
OPTIMAL LEADER-FOLLOWER FORMATION

CONTROL USING DYNAMIC GAMES

Omid Danesh Shahraki

A thesis

in

The Department

of

Mechanical and Industrial Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science

Concordia University
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Abstract

Optimal Leader-follower Formation Control using Dynamic Games

Omid Danesh Shahraki

Formation control is one of the salient features of multi–agent robotics. The main

goal of this field is to develop distributed control methods for interconnected multi–

robot systems so that robots will move with respect to each other in order to keep a

formation throughout their joint mission. Numerous advantages and vast engineering

applications have drawn a great deal of attention to the research in this field.

Dynamic game theory is a powerful method to study dynamic interactions among

intelligent, rational, and self-interested agents. Differential game is among the most

important subclasses of dynamic games, because many important problems in engi-

neering can be modelled as differential games.

The underlying goal of this research is to develop a reliable formation control

algorithm for multi–robot systems based on differential games. The main idea is to

benefit from powerful machinery provided by dynamic games, and design an improved

formation control scheme with careful attention to practical control design require-

ments, namely state feedback, and computation costs associated to implementation.

In this work, results from algebraic graph theory is used to develop a quasi-static op-

timal control for heterogeneous leader–follower formation problem. The simulations

are provided to study capabilities as well as limitations associated to this approach.

Based on the obtained results, a finite horizon open-loop Nash differential game is

developed as adaptation of differential games methodology to formation control prob-

lems in multi–robot systems. The practical control design requirements dictate state-

feedback; therefore, proposed controller is complimented by adding receding horizon

approach to its algorithm. It leads to a closed loop state-feedback formation control.

The simulation results are presented to show the effectiveness of proposed control

scheme.
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Chapter 1

1 Introduction

1.1 Motivation

Mobile robotics is one of two major subsections of broader field of robotics. It has

seen a great deal of attention and progress over the last few decades. More recently,

thanks to advent of new technologies such as new actuators, sensors and computation

units, mobile robots became far more capable than their primitive ancestors and at

the same time much cheaper to build and maintain. This has enabled researchers

worldwide to join the efforts and triggered new and fruitful research areas.

Over the last decade the topic of team work between multiple robots also known

as multi–agent robotics has emerged around the core topic of mobile robotics. As

number of mobile robots in research problems increased, consequently the complexity

of the problems. The same control, path planning, and perception challenges in a

single robot problem multiplied as multiple mobile robots were to participate in a

new competitive or collaborative setting, and a whole new level of complexity has

been introduced to the research in this field.

Very interesting topics of Multi agent robotics, cooperative control and path plan-

ning addresses problems with only a few mobile robots, to the scenarios where tens

or even hundreds of homogeneous or heterogeneous mobile robots are involved. This

new context necessitate an entirely new machinery to analyse and solve multi –robots

problems.
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At the beginning researchers attempted to stretch and expand common control

methods to multi–robot problems. Linear and non-linear control methods were ex-

plored [1] then it was time to optimal control, and Receding Horizon control to be

adapted for these new problems [2]. Others saw a virtue in abstraction and applica-

tion of network science in multi–agent robotics [3] as a more profound view to the

dynamics of cooperation and competition. A new insight who has been formed by

introduction of algebraic graph theory over the multi–agent robotics and became the

dominant approach to lay foundation for further research in mobile robotics.

Among all different methods, an original idea formed around application of Game

theory in this context [4]. By considering each robot in a multi–robot scenario as a

rational decision maker with biassed individual interests in the final results, one can

formulate a game and use game theoretic shades to gain unique insight about local

and global interaction between robots and possible outcome of these interactions.

1.2 Game theory in formation control

Nested in economics with wide applications in areas as diverse as political science,

biology, psychology and more recently engineering, game theory studies problem of

strategic decision making. It provides a valuable insight to the logical aspect of deci-

sion making for both humans and non-human decision makers through mathematical

modelling of conflict and cooperation among intelligent, rational and self-interested

agents.

In the literature, games are classified as static games and dynamic games. In static

games the entire game takes place in one instant of the time. All the players make

their choice at once, simultaneously, and act based on it. Apparently and dependant

on their action each player receives a pay-off [5]. Whereas in dynamic games we

think of the game as being played over a number of finite time intervals. In such

situation each player changes its strategy based on the action of others, from one

interval to the other. This results in a dynamic decision making. Dynamic games

offer an ideal machinery to find solutions for a wide range of problems. In nature

they are able to capture four aspects of a complex problem naming optimization,

multi–agent characteristics, robustness in presence of a dynamic environment, and

enduring consequences of decisions. Such a powerful machinery provides a promising

mathematical foundation to solve multi–agent robotics problems.
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Among the most important subclasses of dynamic games are differential games.

Differential game aims to predict behaviour of players dealing with conflicts of in-

terests in context of a dynamically evolving environment. It provides useful analysis

about the situation, based on its mathematical formulation. It is called differential

games because the dynamic of the players in the game as well as the evolving environ-

ment around them are modelled as differential equations. Differential games merged

as evolution of game theory and optimal control theory.

Rufus Issacs (1951) was pioneer to work on this set of problems, more than half a

century later differential games have a wide application in economics, science and

engineering.

While there is a well developed research on pursuit-evasion differential games in

economics, engineering applications of differential games are diverse and are mostly

formulated as a set of Linear quadratic differential equations known as Linear Quadratic

differential games. Thankfully, there are mature theoretical development and efficient

numerical methods to solve these class of problems.

Differential game is in essence extension of static non-cooperative continuous-kern

game theory by adopting optimal control theory’s principles for dynamic environ-

ments. Optimal control theory addresses the question of optimal solution to the

planning problems involving dynamic systems, where the states of the system change

over time based on control inputs. According to this definition differential game also

can be considered as extension of optimal control theory. Instead of being affected

by only one input, dynamic of the system is now controlled by multiple inputs, as

each of which is decided by different players. As the result, there is more than one

cost function involved in finding the optimal solution, with each player now having

a possibly different cost function. Whereas if all the players had the same cost func-

tion, problems known as team game, the differential game problem could be mapped

down to an optimal control problem. Table 1 places differential games with respect

to optimization and game theory.
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Table 1: Problem type classification from optimization to differential game.

Single Player Multi Player

Static Optimization Static Game

Dynamic Optimal Control Differential Game

In differential games firstly the environment where our players are located is mod-

elled. For this purpose a set of differential or difference equations can be used to

mathematically model the environment. These equations capture the effect of actions

taken by players over the course of the game on the their surrounding environment.

As the second part, agent’s objectives are defined which are commonly formalized as

cost or utility functions. Throughout the game each agent tries to minimize its cost

function, subject to a specific dynamic model of the environment, so that it finds the

best strategy in the game. To do so techniques developed in the context of optimal

control theory is being used to solve the dynamic game.

In optimal control theory there are two main approaches to find the optimal

input. These two approaches are also well adopted to the realm of differential games.

Introduced by Bellman in 1950s, dynamic programming seeks for solution of optimal

control problems as function of current state and the time, providing a closed-loop

feedback control. While Pontryagin’s maximum principle the other major approach

to optimal control problems, leads to optimal solutions based on only the time and

initial states which results in an open-loop control.

Counterparts of these two ideas in differential games are Nash equilibrium and

Stackelberg equilibrium for non-hierarchical and hierarchical structures, respectively.

Thanks to the optimal control theory techniques, one can verify the solution and

stability analysis of these games using the same methods used in optimal control.

As described before, differential games provide a powerful analytical tool capa-

ble of including optimization and multi–agent characteristics where robustness in

presence of a dynamic environment is important and decision making happens in a

decentralized fashion. Combination of these features best tailors what is needed to

address a problems in multi–agent robotics, where dynamics of the robot can replace

the differential equations needed for the game and the robots input are derived by

solving the cost function associated to its individual objective.
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1.3 Literature Review

This section presents a review of the relevant literature on multi–agent mobile robotics.

First a brief review on formation control will be provided, followed by a review on

graph theoretic methods to multi–agent systems. Then a review of game theoretic

approaches to multi–agent systems will conclude this section.

As humans we perform better in teams. There are also certain objectives that are

impossible to achieve without forming a team. The most popular sports are shaped

around two teams playing against each other, and almost every successful business

venture is based on teamwork. Implementation of teamwork in the realm of robotics

can also be potentially very empowering, specially for mobile robots.

One of the staple examples is formation control. As one of the remarkable fea-

tures of multi–agent robotics, formation control emerged by inspiring from the natural

phenomenons like schools of fish, flock of wildebeests and colonies of bacteria. These

behaviours leads to better performances in animal world like avoiding danger, saving

energy and all in all a better chance of survival [6]. While in engineering its application

are diverse including automated highway systems [7], cooperative robot reconnais-

sance [8], manipulation operation [9], flight formation control [10], [11], [12], satellite

clustering [13], distributed sensor networks [14], self reconfiguration MEMS [15], etc.

Leader follower, behaviour based and virtual leader are three main categories

based on which formation control has been studied within the literature. In leader

follower structure robots are following their neighbours and essentially the leader

robots either by keeping a certain the distance with two neighbours, or controlling

a distance and an angle with neighbouring robots in the chain. Behaviour based

formation control can be achieved by defining certain behaviour protocols for each

individual robot that leads to desirable team behaviour. Research has shown that

behaviour based formation control well suites uncertain environments but they lack

robust theoretical analysis. And finally the virtual leader structure as it is obvious by

its name uses a virtual leader robot that drives the formation toward desired position.

In [3] author provide theoretical framework and algorithmic tools to extend theory

of graphs from static graphs to dynamic graphs. In a static graph the structure of ver-

tices and edges and weights associated to them is time invariant, whereas in dynamic

graphs topology of the interaction among its elements is strongly time and state de-

pendent. This work lays foundation to better understand the intricate stability and
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performance characteristics of distributed dynamic systems such as distributed space

system design. The author introduces the state-driven dynamic graphs and provides

insight over invariance and reachability properties of these structures.

A local averaging rule to study discrete-time model of n autonomous agents has

been considered in [16], where all moving with the different headings, while main-

taining the same speed. Agents located inside or on a circle of specific radius around

agent i are considered as its neighbours and a local rule decides the heading of agent

i based on average of its own heading and heading of its neighbours. This work is

based on [17] and Jadbabaie etal provide theoretical explanation to it. The system

is perceived as a stable switched linear system, but for which there dose not exist

a common quadratic Lyapunov function. This is done through a switching signal σ

which depends on the models initial heading vector, and radius r of the circle that

defines the neighbours.

Olfati Saber etal [18] studies convergence analysis of an agreement protocol for

a network of integrators with fixed or switched topology and a directed information

flow. New concepts are introduced in this work using algebraic graph theory and

matrix theory. Here a connection is created among Fiedler eigenvalue and Laplacian

of graph and the performance of the agreement protocol.

