will create a loop behavior which will be finished after 180 iterations. The input and

59

output of each block is demonstrated in the diagram. When the 180 iterations is finished,

the program will wait until the execution of all threads is done. This is done by joining all

threads. This was a non-scheduled implementation of a JPEG encoder. The reason behind

non-schedule is that all the threads are spawned at the same time.

Figure 4.16: Not scheduled JPEG encoder output log file

On the other hand the priority of all threads are Normal. This way of implementation,

makes the RTX switch tasks in a very fast rate. For each iteration, we print out a notification

message made after execution of the thread. After running above implementation, the log

in Figure 4.16 was made and the generated JPEG pictures was corrupted. This output log

shows that the thread execution was not scheduled correctly. This is due to the fact that all

threads were always in READY state and only the execution timeout on the threads was

causing a switch between threads. A better way of implementing this algorithm would be

to schedule the execution of these threads.

Figure 4.17 illustrates a scheduled JPEG encoder. The reason is that each thread is

suspended until a notification from the other module is received. Figure 4.18 illustrates the

60

Figure 4.17: A scheduled JPEG encoder algorithm

output log after applying the simple scheduling mechanism. As it can be seen, the execution

of threads is now as it was expected. The number on the left of each line shows that in which

iteration the corresponding thread is.

This is not the best way of scheduling the execution of threads, but it demonstrate

that,by using our developed tool, how easy it is to schedule the execution of threads in the

design and then simply generate a implementation code.

4.3 Summary

In this section, two real world application was implemented in an ARM CortexM4 plat-

form. The first application was Bay Area Rapid Transit train controller system. The train

61

Figure 4.18: A scheduled JPEG encoder algorithm Output log

controller algorithm was presented in activity diagram format. Then, our developed map-

ping tool was used to generate an executable code. The generated code was compiled and

uploaded to the target platform. The output result confirmed the correct implementation of

the algorithm.

For the second experimental application, a JPEG encoder algorithm was modeled in

activity diagram format. The main modules in a simple JPEG encoder were presented as

threads. A simple thread management was proposed to correct the execution of threads.

Finally, by using the developed tool, the activity diagram model was mapped to the Keil

RTX codes.

62

Chapter 5

Conclusion and Future work

5.1 Conclusion

The complexity in embedded systems has been increased in the last years. To overcome

the system complexity various methodologies have been presented. Both in industry and

academia, Model-Based design seems to be the best solution to solve this problem. SysM-

L/UML diagrams are one the most popular languages in most Model-Based design tools.

In this thesis, our main goal was to generate an executable C code from a SysML/UML

activity diagram models. Particularly, we were interested to automatically generate code

for ARM CortexM processor family[10] from a SysML/UML activity diagram model. To

achieve this goal, we proposed a set of mapping rules that were used in mapping a SysM-

L/UML activity diagram into a suitable code to be executed on ARM CortexM processor

family. To automate the process of code generation, we presented a JAVA application that

used the proposed rules to automatically generate the RTX code from the input activity di-

agram model.

We demonstrated the capabilities of our tool by implementing two real life application. The

first application was Bay Area Rapid Transit train controller system and then our tool was

used to generate the RTX code.

For the second experimental application, a JPEG encoder algorithm was modeled in activity

63

diagram format. The main modules in a simple JPEG encoder were presented as threads.

A simple thread management was proposed to correct the execution of threads. Finally, by

using the developed tool, the activity diagram model was mapped to the Keil RTX codes.

5.2 Future Work

Diverse future work directions can be performed building upon this work. Here are some

suggestions to improve the existing tool:

• Our current tool is mostly compatible with UML activity diagrams standard. The

UML activity diagram standard is much more suitable for Software designs than sys-

tem designs. This limitation affects our work when we wanted to propose mapping

rules for RTX inter processes features such as mailboxes and semaphores. A very

good practice would to propose a SysML package that contain all the features of Keil

RTX real-time operating system. To support this feature in our existing methodology,

some new NuAC terms needs to be proposed to support more features in Keil RTX

real-time operating system.

