
Finite Automata Algorithms in Map-Reduce

Shahab Harrafi Saveh

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Computer Science

Concordia University

Montréal, Québec, Canada

April 2015

c⃝ Shahab Harrafi Saveh, 2015

Eusebius J. Doedel

Lata Narayanan

Nematollaah Shiri V.

Gösta G. Grahne

Sudhir P. Mudur

April 15, 2015 Amir Asif

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Shahab Harrafi Saveh

Entitled: Finite Automata Algorithms in Map-Reduce

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Chair

Examiner

Examiner

Examiner

Supervisor

Approved
Chair of Department or Graduate Program Director

Rama Bhat, Ph.D.,ing., FEIC, FCSME, FASME, Interim

Dean

Faculty of Engineering and Computer Science

Abstract

Finite Automata Algorithms in Map-Reduce

Shahab Harrafi Saveh

In this thesis the intersection of several large nondeterministic finite automata (NFA’s)

as well as minimization of a large deterministic finite automaton (DFA) in map-reduce

are studied. We have derived a lower bound on replication rate for computing NFA

intersections and provided three concrete algorithms for the problem. Our investiga-

tion of the replication rate for each of all three algorithms shows where each algorithm

could be applied through detailed experiments on large datasets of finite automata.

Denoting n the number of states in DFA A, we propose an algorithm to minimize A

in n map-reduce rounds in the worst-case. Our experiments, however, indicate that

the number of rounds, in practice, is much smaller than n for all DFA’s we examined.

In other words, this algorithm converges in d iterations by computing the equivalence

classes of each state, where d is the diameter of the input DFA.

iii

Acknowledgments

Above all, I would like to express my sincere gratitude to my supervisor, Prof. Gösta

Grahne, without whom the success of this thesis would not be possible. His guidance,

patience, and encouragement helped me greatly throughout this endeavor. On a more

personal note, my gratitude goes to my family for their continued support. I would

also like to give credit to our research team members, Dr. Adrian Onet, Mr. Ali

Moallemi and Mr. Iraj Hedayati for their endless and generous advice throughout

this process.

iv

Table of Contents

List of Figures ix

List of Tables x

List of Algorithms xi

List of Abbreviations xii

1 Introduction 1

1.1 Problem Statement . 1

1.1.1 NFA Intersections . 2

1.1.2 DFA Minimization . 3

1.2 Motivation and Objectives . 4

1.3 Contributions . 5

1.4 Thesis Organization . 6

v

TABLE OF CONTENTS

2 Background and Related Work 8

2.1 Map-Reduce and Hadoop . 8

2.1.1 Map-Reduce . 9

2.1.1.1 Map Function . 10

2.1.1.2 Reducer Function . 11

2.1.1.3 Partitioner Function 11

2.1.1.4 Combiner Function 11

2.1.2 Hadoop and HDFS . 12

2.1.2.1 Hadoop . 12

2.1.2.2 The Hadoop Distributed File System 13

2.2 Multiway Joins in Map-Reduce . 14

2.2.1 Natural Join . 14

2.2.2 Cascading Multiway Joins . 15

2.2.3 Multiway Joins using a Single Map-Reduce Job 16

2.3 Map-Reduce Computation Cost . 17

2.3.1 Mapping Schema . 17

2.3.2 The Lower Bounds Recipe . 18

2.4 A Short Review of Parallel DFA Minimization Algorithms 19

3 Computing NFA Intersections in Map-Reduce 23

3.1 Preliminaries . 23

vi

TABLE OF CONTENTS

3.2 Lower Bound on the Replication Rate 25

3.3 Algorithms for the Cartesian Construct 27

3.3.1 Mapping Based on States . 27

3.3.2 Mapping Based on Alphabet Symbols 28

3.3.3 Mapping Based on Both States and Alphabet Symbols 29

4 DFA Minimization in Map-Reduce 32

4.1 Preliminaries . 32

4.2 Map-Reduce Algorithm . 32

4.2.1 Mapper Function . 33

4.2.2 Reducer Function . 35

4.3 Convergence . 36

4.4 Replication Rate Analysis . 39

4.5 Communication Cost Analysis . 39

5 Experimental Results 40

5.1 Cluster Configuration . 40

5.2 NFA Intersections . 41

5.2.1 Data Generation Method . 41

5.2.2 Experiments . 41

5.3 DFA Minimization . 44

vii

TABLE OF CONTENTS

6 Conclusion and Future Work 48

6.1 Conclusion . 48

6.2 Future Work . 50

6.2.1 Testing Emptiness of Regular Languages Intersections 50

6.2.2 Verifying Infiniteness of Regular Languages Intersections . . . 51

References 53

viii

List of Figures

1 Cascading multiway joins . 16

2 Classification example . 36

3 Processing times of two methods for the alphabet size k = 16 42

4 Processing times of two methods for the alphabet size k = 64 42

5 Processing times of two methods with |δ1|+ |δ2|+ |δ3| = 7, 000 43

6 Processing times of two methods with |δ1|+ |δ2|+ |δ3| = 28, 000 . . . 43

7 Execution time vs. problem size . 46

8 Execution time vs. number of rounds 46

ix

List of Tables

1 Sizes of dataset and communication cost 45

x

List of Algorithms

1 Parallel DFA Minimization in SIMD Environment 21

2 DFA Minimization Map-Reduce Algorithm 38

xi

List of Abbreviations

DBMS Database Management System

DFA Deterministic Finite Automata

EREW Exclusive Read Exclusive Write

FA Finite Automata

GFS Google File System

HDFS Hadoop Distributed File System

NFA Nondeterministic Finite Automata

PRAM Parallel Random Access Machine

RDBMS Relational Database Management System

SQL Structured Query Language

xii

Chapter 1

Introduction

1.1 Problem Statement

Finite Automata are one of the most useful and practical devices that model a plethora

of computationally oriented phenomena. They are widely used to model a variety

of hardware and software such as software for designing digital circuits’ behavior,

compiler’s lexical analyzer component, pattern matching software and so on [12].

Having only a finite number of states, makes finite automata suitable devices to be

implemented in a hardware or as a program such as those mentioned above.

Finite automata are used to describe a major class of formal languages called

regular languages. More precisely, a language L is said to be regular, if and only if

there exists a finite automaton A, such that L(A) = L. A finite automaton has a set

1

1. Introduction

of states and transitions as a means to consume the input by moving from one state

to another state.

There are essentially two types of finite automata:

• Deterministic Finite Automata (DFA). A finite automaton is deterministic, if

it never has a choice in its moves. In other words, there is only one state to

which a machine can move on an input symbol.

• Nondeterministic Finite Automata (NFA). As opposed to DFA’s, an NFA is

a machine whose states are allowed to have any set of transitions based on a

particular input symbol. Additionally, it has the ability to move from its current

state without reading any input by allowing a transition on ϵ, the empty string.

The NFA’s with ϵ-transitions are called ϵ-NFA’s. However we note that the

NFA’s considered in this study are ϵ-free.

We shall describe later in this section two classical problems corresponding finite

automata that are mainly considered in this thesis.

1.1.1 NFA Intersections

One of the advantages of NFA’s is that they are closed under several operations, such

as concatenation, intersection, difference, and homomorphic images. This makes

NFA’s ideally suited for a modular approach, for instance in the context of protocol

2

1. Introduction

design and web service composition. A simple, but illustrative example of an e-

commerce application designed from components can be found in Chapter 2 in [12].

The salient operation here is the intersection of several finite state automata.

Problems relating to NFA’s have been widely studied in the literature. One of the

main issues for the NFA intersection problem is that the size of the output NFA is

the product of the size of all input NFA’s. There is not much hope for improvement,

since testing for emptiness of the intersection of a set of languages represented by

NFA’s is known to be PSPACE-complete [16]. The most commonly used algorithm

for computing the intersection NFA is to use the Cartesian construct for product

automata. If there are m input NFA’s each having n states, the product NFA will

have nm states. It therefore would be important to come up with good distributed

algorithms for the problem.

1.1.2 DFA Minimization

Finite automata help answering variety of questions corresponding regular languages.