The problem of distributed formation control for a group of autonomous agents

is studied in [19]. Here the objective is for a group of mobile agents such as mobile

rovers or UAVs, to reach a specified formation, move around while maintaining the

formation and reconfigure from one formation to others. Three formation strategies

are proposed cyclic pursuit and formation schemes developed based on inter-neighbour

interactions either in an undirected graph or in general directed graph case. In this

point there is no kinematic constraints imposed on the agents and they can move

around freely. Various game theoretic approaches have been used to address the

formation control problem.

A new approach to cooperative control using potential game was proposed in

[20], where Consensus problem is modelled as a potential game. Each individual

player is assigned to a local objective function, and Nash equilibrium is defined as the

action profile who maximizes the potential function, capturing the objective of global

planner. Potential games require a detailed alignment between the local objective

function and the global objective. And finally, a new class of games called sometimes
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weakly acyclic games is introduced, which is a weaker notion of potential games.

Authors in [21] formulate consensus problem over leaderless multi–robot structure,

with double integrator dynamic, as a cooperative game framework. A decentralized

control scheme is developed to achieve consensus over a common value of the agent’s

output by combining decentralized individual cost function of each agent to form a

team cost function. In order to minimize team cost function Pareto optimal solu-

tions are first identified. This minimization problem, subject to dynamic constraint

of the robots, forms a standard linear quadratic regulator problem (LQR). The LQR

minimization for consensus seeking problem is formulated as a maximization prob-

lem subject to a set of Linear Matrix Inequalities(LMIs) after imposing additional

constraint to ensure desired consensus. Due to un-uniqueness of Pareto solutions

an algorithm is then proposed to numerically solve for the Nash bargaining solution

among Pareto frontier solutions. A maximization problem solves for the Nash bar-

gaining solution which results in a unique cooperative strategy for this leader less

multi–robot structure.

In [22] Extremum seeking algorithm, originally used in adaptive on-line optimiza-

tion problem of dynamical systems has been employed to general non-cooperative

games. The players generate their actions based solely on the measurement of their

individual cost function, whose detailed analytical form may be unknown, and indi-

vidual cost for each agent can be expresses as both sum of locally defined goals -based

on the individual agent’s position or action- and a collective goal based on position or

action of other agents. By implementing the proposed scheme an adaptive compro-

mise is achieved between this two goals, maintaining connectivity with neighbouring

agents and with no need to detailed inter-agent communication or position measure-

ment. Detailed formulation of the proposed method is provided for formation control,

rendezvous and coverage control as examples of non cooperative games application

in multi–robot problems.

Author in [4] adopts linear quadratic differential game to formation control prob-

lem of a multi–robot system with double integrator dynamics. A linear quadratic

Nash controller is first developed, then receding horizon method is used to provide

state–feedback feature to the proposed controller to guarantee practical control design

demands.
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1.4 Scope of the Thesis

In this research we aim to develop a improved formation control algorithm for multi–

robot systems based on dynamic games. The main idea is to benefit from individual-

ized outlook to agent’s interest which is provided by dynamic games, and design an

improved formation control scheme with careful attention to practical control design

requirements, namely state feedback and computation costs associated to controller

implementation.

In this work, results from algebraic graph theory is first used to develop a quasi-

static optimal control for heterogeneous leader–follower formation problem. Simu-

lations are provided to study capabilities as well as limitations associated to this

approach. Steamed of this results a finite horizon open-loop Nash differential game

was developed as adaptation of differential games methodology to formation con-

trol problems in multi–robot systems. Practical control design requirements dictates

state-feedback, therefore proposed controller was complimented by adding receding

horizon approach to its algorithm, leading a closed loop state-feedback formation

control. Simulation results are presented to show the effectiveness of the proposed

control scheme.

1.5 Organization of the Thesis

This thesis is organized as follows. Chapter 1 contains introduction to the research

topic addressed in the thesis, research objectives, contributions and organization of

the thesis are presented in the first chapter. Background topics on game theory, graph

theory, and optimal control theory is introduced in chapter 2. In Chapter 3 Optimal

Quasi-Static Formation Control is discussed, and simulation results are provided for

network of six agents to verify the effectiveness of proposed method. In chapter 4 dif-

ferential game technique is adopted to formation control of networked mobile agents,

and a open loop controller is suggested based on an open loop information structure.

Chapter 5 brings state feedback feature to differential game approach through Reced-

ing Horizon Nash formation control, and simulation results are provided to prove the

concept. Conclusion and future works are discussed in the final chapter, Chapter 6.
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Chapter 2

2 Background Material

Technical challenges are numerous in development of distributed multi–agent net-

works especially distributed multi–robot systems. While on board computational

power, communication and sensing capabilities of each mobile robot are limited, they

have to work together towards a specific mission. Objectives of such mission are be-

ing achieved at the system level as individual agents collaborate. In this introductory

chapter, we tend to introduce basics of graph theory, game theory and optimal control

theory as they lead us to better understand multi–agent robotics problems.

Graph theory provides a convenient structure to understand the intrinsic prop-

erties of interactions within a finite or infinite set of elements [23]. Graph theory

approach to multi–agent networks is through network abstraction. Communication

networks such as wireless communication among robots in a team or an active sensing

of the position of other agents through vision based or range sensors are examples of

these information exchange systems that we aim to abstract into equivalent graphs.

In graph theory we tend to consider the interaction geometry of these networks to

analyse and synthesis multi–agent systems. [24].

Game theory provide an excellent mathematical tool to analyse and predict be-

haviour of individuals in a social context [25]. Examples of such a self-interested

rational agents can be Human beings, biological entities, nodes in a power grid or

robots working together. They can be involved in a cooperative on non-cooperative

game, seeking their own benefits through interaction with other agents. Based on

9



the variety of features involved in description of the problem, games can be classified

mainly into static and dynamic games. In static games everything happens simul-

taneously in one step of the time. While in dynamic games agent make decision in

different steps of the time as long as the game continues [5]. Dynamic games can be

viewed as extension of optimal control problem to multi–player context.

Optimal control theory addresses the problem of finding the optimal input with re-

spect to some constraints, to control a system along a desired state [26]. Pontryagin’s

Minimum Principle and Dynamic Programming are two main approaches in optimal

control which can be very well adopted in dynamic games as Open-loop information

games and state-feedback information games.

Throughout the rest of this chapter we take an in-depth look into these very

powerful tools to better understand multi–agent robotics. We start with Optimal

Control, then we precede with Graph theory and we finish with Dynamic Game

theory.

10



2.1 Optimal Control

In this subsection we review optimal control theory in context of linear time-invariant

systems with quadratic cost function. This section is mainly based on [27] and [28].

Consider the linear time-invariant system:

ẋ(t) = Ax(t) +Bu(t), x(t0) = x0, (1)

where x(t) ∈ Rn is the state of the system, and x(t0) the initial given state of the

system. u(.) ∈ U is the vector of admissible control inputs. One objective could

be to find a control function u(t) defined on [t0, T ] which derives the state to small

neighbourhood of zero at time T. This is known as Regulator problem. If the state

of the system presents a set of desired trajectory for a dynamic system, like a mobile

robot or a set of economic variables to which revenues are attached, and u represents

investment actions, the objective might be to control the value of these variables as

quickly as possible towards some desired level which is known as Tracking Problem.

In fact if the system is controllable in both problem settings the objective can be

accomplished in an arbitrary short time interval. However to accomplish this, one

may need a very large control action when the time interval is short. Usually in

both economics and physical systems, the use of a large control action during a short

time interval is not feasible. On the other hand, linear models are often used as an

approximation to real system. Using a very large control action might usually drive

the system out of the region where the given linear model is valid. Having mentioned

this two, it is obvious that using large inputs are not recommended.

Given these considerations it seems reasonable to consider the following quadratic

cost function

J =

T∫
0

xT (t)Qx(t) + uT (t)Ru(t)dt+ xT (T )QTx(T ), (2)

where without loss of generality the matrices Q, R and QT are assumed to be sym-

metric. Moreover, we assume that matrix R is positive definite, this account for the

fact that we do not allow for any arbitrary large control inputs. The matrices Q, R

and QT can be used to discriminate between two distinct goals, on one hand some

objectives and on the other hand to attain this objectives with as little as possible

11



control action. Usually the matrix QT expresses the relative importance attached

to the final value of the state variable. Since R is assumed to be positive definite,

this problem is generally called the regular linear quadratic control problem. It can

be shown that if matrix R is indefinite, the control problem has no solution. The

solution of this problem is closely related to the existence of a symmetric solution to

the following matrix Riccati differential equation (RDE)

K̇(t) = −ATK(t)−K(t)A+K(t)SK(t)−Q, K(T ) = QT , (3)

where S : BR−1BT . The fact that we are looking for the symmetric solution to this

equation follows from QT being symmetric. This implies that if K(.) is a solution of

RDE. By taking the transposition of both sides of equation, KT (.), it satisfies RDE

with the same boundary value.

The linear quadratic control problem presented in here has for every initial state x0, a

solution if and only if the Riccati differential equation has a symmetric solution K(.)

on [0, T ]. If the linear quadratic control problem has a solution, then it is unique and

the optimal control in feedback form is

u∗(t) = −R−1BTK(t)x(t), (4)

whereas in open-loop form is

u∗(t) = −R−1BTK(t)Φ(t, 0)x0, (5)

with φ the solution of the transition equation

φ̇(t, 0) = (A− SK(t))φ(t, 0), φ(0, 0) = I. (6)

The solution of the Riccati differential equation can be found by solving a set of linear

differential equations. To elaborate this, consider the following non-symmetric matrix

Riccati differential equation

φ̇(t, 0) = (A− SK(t))φ(t, 0), φ(0, 0) = I, (7)

where K, Q ∈ Rm×m, D ∈ Rm×m, A ∈ Rn×n and Q ∈ Rn×m. The solution of

12



Riccati differential equation then is closely connected with the set of linear differential

equations below [
U̇(t)

V̇ (t)

]
=

[
A −S
−Q −D

][
U(t)

V (t)

]
. (8)

In brief, if U, V is a solution pair of equation (7) with U nonsingular on the interval

[0, T ]. Then K(t) = V U−1 is a solution of Riccati differential equation on [0, T ].

Conversely if K(t) is a solution of RDE on [0, T ] and U(.) is a fundamental solution

of

U̇ = (A− SK(t))U(t), (9)

then the pair U(t), V (t) := K(t)U(t) is solution of the RDE on [0, T ].

