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ABSTRACT
A GIS Based Modeling Approach to Assess Lake Eutrophication
Linda El Farra

Large pr opor t readity avaifabletwater supmyrislatridksdue to the rapidly
increasing populations of certain types of harmful algae. During the photosynthesis, species like
bluegreen algae and cyanobacteria consume nutrients and produce toxins that have potential
advese effects to humans and animals.

This thesis focuses on developing a BEsed statistical approach to explore the water
guality parameters facilitating the algae bloom, and to geographically map the extent and spread
of these parameters to enable tragkand prediction of potential algae outbreaks.

The relationship between Chlorophgll which represents the concentration of algae
biomass, and the water quality parameters such as depth, phosphorus, nitrogen, alkalinity,
suspended solids, pH, temperatuelectrical conaktivity, dissolved oxygen andeschi depth is
analyzed though correlation matrix then by utilizing modeling techniques ingludultiple
linear, nonlinear regressiomeural network and data minipgediction models are developed to
guantify the contribution from essential water quality parameters to eutrophication.

The developed GIS and statistical analysis approaches have been applied a&ethe
Champlain. The performander the developed statistical, neural network and daiaing
chlorophylka models haveen examined through the comparison with the observed field data
and through statistical error analysis. Two new techniques have been examined in this thesis
study. First, data mining has helped to reveal the nonlinear behavadgasd growth in some
parts of the case study area. Second, the GIS spatial analysis is employed to visualize the spread

and extent of the water quality paraerstand the algae chlorophwl] whichgraphically present



the locatiorbased impact of eutropdation on important lake water resourdesr example, the
analysis of the Gl$®ased impact maps suggests that the algae is affecting the Vermont section of
Lake Champlain mainly the Northern and Southern section. The developed models suggest that
algae poduction is affected by nutrients particularly phosphorus. When phosphorus is
encountered at low to mild concentrations, the nutrient is linearly affecting algae production,
however, at extreme concentrations of the nutrientreéketionship between nutné and algae
production becomenonlinear. The developed GIS model along with the statistical analysis
applied on lake Champlain suggest that Extreme levels of Nitrogen in north and Chloride in the

South caused deviations in the models prediction accuracy
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CHAPTER 1

| NTRODUCTION



INTRODUCTION

Water bodies respond differently to increased amounts of nutrients (Correll, 1998). Many
factors contribute to eutrophication, including: hydrolagpaditions, ecosystems, geology
(Correll, 1998), sediment loading capacity (Froelich, 1988), and both urban and agricultural land
use (Shoret al.,1996).

1.1Background

The 2014 US Geological survey (USGS) report indicated that of the 'Q&86f totd
water on earth, only 0.77% (10Qa ) is usable fresh water and 1.74% is unusable fresh water
present in ice caps, frozen glaciers and permanent snow. Unfortunately, a large proportion (70%)
of the worl dds wusabl e wa atonrbyenvimpnmemnallyihamfidt r i sk
Cyanobacteria (also called bigeeen algae). Cyanobacteria range in colour from green to red,
and form large masses (called algal blooms) in warm shallow water that is slow moving or still.
During photosynthesis, cyanolega blooms consume nutrients essential for lake biome
survival and produce toxins that are poisonous to the humans and wildlife living in the lake
environment. These toxins include neurotoxins (affect the nervous system), and hepatotoxins
(affect the liver), as well as those that irritate the skin and eyes.
The microcystins are a group of approximately 50 tognasiuced by the
cyanobacterium mrocystis aeruginosa. These are importadause they are chemically
extremely stable in water of wetly varying temperature and pMicrocystin-LR is the most
widely studied because it is found in fresh water supplies worldwide, and is undetectable by odor,
taste or appearance. Symptomsniérocystinpoisoning include diarrhea, abdominal pain,
nausea, @miting, headache, fever, irritated eyes and skin, and allergic reactions. Unfortunately,
boiling microcystincontaminated water does not remove the toxins or destroy their activity.
Chlorophylta (also called chlorophyll a) is a plant pigment that isien@ry electron
donor in the electron transport chain and essential for photosynthesis. Chleeopaylbe used
as a biomarker for the presence of cyanobacteria, as there is a direct relationship between the
mass of the cyanobacterial algal bloom andcthrecentration of chlorophyt in fresh water.



These include the following physicochemical parameters of water: 1) temperature; 2) pH;
3) electrical conductivity; 4%) concentration of phosphorus, nitrogen, and dissolved oxygen;
secchidepth (a meage of water clarity, inversely proportional to CAB growth). Seddpth is
measured using a circulsgcchi disk lowered into the water until it is not visiblesfended
solids, including CABseduce water clarity.

Eutrophication is the oversupply ottificial or natural substances, mainly phosphates
(e.g. pollution from fertilizers, sewage and detergents) to an aquatic system, which pthmotes
excessive growth and decay of plants and bacteria, including algal blooms. After these organisms
die, oxygerdepletion (hypoxia) occurs, which then inhibits the growth of fish and other
organisms in the environmeritutrophication decreases the value of lakes and rivers and impairs
drinking water treatmenEutrophication is one of most significant and widespneater quality
concerns in the global environment. It causes premature ageing of lakes and other water bodies.
The estimated damage cost of cultural eutrophication (from human activities) in the U.S alone
exceeds $2.2 billion annually (Dodésal, 2009) The ability of a lake to recover from
eutrophication depends on the quantity of phosphorus in the lake sediment and in the volume of
water in contact with the sediment. It may take decades before nutrients are naturally flushed out
of lakes (Chambernstal., 2001; Hiscock et al2003).

Several stude havebeen published aroudake Champlainfor examplen 1989 a group
of scientists from the Vermont Department of Environmental Conservation published a
comprehensive study on lake Champlain, and concluded thatild be unrealistic tause daily
data for lake Champlain tetect emerging lake eutrophicatioroblems (Smeltzer et al., 1989),
then in 199%atellite image$or thewatershed wassal to estimate theroportions of the
baseline nonpoint source loads attributdlette, 1997, and in2009a Danish studysuggested
that eutrophication in lake Chaain is affected by thelimate change(Jeppeser2009. Many
otherstudies around eutrophication &end andeviewed in section 2.2 and 2&hdonly ahandful
of thesestudies dealt with th&IS locationcharacterizatioof water bodiegAaby, 2005) and
barly few studies exighat used data mining and computing power to reveal hidden pattern and
information within thewaterbodieglatadifferent timeframegPetersen et al., 2001; Chen et al.,
2003 and Chau et al., 2007)

This study presents a nepproachor exploding algae and eutrophicatiorodels

by searchindor linear and nonlinear modalsing data miningneural network and multiple



linear regressiomodel throughout thdifferent lake data timeframeand by utiizing GIS
location information to investigate the location impact on the lak®ghicationand algae

spread.

