
 

CONCORDIA UNIVERSITY  

 

A GIS BASED MODELLING APPROACH TO ASSESS LAKE 

EUTROPHICATION  

 

 

Linda El Farra  

 

 

A Thesis  

In 

The Department 

of 

Building, Civil and Environmental Engineering 

 

 

 

Presented in Partial Fulfillment of the Requirements  

for the Degree of Master of Applied Science (Civil Engineering) at 

Concordia University 

Montreal, Quebec, Canada 

 

 

 

 

April  2015 

© Linda El Farra 2015 

 



CONCORDIA UNIVERSITY  

School of Graduate Studies 

 

This is to certify that the thesis prepared  

By:   Linda El Farra  

Entitled:  A GIS BASED MODELLING APPROACH TO ASSESS LAKE 

EUTROPHICATION 

 

Submitted in partial fulfillment of the requirements for the degree of  

Master of Applied Science (Civil Engineering) 

Complies with the regulations of the University and meets the accepted standards with respect to 

originality and quality. 

 

Signed by the final examining committee: 

 

Dr. M. Elektorowicz,  _______________________ Chair  

Dr. Z. Chen, BCEE, _______________________ Supervisor  

Dr. A. Awasthi, CIISE, _______________________ External-to- Program  

Dr. S. Rahaman, BCEE, _______________________ Examiner 

 

 

Approved by 

    _________________________________ 

    Chair of Department or Graduate Program Director 

 

 

    _________________________________ 

    Dean of Faculty 

 

Date    15/ 04 / 2014  



iii  

ABSTRACT 

A GIS Based Modeling Approach to Assess Lake Eutrophication  

Linda El Farra 

 

 Large proportion of the worldôs readily available water supply is at risk due to the rapidly 

increasing populations of certain types of harmful algae. During the photosynthesis, species like 

blue-green algae and cyanobacteria consume nutrients and produce toxins that have potential 

adverse effects to humans and animals. 

 This thesis focuses on developing a GIS-based statistical approach to explore the water 

quality parameters facilitating the algae bloom, and to geographically map the extent and spread 

of these parameters to enable tracking and prediction of potential algae outbreaks. 

 The relationship between Chlorophyll-a, which represents the concentration of algae 

biomass, and the water quality parameters such as depth, phosphorus, nitrogen, alkalinity, 

suspended solids, pH, temperature, electrical conductivity, dissolved oxygen and secchi depth is 

analyzed though correlation matrix then by utilizing modeling techniques including multiple 

linear, nonlinear regression, neural network and data mining prediction models are developed to 

quantify the contribution from essential water quality parameters to eutrophication. 

 The developed GIS and statistical analysis approaches have been applied to the Lake 

Champlain. The performance for the developed statistical, neural network and data mining 

chlorophyll-a models has been examined through the comparison with the observed field data 

and through statistical error analysis. Two new techniques have been examined in this thesis 

study. First, data mining has helped to reveal the nonlinear behavior of algae growth in some 

parts of the case study area. Second, the GIS spatial analysis is employed to visualize the spread 

and extent of the water quality parameters and the algae chlorophyll-a, which graphically present 
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the location-based impact of eutrophication on important lake water resources. For example, the 

analysis of the GIS-based impact maps suggests that the algae is affecting the Vermont section of 

Lake Champlain mainly the Northern and Southern section. The developed models suggest that 

algae production is affected by nutrients particularly phosphorus. When phosphorus is 

encountered at low to mild concentrations, the nutrient is linearly affecting algae production, 

however, at extreme concentrations of the nutrient the relationship between nutrient and algae 

production become nonlinear. The developed GIS model along with the statistical analysis 

applied on lake Champlain suggest that Extreme levels of Nitrogen in north and Chloride in the 

South caused deviations in the models prediction accuracy  

  

  



v 

 

ACKNOWLEDGEMENTS  

 

 I would like to thank my supervisor, Professor Dr. Zhi Chen, for his ongoing support 

throughout this work and for offering me his helpful advice and guidance throughout all of my 

studies at Concordia.  Also I would like to express my sincere gratitude to Dr. Ann-Michele 

Francoeur for her helping and support. 

 I am very grateful to Mr. Eric Smeltzer from ñVermont Department of Environmental 

Conservationò who gave me insightful information on Lake Champlain.  

 I consider myself lucky to be surrounded by a supportive family and good friends. I 

wouldnôt have been able to reach my goals without their encouragement and support. 

  



vi 

 

TABLE OF CONTENTS  

LIST OF TABLES  ....................................................................................................................ix 

LIST OF FIGURES  .....................................................................................................................x 

LIST OF SYMBOLS..................................................................................................................xiii  

LIST OF ABBREVIATIONS ....................................................................................................xiv 

CHAPTER 1: INTRODUCTION  ................................................................................................1 

 1.1 Background éééééééééé...........................................................................2 

 1.2 Thesis Objective ............................................................................................................4 

 1.3 Organization of the Thesis ............................................................................................5 

 

CHAPTER 2: LITERATURE REVIEW  éé...........................................................................6 

 2.1 Lake Eutrophication ééééééééééééé..................................................7 

2.1.1 Phosphorus cycle.....éééééééééééééééééééééé7 

2.1.2 Nitrogen cycle. é..ééééééééééééééééééé.ééé8 

           2.2 Review of Lake Eutrophication Models. éééééééééé..éé.éé.éé...9 

 2.3 GIS- Based Lake Assessment and Managementéééééééééé...ééé...11 

 

CHAPTER 3: METHODOLOGIES  .........................................................................................12 

 3.1 Lake Nutrient Level Standards ...................................................................................13 

 3.2 Chlorophyll-a Lake Eutrophication Statistical Models that Use Multiple  

Linear Regression (MLR) ..........................................................................................13 

 3.3 Chlorophyll-a Lake Eutrophication Models that Use Multiple Nonlinear  

Regression (MNR) .....................................................................................................15 

 3.4 Chlorophyll-a Models that Use Data Mining (DM) ...................................................15 

 3.5 Chlorophyll-a Model Evaluation Techniques .............................................................16 

  3.5.1 Determination of coefficient R
2
 ...................................................................16 

  3.5.2 Standard error of the estimate ......................................................................17 

  3.5.3 Confidence interval and critical value .........................................................18 

 3.6 GIS Based Modeling and Assessment ........................................................................19 

 



vii  

CHAPTER 4 CASE STUDY: LAKE CHAMPLAIN EUTROPHICATION é....................22 

 4.1 An Overview of Lake Champlain ...............................................................................23 

 4.2 Raw Data and Variables for the Lake Champlain Case Study ...................................25 

 4.3 Lake Quality Criteria ..................................................................................................25 

 4.4 Data Collection and Quality Analysis .........................................................................30 

  A-Data source, format and units  ..........................................................................30 

  B- Data quality analysis ........................................................................................30 

  C- Monitoring frequency ......................................................................................30 

  D-Gaps and range  ................................................................................................33 

 4.5 Data Preparation  .........................................................................................................35 

  A-Linear and nonlinear interpolation  ...................................................................35 

  B-Extreme and outliers detection   ...................................................................40 

  C-Selecting data range and variables ....................................................................43 

 4.6 Modeling Steps ...........................................................................................................44 

  4.6.1 Multiple linear regression  ...........................................................................45 

  4.6.2 Neural network analysis  ...............................................................................48 

  4.6.3 Data mining ..................................................................................................49 

  4.6.4 Geostatistical analysis ..................................................................................49 

 

CHAPTER 5: LAKE CHAMPLAIN CHLOROPHYLL -a STATISTICAL  

MODELING RESULTS  .....................................................................................51 

 5.1 Correlation Matrix Analysis Results ...........................................................................52 

 5.2 Determination of Analysis Data Set ...........................................................................55 

 5.3 Chlorophyll-a Modeling Using Multiple Linear Regression (MLR) ..........................55 

  5.3.1 SPSS statistical analysis ...............................................................................55 

  5.3.2 ANOVA analysis of the variance of the MLR models ................................56 

  5.3.3 Multiple linear regression (MLR) results ....................................................56 

  5.3.4 Discussion of MLR model # 6 .....................................................................59 

 5.4 Lake Champlain Chlorophyll-a Modeling Using Multiple Nonlinear  

Regression (MNR) .........................................................................................64 

 5.5 Lake Champlain Chlorophyll-a Modeling Using Neural Networks NN ....................64 



viii  

  5.5.1 NN model #8 verification  ...........................................................................69 

 5.6 Lake Champlain Chlorophyll-a Modeling Using Data Mining (DM) ........................71 

  5.6.1 DM modeling and water quality variables ...................................................71 

  5.6.2 Lake Champlain DM model #1 verification and comparison with  

MLR model #6 and NN model #8 ...............................................................72 