• The other direction that this thesis can take was proposed earlier in the verification

and implementation framework figure. Currently, the model verification is done sepa-

rately on other tools(for instance AF3). To verify the model, it needs to be translated

to the other verification languages. In case of AF3, the model needs to be in compliant

with AF3 language. This make the verification very time consuming and inefficient.

A better approach would be translating the activity diagrams to other input model-

checkers language (like NuSMV). The process of translating an activity diagram to a

PRISM model has been already proposed in [24] but the proposed framework did not

considered an implementation option. Also, the PRISM model checker is know to be

a model-checker for non-deterministic models which most likely are not suitable for

implementation.

64

Appendix A

BART train controller code

Listing A.1: Generated Keil RTX Code

#include <stdbool.h>

#include ”cmsis os .h”

#include ”ControlAlgorithm.h”

#include ”SendCommands.h”

#include ”getNewPosition.h”

#include ”BART.h”

// Methods Prototype:

void InitialNode1 method (void) ;

void ActivityFinalNode1 method(void) ;

void ControlFlow1 method(void);

void ControlFlow4 method(void);

void ControlFlow6 method(void);

// Variable Decleration :

static bool InitialNode1 var = true ;

static bool MergeNode1 var = false ;

static bool ControlAlgorithm var = false ;

65

static bool ActivityFinalNode1 var = false ;

static bool DecisionNode1 var = false ;

static bool ControlFlow1 var = false ;

static bool ControlFlow4 var = false ;

static bool ControlFlow6 var = false ;

static bool SendCommands var = false;

static bool SendCommandsEvt var = false;

static char ∗Data;

static float acm;

static float vcm;

static float position ;

// Thread prototypes :

void ControlFlow1 thread(void const ∗arg) ;

osThreadDef (ControlFlow1 thread , osPriorityHigh , 1, 0) ;

void ControlFlow4 thread(void const ∗arg) ;

osThreadDef (ControlFlow4 thread , osPriorityNormal , 1, 0) ;

void ControlFlow6 thread(void const ∗arg) ;

osThreadDef (ControlFlow6 thread , osPriorityHigh , 1, 0) ;

// Thread ID:

osThreadId ControlFlow1 threadID,ControlFlow4 threadID,ControlFlow6 threadID;

// Signals :

int32 t SendCommandsEvt=0x1;

// Main program starts here :

int main (void){

osKernelInitialize () ; // setup kernel

// Create OS status variable :

66

osStatus status ;

// Calling Root

ControlFlow1 threadID =

osThreadCreate(osThread(ControlFlow1 thread) ,NULL);

// Start RTX kernel

osKernelStart () ;

}

// Methods Decleration :

void InitialNode1 method (){

MergeNode1 var = true;

ControlFlow1 method(); // Calling the main Edge method

}

void ActivityFinalNode1 method(){

print (”Program ended successfully ”) ;

}

// Thread Declaration :

void ControlFlow1 thread(void const ∗arg){

if (MergeNode1 var){

if (InitialNode1 var ||DecisionNode1 var){

do{ //Loop: DecisionNode1−−−>MergeNode1

ControlFlow4 var = true ;

ControlFlow4 threadID = osThreadCreate

(osThread(ControlFlow4 thread) , NULL);

ControlFlow6 var = true ;

ControlFlow6 threadID = osThreadCreate

(osThread(ControlFlow6 thread) , NULL);

67

while (!(ControlFlow4 var ||ControlFlow6 var)){ // Join

ControlFlow4 thread and ControlFlow6 thread

}

ControlFlow4 var = false ;

ControlFlow6 var = false ;

getNewPosition(&Data,&position);

}while(!strcmp(Data,”Finish”)) // End of Loop: DecisionNode1 to

MergeNode1

DecisionNode1 var = true ;

ActivityFinalNode1 method() ; // Calling next node to be executed

}

}

}

void ControlFlow4 thread(void const ∗arg){

if (ControlFlow4 var){

osSignalWait (SendCommandsEvt,osWaitForever);

SendCommands var = true;

SendCommands method(&vcm,&acm);// Calling next node to be executed

}

ControlFlow4 var= true ;

}

void ControlFlow6 thread(void const ∗arg){

if (ControlFlow6 var){

ControlAlgorithm method(&vcm,&acm,&position);// Calling next node

to be executed

osSignalSet (ControlFlow4 threadID, SendCommandsEvt);

SendCommandsEvt var = true;

}

68

ControlFlow6 var= true ;

}

69

Bibliography

[1] The International Council on Systems Engineering (INCOSE),http://www.incose.org/ ,

February 2015.

