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Three Essays in Asset Pricing 

 

Alan Picard, 

Concordia University, 2015 

 

Abstract 

 

This dissertation consists of three essays. My first paper re-examines the link between 

idiosyncratic risk and expected returns for a large sample of firms in both developed and emerging 

markets. Recent studies using Fama-French three factor models have shown a negative relationship 

between idiosyncratic volatility and expected returns for developed markets. This relationship has 

not been studied to date for emerging markets. This study relates the current-month’s idiosyncratic 

volatility to the subsequent month’s returns for a sample of both developed and emerging markets 

expanding benchmark factors by including both a momentum and a systematic liquidity risk 

component.  

My second essay contributes to the important literature on the topic of the small capitalization 

stocks historical outperformance over large capitalization stocks by investigating the hypothesis 

that the small firm premium is related to macroeconomic and financial variables and that 

relationship is driven by the economic cycle in the United States and Canada. More specifically, 

this study employs recent advances in nonlinear time series models to explore the relationship 

between the small firm premium, and financial and macroeconomic variables in the Canadian and 

U.S. economies.   

My third paper re-examines the findings of a recent research paper that suggested that market wide 

liquidity may act as a leading indicator to the economic cycle. Using several liquidity measures 
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and various macroeconomic variables to proxy for the economic conditions, the paper presents 

evidence that stock market liquidity could forecast business cycles: A major decrease in the overall 

level of market liquidity could indicate weak economic growth in the subsequent months. 

However, the drawback in the analysis is that the relationship is investigated in a linear approach 

even though it has been proven that most macroeconomic variables follow non-linear dynamics. 

Employing similar liquidity measures and macroeconomic proxies, and two popular econometrics 

models that account for non-linear behavior, this study hence re-investigates the relationship 

between stock market liquidity and business cycles.  
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CHAPTER 1 

Idiosyncratic Volatility, Momentum, Liquidity, and Expected Stock 

Returns in Developed and Emerging Markets  

 

 

1.1 Introduction 

 

 

The seminal papers that introduced the foundations of modern portfolio theory (MPT) 

(Markowitz (1952); Sharpe (1964); Lintner (1965)) assert that, within the framework of the Capital 

Asset Pricing Model (CAPM), idiosyncratic risk should not be priced as long as representative 

agents hold the market portfolio or a well-diversified portfolio. Further theoretical extensions have 

looked at the effects of risk tolerance, information, and transactions costs in establishing a 

premium for idiosyncratic volatility (e.g. Levy (1978), Merton (1987), (Malkiel and Xu (2006) 

and Jones and Rhodes-Kropf (2003)).  

While the theoretical arguments for an idiosyncratic risk premium are relatively 

straightforward, the empirical evidence for such a premium is mixed, based on Fama-French type 

factor models. For example, Fu (2009) provides evidence that high idiosyncratic risk portfolios 

generate higher returns than low idiosyncratic risk portfolios for the US market. Ang et al. (2006) 

using monthly data document a negative idiosyncratic effect in US stock markets during the period 

1963-2000 while Ang et al. (2009) also find a negative idiosyncratic risk effect in 22 developed 

markets (1980-2003).   

This study contributes to the literature by analyzing the behaviour of  idiosyncratic risk for 

an international sample consisting of both developed markets as well as, for the first time, 
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emerging markets stock markets using a five-factor model that incorporates both momentum and 

liquidity risk. The latter might be deemed of particular importance for emerging markets since 

poor liquidity is often mentioned as one of the main reasons that prevent foreign investors from 

investing in emerging markets.  

A positive relationship between idiosyncratic volatility and expected returns could imply 

that some potential risk factors that are not incorporated in the factor models employed in this 

study are not or may not be completely diversifiable and may hence generate the pricing of 

idiosyncratic volatility. The international finance literature distinguishes between three categories 

of non-diversifiable risk factors inherent to emerging markets.  

a) Direct barriers that discriminate against foreign shareholders – which could include ownership 

restrictions and onerous taxes. 

b) Indirect barriers – this would include lack of transparency due to poor accounting standards, 

low investor protection, high transaction costs, and government expropriation of productive assets. 

Lack of transparency may also be linked to informational inefficiencies. For example, 

Bhattacharya et al. (2000) show that in emerging markets, insider trading often occurs well before 

the release of information to the public. Stock prices in such markets respond before public 

announcements, which is consistent with information leakage. In addition, the price response of 

shares traded by foreigners lags the price response of shares traded by locals. Another indirect 

barrier would be related to higher levels of corruption within emerging markets compared to 

developed markets (Switzer & Tahaoglu (2014)). Many emerging markets may also be prone to 

agency problems resulting from multilevel (pyramid) ownership structures that facilitate 

expropriation of the firm’s resources by controlling shareholders (Shleifer and Vishny (1997), Lins 
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(2003)). Shareholder rights are generally weak and takeovers are seldom used as an external 

disciplining governance mechanism (La Porta et al. (1998), Denis and McConnell (2003); 

c) Barriers that result from emerging market specific risks – Clark and Tunaru (2001) for example 

provide a model that measures the impact of political risk on portfolio investment.  They define 

political risk as the volatility of the exposure of a portfolio to loss in the case of an explicit political 

event in a given country. Novel feature of their model is that political risk is multivariate and  may 

be correlated across countries. Bekaert et al. (1997)) suggest that political risk is priced in several 

emerging markets. Other emerging market specific risks would also include economic policy risk, 

and currency risk that dissuade foreign investment.  Bartram et al. (2012) provide further insight 

into market specific factors  that may be associated with differences in idiosyncratic volatility 

between emerging markets and developed markets. They distinguish between “good” volatility 

(e.g. due to patents, firm-level R&D investment)  from “bad” volatility (e.g. linked to political risk 

and poor disclosure).  They conclude that emerging markets are more prone to “bad” volatility 

factors, relative to developed markets.1 

While Bartram et al. (2012) highlight factors likely associated with good or bad volatility, 

they do not explore whether or not idiosyncratic volatility per se is priced in the different markets 

considered.  This paper provides new evidence on this score. This analysis uses both the Carhart 

(1997) 4-factor model as well as a 5-factor model that incorporates the Amihud (2002) liquidity 

factor in the estimation of idiosyncratic risk. Using a five factor model, the results suggest that 

idiosyncratic risk does not play a role on stock returns for most of the developed markets analyzed.  

                                                           
1 They estimate idiosyncratic volatility as the standard deviation of error term from a systematic risk model that 

explains the return of a stock with the return of its country’s market, the world market, and Fama–French size and 

value factors.  Given the high correlation between US and developed market returns and the world market returns, the 

standard errors of their estimates may be higher than for emerging markets, which could distort the significance of the 

idiosyncratic volatility factor.  This problem is highlighted in Girard and Sinha (2006) who show that unlike developed 

markets, emerging markets are sensitive to local, but not global risk factors. 
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In contrast, we show, for the first time, that idiosyncratic risk is positively related to month-ahead 

expected returns for many emerging markets for this model.  

Hence this paper present evidence that the idiosyncratic puzzle found by Ang et al. (2009) in 

developed markets may be sample period specific. Indeed the negative relationship between 

expected returns and idiosyncratic volatility, estimated using the Fama-French 3 factor model, 

discovered by Ang et al. (2009) for the period 1980 to 2003 disappear once the sample period is 

extended to December 2012. The non-existence of the idiosyncratic puzzle observed in this paper 

corroborate previous papers that have shown the weak evidence of such relationship. For instance, 

Wei and Zhang (2005) show that a trading strategy based on idiosyncratic volatility does not 

generate any significant profits in the US stock market during the period 1962 to 2000. Bali et al. 

(2005) demonstrate that there is no time series relation between idiosyncratic volatility and 

following stock returns because this relatiomnship is not robust through time, as they show that 

neither idiosyncratic volatility nor stock market volatility forecasts stock market returns.  

Moreover the positive link between idiosyncratic volatility and subsequent monthly returns 

observed in emerging markets, which rejects the idea of an idiosyncratic puzzle, would be expected 

according to Levy (1978) and Merton (1987) who asserts that investors demand a return 

compensation for bearing idiosyncratic risk caused particularly by factors that may not be 

diversifiable. Bartram et al. (2102) enumerate several such risk factors inherent to emerging 

markets e.g. political risk, liquidity risk, lack of transparency due to poor accounting standards and 

informational inefficiencies and low investor protection. 

In order to estimate idiosyncratic volatility, the 4-factor model, which is an extension to the Fama-

French 3-factor model by adding a momentum factor, and the 5-factor model, which incorporates 

a liquidity risk factor to the the previous model, were employed. A liquidity risk factor is included 
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in this study since it is generally recognised that liquidity is important for asset pricing and that 

systematic variation in liquidity matters for expected returns: Since rational investors require a 

higher risk premium for holding illiquid securities, these assets and assets with high transaction 

costs are characterized by low prices relative to their expected cash flows i.e. average liquidity is 

priced (Amihud and Mendelson (1986); Brennan and Subrahmanyam (1996); Chordia et al. 

(2001)). For instance Haugen and Baker (1996) document that the liquidity of stocks is one of 

several common factors in explaining stock returns across global markets. Amihud et al. (1997) 

show that enhancement in liquidity on the Tel Aviv Stock Exchange is linked to price increases.  

This paper examines the issue of liquidity for developed countries but as well as for a set of markets 

where liquidity ought to be particularly important i.e. emerging markets. Two reasons show that 

laying emphasis on illiquidity is critical for emerging markets due to their limited access to global 

capital markets. Firstly returns in emerging countries may be further significantly lessened by the 

increased illiquidity of trading stocks relative to returns in more developed markets. Secondly 

Bekaert et al. (2007) show results suggesting that local market liquidity is an important driver, 

much more so than local market risk, of expected returns (liquidity is a priced factor) in emerging 

markets and that model specifications that incorporate liquidity risk outperform other models that 

only consider market risk factors in predicting future returns.  

Moreover Bekaert et al. (2007) document that higher political risk and weak law and order 

conditions could act as segmentation indicators and that liquidity may further affect expected 

returns in countries with these aspects. The authors explain that liquidity effects are relatively 

small in a developed country such as the United States since its market is large in the number of 

traded securities and because it has a very diversified ownership structure i.e. a stock market 

categorized by both long-horizon investors, less prone to liquidity risk, and short-term investors. 
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Hence, in the United States clientele effects in portfolio choice alleviate the pricing of liquidity 

while such variety in securities and ownership is deficient in emerging markets, potentially 

reinforcing liquidity effects. Lesmond (2005) corroborates Bekaert et al. ’s (2007) findings by 

investigating the impact of legal origin and political institutions on liquidity levels provide 

evidence that countries with poor political and legal systems and organizations have considerably 

greater liquidity costs than do countries with solid and strong political and legal institutions. Higher 

incremental political risk translates into a 1.9% increase in price impact costs employing the 

Amihud measure. 

 

The remainder of this study is organized as follows. In the next section, a review of the 

literature is presented. An introduction of the data used in this paper and a description of the 

research methodology is provided in section 3. The empirical results follow in section 4. The paper 

concludes with a summary in section 5. 
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1.2 Literature Review 

 

Idiosyncratic volatility has been a topic of considerable interest in the literature since the 

seminal contributions of Levy (1978) and Merton (1987) and the empirical results of Campbell et 

al. (2001) that show a secular increase in idiosyncratic volatility over a long horizon. Merton 

(1987) argues that to the extent that investors cannot create portfolios that contain only systematic 

risk they demand a return compensation for bearing idiosyncratic risk: the less diversified the 

portfolios, the higher the proportion of idiosyncratic risk impounded into expected returns making 

high idiosyncratic stocks earn more than low idiosyncratic stocks – i.e. idiosyncratic risk should 

be positively related to stock returns. However, no consensus has emerged on the actual effects of 

idiosyncratic volatility on the cross-sectional variation in stock returns. Some studies have found 

a positive relationship, consistent with Merton (1987). Others have shown either no relationship 

or even a negative relationship between idiosyncratic risk and stock returns.  

 

1.2.1 Positive Relationship between Idiosyncratic Volatility and Stock Returns 

 

Malkiel and Xu (1997) form portfolios of US stocks based on idiosyncratic volatility and show a 

positive relationship between idiosyncratic volatility and the cross-section of monthly future stock 

returns. Goyal and Santa-Clara (2003) also find that average stock idiosyncratic volatility is 

positively related to value-weighted market returns. Similar results are shown by Wei and Zhang 

(2005), and Pukthuanthong-Le and Visaltanachoti (2009). Fu (2009) shows that forecasts of 

idiosyncratic volatility based on exponential generalized autoregressive conditional 

heteroskedasticity (EGARCH) models are positively related to returns from 1963 to 2006, 

Bainbridge and Galagedera (2009) show evidence of a positive relationship between idiosyncratic 
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volatility and expected stock returns for Australian stocks.  Ben-David et al. (2010) present 

evidence that hedge finds generate higher returns from trading high idiosyncratic risk stocks rather 

than low idiosyncratic risk stocks. Nartea, Ward, and Yao (2011) show a positive relationship 

between idiosyncractic volatility and expected stock returns in four Southeast Asian stock markets 

(i.e. Singapore, Malaysian, Indonesia, and Thailand) during the period from the early 1990s to the 

end of 2007.  More recently, Brooks, Li and Miffre (2013) show that cross-sectional returns are 

positively related to differences in the unsystematic risk of portfolio returns. Their finding is that 

idiosyncratic risk is priced. In sum, these papers are in line with the notion that agents who fail to 

fully diversify their portfolios demand higher average returns to compensate them for bearing 

higher levels of firm-specific risk (Merton (1987),  

 

 

1.2.2 Negative Relationship between Idiosyncratic Volatility and Stock Returns 

 

Ang et al. (2006) provide empirical evidence suggesting that U.S. stocks with higher lagged 

idiosyncratic volatility have abnormally lower equally-weighted returns, a phenomenon which 

they call “the idiosyncratic risk puzzle.” The authors report that the average return differential 

between the lowest and highest quintile portfolios formed on one-month lagged idiosyncratic 

volatilities is about -1.06% per month for the period 1963-2000. In their paper, idiosyncratic 

volatility is measured as the standard deviation of the residuals of the daily three-factor Fama and 

French (1993) model over the prior month. Guo and Savickas (2006) show that  value-weighted 

idiosyncratic volatility is negatively and significantly related to subsequent quarterly excess stock 

market returns,  for G7 countries using quarterly data over the period 1963 to 2002, Chang and 

Dong (2006) document a negative relationship between idiosyncratic volatility and expected stock 

returns in the Japanese stock market from 1975 to 2002. Koch (2010) finds that low idiosyncratic 
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volatility stocks generate higher returns than high idiosyncratic volatility stocks in the German 

stock market from 1974 to 2006;  the differential return between the low idiosyncratic volatility 

and high idiosyncratic volatility stocks portfolios. 

 

2.3 No Relationship between Idiosyncratic Volatility and Stock Returns 

 

Wei and Zhang (2005) demonstrate that a trading strategy based on idiosyncratic volatility 

does not yield any significant economic gains using US stock market data over the period 1962 to 

2000. Bali et al. (2005) argue that the findings of Goyal and Santa-Clara (2003) that the average 

idiosyncratic risk is positively related to future returns are not robust through time. They conclude 

that there is no time series relation between diversifiable risk and subsequent stock returns, as they 

show that neither idiosyncratic volatility nor stock market volatility forecasts stock market returns 

in an extended sample ending in 2001. Bali and Cakici (2008) state that the relationship between 

idiosyncratic volatility and the cross-section of stock returns largely depends on the data frequency 

used to compute asset-specific volatility. Nartea and Ward (2009) report that there is no association 

between diversifiable volatility and expected stock portfolio returns in the Philippine stock market.  

Huang, Liu, Rhee and Zhang (2010) suggest that the disparate results for  Bali and Cakici 

(2008) and Ang et al. (2009) can be explained by short term monthly return reversals – which 

could confound the results of conventional three or four factor models of expected returns. On 

balance, they suggest that no relationship between idiosyncratic return and risk should be observed 

once return reversals are accounted for. 

In sum, the evidence to date concerning the relationship between idiosyncratic volatility 

and stock returns remains ambiguous. Furthermore, most existing empirical research focuses on 
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US stock markets, and is based on simple applications of  basic factor models (e.g. the one factor 

model or the three factor Fama-French (1993) model), or time series approaches (such as GARCH) 

that are not directly linked to asset pricing models. This paper looks to extend our understanding 

of the role of idiosyncratic risk and volatility by a) providing more recent evidence from other 

developed and emerging stock markets; and b) using further extensions to the Fama-French (1993) 

model that may improve the measurement of idiosyncratic risk. 
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1.3 Data and Methodology 
 

 

This study uses stock market daily returns on firms from 23 developed and 15 emerging 

markets: Argentina, Australia, Austria, Belgium, Brazil, Canada, Czech Republic, Denmark, 

Finland, France, Germany, Greece, Hong Kong, India, Indonesia, Ireland, Israel, Italy, Japan, 

Korea, Malaysia, Mexico, the Netherlands, New Zealand, Norway, Philippines, Poland, Portugal, 

Russia, Singapore, South Africa, Spain, Sweden, Switzerland, Taiwan, Thailand, Turkey, the UK 

and the US. Non US firm returns are collected from the Thompson Financial Datastream for the 

sample period January 1980 to December 2012. US stock returns are obtained from CRSP.  We 

consider the returns from local investor or currency hedged foreign investor perspectives by 

studying local-currency denominated returns for the analyses, with excess returns are computed 

using each country 1-month or 3-month T-Bill rates.2  As per Ang et. al. (2009), in all non-U.S. 

countries, we exclude very small firms by eliminating the 5% of firms with the lowest market 

capitalizations. The number of stocks included and the coverage period for each country are shown 

in Table I.  A set of illustrative stocks in various countries used in the analyses is provided in 

Appendix 1.3  

 

 

 

 

 

 

                                                           
2 For nations in which the 1-month or 3-month T-Bill rates are not available the 1 month U.S. T-Bill rate was used 

as per Ang et. al. (2009). Note also that for countries in which the 1-month or 3-month T-Bill rates were obtainable, 

idiosyncratic volatilities were computed twice using both local rates and the 1-month U.S. T-Bill rate giving similar 

results for each country. 
3 A complete listing of stocks for all countries used in the analyses is available on request. 
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Table 1.1 Description of Sample This table presents data coverage of the G7 countries, 16 developed markets and 

15 emerging markets. N(start) and N(end) show the number of stocks at the starting and ending sample period.  

 

 

Country Start N(Start) End N(End) 

G7 Countries     

Canada Jan 1980 32 Dec 2012 233 

France Jan 1980 34 Dec 2012 233 

Germany Jan 1980 47 Dec 2012 233 

Italy June 1986 35 Dec 2012 149 

Japan Jan 1980 319 Dec 2012 916 

United Kingdom Jan 1980 388 Dec 2012 911 

United States Jan 1980 1978 Dec 2012 3788 

 

Developed Markets 
    

Australia Jan 1984 30 Dec 2012 152 

Austria Jun 1999 30 Dec 2012 46 

Belgium Jun 1986 30 Dec 2012 83 

Denmark Jun 1992 30 Dec 2012 42 

Finland Jul 1994 30 Dec 2012 46 

Greece Jul 1998 30 Dec 2012 47 

Hong Kong Jun 1988 35 Dec 2012 122 

Ireland Dec 2007 30 Dec 2012 30 

Netherlands Jan 1980 34 Dec 2012 105 

New Zealand Sep 1999 30 Dec 2012 45 

Norway Jun 2001 30 Dec 2012 47 

Portugal Jun 1998 30 Dec 2012 46 

Singapore Feb 1989 30 Dec 2012 93 

Spain Jun 1999 30 Dec 2012 46 

Sweden  Aug 1991 30 Dec 2012 66 

Switzerland Jul 1980 30 Dec 2012 133 

 

Emerging Markets 
    

Argentina Jan 1995 30 Dec 2012 50 

Brazil Oct 1994 30 Dec 2012 97 

India Nov 1994 93 Dec 2012 198 

Indonesia Jun 1998 30 Dec 2012 50 

Israel June 1996 30 Dec 2012 50 

Korea May 1987 31 Dec 2012 97 

Malaysia Jan 1986 30 Dec 2012 89 

Mexico Mar 1993 30 Dec 2012 84 

Philippines Nov 1994 30 Dec 2012 50 

Poland Apr 2005 30 Dec 2012 50 

Russia Jan 2007 30 Dec 2012 47 

South Africa Jan 1990 34 Dec 2012 70 

Taiwan Nov 1994 30 Dec 2012 70 

Thailand Aug 1994 30 Dec 2012 50 

Turkey Apr 1997 30 Dec 2012 49 
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1.3.1 Estimating Idiosyncratic Volatilities 

 

 

This paper uses an intertemporal approach in which lagged monthly idiosyncratic volatility is 

related to monthly returns. Ang et al. (2006, 2009) measure idiosyncratic risk by realized 

idiosyncratic volatility using a local version of the Fama and French (1993) three-factor model 

(Equation 1.1).The idiosyncratic volatility of a stock in each month is the standard deviation of the 

regression residuals 𝜀𝑖 in Equation (1.1):  

 

                                                   𝑟𝑖 = α𝑖  + 𝛽𝑖𝑀𝐾𝑇 +  𝑠𝑖𝑆𝑀𝐵 +  ℎ𝑖𝐻𝑀𝐿 + 𝜀𝑖                                         (1.1) 

 

where  𝑟𝑖  is the daily excess returns of stock i, α𝑖 is the Fama–French adjusted alpha, 𝑀𝐾𝑇 is the 

excess return on the market portfolio in each country defined as the value-weighted average of all 

stocks; 𝑆𝑀𝐵 (small minus big market capitalization) and 𝐻𝑀𝐿 (high minus low book-to-market) 

are return differences between the top 33.33 per cent and bottom 33.33 per cent ranked stocks in 

each country respectively; 𝛽𝑖 , 𝑠𝑖 and ℎ𝑖 are the estimated factor exposures. Griffin (2002) provides 

evidence that the Fama and French factors are country specific and concludes that the three-local 

factor Fama-French model provides a better explanation of time-series variation in stock returns 

for international stocks than a global factor model.  

 

This study extends the three-factor model by adding two additional factors to estimate 

idiosyncratic volatilities: a momentum factor and an illiquidity factor. We perform the analyses 

using both the Carhart (1997) model (Equation 1.2) that incorporates momentum, as well as a five-

factor model (Equation 1.3) that includes an an illiquidity premium as well: 
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                             𝑟𝑖 = α𝑖  + 𝛽𝑖𝑀𝐾𝑇 +  𝑠𝑖𝑆𝑀𝐵 +  ℎ𝑖𝐻𝑀𝐿 + 𝑚𝑖𝑀𝑂𝑀 + 𝜀𝑖                                      (1.2) 

 

      𝑟𝑖 = α𝑖 + 𝛽𝑖𝑀𝐾𝑇 +  𝑠𝑖𝑆𝑀𝐵 +  ℎ𝑖𝐻𝑀𝐿 + 𝑚𝑖𝑀𝑂𝑀 + 𝑙𝑖𝐼𝑀𝐿 + 𝜀𝑖                             (1.3) 

 

Analogous to the size (SMB), and the book-to-market (HML) return proxies, the momentum factor 

(MOM) is constructed as the equal-weighted average of firms with the highest 30 percent eleven-

month returns lagged one month minus the equal-weighted average of firms with the lowest 30 

percent eleven-month returns lagged one month (Carhart (1997)).  

 

The illiquidity premium denoted IML (illiquid-minus-liquid portfolio return) is the 

difference between the average excess return on high-illiquidity stocks (30% percent highest) and 

low-illiquidity stocks (30% percent lowest). In this study the proxy used for illiquidity is the “price 

impact”illiquidity measure proposed by Amihud (2002). This measure captures the response 

associated with one dollar of trading volume.  More specifically, the illiquidity factor is computed 

as the daily ratio of absolute stock return to dollar volume: 

 

                                                  𝐼𝑙𝑙𝑖𝑞𝑖 =  
|𝑟𝑖|

𝐷𝑉𝑂𝐿𝑖
                                                              (1.4) 

 

where 𝑟𝑖 is a daily stock return of stock i, and 𝐷𝑉𝑂𝐿𝑖 is daily dollar volume. 

We use the illiquidity measure proposed by Amihud (2002) since it is one of the most widely used 

in the finance literature. This popularity is due to two advantages it has over many other liquidity 

measures. First, the measure can be easily constructed using daily stock data. Second, the measure 



15 
 

shows a strong positive relationship with a high-frequency price impact measure and expected 

stock return (e.g. Amihud (2002), and Chordia et al. (2009)).  

The trading strategy based on idiosyncratic volatility corresponds involves portfolio 

formation based on an estimation period of L months, a waiting period of M months, and a holding 

period of N months. The L/M/N strategy is defined as follows. At month t, idiosyncratic volatilities 

from regressions (3) and (4) on daily data over an L-month period from month t − L − M to month 

t – M are measured. At time t, portfolios based on these idiosyncratic volatilities are formed and 

held for N months. In this study, the analysis focuses on the 1/0/1 strategy, in which stocks are 

sorted into quintile portfolios based on their level of idiosyncratic volatility estimated using daily 

returns over the previous month, and held for 1 month. The portfolios are reformed at the beginning 

of each month.  
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1.4. Empirical Results 
 

 

Figure 1.1 provides graphs of the time variation of aggregate idiosyncratic volatility for the 

United States, G7 countries (except Italy), developed markets and emerging markets all depict no 

significant positive trend over the full sample period.   

 

Figure 1.1 

 

Time Series Plots of Aggregate Monthly Idiosyncratic Volatility (%) – based on 4 factor 

model 
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 Developed Markets: Australia, Belgium, Denmark, Hong Kong, Netherlands, Singapore, Sweden  

 and Switzerland. 
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Emerging Markets: Argentina, Brazil, India, Korea, Malaysia, Mexico, Philippines, South Africa,     

Taiwan and Thailand. 

 

 

The positive trend in idiosyncratic volatility observed by Campbell et al. (2001) for the period 

ending 1997 continues until June 2000, but is not clearly evident thereafter.  It is also noteworthy 

that for the US,  three out of the seven peaks in the aggregate levels of idiosyncratic volatility occur 

during the October 1987 crash, the March 2000 technology bubble burst, and the Fall 2008 global 

financial crisis. Spikes in idiosyncratic volatility are also observed for other G-7 and developed 

markets as well as for emerging markets during March 2000 and Fall 2008. 

Table 1.2 reports summary statistics for three different average volatility measures of stock 

returns across countries: idiosyncratic volatilities measured based on the 4-factor model, the 5-

factor model,  and total volatility which is computed as the volatility of daily raw returns over the 

previous month; the volatility measures are all annualized by multiplying by √250. 

New Zealand has the lowest idiosyncratic volatility (20.50% per annum based on the 4-

factor model and 19.08%  using the 5-factor model) while Ireland shows the highest idiosyncratic 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Emerging Markets 



19 
 

volatility (42.87% per annum measured on the 4-factor model and 39.99% measured on the 5-

factor model). The average idiosyncratic volatilities for G7 Countries are 29.26% and 28.05% 

based on the 4-factor and 5-factor models respectively. The estimates of idiosyncratic volatility 

are lower for developed markets (27.97% and 26.63%) but higher for emerging markets (30.45% 

and  28.45%), perhaps reflecting the direct and indirect barriers to foreign investors, as well as 

country specific risks that are of greater significance for emerging markets. 
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Table 1.2 Descriptive Statistics 
This table summarizes the time-series statistics of individual stock idiosyncratic volatilities. N(end) denotes the number of stocks 

at the ending sample period. The column “Number of months” reports the number of monthly observations for each country. The 

column “Total Volatility” is the mean of the standard deviation of daily returns. The columns “Idiosyncratic Volatility 4 Factor 

Model” and “Idiosyncratic Volatility 5 Factor Model” reports the mean of idiosyncratic volatilities computed in reference to the 4 

factor and 5 factor model respectively. Average time series of volatilities in each country are expressed in annualized terms by 

multiplying by√250. 