1.2 Thesis Objective

Few largescale watershed eutrophication studies have been reported, and these have
primarily focused on marine and coastaters rather than on fresh water lakes, streanessriv
and reservoirs (Arheimer at, 2000; Nixon eal., 2002). Objectives of this thesis study
include:

A. To quantify the environmental variablassociated with lake water qualgychas:depth,
phosphorus, nitrogen, alkalinity, suspended solids, pH, temperature, electrical
conductivity, disslved oxygen concentration anecghi depth contributions to algae
bloom.

B. To develop new statistical and generic algorithm based water quality mozlating
data mining, nonlinear regression, and neural networks to assess and help to manage lake
eutrophication

C. To couple the developed laketrophicatiormodels with geographical information
systems (GIS) to examine the location importance and impadgags spread.

D. To apply the developed methodology to ldee Champlain téurtherdevelopand
validate field scalstatisticallinear and nonlineachlorophylta modelausing data mining,

neural network and multiple regression modeling techniques



1.3 Organization of the Thesis

This thesis is organized in the following seven chapters

Chapter 1 defines the scope of the thesis, and introduces eutrophication and its impact
on cyanobacterial algal bloom (CAB Chapter 2 presentsviewsof relatedliteratures on
eutrophication statistical studies, data mining and-k&Sed studies on eutrophicatid@hapter
3 summarizes the analyses used to create the chlor@pmgdels and the techniques used to
evaluate the modelsChapter 4 presents the Lakbdamplain case study data and discusses the
methods used to prepare the raw data for the andlysthapter 5 datéor the water quality
parameters that contribute @AB are analyzed using various techniques, the analyses are
verified, and the resultsre compared to find the optimal set of prediction mod€lsapter 6
shows how ArcGIS wasicorporatedo generate maps that illustrate theéent and spread of the
CABs. Finally, Chapter 7 summarizes the results and provides suggestions and recomnsendatio

for future research.



CHAPTER 2

L ITERATURE REVIEW



2.1Lake Eutrophication

Eutrophication is the process where a wateylmrdgresses from itsurrent statéo its
extinctionby gradual accumulationf mutrients and organic biomad3as, 2003)Nutrients
generally enteaquatic ecosystems sorbed to soil particles that are eroded into lakes, streams, and
rivers Sharpleyet al, 1994. Human activities, excess use of fertilizers, mining phosphorus,
animal feeds, agricultural crops)daotherproducts causing excess amountraftrientsto
accumulate in soil thus altering the global phosphorus ¢gcleindler 1977). The increasing
nutrientslevels in the soil elevate the potential amount that carried by runoff wateraquhgc
easystems (Fluck et all992).
2.11 Phosphoruscycle
Usually external |l oading is the main facto
of its large scale (Horne 1998 2005 astudy published by thEuropean Environmental
Agency (EEA)suggestdthat although phosphorus and nitrate concentrations in inland
freshwater systems declined, eutrophicatoo nt i nued a n dthehcantingaticdhnof st op p ¢
theeutrophicatiorwasdue to internal loadinghereforenutrients released to the water colum
from the sediment a factorto be considered ilake aitrophication(Bostrom et al., 1988) and
(Elwoodet al, 1983).

Phosphalte
rock formation

Figure2.1 Phosphorus cycle lake ChamplainSourcehttp://prezi.com
accessed on August 2014
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Internal and external loading pfhosphorusnto alake bodyis referred to aphosphorus
cycle,andthisloading isthe results ophosphoruseing \ery biologically active elements.
Figure 2.1 shows thehpsphorus cycle in Lake Champlawherephosphorusrrivesinto the
lakethoughrunoff wateror sorbedthroughsoil particles The phosphorusompounds arthen
hydrolyzedeither chemically or esymaticallyto orthophosphate which is tbhaly form of
phosphorus that can b@gyested byalgaeor microbial (Smith et al.2009. Excessand heavy
particulatesof phosphorus ardeposited to the bottoandgraduallyform the sedimerpart of
sediment phosphorus is releaseaak into the water column as orthophosploaté stays in the
sediment and formiphosphate rock formatipwhich later ons dissolvedby rain,snowmelf
irrigation or runoff waterand isdepositeackinto the soil,rivers andakesto eventuallymakes

sedimentsock formation(Goodwin 2011)

2.12 Nitrogen cycle

When71% ofthe earth surface is wat@nd 80% of the atmosphere is Nitrogen gas
N, and wherit takesmillions ofyearsfor therock sedimentarrying phosphoru® raiseup to
the surfaceghenmoved byrunoff wateror sorbedthroughsoil particlefor the phosphorus to
complete its cyclewhile it may onlytakes days or even less for the nitrogen to complete its
cycle then it becomes clear wimtrogen concentration is 16 times higher phosphoroegpen
waters(Rydin and Rast1992).

Nitrogen exists itmanyforms, one ofits formis ammoniaNH3; Ammoniacomes from
plant, animal wasteslecomposition of organic nitrogemdis used extensivelin fermentation
(Luvalle et al., 199Pandas acleaning agentsAmmoniahas adeadlyeffect onfish and plant

andit encouragealgaegrowth.
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2.2Review ofLake Eutrophication Models

TheGerman agricultural chemist Justus von Lietmgducted the first eutrophication
studyin 1950. Prior to this, Weber (1907) and Johnstone (1908) found a link between nutrients
and aquatic productivity (reviewed in Smith et.al, 1999}he years that followeskeveral
eutrophication studies were comtled the majority of those studies focusalstatistical
analytical techniques

Due to the widespread of the eutrophication problems in fresh water supplies, many
studies were made in attempt to find the cause and sglatid in this section | presiel the
different unique approaches | found related to tapieveverit is worth to mention that the
sequence of studies is not necessary in a historical essay.

