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ABSTRACT 

 

Group Pathfinding Using Group Division 

Mehdi Saeidianmanesh 

 

Pathfinding is an important problem in video games. Good pathfinding strategy, for both 

player characters and non-player characters is one of the key differences between a good 

game and a less successful one. Finding the shortest path for one character unit in a given 

environment is a very well-known problem for which there exist many solutions. When a 

group of units wants to pass through the map, the problem becomes more complicated. 

This thesis introduces the Reduced Wait Time (RWT) algorithm which is a multi-unit 

path planning algorithm where units can take several paths instead of just the shortest one 

to reduce the overall waiting time of the units in queues along the path and therefore 

reduces the total time needed to pass all units through the map. 

The main goal of this thesis is propose the pathfinding algorithm RWT to reduce the total 

time for a group of units to pass a route. The simulation results shows that the RWT 

algorithm not only reduces the time to pass by decreasing the waiting time, but also can 

reduce the number of collisions between units which reduces the CPU usage which is 

another important consideration for games. Using the RWT algorithm also gives an 

opportunity to the level designers to be able to implement strategic pathfinding in games. 

Different routes have different strategic advantages and disadvantages over each other; 

being able to send units through different paths enables designers to consider strategic 

path-planning.  
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The RWT algorithm was implemented using the Unity game engine and tested on a 

number of randomly generated example maps. The experimental results were compared 

with the results from other related algorithms such as Local Repair A* and Maximum 

Flow to show that the RWT algorithm works better than other studied algorithms.  
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Introduction 

Pathfinding and path planning are important problems in computer games, traffic control 

systems, robotics, and military purposes. When we want to find an appropriate path, 

many aspects of the problem should be considered, because the goals of pathfinding in 

various applications are different. In some cases, minimum travel time is important, in 

other cases having minimum waiting time, in other cases traveling in a safe path or 

minimum length to pass and so on. Finding a path with minimum length to travel for one 

unit is a very well-known problem and many solutions are available (e.g., shortest path 

algorithms). The problem becomes more complicated when a group of units wants to pass 

through the map instead of just one unit. If we could assign a dedicated path to each unit, 

the problem would be easier to solve, but this may not be feasible in a map with narrow 

passages and with a large group of units who want to pass. Most of the time, the whole 

path or at least some parts of a path will need to be shared among different units. 

Sometimes the different sizes of units also need to be considered. This is because the 

capacity of a passage is related to the size of units, specifically that the capacity of a 

passage is the number of units that can pass side-by-side along the path.   

The focus of this thesis work is on path finding in computer games and especially real 

time strategy games. Figure 0.1 shows an example of a real time strategy game. It is a 

battlefield with static and dynamic obstacles and armies from two opponent sides. There 

are different kinds of units in each side. Units can have different sizes and speeds and 

paths are shared among them.    
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Figure 0.1: screen shot from Generals: Command and Conquer, Electronic Arts studios 

game. The majority of strategy games, involve different kind of fighters that need to find 

their way through the terrain, while sharing some paths 

 

In real time strategy (RTS) video games, there are usually groups of units that want to 

travel in the game world in order to reach their destinations. Each unit may need to 

follow a different path between its start and destination locations in the given 

environment. This environment can be two-dimensional maps, a huge terrain or a 

building with lots of rooms, etc.  Each environment has its own limitations and 

specifications. We will use the term map to generally denote the representation of the 

environment through which the units have to travel from one point to another. 

There are many solutions to find a path between two points. Dijkstra’s algorithm and the 

well-known A* algorithm are two examples. These solutions try to find the shortest path 

between source and destination, and then unit takes that path to reach the destination. 
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These solutions can also be applied for a group of units. We can calculate the path for 

each unit individually; in this case, units are called agents. Alternatively, we can select a 

leader, find a path for the leader and then force other units to follow the leader. By adding 

some good steering behaviors to the units in the group, movement can appear more 

realistic. Crowd simulation and flocking system techniques are good examples of such 

solutions. 

Having a good pathfinding strategy is very important in games. If the pathfinding strategy 

is not appropriate, the game can become very easy or hard to play. Units may do strange 

or silly behaviors and become easy to predict, and hence are vulnerable to defeat. There 

are many well-known games that have poor pathfinding techniques built-in.  

The problem becomes more complex when there are multiple agents in the game. Units 

find their own paths and follow it. In the course of pathfinding, in case of bottlenecks in 

the map, that is an area becomes very dense, then units have to reroute and find an 

alternative path. This could happen multiple times. In such cases if the number of units is 

high and the passage is very narrow, the units never reach their destinations. They just 

rotate around each other and try to avoid collision with other units [17, 18, 19, 20].     

1.1 Outline of the problem  

Most pathfinding solutions have the same goal: finding the shortest path. However, with 

a large group of units, finding the shortest path and forcing all the units to pass through 

that one will not result in the minimum travel time and is also not strategically wise [11, 

16]. Hence, alternative solutions need to be sought for travel by groups in an 

environment. In this work, we propose an alternative solution that splits the group, sends 
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them via different paths, and sometimes regroups them along the path to obtain faster and 

safer paths.  

In group pathfinding of RTS games, there are usually two problem situations to deal 

with: 

1. Suppose there is a large group of tanks in a game and you want to send them to 

destroy your opponent’s base. Your opponent’s base has several entrances, but the 

one that has minimum distance to your tanks is a narrow passage. When you want 

to send your army into opponent base, for sure they will from a queue at the base 

entrance. At this moment the opponent can destroy all of your tanks easily when 

they are waiting in a queue.    

2. If you send all the units from one path (shortest path), although it is the shortest 

one but each path has a limit on its width and therefore its capacity. Consider a 

large number of units wanting to pass through a passage with limited capacity. 

After a while, the shortest path will become full and there will be a queue at the 

entrance. In-line units should wait for the path to become free and it takes time 

(waiting time).  

To address these problem situations, it would be better strategy to send some of the units 

through alternative paths, even if they are longer paths. 

1.2 Research Methodology  

This work is based on the requirement of pathfinding for a large group of units in 

computer games. Proposed algorithm (RWT) in the fourth section of this thesis can be 

used for both groups of player’s characters or non-player characters (NPC) to find their 
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routes from any given start point to destination in a game terrain. Previous studies about 

pathfinding, usually consider the length of paths as the main factor of pathfinding where, 

in many situation taking the shortest path will not result in having the minimum time to 

pass.  

In a more general sense, the existing techniques of pathfinding are suitable for single 

units or small group of units. When it comes to large group of units or when the game 

world is a terrain with narrow passages, existing techniques are inefficient.  

In this thesis, Reduced Waiting Time (RWT) algorithm has been proposed, which can 

handle pathfinding for both large and small number of units.  

Further, simulations on multiple randomly generated maps have shown that RWT 

algorithm has some improvements over other studied algorithms. RWT algorithm reduces 

the time to pass, decreases the number of collisions and significantly reduces the waiting 

time of being in queue for units. Unity game engine has been used to test the RWT 

algorithm to validate its efficiency. 

1.3 Contributions  

 In this thesis, a new pathfinding algorithm is proposed to reduce the waiting time 

of units who want to move on a map in video games. By reducing the waiting 

time, we will have a lower time to pass for the group of characters. The main 

contribution of this thesis is as follows: Proposing a solution to reduce the needed 

time for a group of units to pass a route through non-trivial terrain by dividing a 

group of units and sending them via different routes.  
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 We also show that our algorithm also decreases the number of collisions between 

units that leads to a decrease of CPU and memory usage. For games to handle 

these collisions and finding proper reactions to those collisions increases the CPU 

and memory usage. 

 We developed a random map generator that enables us to test different algorithms 

on automatically generated random maps to allow us to determine reliable and 

more general results from our experiments. 

 We studied improved ways of dividing a shared passage’s capacity between the 

paths that share that passage. Here, better way of dividing the shared passage, 

leads to lower time needed to pass units from that shared passage.        