Given descriptions of regular languages, one of the critical question is whether they

define the same language or not. To test the equivalence of regular languages, we

generally make use of finite automata defining those languages. The fact that there

might be an infinite number of finite automata accepting the same language, makes

the answer to this question complicated. However, this is not of great concern, since

3

1. Introduction

there are methods to find a DFA with the minimum number of states. This minimal

DFA which is essentially unique for a certain regular language, ensures the minimum

computational cost for regular languages operations such as the one discussed above.

In addition to NFA intersections problem, we shall consider the problem of min-

imizing a DFA A to find the minimal equivalent DFA accepting the same language.

There are basically two classes of states than can be removed or merged:

• Unreachable states. The set of states to which there are no such paths from

initial state. This type of states play absolutely no role in a DFA for any input

string and can be simply removed.

• Non-distinguishable states. Two states p and q in a DFA A are called non-

distinguishable, if for every string w, either processing of A on w from p and q

leads to an accepting state or ends up to a non-final state. In this thesis, we

particularly consider merging this class of states.

1.2 Motivation and Objectives

Finite automata have long been established as a significant direction of research in

several areas such as theory of computation. Being one of the simplest, yet practical

computational modeling devices, they are broadly used both in theory and applica-

tions. On the other hand, the rapid increase in the amount of stored and shared

4

1. Introduction

information results in more and more sophisticated data models over the past few

years. By considering these two growing demands, we conducted a research to dis-

cover the behavior of relatively large finite automata in the map-reduce environment.

We concluded that problems relating to finite automata fit nicely into the map-reduce

environment. The results of the first part of this study, motivated us to proceed with

the same subject. To the best of our knowledge, in this research work, the NFA

intersections and the DFA minimization algorithms are the first implementations in

map-reduce. The main objective of this thesis is to show the methods of developing

such efficient parallel algorithms using the minimum amount of resources.

1.3 Contributions

This thesis covers the results published by the author in [10] (being a joint work with

Prof. Gösta Grahne, Ali Moallemi and Dr. Adrian Onet). We present the main ideas

of this work including the algorithms for NFA intersections and the replication rate

analysis in chapter 3.

Following this work, we propose a new method to minimize the output generated

in the NFA intersections problem. Accordingly, in chapter 4, we discuss the DFA

minimization technique and its correctness in map-reduce environment.

Furthermore, these works are supported by several experiments to confirm the

5

1. Introduction

optimization. Running the detailed experiments on different scenarios, not only vali-

dates our analysis, but also shows that these methods often work more efficiently, in

practice. Consequently, the experimental results for both problems will be shown in

Chapter 5.

1.4 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2 provides the necessary background information and related work. Sec-

tion 2.1 briefly introduces map-reduce and its open-source implementation, Hadoop.

This chapter then explores some related and important contributions that have been

recently made in map-reduce. Section 2.2 explains multiway joins problem in map-

reduce. Section 2.3 addresses the map-reduce computation cost model and factors

such as communication cost and replication rate. In the last section of this chapter,

Section 2.4, we review some of the most significant works that have been previously

done in the parallel DFA minimization domain.

In Chapter 3, we investigate the problem of implementing the Cartesian construct

in map-reduce. After introducing the basic technical preliminaries and definitions in

Section 3.1, we follow the optimization approach of Afrati et al. [3] and analyze the

amount of communication required for computing the product NFA. We first derive

a lower bound for the replication rate in the product computation in Section 3.2.

6

1. Introduction

We then propose three algorithms for the product computation and analyze their

behaviors in Section 3.3, thereby obtaining upper bounds for the replication rate.

In Chapter 4, we study the problem of minimizing a DFA in map-reduce. We begin

with essential preliminaries in Section 4.1. Afterwards, we propose the algorithm in

Section 4.2. Assuming n be the number of states of a DFA, we show that this

algorithm terminates in at most n rounds in Section 4.3. The replication rate analysis

is shown in Section 4.4 and the communication cost analysis is drawn in Section 4.5.

The experimental results for both problems are shown in Chapter 5 to validate

the analysis of the previous two chapters. Moreover, the cluster configuration as well

as the data generation methods are described in this chapter.

Finally, Chapter 6 is dedicated to conclusion and future work. In summary, the

observations made during our research are drawn in this chapter. We also suggest a

few ideas for future work.

7

Chapter 2

Background and Related Work

2.1 Map-Reduce and Hadoop

Today’s modern applications generally deal with a huge amount of information, of-

ten called “big-data”, that can no longer be processed and analyzed using traditional

software and tools [13]. Due to the inevitable growth of big-data, organizations nowa-

days have difficulties storing, analyzing and basically handling such information. To

overcome these challenges, new programming systems have been gradually developed

during the last decade. One new such system consists of large clusters of commod-

ity machines connected by network, the distributed file system running on top of

commodity hardware, as well as its central heart called Map-Reduce [19].

8

2. Background and Related Work

2.1.1 Map-Reduce

Map-reduce was first introduced by Google as a parallel programming model [8] that

can work over large clusters of commodity computers. Map-reduce provides a high-

level framework for designing and implementing such parallelism. The main intention

of its implementation at Google was in fact to perform massive matrix-vector multi-

plications required for the PageRank calculation.

The term PageRank refers to the algorithm that was first introduced in [6] as a

means to evaluate the importance of each web page by calculating its quality ranking.

Talking about web pages and the Internet in general, one may consider a very large

graph including tens of billions of nodes and edges. In the adjacency matrix of this

graph, the element (i, j) is 1, if and only if there exists a hyperlink from page i to page

j. By means of the iterative calculation, the PageRank requires very large matrix-

vector multiplications for its computation in each iteration. This computation simply

is the computation of the fixedpoint of a matrix-vector multiplication. Providing

algorithms for both matrix-vector and matrix-matrix multiplications, chapter 2 in

[19] suggests that these problem can be nicely calculated by map-reduce, while it is

worth pointing out that not every problem fits into map-reduce.

Map-reduce is a simple, yet powerful and highly scalable framework which delivers

parallelism by design. A user can easily take advantage of parallelism in map-reduce

environment without concerning any routine complexities of traditional distributed

9

2. Background and Related Work

frameworks. This ease stems from several features such as automatic failure recovery,

fault tolerance, load balancing and so on. Moreover, writing only two functions known

as map for data distribution and reduce for task parallelization is the only concern

to be taken care of by a programmer. Aforementioned variety of advantages, has

brought a lot of attentions toward this framework.

During last decade, map-reduce has also attracted researchers and academia along-

side the industry. As a result, a growing number of papers deal with map-reduce

algorithms for various problems, for instance related to graphs [27, 18, 7, 21, 23], and

related to relational joins [4, 14, 15, 20].

We shall now provide the programming model by describing the main tasks in

map-reduce framework.

2.1.1.1 Map Function

The map task also known as mapper function, transfers an input data into one or

more intermediate key-value pairs. Based on the key in a key-value pair which is

generated by the mapper, tuples are sent into the correspondingly defined reducer.

As a result, each reducer receives a set of tuples of intermediate key-value pairs.

10

2. Background and Related Work

2.1.1.2 Reducer Function

The reduce task also known as reducer function, deals with a set of key-value pairs

as input. The output of the reducer is also tuples of form key-value pairs. In other

words, it receives a key and a list of its values and applies a set of computations over

them. The output of each reducer will be written in a single file on the distributed

file system.

2.1.1.3 Partitioner Function

The partitioner function receives the key-value pairs generated by the mapper and

partitions them into R pieces over reducers. This can be done using either the default

hash function or the one provided by the user, e.g., hash(key) mod R, where R is

the number of reduce tasks.

2.1.1.4 Combiner Function

The combiner task is executed locally on the same machine on which a mapper is

executed. It is useful having a combiner function, if a reduce function is associative

and commutative. Thus, the key-value pairs are being grouped or aggregated, before

transferring into the reducers. A combiner is typically implemented using the same

code written for a reducer function.

11

2. Background and Related Work

2.1.2 Hadoop and HDFS

2.1.2.1 Hadoop

Hadoop [1] is an open-source implementation of map-reduce framework. It was cre-

ated by Doug Cutting in 2005. Further information such as definitions and a com-

prehensive guide about Hadoop can be found in [31].

Google File System was first introduced by Google in a paper published in 2003

[9]. This publication as well as introducing map-reduce in 2004 by Google, resulted

in a huge impetus on other companies to implement such a parallel and distributed

computing framework. Note that Google’s GFS and its map-reduce implementation

are proprietary systems developed in the company for its own use.