[2] Friedenthal, Sanford, Greigo, Regina, and Mark Sampson, INCOSE MBSE Roadmap,

in INCOSE Model Based Systems Engineering (MBSE) Workshop Outbrief (Presen-

tation Slides), presented at INCOSE International Workshop 2008, Albuquerque, NM,

pg. 6, Jan. 26, 2008

[3] C. Brooks, C. Cheng, T. Feng, E.A. Lee, and R. von Hanxleden, Model Engineering

Using Multimodeling, 1st InternationalWorkshop on Model Co-Evolution and Consis-

tency Management (MCCM 08), September 2008.

[4] Object Management Group (OMG) Systems Modelling Language,

http://www.omgsysml.org/, February 2015.

[5] OMG, OMG Systems Modeling Language (OMG SysML) Specification, Object Man-

agement Group, September 2007, OMG Available Specification.

[6] OMG Unified Modeling Language: Superstructure 2.1.2, Object

[7] Sysml Forum. SysML tools. http://www.sysmlforum.com/tools. htm, February 2015.

[8] Topcased the Open-Source toolkit for critical systems, http://www.topcased.org, Febru-

ary 2015.

[9] O. SysML. Systems Modeling Language (SysML) Specifi- cation final report. Object

Management Group, 2007.

70

[10] ARM Cortex-M processor family, http://www.arm.com/products/processors/cortex-

m/, February 2015.

[11] KeilT M RTX RTOS kernel. http://www.keil.com/rl-arm/kernel.asp , February 2015.

[12] KeilT M CMSIS RTOS. http://www.keil.com/pack/doc/cmsis/RTX/html/index.html ,

February 2015.

[13] ARM CMSIS standard. http://www.arm.com/products/processors/cortex-m/cortex-

microcontroller-software-interface-standard.php , February 2015.

[14] µVision IDE, debugger, and simulation environment,

http://www.keil.com/arm/mdk.asp, February 2015.

[15] L. Zhang, M. Glab, N. Ballmann and J. Teich, Bridging Algorithm and ESL Design:

Matlab/Simulink Model Transformation and Validation, Forum on Specification & De-

sign Languages (FDL), 2013.

[16] A. Adamov, K. Mostovaya, I. Syzonenko, A. Melnik, Electronic System Level Models

for Functional Verification of System on- Chip, CADSM2007, February 20-24, 2007,

Polyana, UKRAINE .

[17] M. M. R. Mozumdar, F. Gregoretti, L. Lavagno, L. Vanzago and S. Olivieri, A Frame-

work for Modeling, Simulation and Automatic Code Generation of Sensor Network

Application, 5th Annual IEEE Communications Society Conference on Sensor, Mesh

and Ad Hoc Communications and Networks, 2008.

[18] Simulink Coder from MATHWORK,http://www.mathworks.com/ products/simulink-

coder/, February 2015.

[19] Embedded Coder from MATHWORK. http://www.mathworks.com/products/embedded-

coder/index.html, February 2015.

71

[20] F. Holzl and M.Feilkas, AutoFocus 3 - A Scientific Tool Prototype for Model-Based

Development of Component-Based, Reactive, Distributed Systems, Model-based En-

gineering Of Embedded Real-Time Systems, Lecture Notes in Computer Science

[21] R. Nikhil and K. Czeck, BSV by Example. CreateSpace Independent Publishing Plat-

form, 2010. Available: http://books.google.ca/books?id=EUmmuAAACAAJ

[22] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of Probabilistic

Real-Time Systems. In CAV, LNCS, pages 585591. Springer, 2011.