Country N(End) 
Number of 

Months 

Total Volatility 

(%) 

Idiosyncratic 

Volatility (%)  

4 Factor Model 

Idiosyncratic 

Volatility (%)  

5 Factor Model 

      

A. G7 Countries      

Canada 233 396 59.28 37.67 35.95 
France 233 396 43.92 28.80 27.54 

Germany 233 396 39.15 31.90 30.81 

Italy 149 319 36.98 25.06 23.95 

Japan 916 396 38.08 28.55 27.36 

United Kingdom 911 396 31.55 24.25 23.11 

United States 3788 396 40.08 28.60 27.53 

 

B. Developed Markets      

Australia 152 348 37.48 26.92 25.78 

Austria 46 163 32.78 22.50 21.31 

Belgium 83 319 32.85 24.24 22.98 

Denmark 42 247 39.94 23.02 21.76 

Finland 46 222 37.56 26.08 24.51 

Greece 47 174 45.97 28.49 26.44 

Hong Kong 122 295 55.08 28.85 30.36 

Ireland 30 61 85.16 42.87 39.99 

Netherlands 105 396 45.18 30.41 28.84 

New Zealand 45 160 30.00 20.50 19.08 

Norway 47 139 43.52 28.66 26.96 

Portugal 46 175 69.23 35.90 33.69 

Singapore 93 287 38.42 32.33 31.15 

Spain 46 163 41.10 29.60 28.15 

Sweden  66 257 35.91 23.43 22.32 

Switzerland 133 390 30.92 23.82 22.77 
 

C. Emerging Markets      

Argentina 50 216 70.62 32.80 28.48 

Brazil 97 219 67.36 33.18 31.17 

India 198 218 59.89 36.60 35.32 

Indonesia 50 175 77.30 39.14 36.20 

Israel 50 199 41.28 27.63 25.81 

Korea 97 308 53.27 33.65 31.43 

Malaysia 89 324 41.37 26.21 24.82 

Mexico 84 238 55.05 26.10 24.47 

Philippines 50 218 47.65 34.58 31.70 

Poland 50 93 49.50 27.76 26.29 

Russia 47 72 73.35 31.49 28.78 

South Africa 70 276 42.48 26.43 25.20 

Taiwan 70 218 40.78 23.56 22.58 

Thailand 50 221 60.94 31.30 29.52 

Turkey 49 189 45.12 26.29 25.01 
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Tables 1.3 and 1.4 (Tables 1.5 and 1.6) show the results for the returns of equal-weighted (value-

weighted) portfolios sorted on past 1-month idiosyncratic volatility for all countries measured 

based on the five-factor and 4-factor models respectively; Portfolio 1 (5) is the portfolio of stocks 

with the lowest (highest) volatilities.   

A negative relationship between idiosyncratic volatility and portfolio future returns in each of the 

non-U.S. G7 countries (Panel A) is observed, using both  equal- and value-weighted portfolios, 

consistent with Ang et al. (2009) for the full period from January 1980 to December 2012 (except 

for Italy which starts in June 1986).  However, the US (equally-weighted) and the United Kingdom 

(value-weighted) are the only G7 countries that exhibit a positive relationship between asset-

specific risk and expected monthly returns which contrasts with Ang et al. (2006, 2009).  

However, two critical facts in these figures deserve attention. First none of the G7 countries display 

a monotonic idiosyncratic volatility – returns relationship across portfolios ranked from the lowest 

idiosyncratic risk portfolio (Quintile 1) to the highest (Quintile 5). Average returns decline from 

quintile 1 to quintile 2 for Canada, France, Germany, Italy and Japan and then increase as we move 

from portfolio 2 to portfolio 5, as is shown in Appendix 2. Using equal-weighted portfolios, the 

difference of returns between quintile 1 and quintile 5 is significant for only three countries: 

France, Germany and Japan, amounting to 1.57, 1.06 and 1.24 percent per month respectively 

based on the five-factor model.4 

For value-weighted portfolios, the results are even more attenuated: the relationships 

between idiosyncratic volatility and expected returns are weaker and only two countries: Canada 

and Germany show a statistically significant relationship when idiosyncratic volatility is measured 

                                                           
4 The estimates are 1.60, 1.04 and 1.24 percent per month when diversifiable risk is estimated using 

the four-factor model), and are statistically significant at conventional levels. 
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based on the five-factor model.  Germany appears to be the country with the most significant 

results amongst the G7 countries,  and shows a monotonic (negative) relationship between 

idiosyncratic volatility and stock market return performance.  The results in this paper are 

consistent with Koch (2010) who also shows that the idiosyncratic volatility puzzle in Germany 

cannot be explained by return reversals (as per Huang et al. (2010)).  Germany has long been 

known as having one of the most bank-based financial systems relative to other countries in the 

G-7.  The relatively “thinner” equity market of German firms may in part explain the idiosyncratic 

volatility puzzle for Germany.  Providing a more thorough rational explanation of this result 

remains a matter for future research,  however. 

 

Panels B of Tables 1.3 to 1.4 display results for developed markets and provide mixed evidence 

on the relationship between idiosyncratic risk and monthly expected returns. Indeed, for equal-

weighted portfolios, 5 (11) developed markets show a negative (positive) relationship between 

idiosyncratic volatility and monthly expected returns but none of the differences in mean are 

statistically significant. For value-weighted portfolios, the results remain almost identical: 2 (14) 

developed markets (when idiosyncratic volatility is estimated in respect to the 5-factor model) and 

5 (11) developed markets (when idiosyncratic volatility is estimated in respect to the 4-factor 

model) suggest a negative (positive) relationship between idiosyncratic volatility and monthly 

expected returns. Moreover, as per the results regarding G7 countries, a monotonic relationship 

from quintile 1 to quintile 5 is not observed for any of the developed countries in the sample. 
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Table 1.3 Countries Idiosyncratic Volatility in Reference to the 5-Factor Model Equal-weighted quintile portfolios  

are formed every month by sorting stocks based on idiosyncratic volatility relative to the 5 factor model. Portfolios are formed 

every month, based on volatility computed using daily data over the previous month. Portfolio 1 (5) is the portfolio of stocks with 

the lowest (highest) volatilities. The column “Q1-Q5” reports the difference in monthly returns between portfolio 1 and portfolio  

5. ** denotes significance at 5% level. *** denotes significance at 1% level.  

Country Q1 Q2 Q3 Q4 Q5 Q1 – Q5 

       

A. G7 Countries       

Canada 2.90 1.33 1.22 1.32 2.29  0.61 

France 2.67 0.67 0.86 0.93 1.11      1.57** 

Germany 2.04 0.88 1.03 0.89 0.98      1.06** 

Italy 2.17 0.14 0.83 0.37 0.62         1.55 

Japan 1.64 0.17 0.09 0.26 0.39        1.24*** 

United Kingdom 1.21 1.03 0.92 1.09 1.05         0.16 

United States 1.62 1.45 1.25 1.22 1.68       - 0.06 

 

B. Developed Markets       

Australia 2.31 1.44 0.89 1.35 1.61  0.69 

Austria  0.89 0.65 0.75 0.89 1.02  0.13 

Belgium 1.21 1.01 0.79 0.71 0.60  0.61 

Denmark 1.07 0.79 0.94 1.25 1.61       - 0.55 

Finland 0.37 0.83 0.62 1.09 1.46       - 1.08 

Greece 0.83 2.45 1.37 1.35 2.12       - 1.29 

Hong Kong 2.26 2.25 1.50 1.83 2.17  0.09 

Ireland 1.36 1.01 1.02 1.33 1.13  0.23 

Netherlands 1.30 0.61 0.61 0.82 0.29  1.01 

New Zealand 1.29 0.69 0.87 0.99 0.91  0.38 

Norway 1.39 2.07 1.79 2.00 1.23  0.17 

Portugal -1.25 -0.57 0.44 0.94 0.98       - 2.23 

Singapore 3.18 1.12 1.19 1.13 1.33         1.85 

Spain -0.0119 0.0003 -0.0015 -0.0003 0.0193     - 0.0312 

Sweden  2.04 1.20 0.87 1.24 1.58  0.45 

Switzerland 1.24 0.93 0.73 0.76 0.93  0.31 

 

C. Emerging Markets       
  

0.24 0.31 1.45 4.58       - 4.27*** Argentina            0.31 

Brazil 0.11 1.84 2.19 2.06 2.59       - 2.48*** 

India 1.63 2.50 2.00 2.22 2.56       - 0.93 

Indonesia -0.48 0.45 0.56 2.16 6.75       - 7.23*** 

Israel 1.15 1.09 10.02 1.78 2.34  1.19 

Korea 0.15 1.47 1.67 1.65 2.21      - 2.06*** 

Malaysia 0.78 0.84 0.84 1.70 2.15       - 1.36 

Mexico 1.04 0.88 2.24 2.73 2.69       - 1.66 

Philippines 2.20 2.33 1.82 1.89 3.91       - 1.71 

Poland 1.82 1.44 1.68 1.31 1.71   0.11 

Russia 1.18 2.57 1.35 2.43 3.62       - 2.44*** 

South Africa 1.77 1.75 1.60 1.74 2.15        - 0.38 

Taiwan 0.82 0.37 0.72 1.23 1.79        - 0.97 

Thailand 1.41 0.43 1.72 1.85 2.40        - 0.99 

Turkey 2.18 2.12 2.06 1.78 1.45          0.73 
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Table 1.4 Countries Idiosyncratic Volatility in Reference to the 4-Factor Model 

Equal-weighted quintile portfolios are formed every month by sorting stocks based on idiosyncratic volatility relative to the 4 factor 

model. Portfolios are formed every month, based on volatility computed using daily data over the previous month. Portfolio 1 (5) 

is the portfolio of stocks with the lowest (highest) volatilities. The column “Q1-Q5” reports the difference in monthly returns 

between portfolio 1 and portfolio 5. ** denotes significance at 5% level. *** denotes significance at 1% level.  

Country Q1 Q2 Q3 Q4 Q5 Q5 – Q1 

       

A. G7 Countries       

Canada 2.96 1.34 1.23 1.25 2.33   0.63 

France 2.68 0.65 0.86 0.95 1.09      1.60** 

Germany 2.02 0.82 1.04 0.92 0.98      1.04** 

Italy 2.22 0.11 0.82 0.38 0.61          1.61 

Japan 1.63 0.18 0.11 0.23 0.39        1.24*** 

United Kingdom 1.22 1.04 0.92 1.08 1.05  0.17 

United States 1.76 1.78 1.25 1.42 1.73          0.03 

 

B. Developed Markets       

Australia 2.13 1.47 0.85 1.38 1.62   0.51 

Austria 0.84 0.56 0.91 0.86 0.98 - 0.15 

Belgium 1.07 1.09 0.80 0.62 0.65   0.43 

Denmark 1.24 0.99 0.91 1.19 1.65 - 0.41 

Finland 0.34 0.75 0.56 1.15 1.51 - 1.17 

Greece 0.82 2.39 0.95 1.81 2.04 - 1.22 

Hong Kong 2.31 2.20 1.54 1.80 2.18    0.13 

Ireland 1.56 1.11 0.36 1.65 1.16    0.40 

Netherlands 1.20 0.68 0.56 0.87 0.27    0.93 

New Zealand 1.46 0.84 0.88 0.97 0.86    0.59 

Norway 1.37 2.14 1.81 1.90 1.30    0.07 

Portugal -1.34 -0.40 0.46 0.87 1.02        - 2.36 

Singapore 3.23 1.05 1.26 1.14 1.34          1.89 

Spain -0.011 0.0018 0.0021 0.0003 0.0019 - 0.0313 

Sweden  2.09 1.11 1.01 1.24 1.54   0.55 

Switzerland 1.23 0.94 0.70 0.81 0.92   0.32 

 

C. Emerging Markets       

Argentina 0.15 0.36 0.21 1.37 4.65        - 4.51*** 

Brazil -0.04 1.75 2.22 2.19 2.49        - 2.54*** 

India 1.63 2.50 2.00 2.22 2.56  - 0.93 

Indonesia -0.53 0.41 0.36 2.19 6.90        - 7.43*** 

Israel 1.21 1.05 1.49 7.70 2.31         - 1.10 

Korea 0.15 1.47 1.67 1.65 2.21         - 2.06*** 

Malaysia 0.61 0.90 0.93 1.77 2.05         - 1.44 

Mexico 1.20 0.81 1.80 3.01 2.70         - 1.50* 

Philippines 1.98 2.93 1.45 1.97 4.09        - 2.11*** 

Poland 1.67 1.62 1.82 1.21 1.71         - 0.04 

Russia 1.28 2.19 2.21 2.36 3.28        - 2.00*** 

South Africa 1.87 1.46 1.78 1.65 2.19         - 0.33 

Taiwan 0.92 0.29 0.93 1.13 1.78         - 0.86 

Thailand 1.40 0.38 1.50 2.02 2.42         - 1.02 

Turkey 1.99 2.05 2.01 1.93 1.52           0.47 
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Table 1.5 Countries Idiosyncratic Volatility in Reference to the 5-Factor Model 

Value-weighted quintile portfolios are formed every month by sorting stocks based on idiosyncratic volatility    

relative to the 5 factor model. Portfolios are formed every month, based on volatility computed using daily data over 

the previous month. Portfolio 1 (5) is the portfolio of stocks with the lowest (highest) volatilities. The column “Q1-

Q5” reports the difference in monthly returns between portfolio 1 and portfolio 5. ** denotes significance at 5% level. 

*** denotes significance at 1% level. 

Country Q1 Q2 Q3 Q4 Q5 Q5 – Q1 

A. G7 Countries 

      

Canada 1.78 0.41 0.99 0.92 0.30      1.48** 

France 0.48       - 0.12 0.47 0.01       - 0.13   0.61 

Germany 2.82 1.83 0.79 0.03 1.13      1.69** 

Italia 1.41 0.18 0.58 0.59 1.23   0.18 

Japan 1.50 0.61 0.67 0.75 1.23   0.27 

United Kingdom 0.43 0.24 0.40 0.70 0.60 - 0.16 

United States 1.34 0.53 0.64 1.00 1.45  - 0.11 

       

B. Developed Markets       

Australia 1.92 1.42       - 1.79 2.74         2.05       - 0.13 

Austria  -0.01 0.55 0.55 1.29 1.46       - 1.47 

Belgium 1.14 -0.10 0.03 1.30 1.34       - 0.20 

Denmark 1.28 1.00 1.36 0.57 0.79         0.49  

Finland 0.04 2.13 1.50 1.33 1.10       - 1.06 

Greece 0.32 1.00 1.28 1.59 2.16       - 1.84 

Hong Kong 2.28 1.37 1.17 2.23 2.85       - 0.67 

Ireland 1.63 1.21 1.21 1.96 2.11       - 0.48 

Netherlands 1.67 0.42 0.90 1.52 1.87       - 0.20 

New Zealand 1.19 0.90 0.68 -0.33 0.89  0.30 

Norway 0.21 1.93 1.44 2.03 1.63  1.42 

Portugal -1.12 0.01 1.23 0.79 1.30       - 2.42 

Singapore 2.59 1.17 0.98 1.06 1.69       - 0.90 

Spain    - 0.008       0.009       0.011       0.010       0.008      - 0.016 

Sweden  1.51 1.09 1.10 1.29 2.37       - 0.86 

Switzerland 0.91 0.91 0.73 1.09 1.35       - 0.44 

       

C. Emerging Markets       

Argentina 
-0.34 1.04 1.28 2.19 4.15       - 4.49*** 

Brazil -0.27 1.91 2.17 2.65 2.53       - 2.80*** 

India 1.89 1.24 2.23 1.88 1.80       - 0.09 

Indonesia 1.51 2.55 2.18 3.10 3.76       - 2.25*** 

Israel 0.32 0.97 1.72 2.10 2.46  2.14 

Korea -0.37 0.19 1.83 2.79 5.71     - 6.08*** 

Malaysia 1.45 0.65 1.61 2.02 2.82       - 1.37 

Mexico 0.56 0.98 1.48 1.90 2.16       - 1.50 

Philippines 1.96 2.99 2.27 2.75 5.23       - 3.27*** 

Poland 1.85 1.52 2.29 0.62 1.47   0.38 

Russia 1.02 2.06 0.64 0.98 2.92       - 1.88 

South Africa 1.60 1.17 0.99 1.22 1.61       - 0.01 

Taiwan 0.92 0.48 0.96 1.76 2.17       - 1.25 

Thailand 0.61 1.00 0.51 1.30 1.65       - 1.04 

Turkey 1.78 1.94 1.88 2.197 2.42       - 0.64 
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Table 1.6 Countries Idiosyncratic Volatility in Reference to the 4-Factor Model 

Value-weighted quintile portfolios are formed every month by sorting stocks based on idiosyncratic volatility relative 

to the 4 factor model. Portfolios are formed every month, based on volatility computed using daily data over the 

previous month. Portfolio 1 (5) is the portfolio of stocks with the lowest (highest) volatilities. The column “Q1-Q5” 

reports the difference in monthly returns between portfolio 1 and portfolio 5. ** denotes significance at 5% level. *** 

denotes significance at 1% level. 

Country Q1 Q2 Q3 Q4 Q5 Q5 – Q1 

A. G7 Countries 
      

Canada 1.87 0.14 1.39 0.30 1.26   0.63 

France 0.45 -0.07 0.56 0.16       - 0.05   0.50 

Germany 2.90 1.72 0.88 0.43 0.30         2.60*** 

Italia 1.44 0.13 1.04 0.71 1.38           0.06 

Japan 1.53 0.65 0.60 0.66 1.32   0.21 

United Kingdom 0.30 0.12 0.40 0.74 0.62         - 0.32 

United States 1.39 0.78 0.74 1.26 1.65         - 0.16 

       

B. Developed Markets       

Australia 0.03 3.44       -3.89       - 0.88 0.87         - 0.90 

Austria 0.03 0.41 0.90 1.44 1.16         - 1.19 

Belgium 1.03 0.21 0.39 1.18 1.64         - 0.61 

Denmark 1.06 1.32 1.48 0.42 0.81    0.25 

Finland -0.24 2.23 1.94 0.93 1.28         - 1.52 

Greece 0.99 0.86 1.93 1.88 2.29         - 1.30 

Hong Kong 2.49 1.58 1.07 2.01 2.91         - 0.52 

Ireland 1.13 1.19 1.12 1.90 1.94         - 0.81 

Netherlands 1.72 0.47 0.78 1.47 1.51    0.21 

New Zealand 1.28 0.65 0.11 -0.03 0.64   0.64 

Norway 0.08 2.05 2.23 1.82 1.89    1.81 

Portugal -1.04 -0.02 1.35 0.50 1.51         - 2.55 

Singapore 2.73 1.16 1.07 1.05 1.74   0.99 

Spain - 0.010 0.009 0.013 0.011 0.009       - 0.019 

Sweden  1.58 0.81 2.17 1.48 2.37         - 0.79 

Switzerland 0.94 0.90 0.82 0.99 1.34         - 0.40 

       

C. Emerging Markets       

Argentina -0.26 1.23 1.82 2.27 3.97        - 4.23*** 

Brazil 0.09 1.58 2.55 2.52 2.58        - 2.49*** 

India 1.89 1.24 2.28 1.88 1.80  - 0.09 

Indonesia 1.36 2.72 2.52 3.20 4.20        - 2.84*** 

Israel 0.46 0.83 2.19 2.26 2.35         - 1.89 

Korea -0.29 0.05 1.87 2.89 5.76        - 6.05*** 

Malaysia 0.71 1.14 1.82 2.32 2.60         - 1.89 

Mexico 0.81 1.03 1.45 2.76 2.04         - 1.23 

Philippines 1.73 3.61 2.59 3.26 4.94        - 3.21*** 

Poland 1.46 1.04 2.99 1.14 1.37           0.09 

Russia 1.02 1.72 0.97 0.87 2.21         - 1.19 

South Africa 1.86 0.92 1.08 0.96 1.85                         0.01 

Taiwan 1.11 0.44 1.00 1.77 2.07         - 0.96 

Thailand 0.88 0.74 0.65 1.54 1.75  - 0.87 

Turkey 1.85 2.08 1.56 1.64 2.61         - 0.76 
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The results for emerging countries are shown in Panel C of Tables 1.3 to 1.6, contrast with 

those of the G-7 and developed countries. While most of the G7 countries show a negative 

association between diversifiable risk and expected returns, emerging countries exhibit an opposite 

relation: 12 out of these 15 countries suggest a positive link between idiosyncratic risk and 

expected returns. Furthermore, contrary to both developed and G7 countries, with the exception of 

Israel, Russia, and Thailand, the relationship between returns and IV appears to be fairly linear. 

Using for both equal- and value- weighted portfolios, 5  out of the 15 emerging countries indicate 

a strong and statistically significant difference in means between quintiles 1 to quintiles 5: 

Argentina, Brazil, Indonesia, Korea and Russia for equal-weighted portfolios and the same 

countries for value-weighted portfolios except that Russia is replaced by The Philippines.  

One possible reason that the results differ between G7 countries and emerging markets could be 

because of differences in the level of portfolio diversification attained by investors. Indeed, the 

results for emerging countries corroborate theories assuming investor under-diversification caused 

by market frictions that prevent investing in fully diversified portfolios (Levy (1978), Merton 

(1987)); in such an environment investors request compensation for bearing idiosyncratic risk 

generating a positive relationship between idiosyncratic volatility and returns.  

Other factors that could have affected differences between G7 countries and emerging markets 

results comprise differences in terms of degrees of financial liberalization (Umutlu et al.  (2010)), 

financial market development (Brown and Kapadia (2007)), and the degree of investor protection 

(Lemmon and Lins (2003); Cheng and Shiu (2007)).   

 

Tables 1.7 and 1.8 report comparative results for portfolio returns when idiosyncratic 

volatility is computed using 3-factor model for equal- and value-weighted portfolios respectively. 
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Again an overall similar pattern is observed when comparing these results with the ones derived 

from the 4 and 5-factor model. Only 3 (equal-weighted) and 2 (value-weighted) out the G7 

countries suggest a strong negative relationship between specific volatility and expected returns.  

For developed markets, we also obtain similar general results when idiosyncratic volatility is 

estimated using the 3, 4 and 5 factor models: no statistically significant relationship is observed 

except for Australia (value-weighted portfolios). However it is interesting to notice that 9 out of 

the 16 countries show a negative relationship for the value-weighted portfolios but only 4 out of 

these same countries suggest the same direction of relationship for equal-weighted portfolios. Note 

that in their paper, Ang et al. (2009) employ the 3 factor model as well as value-weighted portfolios 

to obtain a negative association between idiosyncratic volatility and expected returns for G7 and 

developed countries.  

In panel C of Tables 1.7 and 1.8, the results when idiosyncratic volatility is estimated in respect to 

the 3-factor model remain again similar to the ones exhibited in Tables 1.3 to 1.6: Most of the 

emerging markets provide evidence of a positive relationship (11 and 13 for equal- and value-

weighted portfolios respectively) and 5 out of these 15 countries imply a statistically strong 

association.  
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Table 1.7 Countries Idiosyncratic Volatility in Reference to the 3-Factor Model 

Equally-weighted quintile portfolios are formed every month by sorting stocks based on idiosyncratic volatility 

relative to the 3 factor model. Portfolios are formed every month, based on volatility computed using daily data over 

the previous month. Portfolio 1 (5) is the portfolio of stocks with the lowest (highest) volatilities. The column “Q1-

Q5” reports the difference in monthly returns between portfolio 1 and portfolio 5. ** denotes significance at 5% level. 

*** denotes significance at 1% level. 

Country Q1 Q2 Q3 Q4 Q5 Q1 – Q5 

       

A. G7 Countries       

Canada 2.93 1.33 1.18 1.39 0.46       2.47*** 

France 2.67 0.68 0.90 1.11 1.26       1.41*** 

Germany 1.97 0.81 0.99 0.957 1.12  0.85 

Italia 2.27 0.07 0.79 0.58 0.89        1.38*** 

Japan 1.57 0.33 0.29 0.35 0.56  1.01 

United Kingdom 1.22 1.04 0.86 0.97 1.03  0.19 

United States 1.59 1.60 1.01 0.92 1.38          0.21 

       

B. Developed Markets       

Australia 2.08 1.42 0.81 1.08 0.82            1.26 

Austria  0.65 0.57 0.88 0.87 0.95       - 0.30 

Belgium 1.07 1.01 0.94 0.52 0.66  0.41 

Denmark 0.95 1.09 0.98 1.34 1.77       - 0.82  

Finland 0.40 0.76 0.67 1.24 1.57       - 1.17 

Greece 0.72 2.49 1.17 1.04 1.70       - 0.98 

Hong Kong 2.37 2.21 1.64 1.53 2.45       - 0.08 

Ireland 1.63 1.21 0.40 1.438 1.28  0.35 

Netherlands 1.20 0.67 0.73 0.69 0.16  1.04 

New Zealand 1.28 0.77 0.74 0.65 0.71  0.57 

Norway 1.16 2.35 2.12 1.55 1.05  0.11 

Portugal -1.32 -0.41 0.65 0.78 1.20       - 2.52 

Singapore 3.04 1.10 1.23 1.08 1.30 1.74 

Spain -0.01 0.004 -0.003 -0.003 0.025      - 0.026 

Sweden  2.06 1.10 1.14 1.26 1.60 0.46 

Switzerland 1.23 0.80 0.78 0.91 1.12 0.11 

       

C. Emerging Markets       

Argentina 
0.10 0.08 0.39 1.39 5.11        - 5.01*** 

Brazil -0.07 1.57 2.15 2.37 2.55        - 2.62*** 

India 2.00 2.21 2.22 2.59 2.87        - 0.87 

Indonesia -0.58 0.32 0.51 2.22 5.26       - 5.64*** 

Israel 0.24 1.11 1.50 1.67 2.35   2.11 

Korea 0.38 1.48 2.00 1.96 3.43       - 3.05*** 

Malaysia 1.39 0.66 1.00 1.34 1.78        - 0.39 

Mexico 1.10 0.86 1.53 2.76 3.06        - 1.96 

Philippines 1.15 3.37 1.45 1.84 4.34        - 3.19*** 

Poland 1.65 1.78 1.31 1.46 1.51   0.38 

Russia 1.20 2.24 1.94 2.17 2.52          0.14 

South Africa 1.82 1.63 1.47 1.70 2.10         - 0.18 

Taiwan 0.55 0.54 0.96 1.30 1.89          - 1.34 

Thailand 1.38 0.36 1.21 2.06 2.46        - 1.08 

Turkey 1.93 2.23 1.84 2.10 1.40    0.53 
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Table 1.8 Countries Idiosyncratic Volatility in Reference to the 3-Factor Model 

Value-weighted quintile portfolios are formed every month by sorting stocks based on idiosyncratic volatility relative 

to the 3 factor model. Portfolios are formed every month, based on volatility computed using daily data over the 

previous month. Portfolio 1 (5) is the portfolio of stocks with the lowest (highest) volatilities. The column “Q1-Q5” 

reports the difference in monthly returns between portfolio 1 and portfolio 5. ** denotes significance at 5% level. *** 

denotes significance at 1% level. 