Followed by Google’s work, Apache started the Hadoop project which is best

known for open-source implementation of map-reduce and its distributed file system.

As an open-source software framework, Hadoop offers several libraries that allow for

distributed processing of large datasets across the cluster of commodity hardware

using the map-reduce programming model [1]. It mainly consists of major modules

such as Hadoop distributed file system and Hadoop map-reduce as well as variety of

minor modules including Hive, Pig, etc.

Hive [29] is an open-source distributed data warehousing solution which manages

data stored in HDFS. It is built on top of the Hadoop and provides a query language

12

2. Background and Related Work

based on SQL - HiveQL, for querying the data.

Pig [22] is a platform for exploring and analyzing large datasets. It consists of an

execution environment and a data flow language called Pig Latin.

2.1.2.2 The Hadoop Distributed File System

In order to design a file system to store very large files, Hadoop developed the Hadoop

Distributed File System (HDFS) [25] running on clusters of commodity hardware [31].

HDFS is operated on top of the hardware serves as a main file system used by

map-reduce. The uploaded files on HDFS are partitioned into blocks called chunks,

typically of size 64 MB, although the size parameter is configurable. The chunks are

replicated several times (three by default) on different racks of the clusters for fault

tolerance. This makes HDFS capable of recovering from media failure. The master

node known as name-node maintains metadata and information about all files and

directories on the file system which will be used by worker nodes called data-node.

The files are being read for further analysis and processing using map-reduce, after

they are uploaded on the HDFS. Map-reduce also writes and stores the output data

of each job on HDFS.

13

2. Background and Related Work

2.2 Multiway Joins in Map-Reduce

Queries are used to perform standard operations such as data retrieval, modification,

etc. in a database management system (DBMS). In a relational database manage-

ment system (RDBMS), queries are usually written in a language called structured

query language (SQL). One of the most useful and practical operator in a RDBMS

is the natural join. Before getting into the multiway joins problem, let us consider

computing the binary natural join by map-reduce in the following section.

2.2.1 Natural Join

Suppose we wish to compute the natural join of two relations R(A,B) and S(B,C)

by map-reduce. The join result includes tuples that agree on their B attribute. In

order to produce the tuple (a, b, c), a reducer needs to receive the tuples (a, b) and

(b, c) of R and S, respectively.

To do so, a mapper produces a key-value pair (b, (R, a)) for each input tuple

(a, b) of R and generates a key-value pair (b, (S, c)) for each input tuple (b, c) of

S. This means intermediate key-value pairs are grouped and partitioned by their

B-values. More precisely, a mapper sends those tuples with the same B-value to

identical reducers, as they are hashed based on their keys.

A reducer then receives a key b with a list of values in the form of (R, a) or (S, c).

It outputs a tuple (a, b, c), if the input list of values contains (R, a) and (b, c). Each

14

2. Background and Related Work

reducer separately writes its own join results, if any, also as key-value pairs on the

distributed file system in parallel. The key is irrelevant is this problem.

2.2.2 Cascading Multiway Joins

We shall now introduce the problem of computing multiway joins in map-reduce.

As discussed in [4, 19], there are basically two different viewpoints for computing

this problem in map-reduce.

Let us consider computing the multiway joins of three relations R, S and T defined

as R(A,B) ◃▹ S(B,C) ◃▹ T (C,D). The first method, known as cascading, involves

computing the multiway joins in two map-reduce rounds. The other approach is to

come up with the result at once in a single map-reduce job which will be discussed

later in this section.

To do so with the cascading method, the multiway joins problem is computed by

the cascade of two natural joins, for this particular example. Figure 1(a) suggests

computing R ◃▹ S first using b buckets, whereas figure 1(b) describes starting by

S ◃▹ T making use of c buckets.

After the first round finishes, the output results of round one will be joined the

by the third relation T or R in the second round using c or b reducers, respectively.

15

2. Background and Related Work

◃▹

◃▹

R S

T

(a) (R ◃▹ S) ◃▹ T

◃▹

R ◃▹

S T

(b) R ◃▹ (S ◃▹ T)

Figure 1: Cascading multiway joins

2.2.3 Multiway Joins using a Single Map-Reduce Job

The other method to take the multiway joins R(A,B) ◃▹ S(B,C) ◃▹ T (C,D) is to

compute it in a single map-reduce job by increasing the communication cost. In order

to make this work, some of the tuples must be sent to more than one reducer. Also,

the keys are in the form of pairs, rather than a single attribute.

Now, let us assume k reducers are dedicated for this job. We define k = b · c,

where b and c are the number of buckets of B-values and C-values. The mapper

function behaves differently with each tuple with respect to its relation. Using the

above definition, the multiway joins problem can be computed as follows:

1. For any tuple (b, c) of S, the mapper produces a key-value pair ⟨(h(b), h(c)),

(S, (b, c))⟩. It sends each S-tuple once to the reducer (h(b), h(c)).

2. For any tuple (a, b) ofR, the mapper produces key-value pairs ⟨(h(b), y), (R, (a, b))⟩

16

2. Background and Related Work

for each of the c possible values of y. It sends each R-tuple to the c reducers.

3. For any tuple (c, d) of T , the mapper produces key-value pairs ⟨(z, h(c)), (T, (c, d))⟩

for each of the b possible values of z. It sends each T -tuple to the b reducers.

For every join output, there is at least one reducer that has received the required

inputs from relations R, S and T . Considering this fact, it is not difficult to compute

the final join results in every reducer.

2.3 Map-Reduce Computation Cost

We shall now introduce a parameter that helps us modeling the map-reduce compu-

tation cost.

The replication rate is defined to be the number of key-value pairs generated by

all the mapper functions, divided by the number of inputs [19]. Afrati et al. proposed

a computation cost model in [3] to discover the lower bound on replication rate for

problems in map-reduce. This model is based on a function of maximum number of

inputs assigned to a reducer.

2.3.1 Mapping Schema

Let q be the maximum size of a reducer. In other words, q is the maximum number

of inputs that can be sent to a reducer. A mapping schema is defined to be an

17

2. Background and Related Work

assignment of inputs to every reducer considering the fact that no reducer can receive

more than q inputs. Also for every output of the problem, there should be at least

one reducer that has the required inputs needed to generate that output [3].

Following the above definitions, the replication rate r for an algorithm is the sum

of all inputs sent to every reducer divided by the actual input size I. Also, let qi be

the number of inputs assigned to the ith reducer and p be the number of reducers.

Thus, the replication rate r is defined as:

r =

p
i=1

qi / I (1)

2.3.2 The Lower Bounds Recipe

The recipe for lower bounds offers a simple, yet powerful technique to find the lower

bound on replication rate for a specific mapping schema.

As on the constraints of mapping schema, for every output there should be at

least one reducer that covers that output, meaning that the reducer receives all the

required inputs to generate the output. Now, let g(q) be an upper bound, on the

number of outputs a reducer of size q can cover. Similarly, g(qi) is the number of

outputs the ith reducer covers assuming it receives qi inputs. This can be simplified

by a formula as follows:

18

2. Background and Related Work

p
i=1

g(qi) ≥ |O| (2)

Using equations 1 and 2, and also assuming g(qi)
qi

is monotonically increasing in qi,

we get the lower bound on replication defined as:

r =

p
i=1 qi
|I|

≥ q × |O|
g(q)× |I|

(3)

where |I| is the input size, |O| is the output size, q is the reducer size, and g(q) is the

tight upper bound on the number of outputs a reducer of size q can cover.

Taking advantage of this recipe, we found and analyzed the lower bound on repli-

cation rate for the NFA intersections problem. We also explored the upper bound for

the algorithms which enabled us to compare those based on their replication rate.

2.4 A Short Review of Parallel DFA Minimization

Algorithms

The DFA minimization problem have long been studied. John Hopcropf gave an

efficient algorithm in 1971 for minimizing the number of states in a finite automaton

or determining if two finite automata are equivalent [11]. The running time of his

proposed algorithm was O(kn log(n)) for n states and some constant k depending on

19

2. Background and Related Work

the size of an input alphabet.

Since then there have been several investigations done on minimizing a DFA in

order to improve the current solutions to this problem. Parallel DFA minimization

has been further studied in [26, 24].

Bruce W. Watson in 1993 did a research on a taxonomy of finite automata mini-

mization algorithms [30]. One the categories discussed in the paper is to find distin-

guishable states based on the equivalence class of every state.