In 1973, Dieter Imbodedeveloped a phosphorus model for Lake Lucerne eutrophication
using oxygen consumption a$umction of phosphorus loadinBiete® model calculates the
mean Oxygen @consumption in water as a function of phosphorus loading and gives the critical
P-loading values above which the lake turns eutrophic for changing mean depth of the Lake and
hydraulic loading factor. The model produces a generahrbegavior for lakes categorization
by elementandwasnot able to explainhecause behind thé ABsin the bke Anotherdifferent

approacho instigate lake eutrophication wasade byLotter, whoused the annual layer of



sediment in rocks (varve) to model the historical eutrophication af Baltdeggersee in

(Switzerland) andalthougheutrophicatioris suggestd to behighly correlatedwvith sediment

(Lijklema, 1980)h owever Lotterods cl i mat e andjustifyromep hi ¢ s
third of the variance datél_otteret al, 1997).

Many of theanalytical eutrophication studissnplify the complexitybetween the lake
variables and eutrophicatipand use multiple linear regressigii.R which istechnique that
attempts to find the relationship between several explanatory variables and a response variable
by fitting a linear equation to ¢htraining data(Cuineyt,1999 Xia et al.,2011), while other
eutrophicatiorstudies use more complex technicueh asuzzylogic to studyeutrophication
(Selguket al.,2004).

In recentyearswith the availability of computingpowertherewasa growingtendency to
useneural network to creaeutrophicatiormodek (Recknageet al., 1997. Someof those
studiesused r t i yci al n{Yalhunakakt al @97, Bcardiet a.,1999 Jeonget al.,
2001andXia et al.,2011), while other useduzzy and neurduzzy techniquesMaier et al,

2001); andnost recently witlthe alvances in software developmebdiyl techniquestarted to
show in eutrophication studieBdterseret al., 2001Chenet al, 2003.

Althoughmany advances were made, the wide variation in water body scenarios (e.g.
naturally occurring seasonal and annual variations in water quality parameters), and the
complexity between nutrients and eutnagation in a dynamic ecosystemade it a challenget
develop a defined standaitht defines water eutrophicati¢@orrell, 1998) Different studies
provided distinctive eutrophication model

In summary, the literature review showed:

1) Thereare many different analysis methods available to predict frggilake eutrophication
and CABs mass growth.

2) Severamodels are required to accurately deal with all lake scenarios (Idvighsnutrient
concentrations).

3) Themost important predictive parameters for lake eutrophication ands@xaBs growth
were total nitrogn (TN) and total phosphorusK)lin the water.

4) Most studies focused on solving the eutrophication probking standard analysis
techniqueghat donot address theonlinealy problem of lake eutrophicaticat extreme

concentrations.
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5) None of the studies utilizesthta miningechniques to model eutrophiima problem in the
lakes,and thereas a lack of comprehensive research to formalize the relation between water

variables and algae bloom

2.3 GIS- Based Lake Assessent and Management

In 1973, ESRI developed the first commercial GIS system, the Maryland Automated
Geographic Informatioystem ESRI, 2006). They subsequently developed individual tools
(e.g. Arcinfo workstation, ArcView GIS 3.x, MapObjects, ArcSDEhjch were integrated as
ArcGISin 1999. Hiscock and coworkers utilized GIS to stpdpsphorus loading with land use,
soil type and rainfall in the Florida basins (Hiscock et26l03). Their results indicated that the
amount of developed land and theopphorus loading have a strong correlatiati lake
eutrophication.

In 2008, Dirk Craigie suggested using GIS as a resource to incorporate geographically
linked data used in the Integrated Water Resource Management (IWRM) system (Dirk, 2008).
Ha me guupsised GIS analysis to classify 50 inland lakes in Sweden according to their
degree of eutrophication and acidity, based on water pH and/or alkalinity mondatang
(Hameed, 2010)

In 2011 Gupta used GIS to evaluate nitrogen and phosphorus leteésRonnea River
drainage basin in Sweden, and to estimate future discharge iftasineGuptaet al.,2011).
Akdeniz used the inverse distance weighted (IDW) meth@ddabIS to create trophic state
index (TSI) maps for the shallow Uluabat Lakélurkey (Akdenizet al.,2011). Anoh used GIS
to study eutrophication in the Taabo River (Ivory Coast) using multi criteria anafyseter
guality parameters, which highlighted the areas in the watershed that rqaqotesttion (Anoh
et al.,2012). Lake Nthiganwas studied using satellite images from MODI$tedict
chlorophylla concentration, the results showed the possibility of usstejlite images
effectively to track algae (Huang, Deng, 2013).

In conclusion, GIS provides a powerful method talgre lake eutrophication and the
growth of cyanobacteria algal blooms (CABs) spatially and to help effectively miamgge

scalelake eutrophication in countries worldwide.
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CHAPTER 3

M ETHODOLOGIES
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3.1 Lake Nutrient Level Standards

There is currently no world standard for acceptable nutrient levels in lakes, because each
presents a unique ecosystem, which is highly variable due to natural seasonal variations and also
natural and mamade changes in the environment. For this reasasrdier to study
eutrophication in a particular lake, one needs to examine parameters that affect the entire

geographical region (Nixon, 2009).

3.2 Chlorophyll-a Lake Eutrophication Statistical Modelsthat Use Multiple Linear
Regression (MLR)

Some ofthe published chlorophylh models used the statistical method of multiple linear
regression (MLR) to investigate multiple scalar dependent variables (Z = water quality
parameters) that are hypothesized to be linearly refatéte explanatory variable €&/
chlorophylta, a biomarker for the growth of cyanobacteria algal blooms (CABs) which cause
eutrophication in lakes). This is described below in the general matrix format for the MLR
equatian (Johnet.al, 1996; see Introduction to Linear Regression Aisalyg Douglas C.
Montgomery- Statistics referene textbook for MLR method, 201Plandan Camdevgnet al.,
2005, a review of chlorophyd MLR models).

€ ¢ € ¢ € ¢ € [
E Yl L € b +b1211+ +br21r+61 l: é bo+b1211+ +brzlr l: E’ 61 l:
vt Yo L€ bothz, + +b2,+€ L€ bythzt 406z, L €€ L
€ L—é€ L—é€ LTé L
€ L € L € L € L
éYn E E b0+b2 + +brznr+6n E E b0+blzn1+ +brznr E gen E
€y £ €1 ¢ € ¢ €p @ Bq. 3.1

Z < = € < y <

€ L € 1 oy eh ey

€Y, L__€1 z, z, L €€ L, €506, 0

Y=¢ ° 0Z=¢ LE=¢ T ub=¢ 7 g

€ L € L € ) € )

EVNE €12 ZmE & ELE

Rearranging equation 3.1, we obtain the following:
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Where, Yisan#y-1 vector of rbgbvedorofkceeficienth Zisthe a m
nbyrdesi gn matri x f dylvectoreof emasis e outpulor degendam n
variable, andx ¢ & are the independent or input variablese Bhort version of the general

MLR format is written as follows:
@ 1 14 ra E T4 - QEN pBREOGE O B R Eq. 3.3

In this type of chlorophyda (MLR) model, chlorophydla (Chla)is the dependent
variable & g & represenng: total phosphrus, total nitrogen, chloridegschi depth, temperature,
depth, alkalinity or the independent variables (water quality parameti)] 8 3
representhe coefficiens for the independent variables dnd thesrrotterm.