Country Q1 Q2 Q3 Q4 Q5 Q5 – Q1 

       

A. G7 Countries       

Canada 1.79 -0.29 1.98 0.05 -0.94       2.73*** 

France 0.45 -0.05 0.27 0.21 -0.10 0.55 

Germany 2.48 2.06 0.91 -0.24 0.07        2.41*** 

Italia 1.48 0.09 0.64 0.77 1.43          0.05 

Japan 1.46 0.63 0.76 0.61 0.27 1.19 

United Kingdom 1.38 0.03 0.50 0.71 0.69  0.69 

United States 1.52 1.29 1.18 1.26 1.42          0.10 

       

B. Developed Markets       

Australia 1.17 5.46 0.86 -2.70 -1.64      2.74** 

Austria -0.22 0.34 0.76 1.33 1.49        - 1.71 

Belgium 1.06 0.08 0.18 0.93 1.82        - 0.76 

Denmark 1.06 1.01 1.11 1.00 0.77   0.29 

Finland -0.30 2.28 1.06 1.28 1.38        - 1.52 

Greece 0.09 1.15 0.91 1.15 1.76        - 1.67 

Hong Kong -0.39 1.63 1.26 2.06 1.83        - 2.22 

Ireland 0.19 1.36 0.63 1.59 1.84        - 1.65 

Netherlands 0.81 0.49 1.03 1.21 1.80        - 0.99 

New Zealand 1.24 0.53 0.51 0.35 0.52  0.72 

Norway 0.08 2.70 1.82 1.80 1.75        - 0.67 

Portugal -1.16 -0.02 1.22 0.35 1.67 - 2.73 

Singapore 2.55 1.14 1.08 1.10 1.70   0.85 

Spain -0.010 0.008 0.011 0.010 0.008       - 0.018 

Sweden  1.46 1.01 1.22 1.46 2.35        - 0.89 

Switzerland 0.76 0.91 0.79 1.01 1.34        - 0.58 

       

C. Emerging Markets       

Argentina -0.58 1.11 1.15 2.40 4.27        - 4.85*** 

Brazil 0.04 1.57 2.08 2.72 2.45        - 2.41*** 

India 1.05 -0.20 1.55 1.383 1.80  - 0.75 

Indonesia 2.00 2.67 2.21 2.74 4.37        - 2.37*** 

Israel 0.84 0.72 1.64 2.31 2.60         - 1.76 

Korea -0.38 0.35 1.56 2.93 6.07        - 6.45*** 

Malaysia 1.45 0.65 1.61 2.02 2.82         - 1.37 

Mexico 0.53 1.27 1.27 2.29 2.64         - 2.11 

Philippines 1.10 4.27 2.16 3.74 4.43        - 3.33*** 

Poland 1.62 0.96 2.53 1.04 1.41           0.21 

Russia 1.51 1.70 0.79 0.99 2.47         - 0.96 

South Africa 1.80 1.19 0.89 1.33 1.55           0.25 

Taiwan 0.72 0.33 1.14 1.64 2.24         - 1.52 

Thailand -0.16 1.11 0.18 1.56 2.04  - 2.20 

Turkey 1.80 2.16 2.04 1.82 2.58         - 0.78 
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In summary, we observe mixed evidence on the relation between idiosyncratic risk and 

expected returns when idiosyncratic volatility is estimated using the 5 and 4 factor models. For 

equal-weighted portfolios, a strong and negative relationship is observed for 3 of the G7 countries: 

France, Germany and Japan, an idiosyncratic volatility trading strategy of going long on low 

idiosyncratic volatility stocks and short on high idiosyncratic stocks can generate economically 

and statistically significant trading profits. For value-weighted portfolios, this same trading 

strategy would be profitable for Canada and Germany only.  

While developed markets present insignificant mixed results, some emerging markets (5 out of 16 

countries) provide evidence of a strong positive relation between expected returns and past 

idiosyncratic. For these countries, an investment strategy of buying high idiosyncratic volatility 

stocks and shorting low idiosyncratic could result in significant trading profits. 

The majority of the countries analyzed in this paper (2, 3 or 4 of the G7 countries depending on 

the weighting, all developed countries and 11 of the 16 emerging markets) present no evidence of 

a relationship between diversifiable risk and expected returns. These findings are in contrast to the 

ones observed by Ang et al. (2009) in which all countries in their study show a negative 

correspondence between idiosyncratic volatility and expected returns.  
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1.5 Conclusion 

 

This study examines the role of idiosyncratic risk in an international context motivated by 

the study of Ang et al. (2006) that reveals the presence of an abnormal negative relationship 

between realized idiosyncratic volatility and subsequent 1-month stock returns. This negative 

relationship has been successively denoted to in the literature as the ‘idiosyncratic volatility 

puzzle’ with the possibility that this anomaly might be international following evidence reported 

by Ang et al. (2009) in the US and 22 other developed markets. We expand the Ang et al. (2006) 

framework to estimate the impact of idiosyncratic risk in international stock markets using two 

additional asset pricing models to estimate diversifiable risk i.e. the Carhart 4-factor model and 

the as well as the 5-factor model (4-factor model plus the Amihud liquidity factor).  

 

The results obtained suggest that idiosyncratic risk does not play a role on stock returns for 

the 16 developed markets analyzed.  While some evidence of a negative link between  idiosyncratic 

risk is shown, the relation is statistically significant for only a few of  the G-7 countries in the 

analysis. Indeed, only Germany shows a monotonic negative relationship between idiosyncratic 

volatility and stock market returns, consistent with Koch (2010). It may be the case that this is due 

to the fact that equity markets are still not well developed in Germany, which persists as one of 

the most bank-based financial systems relative to other countries in the G-7.  The relatively 

“thinner” equity market of German firms may in part explain the idiosyncratic volatility puzzle for 

Germany.  Providing a more thorough and rational explanation of this result remains a matter for 

future research. We do note, on the other hand, idiosyncratic volatility is positively related to future 

expected returns for 5 out of 15 emerging market countries. 
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These findings related to emerging countries are consistent with investor under-

diversification (e.g., Levy (1978); and Merton (1987)) wherein investors request a premium for 

taking idiosyncratic risk.  This under diversification may be due to informational efficiencies, 

although liquidity risk per se does not seem to be a driving factor in explaining the divergent results 

between developed and emerging markets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 

 

References 

 

Amihud, Y. (2002). Illiquidity and Stock Returns: Cross-Section and Time-Series Effects. Journal 

of Financial Markets 5, 31-56. 

 

Amihud, Y., Mendelson, H., 1986. Asset pricing and the bid-ask spread. Journal of Financial 

Economics 17, 223–249. 

 

Amihud, Y., Mendelson, H., Lauterbach, B., 1997. Market microstructure and securities values: 

Evidence from the Tel Aviv stock exchange. Journal of Financial Economics 45, 365–390. 

 

Ang, A., Hodrick, R. J., Xing, Y., & Zhang, X. (2006). The cross-section of volatility and expected 

returns. Journal of Finance, 61(1), 259-299. 

 

Ang, A., Hodrick, R. J., Xing, Y., & Zhang, X. (2009). High Idiosyncratic volatility and low 

returns: International and further U.S. evidence. Journal of Financial Economics, 91, 1-23. 

 

Angelidis, T., & Tessaromatis, N. (2005). Equity Returns and Idiosyncratic Volatility: UK 

Evidence. Unpublished SSRN Working Paper. University of Piraeus. 

 

Bainbridge, C., Galagedera, D.U.A., (2009). Relative performance of equity markets: An 

assessment in the conventional and downside frameworks. International Journal of Business 14, 

22–45  

 

Bali, T. G., & Cakici, N. (2006). Aggregate Idiosyncratic Risk and Market Returns. Journal of 

Investment Management, 4(4). 

 

Bali, T. G., & Cakici, N. (2008). Idiosyncratic Volatility and the Cross-Section of Expected 

Returns. Journal of Financial and Quantitative Analysis, 43(1), 29. 

 

Bali, T. G., Cakici, N., Yan, X. S., & Zhang, Z. (2005). Does idiosyncratic risk really matter? 

Journal of Finance, 60(2), 905-929. 

 

Bartram, S., G. Brown and R. Stulz, (2009). Why Are U.S. Stocks More Volatile? Journal of 

Finance, 67 (4), 1329-1370. 

 

Bekaert, G., 1995. Market integration and investment barriers in emerging equity markets. World 

Bank Economic Review 9, 75– 107. 

 



35 

 

Bekaert, G., Erb, C.B., Harvey, C.R., Viskanta, T.E., (1997). What matters for emerging market 

investments? Emerging Markets Quarterly 1 (2), 17–46. 

 

Bekaert, G., Harvey, C.R., Lundblad, C., (2003). Equity market liberalization in emerging markets. 

Journal of Financial Research 26, 275-299. 

 

Bekaert, G., C. Harvey, and C. Lundblad, (2007). Liquidity and expected returns: Lessons from 

emerging markets. Review of Financial Studies, 6, 1783–1831. 

 

Bekaert, G., Hodrick, R. J., & Zhang, X. (2010). Aggregate Idiosyncratic Volatility. Unpublished 

Working Paper. Columbia University. 

 

Ben-David, I., F. Franzoni, and R. Moussawi (2012). Hedge Fund Stock Trading in the Financial 

Crisis of 2007–2008. Review of Financial Studies 25:1–54. 

 

Bhattacharya, U., Daouk, H., Jorgenson, B., Kehr, C.H., (2000). When an event is not an event: 

The curious case of an emerging market. Journal of Financial Economics 55, 69– 101. 

 

Brennan, M.J., Subrahmanyam, A., 1996. Market microstructure and asset pricing:on the 

compensationfor illiquidity in stock returns. Journal of Financial Economics 41, 441–464. 

 

Brockman, P., Schutte, M. G., & Yu, W. (2009). Is idiosyncratic volatility prices? The 

international evidence. Unpublished Working Paper. Michigan Tech University. 

 

Brockman, P., & Yan, X. S. (2008). The time-series behaviour and pricing of idiosyncratic 

volatility: Evidence from 1926 to 1962. Unpublished Working Paper. University of Missouri - 

Columbia. 

 

Brooks, C., Xiafei Li, and Jo lle Miffre. (2013). Idiosyncratic Risk and the Pricing of Poorly-

Diversified Portfolios. International Review of Financial Analysis 30,78–85. 

 

Brown, G. and N. Kapadia (2007). Firm-specific Risk and Equity Market Development.  Journal 

of Financial Economics 84, 358–388.  

 

Campbell, J. Y., Lettau, M., Malkiel, B. G., & Xu, Y. (2001). Have individual stocks become more 

volatile? An empirical exploration of idiosyncratic risk. Journal of Finance, 56(1-43). 

 

Carhart, M. (1997). On the persistence of persistence in mutual fund performance, Journal of 

Finance 52, 57-82. 

 



36 

 

Chang, E.C., Dong, S. (2006). Idiosyncratic volatility, fundamentals, and institutional herding: 

Evidence from the Japanese stock market. Pacific-Basin Finance Journal 14, 135-154. 

 

Cheng, S., and C. Shiu (2007). Investor protection and capital structure: international evidence, 

Journal of Multinational Financial Management 17, 30–44. 

 

Chordia, T., Roll, R., Subrahmanyam, A., 2001. Market liquidity and trading activity. Journal of 

Finance 56, 501–530. 

 

Denis, D.K., and McConnell, J.J., (2003). International corporate governance. Journal of Financial 

and Quantitative Analysis 38(1), 1-36. 

 

Dempsey, M., Drew, M.E., & Veeraraghavan, M. (2001). Idiosyncratic risk and Australian equity 

returns. Working paper. Griffin University, Queensland. 

 

Douglas, G., (1969). Risk in equity markets: An empirical appraisal of market efficiency, Yale 

Economic Essays 9, 3-45. 

 

Drew, M. E. and Veeraraghavan, M. (2002). Idiosyncratic volatility and Security Returns: 

Evidence from the Asian Region. International Quarterly Journal of finance, 2(1-4) pp. 1-14. 

 

Drew, M. E., Mallin, M., Naughton, T., and Veeraraghavan, M. (2006). Equity premium: Does it 

exist? Evidence from Germany and United Kingdom. Studies in Economics and Finance, V23(2), 

pp. 80 – 93. 

 

Fama, E. F., & French, K. R. (1988). Dividend yields and expected stock returns. Journal of 

Financial Economics 22(1), 3-25. 

 

Fama, E. F., & French, K. R. (1992). The cross-section of expected stock returns. The Journal of 

Finance, 47(2), 427-465. 

 

Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. 

Journal of Financial Economics, 33, 3-56. 

 

Fama, E. F., & French, K. R. (1995). Size and book-to-market factors in earning and returns. The 

Journal of Finance, 50(1), 131-155. 

 

French, K., Schwert, G.W., & Stambaugh, R. (1987). Expected stock returns and volatility. 

Journal of Financial Economics, 19, 3-30. 

 



37 

 

Fama, E.F., MacBeth, J.D., (1973). Risk, return, and equilibrium: empirical tests. Journal of 

Political Economy 71, 607–636. 

 

Fu, F. (2009). Risk and the cross-section of expected stock returns. Journal of Financial 

Economics, 91, 24-37. 

 

Gao, X., Yu, J., Yuan, Y. (2010). Investor sentiment and idiosyncratic risk puzzle. Working Paper. 

University of Hong Kong, Hong Kong. 

 

Girard, E., Sinha, A., 2006. Does total risk matter? The case of emerging markets. Multinational 

Finance Journal 10, 117-151. 

 

Goyal, A., & Santa-Clara, P. (2003). Idiosyncratic risk matters! Journal of Finance, 58, 975- 1007. 

 

Guo, H., & Savickas, R. (2006). Idiosyncratic volatility, stock market volatility, and expected stock 

returns. Journal of Business and Economic Statistics, 24(1), 43-56. 

 

Guo, H., & Savickas, R. (2007). The Relation between Time-Series and Cross-Sectional Effects 

of Idiosyncratic Variance on Stock Returns in G7 Countries Unpublished FRB of St. Louis 

Working Paper No. 2006-036A University of Cincinnati. 

 

Haugen, R., Baker, N.L., 1996. Commonality in the determinants of expected stock returns. 

Journal of Financial Economics. 41, 401–439. 

 

Jones, Charles M., and Matthew Rhodes-Kropf (2003). The price of diversifiable risk in venture 

capital and private equity, Working paper, Columbia University. 

 

Koch, Stefan (2010). Essays in Empirical Asset Pricing: Liquidity, Idiosyncratic risk, and the 

Conditional Risk-Return Relation, PhD Thesis, University of Bonn. 

 

La Porta, R., Lopez-de-Silanes, F., Shleifer, A., Vishny, R.W. (1998) . Law and finance. Journal 

of Political Economy 106, 1113– 1155. 

 

Lehmann, Bruce N., (1990). Fads, martingales, and market efficiency, Quarterly Journal of 

Economics 60, 1-28. 

 

Lemmon, M. L. and K. V. Lins (2003). Ownership Structure, Corporate Governance, and  Firm 

Value: Evidence from the East Asian Financial Crisis.  Journal of Finance 58:4, 1445-1468. 

 



38 

 

Lesmond, D. A. 2005. The Costs of Equity Trading in EmergingMarkets. Journal of Financial 

Economics 77, 411–52.  

 

Levy, H. (1978). Equilibrium in an imperfect market: A constraint on the number of securities in 

the portfolio. American Economic Review  68, 642-658. 

 

Lins, K.V. (2003). Equity ownership and firm value in emerging markets. Journal of Financial 

and Quantitative Analysis 38, 159–184. . 

 

Lintner, J. (1965). The Valuation of risk asset and the selection of risk investments in stock 

portfolios and capital budgets. The Review of Economics and Statistics, 47(1), 13-37. 

 

Malkiel, B. G., & Xu, Y. (1995). The structure of stock market volatility. Unpublished Working 

Paper Princeton University FRC Memo No. 154. 

 

Malkiel, B. G., & Xu, Y. (1997). Risk and Return Revisited. The Journal of Portfolio Management, 

Spring, 9-14. 

 

Malkiel, B. G., & Xu, Y. (2006). Idiosyncratic risk and security returns. Princeton University & 

The University of Texas at Dallas. 

 

Merton, R. C. (1987). A simple model of capital market equilibrium with incomplete information. 

Journal of Finance, 42, 483-510. 

 

Markowitz, H.M. (1952). Portfolio selection. Journal of Finance 7, 77–91. 

 

Nartea, G.V., Ward, B.D., & Yao, L.J. (2011). Idiosyncratic volatility and cross-sectional stock 

returns in Southeast Asian stock markets. Accounting and Finance, V51(4), 1031-1054. 

 

Pukthuanthong-Le, K., & Visaltanachoti, N. (2009). Idiosyncratic volatility and stock returns: a 

cross country analysis. Applied Financial Economics, 19, 1269-1281. 

 

Sharpe, W.F. Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of Risk. 

The Journal of Finance, 19 (1964), pp. 425-442. 

 

Shleifer, A., Vishny, R.W. (1997). A survey of corporate governance. Journal of Finance 52, 737– 

783. 

 



39 

 

Switzer, L., Tahaoglu, C. (2013).  The Benefits of International Diversification: Market 

Development, Corporate Governance, and Market Cap Effects. Working Paper, John Molson 

School of Business. 

 

Tan, D, & Henker, J. (2010). Idiosyncratic volatility and retail investor preferences in the 

Australian market. Paper accepted on the 23rd Australasian Finance and Banking Conference 

2010, 15-17th December, 2010, Sydney, Australia. 

 

Umutlu, M., Akdeniz, L., & Altay-Salih, A. (2010). The degree of financial liberalization and 

aggregated stock-return volatility in emerging markets. Journal of Banking and Finance 34, 

509–52. 

 

Wei, S. X., & Zhang, C. (2005). Idiosyncratic risk does not matter: A re-examination of the 

relationship between average returns and average volatilities. Journal of Banking and Finance, 29, 

603-621. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



40 

 

Appendix 1. Equal-Weighted Portfolio Returns Sorted According to Idiosyncratic Volatilities  

A. G7 Countries
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B. Developed Countries 
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C. Emerging Countries  
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CHAPTER 2 

 

The Cyclical Behaviour of the Small Cap Premium:   

Empirical Evidence for the United States and Canada 
 

2.1 Introduction 

 

The small-firm effect refers to the empirical observation that risk-adjusted returns of small-

capitalisation stocks tend to outperform on average those of larger capitalisation stocks over the 

long run and that this outperformance cannot be attributed solely to differences in market risk. 

Indeed, in the United States, a dollar invested in 1926 in the smallest ten percent of US stocks by 

market capitalisation (small-cap stocks) generated a return, at the end of 2006, that is almost 14 

times larger than the return on a dollar invested in the largest ten percent (large-cap) of stocks. 

International small-cap stocks also tend to outperform global large-cap stocks over long time 

horizons. Early research often referred to the small-firm effect as a market anomaly because the 

excess returns on small-cap stocks could not be explained by the single-factor capital asset pricing 

model (CAPM), in which the asset’s covariance with the market portfolio is the only relevant 

measure of risk.  

The small-firm effect first came to prominence in the US, where Banz (1981) showed that the 

smallest companies listed on the New York Stock Exchange (NYSE) earned higher average returns 

than would be predicted by the Sharpe (1964) – Lintner (1965) capital asset-pricing model 

(CAPM). Using stock return data from 1936 to 1975 Banz (1981) finds statistically significant 

abnormal returns of five percent per annum for the smallest 20 percent of stocks by market 

capitalisation. The result is robust to the choice of market portfolio proxy, including value- and 



48 

 

equally-weighted equity indices. Moreover, stocks of the smallest firms in the sample are found to 

outperform the largest ones by 19.8 percent per annum over the long term. Banz concludes that 

firm size is likely an important pricing factor for equities, but does not offer any theoretical 

explanations whether the factor is size per se or some other factor that is correlated with size.    

A number of academic papers in the 1980s confirmed Banz’s (1981) result using alternate data 

samples. Based on data for 566 NYSE and AMEX stocks between 1963 and 1977, Reinganum 

(1981) reports that for U.S. stock market data prior to 1980 small-cap stocks had significantly 

higher returns versus returns for large-cap stocks. Indeed, the author finds that stocks in the lowest 

decile by market capitalisation outperform the largest decile of stocks by 23.4 percent per annum. 

Subsequent academic papers that seek to shed additional light on this anomaly include Barry and 

Brown (1984), Brown et al. (1983), Keim (1983, 1989), Schultz (1983) and Stoll and Whaley 

(1983).   

The small firm phenomenon is not unique to the US equity market, but has been shown for global 

equity markets as well. For instance, Annaert et al. (2004) provide evidence of a significant small 

firm premium of 1.5 percent per month in a sample of 2,866 European stocks for the period 1974-

2000.  Analyzing data for 1,420 quoted shares on the London Stock Exchange, Leledakis et al. 

(2004) discover a statistically significant small firm effect in the UK market. Rouwenhorst (1999) 

investigate emerging-market stocks between 1975 and 1997 and uncover a large and economically 

significant small-cap premium.  
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2.1.1 The Variation through Time of the Small Cap Premium 

 

However, another group of recent academic papers assert that the small-firm effect has changed 

dramatically over the past 30 years and that it even may have disappeared since the original 

publication of the studies that discovered it. Indeed, these studies’ empirical results present 

evidence that the anomaly did not persist, that the outperformance of smaller companies vanished, 

and that the out-of-sample small-firm premium turned negative. In the United States, the size effect 

in the nineties is manifested in a negative average size premium. These results echo many empirical 

irregularities in stock market returns where once an apparent anomaly is revealed only too often it 

vanishes or goes into reverse.  

One of the first recognitions of this phenomenon is presented by Reinganum (1992) who notices 

that while the S&P 500 surge by 77.46% between November 1985 and October 1990, the DFA 

Small Company Fund increased only 1.15%. Corroborating Reinganum’s paper (1992), Ibbotson 

and Sinquefeld (1995) show that, in general, small firm returns were significantly higher between 

1971 and 1980 than between 1981 and 1990.  Dichev (1998) demonstrates that the small firm 

premium was essentially non-existent in US equity markets during the period 1981 to 1998. Small-

cap portfolios monthly returns underperform large-cap stock portfolios for both samples of stocks 

quoted on the NYSE/AMEX and stocks quoted on NASDAQ.  

Similarly, Chan, Karceski and Lakonishok (2000) observe no significant small firm effect in US 

equity returns for the period 1984-1998. In an extensive study, Horowitz et al. (2000) observe no 

consistent link between size and realised returns over the period 1980-1996 using three alternative 

methodologies. Analyzing a comprehensive sample of NYSE, AMEX and NASDAQ stock 
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exchanges firms from 1980 to 1996, the authors report that the lowest decile of stocks by market 

capitalisation earned 1.18 percent less on average than the largest decile of stocks. 

Dimson and Marsh (1999) also contend that the small firm effect in the UK may have disappeared 

and that it even may have gone into a reverse trend after the early 1980s: the authors show that 

large-cap firms earned larger returns than small cap firms. The authors compare the performance 

of the smallest decile of UK firms by market capitalisation (HGSC index) with that of an all-share 

equity portfolio between 1955 and 1997. The average return for the HGSC index was 24.5 percent 

over the period 1955-1986, compared to 18.3 percent for the all-share portfolio, implying a 

statistically significant average small firm premium of 6.2 percent per annum. However during the 

subsequent decade, the HGSC generated an average return of less than 10.6 percent versus 17.1 

percent for the all-share portfolio implying a statistically significant small firm discount of 6.5%.  

Hence, studies written in the late 1990s and early 2000s present evidence that small-cap stocks 

fared poorly relative to large-cap stocks during the 1980s and the 1990s, instigating a number of 

researchers and market observers to declare the small firm premium dead. 

Yet, another group of researchers, such as van Dijk (2011), contend that declaring the small firm 

premium dead may be a premature conclusion since the small firm effect had gone through long 

periods of underperformance even before 1980. While admitting that the small firm effect seems 

to have lessened through the eighties and nineties, van Dijk (2011) reports that the average small-

cap premium was 11.3 percent per year over the period 2001-2010, revealing a possible reversal 

in the small firm effect trend from the previous ten years.  

Brown et al. (1983) show that the excess return related to size is highly unstable over time. 

Analyzing NYSE and AMEX listed stocks, the academics present evidence that excess risk-
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adjusted for small-cap firms are higher than large-cap firms over the period 1967-79, but that the 

magnitude and sign of the relationship are not stable: an annualised small-firm excess return of -

7.0 percent and 37.3 percent are measured for the periods 1967-1975 and 1976-1979 respectively. 

The results of the researchers’ econometric tests reject the hypothesis that the small firm premium 

is constant over time, indicating that estimates of the small firm effect are greatly sensitive to the 

time period considered.  

In the United States, while small-cap stocks outperformed large-cap stocks by 3.0 percent per year 

between 1927 and 2013, the degree of outperformance fluctuated considerably from period to 

period. The small firm premium was large prior to 1974, particularly large between 1975 and 1980, 

but diminished considerably after 1980.  

All these empirical observations led to the assumption that the small firm effect may perform 

particularly better during periods of economic expansion and inversely underperform during 

periods of economic downturn. During the period 1926-2011, the small firm effect averaged -0.4 

percent during economic recessions and 3.8 percent during economic growths. The standard 

explanation for this premium is that small-cap stocks are inherently riskier. The idea is that small-

cap stocks are more volatile and more sensitive to overall market movements; they are also more 

exposed to systematic default risk and business cycle risk.   

 

 

2.1.2 Research Objective and Research Contribution 

 

This paper investigates the hypothesis that the small firm premium is related to macroeconomic 

and financial variables and that relationship is driven by the economic cycle in the United States 
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and Canada. More specifically, this study employs recent advances in nonlinear time series models 

to explore the relationship between the small firm premium, and financial and macroeconomic 

variables in the Canadian and U.S. economies using novel and popular approaches to modeling 

macroeconomic and financial data i.e. the Hamilton’s (1989) regime switching framework and the 

smooth-transition regression model (STAR).  

The main research objective of this paper is to furthermore investigate the small cap premium by 

providing an in-depth analysis of the effect of financial and macroeconomic risk exposures on the 

small cap effect.  

Hence, the current study contributes to the literature by providing further insights on the causes of 

the behaviour of the small cap premium; the current empirical literature reveals that only few 

studies, for instance, Switzer (2010, 2013) and Chan et al. (1985) examine the effect of economic 

and financial risk factors, and economic cycles on the level of the small cap premium. 

 

The organization of the paper is as follows. Section 2 reviews the empirical evidence and 

theoretical explanations concerning the small-firm effect. Section 3 presents the literature review 

related to the relationship between the small firm effect and, macroeconomic and financial 

variables and the influence of the economic cycle on this relationship. Section 4 explains this 

study’s objective and describes the data. Section 5 reviews the Hamilton’s Markov switching 

regime and the smooth-transition regression models. Section 6 presents the empirical results and 

section 7 concludes.  
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2.2 Explanations for the Small Firm Effect 

In this section, the main theoretical explanations concerning the small-firm effect which have been 

abundantly featured in the academic literature for the past decades are briefly explained. 

The various studies that have attempted to explain the small cap premium and that have advocated 

factors  that may account for the observed variation in the small-firm effect over time and its strong 

seasonality can be classified into three main groups: (1) studies that search for an explanation in 

the computation and statistical estimation errors; (2) studies that convey an economic or risk-based 

explanation for the small-firm effect; and (3) studies that suggest other several other explanations 

for the small cap effect. 

 

2.2.1 The Small Firm Effect as a Statistical Outcome  

 

Several researchers assert that the small-firm effect may be nothing more than a statistical artefact 

caused by measurement errors, data mining and various methodological biases. A potentially 

severe data snooping problem arises when many researchers employ the identical dataset to reveal 

pricing anomalies (Lo and MacKinlay (1990); Black (1993)). Academics in search of interesting 

research explore numerous diverse hypotheses but only expose and reveal the most appealing and 

surprising results. The statistical implication of these outcomes is debatable because it is subject 

to the number of tests conducted to derive the particular result. Every once in a while an interesting 

pattern is destined to arise simply by chance. The uncovered anomaly, however, will disappear out 

of sample. Black (1993) contends that the small cap premium suits this description because it 

largely weakened after its detection in 1981.  
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Several academics have tried to explain the small-firm effect by pointing out that: (1) measures of 

the riskiness of small-cap stocks are biased downward, and (2) measures of the average returns of 

small-cap stocks are biased upward. Roll (1981) claims that the riskiness of small-cap firms is 

devaluated due to serial correlation in small-cap returns. Consequently, risk measures computed 

from short-interval return data such as daily returns considerably understate the true systematic 

risk (beta) of small-stock portfolios. In Roll’s viewpoint, the detected significant small-firm effect 

reflects the true greater systematic riskiness of small stocks rather than a significant economic or 

empirical anomaly. Reinganum (1982) acknowledges Roll’s argument that security betas for 

small-cap firms may be to some extent biased downward, but demonstrates that the size of the bias 

is too trivial to explain the small-firm effect.  