Essentially, there are two different approaches for discovering the non-distinguishable

states:

• Bottom-up approach. In this approach, the initial assumption is that every state

is distinguishable from other states meaning that there are initially n different

equivalence classes, where n is the number of states. In other words, every

state belongs to its own equivalence class. Afterwards, during the refinement

process, the equivalence classes are reduced and updated based on discovery of

non-distinguishable states.

• Top-down approach. The basic assumption is this approach, however, is that all

the states are equivalent or there might be at most two equivalence classes at

the beginning: final states and non-final states. Gradually, more distinguishable

states are discovered and thus the number of equivalence classes will be increased

until there are no more new equivalence classes found.

20

2. Background and Related Work

The parallel algorithm in [24] proposed by Ravikumar and Xiong in 1996 intended

to work on Exclusive Read Exclusive Write (EREW) Parallel Random Access Machine

(PRAM) model (actual parallel machines) in which each memory cell can be read or

written to by only one processor at a time.

The basic assumption of this algorithm was that all states are reachable. Other-

wise, there should be a preprocessing step to remove unreachable states.

The original algorithm [24] from this paper is:

Algorithm 1 Parallel DFA Minimization in SIMD Environment

Input: DFA with n states, k inputs and 2 blocks B0 and B1.
Output: minimized DFA.

1: procedure ParallelMin(M)
2: repeat
3: for i = 0 to k − 1 do ◃ Loop over a k-letter alphabet
4: for j = 0 to n− 1 do ◃ Do this loop in parallel
5: Get the the block number B of state qj;
6: Get the the block number B′ of the state δ(qj, xj), label the state qj

with the pair (B,B′);
7: Re-arrange(e.g. by parallel sorting) the states into blocks so that

the states with the same labels are contiguous;
8: end for ◃ End parallel for
9: Assign to all states in the same block a new (unique) block number in

parallel;
10: end for
11: until no new block produced
12: end procedure

21

2. Background and Related Work

As suggested by the author, the outer loop cannot be parallelized in this algorithm.

However, as mentioned in this paper, there are no more than 10 loops based on the

experiments done where the number of states n ranged from 4, 000 to 1, 000, 000.

Also, there are three tasks to be done at each round:

1. The first task is to discover new equivalence classes based on an input tuples

using the block number data B of a state.

2. The second task is to update the block number of every state such that con-

catenate its block number with the block number it moves to for every alphabet

symbol.

3. The last task is in fact the refinement task that is writing the updated block

number of a state to disk.

We studied the DFA minimization problem in the map-reduce environment based

on the equivalence class of every state using the top-down approach. In our work,

there is only a single map-reduce job per round for discovering, updating and refining

the equivalence classes at each step compared to the above parallel version. Later

in Chapter 4, we will show that this decreases the replication rate and saves a great

amount of communication cost. These two are important parameters that have to be

considered in every map-reduce algorithm.

22

Chapter 3

Computing NFA Intersections in

Map-Reduce

3.1 Preliminaries

In this section we introduce the basic technical preliminaries and definitions.

A Nondeterministic Finite-state Automaton (NFA) is a 5-tuple A = (Q,Σ, δ, s, F),

where Q is a finite set of states, Σ is a finite set of alphabet symbols, δ ⊆ Q×Σ×Q

is the transition relation, s ∈ Q is the start state, and F ⊆ Q is a set of final

states. By Σ∗ we denote the set of all finite strings over Σ. Let w = c1c2 . . . cn where

ci ∈ Σ be a string in Σ∗. An accepting computation path of w in A is a sequence

(s, c1, q1)(q1, c2, q2) . . . (qn−1, cn, f) of elements of δ, where s is the start state and

23

3. Computing NFA Intersections in Map-Reduce

f ∈ F . The language accepted by A, denoted L(A), is the set of all strings in Σ∗ for

which there exists an accepting computation path in A. A language L is regular if

and only if there exists an NFA A such that L(A) = L.

It is well-known that regular languages are closed under intersection. In particular,

given NFA’s A1 = (Q1,Σ, δ1, s1, F1) and A2 = (Q2,Σ, δ2, s2, F2), an NFA A, such that

L(A) = L(A1) ∩ L(A2) can be computed by the Cartesian construct A = A1 ⊗ A2,

where

A1 ⊗ A2 = (Q1 ×Q2,Σ, δ, (s1, s2), F1 × F2),

and

δ = {((p1, p2), c, (q1, q2)) : (p1, c, q1) ∈ δ1, (p2, c, q2) ∈ δ2}.

The ⊗ operation clearly is associative, and can be generalized to a polyadic operator

A1 ⊗ · · · ⊗ Am. The Cartesian construct amends itself easily to the map-reduce

framework by having the mappers emit transitions (pi, ci, qi) from each NFA Ai, and

the reducers output a transition ((p1, . . . , pm), c, (q1, . . . , qm)) upon receiving inputs

(pi, ci, qi), where c = c1 = · · · = cm. The crucial question is how to distribute the

transitions (pi, ci, qi) over the reducers. This is discussed in section 3.3.

24

3. Computing NFA Intersections in Map-Reduce

3.2 Lower Bound on the Replication Rate

Recall that each mapper emits key-value pairs (K,V), whereK determines the reducer

that the pair is sent to. Each reducer receives and aggregates key-value lists of the form

(K,V1, . . . Vq), where the (K,Vi) pairs are emitted by the mappers. The largest list

associated with one key is called the reducer size, and we will denote it by q. A small q-

value ensures that the reducer can perform the aggregation in main memory, and also

enables more parallelism. On the other hand, more parallelism usually increases the

replication rate, which is the average number of key-value pairs that mappers create

from one input. The replication rate is intended to model the communication cost,

that is the total amount of information sent from the mappers to the reducers. The

trade-off between reducer size q and replication rate r, is usually expressed through

a function f , such that r = f(q). The first task in designing a good map-reduce

algorithm for a problem is to determine the function f , which gives us a lower bound

of the replication rate r.

To start, we derive a tight upper bound, denoted g(q), on the number of outputs

that can be produced by a reducer of size q. We suppose that NFA Ai has |δi|/k

transitions for each of the k alphabet symbols. To generate a transition for A, the

reducer needs m transitions, one from each NFA Ai. The intersection NFA A has

|δ1|×···×|δm|
km

transitions, for each alphabet symbol c ∈ Σ. As there are k alphabet

symbols, the total number of transitions will be k × |δ1|×···×|δm|
km

= |δ1|×···×|δm|
km−1 .

25

3. Computing NFA Intersections in Map-Reduce

It is known that the product of the elements in a partition with a fixed summation

is maximum when the blocks of the partition have equal size. We therefore assume

that input data is evenly distributed [2], so each reducer receives q/m transitions from

each NFA Ai. The proceeding gives us the following upper bound on the output of

one reducer.

Lemma 1 In computing A = A1 ⊗ · · · ⊗ Am a reducer of size q can cover no more

than g(q) = (q/m)m outputs.

Using Lemma 1, and the total number of transitions in A, we can get a lower

bound on the replication rate as a function of q. As shown in [3] the lower bound is

given by the expression

q × |O|
g(q)× |I|

,

where |I| is the size of input, and |O| is the size of the output. The input size

will be the sum of the size of the transition relation of all input NFA’s, that is

|I| = |δ1|+ · · ·+ |δm|. As we saw above, the size of the output in terms of the number

of transitions will be |O| = |δ1|×···×|δm|
km−1 . This gives us the lower bound on replication

rate for our problem as follows

Proposition 1 The replication rate r for the Cartesian construct A = A1⊗· · ·⊗Am

is

r ≥
q × |δ1|×···×|δm|

km−1

(q/m)m × (|δ1|+ · · ·+ |δm|)
.

26

3. Computing NFA Intersections in Map-Reduce

3.3 Algorithms for the Cartesian Construct

In this section we propose and analyze three different algorithms for computing A =

A1⊗· · ·⊗Am. Our algorithms compute A in one map-reduce round, as opposed to an

m− 1 round cascade (. . . (A1⊗A2)⊗ . . .)⊗Am. Since the Cartesian construct shares

features with the multiway join problem, and the latter has been shown to work more

efficiently when done in one round, as opposed to a cascade [4, 14], we only consider

the one-round version in this study.