2.2 Graph Theoretic methods

Review of graph theory provided in this section is mainly based on [24] and [29]. A

graph g consists of a set of vertices denoted by V , a vertex set with n element is

represented by

V = {v1, v2, ..., vn},

and a set of edges E as a particular 2-element subset of [V ]2. This set consist of

elements of the form {vi, vj} such that i, j = 1, 2, ..., n and i 6= j. Sometimes we refer

to vertices and edges of g as V (g) and E(g). A graph is inherently a set theoretic

object; however, it can conveniently be represented graphically. the graphical repre-

sentation of g consist of dots and lines between vi and vj when vivj ∈ E. When an

edge exists between two vertices, we call them adjacent. The neighbourhood N(i) ⊆ V

of vertices is defined as the set {vj ∈ V | vivj ∈ E}, that is set of all vertices adjacent

to Vi. Subsequently, a path of length m in graph g is defined as a sequence of distinct

vertices

vi0, vi1, ..., vim, (10)

such that for k = 0, 1, ...,m− 1, the vertices vik and vik+1 are adjacent.

We call the graph g connected when for every pair of vertices in V (g), there

is a path that has them as end vertices. Otherwise the graph is disconnected. A

component is a subset of the graph associated with a minimal partitioning of the

vertex set, such that each partition is connected. Based on this definition a connected
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graph has only one component. Consider a graph g = (V,E) and a subset of vertices

S ⊆ V . A subgraph S consist of vertices in the subset S of V (g) and edges in g that

are incident to vertices in S. If a function w : E → R is given that associates a value

to each edge, the resulting graph G = (V,E,w) is a weighted graph.

When the edges in a graph are given directions the resulting interconnection is

a directed graph, denoted by D = (V,E). Notions of adjacency, neighbourhood,

subgraph and connectedness are easily extended to directed graphs. A digraph is

strongly connected if for every pair of vertices there is a directed path between them.

a digraph is called weakly connected if it is connected when considered as a graph.

Graphs can also be represented in matrix form. For a graph g, the degree of a vertex

d(vi) is equal to the number of vertices that are adjacent to vertex vi in g. The degree

matrix of g is a diagonal matrix, containing the vertex-degrees of g on the diagonal

that is

∆(g) =



d(v1) 0 · · · 0

0 d(v2) · · · 0

...
...

. . .
...

0 0 · · · d(vn)


. (11)

The adjacency matrix A(g) is the symmetric n×n matrix encoding of the adjacency

relationship in the graph g, in that

[A(g)]ij =

{
1 if vivj ∈ E
0 otherwise

(12)

For a graph with arbitrary oriented edges, the n×m Incidence matrix D(g) is defined

as

D(g) = [dij] , where dij =


−1 if vi is the tail of ej

1 if vi is the head of ej

0 otherwise

(13)

As it is obvious incidence matrix captures both adjacency and orientation in the

graph. Since every edge has one tail and one head, the incidence matrix is a column

sum zero matrix.

Another important matrix representation of graph is the graph Laplacian, L(g). It
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can be defined as

L(g) = δ(g)− A(g), (14)

in case of an undirected graph, where δ(g) is the degree matrix of the graph g and A(g)

associated adjacency matrix. Another way to form the graph Laplacian is defined as

L(g) = D(g)D(g)T , (15)

where D(g) is the incidence matrix associated to a graph with oriented edges. Either

way both approaches form the same matrix which will be symmetric and positive semi-

definite matrix with rows sum to zero. For a weighted graph we can also consider a

graph Laplacian of form

L(g) = D(g)WD(g)T , (16)

where W is an m×m diagonal matrix, with w(ei) i = 1, ...,m, on the diagonal, and

D(g) the incidence matrix. Graph Laplacian has an important role in Algebraic graph

theory. It suffices to mention few more related conclusions one can draw using graph

Laplacian, for example real eigenvalues of Laplacian matrix can be ordered as

λ1(g) ≤ λ2(g) ≤ ... ≤ λn(g),

With λ1(g) = 0. It has been proven that graph g is connected if and only if λ2(g) ≥ 0.

A cell C is a subset of the vertex set V = [n]. A Partition of a graph is the a grouping

of its node set into different cells. An r − partition π of V , with cells C1, ..., Cr, is

said to be equitable if each node in Cj has the same number of neighbours in Ci, for

all i, j. Let bij be the number of neighbours in Cj of a node in Cj of a node in Ci.

The directed graph, potentially containing self-loops, with the cells of an equitable

r − partition π as its nodes and bij edges from the ith to the jth cells of π, is called

the quotient of g over π, and is denoted by g/pi.

In the following we will talk about agreement protocols in multi–agent coordina-

tion, meaning when a collective of agent are to agree on a joint state value. Simulation

results of a simple agreement protocols is presented to help better illustrate this idea.

Agreement protocol consists of n dynamic unites which are connected with each other

through some information exchange links. The rate of change in state of each unit
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is considered to be controlled by sum of its relative states with respect to its neigh-

bouring units. Denoting the scaler state of unit i as xi ⊂ R, one then has

ẋi(t) =
∑
j∈N(i)

(xj(t)− xi(t)), i = 1, ..., n, (17)

where N(i) is the set of units neighbouring unit i in the network [24]. When the

adopted notion of adjacency is symmetric, can be represented by

ẋ = −L(g)x(t), (18)

where the positive semi-definite matrix L(g) is the Laplacian of the network g and

x(t) = (x1(t), ..., xn(t))T ∈ Rn. Equation (20) is knowns as Agreement dynamics in

the literature.

An example of agreement protocol is the Rendevous problem, where a collection of

mobile agents with single integrator dynamics, are to meet at a single location. This

location is not given in advance and the agents do not have access to their global

positions. They can solely measure their relative displacement with respect to each

other.

In Fig. 1 five agents participating in a rendezvous algorithm are simulated as they are

connected through an underlying network. This network can for example represent

an ad-hoc wireless network, with range of their inter-agent communication depicted

by the red circle around each agent, and two agents are connected by dotted lines

if they are within this range. From Fig. 1(a) − 1(f) they gradually go through the

rendezvous algorithm. As results they are approaching toward each other until they

find consensus over their position.

Fig. 2 shows gradual agreement on agents joint state value as different agent

process the rendezvous algorithm after T = 2 seconds.
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(a) (b)

(c) (d)

(e) (f)

Figure 1: A progression of an agreement protocol to solve the rendezvous problem
for five agents.
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Figure 2: Consensus over joint state value of five robot during the rendezvous problem.

2.3 Differential Game

The brief review of Differential games provided in here is mainly based on [27] and [25].

The differential games framework extends static non-cooperative continuous-kern

game theory into dynamic environment by adopting tools, methods, and mode of op-

timal control theory. Differential games can be viewed as extension of optimal-control

problems in two directions: (i) the evolution of state is controlled by a collective input,

under control of all the players, and (ii) for each player we have possibly a different

objective function as pay-off or cost function. This objective function is defined over

time intervals of interest and relevant to the problem. Two main approaches that

yield solutions to optimal control problems are dynamic programming introduced by

Bellman and maximum principle introduced by Pontryagin. The former leads to an

optimal control that is a function of the state and time, whereas the later leads to

the one that is function of time and initial state. These two approaches has also

been adapted to differential games. Using the techniques of optimal control theory,

not only the solution of differential games can be obtained, but their stability can be

analysed.

Players in differential game interact in a dynamic environment in which state of the

system and players action directly affect the pay-off of each individual. For example

stock holders in a stock market setting are able to make decision to buy or sell shares

of a certain company, based on the current and expected future status of the company

which is also affected by the over all players (stock holders) decisions. Players them-

selves could also be dynamic systems, examples of such a players are mobile robotics
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agents.

The main ingredients of differential games are the state variable, the control vari-

able and action sets of each player, the objective function of the players, the informa-

tion structure, and the relevant solution concept. As in the case of an optimal-control

problem in a differential game setting the state variable evolves over time, driven by

players’ action. The actions are generated by the strategies of players, mapping

from the available information to actions. The differential game is played over time

t ∈ [0, T ], where the time horizon of the game could be finite (i.e., T <∞) or infinite

(i.e., T = ∞). Let N denote the set of players, defined as N = 1, ..., N . The state

vector for the game is described by X(.), evolving according to equation

Ẋ(t) = F (x(t), a(t)), (19)

where a(t) = [a1(t), ..., aN(t)]T is the collection of actions at time t (which can be

viewed as a vector), with ai standing for player i’s action, and i ∈ 1, 2, ..., N .

The objective function of a player (i.e., pay-off) is the benefit to be max or minimized

in case of a negative pay-off, equivalently. The pay-off function in a differential game

can be defined in general as the discounted value of the function’s instantaneous pay-

off over time. let U(.) denote the instantaneous pay-off function with respect to time

t for player i. This instantaneous pay-off for player i is a function of the actions

and state variables of all players. The cumulative pay-off is defined as integral of

instantaneous pay-off over time, properly discounted, that is

ji =

T∫
0

Ui(x(t), ai(t), a−i(t))e
−ρtdt, (20)

where a−i(t) is the vector of actions of all players except player i, and ρ > 0 is the

discount factor. Note that to keep the presentation simple, we have not included a

cost on the terminal sate here, such as qi(x(T )). For each player, the objective is

to optimize this cumulative pay-off by choosing an action ai(.), i.e., max
ai

(.)ji, more

generally by choosing a strategy γi.

Here, we need to introduce possible information structures for the players in the

game. Even though a higher number of information structure is possible, we will

consider here the three most commonly used ones:

19



• Open-loop information. The players have common knowledge of the value

of the state vector at initial time t = 0, and acquire no further information.

• Feedback information At time t, each player has access to the value of the

state vector at time t, that is x(t), and no further information.

• closed loop information At time t, players have access to the value of the

state variables from time 0 to t, namely x(s), 0 ≤ s ≤ t, that is, to Perfect

information on the past and present as far as the state goes.

A mixture of these three information structures are possible with some problems

having partially open–loop, feedback, and some Closed-loop information structure.

In the context of Nash equilibrium we only consider the open–loop and feedback

information structures.