The MLR equation is solved using the least squares method, by estimating the unknown
vector of coefficients b of the |Iinear equat.
residuals (errors) between theserved data and the predicted data fiteerlinear equation. The
coefficients b that produce the best solution
model and observed data is zero (Kaeyal.,2 0 0 4 ) . By setting U= 0 and
equat i on Spidwehiclggeve thebee f f i ci ent s of matri x b, anct
comparing the predicted values to the observe
not possible to directly evaluate th&dhasoef fic

adifferent vector size than theatrix Z. Therefore, ingpendix B, | wrote a Matlab code called

MLR-LEF to work around this problem, and use this code in the Lake Champlain case study.
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3.3 Chlorophyll-a Lake Eutrophication Models that Use Multiple Nonlinear Regression
(MNR)

Some of the chlorophylh models (Handaet al.,2005 and Xieet al.,2011) use multiple
nonlinear regressiofMNR) to investigate variables (water quality parameters) that are not
linearly related to chlorophyk and CABs (NonlingaRegression by G. A. F. SEBERtatistics
textbook ref for MNR see refs above for chloropidIMLR models). The multiple nonlinea
regression model is derived by transforming the nonlinear model to a linear one, the general

Nonlinear multivariate power functigillison, 1999)is written as

O & a 88a Eq. 3.4

By taking the natural logarithm for both sideguation 3.4 is then transformed into a linear
function Allison, 2006)

A8 aE wad wa&d 8888 0oy Eq. 3.5

Comparing Eq. 3.3 to Eg. 3.5 we get

@ ITdha 1T ht 1 h [T Eq.3.6

Equations 3.5 and 3.6 can be used to derive the chlorepMNR model (Handaet al.,2005
and Xiaet al.,2011).

3.4 Chlorophyll-a Modelsthat Use Data Mining (DM)

Data mining (DM) is used to discover paite within a data set (Weis$ al.,199;
Maleket al.,2011). A number of published chlorophglimodels use DM to discover patterns in
data sets of water quality parameters (independent variables) that are related to chlarophyll
levels (dependent variable), a biomarker for GABowth. ForexampleDM was used in a
chlorophylta model teexaminehabitat utilization patterns of reef fish along the West coast of

Hawaii (Kleineret al.,2000; Baileyet al.,1994). The software used in this stutbr data mining
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is Eureqal.12.1 Be¢a from NutonianEuregasoftwarederives the equationdy searchinghe

space of mathematical expressions to find the model that best fits a given dataset, both in terms
of accuracy and simplicity, this proces&kmwnasSymbolicRegressior{SR), and utike

multiple nonlinear regression MNR where a specific equation is need to start with the analysis, in
Symbolic Regressionanparticular model iseededo start with the analysis and timitial

expressions are formed randorblycombining mathematicallilding blocks such as

mathematical operators, analytic functions, constants, and state vaiajlasons are then

build byrecombining previous equations, using genetic programrntgtting the patterns in

the data reveal theuitablemodels, rathethan imposing a modéb avoid human bias, or

unknown gaps in domain knowledge.

3.5 Chlorophyll-a Model Evaluation Techniques

To find the best chlorophyl model for the Lake Champlain case study, | used three

published methods to evaluatielorophylka modelsand these are described in detail below.
3.5.1Determination of coefficientd

This method was used to evaluate most chloroghytiodels used in lake eutrophication
studies (e.g. Handart al.,2005; Xiaet al.,2012). The Pearson R correlation coefficient
measures the |linear correlation b BR(thesqae t wo
of the Pearson R) indicates how close the regression model fits to the observed data (value
between 0 and 1).

Y —— Eq. 37

Where,Y "Qthe coefficient of determination, is the predicted valu@)is the observed
value, Yis the average value, n = the size of the data. The closBf #iadue is to 1, the better

the model fit. Fig. 3.1 shows two examples where this is not the case.
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Figure 3.1R*for unfit models(modified from http://academic.uprm.edu/accessed on May 014

The major problem in calculatirigis that its value increases whenever a new variable is
added to the model, thus a model with more variables may appear to be a better fit than a model
with fewer variables. The adjust&d attempts to compensate for the inaccuradg®dfecause it
increass only if the new variable is statistically significant. The adjuit&id always less than
R? (Draperet al.,1998).

Y p — Eq.38

Where'Yis the adjusted coefficient of determination,is the coefficient of

determination, n is thiotal sample size, k is the numhasrpredictors (variables).

3.5.2 Standard error of the estimate

This method was used in therification analysis of Lake Ontario (Thomaetal.,1979).

The standard error of the estimate is an estimate of the average squared error and is calculated as
follows (Kenneyet al.,1963).

3 BAOOT & ATNOR @R OE A O AL N OADRAEA O
QOO QLM QQQE
Eq 39
B & ®
.
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3.5.3 Confidence interval and critical value

A good model should have the smallest errors, and these should be distributed evenly
above and below the regression line (Fig. 3.2).
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Figure 3.2Error distributions(modified from http://academic.uprm.edu/ accessed on May 014

Confidence interval (Cl) thresholds are used to maintain small and evenly distributed
errors, and error values outside the threshold (also called limit) values are ignored. The lower the
Cl thresholdvalue, the better the model. Critical values are the boundaries of the ClI, found by
using the z score table (the lower critical valuedt c the upper critical value =il C)' The
critical values in most data analysis software packages are-dafged input that is set

manually before data processing.