Most of algorithms that video games use for pathfinding just consider shortest paths and 

not the lower time for groups of characters that must share paths. For example, using A* 

in a game word with large group of units and narrow passages will result in lots of queues 

and therefore lots of waiting time of being in queue for units. The main contribution of 

this thesis is to decrease the time to pass for such a large group of units.     

1.4 Thesis Organization 

The rest of the thesis is organized as follows:   

Chapter 2 Background and Related Works. In chapter two, a number of reported 

published pathfinding algorithms are reviewed to build essential background knowledge 

on methodologies for pathfinding in computer games. Navigation meshes and waypoints 

are also reviewed as two available infrastructures to implement pathfinding algorithms 

on.  
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Chapter 3 Group Pathfinding in Shared Passages with Different Capacities. A shared 

passage with different capacities is studied in chapter three. In this chapter, problem of 

having a passage that has two or more entrance and should share its capacity between 

those entrances is explained. To address the solution of how to dedicate shared passage’s 

capacity to each entrance, a sample shared passage is considered and different results 

based and having static and dynamic ratios are explained. Chapter 3 concludes with 

experimental results of having a shared passage with different capacity ratios.           

Chapter 4 Reduced Wait Time (RWT) algorithm. In chapter four, a new solution to 

handle group pathfinding with reduced waiting time is proposed. A random map 

generator is used to be able to create randomly generated test environments. RWT 

algorithm is introduced in this chapter, followed by testing the algorithm on a sample 

map.      

Chapter 5 Simulations, Results and Discussion. In fifth chapter, RWT algorithm is 

compared with other well-known algorithms, which have been reviewed in chapter 2. The 

algorithms are compared in terms of time, traveled distance, waiting time and number of 

collisions. Advantages and disadvantages of each algorithm are discussed, also results are 

shown in charts and tables.  

Chapter 6 Conclusions. In the final chapter we give our conclusions. 
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Background and Related Works 

1.5 Path-planning methods 

Path-planning solutions for a group of units in RTS games can be divided into two 

categories:  Centralized and Decoupled methods [1].  

1.5.1 Centralized methods 

Centralized methods search to find paths for all units at a time. This method combines 

configuration spaces of individual units and creates one system for all. Road map method 

[2] is an example of this approach. 

1.5.2 Decoupled method 

Decoupled methods calculate the path for each individual unit separately and then try to 

solve potential collisions in the map. Cooperative path finding [4], which uses time-space 

table [3], is a good example of decoupled approach. In cooperative pathfinding, each unit 

knows the position and direction of all other units. Decoupled techniques assign priorities 

to each unit and based on those priorities the algorithm calculates and assigns paths [5].  

1.6 Pathfinding algorithms  

Dijkstra, Maximum Flow algorithm, A*, Local Repair A* and Cooperative A* are 

example solutions to handle pathfinding. We will discuss each in detail next. 

1.6.1 Dijkstra 

Dijkstra algorithm [6] is a graph search algorithm that finds single source shortest path in 

a graph with non-negative edge path cost. Computer scientist, Dr. Dijkstra, introduced the 

algorithm in 1959. The algorithm computes the distance from a start node to all other 

nodes.  
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The algorithm records a set S of nodes with distances to Start node. Initially S contains 

the Start node with distance equal to zero and all other nodes with the distance equal to 

infinity. Then source node is then placed in the open list. Then the following procedure is 

repeated until there are no more nodes in the open list: 

 Pick a node n from the open list with lowest temporary distance, remove it from 

open list and put it on the closed, and change temporary distance to n to 

permanent.  

 Compare the length of the path via n to all n’s neighbors’ temporary distances. 

For all the neighbors where the path to that neighbor via n is shorter then change 

the temporary length for the neighbor with new cost (path length via n) and put 

the neighbor on the open list. 

At this point, the shortest paths and their lengths from node n to all other nodes are 

calculated.   

1.6.2 Maximum Flow 

Maximum Flow problem is to find feasible flows through a single source, single sink 

network. The Maximum Flow is the maximum feasible flow in network. Many methods 

are proposed to solve the Maximum flow problem with different time complexities, like 

Ford–Fulkerson algorithm or MPM [7] algorithm. Maximum Flow algorithm does not 

consider the “time to pass” factor. It just considers how to send the units through the map 

to reach a steady state of fully occupied paths. Goal of the solution is to reach a state in 

which maximum numbers of units are moving on the map at all times. 

http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm
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Consider a terrain with one source and one destination. Capacity of an edge represents 

the maximum number of units that can pass through an edge when they are moving in a 

row. Maximum Flow will divide the group into subgroups and try to send them through 

different paths instead of one shortest path. 

1.6.3 A* 

A* (pronounced a-star) [8] is the most common pathfinding algorithm in computer 

games. Peter Hart, Nils Nilsson and Bertram Raphael described the A* algorithm in 

1968. A* is a greedy best-first search approach that uses heuristic to guide itself. A* 

takes into account, the distance which is already traveled from start point to current point, 

x and names it g(x). Another part is h(x) which is a future path-cost function. h(x) is 

constant time heuristic estimate of the distance between current point, x and the goal. 

Here is the A* equation [8]:  

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) 

A* does not blindly searches for paths. It finds the shortest path between two points with 

the appropriate use of heuristic and termination condition.  Indeed, if the heuristic is a 

null heuristic (always equal to zero), A* is identical to Dijkstra’s algorithm. 

Algorithm starts with the initial node and maintain an open list, which is priority queue of 

nodes where for each node x, algorithm gives the higher priority to the node with lower 

f(x). Initially S contains the Start node with g(S) equal to zero and all other nodes x with 

the g(x) equal to infinity. Then, the node with lowest f(x) will be removed from the 

queue. For those neighbors n of x where the distance to the n via x is smaller than g(n),  

values of g(n) and f(n) will be updated and added into the open list. Until the smallest 
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g(n) value on the open list is larger than the g(destination) value or the open list is empty, 

the algorithm continues above steps. When the algorithm terminates, the value of 

f(destination) is the length of the shortest path from start to destination node. At this 

point, the value of h(destination) should be zero and g(destination) is the length.  

A* when applied as is to group path finding, will try to find the shortest path for each unit 

and will not be concerned with any bottlenecks or path congestion problems.  

1.6.4 Local Repair A* 

In Local Repair A* (LRA*) method, each unit uses A* algorithm and searches for a path 

to its destination. Units do not consider other units except neighbor units. Units begin to 

move in their assigned paths until a collision is about to happen. At this time (before 

collision actually happens), unit recalculates the path from current position to destination. 

Moving in cycle is a common problem of this solution. Consider a situation when a unit 

collides with another unit, then recalculates the path and finds a path in reverse direction 

and starts to move back in direction of new founded path. At this time, it collides with 

another unit and recalculates the path and again this one is in reverse direction. In 

crowded regions, the above-described scenario can occur a lot. It takes very long time to 

finish the path finding in such situations and sometimes it is even impossible (deadlock). 

Figure 0.1 is an example of a situation with possible cycles. In Figure 0.1 units A and B 

are moving in one direction (left to right) and C is moving on opposite direction. B will 

collide with C and recalculates its route, if the LRA* decides to change the path for unit 

B and the new assigned path is in reverse direction, a potential deadlock is unavoidable.     
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Figure 0.1: An example passage with capacity of one and three units. Arrows show unit’s 

moving direction 

 

1.6.5 Cooperative A* 

Cooperative A* [4] is an algorithm for solving cooperative pathfinding problem. 

Cooperative pathfinding needs to have knowledge of all units and positions of obstacles 

at each moment. To know the exact status of each point in the map (it can be a point in 

waypoint maps or a tile in tiled maps) at each time, a third dimension is added into the 

map, time dimension. Waypoint maps are described further below. This space-time map 

is a three dimensional grid of cells. Divide the problem into single agent search, each 

agent performs the search in three dimensional space-time table and considers routes of 

other agents. After each unit’s path is set in reservation table, that path will be unusable 

for other agent during the specified time. The reservation table represents the agents 

shared knowledge about each other’s planned routes. 