 

In summary, numerous studies assert that the small-firm effect may be nothing more than a 

statistical artefact. However, because the small-firm premium has been documented in several 

international stock markets the assumption for the statistical artefact remains questionable. While 

the scale of the small-firm effect may be influenced by a number of statistical issues, none of the 

studies has been able to completely explain the significant evidence for the small-firm premium 

over the long-term. 

 

2.2.2 Macroeconomic Factors  

 

Firm market capitalization may be a proxy for some undisclosed macroeconomic or other specific 

risk factor that influences the dynamic of expected asset returns. Since small-cap stocks carry 

relatively greater exposure to this size-related systematic risk factor than large capitalization firm 
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stocks, they generate superior returns in equilibrium. If so, the observed small-firm premium 

reflects investors’ compensation for the exposure to risk rather than an anomalous pattern.  

 

Fama and French (1992, 1993, 1996) are advocates of this risk-based approach. To demonstrate 

their argument the authors first build an equally weighted long-short portfolio mimicking the 

small-cap premium (called “small minus big”, or SMB) that is constructed by going long the 

smallest 30 percent of firm stocks and going short the largest 30 percent of firm stocks. In the same 

vein the authors construct an equally weighted long-short portfolio mimicking the value (book-to-

market) premium (called “high minus low”, or HML) that is constructed by going long the 30 

percent of firm stocks with the highest book-to-market ratio and going short the 30 percent of firm 

stocks with the lowest book-to-market ratio. 

They then show that a three-factor model, which contains factors reflecting a company’s size 

(SMB) and equity valuation (HML) in addition to the CAPM market factor, has greater 

explanatory power for equity returns than the CAPM alone. Using US stock return data from 1963 

to 1991, Fama and French (1992) present robust empirical evidence that the SMB and HML factors 

represent the most significant common return factors besides market risk, for describing the 

dynamic behavior of realised stock returns. Their investigation aims towards an economic risk 

explanation for the small firm effect and the related value anomaly. 

 

Numerous researchers assert that the SMB portfolio may be a proxy for several macroeconomic 

risk factors linked to consumption and investment. Liew and Vassalou (2000) investigate whether 

the dynamics of the Fama-French factors, as well as Carhart’s momentum factor, can be attributed 

to the future GDP growth. Analyzing ten countries between 1978 and 1996, the authors show that 
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the SMB carries significant information about future GDP growth non-related to the information 

included in the market factor.  

Zhang et al. (2009) also discover a positive link between the SMB factor and future GDP growth 

and a negative relationship between SMB and unexpected inflation. Small-cap stocks are also 

found to generate greater returns than large-cap stocks when the short term rates are low and the 

term spread is high.  

Several additional state variables have been related to the SMB factor. Petkova (2006) asserts that 

the SMB portfolios may be linked to shocks in state variables that forecast excess market returns. 

In her paper the author present a model that relates average stock returns to variations in aggregate 

dividend yield, default spread and short-term treasury rates; this approach allows explaining the 

cross-sectional variation in equity returns better than the Fama-French model. When loadings on 

the shocks in the predictive variables are incorporated in the model, loadings on SMB lose their 

explanatory power, implying a strong correlation between the SMB portfolio and the default 

spread.  

 

2.2.3 Other Explanations 

 

2.2.3.1 The Small Firm Effect as a CAPM Anomaly  

 

The outperformance of small-capitalization stocks cannot be explained uniquely by market risk. 

The CAPM’s failure to justify the small-firm effect has prompted an enduring debate regarding 

the nature of this stock market pattern.  

Similar to other stock return anomalies, the small-firm premium was uncovered from assessing 

empirically the capital asset pricing model (CAPM) of Sharpe (1964), Lintner (1965) and Black 
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(1972). The CAPM asserts that the market portfolio of invested wealth is mean-variance efficient, 

involving a linear relationship between the expected return on a stock and his covariance with the 

market portfolio. In equilibrium and according to this model, the asset’s beta is the only factor that 

matters for pricing assets because it is the only important measure of risk and an appropriate 

variable to explain the cross-sectional variation in expected returns. From the CAPM equation, the 

abnormal return on a portfolio of small-cap firm stocks is measured by Jensen’s (1968) alpha: 

 

    αi : Rit – Rit – βi (RMit – RFit)                                                  (2.1) 

 

where: Rit  is the return on a portfolio of small-cap stocks Rit = the risk-free rate, typically the yield 

on Treasury bills and RMit is the return on the market portfolio, typically proxied by a major equity 

index. 

 

2.2.3.2 Conditional Models  

 

Numerous researchers have tried to explain the small firm effect by including time variation in the 

covariance of asset returns with the market return (conditional CAPM) or with consumption 

growth (conditional consumption CAPM). In these models, the asset’s beta is not constant as in 

the traditional CAPM but fluctuates to reflect variations in a pre-defined conditioning variable. 

The economic reasoning behind a conditional model for the small firm effect is that small and 

large-cap stocks may have different sensitivities to systematic risk in good and bad times. Lettau 

and Ludvigson (2001) use the log–consumption-to-wealth ratio as a conditioning variable to 

demonstrate that conditional specifications perform superiorly than unconditional models and 

comparably to the Fama-French three-factor model in describing the cross-section of average 
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returns. Once the conditioning information conveyed by the log-consumption-to-wealth ratio is 

incorporated in the specification, no residual small firm effect persists in the data.  

Likewise, Santos and Varonesi (2006) demonstrate that using the fraction of total income produced 

by wages as a conditioning variable in the CAPM describes the cross-section of 25 Fama-French 

portfolios formed on value and size. Small firm stocks display evidence to be riskier in bad times, 

exhibiting higher betas in market downturns.  

Campbell and Vuolteenaho (2004) present strong empirical evidence that small stocks’ 

outperformance is caused by higher cash flow risk. The authors rationalise the small firm effect 

via an economically induced two-beta model in which they split the CAPM beta of a stock into 

two elements: one that reflects news about the company’s future cash flows, and one that reflects 

news about the discount rate. Intertemporal asset pricing theory suggests that risk-averse investors 

avoid cash flow risk (the “bad beta”) more than discount rate risk (the “good beta”). Consequently, 

the price of cash flow risk is greater than the price of the “good” discount rate risk. In equilibrium, 

the ratio of the two prices must equal the risk aversion coefficient that makes an investor satisfied 

to hold the aggregate market. They subsequently show empirically that small stocks have 

significantly greater cash flow betas than large stocks, which can explain their higher average 

returns in the cross-section. The two-beta model hence implies that investors with higher tolerance 

for risk and a long term investment horizon will massively invest in these stocks compare to the 

average investor. 

 

2.2.3.3 Liquidity  

 

Another group of studies has tried to relate the small firm effect to liquidity risk. Amihud and 

Mendelson (1986) investigate whether stock returns rise with bid-ask spreads. Analyzing data 
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between the years 1961-1980, the authors find that portfolio-risk-adjusted returns augment with 

the bid-ask spread, a relation that persists when firm size is incorporated as an explanatory variable 

in the regression equation. This result shows that liquidity effects may account for a part of the 

small firm effect. Likewise, Stoll and Whaley (1983) present empirical evidence that at least part 

of the small firm effect may be attributed to transaction costs. However, Chen and Kan (1995), 

who re-examine Amihud and Mendelson’s results under diverse econometric approaches, discover 

no strong relationship between stock returns and transaction fees as measured by bid-ask spreads. 

The researchers question whether the cross-sectional variation in the bid-ask spread really 

represent a significant element of the small firm effect.  

 

2.2.3.4 Neglected Firm Risk  

 

Several studies suggest that additional risk related to investing in small firm stocks may exist 

because information on these stocks is relatively rare. Ignored firms may be riskier because (1) 

fewer institutions follow such companies, which increases the probability that insiders might 

appropriate shareholder value, and (2) there is higher uncertainty concerning firm value due to 

scarce information. Arbel and Strebel (1982) show that stocks of firms that are least followed by 

stock analysts earn a premium on a CAPM risk–adjusted basis over stocks that receive more 

attention.  

 

All in all, risk-based theories for the small firm premium have generated mixed empirical results. 

Moreover, all of the risk-based theories are unable to describe well the time variation the small 

firm effect and the small firm effect’s seasonality.  
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2.2.3.5 Behavioural Finance  

 

In contrast to Fama and French (1993), several academics claim that the small firm effect may not 

be directly related to systematic risk. Rather, the small firm effect may be induced by factors 

external to the classic asset pricing model such as investor behaviour, institutional constraints and 

market frictions. Advocates of behavioural finance suggest that investors have a propensity to 

deviate from the assumed rational behaviour underlying the efficient market hypothesis, thereby 

triggering pricing anomalies.  

 

Lemmon & Portniaguina (2006) provide evidence of a negative link between investor sentiment 

and the dynamic behavior of returns on small firm stocks since 1977. They argue that investors 

are inclined to overvalue small-cap stocks versus large-cap stocks when they are particularly 

bullish and undervalue them when they are bearish. Sentiment has a particularly great impact on 

small-cap stock valuations because small firms are usually held by individual traders who are more 

likely to be influenced by sentiment. However, they uncover no link between investor sentiment 

and small-cap returns before 1977, and provide no explanation on the decrease of the small firm 

effect after 1981.  
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2.3 Literature Review on the Cyclical Behaviour of the Small Cap Effect 

As mentioned previously, the academic literature on the small firm effect has offered several 

reasons for the negative relationship between market capitalization and returns.  One of the most 

cited sources of the small firm premium is that size might be related to some common risk factor 

that explains the negative relationship between size and stock return: firm capitalization could be 

a proxy for some undiversifiable source of risk and various macroeconomic variables that governs 

the cross-section of expected returns. In good economic environments, small firms usually grow 

faster than large, mature firms, but in the worst economic conditions small firms are inclined to 

perform poorly or even go into bankruptcy.  

Periods of economic downturns typically foster investors to search for relative safety. Small firms 

tend to be distressed firms, even in the best of times. Over the trough of the business cycle, small-

cap stocks embody the most vulnerable firms. Expecting small-cap stocks to carry the burden of a 

recession, investors are prone to depart from these types of stocks in search of safer investments.  

In a series of seminal papers, Fama and French (1992, 1993, 1996) suggest the conjecture that the 

small-cap effect do not represent an anomaly, but instead reflects the greater systematic risk of 

small firm stocks: these firms tend to carry higher distress risk than larger firms. Because of this 

additional source of risk, a factor based on firm size, along with factors based on the firm’s book-

to-market and the market portfolio, could better describe the cross-sectional variation in stock 

returns. Empirically, Fama and French studies show that three determined variables, i.e., market, 

size, and value, perform well in describing the largest share of the cross-sectional average return 

of the NYSE, AMEX, and NASDAQ equity exchanges between 1963-1990. Subsequent studies 

investigating other equity markets and countries establish a similar conclusion. While Fama and 
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French (1993) mention that size and book-to-market are related to economic fundamentals or may 

act as proxies for firm characteristics such as profitability or relative financial distress risk, they 

do not develop a comprehensive theory for what the underlying systematic risk factors in their 

model represent.  

Studying returns over the period 1976–1995, Kim and Burnie (2002) assert that differentially 

higher returns for small cap firms relative to large firms are observed during economic expansion 

phases and investigate whether that time-varying nature of the firm size effect may be attributable 

to the state of the business cycle per se or due to uncertainty factors including default risk, interest 

rate risk, and inflation risk that may be distinct from economic cycle effects for small cap vs. large 

cap firms.  The authors find evidence that the differential returns for small firms vs. large firms 

are due to the business cycle, as captured by dummy variables in their regression model. 

Reinganum (1982) investigates the differential return between small and large stocks between 

1926 and 1989 to assess the economic cyclical dynamic and observes that the small capitalization 

stocks outperformed the large firm stocks, but this return behaviour was volatile and tended to 

reverse itself.   

In a similar vein, Chan and Chen (1991) investigate the assumption that the small firm effect is 

influenced by the economic cycle as they observe that in periods of economic expansion small 

firms generate large abnormal profits; however, in periods of economic downturn no significant 

small firm stock returns performance is manifest. The authors assert that this assumption is based 

on the fact that most small firms are characterized by relatively low production efficiency, lower 

return on assets, high financial leverage and high sensitivity of cash flows to adverse economic 

developments consequently making them more vulnerable to adverse changes in business 
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conditions and economic downturns. Using US stock returns and accounting data from 1956 to 

1985, they create two size-matched return indices intended to mimic the return behaviour of small 

firms and find that these indices can describe the dynamic in equity returns of small and large 

capitalization firms. This evidence support the hypothesis that differences in relative distress risk 

between small and large-cap firms may account for the small firm effect. 

Chan, Chen, and Hsieh (1985) report that the firm size effect vanishes when several economic 

factors are used, such as the change in expected inflation, unanticipated inflation, default risk 

premium, and a term structure variable, to alter the traditional capital asset pricing model (CAPM). 

Chan, Chen, and Hsieh (1985) conclude that the variations in the default risk premium are 

positively related to changing economic conditions.  

Moscarini and Postel-Vinay (2009) assert that the small firm effect is linked to job creation: large 

companies lay off proportionally more employees during and following recessions, and hire 

proportionally more employees late in expansions, than do small firms. In their subsequent paper, 

Moscarini and Postel-Vinay (2010) show that this dissimilar employment pattern is able to explain 

in part the larger performance of U.S. small firms during periods of economic growth.  

Vassalou and Xing (2004) analyze US stock return data from 1971 to 1999 and find that the small 

firm effect is statistically significant only for the quintile of stocks with the greatest default risk. 

The authors’ results point to the conclusion that the size effects can be viewed as default effect and 

that market capitalization may reflect default-related information.  

Switzer (2010) investigates the return dynamic of small-caps and large caps during periods of 

economic downturns and expansions and reviews the relationship between the small firm effect 

and the business cycle in Canada and the United States. The author finds that small-cap firms 
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outperform large caps over the year following an economic trough but underperform in the year 

preceding an economic peak and also present evidence that the US small cap premium is associated 

with default risk. 
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2.4 Data Description  

This paper investigates the impact of several risk factors that have been assumed to be significant 

exposures influencing the returns to firms (Chen, Roll, & Ross (1986), Ferson & Harvey (1991)) 

and that may be independent from the state of the business cycle per se in affecting the return 

spread between large-cap and small-cap companies. Switzer (2010) considers three such risk 

exposures: default risk (Default), term structure risk (Term), and inflation risk (Inflation). He finds 

that the small-cap premium is significantly influenced by the default risk in the economy, 

corroborating Vasilou and Xing (2004) but is unable to detect the same impact for the term 

structure and inflation factors. 

Default risk is computed by the long term corporate to government yield spread (Default). A 

positive default risk premium is coherent with the desire of investors to hedge against 

unanticipated increases in the aggregate risk premium prompted by economic slowdowns (Ferson 

& Harvey, 1991). Fama and French (1995) suggest that the small firm premium is a proxy for a 

default risk factor. Beck and Demirguc-Kunt (2006) stress that small and medium size companies 

are more subject to default risk than large firms because of their lack of capital and liquidity.  

Switzer (2010) finds that the US small cap premium is significantly influenced by the default risk 

factor which may affect investments in R&D and innovation. And Denis & Denis (1995) present 

evidence that default risk is associated to macroeconomic factors and that it varies with the 

business cycle.  

Term structure risk is also incorporated as a possible factor influencing the small cap premium. 

An increasing term structure signifies a higher degree of longer term assets’ riskiness establishing 
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a distinct premium for small caps firms since they are usually more exposed to leverage risk than 

large cap firms.  

Inflation risk is also included as a factor having an impact affecting stock returns (e.g., Bekaert 

(2009), Boudoukh & Richardson (1993), Fama (1981)): inflation risk undermines the performance 

of investments and stocks that have low returns during inflationary times will hence command a 

risk premium. Moreover since small firms usually operate in competitive business environments, 

they may have less pricing power than larger companies, and hence may be more exposed to 

inflation uncertainty which leads to a greater inflation premium exposure relative to larger firms.  

The U.S. small cap premium monthly returns is retrieved from the Ibbotson/DFA database which 

is available from January 1926. The US risk factors are obtained from Morningstar EnCorr. 

Default risk (bond default premium) is measured by the geometric difference between total returns 

on long-term corporate bonds and long-term government bonds. Term structure risk (bond horizon 

premium) is measured by the geometric difference between Government Long Bond and Treasury 

Bill Returns. Inflation is based on the US consumer price index. The Canadian small cap premium 

and the three risk factors data series are also obtained from Morningstar EnCorr database. Both 

the data on the U.S. and Canadian small cap premiums were retrieved from the Ibbotson Associates 

(IA) database whose methodology to define small stocks consists of sorting companies by market 

capitalization i.e. stock price multiplied by shares outstanding and then splitting the group into 

deciles.  

Small cap stocks comprise the bottom quintile of capitalization (deciles 9-10) and the small stock 

premium measures the excess return of small over large stocks (first decile) over a period. 



67 

 

To further explore the link between the small cap premium and different risk factors in a non-

linear form, a test of rejection of linearity should be carried on the dependent variable i.e. the small 

firm premium. Teräsvirta (1994)’s model will allow us to confirm or reject the non-linear dynamics 

of the small cap premium.  

Terasvirta (1994)’s model performs a Lagrange multiplier test for linearity versus an alternative 

of LSTAR or ESTAR in a univariate autoregression:  

 

                         
2 3

0 1 2 3 4

1 1 1 1

p p p p

t j t j j t j t d j t j t d j t j t d t

j j j j

y y y y y y y y e          

   

                    (2.2) 

 
In this study both the lags value p and the delay parameter d equals 15. The null hypothesis of 

linearity is therefore β2 = β3 = β4 = 0. If the null hypothesis is rejected, the next step is to choose 

between LSTAR and ESTAR models by a sequence of nested tests:  

H01 is a test of the first order interaction terms only: β2 = 0 

H02 is a test of the second order interaction terms only: β3 = 0 

H03 is a test of the third order interaction terms only: β4= 0 

H12 is a test of the first and second order interactions terms only: β2 = β3 = 0 

 

The decision rules of choosing between LSTAR and ESTAR models are suggested by Teräsvirta 

(1994): Either an LSTAR or ESTAR will cause rejection of linearity. If the null of linearity is 

rejected H12 and H03 become the appropriate statistic if ESTAR is the main hypothesis of interest: 

                                                           
5 There exists no econometric specification that allows to precisely determine the value of the delay 

parameter p.  Most of the literature related to non-linear STAR models uses p = 1. 
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If both H12 is rejected and H03 is accepted, this may be interpreted as a favor of the ESTAR model, 

as opposed to an LSTAR.  

 

Table 2.1 exhibit the results of the Teräsvirta (1994) linearity test performed on U.S. and Canadian 

small cap premium and shows that the hypothesis of linearity is rejected for both countries which 

implies that both small cap premiums follow non-linear dynamics. Furthermore, the table indicates 

that hypothesis H12 rejection and hypothesis H03 acceptance do not occur simultaneously which 

implies that the LSTAR model is the appropriate specification for both the U.S. and Canadian 

small cap premiums. 

 

Table 2.1 Teräsvirta (1994) Non-Linearity Test Results 
This table shows the results of the Teräsvirta (1994)’s approach to first test for linearity of the small cap premiums in 

the U.S. and Canada. If the hypothesis of linearity is rejected and H03 is accepted while H12 is rejected then the 

specification will point toward an ESTAR instead of a LSTAR model. 

 

 
 

 

 

 

 

 
U.S. Small Cap Premium Canadian Small Cap Premium 

 F-Value      Significance F-Value      Significance 

Linearity 5.675           0.0007                                6.226           0.0004 

H01      14.478           0.0001                                0.197           0.6571 

H02        2.324           0.1277                                1.057           0.3042 

H03         0.190           0.6625                              17.450           0.0000 

H12        1.257           0.2848                                9.255           0.0001 
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2.5 The Regime-Switching Models  

In this study, the two non-linear econometric models that are employed to investigate the 

relationship between the small cap premium and several macroeconomic and financial variables 

are the Markov regime switching framework approach of Hamilton (1989) (MSR) and the smooth-

transition regression model (STAR).  

More specifically the two-state Markov-chain regime-switching model and Smooth Transition 

Autoregressive Model (STAR) are employed to assess the marginal effects of a vector of financial 

and macroeconomic variables in explaining the variation in the small cap premium in the United 

States for the period January 1926 to December 2013 and in Canada for the period January 1970 

to December 2013.  The incorporation of financial and macroeconomic indicators allows 

estimating whether major changes in the dynamic of the small firm effect are also likely to be in 

response to broader changes in the macroeconomic and financial environment. Hence, the regime-

switching models include a number of key macroeconomic and financial variables as controls for 

the underlying forces that may act as catalysts for critical variations in the small firm premium.  

 

2.5.1 The Hamilton’s (1989) Regime-Switching Model 

 

The Hamilton (1989) Regime-Switching Model assumes that the behaviour of certain 

macroeconomic or financial indicators changes as a result of changes in economic activity. 

However, the state of economic activity, which is unobservable and which determines the process 

that generates the observable dependent variable is inferred through the observed behavior of this 

dependent variable.  In the original Hamilton model (1989), it was assumed, as well as in this 



70 

 

study, that there were two possible states of economic phases (regimes), corresponding to the 

condition of an economy (prosperity vs. recession).  

Let y denote the macroeconomic variable for month t and for which its historical behavior can be 

described by the following econometric specification: 

                                                     𝑦𝑡  = 𝑎𝑡   + ∑ 𝑏𝑘  𝑋𝑘 ,𝑡−1
𝑁
𝑘=1   + 𝜀𝑡                                        (2.3) 

where Xt-1 is a k-vector of explanatory variables and the bk terms are the corresponding factor 

loadings. The intercept term at follows a two-state Markov chain, taking values a1 and a2, with the 

probability πij of switching from state i to state j is given by the matrix: 

[
𝜋11 𝜋21

𝜋12 𝜋22
] 

Moreover let ξit represent the probability of being in state i in month t conditional on the data and 

𝜂𝑗𝑡   the densities under the two regimes which are given by: 

                                       𝜂𝑖𝑡  =  
1

√2𝜋𝜎2 
 exp (

−( 𝑦𝑡−𝑎𝑗𝑡− ∑ 𝑏𝑘  𝑋𝑘 ,𝑡−1
𝑁
𝑘=1 )

2

2𝜎2 )                                    (2.4) 

where σ represents the volatility of the residuals εt which are assumed to follow an independent 

and identically distribution (iid) to allow performing standard maximum log likelihood functions. 

All i and j are then sum up to compute the likelihood function ft, 

 

                                                       𝑓𝑡    =  ∑ ∑ 𝜋𝑖𝑗
2
𝑖=1

2
𝑖=1 𝜉

𝑖,𝑡−1
𝜂

𝑗𝑡
                                             (2.5) 
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The state probabilities are then re-estimated by the recursive specification 

                                                        𝜉𝑗,𝑡 =  
∑ 𝜋𝑖𝑗𝜉𝑖,𝑡−1𝜂𝑖𝑡

3
𝑖=1

 𝑓𝑡 
                                               (2.6) 

 

The log likelihood function for the data can hence be estimated by summing the log likelihoods 

for each date by using standard maximum likelihood procedures. 

 

2.5.2 The Smooth-Transition Regression Model 

 

The other popular model that has been extensively used in the past two decades to modelling 

nonlinearities in the dynamic properties of many economic time series and for summarizing and 

explaining cyclical behavior of macroeconomic data and business cycle asymmetries is the Smooth 

Transition Autoregressive Model (STAR), which was developed by Teräsvirta (1994) and Granger 

and Teräsvirta (1993).  

 

The smooth transition autoregressive (STAR) model for a univariate time series 𝑦𝑡, is given by: 

 

                                      𝑦𝑡 =  𝛼0 + ∑ 𝛼0𝑦𝑡−𝑖
𝑝
𝑖=1 + 𝐹(𝜉𝑡, 𝛾, 𝑐)[𝛽0 +  ∑ 𝛽𝑖𝑦𝑡−𝑖

𝑝
𝑖=1 ] + 𝜀𝑡               (2.7) 

 

 

where F(𝜉𝑡, 𝛾, 𝑐) is a transition function which controls for the switch from one regime to the other 

and is bounded between 0 and 1. The scale parameter  𝛾 > 0 is the slope coefficient that determines 

the smoothness of the transition: the higher it is the more abrupt the change from one extreme 

regime to the other 𝜉𝑡. The location or threshold parameter between the two regimes is represented 

by 𝑐 and 𝜉𝑡 is called the transition (threshold) variable, with 𝜉𝑡 = 𝑦𝑡−𝑑 (𝑑 a delay parameter).  
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Two popular selections for the transition function are the logistic function (LSTAR) and the 

exponential function (ESTAR). The LSTAR function is specified as:  

 

         𝐹 =  [1 +  exp (−𝛾(𝜉𝑡 − 𝑐))]−1                                      (2.8) 

 

while the ESTAR function is specified as: 

 

          𝐹 =  1 −  exp (−𝛾(𝜉𝑡 − 𝑐)2)                                          (2.9) 

 

The main difference between these two STAR models relies on how they describe macroeconomic 

series dynamic behaviour. The LSTAR model reflects the asymmetrical adjustment process that 

usually characterize economic cycles: a sharper transition and sharp recovery following business 

cycle troughs compare to economic peaks. In contrast, the ESTAR specification suggests 

symmetrical adjustment dynamic.  

To determine the adequate transition function to apply to the data, Terasvirta (1994) suggests a 

model selection procedure which is explained and applied in section 2.4. 

While an exogenous variable could be employed as the transition variable, in this paper as per the 

majority of research studies using STAR models, the dependent variable (the macroeconomic 

proxies) plays this role and 𝑑 equals one, meaning that the first lagged value of the macroeconomic 

variable investigated acts at the threshold variable.  

 

In the Smooth Transition Autoregression (STAR) all predetermined variables are lags of the 

dependent variable. An extension to the STAR model is the smooth transition regression (STR) 

model which is an amendment to the STAR model that allows for exogenous variables x1t,…, xkt 

as additional regressors. In this study, the applied STR model includes other exogenous factors the 
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i.e. the liquidity measures and the factors Term, Cred, Vola, erm. The standard method of 

estimation of STR (STAR) models is nonlinear least squares (NLS), which is equivalent to the 

quasi-maximum likelihood approach.  

 
Two interpretations of a STR (STAR) model are possible. First, the STR model may be thought 

of as a regime-switching model that allows for two regimes, associated with the extreme values of 

the transition function, F(𝜉𝑡; 𝑦, c) = 0 and F(𝜉𝑡; 𝑦, c) = 1, where the transition from one regime to 

the other is smooth. The regime that occurs at time t is determined by the observable variable 𝜉. 

Second, the STR model can be said to enable a continuum of states between the two extremes.  

The key advantage in favour of STR models is that changes in some economic and financial 

aggregates are influenced by changes in the behaviour of many diverse agents and it is highly 

improbable that all agents respond instantaneously to a given economic signal. For instance, in 

financial markets, with a considerable number of investors, each switching at different times 

(probably caused by heterogeneous objectives), a smooth transition or a continuum of states 

between the extremes seems more realistic. 