5.6.3 Comparison of chlorophyll-a DM, NN, MLR models with actual 

observations .................................................................................................74 

 5.7 Discussion of the Results ............................................................................................78 

  5.7.1 Low to moderate water nutrient conditions .................................................78 

  5.7.2 High water nutrient conditions......................................................................78 

  5.7.3 Causes of the model errors ...........................................................................79 

 

CHAPTER 6: LAKE CHAMPLAIN CHLOROPHYLL - a GIS SPATIAL ANALYSIS 

RESULTS .............................................................................................................80 

 6.1 GIS Based Modeling Results ......................................................................................81 

 6.2 Determination of the Statistical Model Variables .......................................................81 

 6.3 Model Results and Model Configuration ....................................................................82 

  6.3.1 Statistical model with all input variables .....................................................82 

  6.3.2 Statistical model with selected variables .....................................................83 

 6.4 Spatial Trend Analysis ................................................................................................84 

 6.5 GIS Based Statistical Model Validation and GIS Results for TP and Chla ................92 

CHAPTER 7 CONCLUSION AND CONTRIBUTION ..........................................................96 

 7.1 Conclusion ..................................................................................................................97 

 7.2 Contributions of the Research .....................................................................................98 

 7.3 Future Studies ...........................................................................................................100 

REFERENCES...........................................................................................................................102 

APPENDICES............................................................................................................................114 

Appendix A: Lake Champlain Outliers......................................................................................115 

Appendix B: Multiple Linear Regression Matlab Code ............................................................117 

Appendix C: Multiple Nonlinear Regressions ...........................................................................121 

Appendix D: Data Mining Results .............................................................................................123 



ix 

 

 

LIST OF TABLES 

Table 4.1 Names, abbreviations and definition of water quality monitoring parameters  

(variables) used in the LEF modeling studies, using lake Champlain data.....................23 

Table 4.2 Lake Champlain phosphorus criteria targets (2011) vs. observed values......................26 

Table 4.3 Lake trophic criteria.......................................................................................................27 

Table 4.4 Lake Champlain variables and their monitoring range and frequency .........................31 

Table 4.5 Port Henry segment (07) of lake Champlain observed dataéééé.é.....................33 

Table 4.6 Lake Champlain variables monitoring range and frequency ........................................43 

Table 4.7 Lake Champlain yearly data for (1993-2011)................................................................46 

Table 5.1 Pearsonôs correlation matrix results éééé..............................................................52 

Table 5.2 Lake Champlain MLR modeling results for (2003-2011).............................................57 

Table 5.3 Chlorophyll-a (Chla) MLR coefficients of the six lake Champlain MLR modelséé58 

Table 5.4 ANOVA analysis of the six lake Champlain MLR models...........................................59 

Table 5.5 Lake Champlain early years data, bootstrapping model results....................................63 

Table 5.6 Results of lake Champlain DM model #1for (1992-2011)............................................71 

Table 5.7 Summary of chlorophyll-a models described in this thesis. .........................................78 

Table 6.1 GIS based model #1(OLS) results. ééééé...........................................................82 

Table 6.2 GIS based model #2 (OLS) resultséé........................................................................83 

 

  



x 

LIST OF FIGURES 

Figure 2.1 Phosphorus cycle in lake Champlainéééééééééééééé..ééé..é..7 

Figure 2.2 Nitrogen cycle in lake Champlain. éééééééééééééééé..ééé..9 

Figure 3.1 R
2
 for unfit models ......................................................................................................17 

Figure 3.2 Error distributions.........................................................................................................18 

Figure 3.3 Bell shape error distribution ........................................................................................18 

Figure 3.4 GIS hierarchy ...............................................................................................................20 

Figure 3.5 Lake Champlain eutrophication modeling using the GIS ...éééééé.é...........21 

Figure 4.1 Lake Champlain watershed .........................................................................................24 

Figure 4.2 Phosphorus levels in Lake Champlain and water quality criteria ...............................29 

Figure 4.3 Lake Champlain monitoring stations............................................................................32 

Figure 4.4 Nonlinear curve types ..................................................................................................34 

Figure 4.5 Yearly calcium data for lake Champlain station 02.....................................................35 

Figure 4.6 The MannïKendall test and the interpolation ééééééé.................................36 

Figure 4.7 Yearly TP, Cl and minerals chart for lake Champlain Port Henry...............................37 

Figure 4.8 Data mining (FindGraph) analysis é..........................................................................38 

Figure 4.9 Data mining (FindGraph) results..................................................................................39 

Figure 4.10 Minerals Fourier prediction for station 02  ...............................................................39 

Figure 4.11 Screening Outlier daily data of TP for station 02......................................................42 

Figure 4.12 Model flowchart verificationééé.éééééé.................................................45 

Figure 4.13 Neuron in a neural network ......................................................................................48 

Figure 4.14 Lake Champlain polygon creationééé..................................................................50 

Figure 5.1 Cross correlation scatter plots for 8 independent water quality variables and the 

dependent variable chlorophyll-aééééééééééééé...éééé...........53 

Figure 5.2 MLR model #6 standard error distribution...................................................................60 

Figure 5.3 Lake Champlain chlorophyll -a levels by years (2003-2011) with MLR.....................61 

Figure 5.4 Lake Champlain chlorophyll-a levels by years (1992-2002) with MLR.....................62 

Figure 5.5 NN analysis water quality variables importance chart (top panel) and Chla observed 

values vs. NN model #8 predicted values for Chla (bottom panel)ééééé...é...66 

Figure 5.6 NN synaptic weight chart for lake Champlain later years data (2003-2011)é...........67 

Figure 5.7 Lake Champlain chlorophyll-a levels by years (2003-2011) with NN........................68 



xi 

Figure 5.8 Lake Champlain chlorophyll -a levels by years (1992-2002) with NN........................70 

Figure 5.9 Observed lake Champlain monitoring data (1992-2003) compared to predictions 

generated by three chlorophyll a models..éééééééééééé...éé.éé.73 

Figure 5.10 Observed lake Champlain monitoring data (2012 and 2013) compared to predictions 

from MLR model. ééééééééééé..é....................................................75 

Figure 5.11 Observed lake Champlain monitoring data (2012 and 2013) compared to predictions 

from NN model. éééé..éééééééééé...............................................76 

Figure 5.12 Observed lake Champlain monitoring data (2012 and 2013) compared to predictions 

from DM model..éééééééééééééééééééé........................77 

Figure 6.1 GIS-ordinary least squares analysiséé......................................................................82 

Figure 6.2 GIS Kriging inputs é..................................................................................................85 

Figure 6.3 GIS map showing a summary of lake Champlain total phosphorus levelsééé..é87 

Figure 6.4 GIS map showing a summary of lake Champlain total nitrogen (TN) levels éé.....88 

Figure 6.5 GIS map showing a summary of lake Champlain chloride (Cl) levels .......................89 

Figure 6.6 GIS map showing a summary of lake Champlain secchi depths .................................90 

Figure 6.7 GIS map showing a summary of lake Champlain alkalinity levels .............................91 

Figure 6.8 GIS maps comparing lake Champlain chlorophyll-a observed levels with TP observed 

levels between (2004-2011)ééééééééééééééééé..é............... 93 

Figure 6.9 Lake Champlain water quality monitoring station observed chlorophyll-a  levels 

compared to GIS model# 2 predicted levels.................................................................94 

Figure 6.10 Lake Champlain monitoring station observed Chlorophyll-a levels vs. MLR model#6 

predicted levelséé..ééééééééééééééééééé..éé....é...95  

  



xii  

LIST OF SYMBOLS 

   

Ὑ   Adjusted coefficient of determination  

RegAlk  Alkalinity  

ANOVA  Analysis of the variance 

Chl-a   Chlorophyll-a (ɛg/L) 

Cl   Chloride (ɛg/L)  

R
2
   Coefficient of determination 

ɓ   Coefficient of lake variables 

CI   Confidence interval thresholds 

CABs   Cynobacteria algal blooms 

DM   Data mining    

DO    Dissolved oxygen (ɛg/L) 

DIC   Dissolve inorganic carbon (ɛg/L) 

DOC    Dissolve organic carbon (ɛg/L) 

 Ů   Error 

TὊ   Iron (ɛg/L) 

TKN   Kjldahl nitrogen (ɛg/L) 

TPb    Lead (ɛg/L) 

Y    Model output (Dependent variable) 