Consider a situation when a unit U1 is in cell(x , y) at the time t1. It can be represented as 

U1(x , y , t1). U1 wants to move to cell(x+1 , y). New status will be U1(x+1 , y , t2). This 

move could be done if and only if the cell(x+1 , y) is free at the time t2. Then if that cell 

is free, it will be marked as occupied at that time-space position. 

 Reservation table 
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First unit chooses its path and other units will not occupy cells along that path at reserved 

time. For example, U1 wants to move from cell(x , y , t1) to cell(x+1 , y , t2) and then all 

neighbor cells are occupied at t2, so unit have to wait until t3 and then will move to 

cell(x+2 , y) at t4. These cells should be marked into a reservation table. A data structure 

with an entry for every cell of space-time map is required. 

Figure 0.2 shows pathfinding for a unit which wants to move from its start to destination. 

Selected path is marked as occupied in the time-space reservation table.  

 

Figure 0.2: Three dimensional space-time maps proposed by D. Silver [4]. Dark black 

cells (  ) are obstacle, which remain occupied all the time. Gray cells (  ) are the cells, 

which marked as reserved cells for the unit (  ) 

 

1.7 Using Navigation Mesh vs. Using Waypoints  

Walkable areas of the game terrain and possible paths between any two points in the 

game world should be represented and available to the pathfinding system. Then the 

pathfinding system uses suitable algorithms to find the best routes. Navigation Mesh 

(usually called NavMesh) and Waypoints are two representations of walkable areas in 

game world.   
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1.7.1 Navigation Mesh (NavMesh) 

Navigation mesh is a set of convex polygons that describe the “walkable” surface of a 3D 

environment [9]. Navigation meshes are composed of convex polygons which when 

assembled; represent shape of the map analogous to a floor plan. The polygons in a mesh 

have to be convex, since this guarantees that the AI agent can move in a single straight 

line from any point in one polygon to another point in that polygon. Units can go from 

one area to another adjacent area when those two meshed-areas have shared points at 

their borders. Convex meshes are connected to their neighbors through shared adjacent 

nodes. Each of the convex polygons can then be used as nodes for a pathfinding 

algorithm. A NavMesh path consists of a list of adjacent nodes to travel along. Convexity 

guarantees that with a valid path the AI agent can simply walk in a straight line from one 

node to the next on the list [10].  

Figure 0.3 shows a terrain with NavMesh areas. 
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Figure 0.3: Terrain with NavMesh areas. Gray areas are meshed and therefore walkable 

areas and other areas (dark colored obstacles and white areas around them) are un-

walkable areas. Screenshot from Unity game engine built-in NavMesh baker. 

 

1.7.2 Waypoints 

The waypoint system for navigation is a collection of nodes (points of visibility) with 

links between them [13]. Consider waypoints as nodes in a graph. Non-Player characters 

(NPCs) can navigate through the world using these points. Edges of the graph are 

connections between nodes. These edges are automatically generated in a preprocessing 

step. Level designers also can generate edges manually. Then pathfinding algorithms are 

used to find paths through the node-graph [12].  

Travelling from one waypoint to another is a sub problem with a simple solution. By 

traveling along a number of waypoints, any two waypoints should be reachable in a map. 

If an AI agent wants to get from A to B, it walks to the closest waypoint seen from 

position A, then uses a pre-calculated route to walk to the waypoint closest to position B 
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and then tries to find its path from there. This system has benefit of representing the map 

with the least amount of nodes for the pathfinder to deal with [21].  

Figure 0.4 shows a terrain with waypoints. Each node is a waypoint and if there is a line 

between two waypoints, it means that they are connected and therefore there is a path 

between those two points. 

 

Figure 0.4: An example terrain with connected waypoints. Sample map from DAYZ, a 

multiplayer online game by Bohemia Interactive studios.   

 

 Strategic Points 

By pre-processing the waypoints relations, game designers can plan dynamic intelligent 

defense and attack strategies for Non-Player characters (NPCs). In this method, designers 

calculate and store strategic information about the relation between waypoints, and then 

NPCs use these strategic positions to act in more realistic and intelligent manner. 

http://en.wikipedia.org/wiki/Bohemia_Interactive
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Positioning of the waypoints is done in level design, so game designers can calculate and 

store waypoints relation in level design step. [13].  

By using waypoints, each point can get a number, which reflects its level of danger or in 

other words level of visibility. Waypoint with high level of visibility is a place in the 

map, which has high risk of being visible by opponent units. Points with high level of 

visibility are more vulnerable to enemy’s line of fire. On the other hand, a point with 

lower risk is a good place to be hidden from enemy’s fire. Figure 0.5 shows an example 

map with some high and low visibility level areas. 

 

 

Figure 0.5: Screen shot with low-risk (C) and high-risk (B) areas for defending. Area 

marked as (A) is a good attacking position. Screenshot from “Mercenary Ops” game by 

Yingpei Games studios. 
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The same strategy can be used for attacking. A waypoint with higher attack level is a 

good point to start the attack. It can be a point with a better view on enemy’s area or a 

point in a high place that gives a better opportunity to the shooter. Figure 0.5 shows such 

areas.  

Strategic points are defined as pinch and ambush points. Game designers use the graph, 

to calculate pinch and ambush points.   

Any area in the map that connects two other large areas will be considered as a pinch 

point. All the units, which want to travel from one side of pinch point to the other side, 

have to pass through this pinch point. Doorway into a room is an example of a pinch 

point.     

Ambush points are strategic areas near the pinch points. NPCs, which stay in these 

ambush areas, are hidden from other units who are on the other side of pinch points [14].  

Game developers can use ambush and pinch points to implement intelligent strategies for 

attack and defense.  

 

            

Figure 0.6: Example of pinch and ambush points in a map, proposed by D. White [14] 
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1.7.3 Comparing NavMesh and Waypoint 

Both methods have some advantages and disadvantages. Based on the game, designers 

have to choose one method that fulfills game’s requirements. Below are some 

recommendations for choosing between these two methods:      

1. Games with large open areas need huge number of waypoints to implement; in 

this case, it is better to use NavMesh.  

2. Characters in a game, which use waypoint, move in zigzag shape even when 

methods are added to smoothen the unit movement. In the other hand, characters, 

which use NavMesh for pathfinding, have smoother paths.    

3. In a game with waypoints, it is harder to do path correction in dynamic maps 

(maps with dynamic obstacles). 

4. It is hard to have one waypoint path for all kind of moving characters (think about 

a big Tank and a walking soldier). 

5. Using NavMesh will give you more information about spots around a character.  

6. Placing strategic points is an advantage of waypoint system. Although it is also 

possible to have different meshed areas in a map, it is easier to have pinch and 

ambush points when waypoint system is used.  

1.8 Capacity of a path with different edges 

Consider a path from start point S to destination D, in an example terrain. There will be 

some passages (edges) with different capacities during that path. Figure 0.7 shows such a 

path in a sample map.  
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Figure 0.7: Paths with different edges and different capacities 

 

In this example, edges Start to A, A to B, B to C and C to Destination, are in between the 

path from start to destination. Table 0.1 shows edges with capacities. 

Table 0.1: Edges of the path with capacities 

Edge Capacity 

Start to A 6 

A to B 10 

B to C 2 

C to Destination 5 

 

A group of units wants to go from Start to the Destination, as fast as possible. Capacity of 

the path is limited, so units cannot go through it at a time. Based on the capacity of the 

first edge (Start to A), that is six, six units can go through the path and other units have to 
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wait for a while until the edge becomes empty and then go through it. Two different 

scenarios are possible:  

(a) First scenario is sending units with maximum capacity of the edge from Start to 

point A.  

(b) Second scenario is to send units with minimum capacity of the edges along the 

path that is edge from point B to point C with capacity of two.  

Capacity is the number of units that can pass from a path while they are in a row. 

Capacity of Start to A is six and A to B is 10, so all the units coming from first edge can 

pass through edge A to B with the same speed and formation, without any delay. 