The derivation of the Nash equilibrium for the open–loop structure, involves the

solution of N optimal-control problems where, in the generic ith one, the actions of

all players except the ith are held fixed as open–loop policies (that is as function of

time, and not of state), and maximization of pay-off, Ji(ai, a−i) is carried out with

respect to ai(.). the action variable of player i :

max
ai

ji(ai, a−i) =

T∫
0

Ui(x(t), ai(t), a−i(t))e
−ρtdt, (21)

such that

ẋ(t) = F (x((t), a(t)), x(0) = x0, (22)

This problem can be solved for each a−i using maximum principle of Pontryagin,

discussed earlier in this chapter. The Hamiltonian function is defined as

H(x(t), ai(t), a−i(t), λi(t)) = e−ρtUi(x(t), ai(t), a−i(t)) + µ(t)F (x(t), a(t)), (23)

where µi(t)e
−ρt is the co-state. A set of necessary conditions for the open-loop solution

of the cost function (21) now rise from the maximum principle:

∂H(x(t), ai(t), a−i(t), λi(t))

∂ai(t)
= 0, (24)
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−∂H(x(t), ai(t), a−i(t), λi(t))

∂xi(t)
=
dλi(t)

dt
, (25)

given the two-point boundary conditions xi(0) = x0, λi(T ) = 0

For infinite horizon problems, we require in addition that the system be stable

under optimal control,

lim
t→∞

xi(t) = 0,

Introducing H̃i := eρtHi, we obtain a relationship equivalent to the equation, but

without the exponential term, and in terms of µi, and subject again to the boundary

condition µi(T ) = 0, for all i:

−∂H̃(x(t), ai(t), a−i(t), λi(t))

∂x(t)
+ ρµi(t) =

dµi(t)

dt
. (26)

For the feedback Nash equilibrium, say γ∗1(x(t), t), ..., γ∗N(x(t), t), the underlying op-

timization problem for each player, say player i, as counterparts of (21) would be

maxγi(.)Ji(γi, γ
∗
−1) =

T∫
0

Ui(x(t), γi(x(t), t), γ∗−i(x(t), t))e−ρtdt. (27)

subject to dynamics (22) with a replaced by γ.

The tool used in this case is dynamic programming, and particularly HJB equa-

tion. If Vi(x, t) denotes the cost-to-go function associated with player i, assuming that

it is jointly continuously differentiable in x and t, we have as a sufficient condition

for a feedback Nash equilibrium solution the following set of coupled PDEs:

−∂vi(x, t)
∂t

= max
ai

[
∂vi(x, t)

∂x
F (x, ai, γ

∗
−i(x(t), t)) + e−ρtUi(x(t), ai, γ

∗
−i(x(t), t))

]
,

(28)

with boundary conditions Vi(x, T ) ≡ 0, for i = 1, ..., N . The ai that maximize the

right-hand side of the HJB PDE s above are clearly function of both x and t and

they constitute the feedback Nash equilibrium solution γ∗1(x(t), t), ..., γ∗N(x(t), t) in

the differential game.
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Chapter 3

3 Optimal Quasi-Static Formation Control

3.1 Introduction

Application of algebraic graph theory in the area of multi–agent robotics has been

a very popular topic [30], [16], [31], [19], [32], and to a large extend it became the

dominant research approach in this field [33], [3], [18], [34], [35], [34].

Abstracting away the complexities of underlying information exchange networks

between robots, and representing it as directed or undirected graphs in one way

and diluting the complex dynamics of each robot to rather simple models such a

double integrator dynamics helped researchers to focus more on large scale prob-

lems and brought a significant contribution to the field. Nonetheless, this body of

work is mainly concentrates on the leaderless or homogeneous scenarios. Parallel to

this research trend, studies has been done on heterogeneous formation including the

leader–follower, string stability and virtual leader based control schemes. The combi-

nation of these two approaches brings together two seemingly separate outlooks and

provides a power tool to design controllers for formation tasks. This is discussed in

this chapter as results from algebraic graph theory is used to control a heterogeneous

leader–follower formation problem.

In this chapter we will discuss a heterogeneous formation control problem based

on algebraic graph theory. Here we assume no limitation on leaders movements as we
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allow some agents to directly influence other agent’s behaviour as a leader, and they

can also have access to global information of the system.

This idea was first introduced by Meng Ji [36] where he used the analogy of a

herd with sheep and herding dogs to better explain this approach, loosely called

autonomous sheep herding problem [37]. In other words, this problem comes down

to how should the herding dogs move in order to manoeuvre the herd toward some

desired location, and what are the desired characteristics of sheep to react accordingly.

Fig. 3 is very interesting representation of this ideas.

Figure 3: A cartoon representation of the Formation control

Based on the numbers of leaders and the network topology a sufficient condition

for controllability, i.e. condition where leaders can move followers to any desired

position, can be proposed. This condition helps to select leaders in a way that renders

the system controllable.

Later, we propose to use this feature to drive a differential game approach to

control several group of robots each representing one component of a larger graph.

In the following quasi-static optimal formation control is studied and simulation

results are presented to confirm the effectiveness of developed control scheme.
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3.2 Problem Statement

Consider combination of robots with limited sensing and maneuver abilities with

another set of robots, agile and well equipped with sensors. To design a decentralized

formation control for such a non-homogeneous combination of robots is subject of

discussion in this section.

Assuming that the dynamic along each dimension can be decoupled, let xi ∈ N,

i = 1, 2, ..., N , be the position vector of the ith agent, and let x = [x1, x2, ..., xN ]T

be the state vector of the group of agents, where N is the total number of agents.

Considering widely adopted consensus control strategy for driving the system to a

common point (the rendezvous problem) is given by [16]

ẋi =
∑
j∈N(i)

(xj − xi), (29)

where N(j) encodes the neighbouring status of the agents with respect to agent i.

By considering each agent as nodes of a graph and the edges between the nodes as

representative of communication links among neighbouring robots in the system, as

discussed in previous chapters, we can add extra insight to the problem.

Adopting graph theoretic methods we can rewrite the equation (29) as

ẋ = −L(g)x, (30)

where L(g) is the graph Laplacian for g, for the definition of L(g) and related prop-

erties, refer to chapter 2, section 2.

Considering two different subsets for the agents involved in the multi–agent sce-

nario, one subset with superior sensing and communication abilities taking the role

of leaders in the problem and the remaining agents as follower subset. As result the

state of the agents x can be divided into two parts, the state of the leaders xl and

those of the followers xf , where the subscripts l and f represent leaders and followers

subsequently. Therefore number of agents can be written as summation of leaders

and followers N = Nl +Nf . The Laplacian can also be partitioned as

L(g) =

[
Lf lfl

lTfl Ll

]
, (31)
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where Lf ∈ RNf×Nf , Ll ∈ RNl×Nl and Lfl ∈ RNf×Nl . One can easily form the

Laplacian as the product of incidence matrices,

L(g) = D(gλ)D(gλ)T , (32)

where λ is an arbitrary orientation assignment to the edges of the graph, D ∈ RN×M

is the incidence matrix, N = |V (g)| and M = |E(g)|. By using incidence matrix to

represent the Laplacian we get,

 Lf = DfD
T
f , Ll = DlD

T
l , lfl = DfD

T
l . (33)

The rendezvous control law in [29] averages the the contribution from all neighbours

and it can be used to define a basis for the movement of the followers. In the other

words, we will choose to let

ẋf = −Lf xf − lfl xl, (34)

Which allows us to continue with the rest of the control scheme.

Theorem 3.1 Given fixed leader positions Xl, the equilibrium point under the fol-

lowers dynamics in (34) is

xf = −L−1
f lfl xl, (35)

which is globally asymptotically stable.

3.2.1 Controllability Analysis of the Leader–Follower

In this section we will discuss the controllability issue, and based on [31] we will

provide sufficient condition for controllability of such a leader–follower multi–agent

system.

Proposition 3.1 The system (lf , lfl)is controllable if G is connected and N(Dl) ∈
N(Df ).

Proof: For the system (lf , lfl), the condition in Preposition 3.1 translates to

vi(lf ) /∈ N(Df ), ∀vi ∈ spec(lf ), or DlD
T
f vi 6= 0∀vi ∈ spec(lf ). Thus if N(Dl) ⊆

Im(DT
l )⊥ = N(Df ), the system is controllable.

Note that as a consequence of Theorem 3.1, we have a constructive way of assigning

leadership roles to agents in order to ensure controllability.
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Figure 4: An example graph used for choosing leader

Given a network topology, we first find the null space of D, then select the appro-

priate rows of D and stack them into new matrix such that the null space of the new

matrix is contained in N(D). As an example, consider the directed graph in Fig. 4,

where we have

D =



−1 0 1 0 0 0 0

1 1 0 0 0 0 0

0 0 0 1 1 0 0

0 0 0 −1 0 1 0

0 −1 −1 0 0 0 −1

0 0 0 0 −1 −1 1


, (36)

with

N(D) = span



1 0

−1 0

1 0

0 1

0 −1

0 1

0 0


. (37)

From the incidence matrix we directly see that by choosing any single agent as

follower and the remaining five as leaders, Theorem 3.2 will be satisfied.

It is worth noticing that this sufficient condition is conservative. In many cases

we can find configurations with less leaders, which is still controllable. For instance

in Fig. 4, we can choose nodes v1, v2, v3, and v4 as leaders and the system is still
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controllable.

3.2.2 Optimal Control of Quasi-Equilibrium Process

Now that we studied the question of controllability of the system the discussion moves

to the question of how to control the system in order to move it from one equilibrium

to the next in a finite time span.

For convenience, we use x instead of xf , and u instead of xl in the following

equations. Moreover we can replace −lf with A and −lfl with B. Using this new

notations we can rewrite equation (34) as

ẋ = Ax+Bu, (38)

Leaders have no constraints to move therefore

u̇ = v, (39)

where v is the control input. Quasi-static equilibrium for a fixed u will be

x = −A−1Bu, (40)

The problem here is a quasi-static equilibrium process problem, that means moving

(x, y) from an initial point to a final point while satisfying (40). Besides we want

to reach to the final point in finite amount of time , so we define the performance

function as follows

J =
1

2

T∫
0

(xTPx+ vTQv)dt, (41)

where P � 0 and Q � 0. The optimal control problem can be formulated as

min
v

J. (42)

It is well known that such a problem has a solution if the pair (A,B) is controllable,

however we can remove this condition as will be discussed in continue. Without loss
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of generality let consider the standard controllable decomposition as

ẋ =

[
ẋc

ẋu

]
=

[
A11 A12

0 A22

][
ẋc

ẋu

]
+

[
B1

0

]
u, (43)

where xc and xu are the controllable and uncontrollable parts respectively. Now, given

a fixed ue, where the superscript e denotes equilibrium, the quasi-static equilibrium

is given by

0 =

[
A11x

e
c + A12x

e
u +B1u

e

A22x
e
u

]
. (44)

Since A is invertible and also A22, this means that xeu = 0. Therefore the quasi-

static process will naturally drive xu = 0 to xu(T ) = 0 and we can concentrate our

attention to the rest of the system

ẋc = A11xc + A12xu +B1u, (45)

whereas xu(t) = 0, on the interval [0, T ], we only have

ẋc = A11xc +B1u, (46)

and (A11, B1) is a controllable pair, the point–to–point mapping is always possible.