Z    Model Inputs (independent variables) 

TK   Potassium (ɛg/L) 

ȑ    Predicted value 

Secchi    Secchi depth (m) 

TNa   Sodium (ɛg/L) 



xiii  

TempC  Temperature (deg C) 

TNὌ    Total ammonia (ɛg/L) 

TCa    Total calcium (ɛg/L) 

TMg   Total magnesium (ɛg/L) 

TMDLs  Total maximum daily loads 

TNOX   Total nitrate nitrate (ɛg/L) 

TN    Total nitrogen (ɛg/L)  

TOC    Total organic carbon (ɛg/L) 

TP    Total phosphorus (ɛg/L)  

TSS    Total suspended solids 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



xiv 

LIST OF ABBREVIATIONS  

 

DEC    Department of environmental conservation  

EBK    Empirical Bayesian Kriging  

EPA    Environmental protection agency  

ESRI    Environmental systems research institute   

GIS    Geographic information system    

GWR    Geographically weighted regression 

IWRM   Integrated water resource management     

IDW   Inverse distance weighted   

MK   MannïKendall test    

MLR   Multiple linear regression 

MNR    Multiple non linear regression   

NN    Neural network  

OLS    Ordinary least square  

SR   Symbolic Regression  

THMs   Trihalomethanes 

TSI    Trophic state index  

USGS    US Geological survey     

VIF    Variance inflation factor  

WHO   World health organization



1 

 

 

 

 

 

 

 

CHAPTER 1 

INTRODUCTION  

  



2 

INTRODUCTION  

 

 Water bodies respond differently to increased amounts of nutrients (Correll, 1998). Many 

factors contribute to eutrophication, including: hydrologic conditions, ecosystems, geology 

(Correll, 1998), sediment loading capacity (Froelich, 1988), and both urban and agricultural land 

use (Short et al., 1996). 

 

 

1.1 Background 

 

 The 2014 US Geological survey (USGS) report indicated that of the 1.386 Ὧά of total 

water on earth, only 0.77% (10.7 Ὧά) is usable fresh water and 1.74% is unusable fresh water 

present in ice caps, frozen glaciers and permanent snow. Unfortunately, a large proportion (70%) 

of the worldôs usable water supply is at risk due to contamination by environmentally harmful 

Cyanobacteria (also called blue-green algae). Cyanobacteria range in colour from green to red, 

and form large masses (called algal blooms) in warm shallow water that is slow moving or still. 

 During photosynthesis, cyanobacteria blooms consume nutrients essential for lake biome 

survival and produce toxins that are poisonous to the humans and wildlife living in the lake 

environment. These toxins include neurotoxins (affect the nervous system), and hepatotoxins 

(affect the liver), as well as those that irritate the skin and eyes. 

 The microcystins are a group of approximately 50 toxins produced by the 

cyanobacterium microcystis aeruginosa. These are important because they are chemically 

extremely stable in water of widely varying temperature and pH. Microcystin-LR is the most 

widely studied because it is found in fresh water supplies worldwide, and is undetectable by odor, 

taste or appearance. Symptoms of microcystin poisoning include diarrhea, abdominal pain, 

nausea, vomiting, headache, fever, irritated eyes and skin, and allergic reactions. Unfortunately, 

boiling microcystin-contaminated water does not remove the toxins or destroy their activity. 

 Chlorophyll-a (also called chlorophyll a) is a plant pigment that is a primary electron 

donor in the electron transport chain and essential for photosynthesis. Chlorophyll-a can be used 

as a biomarker for the presence of cyanobacteria, as there is a direct relationship between the 

mass of the cyanobacterial algal bloom and the concentration of chlorophyll-a in fresh water. 
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 These include the following physicochemical parameters of water: 1) temperature; 2) pH; 

3) electrical conductivity; 4)-6) concentration of phosphorus, nitrogen, and dissolved oxygen; 7) 

secchi depth (a measure of water clarity, inversely proportional to CAB growth). Secchi depth is 

measured using a circular secchi disk lowered into the water until it is not visible. Suspended 

solids, including CABs reduce water clarity. 

 Eutrophication is the oversupply of artificial or natural substances, mainly phosphates 

(e.g. pollution from fertilizers, sewage and detergents) to an aquatic system, which promotes the 

excessive growth and decay of plants and bacteria, including algal blooms. After these organisms 

die, oxygen depletion (hypoxia) occurs, which then inhibits the growth of fish and other 

organisms in the environment. Eutrophication decreases the value of lakes and rivers and impairs 

drinking water treatment. Eutrophication is one of most significant and widespread water quality 

concerns in the global environment. It causes premature ageing of lakes and other water bodies. 

The estimated damage cost of cultural eutrophication (from human activities) in the U.S alone 

exceeds $2.2 billion annually (Dodds et al., 2009). The ability of a lake to recover from 

eutrophication depends on the quantity of phosphorus in the lake sediment and in the volume of 

water in contact with the sediment. It may take decades before nutrients are naturally flushed out 

of lakes (Chambers et al., 2001; Hiscock et al., 2003). 

 Several studies have been published around lake Champlain, for example in 1989 a group 

of scientists from the Vermont Department of Environmental Conservation published a 

comprehensive study on lake Champlain, and concluded that it would be unrealistic to use daily 

data for lake Champlain to detect emerging lake eutrophication problems (Smeltzer et al., 1989), 

then in 1997 satellite images for the watershed was used to estimate the proportions of the 

baseline nonpoint source loads attributed (Millette, 1997), and in 2009 a Danish study suggested 

that eutrophication in lake Champlain is affected by the climate changes (Jeppesen ,2009). Many 

other studies around eutrophication are found and reviewed in section 2.2 and 2.3, and only a handful 

of these studies dealt with the GIS location characterization of water bodies (Aaby, 2005), and 

barely few studies exist that used data mining and computing power to reveal hidden pattern and 

information within the waterbodies data different timeframes (Petersen et al., 2001; Chen et al., 

2003 and Chau et al., 2007).    

 This study presents a new approach for exploding algae and eutrophication models 

 by searching for linear and nonlinear models using data mining, neural network and multiple 
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linear regression model throughout the different lake data timeframes, and by utilizing GIS 

location information to investigate the location impact on the lake eutrophication and algae 

spread. 

 

 

1.2 Thesis Objective  

 

 Few large-scale watershed eutrophication studies have been reported, and these have 

primarily focused on marine and coastal waters rather than on fresh water lakes, streams, rivers 

and reservoirs (Arheimer et al., 2000; Nixon et al., 2002).  Objectives of this thesis study 

include: 

A. To quantify the environmental variables associated with lake water quality such as: depth, 

phosphorus, nitrogen, alkalinity, suspended solids, pH, temperature, electrical 

conductivity, dissolved oxygen concentration and secchi depth contributions to algae 

bloom. 

B. To develop new statistical and generic algorithm based water quality models including 

data mining, nonlinear regression, and neural networks to assess and help to manage lake 

eutrophication 

C. To couple the developed lake eutrophication models with geographical information 

systems (GIS) to examine the location importance and impact on algae spread. 

D. To apply the developed methodology to the lake Champlain to further develop and 

validate field scale statistical linear and nonlinear chlorophyll-a models using data mining, 

neural network and multiple regression modeling techniques.  
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1.3 Organization of the Thesis 

 

This thesis is organized in the following seven chapters 

 Chapter 1 defines the scope of the thesis, and introduces eutrophication and its impact 

on cyanobacterial algal bloom (CABs).  Chapter 2 presents reviews of related literatures on 

eutrophication statistical studies, data mining and GIS-based studies on eutrophication.  Chapter 

3 summarizes the analyses used to create the chlorophyll-a models and the techniques used to 

evaluate the models.  Chapter 4 presents the Lake Champlain case study data and discusses the 

methods used to prepare the raw data for the analysis. In Chapter 5 data for the water quality 

parameters that contribute to CAB are analyzed using various techniques, the analyses are 

verified, and the results are compared to find the optimal set of prediction models.  Chapter 6 

shows how ArcGIS was incorporated to generate maps that illustrate the extent and spread of the 

CABs. Finally, Chapter 7 summarizes the results and provides suggestions and recommendations 

for future research. 
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2.1 Lake Eutrophication 

 

 Eutrophication is the process where a waterbody progresses from its current state to its 

extinction by gradual accumulation of nutrients and organic biomass (Das, 2003). Nutrients 

generally enter aquatic ecosystems sorbed to soil particles that are eroded into lakes, streams, and 

rivers (Sharpley et al., 1994). Human activities, excess use of fertilizers, mining phosphorus, 

animal feeds, agricultural crops, and other products, causing excess amount of nutrients to 

accumulate in soil thus altering the global phosphorus cycle (Schindler, 1977). The increasing 

nutrients levels in the soil elevate the potential amount that carried by runoff water to the aquatic 

ecosystems (Fluck et al., 1992).  