Consider that only 60% of available capacity of this edge is occupied. At the other end of 

edge, A to B there is edge B to C with capacity of two. Since capacity of edge B to C is 

less than A to B, units cannot go through this edge with the same speed and capacity as 

previous edge. It means there will be a queue of units at the end part of edge A to B. 

Meanwhile, other units are coming and the queue becomes bigger and bigger until a 

steady state is reached. Steady state is when the edges A to B and Start to A are fully 

occupied. At this state, only and only two more units can go into first edge, Start to A, at 

each time slot.    

On the other hand, units can go through the path by the minimum capacity of the edges in 

that path, which is equal to two in this example. Units go through the edges, two in a row 

and continue their travel with a consistent speed and formation from start to the end. In 

this case, there is no delay or queue during the path, except at the entrance gate. 
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Required time, to pass all the units from Start to Destination is equal in both scenarios. It 

means that it does not matter to send the units with maximum capacity or by the 

minimum capacity of the edges in the path. 

In situations where there are multiple sources and shared junctions in a map with, it is 

better to form the queue at the start point. 

 

Figure 0.8: Shared junctions, area is shared between units coming from A, going to B and 

units coming from C, going to D 

 

Figure 0.8 shows part of a map with a junction that two paths share. Suppose that there is 

a path from gate A to B and another one from C to D. Capacity of A is higher than B so, 

if units start to fill edge A with its maximum capacity, they cannot go into the B with the 

same speed and formation. Some units have to wait at the B entrance and by the time they 

will form a queue at the entrance and it gets bigger and bigger. After a while, units, which 

are waiting in the queue, will block the entrance of gate D and it means they are cutting 

the path from C to D. If there is a unit with a path from C to D, it cannot pass and will 

have to wait until almost all of the units of path from A to B pass.       
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In some cases, if the queues form at beginning points, the total time to path will be lower. 

By forming the queue at the start point of a path, we will give this opportunity to the units 

of other groups to use a partial capacity of shared junction and therefor the total time to 

pass will be less. 

Conclusion: capacity of a path is equal to capacity of the edge with minimum capacity. 

1.9 Summary  

Pathfinding algorithms can be divided into two methods, centralized and decoupled. 

Centralized methods search to find paths for all units at a time where Decoupled methods 

calculate the path for each individual unit separately and then try to solve potential 

collisions in the map. These methods and their differences were reviewed in this chapter.  

Several pathfinding algorithms were reviewed in detail in this chapter. Dijkstra, 

Maximum Flow algorithm, A*, Local Repair A* and Cooperative A* are some well-

known pathfinding algorithms which were discussed. Dijkstra and A* try to find shortest 

path in a graph. Maximum flow algorithm just considers how to send the units through 

the map to reach a steady state of fully occupied paths regardless of the length of paths. 

Local repair A* works like A* unless when two units are near to collide, then algorithm 

will recalculate the pathfinding for those units. Cooperative A* uses A* for pathfinding 

but units have knowledge of other unit’s position at each time. To implement cooperative 

A* we need to have a time-space table.     

In chapter two, we compared navigation meshes and waypoints, two different 

infrastructures for implementing pathfinding algorithms on. Characters which use 
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NavMesh for pathfinding, have smoother paths where placing strategic points is an 

advantage of waypoint system.  

At the end of this chapter, capacity of a path with different edges was studied. It was 

mentioned that capacity of a path is equal to capacity of the edge with minimum capacity 

during that path.  

In next chapter, we discuss about shared passages and how to divide it between paths 

which want to share the shared passage capacity. 
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Group Pathfinding in Shared Passages with Different Capacities 

Some terrains have passages that lead to two or more paths (junction). Figure 0.1 is an 

example of such junctions. 

 

Figure 0.1: Paths A and B sharing one passage 

 

The map in Figure 0.1 has a shared passage and two paths; it is like a 3way junction. All 

the units that want to move into those two paths, path A and path B, should pass through 

shared path. Shared path has a limited capacity. It is good to virtually divide the shared 

path into two separate subpaths (Figure 0.2). We can distribute the capacity between 

these two subpaths in some proportion. Giving different ratios to these subpaths will 

result in different total time for units at the end. 

 

Figure 0.2: Shared path is divided into two different dedicated paths 
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Consider that all the units have the same speed and size, specified, say, by diameter. The 

“diameter” is used because, there is a cylinder shape bounding box collider around each 

unit to detect collisions.  Each path has length, capacity and time-to-pass (TTP). 

𝑇𝑖𝑚𝑒 𝑇𝑜 𝑃𝑎𝑠𝑠 (𝑇𝑇𝑃) =  
𝑃𝑎𝑡ℎ 𝐿𝑒𝑛𝑔𝑡ℎ

𝑈𝑛𝑖𝑡 𝑆𝑝𝑒𝑒𝑑
 

Suppose that, after running the pathfinding solution, each path will have a Path Portion. 

Path Portion is the number of units assigned to a path. Because of the limited capacity, in 

some points, queues will be formed and units will have to wait for a free spot to go 

through that path. Waiting time for each unit u is equal to: 

𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝑈𝑛𝑖𝑡 𝑢 = (number of units waiting in queue before u) ∗  
𝑈𝑛𝑖𝑡𝑠 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟

𝑈𝑛𝑖𝑡 𝑆𝑝𝑒𝑒𝑑
   

Instead of a path with capacity of C, it is possible to consider that path has C different 

paths with capacity of one. 

Now we have the exact number of units waiting on each line of paths with capacity of 

one. For the first unit in each line, there is no waiting time, so time to pass the path for 

that particular unit is equal to TTP, but for all other units time-to-pass is equal to TTP 

plus waiting time for that unit. The “Total waiting time” is equal to the number of units 

waiting in queue, except the first unit, multiplied by the time that is required to make a 

free room for the one unit: 

𝑇𝑜𝑡𝑎𝑙 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑡𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑡ℎ𝑎𝑡 𝑝𝑎𝑡ℎ(𝑃𝑎𝑡ℎ 𝑝𝑜𝑟𝑡𝑖𝑜𝑛) ∗  
𝑈𝑛𝑖𝑡 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟

𝑈𝑛𝑖𝑡 𝑆𝑝𝑒𝑒𝑑
  

Total time-to-pass for all of units is: 

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚 𝑡𝑜 𝑝𝑎𝑠𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢𝑛𝑖𝑡𝑠 = 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑙𝑎𝑠𝑡 𝑢𝑛𝑖𝑡 + 𝑇𝑇𝑃 
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At this point, Path Portions for paths A and B are defined. Let us call them Path Portion 

A and Path Portion B. In addition, there is a ratio for shared path. Ratio for path A is 

Ratio A and ratio for path B is Ratio B. Units who want to pass through path A can use 

Ratio A of Capacity of shared path and it is Ratio B  for units assigned to path B. 

Obviously, Ratio A plus Ratio B is equal to the Capacity of shared path. 

If we divide Path Portion by ratio of each path, numbers of units that are waiting in each 

queue of path are calculated as below: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑡𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑞𝑢𝑒𝑢𝑒 =
𝑃𝑎𝑡ℎ 𝑃𝑜𝑟𝑡𝑖𝑜𝑛 

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑃𝑎𝑡ℎ
 

Having the number of units in each queue, we can calculate total time to pass. 

Subsequently, different total time to paths can be calculated based on different ratios.  

1.9.1 A Sample Shared Passage Problem 

For this example, consider a group of 1000 units with the same diameter of 0.5 meter and 

speed of 10 meter/second, which wants to pass through the map. Let the waiting time for 

one unit to find a free spot in the path is 0.05second. 

𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑜𝑛𝑒 𝑢𝑛𝑖𝑡 =  
𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟

𝑆𝑝𝑒𝑒𝑑
=  

0.5

10
 

As Figure 0.1 shows, there are two paths, A and B and also a shared passage. Therefore, 

there are two possible routes, one starts from shared path and goes through path A (R1), 

the other one starts again from shared path and goes through path B (R2). The word 

“Route” refers to two or more paths, which starts from start point to destination point.   
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Table 0.1: Description of the sample path 

Route 

name 

Route 

length 
TTP 

Path 

Portion 

R1 40 4 400 

R2 70 7 600 

 

1.9.2 Static Ratios 

Suppose that capacity of shared path is 10. If we want to send all 400 units of route R1 

from the shared path and only use 20% of shared path’s capacity, it will take 13.95 

seconds. Doing the same calculation for different capacities (ratios) will show the results 

of Table 0.2. For example, calculations for 400 units of route R1, when it uses 40% of 

shared path, are computed in below. Similar calculations have been used for other 

capacities.  

1) Divide Path Portion by ratio -> 400/4 = 100 

2) Calculate waiting time for last unit in the line -> (100-1)*0.05 = 4.95 

3) Sum waiting time for last unit and Time to pass -> 4.95 + 4 = 8.95 
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Table 0.2: Different ratios of shared path and time to pass for Routes R1 and R2 

Capacity R1 R2 

1 23.95 36.95 

2 13.95 21.95 

3 10.65 16.95 

4 8.95 14.45 

5 7.95 12.95 

6 7.3 11.95 

7 6.85 11.25 

8 6.45 10.7 

9 6.2 10.3 

10 5.95 9.95 

Figure 0.3 shows different time to pass for different shared path ratios. 

 

Figure 0.3:  Different ratios of shared path and time to pass for routes R1 and R2 

 

Consider a shared path with capacity of 10. We can give 1/10 to units who want to go to 

route R1 and 9/10 to units going to route R2. Call this ratio (1-9). There are 400 units for 
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R1 with capacity of one; it means that it takes 23.95 seconds for all the units to pass R1. 

In addition, there are 600 units for route R2 with capacity of nine. There will be 67 units 

in each line of route R2. It takes 10.3 seconds. By the ratio of (1-9), the total time to pass 

will be maximum of 23.95 and 10.3 that is 23.95 seconds. Doing the same calculations 

for other ratios will give result reflected in the Table 3.3. Figure 0.4 also shows results in 

a chart.   

Table 0.3: Different ratios and time to passes 

Ratio 
 

A - B Time 

0-10 15.9 

1-9 23.95 

2-8 13.95 

3-7 11.25 

4-6 11.95 

5-5 12.95 

6-4 14.45 

7-3 16.95 

8-2 21.95 

9-1 36.95 

10-0 15.9 
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Figure 0.4: Different ratios and time to passes 

 

Ratio of (0-10) means that all shared path’s capacity is dedicate to units who want to go 

to path B and then when all of them are entered into shared path, 100 percent of the 

shared path is dedicated to units of path A.  

Calculated time for each ratio is the maximum time to pass of units through R1 and R2 

with that ratio. In this case, the best ratio is (3-7) with total time of 11.25 seconds.    

1.9.3 Dynamic Ratios 

In this case, again a portion of shared path is assigned to each path (A and B). From the 

beginning time, (t0) units start to go into shared path. After a while, in time (tx) all the 

units who want to go to one of the routes are placed in shared path. At this time, there are 

no more units for one of the routes and we can give 100% of the shared path to the other 

one. This method of sending units into the map is called dynamic path ratio. Total time to 

pass with dynamic path ratio is shown in Table 0.4. 
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Minimum total time to pass is 9 seconds and it is repeated in to ratios.  

Table 0.4: Different ratios and time to pass with dynamic approach 

Ratio 
 

R1-R2 Time (dynamic) 

0-10 15.9 

1-9 9.05 

2-8 9 

3-7 9.05 

4-6 9 

5-5 12.05 

6-4 12.05 

7-3 12 

8-2 12.05 

9-1 10 

10-0 15.9 

 

Results of assigning ratio dynamically are also shown in Figure 0.5.   
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Figure 0.5: Different ratios and time to pass with dynamic approach. 

 

1.9.4 Experimental results  

All the experiments were run on an Intel Core i7 CPU with 16 GB RAMS. Unity game 

engine V4 professional edition is used to implement the experiment.  

A group of 500 units with the speed of 5 meter per second and 0.5 meter diameter is used. 

There are two paths, P1 that has 45 meters length and P2 with 65 meters.  

Shared path, path P1 and path P2 are shown in Figure 0.6. All the units start from S and 

D is their destination.   
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Figure 0.6: Two paths, P1 and P2 have to share one path 

 

Table 0.5 and Figure 0.7 show different times for R1 when we use different ratios both 

for theoretical and experimental model. 

Table 0.5: Route R1 using different capacities 

Capacity Theoretical Experimental 

1 38.9 44.0775 

2 23.9 38.33 

3 18.9 34.1825 

4 16.4 31.255 

5 14.9 30.5875 

6 13.9 29.66 

7 13.2 28.88 

8 12.7 28.49 

9 12.3 28.265 

10 11.9 27.6525 
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Figure 0.7: Route R1 using different capacities 

 

Below table and chart show different times for R2 when we use different ratios both for 

theoretical and experimental model.  
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Table 0.6: Route R2 using different capacities 

capacity Theoretical Experimental 

1 32.9 42.12 

2 22.9 38.8075 

3 19.6 35.715 

4 17.9 34.565 

5 16.9 33.6 

6 16.3 33.1675 

7 15.8 32.4375 

8 15.4 31.9125 

9 15.2 31.725 

10 14.9 31.6425 

 

 

Figure 0.8: Route R2 using different capacities 
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1.9.5 Three routes share a passage   

We performed the same experiment but this time with three routes. R1 is 40, R2 is 70 and 

R3 is 90. Unit speed is 10 and diameter is 0.5. 1300 units has been used and Path Portion 

for R1 is 400, R2 600 and R3 is 300 units.   

Below we can see the tables and charts.  

Table 0.7: Routes R1, R2, R3 using different capacities 

 Time 

capacity R1 R2 R3 

1 23.95 36.95 23.95 

2 13.95 21.95 16.45 

3 10.65 16.95 13.95 

4 8.95 14.45 12.7 

5 7.95 12.95 11.95 

6 7.3 11.95 11.45 

7 6.85 11.25 11.1 

8 6.45 10.7 10.85 

9 6.2 10.3 10.65 

10 5.95 9.95 10.45 
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Here is the table if we send units through routes with fixed capacity.
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Figure 0.9: Routes R1, R2, R3 using different capacities 
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Figure 0.10: Units go through routes R1, R2, R3 using different ratios 
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Reduced Wait Time (RWT) algorithm 

1.10 Map Generator 

To compare different algorithms, maps with multiple paths and different capacities are 

needed. For sure, a terrain with a single path is not useful. In addition, it is good to test 

different algorithms on different map sizes with different statuses. Every terrain can be 

represented as a graph, where intersections are vertices and passages are edges. Graph of 

a terrain can be fully connected (complete graph) or semi-connected or even disconnected 

but at least there should be one path from start point to the end node of the graph, 

otherwise that maps is useless. 

A random map generator is used to generate sample maps to test the algorithms and 

compare them. The map generator creates random maps in Unity 3D game engine. Map 

size, minimum number of available paths between start and destination point and chance 

of having more free passages are customizable. Every time that run the application it asks 

about customizable items of the terrain and builds a map based on your needs. It is 

possible to save the map to use the same one for other algorithms. Figure 0.1 shows a 

random map with different paths from start point to destination. 
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Figure 0.1: Randomly generated map. Green blocks are obstacles and white spaces are 

walkable areas 

 

1.11 Map generator algorithm 

First of all, map generator creates an empty terrain base on inserted map size. Then it 

marks a random path from start to destination and set the edges of that path as walkable 

(there is no obstacle there). To make the paths more randomized, map generator sets 

some random middle points, then it will find a path from start to middle point and then 

from middle point to destination point. Number of middle points is selectable by user but 

middle points will be placed randomly in the terrain. Finding a random path from start to 

destination begins from start point and ends in destination point. At each point (vertex of 

graph) in the map, there are three possible directions to take. Two of them will link you 

to closer points to the destination and one direction links to a point with more distance 

from destination. Choosing the direction to go is random but with different chances. 
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Chance of going to nodes that are closer to the destination should be more, otherwise we 

will have lots of going forward and backwards and result is a path with lots of loops in 

between. Figure 0.2 shows such a map with lots of loops. 