E = Mean
F = Standard Deviation
Critiecal Critical
Value Value
~Z({af2) Z(a/2)
_en -—/ I | 00
= 2er w="er [ o+ ler 1L+ 2er
- Confidence interwval -

- About 2, 5% —/“——— About 95% ————/"— Aboul 2, 5%

o=

Figure 33 Bell shape error distributigimodified fromKendallet al.,1968).
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An alternative method to find z score is to use MS excel command line to calculate the z

value, which can be calculateding the following command

=NORMSINV(x) Where x is the value that we want to find its z score

3.6 GIS Based Modeling and Assessment

The Geographical Information System (GIS) is combination of software, data and
hardware that allow the user to querngualize, and interpret spatial information to disclose
relationships, trends, and patterns within a data set. ArcGIS, developed by Environmental
Systems Research Institute (ESRI) is the most commonly used GIS package utilized by
researchers communityrfbusiness analysis, plannjrgnvironmentahpplications and
geostatistical analysi§SeeGIS Software adescription in 1000 words by Stefan Steiniger,
2009). The components (objects) in ArcGIS represent water quality monitoring stations and
other realworld objects. The objects used in the Lake Champlain case study were the over 50
water quality monitoring stations located throughoutiétke. Theobjects are stored in the
ArcGIS Geodatabasevhichis the toplevel element in the ArcGIS hierarchy, shoum figure
3.4. The hierarchical data structure allows feature classes to inherit the attributes and behaviors
of the object above while retaining its spatial properties (Zeiler, 1999).
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Figure 3.4 GIS hierarchy (modified from http://webhelp.esri.caccessed on Jan 2014).

Geostatistics analysis will produce the same modeling results as MLR if location has no
impact on the lake dataset. The ordinary least square (OLS) regnesttood, whichs the
multi linear regression method used in ArcGIS, wsead to test the significance of the location
of the lake variables. If location is an important independent variable for the Lake Champlain
study, thergeographically weighted regressiddWR) toolfrom ArcGIS is used where location
is considered as andapendent input variable that affects the model. In the final stage of the
analysis, the spread and distribution of the pollutant (chlorofyhd of the variabégwater
guality parameters) watetermined by creating maps using HErapirical Bayesian Kging
(EBK) method.
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Figure 3.5 Lake Champlain eutrophication modeling using the GIS integrated analysis approach
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CHAPTER 4

CASE STuDY: LAKE CHAMPLAIN
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4.1 An Overview of Lake Champlain

This lake is one of the largest glacially formakiesin North America (seedure 41). It
is situated partially in Vermont and NY states, USA, and partially in Quebec, Canada. Its
approximaé dimensions are: L=193 km, maximum width =30 kratershed =2km?, surface
area =110&m? maximumdepth =122 m (mst is shallow =1.5n), mean depth =18. The lake
has 5 different environmental zones (http://www.lakechamplaincommittee.org/learnfmatural
history-lake-champlainaccessed on Dec 2014 hefive major segmentsf the lake are

>\

The South Lake, which is long skinapd shallow

>\

The MainLake, whichis the deepesand widest section of the lake.

>\

Malletts Bay circumscribed by historical railroad and road causeways

>\

The Inland Seawhichlies o the east of the Hero Islands.
A TheMissisquoi Bay and is large and discrete bay rich with wildlife.
This geographyas used in the case study to improve the results of the multiple linear

regression and idatamining classification analysis

No. | Variables Definition
j =
1 E:hslo;os)hzlk)a (Chla) Biomarker for Cyanobacteria algal blooms (CABS) %
5 Total Phosphorus #H) Pollutant from agriculture and industry, a nutrient for g
(egl/ L) CABsgrowth g
. A highly reactive gas, used as a disinfectant in water o
3 Chloride (Cl) €9/L) Treatment %
4 Secchi Depth (Secchi) | Measure of water clarity/turbidity, a physical indicator % ®
(m) of bacterial growth =g
5 Total Nitrogen (TN) Pollutant from wastewater from agriculture and industry, 'c_%
(egl/ L) a nutrient for CAB growth. g
6 Temperature (TYC) Surface temperature &8
The quantitative capacity of an aqueous solution to ﬁ
RegAlk . . X~
7 neutralize an acid <
8 Depth (m) Monitoring stations samplindepth

Table 4.1 Names, abbreviations and definition of water quality monitoring parameters (variables)

used in the LEF modeling studies, using Lake Champlain data.
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4.2 Raw Dataand Variablesfor the Lake Champlain Case Study

Environmental stress on Lake Champlain started in the early 1980s when phosphorous
levels from agricultural runoff and municipal sewage treatment plants caused excessive
cyanobacteria algal blooms (CABs), which resulted in drinking water contaminated by
trihalomethanes (THMs) produced by the CABs, and the presence of nuisance plant species such
as the genus Salvinia aadvide range of Cyanobacteria algae (Amsterdaai.,2005). The
water quality parameters (variables) used in my modeling studies ara shdable 4.Jabove
together with their abbreviations and definitions. The source of the data on water quality
parameters (including chloropmdl concentrations) used in the present study was from the state
of Vermont, which decided to share Lake Chaampln 6 s envi ronment al dat a
help researchers conduct studies that could p
Agency of Natural Resources, 2011). This data included information on total maximum daily
loads of pollutants, avalitde to the public and researchers via the Lake Champlain watershed
management web site (www.watershedmanagement.vt.gov), accessed for this thesis project on
Dec 2012.

Section 303(d) of the Federal Clean Water Act 1972 obligated all states in USA to
identify waters for which wastewater effluent did not attain water quality standards. In 1998, the
US Environmental Protection Agency (USEPA) defined the total maximumlIdadg
(TMDLs) framework for determining acceptable levels of nutrients in fresh water lakes.

According to the 2001 Clean Water Action Plan, Vermont had to determine the TMDLs for the
pollutants causing water problems in Lake Champlain and present a stgyoposed
solutions (Lake Champlain Phosphorus TMDL, 2002).

4.3 Lake Quality Criteria

Global drinking water guidelines are based on the world health organization (WHO).

According to WHO, the provisional value for cyanobacteria concentration ikimyiwaters is

1. 0 Eayveéver, WHO does not provide any criteria for the acceptable levels of total

phosphorus or nitrogen concentration within lakes, rivers or reservoirs.
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In the United States, there are no federal regulatory guidelines for cyasridéaligae)
concentrations in water (EP&L0F11001, 2012). However, section 303(d) of the Federal Clean
Water Act obliges each state to distinguish waters for which wastewater effluent limitations are
not sufficient to attain the quality standards, ansuggest solutions based on studies and filed
data analysis to obtain the required funding to solve the water problem. The water quality
standards and criteria change from one lake to another, even within a single lake we may see
different criteria, and good example for that is lake Champlain, where there are various criteria
within lake Champlain due the difference in the hydraulic retention time between the lake
segments where the time varies from two months to three years, resulting in significant
difference in the nutrient distribution within the lake basin. The standards and criteria set for
Lake Champlain were derived from: Tyophiccategorization schemes for lakesg; Table
4.2);2) Lake user survey and analyses between predicted and recafdesd for total
phosphorus () concentrations (Smeltzer, 1999);The 1993 Water Quality Agreement, which

establish P targets for B segments of Lake Champlain.