2.1.1 Phosphorus cycle  

 Usually external loading is the main factor determining the lakeôs trophic status because 

of its large scale (Horne 1998); In 2005 a study published by the European Environmental 

Agency (EEA) suggested that: although phosphorus and nitrate concentrations in inland 

freshwater systems declined, eutrophication continued and havenôt stopped, the continuation of 

the eutrophication was due to internal loading, therefore nutrients released to the water column 

from the sediment is a factor to be considered in lake eutrophication (Bostrom et al., 1988) and  

(Elwood et al., 1983). 

 

 

 

Figure 2.1 Phosphorus cycle in lake Champlain. Source: http://prezi.com  

accessed on August 2014 
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 Internal and external loading of phosphorus into a lake body is referred to as phosphorus 

cycle, and this loading is the results of phosphorus being very biologically active elements. 

Figure 2.1 shows the phosphorus cycle in Lake Champlain, where phosphorus arrives into the 

lake though runoff water or sorbed through soil particles. The phosphorus compounds are then 

hydrolyzed either chemically or enzymatically to orthophosphate which is the only form of 

phosphorus that can be digested by algae or microbial (Smith et al., 2009). Excess and heavy 

particulates of phosphorus are deposited to the bottom and gradually form the sediment part of 

sediment phosphorus is released back into the water column as orthophosphate or it stays in the 

sediment and forms phosphate rock formation, which later on is dissolved by rain, snowmelt, 

irrigation or runoff water and is deposited back into the soil, rivers and lakes to eventually makes 

sediments rock formation (Goodwin, 2011). 

 

 

2.1.2 Nitrogen cycle   

 

 When 71% of the earth surface is water, and 80% of the atmosphere is Nitrogen gas 

N2 ,and when it takes millions of years for the rock sediment carrying phosphorus to raise up to 

the surface then moved by runoff water or sorbed through soil particle for the phosphorus to 

complete its cycle, while it may only takes days or even less for the nitrogen to complete its 

cycle, then it becomes clear why nitrogen concentration is 16 times higher phosphorus in open 

waters (Rydin and Rast, 1992). 

 Nitrogen exists in many forms, one of its form is ammonia NH3; Ammonia comes from 

plant, animal wastes, decomposition of organic nitrogen and is used extensively in fermentation 

(Luvalle et al., 1999) and as a cleaning agents; Ammonia has a deadly effect on fish and plant 

and it encourages algae growth. 
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Figure 2.2 Nitrogen cycle in lake Champlain; Source: http://image.frompo.com/w/peerless-travels 

accessed on August 2014 

 

 

2.2 Review of Lake Eutrophication Models  

 

 The German agricultural chemist Justus von Liebig conducted the first eutrophication 

study in 1950. Prior to this, Weber (1907) and Johnstone (1908) found a link between nutrients 

and aquatic productivity (reviewed in Smith et.al, 1999). In the years that followed several 

eutrophication studies were conducted; the majority of those studies focused on statistical 

analytical techniques.  

 Due to the widespread of the eutrophication problems in fresh water supplies, many 

studies were made in attempt to find the cause and solution, and in this section I presented the 

different unique approaches I found related to topic, however it is worth to mention that the 

sequence of studies is not necessary in a historical essay.  

 In 1973, Dieter Imboden developed a phosphorus model for Lake Lucerne eutrophication 

using oxygen consumption as a function of phosphorus loading. Dieterôs model calculates the 

mean Oxygen O2 consumption in water as a function of phosphorus loading and gives the critical 

P-loading values above which the lake turns eutrophic for changing mean depth of the Lake and 

hydraulic loading factor. The model produces a general rough behavior for lakes categorization 

by elements and was not able to explain the cause behind the CABs in the lake. Another different 

approach to instigate lake eutrophication was made by Lotter, who used the annual layer of 
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sediment in rocks (varve) to model the historical eutrophication of Lake Baldeggersee in 

(Switzerland), and although eutrophication is suggested to be highly correlated with sediment 

(Lijklema, 1980), however Lotterôs climate and trophic state models were only able to justify one 

third of the variance data. (Lotter et al., 1997).  

Many of the analytical eutrophication studies simplify the complexity between the lake 

variables and eutrophication, and use multiple linear regression MLR which is technique that 

attempts to find the relationship between several explanatory variables and a response variable 

by fitting a linear equation to the training data. (Cüneyt, 1999; Xia et al., 2011), while other 

eutrophication studies use more complex technique such as fuzzy logic to study eutrophication  

(Selçuk et al., 2004). 

 In recent years with the availability of computing power there was a growing tendency to 

use neural network to create eutrophication models (Recknagel et al., 1997). Some of those 

studies used artiýcial neural networks (Yabunaka et al., 1997; Scardi et al., 1999; Jeong et al., 

2001 and Xia et al., 2011), while other used fuzzy and neuro-fuzzy techniques (Maier et al., 

2001); and most recently with the advances in software development, DM techniques started to 

show in eutrophication studies (Petersen et al., 2001; Chen et al., 2003).  

Although many advances were made, the wide variation in water body scenarios (e.g. 

naturally occurring seasonal and annual variations in water quality parameters), and the 

complexity between nutrients and eutrophication in a dynamic ecosystem made it a challenge to 

develop a defined standard that defines water eutrophication (Correll, 1998). Different studies 

provided distinctive eutrophication model. 

In summary, the literature review showed: 

 1) There are many different analysis methods available to predict freshwater lake eutrophication 

and CABs mass growth. 

2) Several models are required to accurately deal with all lake scenarios (low vs. high nutrient 

concentrations). 

 3) The most important predictive parameters for lake eutrophication and CABs mass growth 

were total nitrogen (TN) and total phosphorus (TP) in the water. 

4) Most studies focused on solving the eutrophication problem using standard analysis 

techniques that do not address the nonlinearly problem of lake eutrophication at extreme 

concentrations. 
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 5) None of the studies utilized data mining techniques to model eutrophication problem in the 

lakes, and there is a lack of comprehensive research to formalize the relation between water 

variables and algae bloom. 

 

 

2.3 GIS- Based Lake Assessment and Management 

 

 In 1973, ESRI developed the first commercial GIS system, the Maryland Automated 

Geographic Information System (ESRI, 2006). They subsequently developed individual tools 

(e.g. ArcInfo workstation, ArcView GIS 3.x, MapObjects, ArcSDE), which were integrated as 

ArcGIS in 1999. Hiscock and coworkers utilized GIS to study phosphorus loading with land use, 

soil type and rainfall in the Florida basins (Hiscock et al., 2003). Their results indicated that the 

amount of developed land and the phosphorus loading have a strong correlation with lake 

eutrophication.  

In 2008, Dirk Craigie suggested using GIS as a resource to incorporate geographically 

linked data used in the Integrated Water Resource Management (IWRM) system (Dirk, 2008). 

Hameedôs group used GIS analysis to classify 50 inland lakes in Sweden according to their 

degree of eutrophication and acidity, based on water pH and/or alkalinity monitoring data 

(Hameed, 2010).  

In 2011 Gupta used GIS to evaluate nitrogen and phosphorus levels in the Rönneå River 

drainage basin in Sweden, and to estimate future discharge into the basin (Gupta et al., 2011). 

Akdeniz used the inverse distance weighted (IDW) method of ArcGIS to create trophic state 

index (TSI) maps for the shallow Uluabat Lake in Turkey (Akdeniz et al., 2011). Anoh used GIS 

to study eutrophication in the Taabo River (Ivory Coast) using multi criteria analysis of water 

quality parameters, which highlighted the areas in the watershed that required protection (Anoh 

et al., 2012). Lake Michigan was studied using satellite images from MODIS to predict 

chlorophyll-a concentration, the results showed the possibility of using satellite images 

effectively to track algae (Huang, Deng, 2013).  

 In conclusion, GIS provides a powerful method to analyze lake eutrophication and the 

growth of cyanobacteria algal blooms (CABs) spatially and to help effectively manage large-

scale lake eutrophication in countries worldwide.   
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3.1 Lake Nutrient Level Standards 

 

 There is currently no world standard for acceptable nutrient levels in lakes, because each 

presents a unique ecosystem, which is highly variable due to natural seasonal variations and also 

natural and man-made changes in the environment. For this reason, in order to study 

eutrophication in a particular lake, one needs to examine parameters that affect the entire 

geographical region (Nixon, 2009).  