Now we precede with solving for the analytical solution by forming the Hamiltonian

H = 1
2
(xTPx+ vTQv) + λT (Ax+Bu) + µTv

= 1
2
(xTATPAx+ 2XTATPBu+ uTBTPBu

+vTQv) + λT (Ax+Bu) + µTv,

(47)

where λ and µ are the co-states. The first order necessary optimality condition then

gives
∂H
∂v

= vTQ+ µT = 0→ v = −Q−1µ,

λ̇ = −(∂H
∂x

)T = −APAx− ATPAx− ATPBu− ATλ,
µ̇ = −(∂H

∂u
)T = −BTPAx−BTPAx−BTPBu−BTλ,

(48)

in other words, by letting z =
[
xT , uT , λT , µT

]T
, we obtain the following equation

ż = Mz, (49)
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where

M =


A B 0 0

0 0 0 −Q−1

−ATPA −ATPB −AT 0

−BTPA −BTPB −BT 0

 , (50)

let the initial state be given by

z =
[
xT0 , u

T
0 , λ

T
0 , µ

T
0

]T
. (51)

Now, the problem is to select λ0 and µ0 in such a way that, through this choice,

we get

u(T ) = tt, x(T ) = −A−1BuTxT , (52)

in order to achieve this, we partition the matrix exponential in the following way

EMT =


φxx φxu φxλ φxµ

φux φuu φuλ φuµ

φλx φλu φλλ φλµ

φµx φµ φµλ φµµ

 , (53)

we can find the initial conditions of the co-state by solving

[
xT

xt

]
=

[
φxx φxu φxλ φxµ

φux φuu φuλ φuµ

]
x0

u0

λ0

µ0

 , (54)

now let have

Φ1 =

[
φxx φxu

φux φuu

]
,Φ2 =

[
φxλ φxµ

φuλ φuµ

]
, (55)

which leads to [
λ0

µ0

]
= φ−1

2

([
xT

uT

]
− φ1

[
x0

u0

])
, (56)
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since we are considering a quasi-static process, we have

x0 = −A−1Bu0, (57)

xT = −A−1BuT , (58)

and consequently the initial conditions of the co-states become[
λ0

µ0

]
= −φ−1

2 Ψ

[
u0

uT

]
, (59)

where

Ψ =

[
φxxA

−1B − φxu −A−1B

φxuA
−1B − φuu I

]
, (60)

this point-to-point process always have a unique solution; therefore, invertability of

Φ2 is guaranteed as discussed earlier.

3.3 Simulation

The simulation results of the implemented algorithm are presented in this section.

This will help us to spot the limitation of the proposed algorithm and provide better

insight to fully understand its capabilities, as well as insufficiencies. First a single

integrator dynamic is simulated and results are given. To take further step, the same

algorithm is expanded to cover formation control for a group of six agents, including

three leaders followed by three followers to perform a triangle shape formation.

3.3.1 Single Integrator Model

As discussed throughout the chapter there are elements associated to problem formu-

lation. The quasi-static dynamic of a system is given by

ẋ = −x− u, (61)

and P and Q are set to be both equal to 1. The follower starts the simulation from

x0 = 1, and the leader from u0 = −1 and the desired final position for the leader and

follower is set to be xT = −1, uT = 1 respectively with T = 2.
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Figure 5: Quasi-Static process.

As shown in Fig. 5 the system starts at (1,−1) and slowly moves to the new

equilibrium at (−1, 1) under the optimal control scheme. The dash-doted line depicts

the subspace {(x, u) |x = −A−1Bu}, while the solid line is the actual trajectory of

the system under the optimal control law.

It is evident that presented formation control based on quasi-static optimal control

is capable of the defined task. Now we are interested to verify its capabilities for a

larger system.

3.3.2 Formation Control of Six Agents

Simulation results for a formation of six robot agents are presented in this section.

Fig. 6 depicts the formation shape and respective position of leaders and followers.

As can be seen, three leaders depicted by black circles, in a triangle shape, surround

three followers which they form a triangle themselves.
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Figure 6: Formation graph topology (black circles: leaders, white circles: followers).

A communication network connects leaders to each other and to their neighbouring

followers. This communication network can obviously be captured by a graph. The

incident matrix associated to graph representing underlying network between these

agents is

D =



−1 0 1 −1 0 0 0 0 0

1 −1 0 0 0 −1 0 0 0

0 1 −1 0 −1 0 0 0 0

0 0 0 1 0 0 −1 0 1

0 0 0 0 1 0 1 −1 0

0 0 0 0 0 1 0 1 −1


, (62)

It is expected that based on the proposed formation control, followers, under the

influence of leaders, will move from an equilibrium to another one within a finite time

envelop. We set the simulation time to be T = 5 seconds. Leaders and followers start

to move from initial position Xl(0) = {(0,−1), (1, 1), (−1,−1)}.
Under the quasi-static optimal formation control, agents will move from initial

position to a defined final position while maintaining their formation. It should be

noted that there are no limitation on movement of leader agents. Moreover, followers

will adopt consensus control strategy based on [29] during the simulation process. In

Eq. (41), P and Q are set to be identity matrices with appropriate dimensions.

Three different final positions are chosen to test the ability of formation control

to keep the agents together, while moving them towards the following:

• Xl1(T ) = {(−1,−10), (1,−9), (1,−11)},

• Xl2(T ) = {(9, 0), (11,−1), (11, 1)},

• Xl3(T ) = {(8,−10), (−8, 12), (10,−8)}.
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In Figs. 7–9 leaders are represented by square, triangle and diamond shapes,

while followers are presented as circle, star and asterisk. They start from their initial

position, colour coded with black, and move toward their final position shown in red.

Fig. 7 is related to robots motion in X − Y plane associated to a translation from

their initial position to Xl3(T ) = {(−1,−10), (1,−9), (1,−11)}.

Figure 7: Leader follower formation for six agents. Translation in x direction.

In Fig. 8 the robots start from initial position Xl(0) = {(0,−1), (1, 1), (−1,−1)}
to Xl2(T ) = {(9, 0), (11,−1), (11, 1)}. This requires leaders to perform a 90-degree

rotation, and translation in x direction.

Figure 8: Leader follower formation for six agent.
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Figure 9: Leader follower formation for six agent.

As can be seen in Fig. 9 during the simulation followers maintain their relative

position with respect to each other and leaders. Leaders go through simultaneous

translation and rotation to move the entire formation to the defined final location

at Xl3(T ) = {(8,−10), (−8, 12), (10,−8)}. In simulation results an overshoot can be

seen as we follow the movements of the leaders from initial position toward the end

of the simulation. This can be explained by reminding the assumption made at the

beginning of this chapter to consider no limitation on leaders movements.

3.4 Summary

In Chapter 3 we discussed an optimal control technique to maintain formation be-

tween leaders with unrestricted motion, and followers reflecting based on a general

consensus strategy.

This algorithm is capable of taking predefined heterogeneous formation from an

initial state to desired terminal state within a finite time, however forming the desired

graph topology from a random agents layout was not considered in this algorithm.

Moreover aside from dual classification of agents to leader and followers, none of the

individual differences or specified interests of the agents were taken into account.
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Simulation results of the proposed controller for two different layouts of agents

proves the reliability of this approach to maintain the formation regardless of drastic

difference in initial and desired terminal state of robots in the formation mission. An

additional insight provided by the simulation is the fact that the quasi–static optimal

formation control is not computationally demanding, and rather simple to implement.

This is an interesting feature, making a comparison with the algorithm proposed in

the following Chapters.
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Chapter 4

4 Differential Game Outlook

4.1 Introduction

In Chapter 2, Section 3 we briefly introduced dynamic games and we defined the

boundaries between static games, optimization, optimal control, and dynamic games.

In Chapter 3 we discussed formation control of heterogeneous multi–robot system

based on Quasi-static optimal control algorithm. Now in this Chapter we introduce

differential games as one of the most important subclasses of dynamic games and we

adopt differential games to the problem of formation control in multi–robot systems.

Differential games theory is used to solve formation control problem through open

loop information structure. This is mainly based on work reported in [4] and [5],

where differential game is suggested as a more flexible approach to formation control

design.

In formulation of the formation control, one can create an identical team objec-

tive for each individual robot so that a common team objective forms as formation

goal. This means, all the robots will have the same identical interests throughout

the formation control. Another more realistic scenario would be to include individual

robots interests, steamed by different dynamics or states, in the global team objec-

tive. In this way formation control of multiple robots can become subject to game

theoretical reasoning. By using a tracking cost function for the leader robot and a
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formation keeping cost function for the rest of the team, one can incorporate individ-

ual interests in distributed control and have cost functions that are only related to the

neighbouring robots and not necessarily the entire team. In that regime each robot

in formation control can be modelled as self-interested, rational agent participating

in a non cooperative game, where formation control strategy is defined as the Nash

equilibrium of the designed game. As all the agents comply with Nash equilibrium,

knowing that they will not gain more by unilateral deviation from equilibrium point,

formation control is guaranteed for the multi–robot system.

In order to introduce powerful machinery of dynamic games, one has to start with

optimal control theory. It provides optimal solution to planning problems involving

dynamic systems, where the states of the system change over time, based on the con-

trol inputs. According to this definition differential game also can be considered as

extension of optimal control theory. Here, instead of being affected by only one input,

dynamic of the system is now controlled by multiple inputs, derived by different play-

ers. This formulation results in having more than one cost function to be optimized

for finding optimal solution, with each player now having a possibly different cost

function from the others. Whereas, if all the players had the same cost function the

differential game problem could be mapped down to an optimal control problem.

In differential games we aim to predict behaviour of players, involved in a dynami-

cally evolving environment. In this context players can be involved in competition over

conflicting interests or cooperation toward a joint objective, known as non-cooperative

and cooperative games. Differential game provides useful insight through mathemat-

ical formulation. It is called differential game as we model both dynamic of player’s

action, and their surrounding environment using differential equations. Formation

control can be formulated by considering each robot, in a multi–robot scenario, as

a rational decision maker with biassed individual interests in the final results. This

way one can formulate a game, and use game theoretic shades to gain unique insight

about local and global interaction between robots and possible outcome of these in-

teractions.

The formation control problem in this chapter consists of mobile robots with

double integrator dynamics, typically chosen because these models can capture the

equations of motion for broad range of vehicles. Each robot is interacting through

communication channels, only available in between neighbouring robots. In a more
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abstract way, each mobile robot can be conceived as a node of a graph with communi-

cation channels depicted as edges of the graph, which provides a powerful analytical

tool to study the effect of local interactions of robots on the overall performance of

the network.

Thanks to graph theory, and considering the linear dynamics of the robots, forma-

tion control cost function can be modelled as linear–quadratic Nash differential game.