 

Both the Hamilton’s (1989) Markov switching regime model and the smooth transition 

autoregressive model assume that the series under examination are stationary. Indeed these 

specifications investigate time series by distinguishing non-stationary or stationarity linear systems 

from stationary nonlinear ones. 
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2.6 Empirical Results 

Table 2.2 shows the descriptive statistics of the small cap premium in the U.S. and in Canada, and 

the three exposure risk variables (default, inflation and term).  

                     Table 2.2 Descriptive Statistics  
Descriptive statistics for the U.S. and Canada for the small cap premium, the default 

factor, the inflation factor, and the term risk factor. The data for the U.S. covers the 

period January 1926 through December 2013 while for Canada the sample spans the 

period January 1970 to December 2013. 

 

 

 

 

 

     

 
 U.S. 

   

      

Variable 
 Number 

Obs. 
    Mean     Std. Dev.  Min. Max. 

      

Small Cap Prem. 1056 0.0027 0.046 -0.179 0.398 

Default 1056 0.0004 0.013 -0.096 0.075 

Inflation 1056 0.0024 0.005 -0.020 0.059 

Term 1056 0.0019 0.023 -0.112 0.144 

  Canada    

Variable 
 Number 

Obs. 
    Mean     Std. Dev.  Min. Max. 

Small Cap Prem. 528 0.0075 0.054 -0.278 0.251 

Default 528 0.0041 0.005 -0.002 0.039 

Inflation 528 0.0035 0.004 -0.010 0.026 

Term 528 0.0100 0.017 -0.054 0.039 
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2.6.1 Empirical Results for the United States Small Cap Premium 

 

2.6.1.1 Results for the United States Using the MSR Model 

 
 
The empirical results are reported in Table 2.3. As shown, the regime-switching model identifies 

two distinct regimes for the small cap premium: regime 1 corresponding to a prosperity economic 

phase and regime 2 representing a contraction economic phase.  In the first regime only one 

explanatory variable is statistically significant:  the default rate exposure which has a value of 0.39. 

In the second regime all three explanatory variables are strongly significant with coefficients of 

4.89, 4.50 and 9.81 for the default, inflation and term structure risk exposures respectively.  
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   Table 2.3 U.S. Small Cap Premium – MSR Model 
    January 1926 – December 2013 

 

 

 

 

 

 

    
     

Variable Coefficient   Std. Error t-Statistic Prob. 

     

     
  Regime 1: Economic Expansion 

     

     
a1 0.0011 0.0014 0.8160 0.4144 

Default 0.3895 0.1114 3.4937 0.0005 

Inflation 0.1745 0.2712 0.6435 0.5199 

Term -0.0647 0.0665 -0.9723 0.3309 

     

     
   Regime 2: Economic Recession 

     

     
a2 0.0155 0.0095 1.6192 0.1054 

Default 4.8809 0.6054 8.0619 0.0000 

Inflation 4.5028 1.3996 3.2170 0.0013 

Term 9.8123 0.6712 14.619 0.0000 

     
     

 

 

 

                  

2.6.1.2 Results for the United States Using the STAR Model 

 

The empirical results for the smooth-transition regression model are reported in Table 2.4. It is 

interesting to observe that both the Markov switching regime model and the smooth-transition 

regression model provide similar results. Indeed in the first regime only one explanatory variable 

is statistically significant:  the default rate exposure which has a value of 0.32. In the second regime 

Table 2.3 shows the parameter estimates and their asymptotic t-statistics from 

the maximum likelihood estimation of the Markov regime-switching model 

used to model the U.S. small cap premium. The regime-switching model is 

estimated using the monthly returns of the DFA Small Cap Premium for the 

period January 1926 – December 2013. The financial and macroeconomic 

explanatory variables are the default corporate bond, inflation and term 

structure described in more details in section 4. Significant coefficients of the 

risk factors are marked in bold. 



77 

 

all three explanatory variables are strongly significant with coefficients of 2.61, 2.32 and 1.02 for 

the default, inflation and term structure risk exposures respectively.  

 

2.6.1.3 Interpretation of the Empirical Results for the United States  

 

These results, both under the Markov regime switching and the smooth transition regression 

model, present evidence that default risk affects the return differential between large cap and small 

cap firms and that this relationship is independent from the economic activity phases: the default 

risk coefficients remain extremely statistically significant under both regimes. This finding 

corroborates Switzer’s (2010) conclusion that the US small cap premium is significantly related to 

default risk in the economy, which may impact on investments in R&D and innovation. However, 

the term structure risk exposure and inflation risk exposure coefficients are positive and greatly 

significant under recessions (Regime 2) but not under expansion phases (Regime I) indicating that 

term risk and inflation risk affect differentially small cap vs. large cap firm returns under 

contraction economic phases.  
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   Table 2.4 U.S. Small Cap Premium – STAR Model 
                              January 1926 – December 2013 

                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Variable Coefficient Std. Error t-Statistic Prob. 

     
     

Regime 1: Economic Expansion 

     

     
a1 0.0020 0.0016 1.2420 0.2145 

Default 0.3181 0.1226 2.5938 0.0096 

Inflation -0.0668 0.2835 -0.2356 0.8137 

Term -0.0017 0.0676 -0.0264 0.9789 

     

     
Regime 2: Economic Recession 

     

     
a2 0.0007 0.0077 0.00959 0.9235 

Default 2.6152 0.5203 5.0260 0.0000 

Inflation 2.3226 1.0078 2.3046 0.0213 

Term 1.0298 0.3859 2.6677 0.0077 

     

 

Coefficients           t-Statistic 

Gamma 96.707                 0.005 

c 0.021               0.341 

     

     

Mean of Dependent of Variable    0.0026  
Std Error of Dependent Variable 0.0469  
Sum of Squared Residuals 2.1426  

 Regression F(3.1056) 

 

 

 

             7.8822   

 Significance Level of  F   

  

             0.0000  
   

Table 2.4 shows the parameter estimates and their t-statistics from the non-

linear estimation of the smooth-transition regression model to model the small 

cap premium. The regime-switching model is estimated using the monthly 

returns of the DFA Small Cap Premium for the period January 1926 – December 

2013. The financial and macroeconomic explanatory variables are the default 

corporate bond, inflation and term structure described in more details in section  

4. Significant coefficients of the risk factors are marked in  bold. 



79 

 

                            

2.6.2 Empirical Results for the Canadian Small Cap Premium 

 

The United States is and has been for the past century the largest economy and because of its 

proximity with Canada has a tremendous impact and influence on the northern neighbouring 

country economy.  For these reasons, the Canadian small cap premium will be investigated in 

relation to both Canadian and U.S. risk factors.  

 

 

 

2.6.2.1 Results using Canadian Risk Factors and the MSR Model 

 

Table 2.6 shows the empirical findings when examining the Canadian small cap premium relative 

to Canadian risk factors.  In the first regime only one explanatory variable is statistically 

significant:  the term spread exposure which has a coefficient of 0.0036. In the second regime two 

explanatory variables become statistically significant with coefficients of 13.190 and 0.0293 for 

inflation and term structure risk exposures respectively.  

 

2.6.2.2 Results using Canadian Risk Factors and the STAR Model 

 

Table 2.7 exhibits the same relationship analyzed in the previous section.  In the first regime, the 

same risk exposure is strongly significant:  the term spread exposure coefficient which has a value 

of 0.0065. In the second regime, only one explanatory variable is statistically significant i.e. 

inflation risk exposure, with a coefficient of -2.9865 for inflation.  

 

 

 

                   

http://en.bab.la/dictionary/english-french/neighbouring-country
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                   Table 2.5 Canadian Small Cap Premium and Canadian Factors  

                           – MSR Model  
Table 2.5 shows the parameter estimates and their asymptotic t-statistics from 

the maximum likelihood estimation of the Markov regime-switching model 

used to model the Canadian small cap premium. The regime-switching model 

is estimated using the monthly returns obtained from the Ibbotson database for 

the period January 1970 – December 2013. The financial and macroeconomic 

explanatory variables are the Canadian default corporate bond, inflation and 

term structure described in more details in section 4. Significant coefficients of 

the risk factors are marked in bold.  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    
     

Variable Coefficient    Std. Error t-Statistic Prob. 

     
     

Regime 1: Economic Expansion 

     
     

a1 0.0104 0.0031 3.3189 0.0009 

Default     -0.0070 0.0041 -1.7067 0.0879 

Inflation -0.0009 0.0040 -0.2403 0.8100 

Term  0.0036 0.0012 2.8032 0.0051 

     

     
Regime 2: Economic Recession 

     

     
a2 -0.2076 0.0319 -6.4946 0.0000 

Default 0.0108 0.0203 0.5316 0.5950 

Inflation 13.190 2.2811 5.7824 0.0000 

Term 0.0293 0.0131 2.2325 0.0256 
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                          Table 2.6 Canadian Small Cap Premium and Canadian Factors  

                           – STAR Model  

Table 2.6 shows the parameter estimates and their asymptotic t-statistics from 

the non-linear estimation of the smooth transition autoregressive model used to 

model the Canadian small cap premium. The regime-switching model is 

estimated using the monthly returns obtained from the Ibbotson database for 

the period January 1970 – December 2013. The financial and macroeconomic 

explanatory variables are the Canadian default corporate bond, inflation and 

term structure described in more details in section 4. Significant coefficients of 

the risk factors are marked in bold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

      

           . 
 

Variable Coefficient  Std. Error  t-Statistic Prob. 

     
Regime 1: Economic Expansion 

     

     
a1 -0.0083 0.0065 -1.2647 0.2065 

Default -0.0061 0.0064 -0.9595 0.3377 

Inflation 2.9817 1.0086 2.9561 2.9561 

Term 0.0065 0.0065 2.5023 0.0126 

     

     
Regime 2: Economic Recession 

     

     
a2  0.0212 0.0081  2.5872 0.0099 

Default -0.0096 0.0090 -1.0674 0.2862 

Inflation -2.9865 1.0104 -2.9557 0.0032 

Term -0.0030 0.0032 -0.9382 0.3485 

     

            Coefficients                   t-Statistic 

Gamma 41.012             0.411 

c -0.0003            -0.069 

     

     

Regression F(3, 528) 

 

 

 

           3.4767  

 Significance Level of  F   

  

         0.00034  
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      Table 2.7 Canadian Small Cap Premium and U.S. Factors – MSR Model 
Table 2.7 shows the parameter estimates and their asymptotic t-statistics from the 

maximum likelihood estimation of the Markov regime-switching model used to model the 

Canadian small cap premium. The regime-switching model is estimated using the monthly 

returns obtained from the Ibbotson database for the period January 1970 – December 2013. 

The financial and macroeconomic explanatory variables are the U.S. default corporate 

bond, inflation and term structure described in more details in section 4. Significant 

coefficients of the risk factors are marked in bold. 
 

 

 

 

 

    
     

Variable Coefficient Std. Error t-Statistic Prob. 

     
     

Regime 1: Economic Expansion 

     
     

a1 0.0146 0.0041 3.5790 0.0003 

Default 1.0357 0.2160 4.7947 0.0000 

Inflation -0.5801 0.7534 -0.7699 0.4413 

Term 0.1684 0.0873 1.9294 0.0537 

     

     
Regime 2: Economic Recession 

     

     
a2 -0.0492 0.0215 -2.2869 0.0222 

Default 1.6533 0.5498 3.0070 0.0026 

Inflation 4.6301 2.5783 1.7957 0.0725 

Term 0.5235 0.3264 1.6038 0.1087 
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                        Table 2.8  

                        Canadian Small Cap Premium and U.S. Factors – MSR Model 
Table 2.8 shows the parameter estimates and their asymptotic t-statistics from the 

non-linear estimation of the regime-switching model used to model the Canadian 

small cap premium. The regime-switching model is estimated using the monthly 

returns obtained from the Ibbotson database for the period January 1970 – 

December 2013. The financial and macroeconomic explanatory variables are the 

U.S. default corporate bond, inflation and term structure described in more detail 

in section 4. Significant coefficients of the risk factors are marked in bold. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 

 

 

 

    
     

Variable Coefficient Std. Error t-Statistic Prob. 

     
     

Regime 1: Economic Expansion 

     

     

a1 -7.16e-03 5.03e-03 -1.4250 0.1547 

Default 1.9087 0.2281 8.3684   0.0000 

Inflation 2.2927 1.0138 2.2614 0.0241 

Term 0.2652 0.1275 2.0797   0.0380 

     

     
Regime 2: Economic Recession 

     

     

a2 0.0200 6.42e-03 3.1043   0.0020 

Default 1.0975 0.3327      3.2988   0.0010 

Inflation -3.2988   1.2786 2.4038   0.0165 

Term -0.0619 0.1681 -0.3682 0.7128 

     

                           Coefficients                             t-Statistic 

Gamma 145.484       0.2975 

c -5.7040        -0.1503   

     

     

Regression F(3, 528) 

 

 

 

           21.521  

 Significance Level of  F   

  

          0.0000  
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 Table 2.9 U.S. Small Cap Premium – MSR Model  
    January 1970 – December 2013 

 

 

 

 

 

 

    
     

Variable Coefficient   Std. Error t-Statistic Prob. 

     

     
  Regime 1: Economic Expansion 

     

     
a1 0.006 0.004 1.261 0.207 

Default 0.321 0.1102 2.914 0.006 

Inflation 0.364 0.714 0.509 0.610 

Term -0.009 0.052 -0.178 0.858 

     

     
   Regime 2: Economic Recession 

     

     
a2 0.003 0.002 1.163 0.244 

Default 2.123 0.537 3.947 0.003 

Inflation     -1.423 0.531 -2.679 0.007 

Term     -0.167 0.062 -2.659 0.007 

     
     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.9 shows the parameter estimates and their asymptotic t-statistics from 

the maximum likelihood estimation of the Markov regime-switching model 

used to model the U.S. small cap premium. The regime-switching model is 

estimated using the monthly returns of the DFA Small Cap Premium for the 

period January 1970 – December 2013. The financial and macroeconomic 

explanatory variables are the default corporate bond, inflation and term 

structure described in more details in section 4. Significant coefficients of the 

risk factors are marked in bold. 
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      Table 2.10 U.S. Small Cap Premium – STAR Model  
      January 1970 – December 2013 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Variable Coefficient Std. Error t-Statistic Prob. 

     
     

Regime 1: Economic Expansion 

     

     
a1 -0.004 0.004 -1.019 0.308 

Default 0.574 0.205 2.786 0.005 

Inflation 0.210 0.919 0.228 0.819 

Term 0.083 0.106 0.786 0.431 

     

     
Regime 2: Economic Recession 

     

     
a2 0.011 0.005 2.139 0.032 

Default 0.8640        0.375 2.282 0.022 

Inflation -0.432 1.088 -0.397 0.691 

Term -0.239 0.133 -1.786 0.074 

     

 

Coefficients           t-Statistic 

Gamma 188.18                                        0.049   

c 0.011                0.685 

     

     

Table 2.10 shows the parameter estimates and their t-statistics from the non-

linear estimation of the smooth-transition regression model to model the small 

cap premium. The regime-switching model is estimated using the monthly 

returns of the DFA Small Cap Premium for the period January 1970 – December 

2013. The financial and macroeconomic explanatory variables are the default 

corporate bond, inflation and term structure described in more details in section 

4. Significant coefficients of the risk factors are marked in bold. 
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2.6.2.3 Results using U.S. Risk Factors and the MSR Model 

 

Table 2.7 exhibits the results when examining the Canadian small cap premium relative to U.S. 

risk factors.  In both regimes a sole explanatory variable is statistically significant:  the default 

spread exposure which has a coefficient of 1.0357 in regime 1 and 1.6533 in regime 2. 

 

2.6.2.4 Results using U.S. Risk Factors and the STAR Model 

 

Table 2.8 which looks at the relationship between the Canadian small firm premium and U.S. risk 

factors using the smooth transition autoregressive model, shows that in the first regime, all three 

risk exposure coefficients are distinguishable from zero with values of 1.9087, 2.2927 and 0.2652 

for the default, inflation and term factors respectively. In the second regime, two explanatory 

variables are strongly significant i.e. default risk factor with a coefficient of 1.0975 and the 

inflation risk exposure, with a coefficient of -3.2988.  

 

2.6.2.5 Interpretation of the Empirical Results for Canada  

 

Under both the Markov regime switching and the smooth transition regression model, it is 

interesting to note that the Canadian default spread factor plays no role on the dynamics of the 

Canadian small cap premium over the period analyzed. In contrast, the U.S. default risk exposure 

appears to influence tremendously the return differential between large cap and small cap firms 

and that this effect is not related to the economic activity phases: the U.S. default risk coefficients 

are strongly significant under both regimes. A possible explanation for this outcome would be that 

Canadian small firms export mainly to U.S. companies and hence when the level of bankruptcy 

increases in those latter firms, Canadian small companies suffer from this lesser degree of activity.  
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The Canadian inflation and term spread factors seem have effects on the country small cap 

premium that dependend on the economic activity phase and on the econometric model employed; 

on the other hand, the U.S. inflation and term spread risk exposures appear to be independent from 

the Canadian small cap premium when using the Markov switching regime model. When applying 

the logistic smooth transition autoregressive model, inflation in the United States seems to affect 

the return differential between large cap and small cap firms: higher prices in the U.S. economy 

may affect the aggregate exports of Canadian small firms. 

 

Tables 2.9 and 2.10 exhibit results regarding the U.S. small cap premium for a shorter sample time 

period i.e. January 1970 to December 2013 in order to make a comparative analysis with the 

Canada for a similar time span. The findings show that the U.S. default risk premium continues to 

affect strongly the U.S. small cap premium for this more recent time period. However it can be 

noticed that the U.S. inflation and term structure risk factors are also greatly related to the U.S. 

small cap effect only during economic contraction conditions when the Markov switching-regime 

is performed on the data. However the STAR model show that this connection is absent under both 

regimes. These last findings mirror the ones obtained for the Canadian small cap premium for 

which the U.S. default premium strongly has a tremendous effect and for which the impact of the 

inflation and term structure risks is unclear: the coefficients on these variables are only significant 

during weak economic environments (recessions) and solely under the Markov switching-regime 

model.   
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2.6.3 Goodness of Fit of the STAR and Markov Switching-Regime Models 

Several diagnostic tests are conducted in this section to assess the best models between the STAR 

and Markov switching-regime models. Table 2.11 shows that the Markov switching-regime model 

is more suitable than the STAR model since the former specification shows smaller values for the 

the Mean-Square Error (MSE) and Root-Mean-Square Error (RMSE) measures. Finally the QQ 

Plots of the standardized error terms depicted in Figures 2.1 to 2.3 for the U.S. small cap premium, 

and the Canadian small cap premium in relation to the Canadian and U.S. factors corroborate the 

evidence that the Markov switching-regime performs superiorly than the STAR model.  
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Table 2.11 Mean-Square Error and Root-Mean-Square Error of the STAR and Markov 

Switching- Regime Models        

       STAR Model 

 

       Markov Switching-Regime Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  US SCP 

CDN SCP - CDN 

Factors  CDN SCP - US Factors  

MSE 0.0021 0.0028 0.0026 

RMSE 0.0463 0.0528 0.0509 

  US SCP 

CDN SCP - CDN 

Factors  CDN SCP - US Factors  

MSE 0.0019 0.0027 0.0023 

RMSE 0.0435 0.0526 0.0479 
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Figure 2.1 Comparison of QQ Plots from the STAR and Markov Switching-Regime Models 

– US Small Cap Premium 
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Figure 2.2 Comparison of QQ Plots from the STAR and Markov Switching-Regime Models 

– Canadian Small Cap Premium  & Canadian Factors 
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Figure 2.3 Comparison of QQ Plots from the STAR and Markov Switching-Regime Models 

– Canadian Small Cap Premium  & U.S. Factors 

 

 

 

 

 

 

 

 

 

 



93 

 

2.7 Conclusion 

Since at least 1981 when Banz (1981) presented empirical evidence that small-cap stocks 

generated higher average returns than larger firms, a plethora of studies has emerged on the small 

firm effect to investigate the validity and persistence of the small-cap premium and to offer 

explanations for the empirical outperformance of small-cap stocks over the long term. While the 

small firm premium in the United States has been determinant on average over the long term, it 

unveils strong time-varying properties with long periods of underperformance over time.  

This observation led to the suggestion that the small firm constitutes a systematic risk premium 

and that excess returns on small-cap stocks represent a compensation for risk. Academics do not 

suggest that firm size per se is the source of the risk driving the dynamic of expected returns, but 

that size is a proxy for one or more underlying risk factors associated to smaller firms. Links have 

been uncovered between the small firm effect and default, distress risk and bankruptcy, as well as 

between the small firm effect and several macroeconomic variables.  

 

This paper contributes to the extensive literature that has investigated the links between the small 

firm premium and various financial and macroeconomic variables. Indeed, this study employs 

recent advances in nonlinear time series models, and more specifically the Hamilton’s (1989) 

Markov switching regime and the smooth-transition regression models, to explore the relationship 

between the small firm premium and financial and macroeconomic variables in the Canadian and 

U.S. economies. The findings under both models present evidence that the U.S. default risk affects 

the return differential between large cap and small cap firms both in the U.S. and Canadian 

economies and that these relationships are independent from the economic activity phases.  
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These results are important for portfolio management decisions; introducing regimes and financial 

and macroeconomic risk exposures into the dynamic/active asset allocation problematic has the 

potential to cause great alteration in portfolio allocations and investment opportunity sets across 

regimes. Indeed, if it is well established that the U.S. and Canadian small cap premiums are 

associated to the risk inherent in the business cycle and particularly to the U.S. default risk, 

indications about the probabilities of future recessions and economic expansions are particularly 

valuable not just for academics, but for policymakers and portfolio managers as well.  
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CHAPTER 3 

 

Stock Market Liquidity and Economic Cycles 

 

 

 
3.1 Introduction 
 

 

In financial markets, liquidity is defined as the degree to which a security or an asset can be 

purchased or sold without affecting significantly its price. Because liquidity is a central aspect of 

stock markets, empirical research finance has devoted important attention of its role in asset 

pricing, behavioural finance and market efficiency. One recent strand of this research, focuses on 

the predictive power of liquidity on stock market returns and future economic growth. The 

underlying motivation of this work relies on a central premise of finance theory: that financial 

markets are “forward looking.” Indeed since news and information about future states of the 

economy are continuously processed by market participants, their views and expectations about 

upcoming economic conditions as well as their risk preferences and tolerances are also continually 

affected. Investors hence reallocate their stock portfolios in response to new information to reflect 

changes in their beliefs which in turn induce them to trade, which causes relative stock prices and 

stock market indices to fluctuate. Since trading levels are directly related to liquidity, one might 

expect that aggregate liquidity should also convey information about future macroeconomic 

conditions. For instance, the “flight to quality” phenomenon, which reflects the “forward looking” 

nature of equity markets, usually occurs prior to difficult economic times when investors shift their 

equity allocation to completely move away from the stock market or invest into safer securities to 

construct portfolios that are more defensive and more focused on wealth preservation. During a 

“flight to quality” episode, an unusual amount of asset trading occurs in a short period of time 
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which leads to important price changes, greater stock volatilities and causes aggregate liquidity to 

worsen (illiquidity increases). Hence, stemming from these observations, recent empirical 

literature asserts that lower levels of market-wide liquidity could act as a leading indicator of 

depressing future economic conditions. 

 

In a recent study that examines the relationship between economic growth and financial market 

illiquidity, Næs et al. (2011) use various measures of stock market liquidity and macroeconomic 

variables, to proxy for future states of the real economy, to investigate the possible leading 

indicator property of financial market aggregate liquidity on macroeconomic fundamentals. The 

authors conclude that economic cycles can be predicted by the levels of aggregate illiquidity i.e. 

financial markets liquidity are good leading indicators of economic cycles. Analyzing data for the 

United States during the period 1947 to 2008, they provide evidence, even after controlling for 

many factors associated with financial markets, that market-wide liquidity contains leading 

information about the future state of the real economy. Næs et al. (2011) claim that the predictive 

power of aggregate stock market liquidity on subsequent economic conditions might indicate that 

“liquidity measures provide information about the real economy that is not fully captured by stock 

returns.” The authors support the conclusion that “liquidity seems to be a better predictor than 

stock price changes”  by referencing Harvey (1988) who argues that stock prices comprise a more 

complex mix of information that distort the signals from stock returns. 

However, Næs et al. (2011)’s results are estimated on a problematic framework: the predictability 

of aggregate liquidity on future outcomes of the real economy is based on a linear regression 

framework, this despite increasing evidence that macroeconomic variables (such as the ones 

employed in Næs et al. (2011)’s study i.e. real GDP, real Investment, real Consumption) follow 
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nonlinear behaviours. Hence their findings may not be robust to a more appropriate model that 

links aggregate illiquidity and economic cycles.  

This paper looks to re-examine Næs et al. (2011), by using a non-linear approach for analyzing the 

connection between market-wide liquidity and business cycles, and providing new evidence on 

whether liquidity, contains critical information about future economic growth and consequently 

acts as a leading indicator of subsequent economic conditions.  

This paper uses two important econometric nonlinear models: the Markov switching regimes and 

smooth transition autoregressive models which are discussed in greater detail in the following 

sections.   
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3.2 Literature Review 

 
The literature that has analyzed the link between stock market aggregate liquidity and economic 

fundamentals is relatively scant. Levine and Zervos (1998) find that stock market liquidity -- as 

measured both by the ratios of the value of stock trading to the size of the stock market and to the 

size of the economy -- is positively and significantly correlated, after controlling for economic and 

political factors, with present and subsequent rates of economic growth, capital accumulation, and 

productivity growth. Gibson and Mougeot (2004) show that over the 1973 to 1997 period, the U.S. 

stock market liquidity risk premium is linearly associated to an “Experimental Recession Index”. 

Eisfeldt (2004) presents a model in which liquidity fluctuates with real fundamentals such as 

economic productivity and investment. 

 

One strand of work that is related to this study has analyzed whether aggregate order flow in 

financial markets contain valuable information about future macroeconomic conditions. 

Beber et al. (2011) for instance investigate, over the period 1993 to 2005, the predictive power of 

financial markets orderflow movements across equity sectors on economic cycles. The authors 

point out two observations: 1) empirical literature shows that asset prices and returns are good 

predictors of business cycles and 2) order flow is the process by which stock prices vary.  

Synthesizing these two observations, Beber et al. (2011) thus question how order flow itself is 

associated with contemporaneous and subsequent economic conditions. Their findings show that 

an order flow portfolio constructed on cross-sector movements is able to forecast next quarter 

economic conditions.  

Evans and Lyons (2008) present evidence that foreign exchange order flows predict future 

macroeconomic factors such as money growth, inflation and output growth; and future exchange 
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rates.  Finally, Kaul and Kayacetin (2009) provide evidence that market wide order flow on the 

New York Stock Exchange and order flow differentials (the difference in the order flow between 

large cap and small cap firms) can forecast variations in industrial production and U.S. real GDP.  
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3.3 Liquidity Measures, Macroeconomic and Financial Variables 

 

3.3.1 Liquidity Measures 

 

In order to construct quarterly aggregate liquidity measures, data on all ordinary common shares 

traded on the New York Stock Exchange (NYSE) during the period January 1947 through 

December 2012 is retrieved from the Center for Research in Security Prices (CRSP). The data 

consists of stock prices, returns, and trading volume for each common share and covers more than 

65 years and 10 recessions.  

 

Liquidity is an unobservable factor and has several aspects that cannot be assessed in a single 

measure; to address these issues numerous studies have developed diverse liquidity proxies. This 

study focuses on the market wide liquidity proxies, described below, that are analyzed in Næs et 

al. (2011) i.e. the Roll (1984) implicit spread estimator, the Amihud (2002) illiquidity ratio, and 

Lesmond, Ogden, and Trczinka (1999) measure (LOT). The relative spread (RS) measure is 

dropped from the analysis since the high frequency microstructure data that are needed to measure 

effective and quoted spreads are not always obtainable for the sample period prescribed for the 

analysis.  