We note that the main difference between the NFA intersection and the multiway

join problem is that in the latter the only possibility for distributing the tuples is

based on the value(s) of the join attribute(s) (corresponding to the alphabet symbols

in Σ), whereas the NFA intersection problem we can also distribute the tuples of the

transition relation based on the states they involve.

3.3.1 Mapping Based on States

Suppose we have nm reducers, where n is the maximum number of transitions in

any of the input NFA’s. In our first algorithm the mappers produce keys of the form

(i1, i2, . . . , im). Let h be a hash-function with range {1, . . . , n}. A transition (pi, ci, qi)

from NFA Ai is mapped as key-value pairs (K, (pi, ci, qi)), where

K = (i1, . . . , ii−1, h(pi), ii+1, . . . , im).

27

3. Computing NFA Intersections in Map-Reduce

for each ij ∈ {1, . . . , n}. In other words, each transition is sent to nm−1 reducers.

In this method, the input and output sizes remain unchanged. However, the func-

tion g(q) will be affected by presence of transitions with different alphabet symbols

inside a single reducer. This gives us a new upper bound on the number of outputs

each reducer can produce, namely g(q) = k (q/mk)m. We thus have

Proposition 2 The replication rate r in the state-based mapping scheme is

r ≤ q × |δ1| × · · · × |δm|
(q/m)m × (|δ1|+ · · ·+ |δm|)

.

If n is the maximum number of transitions in any of the input NFA’s, the upper bound

on the replication rate becomes r ≤ (nm
q
)m−1.

By comparing propositions 1 and 2, we observe that the upper bound for the

replication rate obtained by mapping based on states exceeds the theoretical lower

bound by a factor of km−1. We conclude that the state-based mapping approach is

best suited for situations where the alphabet size is small, e.g., when the alphabet is

binary.

3.3.2 Mapping Based on Alphabet Symbols

In our second algorithm, we have one reducer for each of the alphabet symbols.

Thus, the number of reducers is equal to the alphabet size k. The mappers will send

28

3. Computing NFA Intersections in Map-Reduce

each transition (p, c, q) to the reducer corresponding the alphabet symbol c. More

precisely, from transition (pi, c, qi) of NFA Ai the mapper will generate the key-value

pair (h(c), (pi, c, qi)). Here h is a hash function with range {1, . . . , k}. Thus each

reducer will output transition ((p1, . . . , pm), c, (q1, . . . , qm)), having received inputs

(pi, c, qi) for i = 1, . . . ,m.

The total number of transitions sent to all reducers is
m

i=1 |δi| which we approxi-

mate by mn, assuming that each Ai has at most n transitions. The replication rate is

1, since every transition is mapped to exactly one reducer. This algorithm works well

when the alphabet size k is large and the number of reducers is equal to the number

of alphabet symbols. In summary:

Proposition 3 The replication rate in the alphabet-symbol based mapping scheme is

1, assuming that the number of reducers and alphabet symbols are the same.

Obviously a replication rate of 1 is optimal. This matches the lower bound of

Proposition 1, when observing that each reducer has to process (nm)/k inputs, assum-

ing that the alphabet symbols are uniformly distributed. Substituting q = (nm)/k in

the lower bound (nm
kq
)m−1 of Proposition 1, gives r ≥ 1.

3.3.3 Mapping Based on Both States and Alphabet Symbols

On one hand, if we map the transitions only based on the alphabet symbols, the al-

gorithm does not allow for much parallelism if the alphabet Σ is small. On the other

29

3. Computing NFA Intersections in Map-Reduce

hand, as we have observed, if the transitions are mapped based on states only, the

replication rate, and consequently the communication cost, will be sharply increased

km−1 times. We therefore consider a hybrid algorithm that maps transitions based

on a combination of alphabet symbols and states. In the hybrid method we have

a function hs that hashes states into bs buckets, and a function ha that hashes the

alphabet symbols into ba buckets. A transition (pi, ci, qi) from Ai is mapped to re-

ducers (i1, . . . , ii−1, hs(pi), ii+1, . . . , im, ha(ci)), for each ij ∈ {1, . . . , bs}, and the total

number of reducers will be bm−1
s · ba.

To compute the replication rate in this method, we note the input and output sizes

|I| and |O| remain unchanged. However, the function g(q) will be affected by presence

of transitions with different alphabet symbols inside a single reducer. We will now

have g(q) = ℓ(q/mℓ)m, where ℓ is the average number of alphabet symbols received

by a reducer, or equivalently, ℓ = k/ba. From this we can derive the replication rate.

Proposition 4 The replication rate r in the hybrid mapping scheme is

r ≤
q × |δ1|×···×|δm|

km−1

(q/m)m × (|δ1|+ · · ·+ |δm|)
× ℓm−1.

Assuming that the maximum number of transitions in any of the input NFA’s is n,

we get r ≤


nmℓ
qk

m−1

.

Note that if ba = 1 then ℓ = k and there is no hashing on alphabet symbols, and as

30

3. Computing NFA Intersections in Map-Reduce

it can be seen, the replication rate will be equal to the replication rate of the first

mapping schema. On the other hand, if ba = k, that is if we hash fully on alphabet

symbols, then ℓ = 1 and as it can be seen, the replication rate will be equal to the

replication rate of the second mapping schema.

31

Chapter 4

DFA Minimization in Map-Reduce

4.1 Preliminaries

A DFA is 5-tuple M = (Q,Σ, δ, q0, F) where Q is a finite set of states, Σ is a finite

set of input symbols (alphabet), δ is the transition function Q × Σ → Q, q0 ∈ Q is

the start state and F ⊆ Q is a set of accept states. Additionally, we assume that

|Q| = n, |δ| = m and |Σ| = k.

4.2 Map-Reduce Algorithm

In this section we propose an algorithm for minimizing a DFA using the map-reduce

programming paradigm. As we know, DFA minimization inherently is an iterative

problem and can be computed in several iterations where each step is a map-reduce

32

4. DFA Minimization in Map-Reduce

job. We utilized the equivalence classes to find the non-distinguishable states in every

round using the top-down approach, i.e. separating the states that are not equivalent.

The process converges at some point where no more equivalence classes are generated.

Let us assume that a transition δ(p, a) = q in DFA M is a tuple t = (p, a, q, c,∆)

in a relation δ. ∆ ∈ {+1,−1} indicates that a tuple is a transition or a reverse

transition. More specifically, a tuple (p, a, q, c,+1) shows that δ(p, a) = q. However,

a tuple (p, a, q, c,−1) demonstrates that δ(q, a) = p. Furthermore, we need to keep

track of equivalence class of each state. To do so, we define c to be an equivalence

class for state p in tuple t. We note that the equivalence class c is represented by a

bit vector.

4.2.1 Mapper Function

Suppose we have n reducers where n is the number of states in the input DFA. As we

discussed earlier the mapper’s input data are transitions in the form t = (p, a, q, c,∆).

The mappers send each transition to the reducer corresponding to the state p and

each reverse transition to the reducers corresponding to the state p and state q. In

other words, if δ(p, a) = q, then ∆ = +1 and the mapper will generate a key-value

pair (K,V) from the input transition, where

K = h(p) and V = (p, a, q, c,∆).

33

4. DFA Minimization in Map-Reduce

Otherwise, if δ(q, a) = p, then ∆ = −1 and the mapper will generate (K1, V) and

(K2, V), where

K1 = h(p), K2 = h(q) and V = (p, a, q, c,∆).

In order to determine the equivalence class of state p, it is essential to know the

equivalence class of state q, for which δ(p, a) = q. This is why the mapper generates

key-value pair (K2, V). On the other hand, since the equivalence class of the reverse

transition needs to be updated, the mapper also generates key-value pair (K1, V).

It is worth mentioning that because each self-loop transition carries the equivalence

class of both source and destination states, there is no need to produce (K1, V) and

(K2, V) key-value pairs. Clearly, it will decrease the communication cost by a factor

2
3
α, where α is the probability of number of self-loop transitions.

Recall that the problem’s input is just a set of transitions of initial DFA. Thus, in

the first round, the mapper computes the reverse transitions from the input data, and

then emits three key-value pairs (K1, V1), (K1, V2) and (K2, V2) per transition where

K1 = h(p) and K2 = h(q),

V1 = (p, a, q, c,+1) and V2 = (p, a, q, c,−1).