In order to find its strategy to interact with other robots, each robot has to mini-

mize the linear quadratic cost function associated to this Nash differential game. This

essentially comes down to solving a coupled asymmetric Riccati Differential equation.

Based on the nature of the information available, two possible structure can be

considered. Open loop information, and state feedback information. The former,

state–feedback structure, although provides more information and leads to better

results, is computationally and analytically intricate.

On the other hand, using open-loop information structure in the game is a favourable

option. That is due to its analytical tractability for problems with linear differential

equations models, and quadratic cost functions. In the open–loop information struc-

ture we assumes that the only information available to the players are their present

states and the model structure. Meaning that at the beginning of the of the game

all players simultaneously make decision about their strategies for the entire period

of the game.

In the following adaptation of differential games to formation control problem is

studied.

4.2 Formation Model

4.2.1 Robots Dynamic

One of the main applications of formation control is in the area of mobile robotics.

Where formation control schemes can provide solution to multi–vehicle problems.

4.2.2 Multi Agent Network Model

Consider a team of m mobile robots with double integrator dynamics. For robot i

with n-dimensional coordinates qi ∈ Rn, the state and control vectors are zi(t) =[
qi(t)

T , q̇i(t)
T
]T ∈ R2n, and ui(t) ∈ Rn(i = 1, ...,m). The robot dynamics therefore
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are

żi = azi + bui, (63)

where a =

[
0 I(n)

0 0

]
, b =

[
0

I(n)

]
.

Matrix I(n) is the identity matrix of dimension n. State and control vectors of

robot i are ui(t) ∈ U , and zi(t) ∈ Z, respectively.

By concatenating the states of all m robots of the team into a vector z =
[
zT1 , ..., z

T
m

]T
∈ R2nm, the team dynamics are

ż = Az(t) +
m∑
i=1

Biui(t), t ≥ 0, (64)

where A = I(m) ⊗ a and Bi = [0, ..., 1, ..., 0]T ⊗ b. The operator ⊗ represents the

Kronecker product. let zdi =
[
(qdi )

T , (q̇di )
T
]T

be the desired state vector for robot i.

The desired team state vector is then represented as zd =
[
(zd1)T , ..., (zdm)T

]T ∈ R2nm.

The desired state zdi should also have the same dynamics as the multi–robot system

dynamic in equation (63)

żdi = azdi + budi , (65)

and by concatenating the state function we have

żd(t) = Azd(t) +
m∑
i=1

Biu
d
i (t), t ≥ 0, (66)

In order to optimize the performance a convexity assumption is necessary for opti-

mization algorithms.

Assumption 1(Convexity Assumption): U is a compact and convex subset of

Rn containing the origin in its interior, and Z is a convex, connected subset of ∈ R2n

containing zdi in its interior, for every i.

In the next section we discuss the information exchange network among the robots.

4.2.3 Formation Graph

The information exchange network between the robots in a multi–robot problems

can be captured by forming the graph of underlying information structure [24]. A
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node in a graph corresponds to a robot and the edge between the nodes captures

the dependences of the interconnections. A direct graph g = (V,E) consists of a

set of vertices V = {v1, ..., vm}, indexed by the robots in a team, and a set of edges

E = {(vi, vj) ∈ V × V }, containing ordered pairs of distinct vertices. Assuming the

graph has no loops, i.e., (vi, vj) ∈ V implies vi 6= vj. A graph is connected if for

any vertices (vi, vj) ∈ V , there exist a path of edges in E from vi to vj. An edge-

weighted graph is a graph in which each edge is assigned a weight. The edge (vi, vj)

is associated with the weight Wij ≥ 0. Graph connectivity is necessary condition to

be able to control the formation.

Assumption 2 (Connectivity Assumption): Graph G is connected.

The incidence matrix D of a directed graph g is the {0,±1}-matrix with row and

columns indexed by vertices of V and edges of E, respectively, such that the uvth

entry of D is equal to 1 if the vertex u is the head of the edge v, −1 if the vertex u

is the tail of the edge v, and 0, otherwise. If graph g has m vertices and |E| edges,

then incidence matrix D of the graph g has order m× |E| [38].

The cohesion and separation of formation control is defined by the desired distance

vector ddij = zdi − zdj between two neighbours vi and vj. The formation error vector is

defined as zi− zj − ddij for edge (vi, vj). Let D̂ = D⊗ I(2n). From the definition of the

incidence matrix, we know the whole team formation can be expressed in a matrix

form

∑
ij∈E

Wij||zi − zj − ddij|| = (z − zd)T D̂Ŵ D̂T (z − zd) = ||z − zd||2
D̂Ŵ D̂T , (67)

where Ŵ = w ⊗ I(2n) and w = diag [Wij] is a diagonal weight matrix with dimension

|E|. Here we will use ||z − zd||2
D̂Ŵ D̂T for (z − zd)T D̂Ŵ D̂T (z − zd). Following [24], we

define the Laplacian of a graph g as L

L = DWDT , (68)

for a directed graph g, the Laplacian L is symmetric and positive semi-definite.

For real value matricesX, Y, U, V with appropriate dimensions, the Kronecker product

has the following properties:

(X ⊗ Y )T = (XT ⊗ Y T ),
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(X ⊗ Y )(U ⊗ V ) = (XU)⊗ (Y V ), (69)

based on these properties we have

L̂ = D̂Ŵ D̂T = (D ⊗ I(2n))(W ⊗ I(2n))(D ⊗ IT(2n)) = L⊗ I(2n), (70)

L̂ is also symmetric and positive semi-definite. The team formation error is rewritten

as follows: ∑
(ij)∈E

Wij||zi − zjddij|| = ||z − zd||2L̂. (71)

4.2.4 Formation Cost Function

The finite horizon cost function control for robot i can be expressed as follows:

J i(u) = gi(T, z(T )) +

T∫
0

Ci(τ, z(τ), u(τ))dτ, (72)

gi(T, z(T )) =
∑

(ij)∈E

Wij||zi(T )− zj(T )ddij||2,

Ci(τ, z(tau), u(τ)) =
∑

(ij)∈E

µij||zi(τ)− zj(τ)ddij||2 +
∑

(ij)∈E

||uj(τ)||2Rij
, (73)

where T is the infinite time horizon and µ ≥ 0, Rij ≥ 0, (i = 1, ...,m) are the

weight parameters. The cost function (73) can be transformed into a standard linear-

quadratic form

gi(T, z(T )) = ||z(T )− zd(T )||2kif ,

Ci(τ, z(τ), u(τ)) = ||z(τ)− zd(τ)||2Qi
+
∑

(i,j)∈E

||uj(τ)||2Rij
, (74)

where Kif = L̂if = D̂Ŵ D̂T , Ŵif +Wif ⊗ I(2n), Wif = diag [Wij], Qi = L̂i = D̂ŴiD̂
T ,

Ŵi = Wi⊗I(2n), Wi = diag [µij] . Kif and Qi are symmetric and positive semi-definite.

The formation cost functions are used to design controllers, which can control robots

to have the desired distances ddij. To track a specific trajectory zdl , the leader robot

L should track zdl . Thus, the cost function of the leader robot should include a
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linear-quadratic standard tracking term

gl(T, z(T )) = ||z(T )− zd(T )||2klf + ||zl(T )− zdl (T )||2klf = ||z(T )− zd(T )||2
ḱlf
,

C l(τ, z(τ), u(τ)) = ||z(τ)− zd(τ)||2Ql
+ ||zl(τ)− zdl (τ)||2ql + ||ul(τ)||2Rll

= ||z(τ)− zd(τ)||2
Q́l

+ ||ul(τ)||2Rll
, (75)

where Klf = Diag [Wl], ql = Diag [µl], Ḱlf = Klf + diag [0, ..., klf , ..., 0] and Q́l =

Ql + diag [0, ..., ql, ..., 0]. Ḱlf and Q́l are also symmetric and positive semi-definite.

The leader robot can use klf = 0 and Ql = 0, which means the leader robot only

tracks the desired trajectory without taking the formation error into account. In such

situation, it’s the follower robots who keep the formation by following the leader with

a fixed distance.

In the following, the weight matrices in the cost function are denoted as Kif and Qi

for both leader robots or follower robots. From the state equations (63) and (64)

and the cost functions (73) and (74), it can be seen that the formation control is

a linear-quadratic tracking problem. By using error state and control vectors, the

formation control is viewed as a linear-quadratic regulating problem with z(t) as the

state vector and u(t) as the control vector in the following presentation.

4.3 Finite Horizon Open-Loop Nash Differential Game

4.3.1 Nash Differential Games

Each robot in a team can be considered as a self-interested rational agent participating

in a differential game. As the state equation of the differential game we have robots

dynamic in equation (63) with the initial condition z0 such that

Ż(t) = Az(t) +
m∑
i=1

Biui(t)

= Az(t) +Bu(t),

z(0) = z0, t ≥ 0, (76)

where B = [B1, B2, ..., Bm], and u =
[
uT1 , u

T
2 , ..., u

T
m

]T
. The cost function J i is known

to each player. In order to find their strategies with respect to other players in
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the game, each robot has to minimize its own cost function, to find their control

input. In the case that all the player have the same cost function, the game will

reduce to to a team game, and what happens essentially is that differential game

problems comes down to an optimal control problem. Since in our cost functions

(73) and (74) the states and control signals are coupled together through the cost

function and they are affected by neighbouring robots a different approach should be

considered. When players have different cost functions, the optimal control scheme

used for one cost function dose not apply to the others, instead the Nash equilibrium

have to be found. A collection of strategies for all players in a game that is the best

response strategy each player has to with respect to the other players strategies, is

called Nash equilibrium. None of the players in the game can gain higher benefits by

unilaterally changing its strategy while others keep the strategy decided through Nash

equilibrium and as agents participating in the game are assumed to be rational they

all seek their best interests and comply with the collective strategies associated to

the Nash equilibrium. A collection of strategies ūi(t), (t ≥ 0, i = 1, ...,m) constitutes

a Nash equilibrium if and only if the following inequalities are satisfied for all ui(t) ∈
U ,(t ≥ 0, i = 1, ...,m):

ji(ū1, ..., ūi−1, ūi, ūi+1, ..., ūm) ≤ ji(ū1, ..., ūi−1, ui, ūi+1, ..., ūm), i = 1, ...,m. (77)

There are two main types of information structure in differential games:

• Open–loop information structure.

• State–feedback information structure.

In open-loop information structure each player computes its equilibrium strategy

at the beginning of the game solely based on the initial state z(0) and no state

feedback is available during the entire control period.