Selected Lake Champlain Water| Depth Current Level Criteria Targets
Quality Monitoring Stations (m) (2011)
TPe g /[Chlag g /TPe g/ |Chlag g/
02- South Lake B 5 52 10557 25
04 - South Lake A 10 a7 16677 25
07 - Port henry Segment 50 21 6374 14
09 - Otter Creek Segment 97 18 6177 14
16 - Selburne Bay 25 16 5830 14 ®©
19- Main Lake 100 | 16 | 4836 10 g
21 - Burlington Bay 15 16 | 4961 14 g
25 - Malletts Bay 32 15 2928 10 Q
33- Cumberland Bay 11 20 4568 14 E
34 - Northeast Arm 50 23 4250 14 S
36- Isle LaMotte (off Grand Isley 50 18 3043 14
40- St. Albans Bay 7 31 5770 17
46 - Isle LaMotte (off Rouses Pt 7 21 3941 14
50 - Missisquoi Bay 4 50 10658 25
51 - Missisquoi Bay Central 5 53 16196 25

Table 4.2 Lake Champlaphosphorus criteritargets2011vs. observed values for the same year
(updated and modified from Lake Champlain Phosphorus TMDL, 2002).
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The way criteria levels were decided for Lake Champlain segments was explained in the
Vermont DEC (1990) as well as in Lake Champlain basin program (1996), and is summarized as
follows:

1 Main Lake and Mallets Bay segments are large central broad aredewvitlitrient
level; therefore an oligotrophic standard of 0.010 mg/L phosphorus is desirable for these
two segments.

1 Inthe remaining parts of the lake, the phosphorus concentrations are significantly higher
than 0.010 mg/L, consequently the attainapfiitr these segments to oligotrophic
criterion is doubtful. Therefore, higher criteria level of 0.014 mg/l was chosen for the rest
of the lake (except for St. Albans Bay, Missisquoi Bay, and the South Lake). The mean
value of 0.014 mg/L represents a phazpis level at which an algae nuisance condition
would be present only 1% of the time during the summer.

1 St. Albans Bay, Missisquoi Bay, and the South part of the lake are highly eutrophic
segmentstherefore the target of 0.014 mg/l criteria would notdaistically attainable.

There have been many attempts in St. Albans to reduce phosphorus levels including

treatment plant upgrades and nonpoint source controls. The water quality set by the

Vermontdepartment of environmental conservat{®tC) in the St Albans Bay aim is

to reduce the phosphorus in the center bay area to a concentration of about 0.003 mg/I

above the level outside the bay in the Northeast arm. Thus, a phosphorus criterion of

0.017 mg/l was selected for St. Albans Bay.

1 Missisquoi Bay andhe South lake segments are shallow depth and have wetland like
characteristics therefore, they are considered as naturally eutrophic (high nutrient) areas.
The high eutrophic state in Missisquoi Bay area has beneficial values for productive
warmwater fidheries and wildlife habitats. Therefore, a phosphorus criterion of 0.025

mg/l reflecting a moderate level of eutrophication was selected for these segments.

Recent and historical phosphorus and cyanobacteria concentrations in lake Champlain
have exceeche desired criteria levels. In many cases the recorded values were more than
double of the desired criteria. Figure 4.2 shows the phosphorus levels in Lake Champlain

compared with water quality criteria.
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Figure 4.2 Phosphorus levels in Lake Champdeid water quality criteria (Lake Champlain
Phosphorus TMDL, 2002).
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4.4 Data Collection and Quality Analysis

The process of data entry and acquisition is inherently prone to errors and the raw data
from the Lake Champlain monitoring stations did resteal much information. A thorough data

preparation and cleansing was required before starting with modeling and statistical analysis.

A -Data source, format and units

The process of Lake Champlain monitoring station data entry and acquisition is
inheently prone to errors; | ake Champlainds dat
Champlainong-termwater quality program. After downloading the data, it is then sorted and
transformed into one file of MS excel. To simplify the analysis alldbncentrations for the

different water quality parameters are unified and converted/to
B -Data quality analysis

For Lake Champlain, data quality control is implemented through the Vermont
department of environmental conservation (DEC), whitegHie research data quality control is
implemented through filtration of outliers and working with averages.
C -Monitoring frequency

Since 1992 volunteers helped collecting the data for Lake Champlain between 1992 and

2011. The database contained 12,88cords for 33 variables. Table 4.4 lists the variables, their

monitoring range and frequency while figure 4.3 shows the location of the monitoring stations.
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Variables Code Units Date Range Lab Sampling Frequency
Total Phosphorus TP eg/ L |1992-2011 |0 and | 46 ear
Dissolved Phosphorus | DP eg/ L |1992-2011 |0 and | 46 ear
Ortho-Phosphorus DOP |gg/ L |1992 -1994 \,\/II( and |
Chloride cl mg/L 1992- 2011 \,\/II( and | 16 ear
Dissolved Silica DSi mg/L 1992- 2011 \,\/l-\l; and 10/year on a 5 yr cycle
Total Nitrogen TN mg/L 1992- 2011 VT 10/year
Total Kjeldahl Nitrogen TKN mg/L 1992- 1996 NY -
Total NitrateNitrite TNOX | mgiL 1992-1996 | and |
Total Ammonia TNH3 | mg/L 1992- 1996 \N/-I\—( and | _
Calcium TCa mg/L 1992- 2011 \N/-\I; and 3lyear on &yr cycle
Magnesium TMg mg/L 1992- 2011 \N/-\I; and 3lyear on a 5yr cycle
Sodium TNa mg/L 1992- 2011 \N/-\I; and 3lyear on a 5yr cycle
Potassium TK mg/L 1992- 2011 \N/-\I; and 3lyear on a 5yr cycle
Iron TFe € g/ L |1992-2010 \N/-\I; and 3lyear on a 5yr cycle
Lead TPb eg/ L |1992-1998 NY -
Total Organic Carbon TOC mg/L 1992- 1999 NY -
Dissolved Organic Carbon| DOC g/L 1992- 1999 NY -
Dissolved Inorganic DIC mglL 1992- 1996 NY i
Carbon
Temperature TempC | deg C 1992- 2011 VT 10/year
Dissolved Oxygen DO mg/L 1992- 2011 VT 10/year
Conductivity Cond €S/cm 1992- 2005 VT 10/year
pH pH - 1992- 2005 VT 10/year
Alkalinity RegAlk | mg/L 197 2011 VT 3lyear
Total Suspended Solids | TSS mg/L 19921 2005 \N/-\I; and |
VT and