34

4. DFA Minimization in Map-Reduce

4.2.2 Reducer Function

There are two distinct tasks to be carried out inside the reducers, at each round. The

first task is to determine equivalence class of every state based on the source and

destination class of all its outgoing transitions. We present how to achieve this with

the help of the following example. Figure 2(a) represents part of a DFA. States q0

and q1 belong to equivalence class 00, whereas states q2 and q3 belong to equivalence

class 01 and 10, respectively. Considering δ(q0, a) = q2 and δ(q1, a) = q2, q0 and

q1 are in the same equivalence class based on alphabet symbol a, say 0001. On the

other hand, δ(q0, b) = q2 and δ(q1, b) = q3 imply that q0 and q1 should be in different

equivalence classes 0001 and 0010 according to alphabet symbol b. Consequently, in

order to distinguish classes of these two states, all alphabet symbols should be taken

into account. In summary, q0 belongs to class 000101 and q1 belongs to class 000110.

The updated classification for states q0 and q1 is shown in figure 2(b).

The above procedure is coded in lines 11 to 18 of algorithm 2. As discussed, there

are three sorts of transitions in every reducer. The first loop updates equivalence class

of each transition ti ∈ δ using class of destination state. This can be obtained by s, the

reverse transition of ti (line 16). Line 14 covers the self-loop transition. Afterwards,

the equivalence class of state p in round r will be updated to cr+1
p = crp c

r
q1
crq2 . . . crqk ,

where crqi is the equivalence class of qi such that qi = δ(p, ai) in all transitions t ∈ δ.

Also, if there exists a state d such that δ(d, ai) = p for some ai ∈ Σ, state d will

35

4. DFA Minimization in Map-Reduce

require the equivalence class of state p in the next round. Thus, the class of p has to

be updated using cr+1
p in all reverse transitions that goes to state p.

q0

q1

q2

q3

a,b

a

b

00 01

10

(a) Before round r

q0

q1

q2

q3

a,b

a

b

000101

000110

01

10

(b) After round r

Figure 2: Classification example

4.3 Convergence

The algorithm will be stopped as soon as the equivalence classes of the states of the

DFA converges. The result will be the minimal DFA.

Let EQ be set of equivalence classes. Then |EQ| would be the number of equiva-

lence classes. The equivalence class of state p, EQp is a bit-string of the form

EQ0EQ1 . . . EQw : ∃δ(p, a) = qi, 0 ≤ i ≤ |Q|, w = |Σ| (4)

36

4. DFA Minimization in Map-Reduce

which indicates that state p belongs to which class. As mentioned before,

|EQi| = |Σ|r

where r is map-reduce round number. Thus, each EQi in (4) has length |Σ|r−1.

In order to check if the algorithm has been converged or not, we check whether

any new equivalence class has been generated or not. To do so, in each reducer we

check the number of equivalence classes individually before and after the operation.

Generate set of equivalence classes before reducer operations Create set EQ′

consisting of substrings of EQp each of which is of length |Σ|r−2.

Generate set of equivalence classes after reducer operations Create set EQ′′

consisting substrings of EQp each of which is of length |Σ|r−1.

Check if any new class has been generated If |EQ′| ≠ |EQ′′|, then ∃qi : δ(p, a) =

qi and qi moved to new equivalence class and Cpi = false.

The algorithm has converged if


0≤i≤nCpi is true.

37

4. DFA Minimization in Map-Reduce

Algorithm 2 DFA Minimization Map-Reduce Algorithm

Input: A set of DFA transitions in the form of t = (p, a, q, c,∆)
Output: The minimal DFA
1: repeat

2: function mapper(t)
3: if ∆ = +1 then ◃ δ(p, a) = q
4: Emit (h(p), (p, a, q, c,+1))
5: else if ∆ = −1 and p ̸= q then ◃ δ(q, a) = p and it is not a self-loop

transition
6: Emit (h(q), (p, a, q, c,−1))
7: Emit (h(p), (p, a, q, c,−1))
8: end if
9: end function

10: function reducer(⟨K, [t1, t2, . . . , tn] ⟩)
11: c← null
12: for all transition δ(p, a) = q do ◃ ∆ = +1
13: if pi = qi then
14: c← c ci
15: else
16: c← c cs such that s = ti

−1

17: end if
18: end for
19: Update c in all transitions δ(p, a) = q
20: Emit (K, (p, a, q, c,+1))
21: Update c in all transitions δ(q, a) = p and q = K
22: Emit (K, (p, a, q, c,−1))
23: if equivalence class of state K changes then
24: Emit (K, true)
25: end if
26: end function

27: until no new equivalence class produced

28: merge the non-distinguishable states and produce the minimal DFA

38

4. DFA Minimization in Map-Reduce

4.4 Replication Rate Analysis

In this section we analyze the replication rate of the DFA minimization algorithm.

As discussed earlier in Section 4.2, the mapper function generates one key-value pair

for every transition δ(p, a) = q and two key-value pairs for every reverse transition

δ(q, a) = p. More precisely, the mapper generates three key-value pairs for each

transition and its reverse transition. This clearly shows that every two tuples is

replicated exactly three times during the minimization process. As a result, the

replication rate for this problem is r = 3
2
.

4.5 Communication Cost Analysis

In this section we analyze the communication cost of the DFA minimization algo-

rithm. Recall that the communication cost is the input data plus the key-value pairs

produced by the mapper function. We suppose that |I| = 2m, where m is the num-

ber of transitions. Although every transition is replicated at most three times, each

reducer emits at most two key-value pairs per transition at each round. Therefore,

the communication cost is |I|+ 3
2
|I| per round. Simply, the total communication cost

would be 5
2
|I| × d = 5md, where d is the diameter of the graph of the input DFA.

39

Chapter 5

Experimental Results

In this chapter, we provide details of the experiments we conducted to validate the

analysis of the previous two chapters.

5.1 Cluster Configuration

Our experiments were run on Hadoop on a 2-node, personal computer, cluster (8 cores

per node running at 3.0 GHz and 24 GB memory in total). The number of reducers in

the experiments was set to 128. The desktops were running Scientific Linux operating

system with kernel version 6.0. The Hadoop version installed on both machine was

2.4.0.

40

5. Experimental Results

5.2 NFA Intersections

5.2.1 Data Generation Method

We shall now briefly introduce the random model for classical automaton construction

by Tabakov and Vardi [28]. Let A = (Q,Σ, δ, s, F) be an NFA. Then for each alphabet

symbol a ∈ Σ, the random model generates a random directed graph Ga on Q with

k edges, corresponding to the transition (p, a, q). The transition density is defined as

the ratio k
|Q| . Similarly, the final state density is defined as the ratio |F |

|Q| . Finally, the

transitions generated for every alphabet symbol are merged to form a final NFA.

Consequently, the NFA’s were generated as labelled random graphs according

to the above random model. The total number of transitions were determined by

the transition density, that is, the ratio between the number of transitions and the

number of states. In the data shown we used a transition density of 2.0 and a final

state density of 0.2.

5.2.2 Experiments

We computed A1⊗A2⊗A3, and varied the size of the NFA’s and number of alphabet

symbols.

In the experiments we compared the execution time obtained by hashing the input

data based on states (States) and on both states and alphabet symbols (Hybrid).

41

5. Experimental Results

3.5 7 10.5 14 17.5 21 28
0

500

1,000

1,500

Total Number of Transitions in δ1 ∪ δ2 ∪ δ3 (in thousands)

T
ot
al

E
x
ec
u
ti
on

T
im

e
(s
ec
)

States
Hybrid

Figure 3: Processing times of two methods for the alphabet size k = 16

7 14 21 28 35 42 56

0

1,000

2,000

3,000

4,000

Total Number of Transitions in δ1 ∪ δ2 ∪ δ3 (in thousands)

T
ot
al

E
x
ec
u
ti
on

T
im

e
(s
ec
)

States
Hybrid

Figure 4: Processing times of two methods for the alphabet size k = 64

42

5. Experimental Results

8 16 32 64 128

80

100

120

140

160

Alphabet Size

T
ot
al

E
x
ec
u
ti
on

T
im

e
(s
ec
)

States
Hybrid

Figure 5: Processing times of two methods with |δ1|+ |δ2|+ |δ3| = 7, 000

16 32 64 128 256 512 1024 2048
0

500

1,000

1,500

Alphabet Size

T
ot
al

E
x
ec
u
ti
on

T
im

e
(s
ec
)

States
Hybrid

Figure 6: Processing times of two methods with |δ1|+ |δ2|+ |δ3| = 28, 000

43

5. Experimental Results

In Figure 3, we see the execution time for different data sizes with the alphabet

size k = 16. Figure 4 shows the comparison of States and Hybrid methods, while the

alphabet size k = 64. As expected, Hybrid method is clearly more efficient.