 

 

3.2 Chlorophyll-a Lake Eutrophication Statistical Models that Use Multiple Linear 

Regression (MLR) 

 

 Some of the published chlorophyll-a models used the statistical method of multiple linear 

regression (MLR) to investigate multiple scalar dependent variables (Z = water quality 

parameters) that are hypothesized to be linearly related to the explanatory variable (Y= 

chlorophyll-a, a biomarker for the growth of cyanobacteria algal blooms (CABs) which cause 

eutrophication in lakes). This is described below in the general matrix format for the MLR 

equation (John et.al, 1996; see Introduction to Linear Regression Analysis by Douglas C. 

Montgomery - Statistics reference textbook for MLR method, 2012; Handan Çamdevyren et al., 

2005, a review of chlorophyll-a MLR models). 
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Eq. 3.2 

 Where, Y is an n-by-1 vector of responses, ɓ is a m-by-1 vector of coefficients, Z is the 

n-by-r design matrix for the model, Ů is an n-by-1 vector of errors, is the output or dependent 

variable, and ᾀ ȣ  ᾀ  are the independent or input variables. The short version of the general 

MLR format is written as follows: 

ὣ  ‍ ‍ᾀ ‍ᾀ Ễ ‍ᾀ ‐           Ὢέὶ Ὥ ρȟȣȟὲ ὥὲὨ Ὦ πȟȣȟὲ  Eq. 3.3 

 In this type of chlorophyll-a (MLR) model, chlorophyll- a (Chla) is the dependent 

variable. ᾀȣ  ᾀ representing: total phosphorus, total nitrogen, chloride, secchi depth, temperature, 

depth, alkalinity or the independent variables (water quality parameters), while ‍ȣȢ‍ 

represent the coefficients for the independent variables and Ů is the error term. 

 The MLR equation is solved using the least squares method, by estimating the unknown 

vector of coefficients ɓ of the linear equation, through minimizing the sum of squares of 

residuals (errors) between the observed data and the predicted data from the linear equation. The 

coefficients ɓ that produce the best solution are found when the error between the linear equation 

model and observed data is zero (Kariya et al., 2004). By setting Ů= 0 and rearranging the 

equation, we get ɓ=S(ɓ)/Z, which give the coefficients of matrix ɓ, and the predicted values. By 

comparing the predicted values to the observed values we can judge the modelôs accuracy. It is 

not possible to directly evaluate the coefficients of the matrix ɓ equation since the vector S(ɓ) has 

a different vector size than the matrix Z. Therefore, in appendix B, I wrote a Matlab code called 

MLR-LEF to work around this problem, and use this code in the Lake Champlain case study. 
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3.3 Chlorophyll-a Lake Eutrophication Models that Use Multiple Nonlinear Regression 

(MNR) 

 

Some of the chlorophyll-a models (Handan et al., 2005 and Xia et al., 2011) use multiple 

nonlinear regression (MNR) to investigate variables (water quality parameters) that are not 

linearly related to chlorophyll-a and CABs (Nonlinear Regression by G. A. F. SEBER -Statistics 

textbook ref for MNR; see refs above for chlorophyll-a MLR models). The multiple nonlinear 

regression model is derived by transforming the nonlinear model to a linear one, the general 

Nonlinear multivariate power function (Allison, 1999) is written as 

 

ὣ ὥᾀ ᾀ ȣȣᾀ  Eq. 3.4 

 

By taking the natural logarithm for both sides, equation 3.4 is then transformed into a linear 

function (Allison, 2006) 

ὰὲὣ ὰὲὥ ὦὰὲᾀ ὦὰὲᾀ ȣȣȣȢȢ ὦὰὲ ᾀ  Eq. 3.5 

Comparing Eq. 3.3 to Eq. 3.5 we get  

 

ὣ ÌÎὣ   ȟ ᾀ ÌÎᾀ     ȟ    ‍ ‍   ȟ ‍ ÌÎὥ    Eq.3.6  

 

Equations 3.5 and 3.6 can be used to derive the chlorophyll-a MNR model (Handanet al., 2005 

and Xia et al., 2011).     

 

 

3.4 Chlorophyll-a Models that Use Data Mining (DM) 

 

 Data mining (DM) is used to discover patterns within a data set (Weiss et al., 1999; 

Malek et al., 2011). A number of published chlorophyll-a models use DM to discover patterns in 

data sets of water quality parameters (independent variables) that are related to chlorophyll-a 

levels (dependent variable), a biomarker for CABs growth.  For example DM was used in a 

chlorophyll-a model to examine habitat utilization patterns of reef fish along the West coast of 

Hawaii (Kleiner et al., 2000; Bailey et al., 1994).  The software used in this study for data mining 
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is Eureqa 1.12.1 Beta from Nutonian. Eureqa software derives the equations by searching the 

space of mathematical expressions to find the model that best fits a given dataset, both in terms 

of accuracy and simplicity, this process is known as Symbolic Regression (SR), and unlike 

multiple nonlinear regression MNR where a specific equation is need to start with the analysis, in 

Symbolic Regression no particular model is needed to start with the analysis and the initial 

expressions are formed randomly by combining mathematical building blocks such as 

mathematical operators, analytic functions, constants, and state variables. Equations are then 

build by recombining previous equations, using genetic programming, by letting the patterns in 

the data reveal the suitable models, rather than imposing a model to avoid human bias, or 

unknown gaps in domain knowledge.  

 

 

3.5 Chlorophyll-a Model Evaluation Techniques 

 

 To find the best chlorophyll-a model for the Lake Champlain case study, I used three 

published methods to evaluate chlorophyll-a models, and these are described in detail below.  

 

3.5.1 Determination of coefficient ╡  

 

 This method was used to evaluate most chlorophyll-a models used in lake eutrophication 

studies, (e.g. Handan et al., 2005; Xia et al., 2012). The Pearson R correlation coefficient 

measures the linear correlation between two variables (value between +1 and ī1). R
2
 (the square 

of the Pearson R) indicates how close the regression model fits to the observed data (value 

between 0 and 1).  

Ὑ
В ὣ ὣ

В ὣ ὣ
 Eq. 3.7 

 

 Where, ὙὭί the coefficient of determination, ȑ is the predicted value, ὣ is the observed 

value, Y is the average value, n = the size of the data. The closer the R
2 
value is to 1, the better 

the model fit. Fig. 3.1 shows two examples where this is not the case.  
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Figure 3.1 R
2
for unfit models (modified from http://academic.uprm.edu/accessed on May 2014) 

 

 The major problem in calculating R
2 
is that its value increases whenever a new variable is 

added to the model, thus a model with more variables may appear to be a better fit than a model 

with fewer variables. The adjusted R
2 
attempts to compensate for the inaccuracy of R

2 
because it 

increases only if the new variable is statistically significant. The adjusted R
2 
is always less than 

R
2
 (Draper et al., 1998). 

Ὑ ρ
ρ Ὑ ὲ ρ

ὲ Ὧ ρ
 Eq. 3.8 

 

 Where Ὑ is the adjusted coefficient of determination, Ὑ  is the coefficient of 

determination, n is the total sample size, k is the number of predictors (variables). 

 

 

3.5.2 Standard error of the estimate 

 

 This method was used in the verification analysis of Lake Ontario (Thomann et al., 1979). 

The standard error of the estimate is an estimate of the average squared error and is calculated as 

follows (Kenney et al., 1963). 

3ÔÄȢ%ÒÒÏÒ -ÅÁÎ 3ÑÕÁÒÅ ÏÆ ÒÅÓÉÄÕÁÌÓ  
3ÕÍ ÏÆ 3ÑÕÁÒÅÓ ÒÅÓÉÄÕÁÌÓ

ὨὪ ὨὩὫὶὩὩ έὪ ὪὶὩὩὨέά

 
В ὣ ὣ

ὨὪ
 

Eq. 3.9 
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3.5.3 Confidence interval and critical value 

 

 A good model should have the smallest errors, and these should be distributed evenly 

above and below the regression line (Fig. 3.2).  

 

Figure 3.2 Error distributions (modified from http://academic.uprm.edu/ accessed on May 2014) 

 

 Confidence interval (CI) thresholds are used to maintain small and evenly distributed 

errors, and error values outside the threshold (also called limit) values are ignored. The lower the 

CI threshold value, the better the model. Critical values are the boundaries of the CI, found by 

using the z score table (the lower critical value = ᾀ‌ς; the upper critical value =  ᾀ‌ς). The 

critical values in most data analysis software packages are a user-defined input that is set 

manually before data processing. 