[23] A. Cimatti, E. Clarke, F.Giunchiglia and M.Roveri,NUSMV: a new Symbolic Model

Verifier,International Journal on Software Tools for Technology Transfer, 2000, Volume

2, Number 4, Page 410

[24] S. Ouchani, ”A Security Verification Framework for SysML Activity Diagrams”, Phd

Tesis, September 2013, Concordia University, Montreal, Qc

[25] S.Ouchani, O.A.Mohamed, M. Debbabi,”A Formal Verification Framework for Blue-

Spec System Verilog”, FDL, 2013

[26] G. Booch. Object-Oriented Analysis and Design with Applications (2nd Edition). Ad-

dison Wesley Longman Publishing Co., Inc., Amsterdam, 2007.

[27] J. Rumbaugh, M. Blaha, W. Lorensen, F. Eddy, and W. Premerlani, ”Object-Oriented

Modeling and Design”, Prentice Hall, 1991.

[28] I. Jacobson, M. Christerson, and P. Jonsson. Object-Oriented Software Engineering.

Addison-Wesley Professional, 1992.

[29] The taxonomy of UML diagrams, http://www.uml-diagrams.org/uml-25-

diagrams.html, February 2015.

[30] M. Hause, ”The SysML Modelling Language”, Fifth European Systems Engineering

Conference,18-20 September 2006.

72

[31] T. Weilkiens. Systems Engineering with SysML/UML: Modeling, Analysis, Design.

Morgan Kaufmann Publishers Inc., 2008.

[32] Relationship between SysML and UML, http://www.omgsysml.org/, February 2015.

[33] Real Time Engineers Ltd. The FreeRTOS Project Version 8.2.0. http://freertos.org,

February 2015.

[34] RTX Kernel, Theory of operation, http://www.keil.com/pack/doc/cmsis rtx/ theory.html,

February 2015.

[35] Mourad Debbabi, Fawzi Hassane, Yosr Jarraya, Andrei Soeanu, and Luay Alawneh.

Verication and Validation in Systems Engineering - Assessing UML / SysML Design

Models. Springer, 2010.

[36] Kordon, Fabrice, and Michel Lemoine. Formal Methods For Embedded Distributed

Systems. Boston: Kluwer Academic, 2004. Print.

[37] Bart Geo-spatial Data, http://www.bart.gov/schedules/developers/geo, February 2015.

[38] AutoFOCUS3 Website. http://af3.fortiss.org/whatn isn AF3.html, February 2015.

[39] A.Campetelli,F.Holzl and P. Neubeck, User-friendly Model Checking Integration in

Model-based Development, Proceedings of International Conference on Computer Ap-

plications in Industry and Engineering

[40] F.Holzl. The AutoFocus 3 C0 Code Generator Technical Report TUMI0918, Technis-

che University at Munchen, 2009.

[41] Creating a Code Specification for a Component in AF3,

http://download.fortiss.org/public/projects/af3/help/code specification.html, February

2015.

[42] The UML Profile for MARTE: Modeling and Analysis of Real-Time and Embedded

Systems, http://www.omgmarte.org/, April 2015.

73

[43] UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded Systems,

Version 1.1, OMG Document Number: formal/2011-06-02, June 2011.

[44] BART system modeled in AF3, https://www.dropbox.com/s/i4bmrdk3rkm5ku7/AF3-

Project.af3 23?dl=0

[45] FRDM-K64F: Freescale Freedom Development Platform for Kinetis.

http://www.freescale.com/webapp/sps/site/prod summary.jsp?code=FRDM-K64F,

February 2015.

[46] S. A. Khayam, ”The Discrete Cosine Transform (DCT): Theory and Application”,

Michigan State University, March 10 2003

[47] Discrete cosine transform , http://en.wikipedia.org/wiki/Discrete cosine transform#JPEG,

February 2015.

[48] Quantization in JPEG encoders,http://en.wikipedia.org/wiki/JPEG, February 2015.

[49] Run-Length Encoding (RLE) algorithm, http://en.wikipedia.org/wiki/Run-

length encoding, February 2015.

74