Chlorophylta Chla e g/ L |1992i 2011 Ny 10/year

. ) VT and
Secchi Depth Secchi | m 1992i 2011 Ny 10/year

Table 4.4 Lake Champlain variables and their monitoring range and frequen
(Lake Champlain Phosphorus TMDL, 2002).
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Pike River
Great Chazy River Rock River

Little Chazy River, issisquoi River

Saranac River

Salmon River Larmoille River
Little Ausable River

Winoosk River
Ausable River 1

Bouquet River La Platte River

Lewis Creek

Little Otter Creek

Otter
Creel

FPutnam Creek 4

O Tributary Site
@ Lake Site

2 Foultney River

Mettawee River

FigarLteake Champlain monitoring statiog2®)ldwww. v
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D -Gaps and range

Some of theeasons that contributed to problewithin the lake data were:

>\

Monitoring stations for Lake Champlain were introduced oviéerdint periods of time.

>\

New variables are being introduced while others were dropped.

>\

The collection of the variables was not made concurrently as would be desirable for the
purpose of analyzing ecological interrelationships.

As a result, the monitorghperiods varyetween the lake variables and between one
station and another, therefdhe lakedaily datais full of gaps and missing rangé<r example

out of the 12,994 data records for [aBReamplain not a single row contained a complete set of
corcurrent reading for a set of variabl@$is wasa major setbaclsince emptyells typicall are
dropped or interpolated during analysis, another challenge is that : thampsssing ranges

for severalvariables exceexti20 monthsthusmakinginterpoltion,or exploration a difficult
task.Table 4.5.ofthe yearly data fostation07 Port Henryof Lake Champlainijlustrate the

extent of thegapsproblem

Year | Depth| TP Cl TN |TCa| Minerals | Toxic |TOC|TempC| DO | pH | Secchi|RegAlk| Chla
1992| 50 |13.58|11742|509.58 13847.44| 22 | 4.3 | 16.54 7.98| 4.33 | 53.91 | 5.63
1993| 50 |18.25|11501( 456.79 12804.96| 15.75|3.95| 23.5 7.67| 3.63 | 54.3 | 5.25
1994 50 |15.78|11987| 460.9 12608.9 | 22.72| 8.84| 22.16 7.21| 3.68 | 53.55| 5.27
1995| 50 |10.33|13175( 384.44 11718.8 | 5.2 |15.3| 15.75|10.18|7.54 5.23 | 53.02 | 3.05
1996| 50 |13.88| 12524( 445.33 12156 5 |[4.75 16.48 | 9.96 | 7.91] 4.06 | 51.1 | 4.44
1997| 50 |13.23|12184| 454.4 13140.5| 5.13 | 3.33| 24.02 | 10.53| 7.8 | 4.27 | 53.9 | 4.78
1998| 50 |13.75|12076| 438.5 10367.67| 5 [4.86| 17.12 [10.28(7.77| 3.96 | 54.6 | 4.72
1999| 50 |13.39|12641| 460.33 14121 3.56| 19 |10.39|7.82| 4.92 | 50.41 | 6.83
2000| 50 |15.31f12575|451.25 14322.13 25.86 | 10.32| 7.72| 4.22 | 51.62 | 5.98
2001| 50 |12.93|13163|479.83 14695.25 23.18 | 10.54| 7.74| 4.47 | 53.23 | 3.49
2002| 50 |10.59(13979| 400.6 15113 17.84 [ 10.15(7.78| 5.03 | 51.63 | 1.82
2003| 50 |12.92(15093| 433.39 15717.7 25 |10.42|7.84| 495 | 51.23 | 5.46
2004| 50 |16.44(14981|412.08 16243.6 2368 | 10.2 (791 4.4 | 51.95| 545
2005| 50 |16.36(15344|410.54 14793.88 12.18 | 10.41| 7.84| 3.1 52.6 [10.34
2006| 50 |17.13|14582| 438.3 20.54 | 10.06 3.46 | 5453 | 6.17
2007| 50 |14.61|13843|438.02 18.43 | 10.34 405 | 5191 | 4.92
2008| 50 |18.69(14720| 444.25 8.7 |10.22 3.6 | 53.36 | 4.8
2009| 50 |16.64(14583|407.57 229 | 108 347 | 555 | 4.9
2010| 50 | 16.5 (14155 363.72 15286.75 13.1 [10.29 3.55 | 57.13 | 4.87
2011| 50 |22.12|12926| 405.12 15466.67 21.98 | 10.21 2.66 | 55.32 | 6.25

Table 4.5Port Henry segment (09f lake Champlaimbservediata.
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| presentedable 4.5 with the yearly data since it was easier to shoextieat of the
problem, however, | started the analysis using the daily data, where the problem is greater. The
biggest challenge is that for the Lake Champlain data, each water quality monitoring station
exhibits a set of different problems with their @dnles, and due to the size of the gaps and long
missing ranges within the data set, interpolation or extrapolation does not work. As an alternative,
| decided to analyze the distribution of the data in order to reveal trends, to make estimating the
gaps ad missing ranges easier. Trends can be investigated either visually or using statistical
tests like MannKendall. Previous studies indicate that this approach is likely to see curves and
nonlinear shapes of the data for water quality parameters, rathesttamht lines. Figure 4.4

shows the different types of nonlinear curves that we may expect to see in a data set.

/ wivh
/ \ |\ /|-

Monolonic Curve Monotonic Curve Monmonolonic Curve  Nonmonolonic Curve

F

Figure 4.4 Nonlinear curve types (http://epa.gov/ncct/edr; accessed in June 2014)

A monotonic curve consistently stays in one direc{mther always upwards or always
downwards), while a nonmonotonic curve keeps changing its direction (G. Brewka, 1991)
Figure4.5 shows the yearly Calcium observed data for monitoring station 02 (South Lake B)
again | usd yearly data to show the extesftthe problem. Within the data there is 36 months
gap between 1992 and 1995, such gap can be clearly seen on the graph, at the same time the data

seems to take a nanonotonic distribution throughout the recorded range.
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Figure 4.5Y earlycalcium datdor lake Champlain water quality monitoring station 02.