 

Figure 3.3 Bell shape error distribution (modified from Kendall et al., 1968). 
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 An alternative method to find z score is to use MS excel command line to calculate the z 

value, which can be calculated using the following command 

 

=NORMSINV(x)  Where x is the value that we want to find its z score 

 

 

3.6 GIS Based Modeling and Assessment 

 

 The Geographical Information System (GIS) is combination of software, data and 

hardware that allow the user to query, visualize, and interpret spatial information to disclose 

relationships, trends, and patterns within a data set. ArcGIS, developed by Environmental 

Systems Research Institute (ESRI) is the most commonly used GIS package utilized by 

researchers community for business analysis, planning, environmental applications and 

geostatistical analysis. (See GIS Software - a description in 1000 words by Stefan Steiniger, 

2009). The components (objects) in ArcGIS represent water quality monitoring stations and 

other real world objects. The objects used in the Lake Champlain case study were the over 50 

water quality monitoring stations located throughout the lake. The objects are stored in the 

ArcGIS Geodatabase, which is the top-level element in the ArcGIS hierarchy, shown in figure 

3.4. The hierarchical data structure allows feature classes to inherit the attributes and behaviors 

of the object above while retaining its spatial properties (Zeiler, 1999). 
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Figure 3.4 GIS hierarchy (modified from http://webhelp.esri.com; accessed on Jan 2014). 

 

 Geostatistics analysis will produce the same modeling results as MLR if location has no 

impact on the lake dataset. The ordinary least square (OLS) regression method, which is the 

multi linear regression method used in ArcGIS, was used to test the significance of the location 

of the lake variables. If location is an important independent variable for the Lake Champlain 

study, then geographically weighted regression (GWR) tool from ArcGIS is used where location 

is considered as an independent input variable that affects the model. In the final stage of the 

analysis, the spread and distribution of the pollutant (chlorophyll-a) and of the variables (water 

quality parameters) was determined by creating maps using the Empirical Bayesian Kriging 

(EBK) method. 
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Figure 3.5 Lake Champlain eutrophication modeling using the GIS integrated analysis approach 
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CHAPTER 4 

CASE STUDY : LAKE CHAMPLAIN  
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4.1 An Overview of Lake Champlain 

 

 This lake is one of the largest glacially formed lakes in North America (see figure 4.1). It 

is situated partially in Vermont and NY states, USA, and partially in Quebec, Canada. Its 

approximate dimensions are: L=193 km, maximum width =30 km, watershed =21 km
2
, surface 

area =1100 km
2
, maximum depth =122 m (most is shallow =1.5 m), mean depth =19 m. The lake 

has 5 different environmental zones (http://www.lakechamplaincommittee.org/learn/natural-

history-lake-champlain, accessed on Dec 2014). The five major segments of the lake are:  

Á The South Lake, which is long skinny and shallow. 

Á The Main Lake, which is the deepest and widest section of the lake. 

Á Malletts Bay circumscribed by historical railroad and road causeways. 

Á The Inland Sea, which lies to the east of the Hero Islands. 

Á The Missisquoi Bay and is a large and discrete bay rich with wildlife.  

 This geography was used in the case study to improve the results of the multiple linear 

regression and in data mining classification analysis.  

 

No. Variables Definition    

1 
Chlorophyll-a (Chla)  

(ɛg/L) 
Biomarker for Cyanobacteria algal blooms (CABs) 

L
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0

1
3 

2 
Total Phosphorus (TP) 

(ɛg/L) 

Pollutant from agriculture and industry, a nutrient for 

CABs growth 

3 Chloride (Cl) (ɛg/L) 
A highly reactive gas, used as a disinfectant in water  

Treatment 

4 
Secchi Depth (Secchi) 

(m) 

Measure of water clarity/turbidity, a physical indicator  

of bacterial growth 

5 
Total Nitrogen (TN) 

(ɛg/L) 

Pollutant from wastewater from agriculture and industry,  

a nutrient for CABs growth. 

6 Temperature (T)(
o
C) Surface temperature 

7 
RegAlk 

The quantitative capacity of an aqueous solution to  

neutralize an acid 

8 Depth (m) Monitoring stations sampling depth 

Table 4.1 Names, abbreviations and definition of water quality monitoring parameters (variables) 

used in the LEF modeling studies, using Lake Champlain data. 
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Figure 4.1 Lake Champlain watershed (modified from Hegman et al., 1999). 
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4.2 Raw Data and Variables for the Lake Champlain Case Study 

 

 Environmental stress on Lake Champlain started in the early 1980s when phosphorous 

levels from agricultural runoff and municipal sewage treatment plants caused excessive 

cyanobacteria algal blooms (CABs), which resulted in drinking water contaminated by 

trihalomethanes (THMs) produced by the CABs, and the presence of nuisance plant species such 

as the genus Salvinia and a wide range of Cyanobacteria algae (Amsterdam et al., 2005). The 

water quality parameters (variables) used in my modeling studies are shown in Table 4.1 above, 

together with their abbreviations and definitions. The source of the data on water quality 

parameters (including chlorophyll-a concentrations) used in the present study was from the state 

of Vermont, which decided to share Lake Champlainôs environmental data with the public to 

help researchers conduct studies that could provide solutions for the lakeôs problems (Vermont 

Agency of Natural Resources, 2011). This data included information on total maximum daily 

loads of pollutants, available to the public and researchers via the Lake Champlain watershed 

management web site (www.watershedmanagement.vt.gov), accessed for this thesis project on 

Dec 2012.  

 Section 303(d) of the Federal Clean Water Act 1972 obligated all states in USA to 

identify waters for which wastewater effluent did not attain water quality standards. In 1998, the 

US Environmental Protection Agency (USEPA) defined the total maximum daily loads 

(TMDLs) framework for determining acceptable levels of nutrients in fresh water lakes. 

According to the 2001 Clean Water Action Plan, Vermont had to determine the TMDLs for the 

pollutants causing water problems in Lake Champlain and present a study with proposed 

solutions (Lake Champlain Phosphorus TMDL, 2002).  

 

 

4.3 Lake Quality Criteria  

 

 Global drinking water guidelines are based on the world health organization (WHO). 

According to WHO, the provisional value for cyanobacteria concentration in drinking waters is 

1.0 ɛg/L. However, WHO does not provide any criteria for the acceptable levels of total 

phosphorus or nitrogen concentration within lakes, rivers or reservoirs.  
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 In the United States, there are no federal regulatory guidelines for cyanobacteria (algae) 

concentrations in water (EPA-810F11001, 2012). However, section 303(d) of the Federal Clean 

Water Act obliges each state to distinguish waters for which wastewater effluent limitations are 

not sufficient to attain the quality standards, and to suggest solutions based on studies and filed 

data analysis to obtain the required funding to solve the water problem. The water quality 

standards and criteria change from one lake to another, even within a single lake we may see 

different criteria, and a good example for that is lake Champlain, where there are various criteria 

within lake Champlain due the difference in the hydraulic retention time between the lake 

segments where the time varies from two months to three years, resulting in significant 

difference in the nutrient distribution within the lake basin. The standards and criteria set for 

Lake Champlain were derived from:  1) Trophic categorization schemes for lakes (e.g. Table 

4.2); 2) Lake user survey and analyses between predicted and recorded values for total 

phosphorus (TP) concentrations (Smeltzer, 1999); 3) The 1993 Water Quality Agreement, which 

establish TP targets for 13 segments of Lake Champlain. 

 

Selected Lake Champlain Water 

Quality Monitoring Stations  

Depth 

(m) 

Current Level 

(2011) 

Criteria Targets 

TP ɛg/L Chla ɛg/L TP ɛg/L Chla ɛg/L 

02 - South Lake B 5 52 10557 25 

N
o

 d
e
fi
n

e
d

 c
ri
te

ri
a 

04 - South Lake A 10 47 16677 25 

07 - Port henry Segment 50 21 6374 14 

09 - Otter Creek Segment 97 18 6177 14 

16 - Selburne Bay 25 16 5830 14 

19 - Main Lake 100 16 4836 10 

21 - Burlington Bay 15 16 4961 14 

25 - Malletts Bay 32 15 2928 10 

33 - Cumberland Bay 11 20 4568 14 

34 - Northeast Arm 50 23 4250 14 

36 - Isle LaMotte (off Grand Isle) 50 18 3043 14 

40 - St. Albans Bay 7 31 5770 17 

46 - Isle LaMotte (off Rouses Pt) 7 21 3941 14 

50 - Missisquoi Bay 4 50 10658 25 

51 - Missisquoi Bay Central 5 53 16196 25 

Table 4.2 Lake Champlain phosphorus criteria targets 2011 vs. observed values for the same year 

(updated and modified from Lake Champlain Phosphorus TMDL, 2002). 
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 The way criteria levels were decided for Lake Champlain segments was explained in the 

Vermont DEC (1990) as well as in Lake Champlain basin program (1996), and is summarized as 

follows:  

¶ Main Lake and Mallets Bay segments are large central broad areas with low nutrient 

level; therefore an oligotrophic standard of 0.010 mg/L phosphorus is desirable for these 

two segments.  