Figure 5 represents execution time of the hybrid method versus mapping based on

states for different alphabet sizes when |δ1|+ |δ2|+ |δ3| = 7, 000. This figure indicates

while the hybrid method works faster, the execution time difference remains almost

constant, since the alphabet size is less than or equal to the number of reducers.

Figure 6 represents execution time of the two methods for various alphabet sizes

while |δ1|+|δ2|+|δ3| = 28, 000. The figure shows that as the size of alphabet increases,

the execution time of both algorithms get closer to each other. This is due to the fact

that once the the size of the alphabet exceeds the number of reducers (128), in the

hybrid method each reducer has to deal with several alphabet symbols, thus slowing

down the computation inside the reducers.

5.3 DFA Minimization

For DFA minimization problem, we generated random DFA’s with different sizes and

ran the minimization algorithm over the cluster.

In the experiments we compared the execution time obtained by the DFA mini-

mization implementation, the communication cost as well as the number of rounds.

In figure 7, we see the total execution time for DFA’s with different number of

44

5. Experimental Results

states and a constant alphabet size k = 2. While there is a small difference among the

execution time of DFA’s with different number of states, it amazingly addresses the

fact that the total number of rounds is an important factor. The diameter d of all the

DFA’s in this figure was set to 7. It shows that the processing time taken to minimize

a DFA depends on its diameter, regardless of its input size and communication cost.

Table 1 shows the input size and the communication cost of 7 different datasets used

in figure 7.

Dataset |Q| |I| in KB Comm. Cost in MB

1 128 2.24 1.2
2 256 5.21 2.6
3 512 10.91 5.3
4 1024 21.94 10.6
5 2048 47.25 21.1
6 4096 98.6 42.6
7 8192 202.21 86

Table 1: Sizes of dataset and communication cost

45

5. Experimental Results

128 256 512 1024 2048 4096 8192
150

200

250

300

Number of States

T
ot
al

E
x
ec
u
ti
on

T
im

e
(s
ec
)

Figure 7: Execution time vs. problem size

Figure 8 shows the total execution time in seconds versus the number of rounds.

Although the number of states for all DFA’s was set to 1024, changes in a diameter

has had a great impact on the execution time.

7 8 9 10 11 12 13

300

400

Number of Rounds

T
ot
al

E
x
ec
u
ti
on

T
im

e
(s
ec
)

Figure 8: Execution time vs. number of rounds

46

5. Experimental Results

As expected, it can be observed that the larger the diameter of a DFA is, the more

time it takes to minimize this DFA. This is clearly because the minimization process

terminates in d rounds, where d is the diameter of a graph of a DFA. Consequently, the

number of rounds directly affects the execution time. Also, it is worth mentioning

that every round of this process is a single map-reduce job compared with other

parallel versions of this algorithm that have several jobs per round.

47

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this research we proposed and studied methods for computing a product automaton

using map-reduce. Additionally, our analysis and experimental results show that

carefully optimizing the amount of inter-processor communication indeed pays off in

improved processing time.

As a trivial solution to this problem, we showed that hashing only based on

states is not always a suitable method, since it increases the replication rate. On

the other hand, we introduced hashing based on alphabet symbols as an alternative

to decrease the replication rate. Furthermore, we discussed that hashing based on

alphabet symbols meets the lower bound on replication rate. However, in cases of

48

6. Conclusion and Future Work

dealing with huge datasets and small alphabet size, this hashing method may not

necessarily provide expected parallelism.

Combining these two methods, we proposed a new flexible approach called hybrid

method. Hashing based on both states and alphabet symbols, provides not only

sufficient parallelism to reduce the size of sub-problems, but also allocates enough

hash buckets to alphabet symbols to reduce the replication rate as much as possible.

Following the NFA intersections problem, we conducted another research on re-

ducing the number of states in the product automaton, either by eliminating all or

part of the useless states or by determinizing and minimizing the automaton.

The problem of DFA minimization inevitably brings iterations of map-reduce jobs.

In this problem, not only maintaining the replication rate at its lowest level in each

iteration is important, but also transferring data from one round to another is as well.

Consequently, finding a suitable way to encode and transfer all required data between

rounds became challenging.

We proposed an algorithm to find the minimal DFA that converges in at most

linear in |Q| number of rounds. This algorithm benefits from running each iteration

of the problem using only one map-reduce job. In practice, the experimental results

indicated that the actual number of iterations to terminate, is much smaller than the

theoretical worst-case.

49

6. Conclusion and Future Work

6.2 Future Work

In future work it will be interesting to investigate the optimal number of rounds

in which the problem of DFA minimization terminates in map-reduce environment.

Another extension is to apply more intensive preprocessing over the topology of the

graph of input DFA in order to speed up the process and reduce the communication

cost and replication rate.

We also suggest two interesting problems than can be studied alongside our re-

search work. Being two challenging problems in theoretical computer science, the

emptiness and infiniteness problem will be introduced later in the following sections.

6.2.1 Testing Emptiness of Regular Languages Intersections

As mentioned earlier in the first chapter, testing for emptiness of the intersection of

a set of languages represented by finite automata is known to be PSPACE-complete.

The comprehensive study on space and time complexity of this problem can be found

in [17].

We shall now define the emptiness problem. The intersection of m finite automata

is an automaton A, that accepts the language L containing all strings accepted by all

m automata. Clearly, the number of states in A could be very large. This is because

assuming each automaton has n states, the product automaton will have nm states.

Now, the question is if A accepts any string at all. The emptiness problem of regular

50

6. Conclusion and Future Work

languages intersections tests whether there exist a string which is accepted by A. In

other words, given a regular language L =
m

i=1 L(Ai) (Ai is a finite automaton),

does L contain any string? The complement of emptiness problem, known as the

nonemptiness problem, could be reduced to the problem of finding any reachable

final state from the initial state.

Obviously, finding the reachable states by computing the transitive closure of

the corresponding graph of the product automaton, can be of a great help to solve

this problem. An interesting investigation on implementation of transitive closure

and recursive datalog on cluster can be found in [5]. However, computing transitive

closure of a graph is known to be an iterative problem. Here, the important fact is

to consider the trade-off between the number of iterations versus the communication

cost to come up with an efficient approach to this problem.

6.2.2 Verifying Infiniteness of Regular Languages Intersec-

tions

Given a finite family of infinite regular languages, {Li}mi=1, the problem of verifying

infiniteness of regular languages intersections is whether the intersection of these

languages, L =
m

i=1 Li, also remains infinite. Let Ai be the corresponding automata

describing the language Li, that is, L(Ai) = Li. It is easy to see that this problem

51

6. Conclusion and Future Work

can be reduced to the problem of finding a cycle in the product automaton

A = A1 ⊗ A2 ⊗ · · · ⊗ Am.

Clearly, this cycle must be reachable from the initial state and lead to a final

state. In other words, let n be the number of states in the intersection automaton.

Existence of a string of length equal or larger than n accepted by this automaton,

ensures that the intersection language is infinite.

One might be interested in parallelizing the problem of verifying infiniteness of

regular languages intersections considering its communication cost as the bottleneck

in map-reduce environment.

52

References

[1] Apache hadoop. Available at http://hadoop.apache.org/. 12

[2] Foto N. Afrati, Shlomi Dolev, Ephraim Korach, Shantanu Sharma, and Jeffrey D.