The three liquidity measures are computed on a quarterly basis for each common share. Aggregate 

liquidity proxies are obtained by taking the equally weighted average of the liquidity measures of 

the individual securities each quarter. 

 

3.3.1.1 Roll Liquidity Measure (1984) 

The Roll (1984) measure uses a model to estimate the effective spread based on the time series 

properties of observed market prices i.e. the serial covariance of the change in price. 
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Let Vt  denote the unobservable equilibrium value of the stock which evolves as follows on day t: 

 

     Vt = Vt-1 + ɛt                                  (3.1) 

 

where ɛt is the unobservable innovation in the true value of the asset between transaction t −1 and 

t. ɛt is serially uncorrelated with a mean-zero and constant variance 𝜎𝜀
2. 

 

Let Pt denote the last observed transaction price of the same given asset on day t, oscillating 

between bid and ask quotes that depend on the side originating the trade. The observed price can 

be described as follows: 

 

       Pt =Vt + 
1

2
SQt,                                          (3.2) 

 

where S denote the effective spread, and Qt is an indicator for the last trade that equals, with equal 

probabilities, +1 for a transaction initiated by a buyer and −1 for a transaction initiated by a seller. 

Qt is serially uncorrelated, and is independent of ɛt. 

 

Taking the first difference of Equation (3.2) and incorporating it in Equation (3.1) yields 

 

           ΔPt = 
1

2
SΔQt + et                                                           (3.3) 

where Δ is the change operator.  

Using this specification, Roll (1984) demonstrates that the serial covariance is 

 

                     cov(ΔPt, ΔPt-1) = 
1

4
S2                                                       (3.4) 

from which we obtain:  
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     S = 2√−cov(Δ𝑃𝑡,Δ𝑃𝑡−1)                            (3.5) 

 

The formula above is only defined when Cov < 0. When the sample serial covariance is positive 

(cov > 0), a default numerical value of zero is substitute into the specification. Equation (3.5) 

specifies the measure of spread proposed by Roll (1984). Roll’s estimator is hence calculated by 

estimating the autocovariance and solving for S.  The reasoning behind Equation (3.5) is that the 

more negative the return autocorrelation is, the lower the liquidity of a given stock will be.  

 

3.3.1.2 Lesmond, Ogden, and Trzcinka (1999) Liquidity Measure  

 

Using only the time series of daily security returns, Lesmond, Ogden, and Trzcinka (1999) develop 

a proxy for liquidity (LOT). The measure is the proportion of days with zero returns: 

 

                     LOT = (# of days with zero returns)/T,                                          (3.6) 

 

where “T” is the number trading days in a month. 

 

The intuition behind the LOT measure is that if the value of the public and private information is 

lower than to the costs of trading on a particular day, fewer trades ( or no trades) will occur, and 

hence prices will no change from the previous day (zero return). The authors argue that the 

frequency of zero returns is directly related to both the quoted bid-ask spread and Roll’s measure 

of the effective spread.  
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3.3.1.3 Amihud (2002) Liquidity Measure  

 

Amihud (2002) who developed a price impact measure of liquidity based on the daily price 

response associated with one dollar of trading volume. The measure is computed as the daily ratio 

of absolute stock return to dollar volume: 

 

                                                   𝐼𝑙𝑙𝑖𝑞𝑖 =  
|𝑟𝑖|

𝐷𝑉𝑂𝐿𝑖
                                                             (3.7) 

 

where 𝑟𝑖 is a daily stock return of stock i, and 𝐷𝑉𝑂𝐿𝑖 is daily dollar volume. 

Amihud (2002) asserts that there are finer and better measures of illiquidity, such as the bid-ask 

spread (quoted or effective) or transaction-by-transaction market impact, but these measures 

necessitate a great deal of microstructure data that are not obtainable in many stock markets and  

even if available, the data do not cover long lasting periods of time. Hence, Amihud (2002) stresses 

that this measure allows constructing long time series of illiquidity that are needed to test the 

effects over time of illiquidity on ex ante and contemporaneous stock excess return. 

Figure 3.1 depicts the relationship between the time series of the three liquidity measures and 

recession periods (grey bars) according to the National Bureau of Economic Research (NBER). 

The figure suggests that market wide liquidity deteriorates (liquidity measures increases) ahead of 

several recessions. 
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Figure 3.1 Liquidity and Economic Cycles. The figure depicts time series of the Amihud (2002), LOT (1999() and Roll (1984) 

illiquidity measures for the United States during the period 1947 to 2012. NBER recession periods are represented by the grey 

shaded areas. Higher values of the liquidity measures indicates lower levels of aggregate liquidity.  

 

 

3.3.2 Macroeconomic and Financial Variables 

 

The following standard set of macroeconomic variables commonly used in the empirical finance 

and economic research is employed to proxy for the US economic condition during the period 

January 1947 through December 2012: real GDP (RGDP), unemployment rate (UE), real 

consumption (RCONS), and real investment by the private sector (GPDI).  

Several financial variables that have proven in the literature to be leading indicators of the trend 

of the state of the economic are also incorporated in the analysis as control variables: The market 

premium (erm) which is computed as the return on the value-weighted S&P500 market index in 

excess of the three-month Treasury bill rate and market volatility (Vola) which is computed as the 

quarterly standard deviation of daily returns in the sample. The Credit spread (Cred) factor, 
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calculated as the spread between Moody's Baa credit index6 and the rate on a 30-year U.S. 

government bond and the term spread variable (Term), which corresponds to the spread between 

the yield on a 10-year Treasury bond and the yield on the three-month Treasury bill are also 

included in the analysis.  

 

Results in Tables 3.1 to 3.3 show that applying the linear regression approach of Næs et al. (2011) 

on an extended sample period ending December 2012 (comparetively to December 2008 for Næs 

et al. (2011)) indicate that the evidence of the liquidity measures acting as strong leading indicators 

to economic cycles may be sensitive to the sample period selection and that a non-linear 

specification might be more appropriate and suitable in investigating the link between liquidity 

measures and macroeconomic variables. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
6 The Moody's long-term corporate bond yield index comprises seasoned corporate bonds with maturities close to 30 

years. 
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Table 3.1 

Amihud Liquidity Measure Predictive Power on Macroeconomic Proxies using a Linear 

Regression Model  
The table shows the results from predictive regressions following Næs et al. (2011) approach in which next-quarters 

growth in different macro variables are regressed on three proxies for market illiquidity for the period 1947-2012. 

Market illiquidity (LIQ) in this table is proxied by the Amihud Illiquidity ratio (Amihud) which is log differenced to 

preserve stationarity. The macroeconomic variables are real GDP growth (dGDPR), growth in the unemployment rate 

(dUE), real consumption growth (dCONSR) or growth in private investments (dINV). One lag of the dependent 

variable (yt) and Term , dCred, Vola and erm as control variables.  

 

 

 

 

 

Dependent 

Variable yt+1 
�̂� �̂�𝑳𝑰𝑸 �̂�𝒚 �̂�𝑻𝑬𝑹𝑴 �̂�𝑪𝑹𝑬𝑫 �̂�𝑽𝒐𝒍𝒂 �̂�𝒆𝒓𝒎  

      
Amihud Liquidity Measure  

  

        

dGDPR 0.508 -0.429 0.335     

 (7.16) (-3.02) (6.26)     

dCONSR 0.658 -0.236 0.206     

 (10.21) (-1.83) (3.99)     

dGPDI -0.071 -2.939 1.24     

  (-0.19) (-3.94) (4.18)     

dUNRATE 3.829 1.450 -4.378     

 (7.21) (1.36) (-10.30)     

 

dGDPR 0.568 -0.324 0.325 0.052 -0.016  

 

 (7.86) (-2.28) (5.69) (3.72) (-1.16)   

dCONSR 0.661 -0.202 0.220 0.042 0.030   

 (10.18) (-1.58) (4.27) (3.33) (2.34)   

dGPDI 0.228 -2.495 1.051 0.148 -0.174   

  (0.59) (-3.31) (3.46) (1.98) (-2.28)   

dUNRATE 3.556 1.009 -4.223 -0.186 0.117   

 (6.46) (0.93) (-9.68) (-1.74) (1.07)   

        

dGDPR 1.106 -0.312 0.290 0.052 -0.047 -0.025 -0.173 

 (4.79) (-2.21) (4.94) (3.72) (-1.53) (-1.28) (-2.29) 

dCONSR 1.075 -0.190 0.187 0.041 0.006 -0.020 -0.159 

 (5.62) (-1.49) (3.54) (3.31) (-0.23) (-1.14) (-2.34) 

dGPDI 1.969 -2.460 0.912 0.148 -0.322 -0.120 -0.676 

 (1.74) (-3.26) (2.91) (1.98) (-1.95) (-1.13) (-1.68) 

dUNRATE 1.721 1.020 -4.071 -0.191 0.394 0.215 0.726 

 (1.05) (0.94) (-9.03) (-1.78) (1.67) (1.41) (1.25) 
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Table 3.2 

Lesmond, Ogden, and Trczinka (1999) Liquidity Measure Predictive Power on 

Macroeconomic Proxies using a Linear Regression Model  
The table shows the results from predictive regressions following Næs et al. (2011) approach in which next-quarters 

growth in different macro variables are regressed on three proxies for market illiquidity for the period 1947-2012. 

Market illiquidity (LIQ) in this table is proxied by the Lesmond, Ogden, and Trczinka Illiquidity ratio (LOT) which is 

log differenced to preserve stationarity. The macroeconomic variables are real GDP growth (dGDPR), growth in the 

unemployment rate (dUE), real consumption growth (dCONSR) or growth in private investments (dINV). One lag of 

the dependent variable (yt) and Term , dCred, Vola and erm as control variables.  

 

 

 

 

 

Dependent 

Variable yt+1 
�̂� �̂�𝑳𝑰𝑸 �̂�𝒚 �̂�𝑻𝑬𝑹𝑴 �̂�𝑪𝑹𝑬𝑫 �̂�𝑽𝒐𝒍𝒂 �̂�𝒆𝒓𝒎  

      
LOT Liquidity Measure  

  

        

dGDPR 0.499 -0.441 0.369     

 (6.94) (-1.05) (6.41)     

dCONSR 0.652 -0.494 0.212     

 (10.10) (-1.31) (4.10)     

dGPDI -0.131 -2.749 1.342     

  (-0.34) (-1.23) (4.39)     

dUNRATE 3.860 1.080 -4.427     

 (7.24) (0.34) (-10.41)     

 

dGDPR 0.575 -0.677 0.323 0.059 -0.025  

 

 (7.95) (-1.64) (5.60) (4.28) (-1.72)   

dCONSR 0.666 -0.479 0.218 0.047 0.024   

 (10.23) (-1.29) (4.20) (3.73) (1.91)   

dGPDI 0.279 -4.206 1.045 0.203 -0.203   

  (0.72) (-1.90) (3.38) (2.71) (-2.98)   

dUNRATE 3.535 2.137 -4.215 -0.210 0.143   

 (6.42) (0.68) (-9.63) (-1.98) (1.30)   

        

dGDPR 1.105 -0.755 0.280 0.058 -0.039 -0.014 -0.202 

 (5.17) (-1.79) (4.72) (4.21) (-1.27) (-0.71) (-2.66) 

dCONSR 1.135 -0.549 0.180 0.045 0.011 -0.012 -0.179 

 (5.90) (-1.45) (3.37) (3.67) (0.42) (-0.70) (-2.61) 

dGPDI 2.579 -4.616 0.860 0.196 -0.275 -0.047 -0.876 

 (2.24) (-2.03) (2.69) (2.62) (-1.64) (-0.43) (-2.13) 

dUNRATE 1.475 1.872 -4.051 -0.211 0.375 0.185 0.807 

 (0.90) (0.58) (-8.91) (-1.99) (1.57) (1.19) (1.38) 
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Table 3.3 

Roll Liquidity Measure Predictive Power on Macroeconomic Proxies using a Linear 

Regression Model  
The table shows the results from predictive regressions following Næs et al. (2011) approach in which next-quarters 

growth in different macro variables are regressed on three proxies for market illiquidity for the period 1947-2012. 

Market illiquidity (LIQ) in this table is proxied by the Roll Illiquidity ratio (Roll) which is not log differenced. The 

macroeconomic variables are real GDP growth (dGDPR), growth in the unemployment rate (dUE), real consumption 

growth (dCONSR) or growth in private investments (dINV). One lag of the dependent variable (yt) and Term , dCred, 

Vola and erm as control variables.  

 

 

 

Dependent 

Variable yt+1 
�̂� �̂�𝑳𝑰𝑸 �̂�𝒚 �̂�𝑻𝑬𝑹𝑴 �̂�𝑪𝑹𝑬𝑫 �̂�𝑽𝒐𝒍𝒂 �̂�𝒆𝒓𝒎  

      
Roll Liquidity Measure  

  

        

dGDPR 0.497 -0.715 0.374     

 (6.97) (-2.42) (6.58)     

dCONSR 0.652 -0.287 0.216     

 (10.08) (-1.07) (4.18)     

dGPDI 0.140 -3.552 1.373     

  (-0.37) (-2.26) (1.37)     

dUNRATE -0.264 -2.962 1.412     

 (-0.71) (-1.92) (4.77)     

 

dGDPR 0.561 -0.419 0.339 0.053 -0.016  

 

 (7.70) (-1.39) (5.87) (3.73) (-1.13)   

dCONSR 0.658 -0.218 0.228 0.043 0.013   

 (10.04 (-0.80)        (4.39) (3.37) (2.27)   

dGPDI 0.203 -2.097 1.136 0.168 -0.185   

  (0.52) (-1.29) (3.66) (2.19) (-2.35)   

dUNRATE 0.080 -1.499 1.178 0.173 -0.183   

 (0.21) (-0.94) (3.90) (2.32) (-2.39)   

        

dGDPR 0.992 -0.423 0.304 0.053 -0.053 -0.030 -0.167 

 (4.56) (-1.33) (5.10) (3.75) (-1.70) (-1.45) (-2.17) 

dCONSR 1.069 -0.194 0.194 0.043 0.003 -0.022 -0.158 

 (5.46) (-0.68) (3.63) (3.37) (0.13) (-1.18) (-2.29) 

dGPDI 1.949 -2.167 0.996 0.168 -0.353 -0.135 -0.682 

 (1.66) (-1.26) (3.09) (2.19) (-2.07) (-1.20) (-1.64) 

dUNRATE 1.684 -1.599 1.050 0.173 -0.345 -0.130 -0.627 

 (1.47) (-0.95) (3.34) (2.32) (-2.09) (-1.19) (-1.55) 
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3.4 The Regime-Switching Models  

There is growing evidence that many financial and economic indicators tend to behave differently 

during high and low economic cycles and that, consequently, the empirical models of these 

economic time series are characterized by parameter variability. This has generated considerable 

interest in time-varying parameter models. For instance, GDP growth rates typically stay around a 

higher level and are more persistent during expansions, but they fluctuate at a relatively lower level 

and less persistent during contractions. For financial series, bear markets are usually more volatile 

than bull markets which implies that prices go down faster than they go up. This means that we 

can expect the variance of bear markets to be higher than the bull markets.  For such series data, it 

would not be realistic to assume a single, linear model to model these distinct dynamics.  

Roughly speaking, two main classes of statistical models have been proposed which reinforce the 

notion of existence of different regimes. The first popular time-varying parameter model is the 

Markov regime switching framework approach of Hamilton (1989) to modeling macroeconomic 

and financial data. It has been employed to study the dynamic of GNP growth rates (Hamilton 

(1989)), real interest rates (Garcia and Perron (1996)), stock returns (Hamilton and Susmel (1994)) 

and corporate bond default risk (Giesecke et al. (2011)). The second model is the smooth-transition 

regression model which has been employed to analyze non-linearities in UK consumption and 

industrial production (Öcal and Osborn (2000)), non-linear relationships between US GNP growth 

and leading indicators (Granger and Teräsvirta (1993)) and between stock returns and business 

cycle variables (McMillan (2001)). 
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3.4.1 The Hamilton’s (1989) Regime-Switching Model 

 

The Hamilton (1989) Regime-Switching Model assumes that the behaviour of certain 

macroeconomic or financial indicators changes as a result of changes in economic activity. 

However, the state of economic activity, which is unobservable and which determines the process 

that generates the observable dependent variable (in this study the macroeconomic variables), is 

inferred through the observed behavior of the dependent variable.  In the original Hamilton model 

(1989), it was assumed, as well as in this study, that there were two possible states of economic 

phases (regimes), corresponding to the condition of an economy (prosperity vs. recession).  

In this study, the two-state Markov-chain regime-switching model is employed to evaluate the 

effects of different liquidity measures in explaining the growth dynamic in several macroeconomic 

variables for the United States for the period January 1947 to December 2012.   

Let y denote the macroeconomic variable for quarter t and for which its historical behavior can be 

described by the following econometric specification: 

                                                     𝑦𝑡  = 𝑎𝑡   + ∑ 𝑏𝑘  𝑋𝑘 ,𝑡−1
𝑁
𝑘=1   + 𝜀𝑡                                        (3.8) 

where Xt-1 is a k-vector of explanatory variables and the bk terms are the corresponding factor 

loadings. The intercept term at follows a two-state Markov chain, taking values a1 and a2, with the 

probability πij of switching from state i to state j is given by the matrix: 

[
𝜋11 𝜋21

𝜋12 𝜋22
] 

Moreover let ξit represent the probability of being in state i in quarter t conditional on the data and 

𝜂𝑗𝑡   the densities under the two regimes which are given by: 
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                                       𝜂𝑗𝑡  =  
1

√2𝜋𝜎2 
 exp (

−( 𝑦𝑡−𝑎𝑗𝑡− ∑ 𝑏𝑘  𝑋𝑘 ,𝑡−1
𝑁
𝑘=1 )

2

2𝜎2 )                                    (3.9) 

where σ represents the volatility of the residuals εt which are assumed to follow an independent 

and identically distribution (iid) to allow performing standard maximum log likelihood functions. 

All i and j are then sum up to compute the likelihood function ft, 

 

                                                   𝑓𝑡    =  ∑ ∑ 𝜋𝑖𝑗
2
𝑖=1

2
𝑖=1 𝜉

𝑖,𝑡−1
𝜂

𝑖𝑡
                                         (3.10) 

 

 

The state probabilities are then re-estimated by the recursive specification 

                                                        𝜉𝑗,𝑡 =  
∑ 𝜋𝑖𝑗𝜉𝑖,𝑡−1𝜂𝑖𝑡

3
𝑖=1

 𝑓𝑡 
                                               (3.11) 

 

The log likelihood function for the data can hence be estimated by summing the log likelihoods 

for each date by using standard maximum likelihood procedures. 

 

3.4.2 The Smooth-Transition Regression Model 

 

The other popular model that has been extensively used in the past two decades to modelling 

nonlinearities in the dynamic properties of many economic time series and for summarizing and 

explaining cyclical behavior of macroeconomic data and business cycle asymmetries is the Smooth 

Transition Autoregressive Model (STAR), which was developed by Teräsvirta (1994) and Granger 

and Teräsvirta (1993).  
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The smooth transition autoregressive (STAR) model for a univariate time series 𝑦𝑡, is given by: 

 

                                   𝑦𝑡 =  𝛼0 + ∑ 𝛼0𝑦𝑡−𝑖
𝑝
𝑖=1 + 𝐹(𝜉𝑡, 𝛾, 𝑐)[𝛽0 +  ∑ 𝛽𝑖𝑦𝑡−𝑖

𝑝
𝑖=1 ] + 𝜀𝑡               (3.12) 

 

 

where F(𝜉𝑡, 𝛾, 𝑐) is a transition function which controls for the switch from one regime to the other 

and is bounded between 0 and 1. The scale parameter  𝛾 > 0 is the slope coefficient that determines 

the smoothness of the transition: the higher it is the more abrupt the change from one extreme 

regime to the other 𝜉𝑡. The location or threshold parameter between the two regimes is represented 

by 𝑐 and 𝜉𝑡 is called the transition (threshold) variable, with 𝜉𝑡 = 𝑦𝑡−𝑑 (𝑑 a delay parameter).  

Two popular selections for the transition function are the logistic function (LSTAR) and the 

exponential function (ESTAR). The LSTAR function is specified as:  

 

        𝐹 =  [1 +  exp (−𝛾(𝜉𝑡 − 𝑐))]−1                                      (3.13) 

 

while the ESTAR function is specified as: 

 

         𝐹 =  1 −  exp (−𝛾(𝜉𝑡 − 𝑐)2)                                          (3.14) 

 

The main difference between these two STAR models relies on how they describe macroeconomic 

series dynamic behaviour. The LSTAR model reflects the asymmetrical adjustment process that 

usually characterize economic cycles: a sharper transition and sharp recovery following business 

cycle troughs compare to economic peaks. In contrast, the ESTAR specification suggests 

symmetrical adjustment dynamic.  

To determine the adequate transition function to apply to the data, Terasvirta (1994) suggests a 

model selection procedure which is explained and applied in the section 3.5 (Empirical Results).  
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While an exogenous variable could be employed as the transition variable, in this paper as per the 

majority of research studies using STAR models, the dependent variable (the macroeconomic 

proxies) plays this role and 𝑑 equals one, meaning that the first lagged value of the macroeconomic 

variable investigated acts at the threshold variable.  

 

In the Smooth Transition Autoregression (STAR) all predetermined variables are lags of the 

dependent variable. An extension to the STAR model is the smooth transition regression (STR) 

model which is an amendment to the STAR model that allows for exogenous variables x1t,…, xkt 

as additional regressors. In this study, the applied STR model includes other exogenous factors the 

i.e. the liquidity measures and the factors Term, Cred, Vola, erm. The standard method of 

estimation of STR (STAR) models is nonlinear least squares (NLS), which is equivalent to the 

quasi-maximum likelihood approach.  

 
Two interpretations of a STR (STAR) model are possible. First, the STR model may be thought 

of as a regime-switching model that allows for two regimes, associated with the extreme values of 

the transition function, F(𝜉𝑡; 𝑦, c) = 0 and F(𝜉𝑡; 𝑦, c) = 1, where the transition from one regime to 

the other is smooth. The regime that occurs at time t is determined by the observable variable 𝜉. 

Second, the STR model can be said to enable a continuum of states between the two extremes.  

The key advantage in favour of STR models is that changes in some economic and financial 

aggregates are influenced by changes in the behaviour of many diverse agents and it is highly 

improbable that all agents respond instantaneously to a given economic signal. For instance, in 

financial markets, with a considerable number of investors, each switching at different times 

(probably caused by heterogeneous objectives), a smooth transition or a continuum of states 

between the extremes seems more realistic. 
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Both the Hamilton’s (1989) Markov switching regime model and the smooth transition 

autoregressive model assume that the series under examination are stationary. Indeed these 

specifications investigate time series by distinguishing non-stationary or stationarity linear systems 

from stationary nonlinear ones. 

 

Note that while the empirical literature shows that all studies related to economic regimes employ 

the first difference of the variables under consideration to make them stationary, some studies 

investigate, in addition, the levels of macroeconomic time series for robustness purposes. 

Implementing this approach in my essay, the results present question the conclusion that stock 

market liquidity may act as a leading indicator to economic cycles.   
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3.5 Empirical Results 

In order to investigate the link between stock market liquidity and business cycles in a non-linear 

specification, the dependent variables, i.e. the macroeconomic proxies dRGDP, dCONS, dGPDI 

and dUE, need to be tested to verify whether linearity should be rejected or not. Terasvirta (1994)’s 

model allows to perform this test by doing a Lagrange multiplier test for linearity versus an 

alternative of LSTAR or ESTAR in a univariate autoregression:  

 

                       
2 3

0 1 2 3 4

1 1 1 1

p p p p

t j t j j t j t d j t j t d j t j t d t

j j j j

y y y y y y y y e          

   

                    (3.15) 

 
 

As mentioned previously, in this study both the lags value p and the delay parameter d equals 17. 

The null hypothesis of linearity is therefore β2 = β3 = β4 = 0. If the null hypothesis is rejected, the 

next step is to choose between LSTAR and ESTAR models by a sequence of nested tests:  

H01 is a test of the first order interaction terms only: β2 = 0 

H02 is a test of the second order interaction terms only: β3 = 0 

H03 is a test of the third order interaction terms only: β4= 0 

H12 is a test of the first and second order interactions terms only: β2 = β3 = 0 

 

The decision rules of choosing between LSTAR and ESTAR models are suggested by Teräsvirta 

(1994): Either an LSTAR or ESTAR will cause rejection of linearity. If the null of linearity is 

rejected H12 and H03 become the appropriate statistic if ESTAR is the main hypothesis of interest: 

                                                           
7 There exists no econometric specification that allows to precisely determine the value of the delay 

parameter p.  Most of the literature related to non-linear STAR models uses p = 1. 



122 

 

If both H12 is rejected and H03 is accepted, this may be interpreted as a favor of the ESTAR model, 

as opposed to an LSTAR.  

Table 3.4 presents the results of the Teräsvirta (1994) linearity test performed on the 

macroeconomic proxies of interest which show that the specification rejects the hypothesis of 

linearity for three variables: dRGDP, dGPDI and dCONSR. However, the hypothesis of linearity 

cannot be rejected for the unemployment rate (dUE) proxy triggering the exclusion of this variable 

from the analysis.  These findings are important since they provide evidence that Næs et al. (2011), 

by using a linear framework, improperly analyzed the link between stock market liquidity and the 

variables dRGDP, dGPDI and dCONSR since these macroeconomic proxies behave according to 

non-linear behaviours. Moreover, hypothesis H12 is rejected and hypothesis H03 is not rejected 

simultaneously only for the variable dGPDI which implies that the LSTAR model is the 

appropriate specification for the variables dRGDP and dCONSR and that the ESTAR model will 

be applied to investigate the variable dGPDI. 

 

Table 3.4 Tests of Linearity and LSTAR vs ESTAR Models  
This table shows the results of the Teräsvirta (1994)’s approach to first test for linearity of the dependent variable. If 

the hypothesis of linearity is rejected and H03 is accepted while H12 is rejected then the specification will point toward 

an ESTAR instead of a LSTAR model.   
 

 dRGDP dUE dGPDI dCONSR 

 F-Value      Significance F-Value      Significance F-Value      Significance F-Value       Significance 

Linearity 6.733        0.0002 0.073        0.9742 2.607        0.0522 18.258        0.0000 

H01 8.236        0.0045 0.005        0.9418 3.746        0.0540 16.619        0.0001 

H02 7.944        0.0052 0.159        0.3897 4.051        0.0452 17.966        0.0000 

H03 3.625        0.0580 0.056        0.8128 0.011        0.9162 16.808        0.0001 

H12 8.202        0.0004 0.107        0.8978 3.921        0.0210 17.955        0.0000 
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Table 3.5 provides descriptive statistics for the liquidity measures of interest as well as for the 

macroeconomic variables. Panel A shows that the mean of the liquidity measures Amihud, LOT 

and Roll investigated in this study are over the period 1947 through 2012 are 1.040, 0.188 and 

0.768 respectively. Sub-period averages reveal that all three liquidity measures were the lowest 

for the last time span of the period covered i.e. 2000 to 2012. This implies that stocks are more 

liquid in the most recent era. 

Correlations between the liquidity measures (Panel B) present evidence of a strong positive 

correlation between Amihud and LOT (0.63). The Roll liquidity is more highly correlated with the 

Amihud liquidity proxy (0.30) than with the LOT measure (0.10). 

 

Panel C and D of Table 3.5 presents the corresponding statistics for the macroeconomic proxies. 

The sub-period 2000-2012 has generated the lowest economic growth according to all three 

economic variables. This relative underperformance of the U.S. economy during that time period 

comparatively to previous ones may be explained by the severe economic recession that has hit 

the nation in 2008 and 2009 and which was not followed by a usually observed sharp economic 

recovery.     