¶ In the remaining parts of the lake, the phosphorus concentrations are significantly higher 

than 0.010 mg/L, consequently the attainability for these segments to oligotrophic 

criterion is doubtful. Therefore, higher criteria level of 0.014 mg/l was chosen for the rest 

of the lake (except for St. Albans Bay, Missisquoi Bay, and the South Lake). The mean 

value of 0.014 mg/L represents a phosphorus level at which an algae nuisance condition 

would be present only 1% of the time during the summer. 

¶ St. Albans Bay, Missisquoi Bay, and the South part of the lake are highly eutrophic 

segments; therefore the target of 0.014 mg/l criteria would not be realistically attainable. 

There have been many attempts in St. Albans to reduce phosphorus levels including 

treatment plant upgrades and nonpoint source controls.  The water quality set by the 

Vermont department of environmental conservation (DEC) in the St. Albans Bay aim is 

to reduce the phosphorus in the center bay area to a concentration of about 0.003 mg/l 

above the level outside the bay in the Northeast arm. Thus, a phosphorus criterion of 

0.017 mg/l was selected for St. Albans Bay. 

¶ Missisquoi Bay and the South lake segments are shallow depth and have wetland like 

characteristics therefore, they are considered as naturally eutrophic (high nutrient) areas. 

The high eutrophic state in Missisquoi Bay area has beneficial values for productive 

warm-water fisheries and wildlife habitats. Therefore, a phosphorus criterion of 0.025 

mg/l reflecting a moderate level of eutrophication was selected for these segments. 

 

 Recent and historical phosphorus and cyanobacteria concentrations in lake Champlain 

have exceed the desired criteria levels.  In many cases the recorded values were more than 

double of the desired criteria. Figure 4.2 shows the phosphorus levels in Lake Champlain 

compared with water quality criteria.  
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Figure 4.2 Phosphorus levels in Lake Champlain and water quality criteria (Lake Champlain 

Phosphorus TMDL, 2002). 
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4.4 Data Collection and Quality Analysis 

 

 The process of data entry and acquisition is inherently prone to errors and the raw data 

from the Lake Champlain monitoring stations did not reveal much information. A thorough data 

preparation and cleansing was required before starting with modeling and statistical analysis. 

 

A -Data source, format and units 

 

 The process of Lake Champlain monitoring station data entry and acquisition is 

inherently prone to errors; lake Champlainôs data is available in its raw format through the lake 

Champlain long-term water quality program. After downloading the data, it is then sorted and 

transformed into one file of MS excel. To simplify the analysis all the concentrations for the 

different water quality parameters are unified and converted to ɛg/L.  

 

B -Data quality analysis 

 

 For Lake Champlain, data quality control is implemented through the Vermont 

department of environmental conservation (DEC), while for this research data quality control is 

implemented through filtration of outliers and working with averages. 

 

C -Monitoring frequency 

 

 Since 1992 volunteers helped collecting the data for Lake Champlain between 1992 and 

2011. The database contained 12,994 records for 33 variables. Table 4.4 lists the variables, their 

monitoring range and frequency while figure 4.3 shows the location of the monitoring stations. 
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Variables  Code Units Date Range Lab Sampling Frequency 

Total Phosphorus TP ɛg/L 1992 - 2011 
VT and 

NY 
10/year 

Dissolved Phosphorus DP ɛg/L 1992 - 2011 
VT and 

NY 
10/year 

Ortho-Phosphorus DOP ɛg/L 1992
- 1994 
VT and 

NY 
- 

Chloride Cl mg/L 1992 - 2011 
VT and 

NY 
10/year 

Dissolved Silica DSi mg/L 1992 - 2011 
VT and 

NY 
10/year on a 5 yr cycle 

Total Nitrogen TN mg/L 1992 - 2011 VT 10/year 

Total Kjeldahl Nitrogen TKN mg/L 1992 - 1996 NY - 

Total Nitrate-Nitrite TNOX mg/L 1992 - 1996 
VT and 

NY 
- 

Total Ammonia TNH3 mg/L 1992 - 1996 
VT and 

NY 
- 

Calcium TCa mg/L 1992 - 2011 
VT and 

NY 
3/year on a 5yr cycle 

Magnesium TMg mg/L 1992 - 2011 
VT and 

NY 
3/year on a 5yr cycle 

Sodium TNa mg/L 1992 - 2011 
VT and 

NY 
3/year on a 5yr cycle 

Potassium TK mg/L 1992 - 2011 
VT and 

NY 
3/year on a 5yr cycle 

Iron TFe ɛg/L 1992 - 2010 
VT and 

NY 
3/year on a 5yr cycle 

Lead TPb ɛg/L 1992 - 1998 NY - 

Total Organic Carbon TOC mg/L 1992 - 1999 NY - 

Dissolved Organic Carbon DOC g/L 1992 - 1999 NY - 

Dissolved Inorganic 

Carbon 
DIC mg/L 1992 - 1996 NY - 

Temperature TempC deg C 1992 - 2011 VT 10/year 

Dissolved Oxygen DO mg/L 1992 - 2011 VT 10/year 

Conductivity Cond ɛS/cm 1992 - 2005 VT 10/year 

pH pH - 1992 - 2005 VT 10/year 

Alkalinity RegAlk mg/L 1992 ï 2011 VT 3/year 

Total Suspended Solids TSS mg/L 1992 ï 2005 
VT and 

NY 
- 

Chlorophyll-a Chla ɛg/L 1992 ï 2011 
VT and 

NY 
10/year 

Secchi Depth Secchi m 1992 ï 2011 
VT and 

NY 
10/year 

Table 4.4 Lake Champlain variables and their monitoring range and frequency 

(Lake Champlain Phosphorus TMDL, 2002). 
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Figure 4.3 Lake Champlain monitoring stations (www.vtwaterquality.org; accessed on Jan 2014) 
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D -Gaps and range 

 

 Some of the reasons that contributed to problems within the lake data were: 

Á Monitoring stations for Lake Champlain were introduced over different periods of time. 

Á New variables are being introduced while others were dropped. 

Á The collection of the variables was not made concurrently as would be desirable for the 

purpose of analyzing ecological interrelationships.   

 As a result, the monitoring periods vary between the lake variables and between one 

station and another, therefore the lake daily data is full of gaps and missing ranges. For example 

out of the 12,994 data records for lake Champlain, not a single row contained a complete set of 

concurrent reading for a set of variables. This was a major setback, since empty cells typicall are 

dropped or interpolated during analysis, another challenge is that : the gaps and missing ranges 

for several variables exceeded 20 months, thus making interpolation, or exploration a difficult 

task. Table 4.5.of  the yearly data for station 07 Port Henry of Lake Champlain, illustrate the 

extent of the gaps problem. 