 

Figure 0.2: Randomly generated map with one path from start to end and many loops 

during the path. 

 

At his point, we have some marked paths. Then, application starts to block the edges 

unless the edge is part of marked path. Also based on “chance of having more free 

passages” variable, that user sets at the beginning, some edges will remain free, 

considering the chance factor and random positions.   

Now, it is time to assign a capacity to each edge of map that is walkable (not blocked). 

Each walkable edge will receive a random number as capacity. Assigned capacity will 



43 
 

change the wideness of passages. Figure 0.3 shows a complete map with some units 

passing through it.   

 

Figure 0.3: Random map with moving units 

 

1.12 Reduced Wait Time (RWT) Algorithm for Group Path Finding 

To minimize the time to pass factor, RWT algorithm divides the group of units into 

subgroups at some points during their routes in the terrain. Units can take different routes 

toward the destination to decrease wasted time of being in queue (waiting time).  
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Consider a terrain with many different paths. It can be considered as a graph with edges 

as paths and nodes as junctions with three (or more) paths meeting at the junction. Each 

edge has a capacity and length. There may be several different routes from start node to 

destination, each one with different capacity and length. The capacity of a route is the 

minimum capacity of all edges during that path. We can sort all the routes from source to 

destination by length. Instead of sending all the units from the shortest route, the RWT 

algorithm will divide the given group of units into smaller subgroups and send them 

through alternative routes (second shortest, third shortest and so on). This way it will 

decrease the waiting time of being in queue. Therefore, time of reaching the destination 

by the last unit becomes less. A group needs to be divided in such a way that the time to 

send a unit via an alternative route becomes less or equal to the time of sending that 

particular unit via the shortest route, after considering waiting time. That is, we have to 

take it to account the overhead of waiting in queue by adding it to the time to pass for a 

unit via the shortest route.  

Each route has a length L. Unit’s speed S is equal to maximum speed that the unit can 

move. Time to pass through a route TTP is equal to L/S. 

𝑇𝑖𝑚𝑒 𝑡𝑜 𝑃𝑎𝑠𝑠 (𝑇𝑇𝑃) =  
𝐿𝑒𝑛𝑔𝑡ℎ (𝐿)

𝑈𝑛𝑖𝑡′𝑠 𝑆𝑝𝑒𝑒𝑑 (𝑆)
 

Units have a cylinder shape, bounding box to determine collisions, so each unit has a 

diameter D.  
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Because of the limited capacity, at some points, queues will be formed and units will 

have to wait for free room to go through that route. Waiting time (WT) for each unit u 

can be calculated as below:  

𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝑢𝑛𝑖𝑡 𝑢 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑡𝑠 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑖𝑛 𝑞𝑢𝑒𝑢𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑢 ∗  
𝑈𝑛𝑖𝑡 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟

𝑈𝑛𝑖𝑡 𝑆𝑝𝑒𝑒𝑑
 

Time needed for a unit u to pass through a route r is equal to WTu+TTPr.  

Suppose that there are only two routes, R1 and R2. TTPR1 is 10 seconds, TTPR2 is 20 

seconds, and both routes have capacity of just one unit. If the waiting time for one unit is 

1 second, it takes (2*1) +10 seconds to pass three units through R1. Therefore, the total 

time we need to pass three units through R1 is 12 seconds. 

Sending just one unit through R2 takes 20 seconds. We can conclude that, if we have a 

small number of units there is no need to send them via R2 unless the waiting time for a 

unit who wants to go via R1 is equal or more than 10 seconds that means at least we need 

11 units for R1. Therefore, there should be a certain minimum number of units after 

which, use of the second route becomes faster. We call this number threshold of taking 

second route. If the total number of units is greater than the threshold, it makes sense to 

use second shortest route.  

1.12.1 The RWT algorithm  

First of all, RWT algorithm needs to have information about all the routes from start to 

destination point. To obtain this information, Dijkstra, A* or any other pathfinding 

algorithm can be used. At this point, RWT algorithm takes shortest route and decreases 

the capacity of all the edges along that route by the route capacity (capacity of the edge 
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with minimum capacity). The same will be done with other routes. It finds second 

shortest route, decreases the capacity of all the edges along that route by the route 

capacity and repeats this step until there is no more available routes from start to 

destination. After this, RWT has a table with a number of routes from start to destination. 

Routes are sorted based on length.   

The next step in RWT starts with putting one unit in the route with maximum TTP (Time 

to pass). Total time will be equal to TTPmax. Now RWT algorithm can calculate 

thresholds for other routes then calculate Path Portions for all the routes.   

Summation of all the Path Portions can be less than total number of units who want to 

pass the map. In this case, solution should assign the remaining units equally to all the 

routes. The reason why RWT divides all the remaining units among all the routes equally 

is that there is at least one unit in each route and if we add one more unit to any route 

total time to pass for that route will be previous time to pass plus waiting time for one 

unit.       

1.12.2 Reduced Wait Time (RWT) Algorithm for sending N units in Pseudocode 

Potentially there are n different routes from start node Start to destination node 

Destination in game world.  

1.1  i=0 

1.2  Until there is no path from Start to Destination Do 

1.2.1 Apply A* algorithm to find the shortest path from Start to Destination. 

1.2.2 i = i +1 

1.2.3 Add this path i, its length Li, and TTPi into the paths table. 
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1.2.4 Decrease the capacity of each individual edge along path i by the capacity of the 

edge with the minimum capacity of any edge along the original path. 

1.3 n = i 

1.4 At the end of Step 1.2, there will be a table of paths, which is sorted based on Li for 

paths i = 1 to n and respectively TTPi from minimum to maximum TTP.  

1.5 Select the path n from the table (this path has also the maximum time to pass, TTPn). 

1.6 The number of units that are scheduled to pass along path i = 1 to n is 

(
(𝑇𝑇𝑃𝑛 − 𝑇𝑃𝑃𝑖)

(
𝐷
𝑆 )

) + 1 

where D/S is the length of the path required for one unit. The above value is placed in 

the table for path i as Path Portioni. This is the number of units to be sent initially 

along path i. 

1.7 The total number of units that are scheduled to be sent before the solution reaches a 

max flow states is the sum of all the Path Portion1 to Path Portionn together. After 

Path Portioni is send along path i, an equal number of units from the remaining units 

are scheduled for each path:  

(𝑁 − ∑ 𝑃𝑎𝑡ℎ 𝑃𝑜𝑟𝑡𝑖𝑜𝑛𝑖)
𝑛
𝑖=1

𝑛
 

This will be the final Path Portion for each route. 

1.12.3 Using RWT Algorithm on an example map  

In this example, 100 units with speed of 5 meter per second are positioned at start point 

and want to go to destination. Unit’s diameter is 0.5. There are three routes. Capacity of 
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route 1 is one, capacity of route 2 is one, and capacity of route 3 is two. Instead of 

considering capacity of more than one for a route, it can be assumed to be two routes with 

capacity of one. 

Doing the first phase of pseudo-code will give the results which are reflected in the 

following table.  

Table 0.1: Specifications of sample map 

 Length Capacity Time to path 

R1 30 1 6 

R2 40 1 8 

R3-1 50 1 10 

R3-2 50 1 10 

  

Sending the one unit via R3 takes 10 second for the unit to reach the destination versus 

sending a unit via R1 that takes only 6 seconds. If we send 41 units to R1, it takes 10 

second for them to reach the destination. All the required calculations are as follow: 

WTR1 = (number of units should in queue that is 40) * (D/S that is 0.1) 

Total time-to-path for 41 units is WTR1+TTPR1 that is 4+6=10.  