45 Data Preparation

Vi sual inspection of the daily, monthly an
obvious trend, thus making it difficult to fill in the gaps within the lake dehterefore, | used

the following analysis approaches to fill in the gaps within the data.

A -Linear and nonlinear interpolation

Manri Kendall MK)test al so known as the AKendall 6s t
parametric test used to assess the sgamfie or existence of a trend within a data series. The
probability value P for the MK statistical test for a dataset is (Kendall MG. 1975):

™ OMEMi VE 01 Q¢ Q
0 00 o MOMi WHi 01 &€& NINe C Eq.4.1
O0eddR MM VI 01 NEQ OOCRUAE Q

Due to the size of the Lake Champlain dataset, statistical analysis software package
Systat 13 was used to run the MK test ond&iy, monthly and/early data.

The MK test for the variablminerals for the daily and monthly data did not provide any

significantresults;however, for the yearly data presentedhiple 4.5, the results indicated a
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significant P value for both upward and downward tremtticating a twesided trend. The MK
test also indicated that the upward trend better describes the general data distribution.

The Systat 13 software detected the gaps within the data usihtiKthest: the gap in the
middle of the series from 2005 t#D10, and the missing values for the years of (2006, 2007,
2008 and 2009Bystat 13 automatically interpolated these gapd he interpolation was

completed using local quadratic smoothing as shoviigime 4.6.

17,000 . . . |

16 000 —

Minerals
>

15,000 — e N T _

-~ [*— S

14 000 [— . [ B Interpolated Gap —

12,000 — . A f _
12,000 {— AR _
11,000 [— \vf _

Year
10,000 L L L L
1990 1995 2000 2005 2010 2015

Figure 4.6 The MarirKendall test anthe interpolation.

This interpolated gap approach is typical of many software packages; they either fill the
gaps or completely ignore the misgirange. The gap in theineralvariables yearly data was
common across all the monitoristationsh ence 1t wasnodét possible
compared the minerals data distribution against ataeables, whictdid have a compte data
range. | scaled theP and Cl variables data records up toafithin the same range as the
minerals datasetind the results are plotted igdre 4.7. | noticed that in the gapriod, the
datasets for bothHand Cl exhibited a neamonotonic behavior, while the interpolated data
range fomminerals, which was done using the MK test, was a straight line. Addityo before
and after theange, thelatasets for all three variables had-moonotonic behavior. This
provided enough evidence to raise doubts about the interpolated results and to stop the
investigation using MK trend analysis as a tool to fill inglags ando predict the missing data

ranges.
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Figure 4.7Y early TP, Cl and minerals chart for lake Champlain Port Henry

Further investigation of the lake data shows that the lake variables havarsnotonic
data distribution therefore; linear inp@ation or extrapolation was not an option.

An earlier study of Lake Champlain suggests that using mean values of water quality
parameters produced a relatively high degree of statistical precision (Snetleded,989). By
using the mean values waweve many of the unwanted gaps, therefore daily data for Lake
Champlain was averaged to produce monthly data, however the monthly data also had several
gaps and missing range, so the investigation and the data cleansing process continued on the
monthly dah. To avoid presenting redundant results, | skipped presenting the analysis for the
daily and monthly data, although | have thoroughly investigated each set, and I directly used the
yearly data throughout the rest of the thesis. However, even the ydarbtildad gaps and
missing ranges, so | used the approach described below to complete the ranges and fill in the
gaps for the yearly data of Lake Champlain, in order to avoid dropping a variable from the
analysis.

Assuming we manage to get the inforroatabout the equation that best describes the
data distribution over a significant period, then it is possible to use the function to estimate the
gaps and missing range within the data (hal, 2003). These authors proposed using discrete

Fourier transform for time series data, while other studies (Xiang and, Ge88 suggested

37



using Fuzzy logic or recommend neural networks. FindGraph data mining software package is a
tool that facilitates the search through 10s of different functions (e.g. Limgmes$sion, Fourier,
Polynomial, Exponential, Logarithm, Power and Waveform) to produce models that fit the data
under investigation.

Figure 4.8 is a screen shot of FindGraph software during the setup process; the screen
shot reveals the different availallime series functions that were used to estimate the Lake

Champlain water quality monitoring data distribution.

')

Find the best line {step 4 of 6) ﬂﬂ
Select functions Al Polynammial degreel 153:
Linear regression - MODEL | FUMCTIOM | ﬂ
Fourier Linear regreszion | [deagree ) —
R ationals Linzar regression | [deagree 1)

Folynomial Linear regreszion | [degree 2)
E xponential L!near regresx!nn [dearee 3)
L ih Linear regreszion | [degree d4)
ogarthm Linear regression | [dearee &)
Power Linear regression  [degree B)
[ Hyperbola Linear regreszion | [dearee 7)
[ Rational Linear regreszion | [degree 8)
Sigmaidal Linear regreszion | [deagree 9)
Paak Linear regreszion | [degree 10)
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Figure 4.8Data mining(FindGraph analysis

The variableminerals data fromatble 4.5 was used for the test run, but this time the data
was split into two halves: the firgalf (years 1992 till 2001) was used to generate the time series
model; while the seconskt petween 2002011) was used to verify the model. FindGraph
softwake investigated more than 999,999,999 iterations in less than 2 minutes. Several models
were generated and were sorted according to theilRBeShe best curve fit model that

represented the minerals data distribution between 1992 till 2001 was a kowiem with 3
harmonics.
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Minerals(t)= 12603.92 +(804.73*cos(0.78*t) +76.33*sin(0ty8
+(773.25*cos(1.57*t) + 26.41*sin(1.5)) +(74.06*cos(2.3%) - Eq.4.2
1044.27*sin(2.35t)

Figure 4.9Data mining(FindGraph)esults

Figure 4.9 shows the Fourier function with 3 harmonics as found by FindGraph software
and infigure 4.10 the actuaécorded data faminerals from &ble 4.5 is plotted against the

Fourier time function for comparison.

== Minerals == Predicted Minerals (Fourier model)
17000 -

16000 -
15000 -
14000 -
13000 -
12000 -

11000 -

10000 . .
1990 1995 2000 2005 2010 2015

Figure 4.10 Minerals Fourigrredictionsfor station 02
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