In state-feedback form all the players make their decision based on the cur-

rent state z(t) and constantly update their decisions based on the evolution of the

states. This way state-feedback provides more information with respect to the open-

loop information structure and that enables players to make more reasonable deci-

sions throughout the game. However, the analytical complexity associated to state-

feedback information structure motivates us to take another approach to design our
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controller. Using open-loop information structure in combination with receding hori-

zon approach, one can achieve a state-feedback controller: Receding Horizon Nash

control. In this scheme each of the players in the game computes its own Nash equi-

librium strategy at each time instant, but only follows this strategy for one step. in

the next step, players compute a new Nash equilibrium by considering the final state

of the previous step as their initial state to compute their strategy, and this procedure

repeats again.

4.3.2 Linear Quadratic Open-Loop Equilibria

Under the open-loop information structure for a Nash game, the derivation of open-

loop Nash equilibria is closely related to the problem of jointly solving m optimal

control problem [5]. According to Pontryagin’s minimum principle, the condition for

an open loop Nash equilibrium for two players games are given in [5] this results can

be generalized straightforward to games with m players.

Theorem 4.1: For a m-robot formation control defined as a finite horizon open-loop

Nash differential game by (76) and (77), let there exist a solution set (Ki, t = 0, ...,m)

to the coupled Riccati differential equations

K̇i = −ATKi −KiA−Qi +Ki

m∑
j=1

SjKj,

Ki(T ) = Kif , (78)

where Si = BiR
−1
ii B

T
i . Then the formation control has a unique open-loop Nash

equilibrium solution for e very initial state as follows:

ūi(t) = −R−1
ii B

T
i Ki(t)Φ(t, 0)z(0), (79)

φ̇(t, 0) =

(
A−

m∑
i=1

SiKi(t)

)
φ(t, 0)

= Acl(t)φ(t, 0),

φ(0, 0) = I, (80)
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where Acl =
m∑
i=1

SiKi(t) is the closed-loop system matrix. It is easily verified that

z(t) = φ(t, 0)z0. The closed loop system is

ż(t) = Acl(t)z(t), t ≥ 0 (81)

Remark 1: Due to state assumption 1 (convexity) and 2 (connectivity), the cost

function J i are strictly convex functions of ui for all admissible control functions

uj, j 6= i and for all z0. This implies that the conditions following from minimum

principle are both necessary and sufficient.

Based on Theorem 1, the solvability of the coupled Riccati differential equation

(78) is vital to the finite horizon Nash equilibrium solution. In the following, a

necessary and sufficient condition is established for the solvability of the coupled

Riccati differential equations.

Define

M =


A −S1 ... −Sm
−Q1 −AT 0 0

... · · · . . .
...

−Qm 0 0 −AT

 , (82)

and

H(T ) =
[
I(2nm) 0 ... 0

]
e−Mt


I(2nm)

K1f

...

Kmf

 , (83)

It follows from the results in [5] that the analytic solution of the closed-loop system

is

Z(T ) =
[
I(2nm) 0 ... 0

]
e−Mt


I(2nm)

K1f

...

Kmf

H−1(T )z(0). (84)

Reference [5] provides an approach to judge if the solution exists for two-player games.

This result can be generalized straightforward to m player games. Based on this

theorem with m players, the formation control problem has the following result.

Theorem 2: For a m-robot finite horizon formation control defined as a finite horizon
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open-loop Nash differential game by (76) and (77), the coupled Riccati differential

(78) has a solution for every initial state z0 on [0, T ] if and only if matrix H(T ) is

invertible.

Proof : The formation control of multiple robot systems[13], it is known that [A,B]

is stabilizable. As the Laplacian is symmetrical and positive semi-definite Ĥi ≥ 0 and

L̂if ≥ 0, the symmetrical Riccati differential equations

Ṗi = −ATPi − PiA−Qi + PiSiPi, Pi(T ) = Kif , (85)

have a symmetrical solution Pi on [0, T ], for all i = 1, ...,m. This result combining

with that H(T ) is invertible proves coupled Riccati differential equations (78) has

a solution for every initial state z0 on [0, T ], as indicated in the Theorem 7.1 and

comments for m players game in [5].

Remark 2: The matrix M consist of (m + 1) × (m + 1) blocks. e−(MT ) also has

the same block structure. Denoting by Wij(T ) as the ijth block of e−(MT ), we have

H(T ) = W11(T ). The invertibility of H(T ) depends on M and T . Different T leads to

different invertibiltity of H(T ). In the finite receding horizon Nash control discusses

in next section. T is the length of control horizon. The selection of T in the receding

horizon control should guarantee that H(T ) is invertible.

4.4 Summary

In chapter 4 we introduced another approach to formation control based on differen-

tial games. Using notion of dynamic games within the context of formation control

brought us flexibility to incorporate individual interests of each robot in the algorithm,

and weight communication links with variety that represent the actual hierarchy of

inter-agent communications.

However this was achieved through an open-loop controller, built based on the

open-loop information structure as discussed. Meanwhile state feedback is an essential

element of a practical control scenario and that renders strategies based on open-loop

information structures impractical and insufficient.

In the next Section we propose a solution to this problem through the Receding

Horizon methodology.
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Chapter 5

5 Receding Horizon Nash Formation Control

5.1 Introduction

In Chapter 3 an optimal control technique is introduced to maintain formation be-

tween leaders with unrestricted motion, and followers reflecting based on a general

consensus strategy. This algorithm is able to move formation from an initial state

to desired terminal state within an finite time. However, forming the desired graph

topology from a random agents layout was not considered in this algorithm, and

none of the individual differences or specified interests of the agents were taken into

account.

In chapter 4 we introduced another approach to formation control based on differ-

ential games theory. Using notion of dynamic games within the context of formation

control brought us flexibility to incorporate individual interests of each robot in the

algorithm, and weight communication links with variety that represent the actual

hierarchy of inter–agent communications. However this was achieved through an

open–loop controller, built based on a open–loop information structure as discussed.

Meanwhile, state feedback is an essential element of a practical control scenario. This

renders strategies based on open-loop information structures impractical, and insuf-

ficient.

To resolve lack of state feedback, and to be able to use open–loop information

structure devised in chapter 4, one can combine open–loop Nash differential game
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with receding horizon method to provide the state feedback, necessary for practical

control design. This new algorithm is proposed in this chapter as receding horizon

Nash control scheme. This idea has been exploited in differential zero–sum games

reported in [39] and [40]. It works in such way that at the beginning of the game

all the robot states are read and the first control signal is generated by solving an

open–loop Nash controller, at the next step this procedure repeats again with new

initial condition after dt time which leads to receding horizon state feedback control.

In the following receding horizon Nash formation control is studied, and simulation

results are presented for a triangle formation of four robots to confirm the effectiveness

of this control scheme.

5.2 State-Feedback Formation Control

Assuming the current time instant is t and the current state vector is z(t). At each

time instant, the receding horizon control uses z(t) as the initial state vector to

find the finite horizon open-loop Nash equilibrium ū(t) based on the following cost

function:

J i(t, z(t), u(t)) = gi(t+ T ) +

t+T∫
t

Ci(τ, z(τ), u(τ))dτ, (86)

the receding horizon control signal is defined as

u∗i (t, z(t)) = ū(t)

= −RiiB
T
i Ki(t)z(t), (87)

As the control signal u∗i (t, z(t)) depends on the current state z(t), the receding horizon

Nash control is a state feedback control. The existence condition of the receding

horizon Nash control is the same as those of the finite horizon open-loop Nash control,

discussed in Chapter 4, section 4.3.2., meaning the receding horizon Nash control exist

for every initial state Z0 if and only if matrix H(T ) in equation (83) is invertible.

The receding horizon Nash control needs to continuously check whether or not the

closed-loop system is stable. The closed loop system with the receding horizon Nash

control u∗i (t, z(t)) is

ż(t) =

(
A−

m∑
j=1

SiKi(0)

)
z(t)
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= Acl(0)z(t), (88)

where the closed loop system matrix is as follow

Acl(0) = A−
m∑
j=1

SiKi(0), (89)

The following results can be made about receding horizon Nash control.

i) The formation control defined as a finite horizon Nash differential game (76),

(86) has a receding horizon Nash control for every initial state z0 if and only if matrix

H(T ) is invertible.

ii) As long as all the eigenvalues of Acl(0) have negative real parts, the receding

horizon Nash control is asymptotically stable.

5.2.1 Distributed Control

Any proposed controller algorithm in order to be considered for multi–robot system

should be distributed. In the following this feature is discussed for our Receding

horizon Nash formation controller.

The receding horizon Nash control signal in equation (87) needs the state vector

z(t), which includes all the states from the formation team. However, the weight

parameters Wij and µij in the Nash game can be selected as Zero for robot i if robot

j is not its neighbour. This selection will lead to the following matrix form of Qi and

Kif as follows.

Qi =



q1,1
i · · · q1,j−1

i 0 q1,j+1
i · · · q1,m

i
...

...
...

...
...

...
...

qj−1,1
i · · · qj−1,j−1

i 0 qj−1,j+1
i · · · qj−1,m

i

0 · · · 0 · · · 0 · · · 0

qj+1,1
i · · · qj+1,j−1

i 0 qj+1,j+1
i · · · qj+1,m

i
...

...
...

...
...

...
...

qm,1i · · · qm,j−1
i 0 qm,j+1

i · · · qm,mi


, (90)
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Kif =



k1,1
if · · · k1,j−1

if 0 k1,j+1
if · · · k1,m

if
...

...
...

...
...

...
...

kj−1,1
if · · · kj−1,j−1

if 0 kj−1,j+1
if · · · kj−1,m

if

0 · · · 0 · · · 0 · · · 0

kj+1,1
if · · · kj+1,j−1

if 0 kj+1,j+1
if · · · kj+1,m

if
...

...
...

...
...

...
...

km,1if · · · km,j−1
if 0 km,j+1

if · · · km,mif


, (91)

where qu,vi or ku,vif is a block with size (2n)× (2n). Qi and Kif has m×m blocks. The

j-th block row or column consist of m zero blocks. It should be noted that matrix

A has a block diagonal structure. Based on this matrix structures, it can be found

the j-th block row of solution Ki consist of m zero blocks from the coupled Riccati

differential equation (78).

Ki =



k1,1
i · · · k1,j−1

i 0 k1,j+1
i · · · k1,m

i
...

...
...

...
...

...
...

kj−1,1
i · · · kj−1,j−1

i 0 kj−1,j+1
i · · · kj−1,m

i

0 · · · 0 · · · 0 · · · 0

kj+1,1
i · · · kj+1,j−1

i 0 kj+1,j+1
i · · · kj+1,m

i
...

...
...

...
...