We can conclude that, if we send 41 units through R1 and at the same time send just one 

unit through R3 all of them will reach the destination at the same time. This time is less 

than sending all 42 units through shortest route that will be 10.1 seconds. 

Doing the same, calculations will give us the result in below table for Path Portions. 
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Table 0.2: Path Portions 

Path Name 
Relative Path 

Portion 

R1 41 

R2 21 

R3-1 1 

R3-2 1 

  

Path Portions of R1 + R2 + R3 are 64 units. Total number of units is 100. Therefore we 

have (100-64) 36 more units. We should divide this number by 4 and add it to each route. 

We need to add 9 more units to each route. Total number of units should pass through the 

routes is shown in Table 0.3: Unit portions of each path. 

Table 0.3: Unit portions of each path 

Path Name Total Path Portion 

R1 50 

R2 30 

R3-1 10 

R3-2 10 

 

If we send all 100 units with the portions mentioned above table, the total time to pass 

will be 10.9. This time is 5 seconds less than sending all the units form shortest path. 
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Simulations, Results and Discussion  

In this section, RWT algorithm is compared with several other solutions in terms of time, 

traveled distance, number of collisions and waiting time.  

RWT is compared with the other algorithms using a sample terrain, which was randomly 

generated with different paths and various capacities. As shown in Figure 0.1, the 

proposed map is maze shape terrain with single source and single sink, called S and E, 

respectively. S and E are considered as entrance and exit portals.   

 

Figure 0.1: Sample terrain with one source point, S, and one destination point, E 

 

The units are initially placed behind the entrance portal (S). These units were then sent 

through the map in order to pass the destination portal (E). Units will do the path finding 

and path following strategies based on the chosen algorithm.   
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A graph can be mapped to each terrain. Showing a map by graph is much easier to 

understand. Paths of the map are edges of the graph and intersections which connect 3 or 

more edges are vertices. Figure 0.2 shows a sample map and its related graph. 

 

Figure 0.2: (a) Sample map and (b) its relative graph 

 

1.13 Sample Map 

A sample map is generated to test all the algorithms in a similar environment. Map is 

randomly generated with random values for lengths and capacities.  

 

Table 0.1 shows all the edges and their relative length and capacity. Map has 7 vertices 

and 11 edges with different lengths. In the second row of the table, you can see the term  

S > A which means there is a route from vertex S to A and its length is 10 meters with the 

capacity of 4. Capacity of 4 means, 4 units in a row can pass through this path. 



52 
 

 

Table 0.1: List of edges with their length and capacities 

Route with start and 

End edges 
Length Capacity 

S > A 10 4 

S > D 15 4 

A > B 12 1 

A > C 10 1 

B > E 10 3 

C > B 13 2 

C > E 17 1 

C > F 12 1 

D > C 15 2 

D > F 10 2 

F > E 15 2 

 

Based on the graph there are eight different routes from start vertex, S to the end vertex 

E. Table 0.2 shows all the possible routes and their length, capacity and time to pass.  
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Table 0.2: All the paths from Start to Destination with their length and capacity 

Route name Length Capacity 

R1 32 1 

R2 43 1 

R3 37 1 

R4 47 1 

R5 53 2 

R6 47 1 

R7 57 1 

R8 40 2 

 

There is another property for each route called Time to Pass, TTP. Time to pass means 

how long it will take for a single unit to go from start to end using that route. Obviously, 

TTP is different from route to route. TTP is related to unit’s speed and route length. In 

this example, units are moving with the speed of 5 meter per second. A cylinder collider 

surrounds units. The cylinder’s diameter is 0.25 meter. Considering the unit’s speed, we 

add another column to the Table 0.2 that shows time to pass, TTP, for each route from S 

to E. Table 0.3 shows all the routes from S to E and needed TTP of those routes.  
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Table 0.3: All routes from S to E with their Time to Pass  

Route name Length TTP 

R1 32 6.4 

R2 43 8.6 

R3 37 7.4 

R4 47 9.4 

R5 53 10.6 

R6 47 9.4 

R7 57 11.4 

R8 40 8 

 

Time to pass for route R1 is 6.4 seconds; it means that if there is one unit positioned at S 

that wants to go to E using route R1, it takes 6.4 second.   

Next for comparing RWT with other, we run different solutions on the sample map. 

Various parameters have been monitored in this experiment.  

Compared solutions are: 

 A*  

 LRA*  

 Maximum Flow 

 RWT 

Studied parameters are: 

 Total time needed to pass all the units  
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 Distance traveled by the units  

 Waiting time for all the units 

 Total number of collisions between units 

A* algorithm only use one route, the shortest one. Then units will be sent through that 

route. The shortest route in this example is R1 with 32 meters length with capacity of 

one. There are some edges in R1 with capacity of more than one but, as mentioned 

before, capacity of a route is equal to capacity of the edge with minimum capacity along 

that route. It takes 6.4 seconds for one unit to pass through R1 and reach the destination. 

Suppose that there is more than one unit to pass the map. Therefore, there will form a 

queue at the entrance portal. The first unit will pass without waiting in the line but for 

other units there will be a waiting time. Total time to pass for second unit is equal to time 

to traverse the route plus waiting time. As mentioned earlier in this section, waiting time 

for one unit is diameter divide by speed (D/S). In this example, diameter is 0.25 and 

speed is 5 so, waiting time is 0.05 second. 

Maximum Flow uses R8, R6, R5, R2 and R1. Then it divides total units and sends them 

equally to these five different routes.  

Local Repair A* works almost like A* but when two units are near to collision they re-

rout and try to find another free route.  

RWT uses R1, R3, R6 and R8. RWT will divide units into those 4 paths but unlike 

Maximum Flow, the portions are not equal. RWT and its division algorithm are well 

explained in previous chapter. 

Table 0.4 compares these algorithms and relative routes. 
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Table 0.4: Specifications of different algorithms  

Solution 
Number of 

Routes 
Path Portions 

Total capacity 

of routes 

A* 1 All the units 1 

LRA* N/A N/A Between 1 to 6 

Maximum 

Flow 
5 

(Total number 

of units) / 

(total capacity 

of paths) 

6 

MySolution 4 
Should 

calculate 
5 

 

1.14 Test results and discussions  

1.14.1 Experimental Methodology  

A randomly generated map has been used to test and compare all the algorithms. Each 

algorithm has been tested several times when the number of units was increasing from 

150 to 1905 in increment of 150. 

Each time, we select the number of units, position them at the start point and run the 

program for five times. The final result for each selected number of units is average of 

those five runs. 

1. For each of four algorithms do:  

2. For N from 1 to 13 do: 

2.1. Place (N * 150) units at start point and run the algorithm for 5 times. 

2.2. Calculate the final result as average of results of five tests in part (2.1) 

2.3. N = N + 150 
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1.14.2 Time 

A group of 180 units wants to travel from Start point to End Point.  

(a) A* will find the shortest route which is R1 and send them all through R1. Path 

Portion of R1 is 180. Total time to pass from R1 for 180 units using A* is 15.36.  

𝑇𝑇𝑃 = ((𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑢𝑛𝑖𝑡𝑠 ∗ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ) − 1) ∗ (𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 1 𝑢𝑛𝑖𝑡) + 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑝𝑎𝑠𝑠 𝑅1 

(b) LRA* finds the shortest route, sends all the units through it and waits for 

collision. Theoretically, LRA* do not let the collision to occur and will re-do the 

pathfinding for two units who are very near to have a collision. However, in 

practice some collisions are inevitable, especially when we have a dense area.     

(c) Maximum flow divides all the units into 6 and sends them equally through the 

routes. Path Portion for each path is 30 units. Consider that there are only five 

routes for Maximum Flow but as it uses one route, R8 with capacity of 2, so total 

capacity is six. TTP from each route Rx is: 

𝑇𝑇𝑃𝑅𝑥 = ((𝑃𝑎𝑡ℎ 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 − 1) ∗ 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 1 𝑢𝑛𝑖𝑡 ) + 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑝𝑎𝑠𝑠 𝑜𝑓 𝑝𝑎𝑡ℎ 𝑅𝑥 

  Path Portion for each route is 
180

6
= 30. Table 0.5 shows TTP for all routes.  