Finally, Panel D shows that the three macroeconomic proxies during the period analyzed are highly 

and positively correlated since 70% of U.S. GDP is due to consumer spending8 and that private 

fixed investment represents 15% of the U.S. economy.9  

 

 

 

 

 

 

 

                                                           
8 http://research.stlouisfed.org/fred2/graph/?g=hh3 
9 http://data.worldbank.org/indicator/NE.GDI.FTOT.ZS   

http://data.worldbank.org/indicator/NE.GDI.FTOT.ZS
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Table 3.5 Descriptive Statistics 
Panels A and B exhibit descriptive statistics for the U.S. liquidity measures for the period 1947 through 2012. The liquidity 

measures analyzed are the Lesmond, Ogden, and Trzcinka (1999) (LOT), the Amihud (2002) (Amihud) and the Roll (1984) implicit 

spread estimator (Roll). Panel A present the mean and median of the liquidity measures, and average liquidity measures for different 

subperiods. Panel B shows correlation coefficients between the liquidity measures.  Panels C and D show equivalent statistics for 

U.S. macroeconomic proxies i.e. real GDP growth (dRGDP), growth in private investment (dGPDI), and real consumption growth 

(dCONSR).  

Panel A: Descriptive Statistics, Liquidity Measures 

 Mean Median 
Means, Subperiods 

1947–59          1960–69            1970–79             1980–89            1990–99            2000–12 

Amihud 1.040 0.919        1.465      0.762   1.246 
 

      1.397  1.132  0.252  

LOT 0.188 0.200          0.209      0.176   0.263  0.239    0.192  0.030  

Roll 0.768 0.733          0.592      0.378   0.822  0.929    1.081  0.792  

 Panel B: Correlation Coefficients, Liquidity Measures 

                                          LOT                             Amihud 

Amihud                            0.63               

Roll                            0.10           0.30   

 
 

Panel C: Descriptive Statistics, Macroeconomic Variables 

 Mean Median 
Means, Subperiods 

1947–59          1960–69            1970–79             1980–89            1990–99            2000–12 

dRGDP 0.811 0.777        0.939      1.025   0.861 
 

      0.789  0.811  0.444  

dGPDI 0.842 1.009          0.880      1.073   0.834  0.851    0.886  0.533  

dCONSR 0.895 0.832          0.865      0.973   1.206  0.721    1.471  0.147  

 Panel D: Correlation Coefficients, Macroeconomic Variables 

                                    dCONSR                             dRGDP 

dRGDP                            0.59               

dGPDI                            0.24           0.79   
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The main results of this study are presented in Tables 3.3 through 3.8 for the Markov switching-

regime model and Tables 3.9 through 3.14 for the STAR frameworks. The models applied allow 

to determine whether change in growth in the macro proxy yt+1 (dRGDP, dCONSR and dGPDI) 

over quarter t + 1. LIQt is the liquidity measure (Amihud, Roll and LOT) and the variables Term, 

Cred, Vola, erm, and the lag of the dependent variable yt represent the control variables included 

in the models. Three different specifications are investigated.  In the first, yt  is regressed on its lag 

and the liquidity measure; in the second,  yt is regressed on the previous two explanatory variables 

and the variables Term and Cred; in the third, the variables Vola and erm are added to the previous 

four.  

 

The findings, using the Markov switching-regime model, for the relationship between the 

dependent variable and the Amihud (2002) liquidity measure as well as the other explanatory 

variables under the economic expansion regime and the economic contraction regime are presented 

in Tables 3.6 and 3.7 respectively. Results show that the coefficients for the Amihud (2002) 

measure are not significant for all three macroeconomic variables when the economy is going 

toward an expansion phase (Table 3.6). When the economy is moving to a recession the coefficient 

of the Amihud (2002) measure becomes significant and negative for the variables rGDP and 

rCONSR when the dependent variable is regressed on this liquidity measure and the lag of the 

explained variable: this means that when aggregate liquidity worsens (liquidity measures increase) 

growth in the macroeconomic proxies decline which explain the negative coefficients. However, 

these coefficients remain robust to the inclusion of the bond variables Term and Cred but not to 

the adding of the equity variables Vola and erm (3rd specification).  

The corresponding results for the Amihud (2002) liquidity measure using the LSTAR model 

(Tables 3.12 and 3.13) indicate that this measure has even less predictive power for the subsequent 
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quarter of the state of the economy. Indeed, the coefficients are again all not significant for the 

growth phase of the economy but the findings related to the economic contraction phase show that 

only the specification using the liquidity measure and the lag of the dependent variable provides a 

significant coefficient that however doesn’t stay robust to the addition of other explanatory 

variables.  

 

Using the Markov switching-regime, the Roll (1984) liquidity measure also has no forecasting 

power for the subsequent quarter when the state of the economy is heading toward a recession 

(Table 3.9): the coefficients of this liquidity measure are all insignificant at the 5% level except 

for dRGDP in the third specification. In the expansion phase of the business cycle (Table 3.8), the 

Roll variable presents a more forecasting prowess as the coefficients on this liquidity measure 

become significant for all three macroeconomic proxies under the first and second specifications. 

However, using all control variables (third specification) only the coefficient for dGDPR remains 

distinguishable from zero.  

Applying the LSTAR model (Tables 3.14 and 3.15), findings show that Roll possesses a strong 

ability to predict future growth of the dGPDI variable as represented by the significant coefficients 

of this liquidity measure for all three specifications and for both the expansion and contraction 

regimes. Coefficients are also different from zero under the recession phase (Table 3.15) for 

dRGDP and dCONSR in the second regime but both these significances disappear when including 

the control variables related to the stock market i.e. Vola and erm.     

 

Finally, when the Markov switching-regime is applied to investigate the relationship between the 

LOT measure and upcoming economic conditions, only one coefficient of this liquidity measure 

is significant for forecasting an expansion phase (Table 3.10) viz. when dGPDI is the forecasted 
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variable under the second specification. However, this coefficient turns out insignificant when 

adding the explanatory variables Vola and erm. For predicting the recession phase (Table 3.11), 

LOT liquidity measure is able to forecast the future growth of the dCONSR variable under the third 

specification.  

Using the STAR models (Tables 3.16 and 3.17), similar results are observed for both regimes: 

LOT liquidity measure has the ability to predict the growth of dGDPR even when including some 

or all control variables (second and third specification).  

 

All in all, while some coefficients of the three liquidity measures are significant in the prediction 

of the future growth of macroeconomic proxies, only few remain distinguishable from zero after 

including the control variables. This critical fact implies that the findings are not strong and reliable 

enough to affirm with confidence that aggregate liquidity is a strong leading indicator and contains 

significant additional information about future economic growth as claimed by Næs et al. (2011).   

It is also important to mention that the analysis in this study was also performed using the levels 

of the macroeconomic variables as well as the liquidity measures instead of their log differences. 

This alternative approach permitted analysis of three other relationships: levels of the 

macroeconomic proxies versus levels and versus log differences of the liquidity measures as well 

as the log differences of the economic variables versus levels of liquidity measures. The results 

obtained are even less significant and robust to the ones presented previously.  
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Table 3.6 

Amihud (2002) Liquidity Measure Predictive Power on Macroeconomic Proxies using the 

Markov-Switching Model 
The table shows the parameter estimates under the economic expansion regime and their asymptotic t-statistics from 

the maximum likelihood estimation of the Markov regime-switching model for the period 1947 through 2012. The 

dependent variables are the three macroeconomic proxies dGDPR, dCONSR and dGPDI and the explanatory variables 

are the Amihud (2002) liquidity measure (LIQ), the lag of the dependent variable (yt), Term, dCred, Vola, and erm. 

Significant coefficients for the liquidity measure are in bold font.  

 

 

  

Dependent 

Variable yt+1 
�̂� �̂�𝑳𝑰𝑸 �̂�𝒚 �̂�𝑻𝑬𝑹𝑴 �̂�𝑪𝑹𝑬𝑫 �̂�𝑽𝒐𝒍𝒂 �̂�𝒆𝒓𝒎  

      
Amihud Liquidity Measure – Economic Expansion Regime 

  

        

dGDPR 0.718 -0.131 0.207     

 (7.43) (-0.86) (2.73)     

dCONSR 0.782 -1.671     -0.412     

 (1.47) (-0.68) (-1.57)     

dGPDI 0.977 -0.420 0.161     

  (3.71) (-0.57) (1.85)     

 

dGDPR 2.809 2.151 -0.486 0.045 0.232  

 

 (4.72) (0.80) (-1.17) (0.08) (0.37)   

dCONSR 1.085 -2.101 -0.506 0.484 0.177   

 (1.81) (-0.81) (-1.75) (0.90) (0.61)   

dGPDI 0.988 -0.482 0.200 0.480 0.284   

  (3.86) (-0.71) (2.32) (3.42) (3.33)   

        

dGDPR 3.804 1.668 -0.847 -0.322 0.108 -0.485 0.207 

 (2.61) (0.68) (-1.96) (-0.806 (0.34) (-0.78) (1.75) 

dCONSR 4.245 -1.208 -0.581 0.462 0.174 -1.453 -0.034 

 (1.18) (-0.45) (-1.92) (0.66) (0.55) (-0.83) (-0.18) 

dGPDI 2.295 -1.993 0.122 0.274 -0.024 -0.659 0.494 

 (0.94) (-1.00) (0.992) (1.11) (-0.21) (-0.70) (2.49) 

        



129 

 

Table 3.7 

Amihud (2002) Liquidity Measure Predictive Power on Macroeconomic Proxies using the 

Markov-Switching Model 
The table shows the parameter estimates under the economic contraction regime and their asymptotic t-statistics from 

the maximum likelihood estimation of the Markov regime-switching model for the period 1947 through 2012. The 

dependent variables are the three macroeconomic proxies dGDPR, dCONSR and dGPDI and the explanatory variables 

are the Amihud (2002) liquidity measure (LIQ), the lag of the dependent variable (yt), Term, dCred, Vola, and erm. 

Significant coefficients for the liquidity measure are in bold font. 

 

  

Dependent 

Variable yt+1 
�̂� �̂�𝑳𝑰𝑸 �̂�𝒚 �̂�𝑻𝑬𝑹𝑴 �̂�𝑪𝑹𝑬𝑫 �̂�𝑽𝒐𝒍𝒂 �̂�𝒆𝒓𝒎  

      
Amihud Liquidity Measure – Economic Contraction Regime 

  

        

dGDPR -0.431 -1.079 0.999     

 (-1.63) (-2.03) (4.76)     

dCONSR 0.583 -0.222 0.307     

 (7.76) (-2.13) (4.49)     

dGPDI 0.044 -3.093 0.147     

  (0.143) (-1.35) (1.17)     

 

dGDPR 0.388 -0.312 0.427 0.075 0.025  

 

 (5.44) (-2.31) (7.66) (2.48) (1.35)   

dCONSR 0.585 -0.224 0.306 0.006 0.004   

 (7.83) (-2.11) (4.48) (0.25) (0.26)   

dGPDI 0.151 -2.615 0.226 0.441 0.022   

  (0.32) (-1.23) (7.66) (1.95) (0.29)   

        

dGDPR 0.556 -0.258 3.78 0.064 0.199 -0.043 0.038 

 (2.63) (-1.91) (6.36) (2.17) (1.04) (-0.585) (2.75) 

dCONSR 0.796 -0.198 0.261 0.004 0.000 -0.065 0.017 

 (4.39) (-1.81) (3.49) (0.24) (0.05) (-1.11) (1.33) 

dGPDI 1.726 -0.099 0.188 0.474 0.275 -0.264 0.191 

 (1.89) (-0.21) (2.13) (3.28) (2.99) (-0.79) (3.08) 
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Table 3.8 

Roll (1984) Liquidity Measure Predictive Power on Macroeconomic Proxies using the 

Markov-Switching Model 
The table shows the parameter estimates under the first regime and their asymptotic t-statistics from the maximum 

likelihood estimation of the Markov regime-switching model for the period 1947 through 2012. The dependent 

variables are the three macroeconomic proxies dGDPR, dCONSR and dGPDI and the explanatory variables are the 

Roll (1984) liquidity measure (LIQ), the lag of the dependent variable (yt), Term, dCred, Vola, and erm. Significant 

coefficients for the liquidity measure are in bold font. 

 

  

Dependent 

Variable yt+1 
�̂� �̂�𝑳𝑰𝑸 �̂�𝒚 �̂�𝑻𝑬𝑹𝑴 �̂�𝑪𝑹𝑬𝑫 �̂�𝑽𝒐𝒍𝒂 �̂�𝒆𝒓𝒎  

     
Roll Liquidity Measure – Economic Expansion Regime 

  

        

dGDPR 0.552 0.126 0.265     

 (5.82) (0.44) (2.39)     

dCONSR 0.844 2.859 -0.398     

 (1.42) (0.85) (-1.48)     

dGPDI 0.280 -1.627 0.982     

  (0.75) (-1.23) (2.85)     

 

dGDPR 0.699 0.478 0.145 -0.020 0.001  

 

 (6.43) (1.53) (1.23) (-0.86) (0.10)   

dCONSR 1.885 1.013 -0.943 1.224 0.138   

 (2.83) (0.452) (-3.98) (1.84) (0.43)   

dGPDI 0.266 -0.961 1.086 0.469 0.272   

  (0.70) (-0.68) (3.17) (3.22) (2.85)   

        

dGDPR 0.836 -0.993 0.315 0.070 0.009 -0.096 0.064 

 (2.36) (-2.11) (3.93) (1.43) (0.24) (-0.68) (2.62) 

dCONSR 0.950 -0.201 0.250 -.002 -0.003 -0.108 0.026 

 (4.88) (-0.76) (3.27) (-0.12) (0-0.21) (-1.70) (2.07) 

dGPDI 0.850 0.299 0.959 0.483 0.283 -0.158 0.183 

 (0.80) (-0.21) (2.76) (3.10) (2.65) (-.044) (2.93) 
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Table 3.9 

Roll (1984) Liquidity Measure Predictive Power on Macroeconomic Proxies using the 

Markov-Switching Model 
The table shows the parameter estimates under the second regime and their asymptotic t-statistics from the maximum 

likelihood estimation of the Markov regime-switching model for the period 1947 through 2012. The dependent 

variables are the three macroeconomic proxies dGDPR, dCONSR and dGPDI and the explanatory variables are the 

Roll (1984) liquidity measure (LIQ), the lag of the dependent variable (yt), Term, dCred, Vola, and erm. Significant 

coefficients for the liquidity measure are in bold font. 

 

  

Dependent 

Variable yt+1 
�̂� �̂�𝑳𝑰𝑸 �̂�𝒚 �̂�𝑻𝑬𝑹𝑴 �̂�𝑪𝑹𝑬𝑫 �̂�𝑽𝒐𝒍𝒂 �̂�𝒆𝒓𝒎  

      
Roll Liquidity Measure – Economic Contraction Regime 

  

        
dGDPR 0.533 -1.305 0.355     

 (4.82) (-2.72) (4.63)     

dCONSR 0.568 -0.541 0.321     

 (8.08) (-2.45) (4.99)     

dGPDI -0.533 -8.567 1.277     

  (-0.61) (-2.04) (2.12)     

 

dGDPR 
0.500 -1.284 0.404 0.091 0.016  

 

 (4.67) (-2.77) (5.39) (1.93) (0.48)   

dCONSR 0.599 -0.588 0.282 -0.001 -0.004   

 (8.20) (-2.39) (4.19) (-0.06) (-0.20)   

dGPDI -0.696 -8.405 1.556 0.361 -0.015   

  (-0.78) (-1.95) (2.52) (1.57) (-0.16)   

        

dGDPR 0.822 -0.651 0.072 -0.28 -0.009 -0.248 0.015 

 (4.04) (-2.31) (0.674) (-0.91) (-0.56) (-2.13) (1.17) 

dCONSR -0.859 -2.631 -0.719 0.534 0.197 0.288 -0.066 

 (-0.80) (-1.66) (-6.52) (2.93) (1.97) (0.77) (-1.42) 

dGPDI 0.816 -6.490 1.019 0.229 -0.052 -0.332 0.376 

 (0.31) (-1.49) (1.51) (0.65) (-0.23) (-0.35) (1.79) 
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Table 3.10 

Lesmond, Ogden, and Trczinka (1999) Liquidity Measure Predictive Power on 

Macroeconomic Proxies using the Markov-Switching Model 
The table shows the parameter estimates under the first regime and their asymptotic t-statistics from the maximum 

likelihood estimation of the Markov regime-switching model for the period 1947 through 2012. The dependent 

variables are the three macroeconomic proxies dGDPR, dCONSR and dGPDI and the explanatory variables are the 

Lesmond et al. (1999) liquidity measure (LIQ), the lag of the dependent variable (yt), Term, dCred, Vola, and erm. 

Significant coefficients for the liquidity measure are in bold font. 

 

 

 

 

 

 

 

 

 

 

 

 

Dependent 

Variable yt+1 
�̂� �̂�𝑳𝑰𝑸 �̂�𝒚 �̂�𝑻𝑬𝑹𝑴 �̂�𝑪𝑹𝑬𝑫 �̂�𝑽𝒐𝒍𝒂 �̂�𝒆𝒓𝒎  

    
LOT Liquidity Measure - Economic Expansion Regime 

 

        

dGDPR 0.540 0.287 0.289     

 (5.45) (0.62) (2.30)     

dCONSR 0.816 0.890 -0.369     

 (1.43) (0.21) (-1.44)     

dGPDI 0.969 2.504 0.172     

  (3.69) (1.26) (1.91)     

 

dGDPR 3.008 -0.683 -1.202 0.044 -0.065  

 

 (0.69) (-0.04) (-2.88) (0.04) (-0.07)   

dCONSR -0.196 -4.526 -0.829 0.083 -0.343   

 (-0.39) (-1.44) (-6.64) (0.22) (-1.24)   

dGPDI 2.407 -4.345 -0.640 0.595 0.319   

  (1.51) (-2.34) (-2.37) (1.06) (0.83)   

        

dGDPR 1.038 -0.982 0.294 0.080 0.017 -0.172 0.076 

 (2.65) (-1.33) (3.40) (1.57) (0.45) (-1.07) (2.96) 

dCONSR 1.079 -0.251 0.182 0.012 0.008 -0.129 0.021 

 (5.64) (-0.71) (2.45) (0.44) (0.48) (-2.07) (1.66) 

dGPDI 1.729 -0.156 0.198 0.475 0.278 -0.272 0.190 

 (1.95) (-0.12) (2.24) (3.29) (3.09) (-0.84) (3.02) 
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Table 3.11  

Lesmond, Ogden, and Trczinka (1999) Liquidity Measure Predictive Power on 

Macroeconomic Proxies using the Markov-Switching Model 
This table shows the parameter estimates under the second regime and their asymptotic t-statistics from the maximum 

likelihood estimation of the Markov regime-switching model for the period 1947 through 2012. The dependent 

variables are the three macroeconomic proxies dGDPR, dCONSR and dGPDI and the explanatory variables are the 

Lesmond et al. (1999) liquidity measure (LIQ), the lag of the dependent variable (yt), Term, dCred, Vola, and erm. 

Significant coefficients for the liquidity measure are in bold font. 

 

 

 

 

 

 

 

 

 

Dependent 

Variable yt+1 
�̂� �̂�𝑳𝑰𝑸 �̂�𝒚 �̂�𝑻𝑬𝑹𝑴 �̂�𝑪𝑹𝑬𝑫 �̂�𝑽𝒐𝒍𝒂 �̂�𝒆𝒓𝒎  

      
LOT Liquidity Measure - Economic Contraction Regime 

  

        

dGDPR 0.506 -0.769 0.374     

 (4.37) (-1.02) (4.64)     

dCONSR 0.560 0.116 0.335     

 (7.65) (0.35) (5.06)     

dGPDI 0.210 -6.093 0.198     

  (0.29) (-1.01) (1.72)     

 

dGDPR 0.820 -0.605 0.359 0.065 0.030  

 

 (3.89) (-1.51) (5.92) (2.11) (1.50)   

dCONSR 0.617 -0.110 0.310 0.014 0.013   

 (8.53) (-0.33) (4.76) (0.57) (0.82)   

dGPDI 0.309 -1.682 0.476 0.604 0.284   

  (0.839) (-0.53) (4.96) (2.94) (2.28)   

        

dGDPR 0.667 0.242 0.247 -0.022 -0.009 -0.032 0.013 

 (2.92) (0.44) (1.99) (-0.63) (-0.45) (-0.49) (0.99) 

dCONSR 1.230 -7.753 -0.733 -0.470 -0.608 -0.901 0.122 

 (0.75) (-2.80) (-5.24) (-2.04) (-3.11) (-1.33) (-1.72) 

dGPDI 2.624 -4.981 0.129 0.250 -0.026 -0.754 0.536 

 (0.94) (-0.79) (-1.04) (-0.60) (-0.08) (-0.68) (2.65) 
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Table 3.12  

Amihud (2002) Liquidity Measure Predictive Power on Macroeconomic Proxies using the 

LSTAR and ESTAR Models 
The table shows the parameter estimates under the first regime and their asymptotic t-statistics from the nonlinear 

least squares estimation of the LSTAR and ESTAR models for the period 1947 through 2012. The dependent variables 

are the three macroeconomic proxies dGDPR, dCONSR and dGPDI and the explanatory variables are the Amihud 

(2002) liquidity measure (LIQ), the lag of the dependent variable (yt), Term, dCred, Vola, and erm. The last three 

columns show the F value of the model and its p-value, and the parameters Gamma and c and their t-statistics. 

Significant coefficients for the liquidity measure are in bold font. 

 

 

 

 

 

 

 

 

Dependent Variable 

yt+1 
�̂� �̂�𝑳𝑰𝑸 �̂�𝒚 �̂�𝑻𝑬𝑹𝑴 �̂�𝑪𝑹𝑬𝑫 �̂�𝑽𝒐𝒍𝒂 �̂�𝒆𝒓𝒎  F Gamma c 

    
            Amihud Liquidity Measure – Economic Expansion Regime  

   

           

dGDPR 0.354 0.944 -0.444     8.388 191.47 -0.562 

 (1.45) (1.74) (-2.18)     (0.00) (0.11) (-11.4) 

dCONSR 1.050 -0.080 -0.514     6.381 32.609 1.414 

 (0.21) (-0.01) (0.10)     (0.03) (0.63) (23.1) 

dGPDI 3.519 0.572 -0.387     4.143 0.688 4.762 

  (1.87) (0.14) (-1.85)     (0.02) (0.91) (2.04) 

 

dGDPR 0.003 0.732 -0.075 -0.133 -0.021  

 

5.91 4.197 0.382 

 (0.01) (-1.35) (-0.46) (-1.63) (-0.42)   (0.00) (0.18) (1.19) 

dCONSR 0.720 -0.093 -0.801 -0.174 -0.139   4.227 54.935 1.542 

 (3.14) (-0.29) (-5.14) (-1.96) (-2.03)   (0.00) (0.25) (23.5) 

dGPDI 4.291 2.132 -0.492 -0.614 0.076   4.508 0.585 5.268 

  (1.94) (0.45) (-2.03) (-0.96) (0.15)   (0.00) (1.24) (2.43) 

           

dGDPR -0.379 0.439 0.244 -0.049 -0.006 0.007 -0.153 6.264 32.722 -0.416 

 (-0.84) (1.39) (1.67) (-0.76) (-0.15) (0.05) (-3.86) (0.00) (0.60) (-7.22) 

dCONSR -76.46 3.570 -21.74 -12.36 -7.028 48.680 2.397 3.683 1.259 5.547 

 (-0.08) (0.06) (-0.08) (-0.08) (-0.08) (0.08) (0.07) (0.00) (1.37) (0.49) 

dGPDI 10.00 -4.273 -0.443 -0.879 -0.135 -3.155 0.514 5.097 308.90 7.394 

 (1.37) (-0.67) (-2.47) (-1.46) (-0.25) (-0.94) (-1.60) (0.00) (0.00) (0.00) 

           



135 

 

Table 3.13 

Amihud (2002) Liquidity Measure Predictive Power on Macroeconomic Proxies using the 

LSTAR and ESTAR Models 
The table shows the parameter estimates under the second regime and their asymptotic t-statistics from the nonlinear 

least squares estimation of the LSTAR and ESTAR models for the period 1947 through 2012. The dependent variables 

are the three macroeconomic proxies dGDPR, dCONSR and dGPDI and the explanatory variables are the Amihud 

(2002) liquidity measure (LIQ), the lag of the dependent variable (yt), Term, dCred, Vola, and erm. The last three 

columns show the F value of the model and its p-value, and the parameters Gamma and c and their t-statistics. 

Significant coefficients for the liquidity measure are in bold font. 

 

 

 

 

 

 

 

 

Dependent 

Variable yt+1 
�̂� �̂�𝑳𝑰𝑸 �̂�𝒚 �̂�𝑻𝑬𝑹𝑴 �̂�𝑪𝑹𝑬𝑫 �̂�𝑽𝒐𝒍𝒂 �̂�𝒆𝒓𝒎 F Gamma c 

    
                    Amihud Liquidity Measure – Economic Recession Regime  

   

           
dGDPR 0.217 -1.106 0.737     8.388 191.47 -0.562 

 (0.93) (-2.12) (3.80)     (0.00) (0.11) (-11.4) 

dCONSR 0.530 -0.181 0.230     6.381 32.609 1.414 

 (6.51) (-1.21) (3.01)     (0.03) (0.63) (23.1) 

dGPDI 0.063 -1.569 0.235     4.143 0.688 4.762 

  (0.12) (-1.59) (3.05)     (0.02) (0.91) (2.04) 

 

dGDPR 0.523 -0.679 0.402 0.148 0.036  

 

5.91 4.197 0.382 

 (3.87) (-1.77) (3.32) (2.75) (1.10)   (0.00) (0.18) (1.19) 

dCONSR 0.603 -0.233 0.309 0.031 0.017   4.227 54.935 1.542 

 (7.80) (-1.41) (4.08) (1.01) (0.91)   (0.00) (0.25) (23.5) 

dGPDI -0.094 -1.877 0.293 0.667 0.228   4.508 0.585 5.268 

  (-0.18) (-1.87) (3.72) (3.33) (1.91)   (0.00) (1.24) (2.43) 

           

dGDPR 1.330 -0.491 0.089 0.073 0.010 -0.184 0.174 6.264 32.722 -0.416 

 (3.83) (-1.88) (0.69) (1.40) (0.31) (-1.72) (4.78) (0.00) (0.60) (-7.22) 

dCONSR 1.272 -0.212 0.111 0.048 0.021 -0.225 0.028 3.683 1.259 5.547 

 (4.86) (-0.99) (1.04) (1.10) (0.80) (-2.04) (1.39) (0.00) (1.37) (0.49) 

dGPDI 1.200 -0.966 0.216 0.530 0.204 -0.229 0.329 5.097 308.90 7.394 

 (1.19) (-1.29) (3.28) (3.18) (1.94) (-0.60) (4.41) (0.00) (0.00) (0.00) 

           



136 

 

Table 3.14 

Roll (1984) Liquidity Measure Predictive Power on Macroeconomic Proxies using the 

LSTAR and ESTAR Models 
The table shows the parameter estimates under the first regime and their asymptotic t-statistics from the nonlinear 

least squares estimation of the LSTAR and ESTAR models for the period 1947 through 2012. The dependent variables 

are the three macroeconomic proxies dGDPR, dCONSR and dGPDI and the explanatory variables are the Roll (1984) 

liquidity measure (LIQ), the lag of the dependent variable (yt), Term, dCred, Vola, and erm. The last three columns 

show the F value of the model and its p-value, and the parameters Gamma and c and their t-statistics. Significant 

coefficients for the liquidity measure are in bold font. 