Year Depth TP Cl TN TCa Minerals Toxic TOC TempC DO pH Secchi RegAlk Chla 

1992 50 13.58 11742 509.58  13847.44 22 4.3 16.54  7.98 4.33 53.91 5.63 

1993 50 18.25 11501 456.79  12804.96 15.75 3.95 23.5  7.67 3.63 54.3 5.25 

1994 50 15.78 11987 460.9  12608.9 22.72 8.84 22.16  7.21 3.68 53.55 5.27 

1995 50 10.33 13175 384.44  11718.8 5.2 15.3 15.75 10.18 7.54 5.23 53.02 3.05 

1996 50 13.88 12524 445.33  12156 5 4.75 16.48 9.96 7.91 4.06 51.1 4.44 

1997 50 13.23 12184 454.4  13140.5 5.13 3.33 24.02 10.53 7.8 4.27 53.9 4.78 

1998 50 13.75 12076 438.5  10367.67 5 4.86 17.12 10.28 7.77 3.96 54.6 4.72 

1999 50 13.39 12641 460.33  14121  3.56 19 10.39 7.82 4.92 50.41 6.83 

2000 50 15.31 12575 451.25  14322.13   25.86 10.32 7.72 4.22 51.62 5.98 

2001 50 12.93 13163 479.83  14695.25   23.18 10.54 7.74 4.47 53.23 3.49 

2002 50 10.59 13979 400.6  15113   17.84 10.15 7.78 5.03 51.63 1.82 

2003 50 12.92 15093 433.39  15717.7   25 10.42 7.84 4.95 51.23 5.46 

2004 50 16.44 14981 412.08  16243.6   23.68 10.2 7.91 4.4 51.95 5.45 

2005 50 16.36 15344 410.54  14793.88   12.18 10.41 7.84 3.1 52.6 10.34 

2006 50 17.13 14582 438.3     20.54 10.06  3.46 54.53 6.17 

2007 50 14.61 13843 438.02     18.43 10.34  4.05 51.91 4.92 

2008 50 18.69 14720 444.25     8.7 10.22  3.6 53.36 4.8 

2009 50 16.64 14583 407.57     22.9 10.8  3.47 55.5 4.9 

2010 50 16.5 14155 363.72  15286.75   13.1 10.29  3.55 57.13 4.87 

2011 50 22.12 12926 405.12  15466.67   21.98 10.21  2.66 55.32 6.25 

Table 4.5 Port Henry segment (07) of lake Champlain observed data. 
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 I presented table 4.5 with the yearly data since it was easier to show the extent of the 

problem, however, I started the analysis using the daily data, where the problem is greater. The 

biggest challenge is that for the Lake Champlain data, each water quality monitoring station 

exhibits a set of different problems with their variables, and due to the size of the gaps and long 

missing ranges within the data set, interpolation or extrapolation does not work. As an alternative, 

I decided to analyze the distribution of the data in order to reveal trends, to make estimating the 

gaps and missing ranges easier. Trends can be investigated either visually or using statistical 

tests like MannïKendall. Previous studies indicate that this approach is likely to see curves and 

nonlinear shapes of the data for water quality parameters, rather than straight lines. Figure 4.4 

shows the different types of nonlinear curves that we may expect to see in a data set. 

 

Figure 4.4 Nonlinear curve types (http://epa.gov/ncct/edr; accessed in June 2014) 

 

 A monotonic curve consistently stays in one direction (either always upwards or always 

downwards), while a nonmonotonic curve keeps changing its direction (G. Brewka, 1991). 

Figure 4.5 shows the yearly Calcium observed data for monitoring station 02 (South Lake B); 

again I used yearly data to show the extent of the problem. Within the data there is 36 months 

gap between 1992 and 1995, such gap can be clearly seen on the graph, at the same time the data 

seems to take a non-monotonic distribution throughout the recorded range. 
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Figure 4.5 Yearly calcium data for lake Champlain water quality monitoring station 02. 

 

4.5 Data Preparation 

 

 Visual inspection of the daily, monthly and yearly lake data distribution didnôt reveal any 

obvious trend, thus making it difficult to fill in the gaps within the lake data. Therefore, I used 

the following analysis approaches to fill in the gaps within the data. 

 

A -Linear and nonlinear interpolation 

 

 MannïKendall (MK) test, also known as the ñKendallôs tauò test, is a rank based non-

parametric test used to assess the significance or existence of a trend within a data series. The 

probability value P for the MK statistical test for a dataset is (Kendall MG. 1975): 

ὖ  

πȢυ ὡὬὩὲ ὸὬὩὶὩ Ὥί ὲέ ὸὶὩὲὨ
ὅὰέίὩ ὸέ ρ ὡὬὩὲ ὸὬὩὶὩ Ὥί ὥ ίὸὶέὲὫ ὲὩὫὥὸὭὺὩ ὸὶὩὲὨ
ὅὰέίὩ ὸέ π ὡὬὩὲ ὸὬὩὶὩ Ὥί ὥ ίὸὶέὲὫ ὴέίὸὭὺὩ ὸὶὩὲὨ

 Eq. 4.1 

 Due to the size of the Lake Champlain dataset, statistical analysis software package 

Systat 13 was used to run the MK test on the daily, monthly and yearly data. 

 The MK test for the variable minerals for the daily and monthly data did not provide any 

significant results; however, for the yearly data presented in table 4.5, the results indicated a 

17000

19000

21000

23000

25000

27000

29000

31000

33000

35000

37000

10/1995 07/1998 04/2001 01/2004 10/2006 07/2009 04/2012

TCa (ug/L)



36 

significant P value for both upward and downward trends, indicating a two-sided trend. The MK 

test also indicated that the upward trend better describes the general data distribution. 

 The Systat 13 software detected the gaps within the data using the MK test: the gap in the 

middle of the series from 2005 till 2010, and the missing values for the years of (2006, 2007, 

2008 and 2009). Systat 13 automatically interpolated these gaps, and the interpolation was 

completed using local quadratic smoothing as shown in figure 4.6. 

 

Figure 4.6 The MannïKendall test and the interpolation.  

 

 This interpolated gap approach is typical of many software packages; they either fill the 

gaps or completely ignore the missing range. The gap in the mineral variables yearly data was 

common across all the monitoring stations; hence it wasnôt possible to verify the results. I 

compared the minerals data distribution against other variables, which did have a complete data 

range. I scaled the TP and Cl variables data records up to fit within the same range as the 

minerals dataset, and the results are plotted in figure 4.7. I noticed that in the gap period, the 

datasets for both TP and Cl exhibited a non-monotonic behavior, while the interpolated data 

range for minerals, which was done using the MK test, was a straight line. Additionally, before 

and after the range, the datasets for all three variables had non-monotonic behavior. This 

provided enough evidence to raise doubts about the interpolated results and to stop the 

investigation using MK trend analysis as a tool to fill in the gaps and to predict the missing data 

ranges.  
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Figure 4.7 Yearly TP, Cl and minerals chart for lake Champlain Port Henry 

 

 Further investigation of the lake data shows that the lake variables have a non-monotonic 

data distribution therefore; linear interpolation or extrapolation was not an option. 

 An earlier study of Lake Champlain suggests that using mean values of water quality 

parameters produced a relatively high degree of statistical precision (Smeltzer, et al., 1989). By 

using the mean values we remove many of the unwanted gaps, therefore daily data for Lake 

Champlain was averaged to produce monthly data, however the monthly data also had several 

gaps and missing range, so the investigation and the data cleansing process continued on the 

monthly data. To avoid presenting redundant results, I skipped presenting the analysis for the 

daily and monthly data, although I have thoroughly investigated each set, and I directly used the 

yearly data throughout the rest of the thesis. However, even the yearly data still had gaps and 

missing ranges, so I used the approach described below to complete the ranges and fill in the 

gaps for the yearly data of Lake Champlain, in order to avoid dropping a variable from the 

analysis. 

 Assuming we manage to get the information about the equation that best describes the 

data distribution over a significant period, then it is possible to use the function to estimate the 

gaps and missing range within the data (Zhu et al., 2003). These authors proposed using discrete 

Fourier transform for time series data, while other studies (Xiang and Gray, 1999) suggested 
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using Fuzzy logic or recommend neural networks. FindGraph data mining software package is a 

tool that facilitates the search through 10s of different functions (e.g. Linear Regression, Fourier, 

Polynomial, Exponential, Logarithm, Power and Waveform) to produce models that fit the data 

under investigation. 

 Figure 4.8 is a screen shot of FindGraph software during the setup process; the screen 

shot reveals the different available time series functions that were used to estimate the Lake 

Champlain water quality monitoring data distribution. 

 

Figure 4.8 Data mining (FindGraph) analysis. 

 

 The variable minerals data from table 4.5 was used for the test run, but this time the data 

was split into two halves: the first half (years 1992 till 2001) was used to generate the time series 

model; while the second set (between 2002-2011) was used to verify the model. FindGraph 

software investigated more than 999,999,999 iterations in less than 2 minutes. Several models 

were generated and were sorted according to their best R
2
. The best curve fit model that 

represented the minerals data distribution between 1992 till 2001 was a Fourier function with 3 

harmonics. 
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Minerals(t)= 12603.92 +(804.73*cos(0.78*t) +76.33*sin(0.78*t)  

+(773.25*cos(1.57*t) +  26.41*sin(1.57*t))  +(74.06*cos(2.35*t) -

1044.27*sin(2.35*t)  

Eq. 4.2 

 

Figure 4.9 Data mining (FindGraph) results. 

 

 Figure 4.9 shows the Fourier function with 3 harmonics as found by FindGraph software 

and in figure 4.10 the actual recorded data for minerals from table 4.5 is plotted against the 

Fourier time function for comparison. 

 

 

Figure 4.10 Minerals Fourier predictions for station 02 
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