Table 0.5: Route information when using Maximum Flow 

Route name Length Capacity 
TTP for 1 

unit 

TTP for all 

units of path 

portion 

R1 32 1 6.4 7.85 

R2 43 1 8.6 10.05 

R5 53 1 10.6 12.05 

R6 47 1 9.4 10.85 
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R8 40 2 8 9.45 

 

Although capacity of R5 is two, when Maximum Flow algorithm is used, another 

route uses a part of capacity of R5 and at this time, there is only one available 

capacity for R5 to use. It should be mentioned again that routes share some edges 

with each other. 

(d) RWT divides units in a different way (explained in chapter 4). After applying 

RWT there will be five different routes from S to E. Each route has its own 

length, capacity and Path Portion. TTP for each route Rx is equal to:          

𝑇𝑇𝑃𝑅𝑥 = ((𝑃𝑎𝑡ℎ 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 − 1) ∗ 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 1 𝑢𝑛𝑖𝑡 ) + 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑝𝑎𝑠𝑠 𝑜𝑓 𝑝𝑎𝑡ℎ 𝑅𝑥 

 

Table 0.6 shows all routes with their relative Path Portion and time to pass using RWT. 

Table 0.6: Route information when using RWT  

Route name Length Capacity 
TTP for 1 

unit 

TTP for all 

units of Path 

Portion 

R1 32 1 6.4 9.6 

R3 37 1 7.4 9.6 

R6 47 1 9.4 9.6 

R8 40 2 8 9.6 

 

The results show that the Time to pass(TTP) increase with the increasing of the number 

of units, irrespective of the path finding strategy, as shown in Figure 0.3. 
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Figure 0.3: Time to pass for different number of units using different algorithms. 

In terms of travelling time, A* takes lots of time to send units from S to E. A* finds the 

shortest route and force all the units to use that one route, therefore there will form a huge 

queue of waiting units at some parts of the map. Time to pass increases with number of 

units and for A* it is more than other solutions. It should be mentioned that for a small 

group of units traveling time with A* and RWT are the same and less than traveling time 

with Maximum Flow. As it is mentioned in chapter 4, RWT sorts all the routes by length 

and then selects among them based on number of units; if there is no need to use second 

shortest route it will not use it. In that case, RWT will use only one route, that is the 

shortest one, and consequently A* and RWT show the same behavior. 
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Figure 0.3 shows that it takes more time to complete movement process when Maximum 

Flow has been used in comparison to RWT, but up to a number of units. If the number of 

units is more than that number then RWT needs more time. That particular point is 

named border point. In this example, border point is 1655 units. 1655 units want to go 

from S to E, does not matter which solution is used, Maximum Flow or RWT; it takes 

23.35 seconds. If number of units is less than border point it is better to use RWT, 

otherwise Maximum Flow works better.  

1.14.3 Traveled Distance 

Traveled distance is another parameter that has been studied to compare the solutions. 

Traveled distance is sum of the distance that each unit should travel to reach the 

destination. 

𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  ∑ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑇𝑟𝑎𝑣𝑒𝑙𝑒𝑑 𝑏𝑦 𝑢𝑛𝑖𝑡 𝑖

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑡𝑠

𝑖=1

 

As it is mentioned before A* sends all the units from one route, that is shortest one, so A* 

should have the minimum traveling distance among these algorithms.  

Maximum Flow and RWT will have more travelling distance. They divide units and send 

them through different routes. Obviously traveled distance for these two solutions should 

be more than A*. RWT has less traveling distance than Maximum Flow. RWT selects 

shortest route first and second shortest route next and so on. On the other hand, 

Maximum Flow does not consider route length. Maximum Flow just takes into account 

capacities and tries to maximize in-flow units.  
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Traveling distance in LRA* is also more than A*. LRA* has lots of turnings and cycles 

and re-routing that adds more traveling distance to each unit.  

Figure 0.4 shows the comparison between solutions in term of traveled distance.  

 

Figure 0.4: Traveled distance for different number of units 

 

1.14.4 Waiting Time 

The relative changes of waiting time are investigated under four different path-finding 

strategies, while the number of units is changing between 175 and 1000. 
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Figure 0.5: Waiting time 

 

As Figure 0.5 shows, A* has more waiting time than other solutions. Calculated waiting 

is sum of waiting times of all the units. Those times, when a unit is moving on the terrain 

is not considered as waiting time. Waiting time is when a unit is not moving and waits in 

a queue for a free path to get on to.  

𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 =  ∑ 𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑢𝑛𝑖𝑡 𝑖 𝑠𝑝𝑒𝑛𝑡 𝑖𝑛 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑡𝑠
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Each route has a limited capacity, if the number of units, which want to pass through that 

route exceeds the route capacity they have to wait at the entrance portal of the route for a 

free spot. The additional units for a route results in the more waiting time for those units.   

A* sends all the units from one route (shortest path) and because of limited capacity of 

that units have to wait for free spaces.  

Maximum Flow and RWT divide units and send them through several routes. 

Consequently waiting time for these two solutions are less than A*.  

Waiting time for Maximum Flow is less than RWT and it makes sense. The policy of 

Maximum Flow algorithm is to maximize the number of units, which are in flow.  

As LRA* looks for potential collisions and executes re-routing for those potentially 

colliding units, it decreases chance of waiting in queues and therefore waiting time.     

1.14.5 Number of Collisions 

As was mentioned in Section 2.3 there are two common representations of walkable areas 

in video games, NavMesh and Waypoints. When waypoint system is used, units will 

move in lines from point to point and never collide with other neighbor units. When 

NavMesh system is used, units try to take the shortest possible path. When the route 

turns, units tend to take smallest turning radius. In this situation, there will be some 

collisions between neighbor units. Figure X shows the difference between two 

representations.  
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As figure X shows, units in a game, which uses NavMesh, tend to take the smallest 

turning radiuses. Red lines in picture A are approximate paths in a route with capacity of 

two. Units in a game, which uses waypoint system, move in separate lines and will not 

collide with neighbor units. Path of picture B also has capacity of two.   

Simulations of this study are implemented using NavMesh system. Although RWT 

algorithm is collision free, using NavMesh system results in some collisions especially at 

turning routs and at junctions.      

The results show that increasing the number of units invariably yields higher number of 

collisions in all the algorithms. Number of collisions exponentially grows in dense areas 

where in-queue units try to find their paths and hit each other to find a free spot. 

Solutions with more waiting units should have more collisions. That is the reason behind 

high number of collisions in A* solution. Maximum Flow and RWT spread units and 

decrease chance of collision between units. 

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠 =  
∑ 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠 𝑜𝑓 𝑖

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑡𝑠
𝑖=1

2
 

           

  A      B 

Figure 5.6: picture (A) shows turning path, which uses NavMesh, and picture 

(B) shows the same part of map with waypoints system.   



65 
 

Every time two units collide, it considered as two collisions, so we divide number of 

collisions by two to have the correct number of collisions.   

Figure 0.6 compares number of collisions for all algorithms when different number of 

units is placed on the terrain. 

 

Figure 0.6: Number of collisions between units 

 

Considering the fact that different steering behaviors affect all the algorithms in almost 

the same way [15], study of different steering behaviors is out of the scope of this study 

and was not considered in this study. 
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Conclusions and Future Works 

Focus of this thesis is on single source - single destination group pathfinding problem. 

All units move with similar speed and have similar sizes. RWT algorithm is a good 

solution for group of units which start to navigate the map and try to find their routes to 

one destination in minimum possible time. There are other situations that can be 

considered for future works. For example, solution for other possibilities like:  

 Multiple source - single destination 

 Multiple source - multiple destination 

 Single source - multiple destination 

 Multiple source - multiple destination 

These problems needs further research and perhaps enhanced algorithms.  

To achieve a global solution, it is also necessary to consider group of units with different 

sizes and different speeds (infantry soldiers vs. armoured tanks). 
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