...
...

km,1i · · · km,j−1
i 0 km,j+1

i · · · km,mi


. (92)

Therefore the receding horizon Nash control u∗i (t, z(t)) does not need the state

zj(t) from the non neighbour robot j. If there is more than one robot in the team,

which are not the neighbours of robot i, the same conclusion can be made. Thus

u∗i (t, z(t)) is a distributed control law.

5.2.2 Receding Horizon Nash Control Algorithm

Let δ denote the control time interval and 0 < δ < T . Based on Z(t), each robot

computes an open-loop Nash equilibrium solution ū(τ) for the period t ≤ τ ≤ t+ T .

To indicate that this solution is an open-loop Nash equilibrium solution, and depends

on the initial state z(t), it is rewritten as ū(τ, z(τ)). The algorithm uses the solution

provided by open-loop linear quadratic Nash equilibrium to control robots for the

period [t, t+ δ]. At the next time instant t + δ, this procedure repeats. The details
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of the algorithm are listed as follows:

1. Read the current state zi(t) and all neighbours’ state zj(t).

2. Find the open loop Nash equilibrium solution ū(τ, z(τ)) and its state trajectory

z̄(τ, z(t)).

3. Construct the receding horizon Nash control u∗(τ, z(t)) based on the open loop

Nash equilibrium ū(τ, z(t)) for the period [t, t+ δ].

4. Use the receding horizon Nash control u∗(τ, z(t)) to control robots. The result-

ing state trajectory z∗(τ, z(t)) should be

z∗(τ, z(t)) = z̄(τ, z(t)), τ ∈ [t, t+ δ) ,

5. Update t← t+ δ.

6. Loop until the control achieves a satisfying performance.

5.3 Simulation

This section we provide the simulation results for the formation control of a multi–

robots system with double integrator dynamics performing a formation mission.

A triangle formation Shape had chosen to be the desired form to be shaped as

depicted in the Fig. 10.

Figure 10: Triangle shape formation of a four robot formation.
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In the triangle formation, the neighbours of the leader robot 1 are robot 2 and 4,

the neighbour of robot 2 are robots 1 and 3, the neighbour of robot 3 is robot 2, and

neighbour of robot 4 is robot 1. For i = 4 robots with 2-dimensional coordinates we

have qi = [x, y]T ∈ R2, the state and control vectors are zi(t) = [qi(t)
T , q̇i(t)

T ]T ∈ R4

and ui(t) ∈ R2(i = 1, ..., 4). The robot dynamics are

żi = azi + bui, (93)

where

a =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

 , b =


0 0

0 0

1 0

0 1

 . (94)

The state and control vector of each robot i are defined as ui(t) ∈ U , and zi(t) ∈ Z
respectively. by concatenating the states of all m = 4 robots in a team into a vector

z =
[
zT1 , ..., z

T
m

]
∈ R16, the team dynamics are

żd(t) = Azd(t) +
m∑
i=1

Biu
d
i (t), t ≥ 0 (95)

where

A = I(m) ⊗ a =



0 I(2) 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 I(2) 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 I(2) 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 I(2)

0 0 0 0 0 0 0 0


, (96)

All the entries of this matrix are 2× 2 block matrices and we have

B1 = [1, 0, 0, 0]T ⊗ b,

B2 = [0, 1, 0, 0]T ⊗ b,
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B3 = [0, 0, 1, 0]T ⊗ b,

B4 = [0, 0, 0, 1]T ⊗ b.

The operator ⊗ is the Kronecker product.

The incidence matrix D of a directed graph g is the 0,±1 matrix with rows and

columns indexed by vertices and edges of the our formation graph. The incidence

matrix associated to our formation graph based on Fig. 10 is

D =


−1 0 −1

1 −1 0

0 1 0

0 0 1

 , (97)

A diagonal weight matrix represent the weighting associated to the edges of the graph

with dimension equal to the number of edges in the formation graph

W =


5 0 0

0 5 0

0 0 5

 , (98)

let D̂ = D⊗ I4, and Ŵ = W ⊗ I4 with W = diag[wij] then the whole team formation

error can be expressed in the matrix form as

∑
ij∈E

Wij||zi − zj − ddij|| = (z − zd)T ,

D̂Ŵ D̂T (z − zd) = ||z − zd||2
D̂Ŵ D̂T .

Following [41], we define Laplacian of a graph g as L = DWDT for our formation

graph we have

L =


10 −5 0 −5

−5 10 −5 0

0 −5 5 0

−5 0 0 5

 . (99)

As it can be verified the Laplacian is symmetric and positive semi-definite. Now

let define L̂ = D̂Ŵ D̂T . L̂ is also symmetric and positive semi-definite. The team
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formation error therefore can be rewritten as :

∑
(ij)∈E

Wij||zi − zjddij|| = ||z − zd||2L̂, (100)

the tracking trajectory is assumed to be a circle defined by

qd(t) = [cos(t), sin(t)]T , t ≥ 0, (101)

the desired input (q̈d) of this trajectory will be [−sin(t), cos(t)]T . In the simulation,

the triangle formation is to track the circle trajectory. In this context robot 1 is

assumed to be the leader robot. The proposed distributed receding horizon Nash

controller is tested. the leader robot uses the cost function (73), which includes a

formation cost represented by K1f , Q1 and a tracking cost represented by k1f , q1.

The follower robots use the cost function (72), which only include a formation cost

represented by Kif , Qi, i = 2, 3, 4.

Figure 11: Formation control trajectories of four robots.

Solution of the finite horizon open-loop Nash differential game can be found by

using terminal values and iterating backward. The finite horizon length here is T = 6 s

and the sample time is δ = 0.01 s. Fig. 11 depicts the trajectory of four robot following

the formation algorithm. The leader robot 1 uses both tracking and formation cost

function. As the results show all four trajectories converge to a triangle shape during
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the circle tracking.

Figure 12: Agents movement in x direction.

Fig. 12 represents the error between robot control signal and tracking control error

for the robots on x direction, and all the control signals converge to zero.y position

error between robots and their tracking trajectories are shown in Fig. 13. It can be

seen that the position error converges to zero, and all robots finally move in the circle

trajectory while maintaining triangle shape formation.

5.4 Summary

Chapter 5 addresses lack of state feedback feature in finite horizon open-loop Nash dif-

ferential game controller proposed in chapter 4. This is achieved through introducing

a receding horizon methodology to this problem. Receding horizon Nash formation

control was developed as result to provide state–feedback formation control for net-

work of mobile robots. In addition, the proposed method is shown to be decentralized,

so that it is possible to be implemented separately on each robot on board processing

unit.

Finally results are provided to show the effectiveness of proposed controller. A

triangle formation was defined as desired final form. It was shown that both leaders,
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Figure 13: Agents movement in y direction.

and followers where capable of forming this shape from a basic layout, and keeping

the formation while tracking the circle trajectory.
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Chapter 6

6 Conclusion and Future Work

In this thesis we have presented different methods to form and maintain forma-

tion of multi–robot system by implementing effective control schemes on networks of

interconnected agents.

In Chapter 3 we proposed an optimal control technique to address formation con-

trol for network of leaders with unrestricted motion, and followers acting based on

a general consensus strategy. This algorithm could take predefined heterogeneous

formation from an initial state to desired terminal state within an finite time. An

insufficiency of this algorithm was the fact that forming the desired graph topology

from a random agents layout was not considered. Moreover aside from dual classi-

fication of agents to leader and followers, individual differences or specified interests

among agents were ignored in design.

Chapter 4 introduced a rather different approach to formation control based on

differential games. i) flexibility to incorporate individual interests of each robot in the

algorithm, ii) and ability to weight communication links in a way that accurately rep-

resent the hierarchy of inter-agent communications, were two main advantages of this

technique. However this was achieved through an open-loop controller, built based

on the open-loop information structure as discussed. Meanwhile, states feedback is

an essential element of a practical control scenario and that renders strategies based
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on open-loop information structures impractical and insufficient.

In Chapter 5 we propose a method to address the lack of state feedback feature in

finite horizon open-loop Nash differential game controller in chapter 4. By introducing

a receding horizon methodology to this problem we can develop a receding horizon

Nash formation control and provide state-feedback formation control for network of

mobile robots. In addition, the proposed method is shown to be decentralized. In the

simulation It was shown that both leaders, and followers where capable of forming

triangle formation from a basic layout, and keeping the formation while tracking the

circle trajectory.

Game theory has proven to be a powerful tool for controlling the networks with

large number of agents [42]. However its advantage comes at a very high computation

cost. In Chapter 4 we tried to reduce the computation load by choosing the open-

loop information structure over the state–feedback information structure to solve the

differential game. However by adding receding horizon method to provide state–

feedback adds on to computation demand.

A natural line of thought is to implement this methods on networks with large

number of participating agents. Questions about limitations, these methods will en-

counter can be subject to further investigation. One can argue that high computation

cost poses a challenge especially on large scale formation scenarios.

In that regard, the proposed quasi-static optimal controller in Chapter 3 is rela-

tively simple to implement and efficient. However, it is unable to form the desired

network topology from indefinite agent layout. Moreover, agents’ individual interest

is not considered in this algorithm. These two features are provided through differ-

ential game approach proposed in Chapter 4, Finite horizon Nash formation control,

and receding horizon Nash formation control in Chapter 5. The advantage of hav-

ing individual agent’s interest have been included, and the ability to form desired

formation topology from arbitrary agent’s layout, comes at a the high computation

cost.

A suggestion for further research on this topic, is to implement a hybrid controller,

that is, one can break a large graph into smaller partitions. If the new partitioning

has at least one partition with more than one node, it is called non-trivial equitable

partition. Abstracting the entire graph is possible through taking each partition

as nodes of a new graph, and considering connections between agents of different
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cells as weighted edges of this new graph. Such a graph formed based on non-trivial

equitable partitions is known as Quotient graph [24]. A hybrid controller can comprise

a two level controller. Meaning, each partition is controlled separately using approach

proposed in Chapter 3, through leaders and followers running a quasi-static optimal

control. Then differential game based formation control is used to provide a high

level controller on position of each partition in decentralized cooperative manner.

Essentially receding horizon Nash differential game decides desired position for each

partition with respect to other partitions to form a specific formation on a partition

level. Meanwhile, quasi-static optimal control can be used to move members inside

each partition to desired location and maintain agents together inside the partition.

Another reasonable thread for future work is to remove the connectivity assump-

tion form our problem description. In both methods the graph connectivity was

deliberately taken for granted. A systematic approach needs to be in placed around

notion of graph connectivity throughout the formation control. This becomes even

more interesting when we want topology of our large scale graph to evolve in order to

better adapt with the existing constraints of our problem, while maintaining graph

connectivity.

These two threads, expandability of a control scheme to larger networks and cre-

ating desirable characteristics for our network and altering them promptly to incor-

porate our design constraints are two proposed ideas for further research in this field.
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