Ullman. Assignment of different-sized inputs in mapreduce. In Proceedings of the

Workshops of the EDBT/ICDT 2015 Joint Conference (EDBT/ICDT), Brus-

sels, Belgium, March 27th, 2015., pages 28–37, 2015. 26

[3] Foto N. Afrati, Anish Das Sarma, Semih Salihoglu, and Jeffrey D. Ullman. Upper

and lower bounds on the cost of a map-reduce computation. PVLDB, 6(4):277–

288, 2013. 6, 17, 18, 26

[4] Foto N. Afrati and Jeffrey D. Ullman. Optimizing multiway joins in a map-reduce

environment. IEEE Trans. Knowl. Data Eng., 23(9):1282–1298, 2011. 10, 15, 27

[5] Foto N. Afrati and Jeffrey D. Ullman. Transitive closure and recursive data-

log implemented on clusters. In 15th International Conference on Extending

53

http://hadoop.apache.org/

REFERENCES

Database Technology, EDBT ’12, Berlin, Germany, March 27-30, 2012, Pro-

ceedings, pages 132–143, 2012. 51

[6] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web

search engine. Computer Networks, 30(1-7):107–117, 1998. 9

[7] Flavio Chierichetti, Ravi Kumar, and Andrew Tomkins. Max-cover in map-

reduce. In Proceedings of the 19th International Conference on World Wide Web,

WWW 2010, Raleigh, North Carolina, USA, April 26-30, 2010, pages 231–240,

2010. 10

[8] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on

large clusters. Commun. ACM, 51(1):107–113, 2008. 9

[9] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system.

In Proceedings of the 19th ACM Symposium on Operating Systems Principles

2003, SOSP 2003, Bolton Landing, NY, USA, October 19-22, 2003, pages 29–

43, 2003. 12

[10] Gösta Grahne, Shahab Harrafi, Ali Moallemi, and Adrian Onet. Comput-

ing NFA intersections in map-reduce. In Proceedings of the Workshops of the

EDBT/ICDT 2015 Joint Conference (EDBT/ICDT), Brussels, Belgium, March

27th, 2015., pages 42–45, 2015. 5

54

REFERENCES

[11] John E. Hopcroft. An n log n algorithm for minimizing states in a finite automa-

ton. In Theory of Machines and Computations, pages 189–196. Academic Press,

New York, 1971. 19

[12] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,

Languages and Computation. Addison-Wesley, 1979. 1, 3

[13] IBM, Paul Zikopoulos, and Chris Eaton. Understanding Big Data: Analytics for

Enterprise Class Hadoop and Streaming Data. McGraw-Hill Osborne Media, 1st

edition, 2011. 8

[14] Ben Kimmett, Alex Thomo, and S. Venkatesh. Three-way joins on mapreduce:

An experimental study. In IISA 2014, The 5th International Conference on

Information, Intelligence, Systems and Applications, Chania, Crete, Greece, July

7-9, 2014, pages 227–232, 2014. 10, 27

[15] Ioannis K. Koumarelas, Athanasios Naskos, and Anastasios Gounaris. Binary

theta-joins using mapreduce: Efficiency analysis and improvements. In Proceed-

ings of the Workshops of the EDBT/ICDT 2014 Joint Conference (EDBT/ICDT

2014), Athens, Greece, March 28, 2014., pages 6–9, 2014. 10

[16] Dexter Kozen. Lower bounds for natural proof systems. In 18th Annual Sympo-

sium on Foundations of Computer Science, Providence, Rhode Island, USA, 31

October - 1 November 1977, pages 254–266, 1977. 3

55

REFERENCES

[17] Klaus-Jörn Lange and Peter Rossmanith. The emptiness problem for intersec-

tions of regular languages. In Mathematical Foundations of Computer Science

1992, 17th International Symposium, MFCS’92, Prague, Czechoslovakia, August

24-28, 1992, Proceedings, pages 346–354, 1992. 50

[18] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Fil-

tering: a method for solving graph problems in mapreduce. In SPAA 2011:

Proceedings of the 23rd Annual ACM Symposium on Parallelism in Algorithms

and Architectures, San Jose, CA, USA, June 4-6, 2011 (Co-located with FCRC

2011), pages 85–94, 2011. 10

[19] J. Leskovec, A. Rajaraman, and J.D. Ullman. Mining of Massive Datasets.

Cambridge University Press, 2014. 8, 9, 15, 17

[20] Mahsa Mofidpoor, Nematollaah Shiri, and Thiruvengadam Radhakrishnan.

Index-based join operations in hive. In Proceedings of the 2013 IEEE Inter-

national Conference on Big Data, 6-9 October 2013, Santa Clara, CA, USA,

pages 26–33, 2013. 10

[21] Gianmarco De Francisci Morales, Aristides Gionis, and Mauro Sozio. Social

content matching in mapreduce. PVLDB, 4(7):460–469, 2011. 10

[22] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and An-

drew Tomkins. Pig latin: a not-so-foreign language for data processing. In

56

REFERENCES

Proceedings of the ACM SIGMOD International Conference on Management of

Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, pages 1099–

1110, 2008. 13

[23] Vibhor Rastogi, Ashwin Machanavajjhala, Laukik Chitnis, and Anish Das

Sarma. Finding connected components in map-reduce in logarithmic rounds.

In 29th IEEE International Conference on Data Engineering, ICDE 2013, Bris-

bane, Australia, April 8-12, 2013, pages 50–61, 2013. 10

[24] Bala Ravikumar and X. Xiong. A parallel algorithm for minimization of finite

automata. In Proceedings of IPPS ’96, The 10th International Parallel Processing

Symposium, April 15-19, 1996, Honolulu, Hawaii, USA, pages 187–191, 1996. 20,

21

[25] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The

hadoop distributed file system. In IEEE 26th Symposium on Mass Storage Sys-

tems and Technologies, MSST 2012, Lake Tahoe, Nevada, USA, May 3-7, 2010,

pages 1–10, 2010. 13

[26] Y. N. Srikant. A parallel algorithm for the minimization of finite state automata.

International Journal of Computer Mathematics, 32(1-2):1–11, 1990. 20

[27] Siddharth Suri and Sergei Vassilvitskii. Counting triangles and the curse of the

last reducer. In Proceedings of the 20th International Conference on World Wide

57

REFERENCES

Web, WWW 2011, Hyderabad, India, March 28 - April 1, 2011, pages 607–614,

2011. 10

[28] Deian Tabakov and Moshe Y. Vardi. Experimental evaluation of classical au-

tomata constructions. In Logic for Programming, Artificial Intelligence, and

Reasoning, 12th International Conference, LPAR 2005, Montego Bay, Jamaica,

December 2-6, 2005, Proceedings, pages 396–411, 2005. 41

[29] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,

Ning Zhang, Suresh Anthony, Hao Liu, and Raghotham Murthy. Hive - a

petabyte scale data warehouse using hadoop. In Proceedings of the 26th Inter-

national Conference on Data Engineering, ICDE 2010, March 1-6, 2010, Long

Beach, California, USA, pages 996–1005, 2010. 12

[30] Bruce W. Watson. A taxonomy of finite automata minimization algorithms.

Computing Science Note 93/44, Eindhoven University of Technology, The

Netherlands, 1993. 20

[31] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc, 3rd edition,

May 2012. 12, 13

58

	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Introduction
	Problem Statement
	NFA Intersections
	DFA Minimization

	Motivation and Objectives
	Contributions
	Thesis Organization

	Background and Related Work
	Map-Reduce and Hadoop
	Map-Reduce
	Map Function
	Reducer Function
	Partitioner Function
	Combiner Function

	Hadoop and HDFS
	Hadoop
	The Hadoop Distributed File System

	Multiway Joins in Map-Reduce
	Natural Join
	Cascading Multiway Joins
	Multiway Joins using a Single Map-Reduce Job

	Map-Reduce Computation Cost
	Mapping Schema
	The Lower Bounds Recipe

	A Short Review of Parallel DFA Minimization Algorithms

	Computing NFA Intersections in Map-Reduce
	Preliminaries
	Lower Bound on the Replication Rate
	Algorithms for the Cartesian Construct
	Mapping Based on States
	Mapping Based on Alphabet Symbols
	Mapping Based on Both States and Alphabet Symbols

	DFA Minimization in Map-Reduce
	Preliminaries
	Map-Reduce Algorithm
	Mapper Function
	Reducer Function

	Convergence
	Replication Rate Analysis
	Communication Cost Analysis

	Experimental Results
	Cluster Configuration
	NFA Intersections
	Data Generation Method
	Experiments

	DFA Minimization

	Conclusion and Future Work
	Conclusion
	Future Work
	Testing Emptiness of Regular Languages Intersections
	Verifying Infiniteness of Regular Languages Intersections

	References