 

 

 

 

 

 

 

 

Dependent 

Variable yt+1 
�̂� �̂�𝑳𝑰𝑸 �̂�𝒚 �̂�𝑻𝑬𝑹𝑴 �̂�𝑪𝑹𝑬𝑫 �̂�𝑽𝒐𝒍𝒂 �̂�𝒆𝒓𝒎 F Gamma c 

    
Roll Liquidity Measure – Economic Expansion Regime 

  

           

dGDPR 0.330 0.878 0.833     8.893 227.41 -0.446 

 (1.71) (0.96) (5.31)     (0.00) (0.00) (0.00) 

dCONSR 17.812 2.656 -1.092     8.304 0.676 1.220 

 (0.621) (1.06) -0.77)     (0.00) (1.26) (1.25) 

dGPDI -7.490 13.435 -0.501     5.054 0.936 -4.187 

  (-2.36) (2.81) (-1.62)     (0.02) (0.93) (-4.17) 

 

dGDPR 0.622 1.590 0.658 0.061 0.129  

 

6.501 1518 -.0286 

 (3.96) (1.58) (4.54) (1.65) (2.31)   (0.00) (0.30) (0.00) 

dCONSR 1.074 1.844 -0.523 0.004 0.019   4.662 183.10 1.407 

 (0.17) (2.46) (-4.22) (0.05) (0.31)   (0.00) (0.08) (0.00) 

dGPDI -7.063 14.268 -0.567 -0.072 0.235   4.950 2.646 -3.438 

  (-2.93) (3.28) (-2.08) (-0.13) (0.96)   (0.00) (0.85) (-5.88) 

           

dGDPR 1.503 1.300 0.939 -0.143 -0.176 -0.541 -0.189 6.511 40.891 -0.417 

 (1.97) (0.99) (2.19) (-2.16) (-1.71) (-2.28) (-3.20) (0.00) (0.50) (-8.29) 

dCONSR 8.281 3.028 -1.216 -0.348 -0.134 -0.319 -0.070 4.695   1.158 1.461 

 (1.61) (1.58) (-1.79) (-1.60) (-1.01) (-0.74) (-0.79) (0.00) (2.19) (2.77) 

dGPDI -8.493 10.429 -0.499 -0.138 0.193 0.648 -0.155 5.00 2.840 -3.181 

 (-2.73) (2.15) (-1.91) (-0.34) (0.82) (-0.75) (-0.77) (0.00) (0.89) (-6.72) 
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Table 3.15 

Roll (1984) Liquidity Measure Predictive Power on Macroeconomic Proxies using the 

LSTAR and ESTAR Models 
The table shows the parameter estimates under the second regime and their asymptotic t-statistics from the nonlinear 

least squares estimation of the LSTAR and ESTAR models for the period 1947 through 2012. The dependent variables 

are the three macroeconomic proxies dGDPR, dCONSR and dGPDI and the explanatory variables are the Roll (1984) 

liquidity measure (LIQ), the lag of the dependent variable (yt), Term, dCred, Vola, and erm. The last three columns 

show the F value of the model and its p-value, and the parameters Gamma and c and their t-statistics. Significant 

coefficients for the liquidity measure are in bold font. 

 

 

 

 

 

 

 

 

Dependent 

Variable yt+1 
�̂� �̂�𝑳𝑰𝑸 �̂�𝒚 �̂�𝑻𝑬𝑹𝑴 �̂�𝑪𝑹𝑬𝑫 �̂�𝑽𝒐𝒍𝒂 �̂�𝒆𝒓𝒎 F Gamma c 

      
Roll Liquidity Measure - Economic Contraction Regime 

  

  

           

dGDPR 0.254 -1.803 -0.558     8.893 227.41 -0.446 

 (1.71) (-1.87) (-3.31)     (0.00) (0.00) (0.00) 

dCONSR -4.943 -1.498 -1.854     8.304 0.676 1.220 

 (-0.43) (-1.43) (-0.74)     (0.00) (1.26) (1.25) 

dGPDI 7.796 -16.204 0.780     5.054 0.936 -4.187 

  (2.52) (-3.71) (2.59)     (0.02) (0.93) (-4.17) 

 

dGDPR -0.167 -.2653 -0.328 -0.063 -0.100  

 

6.501 151.8 -.0286 

 (-0.90) (-2.50) (-2.07) (-1.39) (-1.46)   (0.00) (0.30) (0.00) 

dCONSR 0.534 -0.627 0.215 0.012 -0.001   4.662 183.10 1.407 

 (6.65) (-1.97) (2.82) (0.38) (-0.09)   (0.00) (0.08) (0.00) 

dGPDI 7.350 -16.510 0.890 0.545 0.004   4.950 2.646 -3.438 

  (3.13) (-4.24) (3.43) (1.49) (0.02)   (0.00) (0.85) (-5.88) 

           

dGDPR -0.673 -1.816 -0.580 0.154 0.217 0.412 0.221 6.511 40.891 -0.417 

 (-0.94) (-1.44) (-1.36) (2.50) (2.25) (1.88) (3.93) (0.00) (0.50) (-8.29) 

dCONSR -0.540 -1.222 -0.771 0.120 0.041 -0.025 0.036 4.695   1.158 1.461 

 (-0.32) (-1.64) (-1.46) (1.43) (0.90) (-0.16) (1.30) (0.00) (2.19) (2.77) 

dGPDI 9.037 -11.536 0.797 0.545 0.024 -0.695 0.432 5.00 2.840 -3.181 

 (3.29) (-2.60) (3.22) (1.59) (0.13) (-1.03) (2.40) (0.00) (0.89) (-6.72) 
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Table 3.16 

Lesmond, Ogden, and Trczinka (1999) Liquidity Measure Predictive Power on 

Macroeconomic Proxies using the LSTAR and ESTAR Models 
The table shows the parameter estimates under the first regime and their asymptotic t-statistics from the nonlinear 

least squares estimation of the LSTAR and ESTAR models for the period 1947 through 2012. The dependent variables 

are the three macroeconomic proxies dGDPR, dCONSR and dGPDI and the explanatory variables are the Lesmond et 

al. (1999) liquidity measure (LIQ), the lag of the dependent variable (yt), Term, dCred, Vola, and erm. The last three 

columns show the F value of the model and its p-value, and the parameters Gamma and c and their t-statistics. 

Significant coefficients for the liquidity measure are in bold font. 

 

 

 

 

. 

 

 

 

Dependent 

Variable yt+1 
�̂� �̂�𝑳𝑰𝑸 �̂�𝒚 �̂�𝑻𝑬𝑹𝑴 �̂�𝑪𝑹𝑬𝑫 �̂�𝑽𝒐𝒍𝒂 �̂�𝒆𝒓𝒎 F Gamma c 

      
            LOT Liquidity Measure –  Economic Expansion Regime 

  

   

           

dGDPR 0.147 1.384 -0.477     0.054 215.7 -0.394 

 ( 0.70 ) (1.13) (-2.76)     (0.98) ( 0.00 ) ( 0.00 ) 

dCONSR -39.812 1.476 -7.609     0.962 0.373 -0.222 

 (-0.16) (0.30) (-0.24)     (0.38) (0.52) (-0.04) 

dGPDI 0.022 1.861 0.276     4.020 0.722 4.104 

  (0.04) (0.63) (3.57)     (0.00) (0.99) (2.30) 

 

dGDPR -0.084 3.556 -0.052 -0.197 -0.112  

 

4.662 510.64 0.123 

 (-0.505) (3.02) (-0.39) (-2.94) (-2.48)   (0.00) (0.14) (5.18) 

dCONSR 3.955 5.496 -3.974 -1.151 -0.986   3.266 1.038 3.702 

 (0.92) (0.51) (-1.10) (-0.83) (-0.91)   (0.00) (1.29) (1.62) 

dGPDI -0.084 2.142 0.342 0.675 0.233   4.483 0.609 4.813 

  (-0.172) (0.71) (4.21) (3.35) (1.88)   (0.00) (1.28) (2.35) 

           

dGDPR -0.564 3.657 0.195 -1.08 -0.076 0.073 -0.156 6.920  14.09 0.109 

 (-1.19) (3.11) (1.33) (-1.61) (-1.71) (0.47) (-3.64) (0.00) (0.176) (5.39) 

dCONSR 16.526 -1.439 -2.089 -0.502 -0.242 -0.260 -0.148 4.501 0.771 1.868 

 (0.75) (-0.99) (-1.27) (-1.04) (-0.42) (-1.04) (1.42) (0.00) (1.42) (1.65) 

dGPDI 1.408 -1.184 0.230 0.541 0.222 -0.299 0.353 5.079   19.306  6.309 

 (1.36) (-0.53) (3.51) (3.20) (2.06) (-0.76) (4.69) (0.00) (0.09) (29.94) 
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Table 3.17 

Lesmond, Ogden, and Trczinka (1999) Liquidity Measure Predictive Power on 

Macroeconomic Proxies using the LSTAR and ESTAR Models 
The table shows the parameter estimates under the second regime and their asymptotic t-statistics from the nonlinear 

least squares estimation of the LSTAR and ESTAR models for the period 1947 through 2012. The dependent variables 

are the three macroeconomic proxies dGDPR, dCONSR and dGPDI and the explanatory variables are the Lesmond et 

al. (1999) liquidity measure (LIQ), the lag of the dependent variable (yt), Term, dCred, Vola, and erm. The last three 

columns show the F value of the model and its p-value, and the parameters Gamma and c and their t-statistics. 

Significant coefficients for the liquidity measure are in bold font. 

 

 

 

 

 

 

 

 

Dependent 

Variable yt+1 
�̂� �̂�𝑳𝑰𝑸 �̂�𝒚 �̂�𝑻𝑬𝑹𝑴 �̂�𝑪𝑹𝑬𝑫 �̂�𝑽𝒐𝒍𝒂 �̂�𝒆𝒓𝒎  F Gamma c 

      
              LOT Liquidity Measure –  Economic Contraction Regime 

  

   

           

dGDPR 0.409 -1.474 0.779     0.054 215.7 -0.394 

 (2.12) (-1.30) (4.84)     (0.98) (0.00) (0.00) 

dCONSR 77.370 -2.521 1.645     0.962 0.373 -0.222 

 (0.19) (-0.34) (0.10)     (0.38) (0.52) (-0.04) 

dGPDI 3.196 -10.783 -0.423     4.020 0.722 4.104 

  (2.30) (-1.45) (-2.08)     (0.00) (0.99) (2.30) 

 

dGDPR 0.591 -3.346 0.408 0.223 0.119  

 

4.662 510.64 0.123 

 (4.08) (-3.10) (3.54) (4.15) (3.21)   (0.00) (0.14) (5.18) 

dCONSR 0.542 -0.348 0.352 0.069 0.052   3.266 1.038 3.702 

 (3.08) (-0.50) (2.20) (1.11) (1.22)   (0.00) (1.29) (1.62) 

dGPDI 3.846 -14.862 -0.593 -0.473 0.244   4.483 0.609 4.813 

  (2.13) (-1.60) (-2.31) (-0.79) (0.52)   (0.00) (1.28) (2.35) 

           

dGDPR 1.493 -3.642 0.114 0.133 0.08 -0.022 0.181 6.920  14.096 0.109 

 (3.96) (-3.36) (0.88) (2.43) (2.20) (-2.04) (4.54) (0.00) (0.176) (5.39) 

dCONSR -2.339 0.163 -1.273 0.167 0.078 -0.046 0.064 4.501 0.771 1.868 

 (-0.38)   (0.14)   (0.86)   (1.19)   (1.02) (-0.24) (1.83) (0.00) (1.42) (1.65) 

dGPDI 2.212 -10.483 0.558 -0.533 0.249 0.219 -0.592 5.079 19.306  6.309 

 (0.59) (-1.31) (-3.28) (-1.04) (0.58) (0.14) (-2.21) (0.00) (0.09) (29.94) 
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3.6 Robustness Tests: Cointegration Analysis 

 

Cointegration analysis has been widely used over the past three decades since its introduction by 

Engle and Granger (1987). Basically the approach tests for a long run equilibrium relationship 

between two or more non-stationary random time series based on the existence (or non-existence) 

of a linear combination of such variables that divulges the property of stationarity. Equivalently if 

two or more data time series are individually integrated (i.e. presence of unit roots) and if there 

exists a linear combination of them which displays a lesser order of integration, then the time series 

are said to be cointegrated. For instance, an equity market index and its corresponding futures 

contract price may follow individual random walks while an equilibrium relationship exists 

between the two variables because a linear combination of the two time series presents a lesser 

order of integration, especially if it is I(0), and which would imply that the two time series 

are cointegrated. 

 

This study employs two popular methods for testing whether the time series of macroeconomic 

proxies and liquidity measures are cointegrated: The Johansen (1988) (including a recursive 

Cointegration test) and Gregory and Hansen (1996) cointegration tests.  

However before tests of cointegration can be performed on the data series it is critical to test for 

the presence of unit roots (or the property of non-stationarity) and in the affirmative whether they 

are integrated of the same order. By applying the Augmented Dickey-Fuller unit root test it is 

found that all macrovariables and liquidity measures previously investigated in this study present 

the characteristic of nonstationarity except the Roll liquidity measure which is consequently 

removed from the following cointegration analysis. Moreover the variables presenting evidence of 

units roots (i.e. RGDP, GPDI, RPCE, Amihud, LOT) are all integrated of order 1 meaning that if 

http://en.wikipedia.org/wiki/Order_of_integration
http://en.wikipedia.org/wiki/Unit_root
http://en.wikipedia.org/wiki/Linear_combination
http://en.wikipedia.org/wiki/Order_of_integration
http://en.wikipedia.org/wiki/Stock_market_index
http://en.wikipedia.org/wiki/Futures_contract
http://en.wikipedia.org/wiki/Futures_contract
http://en.wikipedia.org/wiki/Random_walk


141 

 

they are differenced once the series become stationary and which also implies that they can be 

jointly tested for cointegration with the two previously mentioned models.     

In practice, cointegration is often used and is more generally applicable for two series, but it can 

be used to analyse additional relationships: Multicointegration or multivariate cointegration tests, 

which are also performed in this essay, extend the cointegration methodology beyond two 

variables. 

 

3.6.1 Johansen’s (1988) Cointegration Test 

 

The Johansen's methodology (1988) takes its starting point in the vector autoregression (VAR) of 

order p given by:  

 

                                                   zt = c + A1 zt - 1 + ... + Ap zt - p + μt                                                                     (3.16) 

 

where zt is a n×1 vector of variables that are integrated of order one — commonly denoted I(1) — 

and μt is a zero mean white noise vector process. This VAR can be re-written as:    

 

      ∆zt = c + Π zt -1 + ∑ Γ𝑖
𝑝−1
𝑖=1 ∆𝑖 + μt                                                                  (3.17) 

 

where Π = ∑ A𝑖
𝑝
𝑖=1 − 𝐼  and Γ𝑖  = − ∑ A𝑗

𝑝
𝑗=𝑖+1 . If the coefficient matrix has reduced rank r ˂ n, then 

there exist n×r matrices α and β each with rank r such that = αβ′ and β′zt is stationary. r is the 

number of cointegration relationships, the elements of α are known as the adjustment parameters 

in the vector error correction model and each column of β is a cointegrating vector. It can be shown 

that for a given r, the maximu  likelihood estimator of β defines the combination of zt−1 that yields 

the r largest canonical correlations of zt with zt−1  after correcting for lagged differences and 
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deterministic variables when present. Johansen proposed two different likelihood ratio tests of the 

significance of these canonical correlations and thereby the reduced rank of the matrix, that is the 

trace (λtrace) and maximum eigenvalue (λmax) test,which are computed by using the following 

formulas: 

 

                                                       λtrace  =  − T ∑ ln 𝑘
𝑗=𝑟+1 (1 − λ̂j )                                            (3.18) 

 

                                                       λmax  =  − T ln (1 − λ̂𝑟+1 )                                                   (3.19) 

 

where T is the sample size, λ̂𝑗 and λ̂𝑟+1 are the estimated values of the characteristic roots obtained 

from the matrix. The trace test tests the null hypothesis of r cointegrating vectors against the 

alternative hypothesis of n cointegrating vectors, while the maximum eigenvalue tests the null 

hypothesis of r cointegrating vectors against the alternative hypothesis of r+1 cointegrating 

vectors.    

 

To reflect the potential time-varying co-movement, the recursive cointegration methodology is 

also employed in the section. This dynamic approach examines whether a group of variables 

becomes progressively cointegrated by visually evaluating the cointegration over time.   

In the recursive analyse Johansen’s (1988) trace statistic  is estimated over the initial observations 

which are kept fixed and then recursively recomputed as additional observations are added to the 

base sample. This approach allows to plot and graphically evaluate the trace statistics. 

If a cointegration property between the variables is significantly present, it should be revealed by 

an increasing  number of cointegrating vectors emerging over time as the data generating process  

is being gradually governed by the same shocks with a permanent effect.  
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3.6.2 Gregory & Hansen’s (1996) Cointegration Test 

 

Gregory and Hansen (1996) propose a test that allows for a possible structural break in the 

cointegration relationship. More specifically the Gregory and Hansen (1996)  methodology tests 

the null hypothesis that the series are not cointegrated against the alternative hypothesis of 

cointegration with a single structural break at a single unknown time during the sample period. 

The timing of the structural change is estimated endogeneously rather than arbitrarily selected or 

assumed on the basis of market history. 

According to Gregory and Hansen (1996) cointegration with the existence of a structural change 

can be thought of a relationship occuring over some prolonged period of time and then shifting to 

a  new long-run equilibrium relationship. 

Structural changes can manifest themselves through changes in the long-term relationship either 

in the form of a change in the intercept, or a change in the cointegrating vector. Gregory and 

Hansen (1996)  propose three alternative models that accommodate variation in parameters of the 

cointegration vector.  

 

The first one is the so-called level shift model (or C model) that allows for the change only in the 

intercept.  

            yt  = μ1 +  μ2 φtτ  + α' xt  + et    t = 1,...,n.                                      (3.20) 

 

The second model accommodates a trend in the data, while also restricting the changes to shifts in 

the level (C/T model).  

          y1t  = μ1 +  μ2 φtτ  + βt + α' xt  + et    t = 1,...,n.                                (3.21) 

 

The last model allows for changes both in the intercept and in the slope of the cointegration vector 

(C/S model).  
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                                         y1t  = μ1 +  μ2 φtτ  + α'1 xt  + α'2 xt φtτ  + et    t = 1,...,n.                         (3.22) 

 
 

where: y1 is the dependent variable, x is the independent variable, t is time subscript, e is the error 

term τ is the break date. 

The dummy variable φt which captures the structural change is defined as follows:  

 
 

0,  t  ≤  [nτ] 

                                                    φtτ =                                                                                       (3.23) 

1,  t  >  [nτ] 

 

 

where τ ∈(0,1) is a relative timing of the change point. Equations (3.20)–(3.22) are estimated 

sequentially with the break point changing over the interval τ ∈(0,1). The nonstationarity of the 

obtained residuals, expected under the null hypothesis, is verified by the ADF test.  

 

 

3.6.3 Results of Johansen (1988), Gregory and Hansen (1996) and the Recursive Analysis 

Cointegration Tests 

 

The findings of the Johansen’s (1988) cointegration under a bivariate setting are presented in Panel 

A of Table 3.18 and provide no evidence that a long-run relationship exists between the 

macroeconomic variables and the liquidity proxies.  

The results of the Gregory and Hansen (1996)’s bivariate cointegration test over the extended 

period analyzed show that one equilibrium relationship is present between the Real Investment in 

the Private Sector (GPDI) variable and the Amihud liquidity measure under the C/S model. 

Moreover this model indicates that a structural break occured in the first quarter of the year 1990 

which corresponds to the period preceding by 2 quarters the July 1990-March 1991 recession in 

the United States. 
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Models C/T and C/S also reveal some co-movements between the LOT and GPDI variables with 

a structural break taking place on the fourth quarter of 1996, a time period that corresponds to no 

major economic event in the United States. 

 

Table 3.19 exhibits the findings of the Johansen’s (1988) cointegration under a multivariate setting 

and present some evidence of cointegration between the variables RGDP - Amihud & LOT and 

RPCE - Amihud & LOT since at least one cointegration equation exists for each of these two sets 

of variables.  

The Gregory and Hansen’s (1996) multivariate test results (Table 3.20) show that the null 

hypothesis of no cointegration is not rejected under all model specifications (C, C/T, and C/S) 

considered except for the set of variables GPDI - Amihud & LOT (Model C/S) with a structural 

break once more occuring in the first quarter of the year 1990. 

Finally, Figures 3.2 to 3.4 depict the results from the recursive cointegration analysis. For ease of 

interpretation the test statistics in these figures have been scaled by their critical values such that 

the number of lines above 1.0 indicates the number of cointegrating relationships. These graphs 

indicate one cointegrating vector between the macroeconomic variable RGDP and the Amihud and 

Roll liquidity measures. Note that during the period analyzed no other cointegrating vector is 

appearing at any point in time. The same conclusion is also observed between the macroeconomic 

proxy RPCE and both liquidity measures.  

The dynamic Trace Test Statistic involving the relationship between the macroeconomic variable 

GPDI and the Amihud and Roll liquidity measures only rise above one for some time intervals and 

not in the entirity of the sample period indicating a quasi-non-existent cointegration association 

between these three variables.  
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These visual findings corroborate the static Johansen’s (1988) multivariate cointegration test 

results (Table XVII) for all three relationships.  

 

All in all, while some evidence of cointegration may exist between some of the macroeconomic 

fundamentals and some liquidity measures under the Johansen (1988), the Gregory and Hansen 

(1996)  and the recursive cointegration tests, these findings are not overall convincing since the 

majority of the results do not allow to assert with certitude that liquidity measures are cointegrated 

with economic cycles.  
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Table 3.18 Johansen (1988) and Gregory & Hansen (1996) Cointegration Tests (Bivariate 

Setting) 

    Panel A: Johansen’s (1988) Cointegration Test (Bivariate Setting) 

 RGDP GPDI RPCE 

Amihud 12.22 8.32 14.23 

LOT 10.48 7.30 10.51 

The null is that the hypothesized number of cointegration equations between the variables amounts to none. The test 

statistics are based on the Trace approach. Results obtained with the Eigenvalue methodology are equivalent. 5% 

Critical Value: 15.494. 

 

 

     Panel B: Gregory & Hansen (1996) Cointegration Test (Bivariate Setting) 

Variables Test Statistic Date of Structural Shift 

Model C    (5% Critical Value: -4.61)   

Amihud - RGDP -4.34 1971:02 

Amihud - GPDI -4.24 1971:03 

Amihud - RPCE -4.44 1971:02 

LOT- RGDP -3.23 1973:03 

LOT - GPDI -3.65 1973:03 

LOT - RPCE -3.32 1971:04 

   

Model C/T (5% Critical Value: -4.99)   

Amihud - RGDP -3.44 1963:04 

Amihud - GPDI -4.65 1966:02 

Amihud - RPCE -3.24 1966:03 

LOT- RGDP -3.80 1963:04 

LOT - GPDI   -5.09* 1996:04 

LOT - RPCE -3.18 1966:01 

   

Model C/S (5% Critical Value: -5.50)   

Amihud - RGDP -3.74 2003:01 

Amihud - GPDI   -6.42* 1990:01 

Amihud - RPCE -3.26 1990:01 

LOT- RGDP -4.90 2000:02 

LOT - GPDI   -5.98* 1996:04 

LOT - RPCE -3.27 1993:03 
The null hypothesis states that there is no cointegration between the two variables. Critical values are obtained from 

Gregory and Hansen (1996). The model specifications are denoted by C―level shift, C/T—level shift with a trend, 

C/S—regime shift (see Section 6.2).     
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Table 3.19 Johansen’s (1988) Cointegration Test (Multivariate Setting) 

 
 

 
Panel A — Variables: RGDP - Amihud & LOT 

 

Hypothesized Number of 

Cointegration Equations 
Trace Statistic  5% Critical Value 

Significance at 5% 

Level 

None 44.84 42.91 Yes 

At most 1 16.63 25.87 No  

At most 2 6.358 12.51 No 

 

Panel B — Variables: GPDI - Amihud & LOT   
 

Hypothesized Number of 

Cointegration Equations 
Trace Statistic  5% Critical Value 

Significance at 5% 

Level 

None 37.49 42.91 No 

At most 1 14.02 25.87 No  

At most 2 4.52 12.51 No 

 

Panel C — Variables: RPCE - Amihud & LOT  
 

Hypothesized Number of 

Cointegration Equations 
Trace Statistic  5% Critical Value 

Significance at 5% 

Level 

None 43.46 42.91 Yes 

At most 1 18.39 25.87 No  

At most 2 5.60 12.51 No 

The null is that the hypothesized number of cointegration equations between the variables amounts to none. The test 

statistics are based on the Trace approach. Results obtained with the Eigenvalue methodology are quivalent. 5% 

Critical Value: 15.494. 
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Table 3.20 Gregory & Hansen (1996) Cointegration Test (Multivariate Setting) 

  

Variables Test Statistic Date of Structural Shift 

Model C - (5% Critical Value: -4.92) 
  

RGDP - Amihud & LOT  -3.81 1971:02 

GPDI - Amihud & LOT -4.01 1971:04 

RPCE - Amihud & LOT -3.90 1971:02 

   

Model C/T - (5% Critical Value: -5.29)   

RGDP - Amihud & LOT  -3.70 1963:03 

GPDI - Amihud & LOT -4.94 1998:02 

RPCE - Amihud & LOT -3.06 1966:03 

   

Model C/S - (5% Critical Value: -5.96)   

RGDP - Amihud & LOT  -3.99 1993:01 

GPDI - Amihud & LOT  -6.41* 1990:01 

RPCE - Amihud & LOT -3.58 1993:01 

The null hypothesis states that there is no cointegration between the variables. Critical values are obtained from 

Gregory and Hansen (1996). The model specifications are denoted by C―level shift, C/T—level shift with a trend, 

C/S—regime shift (see Section 6.2).     
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               Figure 3.2 – Recursive Cointegration Analysis - Variables: RGDP ROLL AMIHUD 

 

                 The test statistics in this figure has been scaled by their critical values such that the number of lines above 1.0  

                 indicates the number of cointegrating relationships. 

 

 

 

                Figure 3.3 –  Recursive Cointegration Analysis - Variables: GPDI ROLL AMIHUD 

 

                   The test statistics in this figure has been scaled by their critical values such that the number of lines above 1.0  

                    indicates the number of cointegrating relationships. 
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                  Figure 3.4 – Recursive Cointegration Analysis - Variables: RPCE ROLL AMIHUD 

 

                     The test statistics in this figure has been scaled by their critical values such that the number of lines above 1.0  

                     indicates the number of cointegrating relationships. 
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3.7 Conclusion 

 

In an provocative recent paper, Næs et al. (2011) suggest that stock market aggregate liquidity is 

a leading indicator of subsequent economic cycles. Using several macroeconomic variables to 

proxy for the state of the economy, they show that different liquidity measures possess a predictive 

power of the future state of the real economy even after controlling for the present economic 

conditions and several bond and stock market factors. This forecasting power leads the authors of 

the paper to assert that “stock market liquidity contains useful information for estimating the future 

state of the economy” since equity market investors rebalance their portfolio into more secure 

securities before economic downturns causing greater variations in aggregate liquidity. While this 

idea is intuitively appealing, the analysis suffers from an important shortcoming since this 

predictability ability is established upon a linear functional form even though the empirical 

research has documented over the years that macroeconomic series follow non-linear behaviour.  

 

This paper hence re-examines the relationship between business cycles and market wide liquidity 

upon a non-linear approach in order to reflect the non-linear dynamics of macroeconomic series. 

Applying two popular econometric frameworks i.e. the Markov switching-regime and the STAR 

models, the findings present weak evidence that liquidity fundamentals act as leading indicators 

of future economic conditions. Indeed, the significance of the liquidity measure coefficients are 

not sufficiently constant and steady under both regimes and both econometric approaches and are 

not robust to the inclusion of other explanatory financial variables. Hence,  the claim that stock 

market aggregate liquidity could be exploited to predict the future state of the economy may be 

premature at best.  
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